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Abstract

Nonalcoholic fatty liver disease (NAFLD) is defined as hepatic fat accumulation in
more than 5% of hepatocytes without significant alcohol consumption and other sec-
ondary causes of hepatic steatosis. In 2020, the more inclusive term metabolic (dys-
function)-associated fatty liver disease (MAFLD) with broader and “positive” diag-
nostic criteria was proposed to replace the old term NAFLD. The new terminology
and definition of MAFLD better emphasize the pathogenic role of metabolic dysfunc-
tion and the use of “positive” criteria for diagnosing this common liver disease. In fact,
the diagnosis of MAFLD is based on the evidence of hepatic steatosis (as assessed by
liver biopsy, imaging techniques or blood biomarkers and scores) in persons who have
overweight or obesity, type 2 diabetes or have metabolic dysregulation, regardless of
the coexistence of other liver diseases or excessive alcohol consumption. It is known
that NAFLD is associated with an increased risk of chronic kidney disease (CKD) and
CKD may also be induced by metabolic dysfunction. Thus, compared to the NAFLD
definition, the newly-proposed MAFLD definition is more likely to identify subjects
with fatty liver and metabolic comorbidities, who are at greater risk of CKD. In this
Perspectives article, we discuss the clinical associations between MAFLD and CKD,
the pathophysiological mechanisms by which MAFLD may increase risk of CKD and

the potential drug treatments that may benefit both conditions.



Introduction

Nonalcoholic fatty liver disease (NAFLD) is histologically defined as hepatic fat ac-
cumulation in more than 5% of hepatocytes without excessive alcohol consumption or
other competing causes for hepatic steatosis'. To date, it has been estimated that this
liver disease affects approximately 25% of the global adult population * and nearly 30%
of Chinese adults with a prevalence that is higher in urban than rural areas; in men

than women, and in the eastern coastal areas than inland. Furthermore in China,
NAFLD also affects approximately 2% of schoolchildren with sedentary lifestyles and

an unhealthy diet *°.

NAFLD shares multiple cardiometabolic risk factors with chronic kidney disease
(CKD), such as obesity, hypertension, insulin resistance, type 2 diabetes (T2DM) or
prediabetes and atherogenic dyslipidemia 8. The prevalence of CKD in people with
NAFLD ranges from approximately 20% to 55% compared to 5% to 35% in the
non-NAFLD population. Several studies have shown that the severity of NAFLD is
closely associated with increasing stages of CKD #13. For example, a previous me-
ta-analysis that included 33 cross-sectional and longitudinal studies showed that there
was a higher prevalence and incidence of CKD in patients with NAFLD and advanced
fibrosis (odds ratio [OR] 5.20, 95% CI 3.14- 8.61) and hazard ratio [HR] 3.29, 95%
CI2.30- 4.71, respectively) compared to patients with NAFLD without advanced fi-
brosis . The presence of nonalcoholic steatohepatitis (NASH) on liver histology was

also independently associated with a higher prevalence (odds ratio 2.53, 95% CI 1.58-



4.05) and incidence (hazard ratio 2.12, 95% CI 1.42-3.17) of CKD than simple steato-
sis °. Similar results were also found in two more recent meta-analyses published in
2018 '3 and 2020 '*. Patients with NAFLD were also observed to have an increased
risk of abnormal albuminuria in 19 observational studies with 24804 participants
(odds ratio 1.67, 95% CI 1.32-2.11, P<0.05) '°. These data suggest that NAFLD may
be an independent risk factor for CKD. Additionally, the severity of CKD may ad-
versely affect long-term clinical outcomes from NAFLD by increasing the risk for
all-cause mortality'®. An observational study of 87 adults with biopsy-proven NAFLD,
reported that NAFLD with microalbuminuria was associated with higher fibrosis
scores than those patients with NAFLD without microalbuminuria !’; implying that
the presence of microalbuminuria may help identify those patients with more severe
NAFLD. Another study of 120 patients with biopsy-proven NAFLD diagnosed in
1978-2006 reported that NAFLD patients with long-term CKD had increased mortal-
ity risk because of the associated metabolic comorbidities, rather than CKD per se '°.
That said, whether there is a causal association between NAFLD and CKD is unclear
and achieving a better understanding of the link between NAFLD and CKD represents

an important area of research.

In response to criticisms regarding the use of the adjective “non-alcoholic”, and in
recognition of the fact that NAFLD is a purely metabolic liver disease, in 2020 an in-
ternational panel of experts recommended the renaming of NAFLD to metabolic dys-

function-associated fatty liver disease (MAFLD). With the new term, different diag-



