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Abstract

Multicointegration is traditionally defined as a particular long run relationship among vari-
ables in a parametric vector autoregressive model that introduces additional cointegrating links
between these variables and partial sums of the equilibrium errors. This paper departs from
the parametric model, using a semiparametric formulation that reveals the explicit role that sin-
gularity of the long run conditional covariance matrix plays in determining multicointegration.
The semiparametric framework has the advantage that short run dynamics do not need to be
modeled and estimation by standard techniques such as fully modified least squares (FM-OLS)
on the original I (1) system is straightforward. The paper derives FM-OLS limit theory in the
multicointegrated setting, showing how faster rates of convergence are achieved in the direction
of singularity and that the limit distribution depends on the distribution of the conditional one-
sided long run covariance estimator used in FM-OLS estimation. Wald tests of restrictions on
the regression coefficients have nonstandard limit theory which depends on nuisance parameters
in general. The usual tests are shown to be conservative when the restrictions are isolated to
the directions of singularity and, under certain conditions, are invariant to singularity otherwise.
Simulations show that approximations derived in the paper work well in finite samples. The
findings are illustrated empirically in an analysis of fiscal sustainability of the US government
over the post-war period.

Keywords: Cointegration, Multicointegration, Fully modified regression, Singular long run vari-
ance matrix, Degenerate Wald test, Fiscal sustainability.
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1 Introduction

Many economic time series are non-stationary and contain stochastic trends, which are naturally

modeled using cointegration. For example, two I(1) variables yt and xt are cointegrated if for

some A, u0t = yt − Axt is I(0). Granger and Lee (1990) call multicointegration a situation when

the cumulative error U0t =
∑t

s=1 u0s is cointegrated with xt or yt. They analyze a case where

(yt, xt, u0t) are production, sales and inventory investment, A = 1 and U0t is the level of inventories.

Inventory stock U0t may then be cointegrated with production via an adjustment mechanism that

captures firm decision making on inventory investment, as well as satisfying an identity arising from

the aggregation of the defining relationship yt = xt + u0t.

∗Corresponding author.
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It is important to take into account the presence of multicointegration in a cointegrated system:

on one hand it can invalidate usual procedures of estimation and testing in cointegrated systems

by affecting asymptotic properties; and on the other it may lead to advantages in improved fore-

casting performance. Multicointegration has so far been analyzed only in a VAR framework1 and

naturally involves implicit restrictions on the model induced by the extra layer of cointegration.

Engsted and Johansen (1997), for example, show that if the process is generated by a VAR model

for I(k) variables, multicointegration may occur if k = 2 but not if k = 1. Likelihood-based es-

timators of cointegration parameters in I(2) VAR multicointegrated systems have mixed normal

limit distributions and likelihood ratio statistics for hypothesis testing about the parameters gen-

erally have asymptotic χ2 null distributions under conditions of correct specification, as shown for

example in Johansen (1997, 2006), Boswijk (2000, 2010), and Paruolo (2000). Berenguer-Rico and

Carrion-i-Silvestre (2011) provide an application of this approach that examines government debt

sustainability.

In contrast to these studies, the present paper studies I(1) cointegrated models that are possibly

multicointegrated in a semiparametric framework with specific focus on the use of fully modified least

squares (FM-OLS) estimation. In related work, the authors (Phillips and Kheifets, 2019) explore

the concept of multicointegration in a general I(1) triangular cointegrated system with weakly

dependent errors, showing how multicointegration emerges naturally from singularity of the long run

covariance matrix. This formulation gives an explicit mechanism generating multicointegration as a

property of a general triangular I(1) system, as opposed to imposing multicointegration subsequently

on a parametric system like a VAR. The contrast lies in the capacity of a general I(1) triangular

system to implicitly involve the effects of multicointegration without changing or restricting the

cointegrating coefficients. The implicit effects propogate from the nonparametric treatment of the

equation errors and are therefore typically unknown to the investigator. This property is one of the

primary motivations of our study. A second motivation is to show that FM-OLS estimation of the

cointegration coefficients has some useful robustness properties to the possible unknown presence

of multicointegration.

More specifically, the present paper contributes by developing asymptotic theory for FM-OLS

estimation and testing in cointegrating relationships that involve multicointegration in a semipara-

metric setting. The analysis of triangular cointegrated systems under singularity that is developed

is of some independent interest. The results show that cointegrated system estimation may proceed

under certain conditions in a general I(1) cointegrated system in the presence (and without prior

knowledge) of multicointegration.

To define multicointegration for weakly dependent data, we take the triangular representation

of a linear cointegrating relationship. In the cointegrating regression model

yt = Axt + u0t, xt = xt−1 + uxt, t = 1, . . . , T, (1)

A is a m0 ×mx cointegrating coefficient matrix, xt is initialized at t = 0 by x0 = Op(1), and the

1It is of course possible to write stationary VARs in moving average form and vice versa under invertibility
conditions. There is now a large literature describing such explicit representations for cointegrated time series. For a
general approach based of Laurent series representations, see Franchi and Paruolo (2019) and the references therein.
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combined error vector ut = (u′0t, u
′
xt)
′ follows the linear process

ut = D(L)ηt =
∞∑
j=0

Djηt−j , ηt ∼ iid(0, Im), with
∞∑
j=0

jν ||Dj || <∞, (2)

for some ν > 2, finite fourth order cumulants of ηt, and where m = m0 + mx. It is common in

the literature to consider such time series with an additional assumption |D(1)| 6= 0 (e.g. Phillips,

1995) that assures nonsingularity of the long run variance matrix of ut, which we relax here.

Let Γu,u(h) = Eut+hu′t. The linear operator D(L), the long run covariance matrix Ω =∑∞
h=−∞ Γu,u(h) = D(1)D(1)′ =

∑∞
k=0

∑∞
j=0DjD

′
k of ut and one-sided long run covariance ma-

trix Γ+ =
∑∞

h=0 Γu,u(h) =
∑∞

k=0

∑k
j=0DjD

′
k of ut are partitioned conformably with ut as

D(L) =

[
D00(L) D0x(L)

Dx0(L) Dxx(L)

]
,Ω =

[
Ω00 Ω0x

Ωx0 Ωxx

]
,Γ+ =

[
∆00 ∆0x

∆x0 ∆xx

]
,

where Ωxx > 0 is positive definite so that xt is a full rank I(1) regressor vector, as commonly assumed

in triangular systems such (1) and (2) following Phillips(1991)2. The conditional long run covariance

matrix, defined as the Schur complement of the block Ωxx, is Ω00.x = Ω00−Ω0xΩ−1
xxΩx0 and is positive

(semi-) definite if and only if Ω is positive (semi-) definite (by virtue of the Guttman rank additivity

formula). In this paper we consider a situation when the long run variance matrix is singular, or,

equivalently, when the conditional long run covariance matrix is singular. It corresponds to a case

where partial sums of yt and xt are cointegrated with an I(0) error in some unknown direction, i.e.

when there is a multicointegration in the spirit of Granger and Lee (1990), but is semiparametric

in the sense that the short run dynamics are left unspecified. We therefore introduce the following

definition.

Definition 1. The process generated by a triangular cointegrating system is called multicointegrated

if its long run error covariance matrix is singular.

The advantage of this framework is that it provides the explicit origin from which the multi-

cointegrating relationship arises in an I(1) system. Thus, if we take partial sums of the augmented

regression form (Phillips, 1991)

yt = Axt + F (1− L)xt + u0.x,t, (3)

where F = Ω0xΩ−1
xx is the long run regression coefficient of u0t on xt and u0.x,t = u0t − Ω0xΩ−1

xxuxt,

giving (using capitals with time index t for partial sums)

Yt = AXt + Fxt + U0.x,t. (4)

It becomes clear that in the direction of singularity of Ω00.x we have an exact long run relationship

that links the time series Yt, Xt, and xt and this relationship is prescribed in terms of the coefficients

A, F and the singular direction of Ω00.x, which is estimable. In earlier work on multicointegration,

2The case where the regressors xt are themselves cointegrated is considered in Phillips (1995) but is not considered
in this paper.
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the hypothesis about multicointegration is imposed a priori, directly and explicitly as in Granger

and Lee (1990) or through rank conditions in VAR analyses. What our approach does is: (i) show

that multicointegration may exist in a triangular I(1) system such as (1); (ii) reveal the leading

and intuitively simple role that the singularity of the long run conditional error covariance matrix

Ω00.x plays in giving rise to multicointegration, a feature of the model that may be unknown to the

investigator; (iii) allow for both cointegration and multicointegration within the same specification;

and (iv) use a nonparametric formulation to provide a general setting for the analysis, for the form

of the cointegrating and multicointegrating coefficients, and for practical work.

In a VAR framework Engsted and Johansen (1997) show that multicointegration, as defined

in Engle and Lee (1990) of a linear I(1) process3 (y′t, x
′
t)
′ = (1− L)−1C(L)ηt where the roots of

|C(z)| = 0 satisfy |z| > 1 or z = 1, occurs when z = 1 is a root4, so that C(1) = ξε′ has reduced rank

and ξ′⊥Ċ(1)ε⊥ is singular (explicit forms of the matrices {ξ, ε} and their orthogonal complements

{ξ⊥, ε⊥} are given in the proof of the Proposition 1 below). This is the case when Ω is singular or

more specifically in the present context when Ω00.x is singular, as shown below.

Proposition 1. A linear process (y′t, x
′
t)
′ generated by (1)-(2) with Ωxx > 0 is multicointegrated,

i.e., Ω is singular, if and only if it satisfies the multicointegration condition of Engsted and Johansen

(1997). The rank of the multicointegrating relation equals m− rank(Ω) = m0 − rank(Ω0.xx).

