nature REVIEWS

3 Nature Reviews referee guidelines

4 **Perspective articles**

1

2

5 *Nature Reviews* publishes timely, authoritative articles that are of broad interest and exceptional qual-6 ity. Thank you for taking the time to help us to ensure that our articles meet these high standards.

7 Perspective articles provide a forum for viewpoints and opinionated discussions of a field or topic, de-

8 scribe historical foundations and influence, emerging research trends and techniques, and ethical, le-

gal and societal issues. These articles are targeted towards readers from advanced undergraduate lev-

10 el and upwards and should be accessible to readers working in any discipline.

- 11 Please submit your report in narrative form and provide detailed justifications for all statements. Con-
- fidential comments to the editor are welcome, but it is helpful if the main points are stated in the
- 13 comments for transmission to the authors.
- Please note that all *Nature Reviews* articles will be thoroughly edited before publication and all figures
- 15 will be redrawn by our in-house art editors. We therefore request that you concentrate on the scien-
- 16 tific content of the article, rather than any minor errors in language or grammar.
- 17 Please consider and comment on the following points when reviewing this manuscript:
- Is the article timely and does it provide a useful addition to the existing literature?
- Are the scope and aims of the article clear?
- Are the ideas logically presented and discussed?
- Is the article accessible to a wide audience, including readers who are not specialists in your own
 field?
- Does the article clearly express an opinion, while still being fair and accurate? Although this article
 is an Opinion article, the authors should not ignore alternative points of view. However, please bear
 in mind that it may not be possible to cover all aspects of a field within such a concise article.
- Does the article provide new insight into recent advances?
- Do the figures, boxes and tables provide clear and accurate information? Are there any additional or
 alternative display items that you think that the authors should include?
- Are the references appropriate and up-to-date? Do they reflect the scope of the article?
- Are you aware of any undeclared conflicts of interest that might affect the balance, or perceived
 balance, of the article?

2	Metabolic dysfunction-associated fatty liver disease: association with
3	kidney disease
4	Authors' names
5	Ting-Yao Wang ¹ , Rui-Fang Wang ² , Zhi-Yin Bo ² , Giovanni Targher ³ , Christopher D.
6	Byrne ⁴ , Dan-Qin Sun ^{2,5*} and Ming-Hua Zheng ^{6,7,8*}
7	Institutions
8	¹ Department of Nephrology, the First Affiliated Hospital of Wenzhou Medical Uni-
9	versity, Wenzhou, China
10	² Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing
11	Medical University, Wuxi, China
12	³ Section of Endocrinology, Diabetes and Metabolism, Department of Medicine,
13	Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
14	⁴ Southampton National Institute for Health Research Biomedical Research Centre,
15	University Hospital Southampton, Southampton General Hospital, Southampton, UK
16	⁵ Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
17	⁶ NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of
18	Wenzhou Medical University, Wenzhou, China
19	⁷ Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
20	⁸ Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver
21	Disease in Zhejiang Province, Wenzhou, China
22	*Co-corresponding authors

23	Dan-Qin Sun, MD
24	Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing
25	Medical University, Wuxi 214000, China
26	E-mail: sundanqin@njmu.edu.cn
27	Ming-Hua Zheng, MD, PhD
28	NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of
29	Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou 325000, China
30	E-mail: zhengmh@wmu.edu.cn; fax: (86) 577-55579622; tel: (86) 577-55578522
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	