nostic criteria for defining MAFLD were also proposed '8. The diagnostic criteria for
MAFLD are based on the evidence of hepatic steatosis (detected either by liver biopsy,
imaging techniques or blood biomarkers and scores), and the coexistence of over-
weight or obesity, T2DM or metabolic dysregulation'®. The term “MAFLD” repre-
sents this disease not as a single or “exclusive” condition, but also embraces metabol-
ic disorders, and may coexist with excessive alcohol consumption or other chronic
liver diseases that may have additive or synergistic effects to increase the severity of
the liver condition (e.g. chronic viral hepatitis) !>%. Thus, the two terms of NAFLD
and MAFLD cannot be considered fully interchangeable or simply equivalent. Alt-
hough there is excellent concordance (with a Cohen's kappa statistic >0.90) between
the NAFLD and MAFLD definitions in “real-world” data, there will be some indi-
viduals fulfilling the diagnostic criteria for MAFLD but not NAFLD (i.e., persons
with MAFLD who have other coexisting chronic liver diseases), and some individuals
fulfilling the criteria for NAFLD but not MAFLD (i.e. lean persons with NAFLD who
do not have any coexisting metabolic dysfunction) 2!. Notably, evidence is now ac-
cumulating to suggest that subjects with MAFLD are more likely to have multiple
metabolic comorbidities and to be at greater risk of advanced liver fibrosis or CKD,
compared to those with NAFLD??. In this Perspectives article, we discuss the clinical
associations and the pathophysiological mechanisms underpinning MAFLD with
CKD and how this differs from our understanding of the relationship between
NAFLD and CKD. We also briefly discuss targeted pharmacological treatments for

NAFLD and MAFLD and how these might affect CKD.



From NAFLD to MAFLD

The terms of NAFLD and its progressive necro-inflammatory form, NASH, were first
coined in 1980 and 1986 to characterize a liver disease histologically similar to alco-
holic fatty liver disease but without a prior history of significant alcohol intake >%*,
NAFLD includes a histopathological spectrum of progressive liver conditions, rang-
ing from nonalcoholic fatty liver (NAFL, simple steatosis without evidence of any
hepatocellular injury) to NASH (hepatic steatosis p/us inflammation and hepatocellu-
lar injury, with or without varying levels of fibrosis) and cirrhosis !*>7. Most indi-
viduals with NAFLD or NASH are overweight or obese, and many of them have obe-
sity-associated diseases, such as T2DM, hypertension and atherogenic dyslipidemia. A
link between liver damage and obesity had been recognized since 1950s 2% and in

1999 %, an analysis of subjects with biopsy-proven NAFLD reported a strong associa-
tion with the typical features of the metabolic syndrome such as hyperinsulinemia,
dysglycemia, hypertension and dyslipidemia. Similar results were also reported *° in a
study of 551 severely obese individuals undergoing bariatric surgery. Since that time,
various reasons for renaming and redefining NAFLD have been presented and debat-
ed (Figure 1) 3!-%, Firstly, the definition of NAFLD has exclusiveness and does not
allow for the presence of other coexisting liver diseases. Indeed, the coexistence of
NAFLD with another chronic liver disease is not rare in clinical practice °. Secondly,

the question of the thresholds of “healthy or unhealthy” alcohol consumption and the

risk of stigmatizing and misleading individuals make the compound adjective



“non-alcoholic” inappropriate. Some studies have suggested that modest alcohol con-
sumption (less than 20 g/day) may exert a protective effect on NAFLD *7*° but other
large studies have found the opposite result “>*!. The assessment of daily alcohol
consumption is still not standard and accurate, and may be misinterpreted as stigma-
tization, especially in adolescents, while alcohol consumption may also be taboo for
religious or cultural reasons ***}. The compound adjective “non-alcoholic” may mis-
lead some persons into thinking that they can drink alcohol and that this disease is not
severe (“non”-alcoholic), compared with alcoholic cirrhosis. Thirdly, there are vary-
ing degrees of disease progression and severity, such as Asian people with NAFLD
are leaner but have more severe liver histopathology compared with their counterparts
of Caucasian ethnicity. Additionally, pre-menopausal women often have a lower prev-
alence of NAFLD, while post-menopausal women have a higher prevalence of
NAFLD than men of similar age. The high heterogeneity of NAFLD is mainly related
to the diversity of pathogenesis of the condition (involving, for example, genetic pre-
disposition, estrogen exposure and presence of underlying metabolic dysfunction).
Fourthly, the term “NAFLD” can be misunderstood as it emphasizes only
“non-alcoholic” factors and does not highlight the key pathogenic role of metabolic
dysfunction. Finally, the high heterogeneity of NAFLD may also affect the reliability
of clinical trial results and the non-invasive assessment of liver fibrosis (by using the
scores of advanced fibrosis, such as the NAFLD fibrosis score (NFS) and fibrosis 4
(FIB-4), or vibration-controlled transient elastography) *44®. These issues eventually

prompted a panel of international experts from 22 countries to propose that NAFLD



be renamed and re-classified as MAFLD '32° with new diagnostic and “positive” cri-
teria better emphasizing the dysmetabolic pathophysiology of this common liver dis-
ease and its systemic adverse effects on both liver-related and extra-hepatic outcomes
(including CKD) #’. The details of the diagnosis and the specific features of NAFLD
and MAFLD definitions have been summarized (Figure 2A and Supplementary Ta-
ble 1). Moreover, we have utilized a “Venn diagram” to illustrate the overlap between
NAFLD and MAFLD definitions according to a recent study undertaken by our group

in biopsy-proven individuals from Wenzhou *® (Figure 2B).