In what follows data matrices are denoted by upper case letters without indexes, e.g., Y ′ =

[y1, . . . , yT ]. The OLS estimator Â = Y ′X (X ′X)−1 is consistent at the rate at least O(T ). The

FM-OLS estimator (Phillips and Hansen 1990) has the form Â+ =
(
Ŷ +′X − T ∆̂+

0x

)
(X ′X)−1 and

employs corrections for endogeneity in the regressor xt, leading to the transformed dependent vari-

able ŷ+
t = yt − Ω̂0xΩ̂−1

xx (xt − xt−1) and a bias correction term involving ∆̂+
0x = ∆̂0x − Ω̂0xΩ̂−1

xx ∆̂xx,

which is constructed in the usual way using consistent nonparametric estimators of submatrices

of the long run and one sided long run quantities Ω and Γ+. Compared with OLS, the FM-OLS

estimator removes asymptotic bias and increases efficiency by correcting both the long run serial

correlation in ut and endogeneity in xt caused by the long run correlation between u0t and uxt. The

properties of FM-OLS in general regressions as well as VARs are studied in Phillips (1995). Here we

advance the analysis by allowing for the possibility of a singular conditional long run variance matrix

Ω00.x. When Ω00.x is singular, i.e. when modified yt is cointegrated and in some direction the errors

in the cointegrating equation are I(−1), the limit theory of the FM-OLS estimator is degenerate at

the usual O(T ) rate and the faster convergence rate affects both estimation and inference.

The paper makes the following contributions. First, we derive the new rates of convergence

and limit distribution of the FM-OLS estimator in the case of a null conditional long run variance

matrix. The new rate exceeds O(T ) and depends on the bandwidth used in estimating the long

run covariance matrix quantities that are employed in making corrections for endogeneity and serial

3The summability condition in the specification (2) imposes a restriction on C(z). This is because the matrix
moving average power series D(z) of a linear process generated by (1)-(2) does not have poles at z = 1, which
implies that, when the system is written in the form (y′t, x

′
t)
′

= (1− L)−1 C(L)ηt, it must be that ξ1C(1) = 0, where
ξ1 = (Im0 ,−A). Indeed, the upper block of D(z) of such a system satisfies (D00(z), D0x(z)) = ξ1(1 − z)−1C(z) =
(1 − z)−1ξ1C(z) and does not have poles at z = 1 if and only if ξ1C(1) = 0. We thank a referee for this clarifying
observation and suggestions to improve the statement and the proof of Proposition 1.

4The order m of zeros of C(z) at z = 1 or, equivalently, the order of poles of C(z)−1 at z = 1, is not restricted to
m = 1 and is unknown. A unified treatment of the different representations of cointegrated systems for known m is
given in a recent paper by Franchi and Paruolo (2019).
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correlation in FM-OLS. The resulting limit distribution is no longer mixed normal and depends on

nuisance parameters. Similar properties hold in the direction of singularity in the case of a singular

long run variance matrix. Second, under certain conditions, the limit distribution of Wald statistics

for testing restrictions on the cointegrating space and cointegrating parameters is χ2 and is invariant

to the presence of singularity. Third, we show that when those restrictions fail, the Wald test is

conservative. Monte Carlo simulations reveal that the empirical level of the test can be far below

the nominal 1%, 5% and 10% levels in singular and near singular cases.

As an application of our methods we analyse fiscal sustainability of the US government over

the period 1947-2019 by testing the null hypothesis that the cointegraton relationship between

government revenue and expenditure has the parametric form (1,−1). Multicointegration between

government revenue and expenditure naturally arises if bounds are imposed on deviations of debt

from revenue. We reject the null hypothesis and, as our theoretical results show, this conclusion is

not affected by the presence of multicointegration. The finding is important for practical purposes,

as a separate treatment of the multicointegration case is not necessary (c.f., Quintos, 1995, and

Berenguer-Rico and Carrion-i-Silvestre, 2011).

The paper is organized as follows. In Section 2 we derive the rates of convergence of elements of

Â+ and establish its limit distribution. After some preliminary observations we begin our discussion

with the null case where Ω00.x = 0, then move on to a case of a general singular matrix. The

implications of singularity for hypothesis testing are discussed in Section 3. The finite sample

properties of the FM-OLS and Wald test statistics are explored in Section 4. The application to

government fiscal sustainability is considered in Section 5. Section 6 concludes. Proofs are given in

the Appendix.

2 Fully Modified OLS

Under the stated conditions the functional law T−1/2
∑[T ·]

t=1 ut →d B(·) ≡ BM(Ω) holds for partial

sums of ut (e.g., Phillips and Solo, 1992). Define the partition B = (B′0, B
′
x)′ into the first m0 and

the final mx subvectors of the Brownian motion, conformably with ut. Introducing the matrices

L0.Ω =
[
Im0 −Ω0xΩ−1

xx

]
, LΩ =

[
Im0 −Ω0xΩ−1

xx

0 Imx

]

and the Brownian motion B0.x = L0.ΩB, we have[
B0.x

Bx

]
= LΩ

[
B0

Bx

]
= BM(LΩΩL′Ω) = BM

([
Ω00.x 0

0 Ωxx

])
,

where B0.x ≡ BM (Ω00.x) is orthogonal to Bx. Note that Ω00.x is the long run variance of u0.x,t =

L0.Ωut = D0.x(L)ηt, where D0.x(L) = L0.ΩD(L). It is well known that the OLS estimator of A in

(1) is O(T ) consistent with a limit distribution that depends on the nuisance parameters Ω and Γ+,
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viz.,

T
(
Â−A

)
→d

(∫ 1

0
dB0B

′
x + ∆0x

)(∫ 1

0
BxB

′
x

)−1

=

(∫ 1

0
dB0.xB

′
x

)(∫ 1

0
BxB

′
x

)−1

+ Ω0xΩ−1
xx

(∫ 1

0
dBxB

′
x

)(∫ 1

0
BxB

′
x

)−1

+ ∆0x

(∫ 1

0
BxB

′
x

)−1

. (5)

The last two terms of (5) are the endogeneity and serial correlation biases that FM-OLS seeks to

remove.

Suppose Ω and Γ+ are estimated in the usual way (e.g., Priestley 1981; Hannan, 1970) as

Ω̂ =
T−1∑

j=−T+1

w(j/K)Γ̂û,û(j) and ∆̂ =
T−1∑
j=0

w(j/K)Γ̂û,û(j),

where w(·) is a kernel function, K is a bandwidth parameter and the sample covariances are

Γ̂û,û(j) = T−1
∑

1≤t,t+j≤T ût+j û
′
t, ût = (û′0t, u

′
xt)
′, where û0t = yt − Âxt. Similar to Phillips

(1995), we consider the following kernels and bandwidth rates.

Assumption K (Kernel Condition) For given k ∈ (0, 1), the bandwidth parameter K has the rate

K ∼ cTT k as T →∞, where cT is slowly varying at infinity, i.e. cxT /cT → 1 for x > 0 and T →∞.

The kernel function w(·) : R→ [−1, 1] is a twice continuously differentiable even function with

(a) w(0) = 1, w′(0) = 0, w′′(0) 6= 0, and

(b) w(x) = 0, |x| ≥ 1, with lim|x|→1w(x)/(1− |x|)2 = const.

Parzen and Tukey-Hanning kernels satisfy Assumption K. The Bartlett-Priestley or quadratic spec-

tral kernels do not satisfy Assumption K but to use them in the following development these kernels

need to satisfy

(b’) w(x) = O(x−2), as |x| → ∞

and (a) with support (−∞,∞). Under Assumption K, with 0 < k < 1, and any consistent estimator

Â we have Γ̂→p Γ, Ω̂→p Ω, ∆̂→p Γ+.

Proposition 2. Under Assumption K with 0 < k < 1,

T
(
Â+ −A

)
→d

(∫ 1

0
dB0.xB

′
x

)(∫ 1

0
BxB

′
x

)−1

.

For the nonsingular case this result appears in Corollary 4.3 in Phillips (1995). The proof reveals

that singularity does not alter the above convergence but makes the limit distribution degenerate.

If Ω00.x has full rank, the rate of convergence of the FM-OLS estimator is determined by the rates

of weak convergence of the sample covariances and the rate of nonparametric estimation of Ω and

Γ+ does not play any role. We will show that in case Ω00.x is singular, the rate of convergence of
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the FM-OLS estimator along the null direction of Ω00.x increases by δ(T ), where

δ(T ) =


T 1+2k, k ∈ (0, 1/4),

T 3/2, k ∈ [1/4, 1/2],

T 2−k, k ∈ (1/2, 1).

The fastest rate of convergence of FM-OLS in the null direction is T 3/2 when bandwidth expansion

rate is k ∈ [1/4, 1/2].

For example, in the case where Ω00.x = 0, we have T
(
Â+ −A

)
→p 0 and the precise rate

of convergence of the FM-OLS estimator depends on the bandwidth parameter expansion rate

k in kernel estimation of the nonparametric components. Parameter dependencies may then be

present in the resulting asymptotic theory, arising from first order terms in the limit behavior of

the long run covariances that influence the asymptotics in this degenerate case. In particular, when

Ω00.x = 0 the component D0.x(1) = 0 in the Beveridge-Nelson decomposition of u0.x,t. In this case,

u0.x,t = D0.x(1)ηt+ D̃0.x(L)ηt−1− D̃0.x(L)ηt reduces to a first difference u0.x,t = −(et− et−1), which

is I(−1)5 with et = D̃0.x(L)ηt =
∑∞

j=0 D̃0.x,jηt−j , with D̃0.x,j = L0,Ω
∑∞

t=j+1Dt, and et has long

run variance matrix Ωee = D̃0.x(1)D̃0.x(1)′.