45 Abstract

46	Nonalcoholic fatty liver disease (NAFLD) is defined as hepatic fat accumulation in
47	more than 5% of hepatocytes without significant alcohol consumption and other sec-
48	ondary causes of hepatic steatosis. In 2020, the more inclusive term metabolic (dys-
49	function)-associated fatty liver disease (MAFLD) with broader and "positive" diag-
50	nostic criteria was proposed to replace the old term NAFLD. The new terminology
51	and definition of MAFLD better emphasize the pathogenic role of metabolic dysfunc-
52	tion and the use of "positive" criteria for diagnosing this common liver disease. In fact,
53	the diagnosis of MAFLD is based on the evidence of hepatic steatosis (as assessed by
54	liver biopsy, imaging techniques or blood biomarkers and scores) in persons who have
55	overweight or obesity, type 2 diabetes or have metabolic dysregulation, regardless of
56	the coexistence of other liver diseases or excessive alcohol consumption. It is known
57	that NAFLD is associated with an increased risk of chronic kidney disease (CKD) and
58	CKD may also be induced by metabolic dysfunction. Thus, compared to the NAFLD
59	definition, the newly-proposed MAFLD definition is more likely to identify subjects
60	with fatty liver and metabolic comorbidities, who are at greater risk of CKD. In this
61	Perspectives article, we discuss the clinical associations between MAFLD and CKD,
62	the pathophysiological mechanisms by which MAFLD may increase risk of CKD and
63	the potential drug treatments that may benefit both conditions.

67 Introduction

Nonalcoholic fatty liver disease (NAFLD) is histologically defined as hepatic fat ac-68 cumulation in more than 5% of hepatocytes without excessive alcohol consumption or 69 other competing causes for hepatic steatosis^{1,2}. To date, it has been estimated that this 70 liver disease affects approximately 25% of the global adult population ³ and nearly 30% 71 of Chinese adults with a prevalence that is higher in urban than rural areas; in men 72 than women, and in the eastern coastal areas than inland. Furthermore in China, 73 NAFLD also affects approximately 2% of schoolchildren with sedentary lifestyles and 74 an unhealthy diet 4,5 . 75 76 NAFLD shares multiple cardiometabolic risk factors with chronic kidney disease 77 (CKD), such as obesity, hypertension, insulin resistance, type 2 diabetes (T2DM) or 78 prediabetes and atherogenic dyslipidemia ⁶⁻⁸. The prevalence of CKD in people with 79 NAFLD ranges from approximately 20% to 55% compared to 5% to 35% in the 80 non-NAFLD population. Several studies have shown that the severity of NAFLD is 81 closely associated with increasing stages of CKD 8-13. For example, a previous me-82 ta-analysis that included 33 cross-sectional and longitudinal studies showed that there 83 was a higher prevalence and incidence of CKD in patients with NAFLD and advanced 84 fibrosis (odds ratio [OR] 5.20, 95% CI 3.14- 8.61) and hazard ratio [HR] 3.29, 95% 85 CI 2.30- 4.71, respectively) compared to patients with NAFLD without advanced fi-86 brosis⁹. The presence of nonalcoholic steatohepatitis (NASH) on liver histology was 87 also independently associated with a higher prevalence (odds ratio 2.53, 95% CI 1.58-88

89	4.05) and incidence (hazard ratio 2.12, 95% CI 1.42-3.17) of CKD than simple steato-
90	sis ⁹ . Similar results were also found in two more recent meta-analyses published in
91	2018 ¹³ and 2020 ¹⁴ . Patients with NAFLD were also observed to have an increased
92	risk of abnormal albuminuria in 19 observational studies with 24804 participants
93	(odds ratio 1.67, 95% CI 1.32-2.11, P <0.05) ¹⁵ . These data suggest that NAFLD may
94	be an independent risk factor for CKD. Additionally, the severity of CKD may ad-
95	versely affect long-term clinical outcomes from NAFLD by increasing the risk for
96	all-cause mortality ¹⁶ . An observational study of 87 adults with biopsy-proven NAFLD,
97	reported that NAFLD with microalbuminuria was associated with higher fibrosis
98	scores than those patients with NAFLD without microalbuminuria ¹⁷ ; implying that
99	the presence of microalbuminuria may help identify those patients with more severe
100	NAFLD. Another study of 120 patients with biopsy-proven NAFLD diagnosed in
101	1978-2006 reported that NAFLD patients with long-term CKD had increased mortal-
102	ity risk because of the associated metabolic comorbidities, rather than CKD per se ¹⁶ .
103	That said, whether there is a causal association between NAFLD and CKD is unclear
104	and achieving a better understanding of the link between NAFLD and CKD represents
105	an important area of research.