Consequences for clinical practice

Although some experts have endorsed the newly-proposed term and definition of
MAFLD #*# others have been less enthusiastic, arguing that this change in nomen-
clature is premature. The primary reasons are the ongoing debate about diagnostic
criteria of “metabolic health” and the ambiguity around the aetiological root cause.
The adjective “metabolic” they suggest is too simple and broad to cover all disease
phenotypes and aetiological attributions . For example, some lean and metabolically
healthy individuals can have hepatic steatosis, emphasizing that other factors (e.g.
genetic factors) may be dominant in some phenotypes >33, What’s more, other rarer
“metabolic” diseases may also cause hepatic steatosis, such as Wilson’s disease and
short gut syndrome-associated fatty liver, but these are not included under the term
“MAFLD” *°. Renaming and re-classifying this common metabolic liver disease may
also have unintended consequences for some stakeholders. For example, with ongoing
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drug trials, reclassification of this liver disease may affect trial outcomes that are fo-

cussed on histological resolution of NASH as a primary efficacy endpoint 3>,

In our opinion, a growing body of data largely supports the nomenclature change from
NAFLD to MAFLD. For example, a 2020 study of 765 Japanese individuals showed
that the newly proposed definition of MAFLD identified more accurately subjects
with advanced liver fibrosis (assessed by non-invasive tests) compared with the
NAFLD definition. In addition, the presence of MAFLD with coexisting mild alcohol
consumption (less than 20 g/day) was also associated with a higher prevalence of liver
fibrosis than the presence of MAFLD alone (without coexisting alcohol intake) (25.0%
vs. 15.5%, P=0.018) >°, suggesting that even mild alcohol consumption may increase
the prevalence of liver fibrosis; so further emphasizing the inappropriateness of the
term “non-alcoholic”. In a study of 922 adults from Hong Kong, there was no differ-
ence in the prevalence of MAFLD and NAFLD (25.9% and 25.7%, respectively), but
the incidence of MAFLD (2.8 per 100 person-years) was lower than that of NAFLD
(3.7 per 100 person-years) and almost 25% of participants with fatty liver (on ultra-
sound examinations) were classified as not having MAFLD %, confirming that the
MAFLD and NAFLD definitions can identify different groups of subjects. However,
the aforementioned difference in incidence rates of MAFLD appears to be more
marked among lean individuals without metabolic dysfunction. Overall, therefore, the
current evidence suggests that the definition of MAFLD can more accurately identify

subjects at higher risk of progressive liver disease than the NAFLD definition. This
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has important implications not only for clinical practice but also for recruitment of pa-
tients to clinical trials testing new pharmacotherapies for this liver disease. That said,
as discussed above the currently available ‘real-world’ studies clearly suggest that the
diagnostic criteria for MAFLD are more useful in clinical practice than those for
NAFLD !8%, Another useful change in clinical practice with the implementation of
the newly proposed definition of MAFLD is the semiquantitative evaluation of the
grade of inflammatory activity and stage of liver fibrosis to replace the dichotomous
stratification into NASH and non-NASH 8. The diagnosis of NASH can be affected
by sampling variability °’ and ballooning of hepatocytes on histology (as a cardinal
feature of NASH) can fluctuate over short timeframes in the same subject °’. Fur-
thermore, studies have demonstrated that liver fibrosis, rather than other histologic
features, may predict the most important clinical outcomes of NAFLD *%%°. Conse-
quently, we consider that a terminology change from NAFLD to MAFLD will have
little effect on ongoing clinical trials where they evaluate “improvement of liver fi-
brosis”; and thus far, no drug has received regulatory approval for the treatment of
NASH °. Overall, the newly proposed definition of MAFLD may facilitate
much-needed improvements in the prevention, diagnosis, treatment and management

of this common and burdensome liver disease.

MAFLD is more closely related to CKD
As previously mentioned, metabolic dysregulation is a key feature of MAFLD, and
individuals with MAFLD are not only more likely to have metabolic comorbidities,
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but also have a greater prevalence of advanced liver fibrosis than those with
NAFLD?%%, As NAFLD with advanced liver fibrosis is closely associated with CKD
(and T2DM) ®_ it is reasonable to infer that MAFLD may be more closely related to
CKD than NAFLD. Our recent re-examination of the National Health and Nutrition
Examination Survey (NHANES)-III database 1988—1994, involving 12,571 individu-
als, who underwent liver ultrasound examinations and who did not have viral hepatitis,
reported that the overall prevalence of MAFLD and NAFLD was 30.2% and 36.6%,
respectively. Notably, individuals with MAFLD had lower values of estimated glo-
merular filtration rate (eéGFR: 74.9+18.2 vs. 76.5+18.2 ml/min/1.73 m? P<0.001) and
a higher prevalence of CKD stages 3-5 (20.3% vs. 17.8%, P=0.005), compared to
those with NAFLD?? (Figure 3). Furthermore, in this population-based study, the ul-
trasonographic severity of MAFLD was associated with a nearly 1.3-fold increased
risk of prevalent CKD, even after adjustment for sex, age, ethnicity, alcohol intake
and pre-existing diabetes.These results suggested that MAFLD definition can identify
patients with CKD more accurately than the NAFLD definition®2. Another study
based on the NHANES database 1999-2016 also found that subjects with MAFLD
had a higher risk of both CKD and abnormal albuminuria than subjects who did not
have MAFLD. Also, subjects with MAFLD had a higher risk of cardiovascular events
(evaluated by the Framingham or the American College of Cardiology and American
Heart Association Atherosclerotic Cardiovascular Disease risk equations) than those
with NAFLD ©!. Thus, MAFLD may be associated with a greater risk of cardiovascu-