The next proposition establishes convergence properties of FM-OLS for such time series. It is

particularly useful for the case of a single cointegration relationship with m0 = 1 (e.g., Phillips

and Loretan, 1991), because singularity implies that the conditional long run variance is zero. This

reduction makes explicit the effect of singularity on the convergence rates and serves as the basis of

a general result.

Proposition 3. Suppose Ω00.x = 0. Under Assumption K with 0 < k < 1,

δ(T )
(
Â+ −A

)
= Op(1).

As the proof of Proposition 3 reveals, the limit distribution of the restandardized estimation error

δ(T )(Â+−A) depends on nuisance parameters associated with the nonparametric estimation of the

long run covariance matrices. For kernel estimators, the limit depends on the covariance structure

of the errors, on the bandwidth growth rate, and on the second derivative of the kernel function.

For illustration, consider the case when the bandwidth K grows slower than T 1/4, which includes

the typical optimal bandwidth rate T 1/5 for long run variance estimation. Under these conditions,

we have the following limit theory.

Proposition 4. Suppose Ω00.x = 0. Under Assumption K with k < 1/4,

T 1+2k
(
Â+ −A

)
→d w

′′(0)

(
Φ0 + Φ−∞Ω−1

xx

∫ 1

0
dBxB

′
x

)(∫ 1

0
BxB

′
x

)−1

,

where Φh =
∑∞

j=h (j + 1/2)E et+ju′xt.

Unlike the corresponding limit theory in the nonsingular case (Phillips, 1995; Phillips and Hansen,

5The fact that u0.x,t is I(−1) includes the possibility that in some or all directions u0.x,t may be I(−d), d > 1, but
that possibility does not affect the convergence properties of the FM-OLS estimator as the next proposition shows.
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1990), the limit distribution of FM-OLS now depends on the covariance structure of the errors uxt

and et and on the second derivative of the kernel function.

Next, consider a general case of singular Ω00.x with rank r < m0, so that Ω has rank r+mx. To

isolate nondegenerate directions decompose Ω00.x = RR′, where R is an m0 × r matrix of rank r.

Then R′R has full rank, R′u0.x,t has full rank long run variance matrix and Proposition 2 applies

in this direction. In the orthogonal direction6 R⊥, R′⊥u0.x,t = −(et − et−1) is I(−1) 7, where

et = R′⊥D̃0,x(L)ηt has long run variance Ωee = R′⊥D̃0,x(1)D̃0,x(1)′R⊥ and Proposition 3 applies,

showing that elements in this direction R′⊥A are estimated at a faster rate than O(T ).

We now state our first main result.

Theorem 1. Suppose Ω00.x = RR′, where R is an m0 × r matrix with rank(R) = r < m0. Then

under Assumption K

T
(
Â+ −A

)
→d

(∫ 1

0
dB0.xB

′
x

)(∫ 1

0
BxB

′
x

)−1

,

which is degenerate mixed normal. The limit distribution is not degenerate and has full rank in

direction R with

TR′
(
Â+ −A

)
→d

(∫ 1

0
dBf.xB

′
x

)(∫ 1

0
BxB

′
x

)−1

,

where Bf.x ≡ BM (Ωff.x) and Ωff.x = R′RR′R is the full rank r × r conditional long run variance

matrix of R′U0.x. In the direction R⊥ orthogonal to R the convergence of Â+ is at the faster rate

O(δ(T )) and δ(T )R′⊥

(
Â+ −A

)
= Op(1).

The FM-OLS estimator of a singular triangular system with multicointegration therefore has

the following properties: (i) FM-OLS is consistent; (ii) the limit distribution is degenerate in the

original coordinates; and (iii) rates of convergence are O(T ) in nondegenerate directions and O(δ(T ))

in degenerate directions. In the degenerate direction the limit distribution is of the type shown in

Proposition 4. Singularity of the limit distribution means that care is needed when undertaking

inference and these matters are considered in the next section. The situation is in some ways

analogous to that of causality testing in cointegrated VAR regressions, as analyzed in Toda and

Phillips (1993), and cointegrating regressions with cointegrated regressors, as analyzed in Phillips

(1995). In the present case, it is necessary to analyze the directions of singularity of the long run

covariance structure and the behavior of the estimates in these directions.

3 Testing

We consider the following hypothesis involving functions φ ∈ C1
q (−∞,∞), the space of q dimensional

continuously differentiable functionsH0 : φ(vec(A)) = 0, where vec (·) is row vectorization. Suppose

6By the usual eigenvalue decomposition for symmetric matrices there is a set of orthonormal eigenvectors {qi}mi=1 of
Ω00.x, stacked as an orthogonal matrix C and real eigenvalues λi in decreasing order on diagonal matrix Λ, such that
Ω00.x = CΛC′ =

∑r
i=1 λqiq

′
i. In this notation, CΛ1/2 = (R, 0) and R⊥ spans the space of eigenvectors corresponding

to zero eigenvalues.
7This representation allows for R′⊥u0.x,t being I(−d) with d > 1 in some directions.
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Ω00.x = RR′, where R is an m0 × r matrix of rank(R) = r < m0, so that R′R is r × r nonsingular.

Then under Assumption K

T
(
Â+ −A

)
→d

(∫ 1

0
dB0.xB

′
x

)(∫ 1

0
BxB

′
x

)−1

≡MN

(
0,Ω00.x ⊗

(∫ 1

0
BxB

′
x

)−1
)
.

The limit distribution is mixed normal (MN ) and standard inference methods can be applied. The

usual Wald statistic for testing H0 is

W = φ
(
â+
)′ {

Φ
(
â+
) (

Ω̂00.x ⊗
(
X ′X

)−1
)

Φ
(
â+
)′}−1

φ
(
â+
)
,

where â+ = vec
(
Â+
)

, Φ(a) = ∂φ(a)/∂a′ and a = vec (A) is row vectorization. Suppose that the

following rank condition holds

rank

{
Φ (a)

(
Ω00.x ⊗

(∫ 1

0
BxB

′
x

)−1
)

Φ (a)′
}

= q. (6)

Under Assumption K, W →d χ
2
q . So, under the rank condition (6), the limit distribution of the

Wald statistics is invariant to the presence of singularity.

3.1 Violation of the rank condition

Consider the linear hypothesis

H0 : Qvec(A) = r0,

with restriction q×m0mx matrix Q = R1⊗R2 of rank q = q1q2 and component matrices R1, m0×q1,

of rank q1 and R2, m0 × q2, of rank q2. Then H0 has a tensor form with matrix representation

H0 : R1AR2 = R3, with vec R3 = r0, and

Q

(
Ω00.x ⊗

(∫ 1

0
BxB

′
x

)−1
)
Q′ = R1Ω00.xR

′
1 ⊗R′2

(∫ 1

0
BxB

′
x

)
R2.

If the rank of R1Ω00.xR
′
1 = R1RR

′R′1 is q̃1 < q1, then the rank condition (6) fails as q̃1q2 < q1q2 = q.

This is the case where some of the restrictions isolate directions in which FM-OLS is hyperconsistent

with rate exceeding O(T ). The distribution of the Wald test statistic is then nonstandard and

depends on nuisance parameters. In general, failure of estimator mixed normality in the direction

of faster convergence produces a non chi-squared limit in the Wald statistic as the faster convergence

of the estimator is balanced in the Wald statistic weighting. A related phenomenon arises in Toda

and Phillips (1993), who describe situations where Wald tests of Granger causality in cointegrated

VAR systems do not follow asymptotically chi-squared distributions. For another example, see

Phillips (2016), where singularity in the signal matrix leads to nonstandard inference.

To illustrate the consequences of singularity consider testingH0 : A = A0. Then Q = Im0mx , r0 =

vec(A0), R1 = Im0 , R2 = Imx , R3 = A0 and their ranks are q = m0mx, q1 = m0 and q2 = mx. The
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Wald test statistic then simplifies to

WI = vec
(
Â+ −A0

)′ (
Ω̂00.x ⊗

(
X ′X

)−1
)−1

vec
(
Â+ −A0

)
= tr

{(
X ′X

) (
Â+ −A0

)′
Ω̂−1

00.x

(
Â+ −A0

)}
.

The notational change to WI emphasizes that the following analysis only considers the full dimen-

sional restriction structures above. The rank of Ω00.x ⊗
∫ 1

0 BxB
′
x equals the rank of the conditional

long run variance times mx, i.e. the null hypothesis restrictions isolate ‘all directions’ and the rank

condition is satisfied if and only if the conditional long run variance matrix is nonsingular. If the

conditional long run variance is nonsingular, the rank condition holds and WI → χ2
q .

Singularity alters the rate of convergence and the limit of Ω̂00.x, which is used in the construction

of the Wald test statistics. We proceed to derive the rate of convergence for this quantity. As the

proof of the following proposition reveals, the rate of convergence is T 2k if k < 1/3 and T 1−k if

k ≥ 1/3. As in the case of FM-OLS estimation, the limit distribution of Ω̂00.x depends on nuisance

parameters and on the implementation of the nonparametric estimates of the long run covariance

matrices. As an illustration, consider a case when the bandwidth K grows slower than T 1/3, which

includes the usual optimal bandwidth rate T 1/5 for long run variance estimation.

Proposition 5. Suppose Ω00.x = 0 and Assumption K holds with 0 < k < 1/3.Then

(a) T 2kΩ̂00.x →p −w′′(0)Ωee.

(b) If Ωee is nonsingular, then WI = Op(T
−2k) if k ∈ (0, 1/4] and WI = Op(T

2k−1) if k ∈ (1/4, 1/3).