In response to criticisms regarding the use of the adjective "non-alcoholic", and in recognition of the fact that NAFLD is a purely metabolic liver disease, in 2020 an international panel of experts recommended the renaming of NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD). With the new term, different diag-

111	nostic criteria for defining MAFLD were also proposed ¹⁸ . The diagnostic criteria for
112	MAFLD are based on the evidence of hepatic steatosis (detected either by liver biopsy,
113	imaging techniques or blood biomarkers and scores), and the coexistence of over-
114	weight or obesity, T2DM or metabolic dysregulation ¹⁸ . The term "MAFLD" repre-
115	sents this disease not as a single or "exclusive" condition, but also embraces metabol-
116	ic disorders, and may coexist with excessive alcohol consumption or other chronic
117	liver diseases that may have additive or synergistic effects to increase the severity of
118	the liver condition (e.g. chronic viral hepatitis) ^{19,20} . Thus, the two terms of NAFLD
119	and MAFLD cannot be considered fully interchangeable or simply equivalent. Alt-
120	hough there is excellent concordance (with a Cohen's kappa statistic >0.90) between
121	the NAFLD and MAFLD definitions in "real-world" data, there will be some indi-
122	viduals fulfilling the diagnostic criteria for MAFLD but not NAFLD (i.e., persons
123	with MAFLD who have other coexisting chronic liver diseases), and some individuals
124	fulfilling the criteria for NAFLD but not MAFLD (i.e. lean persons with NAFLD who
125	do not have any coexisting metabolic dysfunction) ²¹ . Notably, evidence is now ac-
126	cumulating to suggest that subjects with MAFLD are more likely to have multiple
127	metabolic comorbidities and to be at greater risk of advanced liver fibrosis or CKD,
128	compared to those with NAFLD ²² . In this Perspectives article, we discuss the clinical
129	associations and the pathophysiological mechanisms underpinning MAFLD with
130	CKD and how this differs from our understanding of the relationship between
131	NAFLD and CKD. We also briefly discuss targeted pharmacological treatments for
132	NAFLD and MAFLD and how these might affect CKD.

From NAFLD to MAFLD

135	The terms of NAFLD and its progressive necro-inflammatory form, NASH, were first
136	coined in 1980 and 1986 to characterize a liver disease histologically similar to alco-
137	holic fatty liver disease but without a prior history of significant alcohol intake ^{23,24} .
138	NAFLD includes a histopathological spectrum of progressive liver conditions, rang-
139	ing from nonalcoholic fatty liver (NAFL, simple steatosis without evidence of any
140	hepatocellular injury) to NASH (hepatic steatosis plus inflammation and hepatocellu-
141	lar injury, with or without varying levels of fibrosis) and cirrhosis ^{1,25-27} . Most indi-
142	viduals with NAFLD or NASH are overweight or obese, and many of them have obe-
143	sity-associated diseases, such as T2DM, hypertension and atherogenic dyslipidemia. A
144	link between liver damage and obesity had been recognized since 1950s 28 and in
145	1999 ²⁹ , an analysis of subjects with biopsy-proven NAFLD reported a strong associa-
146	tion with the typical features of the metabolic syndrome such as hyperinsulinemia,
147	dysglycemia, hypertension and dyslipidemia. Similar results were also reported ³⁰ in a
148	study of 551 severely obese individuals undergoing bariatric surgery. Since that time,
149	various reasons for renaming and redefining NAFLD have been presented and debat-
150	ed (Figure 1) ³¹⁻³⁶ . Firstly, the definition of NAFLD has exclusiveness and does not
151	allow for the presence of other coexisting liver diseases. Indeed, the coexistence of
152	NAFLD with another chronic liver disease is not rare in clinical practice ¹⁹ . Secondly,
153	the question of the thresholds of "healthy or unhealthy" alcohol consumption and the
154	risk of stigmatizing and misleading individuals make the compound adjective