lar disease and CKD than NAFLD. However, in contrast to these aforementioned data,
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the latest cross-sectional analyses of the NHANES database 2017-2018 (involving
4869 subjects) showed that MAFLD was not independently associated with the pres-
ence of CKD, although higher FIB-4 score (i.e., a non-invasive score for liver fibrosis,
adjusted-odds ratio [OR] 1.23, 95% CI 1.05-1.01), hyperuricemia (adjusted-OR 1.91,
95% CI 1.55- 2.36), hypertension (adjusted-OR 1.66, 95% CI 1.38- 2.00), and T2DM
(adjusted-OR 2.21, 95% CI 1.89- 3.11) were independently associated with CKD 62,
That said, these latter results are somewhat inconsistent with previously published
studies™!*?2, but further studies are needed to better clarify the association between
MAFLD (or NAFLD) and CKD progression over time. However, from the perspec-
tive of integrated care, the newly proposed criteria for MAFLD are easily applied by
clinicians across different healthcare settings, including in most resource-limited parts

of the world 3.

Mechanisms linking MAFLD and CKD

Preclinical reports, observational studies, genome-wide association studies and
epigenome-wide association studies are useful to define the “crosstalk” existing be-
tween CKD and this metabolic liver disease and better decipher the complex underly-
ing mechanisms linking both conditions ®-%°. To date, the pathophysiological mecha-
nisms linking NAFLD and CKD involve metabolic disorders (e.g. abdominal obesity,
insulin resistance, hypertension, atherogenic dyslipidemia and dysglycemia),
low-grade inflammation and, more recently, a possible involvement of the liv-
er-gut-kidney axis. Presently, the precise pathophysiological mechanisms linking

14



MAFLD and CKD are uncertain, although the putative pathophysiological mecha-
nisms that link MAFLD to CKD are likely to be similar to those underlying the asso-
ciation between NAFLD and CKD. Herein, we briefly discuss the main putative un-
derlying mechanisms linking MAFLD and CKD, focusing on genetic predisposition,

environmental risk factors and metabolic dysfunction.

Genetic predisposition

Emerging studies suggest that some genetic polymorphisms affecting patatin-like
phospholipase domain-containing 3 (PNPLA3), 17B-hydroxysteroid dehydrogenase
type 13 (HSD17B13), trans-membrane 6 superfamily member 2 (TM6SF?2), mem-
brane-bound O-acyltransferase domain-containing 7 (MBOAT7), and glucokinase
regulator (GCKR) genes play an important role in the development and progression of
NAFLD %% Some of these NAFLD-associated genetic polymorphisms are also as-
sociated with kidney abnormalities although some inconsistencies in study findings
exist (Table 1). A meta-analysis of 23 case-control studies (involving 6071 subjects
with NAFLD and 10366 controls) showed that individuals who carried a PNPLA3 G
allele had a higher risk of NAFLD (additive model: OR 3.41, 95%CI 2.57-4.52) and
NASH (additive model: OR 4.44, 95%CI 3.39-5.82) . Notably, an increasing num-
ber of studies showed that this gene variant is also associated with lower eGFR levels,
abnormal albuminuria and higher prevalence of CKD in both children and adults with
either biopsy-confirmed or imaging-defined NAFLD, independent of age, sex, adi-
posity measures, hypertension, diabetes, and severity of NAFLD 7072 Similarly, we
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observed that the PNPLA3 GG genotype was not only associated with higher risk of
glomerular dysfunction, but was also with higher levels of urinary neutrophil gelati-
nase-associated lipocalin (a biomarker of kidney tubular injury) in individuals with
biopsy-proven NAFLD ¢’. PNPLA3 mRNA is highly expressed in the liver, and also
in adipose tissue and kidney °, and this gene variant affects the lipid droplet architec-
ture and retinol metabolism of hepatic stellate cells, as well as the release of multiple
pro-inflammatory and pro-fibrogenic factors which may contribute to increased he-
patic fibrogenesis "*7°. Furthermore, the G allele of PNPLA3 rs738409 may increase
ectopic lipid accumulation in both renal mesangial and tubular cells under conditions
of lipid excess, potentially leading to lipid nephrotoxicity. In fact, PNPLA3 mRNA
levels were found to be highly expressed in renal podocytes compared to renal tubular
cells °. Kidney damage may activate renal podocytes leading to increased angiogene-
sis, dysregulation of both renal medullary and cortical blood flows, and increased
kidney fibrosis 7678, Thus, it can be implied that PNPLA3 mRNA may adversely af-

fect renal podocytes leading to renal dysfunction (Figure 4).