Nonsingularity of Ωee means that there is no further level of cointegration (system (1) is singular

of first order, see Park 1992) and guarantees that the limit in Part (a) in nondegenerate, so that the

rate of convergence of Ω̂00.x is sharp. In the more general case where Ω00.x is positive semi-definite

but not a null matrix we have the following result.

Theorem 2. Suppose Ω00.x = RR′, where R is an m0 × r matrix with rank(R) = r < m0, Ωee is

nonsingular, and Assumption K holds with 0 < k < 1/3, then under the null WI →d χ
2
rmx.

The proof of the above result reveals that the limit distribution of the Wald test statistic involves

the sum of two major components. The first component arises from the limit in the nonsingular

direction, which is χ2
rmx , and the second involves the limit in the direction where the conditional

long run variance matrix is zero, which is nonstandard, depends on nuisance parameters and decays

at the speed established in Proposition 5 above. Therefore, for k < 1/3 the χ2
rmx limit distribution

of the WI statistic has thinner tails than the distribution of χ2
m0mx , so that tests based on the usual

degrees of freedom are asymptotically conservative.
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4 Finite sample performance

The following analysis of finite sample performance is based on 10, 000 simulations with different

sample sizes.8 The long run variances are estimated using the Parzen kernel

w(x) =


1− 6x2 + 6|x|3, −1/2 ≤ x ≤ 1/2,

2(1− |x|)3, 1/2 ≤ |x| ≤ 1,

0, 1 ≤ |x|,

and bandwidth is set to K = T 1/4, if not specified otherwise. The data generating process (DGP)

has the form (1) with scalar cointegrating coefficient A = 2 and with a combined error vector

ut = (u0t, u
′
xt)
′ that follows the linear process

ut = ηt +D1ηt−1, with ηt ∼ iidN (0,Σ).

We consider estimation of A and hypothesis testing for the null H0 : A = 2. We look at two classes

of bivariate (m = 2) DGPs.

DGP1 For parameter choices p ∈ {0.0,−0.1, . . . ,−1.0} define

D1 =

[
p 0

0 0

]
, Σ = I2.

DGP2 For parameter choices p ∈ {0.8, 5.2} define

D1 =

[
0.3 0.4

p 0.6

]
, Σ =

[
1 0.5

0.5 1

]
.

The finite sample performance for DGP1 is shown in Figure 1 and Table 1; results for DGP2 are

given in Figure 2 and Table 2.

Discussion of results for DGP1.

When p = −1 we have Ω00.x = 0 and a singular system. The limit theory generalizes results on

estimation and testing to this case. With matrix D1 diagonal, the errors u0t and uxt are independent

and the effect of singularity in the long run variance can be studied separately from the effect of

long run dependence. When p = 0, the long run variance is the identity I2 and the conditional long

run variance is 1, giving a standard nonsingular case. For values of p between 0 and −1 the system

is still in the nonsingular case but in finite samples for smaller values of p the limit theory for the

singular case may lead to better approximations than the nonsingular case and simulations help to

guide this assessment.

In Figure 1, Panel (a), the densities of the bias Â+ − A are shown for sample size T = 50.

We compare the densities in the singular case (p = −1) with two nonsingular cases (p = 0 and

p = −0.5). The figure shows that the bias in the singular case is much smaller than the bias in the

8Statistical computing in this paper uses R version 3.4.4.
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Figure 1: Kernel estimates of the densities of the FM-OLS estimation error Â+ −A and t-statistic
t
Â+ for sample sizes T = 50 and T = 100 and DGP1 with parameters p ∈ {0.0,−0.5,−1.0}.

Multicointegration occurs if p = −1.0.

nonsingular cases. A more pronounced effect is observed for T = 100 in Panel (c) confirming the

higher convergence rates established for FM-OLS under singularity.

We use the t-statistic t
Â+ = (Â+ − A0)/{Ω̂00.x/

∑T
t=1 x

2
t }1/2 for testing the hypothesis H0 :

A = 2. In Figure 1, Panel (b) the densities of the t-statistic are shown for sample size T = 50.

We compare the densities in the singular case (p = −1) with two nonsingular cases (p = 0 and

p = −0.5). Theory predicts that in nonsingular cases the test statistics is asymptotically standard
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Figure 2: Kernel estimates of the densities of the FM-OLS estimation error Â+ −A and t-statistic
t
Â+ for sample sizes T = 50 and T = 100 and DGP2 with parameters p = 5.2 and p = 0.8.

Multicointegration occurs if p = 5.2.

normal, which density is also plotted. This approximation is quite accurate for p = 0. However, the

density of the test statistic for p = −0.5 has thinner tails, so that the test based on standard normal

approximation is conservative as our theory predicts for singular case. Results for the sample size

T = 100 are plotted in Panel (d), and it is evident that the test statistic for p = −0.5 still has thin

tails.

Further simulation results are in Table 1. We vary sample sizes from 50 to 100 and the bandwidth
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Table 1: The mean and standard deviation of the bias and t-statistics, the rejection rates for the
nominal 0.01, 0.05, and 0.10 levels of the t-statistics based on the FM-OLS and the mean and
standard deviation of the bias of the OLS estimator are shown for DGP1 for various values of p,
sample sizes and bandwidths. Multicointegration occurs when p = −1.

T p K Bias-OLS SD-OLS Bias SD t-Bias t-SD 0.10 0.05 0.01
1 50 -1.0 2 0.0001 0.0238 0.0003 0.0175 0.0044 0.2598 0.000 0.000 0.000
2 100 -1.0 3 -0.0001 0.0088 -0.0000 0.0055 -0.0023 0.2124 0.000 0.000 0.000
3 50 -0.9 2 0.0000 0.0231 0.0003 0.0173 0.0047 0.2752 0.000 0.000 0.000
4 100 -0.9 3 -0.0001 0.0087 -0.0001 0.0057 -0.0031 0.2379 0.000 0.000 0.000
5 50 -0.8 2 -0.0000 0.0234 0.0002 0.0186 0.0050 0.3214 0.000 0.000 0.000
6 100 -0.8 3 -0.0001 0.0091 -0.0001 0.0068 -0.0041 0.3108 0.000 0.000 0.000
7 50 -0.7 2 -0.0001 0.0247 0.0001 0.0210 0.0053 0.3937 0.000 0.000 0.000
8 100 -0.7 3 -0.0001 0.0101 -0.0001 0.0085 -0.0050 0.4112 0.000 0.000 0.000
9 50 -0.6 2 -0.0001 0.0267 0.0001 0.0242 0.0056 0.4846 0.001 0.000 0.000

10 100 -0.6 3 -0.0001 0.0115 -0.0001 0.0105 -0.0059 0.5232 0.002 0.000 0.000
11 50 -0.5 2 -0.0002 0.0294 0.0000 0.0280 0.0060 0.5875 0.007 0.002 0.000
12 100 -0.5 3 -0.0001 0.0132 -0.0001 0.0126 -0.0068 0.6363 0.010 0.003 0.000
13 50 -0.4 2 -0.0003 0.0326 -0.0001 0.0321 0.0063 0.6967 0.019 0.007 0.000
14 100 -0.4 3 -0.0001 0.0151 -0.0001 0.0149 -0.0077 0.7433 0.027 0.009 0.001
15 50 -0.3 2 -0.0003 0.0361 -0.0001 0.0364 0.0066 0.8073 0.041 0.017 0.003
16 100 -0.3 3 -0.0001 0.0172 -0.0001 0.0171 -0.0084 0.8392 0.050 0.019 0.002
17 50 -0.2 2 -0.0004 0.0399 -0.0002 0.0409 0.0069 0.9146 0.071 0.031 0.007
18 100 -0.2 3 -0.0001 0.0192 -0.0001 0.0195 -0.0090 0.9215 0.075 0.034 0.006
19 50 -0.1 2 -0.0005 0.0439 -0.0003 0.0455 0.0071 1.0146 0.106 0.053 0.013
20 100 -0.1 3 -0.0001 0.0214 -0.0001 0.0218 -0.0094 0.9894 0.097 0.049 0.009
21 50 0.0 2 -0.0005 0.0481 -0.0003 0.0502 0.0073 1.1043 0.134 0.073 0.021
22 100 0.0 3 -0.0002 0.0236 -0.0001 0.0242 -0.0098 1.0438 0.116 0.061 0.014

Table 2: The mean and standard deviation of the bias and t-statistics, the rejection rates for the
nominal 0.01, 0.05, and 0.10 levels of the t-statistics based on FM-OLS and the mean and standard
deviation of the bias of the OLS estimator are shown for DGP2 for various values of p, sample sizes
and bandwidths. Multicointegration occurs when p = 5.2.