155	"non-alcoholic" inappropriate. Some studies have suggested that modest alcohol con-
156	sumption (less than 20 g/day) may exert a protective effect on NAFLD ³⁷⁻³⁹ , but other
157	large studies have found the opposite result ^{40,41} . The assessment of daily alcohol
158	consumption is still not standard and accurate, and may be misinterpreted as stigma-
159	tization, especially in adolescents, while alcohol consumption may also be taboo for
160	religious or cultural reasons ^{42,43} . The compound adjective "non-alcoholic" may mis-
161	lead some persons into thinking that they can drink alcohol and that this disease is not
162	severe ("non"-alcoholic), compared with alcoholic cirrhosis. Thirdly, there are vary-
163	ing degrees of disease progression and severity, such as Asian people with NAFLD
164	are leaner but have more severe liver histopathology compared with their counterparts
165	of Caucasian ethnicity. Additionally, pre-menopausal women often have a lower prev-
166	alence of NAFLD, while post-menopausal women have a higher prevalence of
167	NAFLD than men of similar age. The high heterogeneity of NAFLD is mainly related
168	to the diversity of pathogenesis of the condition (involving, for example, genetic pre-
169	disposition, estrogen exposure and presence of underlying metabolic dysfunction).
170	Fourthly, the term "NAFLD" can be misunderstood as it emphasizes only
171	"non-alcoholic" factors and does not highlight the key pathogenic role of metabolic
172	dysfunction. Finally, the high heterogeneity of NAFLD may also affect the reliability
173	of clinical trial results and the non-invasive assessment of liver fibrosis (by using the
174	scores of advanced fibrosis, such as the NAFLD fibrosis score (NFS) and fibrosis 4
175	(FIB-4), or vibration-controlled transient elastography) ⁴⁴⁻⁴⁶ . These issues eventually
176	prompted a panel of international experts from 22 countries to propose that NAFLD

177	be renamed and re-classified as MAFLD 18,20 with new diagnostic and "positive" cri-
178	teria better emphasizing the dysmetabolic pathophysiology of this common liver dis-
179	ease and its systemic adverse effects on both liver-related and extra-hepatic outcomes
180	(including CKD) 47 . The details of the diagnosis and the specific features of NAFLD
181	and MAFLD definitions have been summarized (Figure 2A and Supplementary Ta-
182	ble 1). Moreover, we have utilized a "Venn diagram" to illustrate the overlap between
183	NAFLD and MAFLD definitions according to a recent study undertaken by our group
184	in biopsy-proven individuals from Wenzhou ⁴⁸ (Figure 2B).
185	
186	Consequences for clinical practice
187	Although some experts have endorsed the newly-proposed term and definition of
188	MAFLD ^{43,49} , others have been less enthusiastic, arguing that this change in nomen-
189	clature is premature. The primary reasons are the ongoing debate about diagnostic
190	criteria of "metabolic health" and the ambiguity around the aetiological root cause.
191	The adjective "metabolic" they suggest is too simple and broad to cover all disease
192	phenotypes and aetiological attributions ⁵⁰ . For example, some lean and metabolically
193	healthy individuals can have hepatic steatosis, emphasizing that other factors (e.g.
194	genetic factors) may be dominant in some phenotypes ⁵¹⁻⁵³ . What's more, other rarer
195	"metabolic" diseases may also cause hepatic steatosis, such as Wilson's disease and
196	short gut syndrome-associated fatty liver, but these are not included under the term
197	"MAFLD" ⁵⁰ . Renaming and re-classifying this common metabolic liver disease may
198	also have unintended consequences for some stakeholders. For example, with ongoing

drug trials, reclassification of this liver disease may affect trial outcomes that are focussed on histological resolution of NASH as a primary efficacy endpoint ^{50,54}.