HSDI17B13 1572613567, a loss-of-function variant, may be a protective factor and a
therapeutic target in NAFLD by affecting the regulation of hepatic lipid metabolism
7980 In an Italian study of 684 obese children with ultrasound-defined NAFLD, carri-
ers of the A allele of rs72613567 had higher eGFR levels than homozygous subjects 8!
However, in another study involving 215 Chinese adults with biopsy-proven NAFLD,
the A/- or A/A HSD17B13 genotypes were associated with a lower risk of abnormal
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albuminuria, but not with altered levels of eGFR or urinary neutrophil gelati-

nase-associated lipocalin 2.

TM6SF2 rs58542926 is associated with a greater susceptibility to NAFLD, but a low-
er risk of cardiovascular disease 3. This may be explained by diverting toxic choles-
terol away from the vessels into the liver and adipose tissue . A small cross-sectional
study of 61 individuals with biopsy-proven NAFLD also reported that the TM6SF2 T
allele was associated with higher eGFR levels and a lower prevalence of abnormal
albuminuria and CKD %, In another study involving 532 obese children with normal
kidney function, the TM6SF2 rs58542926 T allele was associated with higher eGFR

levels, regardless of the presence or absence of NAFLD %¢.

MBOAT7 rs641738 has also been reported to increase the risk of NAFLD and other
chronic liver diseases %%, In a cohort of Asian individuals with biopsy-proven
NAFLD, the MBOAT7 rs641738 variant was associated with worsening stages of

CKD, irrespective of NASH ¥,

The T allele of GCKR rs1260326 increases the risk of NAFLD, possibly via enhanc-
ing hepatic de novo lipogenesis *° and may be related to a greater risk of CKD or
end-stage kidney disease °'. In the Japan Multi-Institutional Collaborative Cohort
Study, the authors reported that the GCKR rs1260326 T allele was associated with a

higher risk of CKD °2. Conversely, another study of 195 individuals found that GCKR
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rs1260326 T allele was associated with higher eGFR levels, but these may be offset
by an adverse effect on risk of coronary artery disease (OR 1.02 per risk allele, 95%CI
1.00-1.04, P=0.01) **. Finally, a study of 230 Italian overweight or obese children re-
ported that TM6SF2, GCKR, and MBOATY7 risk alleles did not show any significant

association with kidney function parameters®*.

All these studies were performed before the newly proposed change in nomenclature
from NAFLD to MAFLD. However, given the close relationship between these ge-
netic variants and metabolic dysfunction, it is plausible that these genetic variants will
have equal relevance in people with MAFLD. More importantly, a recent cohort study
of 4653 middle-aged and elderly Chinese adults showed that PNPLA3 or TM6SF2
gene variants are associated with higher liver fat content, especially in individuals
with at least one metabolic disorder, based on the MAFLD definition; whilst no dif-
ferences in liver fat content were observed in those without any metabolic disorder *°.
These results support the conclusion that PNPLA3 rs738409 and TM6SF2 1rs58542926

gene variants are associated with the development of MAFLD in Chinese adults.

Environmental risk factors

Emerging studies suggest that the gut microbiota and intestinal barrier integrity may
be linked to NAFLD and CKD (i.e. the so-called gut-liver-kidney axis) (Figure 5) °°.
Gut microbiota is a highly versatile ecosystem contributing to multiple host physio-
logical processes °’. Prebiotics, synbiotics and food components (including polyphe-
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nols, sugars and proteins) may alter the gut microbiota diversity and the production of
uraemic toxins *®. Gut microbiota-derived metabolites (for example, indoxyl sulfate
and p-cresyl sulfate), which are produced by several obligate or facultative anaerobes,
are harmful to the host and require active elimination by the kidney and this may in-

fluence both kidney and liver damage ?¢°7-%°.

The intestinal microbiome also generates trimethylamine N-oxide (TMAQO), endoge-
nous alcohol and short-chain fatty acids (SCFAs). TMAO production results from a
multistep process that is affected by dietary ingredients, such as choline and carnitine,
which undergo microbial processing, mainly related to lipid metabolism '®°. In a co-
hort of 512 patients with CKD followed for 5 years, plasma levels of TMAO were
higher in patients with CKD than in non-CKD control subjects, and were associated
with a nearly 3-fold increased risk of mortality '°'; in a preclinical study, dietary
TMAO supplementation also resulted in progressive renal tubulo-interstitial dysfunc-
tion and fibrosis '°!. Likewise, plasma levels of TMAO were increased in subjects
with NAFLD and associated with higher serum bile acid concentrations. TMAO ad-
ministration in high fat diet fed mice also exacerbated hepatic steatosis by inhibiting
hepatic nuclear receptor farnesoid X receptor (FXR) signaling, thus up-regulating he-
patic de novo lipogenesis *°. It is known that FXR is a major nuclear receptor for bile
acids, which is expressed in a variety of tissues, including the liver and kidney %2,
FXR is involved in the regulation of lipid and glucose metabolism as well as multiple
inflammation pathways ' and it is also implicated in the pathogenesis of NAFLD ',
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Some preliminary evidence also supports the view that FXR activation has the poten-

tial to repair renal tissue damage and prevent renal pathogenic processes '%2.