T p K Bias-OLS SD-OLS Bias SD t-Bias t-SD 0.10 0.05 0.01
1 50 0.8 3 0.0207 0.0223 0.0013 0.0184 0.1368 1.0091 0.102 0.054 0.014
2 50 5.2 3 0.0026 0.0054 -0.0011 0.0040 -0.0442 0.6474 0.018 0.009 0.003
3 50 0.8 5 0.0207 0.0223 0.0039 0.0189 0.2638 1.0806 0.135 0.078 0.023
4 50 5.2 5 0.0026 0.0054 0.0003 0.0029 0.1242 0.6440 0.026 0.014 0.004
5 50 0.8 7 0.0207 0.0223 0.0056 0.0197 0.3659 1.1444 0.161 0.100 0.035
6 50 5.2 7 0.0026 0.0054 0.0008 0.0029 0.2425 0.7146 0.044 0.025 0.008
7 50 0.8 10 0.0207 0.0223 0.0076 0.0206 0.4959 1.2321 0.195 0.130 0.055
8 50 5.2 10 0.0026 0.0054 0.0012 0.0031 0.3657 0.8392 0.074 0.045 0.018
9 100 0.8 3 0.0104 0.0111 -0.0003 0.0086 0.0146 0.9389 0.081 0.038 0.008

10 100 5.2 3 0.0013 0.0027 -0.0008 0.0019 -0.1256 0.5461 0.007 0.003 0.000
11 100 0.8 5 0.0104 0.0111 0.0007 0.0087 0.1036 0.9928 0.098 0.052 0.013
12 100 5.2 5 0.0013 0.0027 -0.0002 0.0011 0.0058 0.4907 0.007 0.003 0.000
13 100 0.8 7 0.0104 0.0111 0.0014 0.0089 0.1700 1.0314 0.114 0.060 0.017
14 100 5.2 7 0.0013 0.0027 0.0001 0.0010 0.0977 0.5234 0.013 0.005 0.001
15 100 0.8 10 0.0104 0.0111 0.0020 0.0092 0.2500 1.0780 0.134 0.078 0.024
16 100 5.2 10 0.0013 0.0027 0.0003 0.0010 0.1937 0.5980 0.024 0.012 0.003

is set to K = T 1/4. The bias is zero up to the 3d digit in all cases. When the sample size increases

from T = 50 to T = 100 the precision of the FM-OLS measured by the standard deviation of the

bias term increases by 0.0175/0.0055 = 3.18 in the singular case and by 0.0502/0.0242 = 2.07 in
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nonsingular case p = 0 corroborating the hyperconsistency of FM-OLS in the singular case and

superconsistency in nonsingular case. When we compare FM-OLS with OLS, the former is more

precise in the singular and near-singular cases, while in the nonsingular case both estimators are

comparable as removing second order bias effects that do not exist under DGP1 in OLS does not

give an advantage to FM-OLS.

Interestingly, the rejection rates show that for T = 50 the test is conservative in all cases except

p = 0 and p = −0.1. Even when the sample size is raised to the high level T = 10, 000 (unreported

here) the test is still conservative for values of p = 0.5 and below. Thus, the phenomenon described

in this paper extends far beyond the pure singular case.

Discussion of results for DGP2.

Since Phillips and Loretan (1991) numerous simulation studies have considered this DGP with

different degrees of endogeneity, by varying values for p between −0.8 and 0.8. We consider p = 5.2,

for which Ω00.x = 0 and compare these results to the nearest nonsingular case with p = 0.8.

In Figure 2 we again observe thinner tails in the bias and t-statistic densities in the singular

case compared to the nonsingular case, as well as thinner tails in the density of the t-statistic

compared to the standard normal density already for T = 50. Unlike the situation with DGP1,

second order biases are evident due to long run covariance between et and uxt as predicted by theory

and indicated in the proofs in the Appendix.

Table 2 confirms the above findings and allows analysis of the effect of bandwidth choice. Unlike

previous simulations, the bandwidth is here fixed for K to a range between 3 and 10. This range

includes many typical rules for bandwidth choice for the sample sizes considered. We see that test

statistics for the singular case control size even for bandwidth choices for which the nonsingular

case results in over-rejection (T = 50, K = 10). In all other cases singularity in the model results

in a conservative test for all bandwidth choices under consideration.

5 Evaluating Fiscal Sustainability

Soaring government debt in many countries calls for better economic understanding of fiscal sus-

tainability for which improved methods of econometric analysis may be helpful given the presence

of nonstationarity and endogeneities in the relevant data. Econometric analysis of sustainability

has a long tradition, going back to early work by Hamilton and Flavin (1986) who suggested to

test stationarity of the discounted debt. Haikko and Rush (1991), Huag (1991), Trehan and Walsh

(1991), and Quintos (1995) were among the first to test cointegration between revenues and ex-

penditures. Quintos (1995) calls sustainability ‘strong’ when revenues and expenditures cointegrate

with the explicit coefficients (1,−1) and tests the later using FM-OLS based t-statistics. A recent

discussion of other approaches to evaluate fiscal sustainability is given in the chapter by D’Erasmo,

Mendoza and Zhang (2016) in the Handbook of Macroeconomics.

Two remarks concerning the cointegration approach are relevant to our following analysis. First,

cointegration between revenues and expenditures is only a sufficient condition for an intertemporal

budget constraint (IBC) to hold and there are many other data generating processes consistent with

IBC. This means that rejecting cointegration does not imply that IBC does not hold. Following
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Bohn (2007), consider

Bt = Bt−1 +Gt −Rt = G0
t −Rt + (1 + rt)Bt−1, Budget Identity (BI),

where Bt is government debt, Rt is government revenue, rt is the interest rate, which is assumed

to be stationary with mean r > 0, Gt is government expenditure, G0
t is government expenditure

excluding interest on debt, and Gat = G0
t + (rt − r)Bt−1 is adjusted expenditure. These variables

can be defined in nominal or real terms, possibly deflated by GDP or population. For example,

Quintos (1995) constructed real variables by deflating nominal variables by the GNP price deflator

and by population. BI implies

Bt =
1

1 + r
EtG0

t + (1 + rt)Bt−1, Difference Equation (DE),

which together with

Bt = lim
j→∞

1

(1 + r)j
EtBt+j = 0, (m.s.), Transversality Condition (TC),

where the limit is in the mean square sense, implies

Bt =
∞∑
j=1

1

(1 + r)j
Et(Rt+j −Gat+j), Intertemporal Budget Constraint (IBC).

IBC holds when the debt matches the expected present discounted value of the future surplus, a

desirable requirement for sustainability. Bohn (2007) shows that if Bt ∼ I(m) for some finite m ≥ 0,

then Bt satisfies TC and IBC holds. Therefore, the Quintos (1995) concept of strong sustainability,

defined as Bt ∼ I(1), while intuitively appealing, is one of many possibilities of data generating

processes satisfying IBC.

Second, there are economic considerations that restrict the DGP, besides IBC. For example, fiscal

sustainability may involve bounds or restrictions on the deficit ∆Bt that can be formulated as ∆Bt ∼
I(0), which corresponds to strong sustainability by Quintos (1995), and Gt −Rt ∼ I(0) if Gt, Rt ∼
I(1). Furthermore, there could be bounds on deviations of debt from revenue, that can be formulated

as cointegration between Bt and Rt. In that case Gt and Rt are multicointegrated and the conditions

for the asymptotic result in Phillips and Hansen (1990) employed in Quintos (1995) are not met.

To allow for multicointegration, Berenguer-Rico and Carrion-i-Silvestre (2011) model the revenue-

expenditure relationship in an I(2) VAR system, as suggested by Haldrup (1994) and Engsted et al

(1997). The results of the present paper show that it is not necessary to work in an I(2) system and

it is possible to go beyond a VAR specification. In particular: (i) multicointegration can be allowed

directly in the I(1) system considered in Equation (6) in Quintos (1995); (ii) multicointegration

invalidates the normal approximation of the test statistics t+ used in Section 3.1.2 in Quintos (1995);

and (iii) multicointegration does not alter the conclusion that the null hypothesis of cointegration

between Gt and Rt with coefficient (1,−1) is rejected. We explore these points and provide revised

estimates and tests based on an updated dataset.

The data are provided by the US Bureau of Economic Analysis and retrieved from FRED,

Federal Reserve Bank of St. Louis on November 17, 2019. We consider two series: xt = Government
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Current Expenditures (GEXPND), inclusive of interest payments, and yt = Government Current

Receipts (GRECPT). Both series are in billions of dollars, seasonally adjusted annual rate, at

quarterly frequency from 1947:Q1 to 2019:Q1, T = 291 observations.
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Figure 3: US Government expenditures and receipts, billions of dollars, seasonally adjusted annual
rate, quarterly frequency.

The series are plotted in Figure 3(a). We see that the series start to diverge in the mid 1990s and

even more so after year 2000. We estimate the equation yt = Axt +u0t and test the null hypothesis

of strong sustainability, viz., H0 : A = 1. FM-OLS estimation of the full sample gives Â+ = 0.83

with standard error 0.01 and t-statistic (0.83 − 1)/0.01 = −17, rejecting the null hypothesis. The

result is similar if we include the constant and for bandwidth T 1/5 in place of 3T 1/5.
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The divergence of the series in mid 1990s in Figure 3(a) may signify a structural break in the

relationship. In fact, several studies (e.g. Berenguer-Rico and Carrion-i-Silvestre, 2011) found a

break in the 4th quarter of 1996, which could be attributed to the 1997 Clinton tax cut. The study

of the properties of the FM-OLS under multicointegration in the presence of structural breaks we

leave for future research. But we do estimate the model for the period from 1947:Q1 to 1996:Q4

(T = 200) finding that Â+ = 0.87 with standard error 0.005 and t-statistic (0.87− 1)/0.005 = −26,

so the cointegrating coefficient is closer to but still statistically different from (1,−1).

From the Campbell-Shiller work on log-linearization of present value identities we may expect

that linear time series models provide better approximations in logarithms of the time series, which

has the further advantage of stabilizing variances. The series in logs are plotted in Figure 3(b).

We also plot the first differences in levels and in logs in Figure 3. The first differences of logs

(Figure 3(d)) show less heteroskedasticity than first differences in levels (Figure 3(c)) so our theory

results seem better suited for specification in logs9. FM-OLS estimation of the full sample in logs

gives Â+ = 0.98 with standard error 0.002 and t-statistic (0.98− 1)/0.002 = −10, rejecting the null

hypothesis. The value of the t-statistic is similar for the period from 1947:Q1 to 1996:Q4.

We also estimate the cointegration relationship between real revenue and expenditure con-

structed using the GDP deflator. We take the same data series10 as in Berenguer-Rico and Carrion-

i-Silvestre (2011), but instead of looking at I(2) systems (which means working with
∑t

j=0Rj ,∑t
j=0Gj and Gt) we again run FM-OLS Rt on Gt and obtain Â+ = 0.92 with standard error 0.01

and t-statistic (0.92− 1)/0.01 = −8, rejecting the null hypothesis that revenue and expenditure are

cointegrated with coefficient (1,−1).

6 Conclusion

In a semiparametric triangular representation of I(1) cointegrated time series the presence of mul-

ticointegration results in a singular long run error variance matrix which has decisive effects on

standard methods of estimation and inference in such models. The consequences are higher rates

of convergence and non pivotal limit theory in certain directions for estimators such as FM-OLS.

Notwithstanding these effects, we show that FM-OLS Wald tests are invariant to singularity under

well defined rank conditions and, when those conditions fail, the tests are conservative in certain

cases. In particular, simulation experiments show that in such situations the test rejection rates

under the null hypothesis are far below nominal levels based on standard asymptotics in singular

and near singular cases. We illustrate our methods by analyzing the fiscal sustainability of the US

government, testing the hypothesis that government revenue and expenditure are strongly cointe-

grated with coefficient (1,−1), where multicointegration naturally arises if bounds are imposed on

deviations of debt from revenue.

The results obtained here motivate the development of new robust approaches to estimating

cointegrating relationships that allow for the possible presence of multicointegration and that are

pivotal in the presence of the singularity it produces. This is an ongoing area of research by the

authors.

9We thank a referee for this suggestion.
10Available at the Journal of Applied Econometrics Data Archive, http://qed.econ.queensu.ca/jae/2011-v26.2/
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A Appendix

A.1 Preliminary Lemmas

We start by stating and proving some results for the rates of convergence and limits of the kernel

estimator of the long run variance when Ω00.x = 0. These results are of independent interest

and are formulated as separate lemmas. The discussion proceeds and results are stated under the

assumptions made in the body of the paper.

The results contribute to general literature on the asymptotic bias and variance of spectral

estimates, see e.g. Section V in Hannan (1970). We use ideas from Lemma 8.1 (a), (b), and (g) in

Phillips (1995), although that lemma does not directly apply to our case. In particular, the I(−1)

errors that appear in Lemma 8.1 in Phillips (1995) arise from a different source: if the regressor

vector xt is cointegrated, but the cointegrating relationship is unknown, FM-OLS uses the first

differences of the full vector xt in making nonparametric adjustments to OLS, thereby producing

linear combination of the first differences of stationary errors which are I(−1). In our case it is

assumed that Ωxx is positive definite, i.e. that xt are full rank nonstationary I(1) and ∆xt are full

rank stationary I(0). Instead, multicointegration induces singularity in the augmented regression

equation error u0.x,t = u0t − Ω0xΩ−1
xxuxt in (3) so that u0.x,t is I(−1) with consequential effects on

the estimation of the long run covariance matrix Ω00.x.

Consider the case where Ω00.x = 0. Define

∆̌∆e,u =
T−1∑
j=0

w(j/K)Γ̂∆e,u(j), ∆∆e,u =
∞∑
j=0

Γ∆e,u(j),

Ω̌∆e,u =

T−1∑
j=−T+1

w(j/K)Γ̂∆e,u(j), Ω∆e,u =

∞∑
j=−∞

Γ∆e,u(j),

and Ω̌∆e,∆e =

T−1∑
j=−T+1

w(j/K)Γ̂∆e,∆e(j),

where w(·) is a kernel function, K is a bandwidth parameter, Γa,b(j) = E at+jb′t, Γ̂a,b(j) = T−1
∑

1≤t,t+j≤T at+jb
′
t,

and we use ˇ in place of ̂ to stress that the kernel estimators are calculated with the true errors

et and ut.

Lemma 1. Suppose Ω00.x = 0. Then

(a) ∆̌∆e,u + Γ̂e,u(−1) = −K−2w′′(0)
∑∞

j=0 (j + 1/2) Γe,u(j)

+Op

(
(KT )−1/2

)
+ op

(
K−2

)
, and

∆̌∆e,u −∆∆e,u = −K−2w′′(0)
∑∞

j=0 (j + 1/2) Γe,u(j)

+Op
(
T−1/2

)
+ op

(
K−2

)
,

(b) Ω̌∆e,u = −K−2w′′(0)
∑∞

j=−∞ (j + 1/2) Γe,u(j) +Op

(
(KT )−1/2

)
+ op

(
K−2

)
,

(c) Ω̌∆e,∆e = −K−2w′′(0)
∑∞

j=−∞ Γe,e(j) + op
(
K−2

)
.

20



Next consider the case when the kernel estimators are based on regression residuals (û′0t, u
′
xt),

where û′0t = yt − Âxt = u0t − (Â − A)xt, and using the true transform Ω0xΩ−1
xx define ũ0.x,t =

û0t − Ω0xΩ−1
xxuxt, whereas û0.x,t = û0t − Ω̂0xΩ̂−1

xxuxt. Define ∆+
0x =

∑∞
j=0 Γu0.x,ux(j),

∆̃+
0x =

T−1∑
j=0

w(j/K)Γ̂ũ0.x,ux(j), ∆̌+
0x =

T−1∑
j=0

w(j/K)Γ̂u0.x,ux(j),

Ω̃+
0x =

T−1∑
j=−T+1

w(j/K)Γ̂ũ0.x,ux(j), Ω̌+
0x =

T−1∑
j=−T+1

w(j/K)Γ̂u0.x,ux(j),

Ω̃00.x =
T−1∑

j=−T+1

w(j/K)Γ̂ũ0.x,ũ0.x(j), Ω̌00.x =
T−1∑

j=−T+1

w(j/K)Γ̂u0.x,u0.x(j),

where we use ˜ in place of ˇ to stress that the kernel estimators use residuals (ũ′0.x,t, u
′
xt)
′ instead

of the true errors (u′0.x,t, u
′
xt)
′.

The following lemmas hold irrespective of the singularity of Ω00.x.

Lemma 2. ∆̃+
0x − ∆̌+

0x, Ω̃+
0x − Ω̌+

0x, Ω̃00.x − Ω̌00.x are Op(K/T ).

Lemma 3. If Ω00.x = 0, then for u0.x,t = −∆et,

(a) T−1U ′0.xX − ∆̃+
0x = T−1eTx

′
T +K−2w′′(0)

∑∞
j=0 (j + 1/2) Γe,ux(j)

+Op

(
(KT )−1/2

)
+Op(K/T ) + op

(
K−2

)
,

(b) Ω̃+
0x = K−2w′′(0)

∑∞
j=−∞ (j + 1/2) Γe,ux(j)

+Op

(
(KT )−1/2

)
+Op(K/T ) + op

(
K−2

)
,

(c) Ω̃00.x = −K−2w′′(0)
∑∞

j=−∞ Γe,e(j) +Op(K/T ) + op
(
K−2

)
.

A.2 Proofs of Lemmas 1 - 3

Proof of Lemma 1(a). By Assumption K, w(0) = 1 and w(x) = 0 for x ≥ 0, and for some K∗ = Kb

with 0 < b < 1

∆̌∆e,u =
T−1∑
j=0

w(j/K)Γ̂∆e,u(j),

=

K−1∑
j=0

w(j/K)
(

Γ̂e,u(j)− Γ̂e,u(j − 1)
)

=

K∗∑
j=0

+

K−2∑
j=K∗+1

 (w(j/K)− w((j + 1)/K)) Γ̂e,u(j)− Γ̂e,u(−1)

+ w((K − 1)/K)Γ̂e,u(K − 1) =

4∑
k=1

Rk, say.
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We show that R1 + R2 = −K−2w′′(0)
∑∞

j=0 (j + 1/2) Γe,u(j) + Op

(
(KT )−1/2

)
+ op

(
K−2

)
, R3 =

−Γ̂e,u(−1) = ∆∆e,u +Op
(
T−1/2

)
, and R4 = Op

(
K−2T−1/2

)
.

Mean of R1. Applying the second order Taylor expansion of function w(·) at arguments (j+1)/K

around j/K,

w((j + 1)/K)− w((j)/K) = K−1w′(j/K) + 1/2 K−2w′′(j/K)[1 + o(1)],

and for j ≤ K∗ we can apply the Taylor expansion of function w′(·) at arguments j/K around

0, where w′(0) = 0, giving w′(j/K) = w′′(0)(j/K)[1 + o(1)], and then w((j + 1)/K) − w(j/K) =

K−2w′′(0)(j + 1/2)[1 + o(1)]. Hence,

K2R1 =K2
K∗∑
j=0

[w(j/K)− w((j + 1)/K)]Γ̂e,u(j) = −w′′(0)
K∗∑
j=0

(j + 1/2)Γ̂e,u(j)[1 + o(1)],

and

E
K∗∑
j=0

(j + 1/2)Γ̂e,u(j) =
K∗∑
j=0

(j + 1/2) (1− j/T ) Γe,u(j)→
∞∑
j=0

(j + 1/2)Γe,u(j).

Mean of R2. By the mean value theorem there exists xj,K ∈ (j/K, (j + 1)/K), such that R2 =

K−1
∑K−2

j=K∗+1w
′(xj,K)Γ̂e,u(j) with mean

ER2 = K−1
K−2∑

j=K∗+1

w′(xj,K)(1− j/T )Γe,u(j).

whose modulus is dominated by

sup
x
|w′(x)|K−1

K−2∑
j=K∗+1

‖Γe,u(j)‖

≤ const K−1
∑
j>K∗

∞∑
s=0

‖Ds‖‖D̃s+j‖

≤ const K−1K∗
−ν ∑

j>K∗

∞∑
s=0

(s+ j)ν‖Ds‖‖Ds+j‖

≤ const K−1K−νb
∞∑
s=0

‖Ds‖
∞∑
r=0

rν‖Dr‖ = O(K−1−νb) = o(K−2),

for 1/ν < b < 1.