SCFAs (e.g. acetate, sodium butyrate, and propionate), which are generated from the
degradation of indigestible carbohydrates via anaerobic bacteria, may activate
G-protein coupled receptors in various cells and regulate blood pressure through the
renin-angiotensin system 17, SCFAs may also inhibit histone deacetylases
(HDACs), which regulate epigenetic modification through changes of histone tails '%,
Thus, decreased SCFAs may lead to an increase in blood pressure further impairing
kidney function '%!'%, Animal and clinical studies also support the notion that SCFAs
may have anti-hypertensive properties, but the exact underlying mechanisms have not
been completely identified %112, A recent small study also showed that individuals
with NAFLD had higher faecal SCFA levels and faecal bacteria, such as Prevotella
copri, Megashpaera, Fusobacterium, Ruminococcus torques and Eubacterium bi-
forme 3. Notably, SCFAs, such as sodium butyrate which is a bacterial fermentation
product, may increase the secretion of glucagon-like peptide (GLP)-1 (that enhances
glucose-induced pancreatic insulin secretion) from intestinal epithelial cells and in-
crease the expression of hepatic GLP-1 receptors !!*. Thus, it has been speculated that
sodium butyrate supplementation might prevent the progression of NAFLD to NASH
114" Additionally, treatment with sodium butyrate may improve insulin resistance, se-
rum urea concentrations and urinary protein excretion, possibly via improving
5'-adenosine monophosphate-activated protein kinase phosphorylation, increasing
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GLP-1 secretion and/or promoting colonic mucin and tight junction proteins in a ne-

phrectomy-CKD model '°.

Disrupted intestinal barrier integrity is another mechanism potentially implicated in
the gut-liver-kidney axis, which may cause the release of endotoxins and bacterial
DNA into the circulation, thereby causing low-grade chronic inflammation. The pro-
gression of CKD and NAFLD may, in turn, contribute to further disrupting epithelial

tight junctions and affecting intestinal barrier function *6116:117,

The imbalance of diet and nutrition (e.g. high fructose intake and vitamin-D deficien-
cy or insufficiency) may also contribute to the development of NAFLD and CKD. A
high fructose intake increases hepatic de novo lipogenesis and uric acid production. In
turn, uric acid further increases endogenous fructose production via stimulating aldose
reductase in the polyol pathway ''®. One study suggested that hyperuricemia may be a
risk factor for NAFLD, particularly in men, via inducing the suppression of silent in-
formation regulator-1 (SIRT1) signaling ''°. SIRT1 is a NAD(+)-dependent deacety-
lase and responds to oxidative stress and inflammation by inducing p53 mediated
apoptosis, participating in the nuclear factor kappa-B (NF-kB) mediated inflammatory
responses, forkhead box class O 3a (FOXO3a)-mediated autophagy and oxidative
stress 2%121 Meanwhile, SIRT1 activation may be beneficial for obesity and NAFLD
through inhibiting hepatic de novo lipogenesis, increasing fatty acid B-oxidation, as
well as reducing hepatic oxidative stress and improving hepatic glucose metabolism
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122123 'SIRT1 is abundantly expressed in mouse kidneys and may exert a protective
effect on the development of renal injury in these animals through the protection of
podocyte function and reduction of renal medullary cell damage following oxidative
stress 24125, There was also a strong inverse association between SIRT1 expression,
serum uric acid levels and liver pathology in humans ''°. Observational studies also
showed an association between higher serum uric acid levels and various

CKD-related outcomes (e.g. lower eGFR and abnormal albuminuria) 261,

Metabolic dysfunction

The metabolic dysfunction in the MAFLD definition includes a cluster of metabolic
risk factors such as abdominal overweight or obesity, hypertension, insulin resistance,
prediabetes/diabetes, atherogenic dyslipidemia and low-grade inflammation (as re-
flected by increased plasma C-reactive protein levels)'®. These metabolic risk factors
have individually been associated with an increased risk of both NAFLD and CKD
130-132 Using the NHANES-III database, the investigators reported that subjects with
metabolic syndrome had a ~2.5-fold increased risk of CKD compared with those

without metabolic syndrome ',

Obesity also plays an important role in the development and progression of NAFLD
and CKD. Ectopic lipid deposition triggers oxidative stress by two main intracellular
transcription factor signaling pathways, i.e., the nuclear factor-«B (NF-kB) pathway
and the c-Jun-amino-terminal kinase (JNK) pathway '**. It is known that perivascular
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fat may contribute to the impairment of endothelium-dependent vasodilatation, which
is involved in CKD pathogenesis. Furthermore, a study of 146 individuals showed
that increased renal sinus fat had an adverse effect on urinary albumin excretion and
kidney function '*° 13, Additionally, adipose tissue is an endocrine organ that secretes
several adipokines (for example, leptin and adiponectin), which may regulate food in-
take, insulin sensitivity, low-grade chronic inflammation and even activate the ren-

in-angiotensin system, thereby affecting the development of MAFLD and CKD 7,

Obesity, T2DM and MAFLD can promote systemic and hepatic insulin resistance and,
in turn, insulin resistance can lead to hepatic macrophage activation, hepatic fat ac-
cumulation and impaired glucose metabolism!'®. This may further aggravate renal
hemodynamics, leading to renal disease progression via activation of the sympathetic
nervous system, sodium retention, and down-regulation of natriuretic peptide

system!'?’,

As discussed above, CKD represents the final result of interactions of multiple factors,
many of which have a close association with the metabolic dysfunction (for example,
abdominal obesity, T2DM, insulin resistance, dyslipidaemia, hypertension, intestinal
dysbiosis, high fructose intake and vitamin-D deficiency, etc). Since the MAFLD
definition specifically includes individuals who have any metabolic dysfunction
(which is not applicable to all subjects with NAFLD), it is reasonable to assume that

metabolic dysfunction may be an important factor mediating the link between
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MAFLD and CKD.