Variance of R1 + R2.

R1 +R2 =

K−2∑
j=0

(
w

(
j

K

)
− w

(
j + 1

K

))
Γ̂e,u(j) = K−1

K−2∑
j=0

w′
(
j

K

)
Γ̂e,u(j)[1 +O(K−1)]
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and Var
[
vec

[∑K−2
j=0 w′(j/K)Γ̂e,u(j)

]]
= O(KT−1) from Theorem 9 in Hannan (1970, p. 280). So

the variance of the dominant term in R1 +R2 is O(K−1T−1).

Term R3. Note that ∆∆e,u =
∑∞

j=0 Γ∆e,u(j) = −Γe,u(−1). ER3 = −E Γ̂e,u(−1) = −(1 −
1/T )Γe,u(−1) = (1 − 1/T )∆∆e,u, and Var(Γ̂e,u(−1)) = O(T−1). Therefore, −Γ̂e,u(−1) = ∆∆e,u +

O(T−1/2).

Term R4. By Assumption K (b), w((K − 1)/K) = O(K−2) when K → ∞. By summability,

E Γ̂e,u(K − 1) = (1 − (K − 1)/T )Γe,u(K − 1) = o(1) and Var(Γ̂e,u(K − 1)) = O(T−1). Therefore,

Γ̂e,u(K − 1) = Op(T
−1/2) and R4 = Op(K

−2T−1/2).

Proof of Lemma 1(b). As above,

Ω̌∆e,u =
T−1∑

j=−T+1

w(j/K)Γ̂∆e,u(j),=
K−1∑

j=−K+1

w(j/K)
(

Γ̂e,u(j)− Γ̂e,u(j − 1)
)

=

 K∗∑
j=−K∗

+
K−2∑

|j|=K∗+1

 (w(j/K)− w((j + 1)/K) Γ̂e,u(j)

− w((−K + 1)/K)Γ̂∆e,u(−K) + w((K − 1)/K)Γ̂∆e,u(K − 1)

=
4∑

k=1

Rk, say.

and R1 + R2 = K−2w′′(0)
∑∞

j=−∞ (j + 1/2) Γe,u(j) + Op

(
(KT )−1/2

)
+ op

(
K−2

)
while Rk =

Op(K
−2T−1/2), for k = 3, 4 by the same argument as in (a).

Proof of Lemma 1(c). Similar to (b), for some K∗ = Kb with 0 < b < 1

Ω̌∆e,∆e =
T−1∑

j=−T+1

w(j/K)Γ̂∆e,∆e(j),=
K−1∑

j=−K+1

w(j/K)
(

Γ̂e,∆e(j)− Γ̂e,∆e(j − 1)
)

=

 K∗∑
j=−K∗

+
K−2∑

|j|=K∗+1

 (w(j/K)− w((j + 1)/K) Γ̂e,∆e(j)

− w((−K + 1)/K)Γ̂∆e,∆e(−K) + w((K − 1)/K)Γ̂∆e,∆e(K − 1)

=

4∑
k=1

Rk, say.

By the same argument as above, ER2 = o
(
K−2

)
and Rk = Op(K

−2T−1/2), for k = 3, 4, while we

show below that the limit of R1 can be simplified and the variance bound of R1+R2 can be improved

from O(K−1T−1) in (a) and (b) to O(K−3T−1) in the present case. Thus, the contribution from

the variance is of smaller order than K−2 for any K = T k, with k ∈ (0, 1).

Mean of R1.

K2R1 =K2
∑
|j|<K∗

[w(j/K)− w((j + 1)/K)]Γ̂e,∆e(j)
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= −w′′(0)
∑
|j|<K∗

(j + 1/2)Γ̂e,∆e(j)[1 + o(1)],

and

E
∑
|j|<K∗

(j + 1/2)Γ̂e,∆e(j) =
∑
|j|<K∗

(j + 1/2) (1− j/T ) Γe,∆e(j)

→
∞∑

j=−∞
(j + 1/2)Γe,∆e(j) =

∞∑
j=−∞

Γe,e(j).

because
∑∞

j=−∞ jΓe,∆e(j) =
∑∞

j=−∞ jΓe,e(j)−
∑∞

j=−∞ jΓe,e(j+1) =
∑∞

j=−∞ Γe,e(j) and
∑∞

j=−∞ Γe,∆e(j) =

0. Note that under stricter conditions on the bandwidth rate this limit could be obtained from The-

orem 10 in Hannan (1970, p. 283).

Variance of R1 + R2.

R1 +R2 =
K−2∑

j=−K+1

(w(j/K)− w((j + 1)/K)) Γ̂e,∆e(j)

= −K−1
K−2∑

j=−K+1

w′(j/K)Γ̂e,∆e(j)[1 +O(K−1)]

= −K−2
K−2∑

j=−K+2

w′′((j − 1)/K)Γ̂e,e(j) + op(K
−2)

and Var
[
vec

[∑K−2
j=−K+2w

′′((j − 1)/K)Γ̂e,e(j)
]]

= O(KT−1) from Theorem 9 in Hannan (1970,

p.280). The variance of the dominant term in R1+R2 is therefore O(K−4KT−1) = O(K−3T−1).

Proof of Lemma 2. Because ũ0.x,t − u0.x,t = û0t − u0t = −(Â−A)xt

∆̃+
0x − ∆̌+

0x = −(Â−A)

T−1∑
j=0

w(j/K)Γ̂x,ux(j) = Op(K/T ),

Ω̃+
0x − Ω̌+

0x = −(Â−A)
T−1∑

j=−T+1

w(j/K)Γ̂x,ux(j) = Op(K/T ),

Ω̃00.x − Ω̌00.x = (Â−A)

T−1∑
j=−T+1

w(j/K)Γ̂x,x(j)(Â−A)′

− (Â−A)

T−1∑
j=−T+1

w(j/K)Γ̂x,u0.x(j)−
T−1∑

j=−T+1

w(j/K)Γ̂u0.x,x(j)(Â−A)′

= Op(K/T ),

because Â−A = Op(T
−1) and it follows from the proof of Theorem 3.1 of Phillips (1991b, pp. 432–

24



433) that

T−1∑
j=0

w(j/K)Γ̂x,ux(j) = Op(K),
T−1∑

j=−T+1

w(j/K)Γ̂x,ux(j) = Op(K),

T−1∑
j=−T+1

w(j/K)Γ̂x,x(j) = Op(KT ),

T−1∑
j=−T+1

w(j/K)Γ̂u0.x,x(j) = Op(K).

If Ω00.x = 0, the last bound can be improved to Op(1)

T−1∑
j=−T+1

w(j/K)Γ̂u0.x,x(j) =
T−1∑

j=−T+1

w(j/K)Γ̂∆e,x(j) = Op(1)

similar to the proof of Lemma 8.1(c) of Phillips (1995, pp. 1064–1065).

Proof of Lemma 3. We apply Lemma 1 to the covariance between U0.x and Ux and adjust the

limits for the use of residual Û0 in place of the true error U0 with an additional term of Op(K/T )

according to Lemma 2, and obtain parts (b) and (c). Part (a) follows by partial summation formula

and applying the above procedure to the term in the brackets:

T−1U ′0.xX − ∆̃+
0x = T−1eTx

′
T −

(
∆̃+

0x + Γ̂e,ux(−1)
)

= T−1eTx
′
T +K−2w′′(0)

∞∑
j=0

(j + 1/2) Γe,ux(j)

+Op

(
(KT )−1/2

)
+Op(K/T ) + op

(
K−2

)
.

A.3 Proofs of Propositions

Proof of Proposition 1. We can write (y′t, x
′
t)
′ = (1− L)−1C(L)ηt, where the roots of |C(z)| = 0

satisfy |z| > 1 or z = 1. Multicointegration of such a linear I(1) process occurs (see Johansen

1992, Engsted and Johansen, 1997) when z = 1 is a root, so that C(1) = ξε′ has reduced rank and

ξ′⊥Ċ(1)ε⊥ is singular. The submatrices {ξ, ε} and their orthogonal complements {ξ⊥, ε⊥}are given

explicitly below for the present context of the triangular system (1) and (2). In particular, write

C(L) as

C(L) =

[
(1− L)Im0 A

0 Imx

]
D(L),

and its derivative

Ċ(L) =

[
−Im0 0

0 0

]
D(L) +

[
(1− L)Im0 A

0 Imx

]
Ḋ(L). (7)
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We can write

C(1) =

[
0 A

0 Imx

]
D(1) =

[
A

Imx

]
[Dx0(1), Dxx(1)] = ξε′, taking ξ =

[
A

Imx

]
,

ξ′⊥ = [Imx ,−A] and ε′ = [Dx0(1), Dxx(1)], which is an mx × m matrix of full rank mx whenever

ε′ε = Ωxx > 0. Multiplication of D(1) by the full rank m×m matrix εF = [ε⊥, ε] yields

rank(D(1)) = rank(D(1)εF ) = rank(ξ′⊥Ċ(1)ε⊥) + rank(Ωxx),

because

D(1)εF =

[
[D00(1), D0x(1)]ε⊥ [D00(1), D0x(1)]ε

0 Ωxx

]
,

and from (7)

ξ′⊥Ċ(1)ε⊥ =
[
−Im0 0

]
D(1)ε⊥ = −[D00(1), D0x(1)]ε⊥,

since

ξ′⊥

[
−Im0 0

0 0

]
=
[
−Im0 0

]
and ξ′⊥

[
0 A

0 Imx

]
= 0.

It follows that when rank(Ωxx) = mx, we have the rank equivalence m0 − rank(ξ′⊥Ċ(1)ε⊥) =

m − rank(Ω) = m0 − rank(Ω00.x), which is the multicointegrating rank in the system defined by

(1) and (2). More simply, rank(ξ′⊥Ċ(1)ε⊥) = rank(Ω00.x).

Proof of Proposition 2. Recall that Ω̃+
0x = Ω̂0x − Ω0xΩ−1

xx Ω̂xx, so

Ω̂0xΩ̂−1
xx − Ω0xΩ−1

xx =
(

Ω̂0x − Ω0xΩ−1
xx Ω̂xx

)
Ω̂−1
xx = Ω̃+

0xΩ̂−1
xx .

Also, ∆̃+
0x = ∆̂0x − Ω0xΩ−1

xx ∆̂xx, so

∆̂+
0x = ∆̃+

0x −
(

Ω̂0xΩ̂−1
xx − Ω0xΩ−1

xx

)
∆̂xx = ∆̃+

0x − Ω̃+
0xΩ̂−1

xx ∆̂xx.

The numerator matrix of FM-OLS is

Ŷ +′X − T ∆̂+
0x =

(
Y ′ − Ω̂0xΩ̂−1

xxU
′
x

)
X − T ∆̂+

0x

= AX ′X + U ′0X − Ω̂0xΩ̂−1
xxU

′
xX − T ∆̂+

0x

= AX ′X + U ′0.xX − T ∆̃+
0x −

(
Ω̂0xΩ̂−1

xx − Ω0xΩ−1
xx

)(
U ′xX − T ∆̂xx

)
= AX ′X + U ′0.xX − T ∆̃+

0x − Ω̃+
0xΩ̂−1

xx

(
U ′xX − T ∆̂xx

)
.

Therefore,

T
(
Â+ −A

)
=
(
T−1U ′0.xX − ∆̃+

0x

) (
T−2X ′X

)−1

− Ω̃+
0xΩ̂−1

xx

(
T−1U ′xX − ∆̂xx

) (
T−2X ′X

)−1
. (8)
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From standard weak convergence theory for sample covariances in Phillips and Durlauf (1986) and

Phillips (1989)

T−2X ′X →d

∫ 1

0
BxB

′
x, (9)

T−1U ′xX →d

∫ 1

0
dBxB

′
x + ∆xx, (10)

T−1U ′0X →d

∫ 1

0
dB0B

′
x + ∆0x, (11)

giving

T−1U ′0.xX →d

∫ 1

0
dB0.xB

′
x + ∆+

0x.

By construction, u0.x,t has zero long run covariance with the errors uxt that drive the nonstationary

component xt, thereby eliminating the endogeneity from xt in the long run. Therefore, with any

consistent estimators of Ω and ∆, under Assumption K with 0 < k < 1, and using Lemma 2, we

have ∆̃+
0x →p ∆+

0x and Ω̃+
0x →p 0, so that by continuous mapping and joint convergence of the

components we have

T
(
Â+ −A

)
→d

(∫ 1

0
dB0.xB

′
x

)(∫ 1

0
BxB

′
x

)−1

.

Proof of Proposition 3. The proof follows from expansion (8) by using the consistency of the kernel

estimates, the convergences (9) and (10), and the rates of convergence established in Lemma 3(a)

and (b).

Proof of Proposition 4. For k < 1/4, Op(K
−2) dominates Op(K

−2) + Op
(
(KT )−1/2

)
+ Op(K/T )

and the limits in Lemma 3(a) and (b) have the form

T−1U ′0.xX − ∆̃+
0x = K−2w′′(0)

∞∑
j=0

(j + 1/2) Γe,ux(j) + op
(
K−2

)
,

Ω̃+
0x = K−2w′′(0)

∞∑
j=−∞

(j + 1/2) Γe,ux(j) + op
(
K−2

)
,

which together with (9) and (10) and expansion (8) give the limit distribution ofK2T
(
Â+ −A

)
.

Proof of Proposition 5. Part (a). The rate of convergence and limit behavior of Ω̃00.x is established

in Lemma 3(c), while the difference Ω̂00.x − Ω̃00.x is of smaller order and can be neglected, viz.,

Ω̂00.x − Ω̃00.x = −
(

Ω̂0xΩ̂−1
xx − Ω0xΩ−1

xx

)
Ω̂x0 −

[(
Ω̂0xΩ̂−1

xx − Ω0xΩ−1
xx

)
Ω̂x0

]′
+ Ω̂0x

(
Ω̂0xΩ̂−1

xx − Ω0xΩ−1
xx

)′
+
(

Ω̂0xΩ̂−1
xx − Ω0xΩ−1

xx

)
Ω̂−1
xxΩ−1

xxΩ′0x
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=
(

Ω̂0xΩ̂−1
xx − Ω0xΩ−1

xx

)(
−Ω̂0x + Ω̂−1

xxΩ−1
xxΩ′0x

)
= −Ω̃+

0xΩ̂−1
xx Ω̃+

0x
′.

By comparing the rates in Part (b) and Part (c) in Lemma 3 we see that the square of the decay

rate of Ω̃+
0x exceeds that of Ω̃00.x, giving the required result.

Part (b). Because of the rates of the FM-OLS estimator established in Proposition 3 and the

rate of Ω̂00.x in Part (a), under the null hypothesis we have for k < 1/3

WI = T 2kT 2δ(T )−2tr

{(
T−2X ′X

)
δ(T )

(
Â+ −A0

)′ (
T 2kΩ̂00.x

)−1
δ(T )

(
Â+ −A0

)}
= Op

(
T 2+2k min(T 1+2k, T 3/2)−2

)
= Op

(
T−2k10<k≤1/4 + T 2k−111/4<k<1/3

)
= op(1),

where 1A is the indicator of A.

A.4 Proofs of the Theorems

Proof of Theorem 1. We have Bf.x

0

Bx

 = LR

[
B0.x

Bx

]
≡ BM(LRLΩΩL′ΩL′R) = BM


 Ωff.x 0 0

0 0 0

0 0 Ωxx


 ,

where

LR =

 R′ 0

R′⊥ 0

0 Imx

 .
The matrix (R,R⊥) rotates u0.x,t to (u′f.x,t, u

′
s.x,t)

′, where uf.x,t = R′u0.x,t is I(0) and us.x,t =

R′⊥u0.x,t is I(−1). Therefore LRLΩ keeps the nonstationary regressors xt and transforms the original

cointegration relationship yt = Axt + u0t to a system of two equations with orthogonal long run

errors: (i) an equation with I(0) errors that has a nonsingular long run variance matrix Ωff.x, and

for this equation, R′y+
t = R′Axt + uf.x,t, Proposition 2 applies; and (ii) an equation with I(−1)

errors R′⊥y
+
t = R′⊥Axt + us.x,t, for which Proposition 3 applies.

Proof of Theorem 2. Using coordinate rotation, we write the Wald statistic as a sum of several

components, corresponding to the nondegenerate and degenerate directions and their cross products.

Recall the partitioned matrix inversion formula[
A11 A12

A21 A22

]−1

=

[
A−1

11.2 −A−1
11 A12A

−1
22.1

−A−1
22.1A21A

−1
11 A−1

22.1

]
,

where the Shur complement is defined as Aii.j =
(
Aii −AijA−1

jj Aji

)
. We apply the above formula

to the variance matrix metric in the Wald test statistic giving

(
(R,R⊥)′ Ω̂00.x (R,R⊥)

)−1
=

[
R′Ω̂00.xR R′Ω̂00.xR⊥

R′⊥Ω̂00.xR R′⊥Ω̂00.xR⊥

]−1
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=

[
Ω−1
ff.x + op(1) Op(1)

Op(1) −K2Ω−1
e,e/w

′′(0) + op(K
2)

]
,

where we take into account that

(i) R′Ω̂00.xR→p Ωff.x, because R isolates the nondegenerate direction;

(ii) R′⊥Ω̂00.xR = Op(K
−2), which is obtained similar to the proof of Lemma 1(b), and switching

from residuals ût to errors ut involves differences of order Op(K/T ), as in Lemma 2, which are

of smaller order for k < 1/3;

(iii) K2R′⊥Ω̂00.xR⊥ →p −w′′(0)Ωe,e, which can be obtained similar to the proofs of Lemma 1(c)

and Proposition 5(a).

Then

WI = tr

{(
T−2X ′X

) (
Â+ −A0

)′
(TR, TR⊥)

(
(R,R⊥)′ Ω̂00.x (R,R⊥)

)−1
(TR, TR⊥)′

(
Â+ −A0

)}
= tr

{(
T−2X ′X

) (
Â+ −A0

)′
TR

(
R′Ω̂00.xR

)−1
TR′

(
Â+ −A0

)}
+ T 2+2kδ(T )−2tr

{(
T−2X ′X

)
δ(T )

(
Â+ −A0

)′
R⊥ ×Op(1)× δ(T )R′⊥

(
Â+ −A0

)}
+ Tδ(T )−1tr

{(
T−2X ′X

)
δ(T )

(
Â+ −A0

)′
R⊥ ×Op(1)× TR′

(
Â+ −A0

)}
+ Tδ(T )−1tr

{(
T−2X ′X

)
T
(
Â+ −A0

)′
R×Op(1)× δ(T )R′⊥

(
Â+ −A0

)}
= χ2

rmx +Op

(
T 2+2kδ(T )−2

)
+Op

(
Tδ(T )−1

)
,

using the fact that TR′
(
Â+ −A0

)
= Op(1) and δ(T )R′⊥

(
Â+ −A0

)
= Op(1) from Theorem 1. For

k < 1/3, we have Op
(
T 2+2kδ(T )−2

)
= op(1), and therefore WI →d χ

2
rmx .
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