It is also worth noting that MAFLD can coexist with other chronic liver diseases (e.g.
viral hepatitis), but a definition of NAFLD precludes the co-existence of other liver
diseases. An observational study found that MAFLD patients with co-existing viral
hepatitis had higher risk of cardiovascular disease, compared to their counterparts
without viral infection '%°. Infections with hepatitis B virus (HBV) or hepatitis C virus
(HCV) can both induce HBV-related or HCV-related glomerulonephritis, which usu-
ally manifests clinically with varying levels of proteinuria and microscopic hematuria
141 These results suggest that HBV and HCV might also be directly involved in the

pathogenic processes linking MAFLD and CKD, but further studies are needed.

Pharmacologic agents for CKD and NAFLD

Pharmacotherapy (e.g., lipid-lowering, blood pressure-controlling, glucose-lowering
and weight loss) has become a major focus for management of NAFLD and CKD %%,
Based on the aforementioned links between these two conditions, the development of
common drugs for NAFLD (or MAFLD) and CKD has become an important research
area. A number of pharmacological treatments have the potential to benefit both CKD
and NAFLD. In Table 2, we summarize the results of completed and ongoing trials,
testing drugs that are relevant to the treatment of both NAFLD/NASH and CKD. In
Supplementary Table 2, we have also listed other promising drugs and therapeutic
targets for NAFLD/NASH and CKD that are in preclinical or early development for
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NASH or CKD. However, to date, there are no definitive curative common treatments
for both MAFLD (or NAFLD) and CKD. Drugs targeting environmental risk factors
for MAFLD (or NAFLD) and CKD demonstrate the concept of “food as medicine”
and of a “healthy diet”. The most important treatment of environmental risk factors is
to change eating habits, which is extremely hard to maintain. Drugs targeting redox
regulation, inflammation and fibrosis but of unproven efficacy to date. Drugs target-
ing metabolic risk factors are considered to be the most promising to date. As dis-
cussed below, although the currently published controlled trials involved individuals
with NAFLD (or NASH) and not MAFLD, it is plausible that drugs targeting meta-

bolic risk factors may be even more effective in people with MAFLD.

Targeting of metabolic risk factors

Drugs targeting metabolic risk factors exert their actions mainly on regulation of lipid
and glucose metabolism. Peroxisome proliferator-activated receptors (PPARs), as the
key nuclear receptors involved in lipid and glucose metabolism, have three main iso-
types: PPAR-a, PPAR-y and PPAR-§ 4. Glucagon-like peptide 1 receptor agonists
(GLP-1RAs) and sodium-glucose cotransporter-2 (SGLT2) inhibitors are two newer
classes of glucose-lowering agents. GLP-1 as a gut-derived incretin hormone induces
beta-cell insulin secretion and reduces glucagon secretion '** Thus, GLP-1RAs have
been developed for the treatment of type 2 diabetes through increasing insulin and
decreasing glucagon levels. SGLT?2 inhibitors (e.g. empagliflozin, dapagliflozin and
canagliflozin) improve plasma glucose levels by preventing glucose reabsorption in
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the proximal renal tubule'#’

. We have listed the principal clinical trials that directly
target CKD and NAFLD (or NASH) in Table 2. However, many clinical trials target-
ing metabolic dysfunction (e.g. in those T2DM) were not designed to study CKD or
fatty liver disease. Semaglutide is an approved GLP-1RA for the treatment of type 2
diabetes. In the SUSTAIN-1 (Efficacy and Safety of Semaglutide Once-weekly Versus
Placebo in Drug-naive Subjects With Type 2 Diabetes, NCT02054897)!%® and SUS-
TAIN-6 (Trial to Evaluate Cardiovascular and Other Long-term Outcomes With
Semaglutide in Subjects With Type 2 Diabetes, NCT01720446) 47, semaglutide had a
similar safety profile and no greater cardiovascular risk profile compared to placebo.
The SUSTAIN-1 trial showed that semaglutide was better than placebo in reducing
body weight ', The SUSTAIN-6 trial also found that treatment with semaglutide was
associated with lower rates of new or worsening nephropathy '#’. Since obesity and
T2DM are established risk factors for fatty liver disease, CKD and cardiovascular
events, semaglutide is likely to become a suitable treatment option for both MAFLD
and CKD. In the recent trial (Investigation of Efficacy and Safety of Three Dose Lev-
els of Subcutaneous Semaglutide Once Daily Versus Placebo in Subjects With
Non-alcoholic Steatohepatitis, NCT02970942) '8 semaglutide was associated with
greater histologic resolution of NASH than placebo, but did not improve liver fibrosis
stage. There were no changes of renal function in the PIONEER-5 (Efficacy and
Safety of Oral Semaglutide Versus Placebo in Subjects With Type 2 Diabetes and
Moderate Renal Impairment, NCT02827708) 4, thereby suggesting that semaglutide
is safe in CKD. GLP1RAs and SGLT-2 inhibitors may be the most promising drugs
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for treatment of both fatty liver disease and CKD, but well designed trials are needed

to test the effects of these classes of drugs on both outcomes.

Conclusion

Increasing evidence suggests that the newly proposed definition of MAFLD is more
closely related to CKD than the NAFLD definition. We strongly believe that a multi-
disciplinary and person-centred approach is needed to manage subjects with MAFLD
and CKD as most of these individuals have common metabolic comorbidities, such as
obesity, hypertension, atherogenic dyslipidemia or T2DM. Therefore, it is clinically
important to assess kidney function in people with MAFLD. Lastly, emerging evi-
dence suggests that some drug classes targeting metabolic risk factors, such as
GLP1RAs and SGLT-2 inhibitors, may benefit both the liver and the kidney in indi-
viduals with MAFLD and CKD.
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LEGENDS TO THE TABLES AND FIGURES

Table 1. Genotypes associated with risk of both NAFLD and CKD.

Table 2. Potential pharmacologic agents and targets for CKD and NAFLD.
Supplementary table 1. Features of NAFLD and MAFLD.

Supplementary table 2. Other potential pharmacological options and therapeutic

targets for NAFLD/NASH or CKD.

Figure 1. Timeline of key comments on the renaming of NAFLD to MAFLD.

Abbreviations: AASLD, the American association for the study of liver diseases;
NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steato-
hepatitis; ALD, alcoholic liver disease; AFLD, alcoholic fatty liver
disease; MAFLD, metabolic dysfunction-associated fatty liver disease;
CKD, chronic kidney disease; EASL, the European association for the

study of the liver.

Figure 2. Framework for the diagnosis of NAFLD and MAFLD (A) and “Venn
diagram” showing schematically the overlap between MAFLD and

NAFLD in individuals with biopsy-proven fatty liver disease (B).

Figure 3. Mean levels of eGFR (A) and prevalence of CKD stage (B) in MAFLD
and NAFLD populations.

Data are presented as mean with 95% confidence intervals (CI) (A) and percentages
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(B), respectively. * P<0.05. Data were extrapolated from the study by Sun et al*2.

Figure 4. PNPLA3 rs738409 polymorphism and related potential mechanisms
between NAFLD and CKD.

The PNPLA3 gene is highly expressed in the liver (mostly in hepatocytes and hepatic
stellate cells), adipose tissue and kidney (mostly in renal podocytes and tubular cells).
It has been found that the PNPLA3 gene has a lipase activity but the G allele of
PNPLA3 rs738409 is associated with loss of this lipase activity. The G allele of
PNPLA3 rs738409 may affect lipid droplet architecture and retinol metabolism, and
release multiple pro-inflammatory and pro-fibrogenic factors, thereby promoting the
development and progression of NAFLD. The G allele of PNPLA3 rs738409 also in-
creases ectopic lipid accumulation in both renal mesangial and tubular cells, poten-
tially leading to lipid nephrotoxicity. This genetic variant may also adversely affect
the activation of renal podocytes causing kidney damage.

Abbreviations: PNPLA3, patatin-like phospholipase domain-containing 3; NAFLD,

non-alcoholic fatty liver disease; CKD, chronic kidney disease.

Figure 5. Potential mechanisms implicated in the gut-liver-kidney axis.

An imbalance diet (e.g. high fructose and high fat) can result in intestinal dysbiosis
(mainly increasing the Gram-negative bacteria), which may disrupt the intestinal bar-
rier integrity and increase gut permeability. These intestinal disorders may further
promote the release of lipopolysaccharide (LPS), small molecules and even bacteria
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into the portal and systemic circulation, causing endotoxemia and low-grade inflam-
mation. Intestinal dysbiosis also increases the production of endogenous alcohol,
short-chain fatty acids, secondary bile acids, trimethylamine N-oxide, p-cresyl sulfate,
indoxyl sulfate, and so on, which may affect the development of both NAFLD and
CKD. Short-chain fatty acids (e.g. acetate, sodium butyrate, and propionate) provide
up to 9% of the energy requirements. These molecules may also participate in the
regulation of blood pressure, hepatic lipogenesis and gluconeogenesis, though the ex-
act underlying mechanisms have not been fully elucidated. Thus, sodium butyrate
supplementation might prevent the progression of NAFLD and CKD. Secondary bile
acids and trimethylamine N-oxide can inhibit the activation of hepatic nuclear recep-
tor farnesoid X receptor (FXR) signaling, but FXR activation can decrease lipid syn-
thesis, gluconeogenesis, as well as renal inflammation and fibrosis. Trimethylamine
N-oxide, p-cresyl sulfate and indoxyl sulfate, as the uremic toxins, can adversely af-
fect the kidney by activating oxidative stress and renin-angiotensin system, and injur-

ing vascular endothelium.
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