202	In our opinion, a growing body of data largely supports the nomenclature change from
203	NAFLD to MAFLD. For example, a 2020 study of 765 Japanese individuals showed
204	that the newly proposed definition of MAFLD identified more accurately subjects
205	with advanced liver fibrosis (assessed by non-invasive tests) compared with the
206	NAFLD definition. In addition, the presence of MAFLD with coexisting mild alcohol
207	consumption (less than 20 g/day) was also associated with a higher prevalence of liver
208	fibrosis than the presence of MAFLD alone (without coexisting alcohol intake) (25.0%
209	vs. 15.5%, $P=0.018$) ⁵⁵ , suggesting that even mild alcohol consumption may increase
210	the prevalence of liver fibrosis; so further emphasizing the inappropriateness of the
211	term "non-alcoholic". In a study of 922 adults from Hong Kong, there was no differ-
212	ence in the prevalence of MAFLD and NAFLD (25.9% and 25.7%, respectively), but
213	the incidence of MAFLD (2.8 per 100 person-years) was lower than that of NAFLD
214	(3.7 per 100 person-years) and almost 25% of participants with fatty liver (on ultra-
215	sound examinations) were classified as not having MAFLD ⁵⁶ , confirming that the
216	MAFLD and NAFLD definitions can identify different groups of subjects. However,
217	the aforementioned difference in incidence rates of MAFLD appears to be more
218	marked among lean individuals without metabolic dysfunction. Overall, therefore, the
219	current evidence suggests that the definition of MAFLD can more accurately identify
220	subjects at higher risk of progressive liver disease than the NAFLD definition. This

221	has important implications not only for clinical practice but also for recruitment of pa-
222	tients to clinical trials testing new pharmacotherapies for this liver disease. That said,
223	as discussed above the currently available 'real-world' studies clearly suggest that the
224	diagnostic criteria for MAFLD are more useful in clinical practice than those for
225	NAFLD ^{18,55} . Another useful change in clinical practice with the implementation of
226	the newly proposed definition of MAFLD is the semiquantitative evaluation of the
227	grade of inflammatory activity and stage of liver fibrosis to replace the dichotomous
228	stratification into NASH and non-NASH ¹⁸ . The diagnosis of NASH can be affected
229	by sampling variability ⁵⁷ and ballooning of hepatocytes on histology (as a cardinal
230	feature of NASH) can fluctuate over short timeframes in the same subject ⁵⁷ . Fur-
231	thermore, studies have demonstrated that liver fibrosis, rather than other histologic
232	features, may predict the most important clinical outcomes of NAFLD ^{58,59} . Conse-
233	quently, we consider that a terminology change from NAFLD to MAFLD will have
234	little effect on ongoing clinical trials where they evaluate "improvement of liver fi-
235	brosis"; and thus far, no drug has received regulatory approval for the treatment of
236	NASH ⁵⁷ . Overall, the newly proposed definition of MAFLD may facilitate
237	much-needed improvements in the prevention, diagnosis, treatment and management
238	of this common and burdensome liver disease.

MAFLD is more closely related to CKD

As previously mentioned, metabolic dysregulation is a key feature of MAFLD, and

individuals with MAFLD are not only more likely to have metabolic comorbidities,

243	but also have a greater prevalence of advanced liver fibrosis than those with
244	NAFLD ^{22,55} . As NAFLD with advanced liver fibrosis is closely associated with CKD
245	(and T2DM) 60 , it is reasonable to infer that MAFLD may be more closely related to
246	CKD than NAFLD. Our recent re-examination of the National Health and Nutrition
247	Examination Survey (NHANES)-III database 1988–1994, involving 12,571 individu-
248	als, who underwent liver ultrasound examinations and who did not have viral hepatitis,
249	reported that the overall prevalence of MAFLD and NAFLD was 30.2% and 36.6%,
250	respectively. Notably, individuals with MAFLD had lower values of estimated glo-
251	merular filtration rate (eGFR: 74.9±18.2 vs. 76.5±18.2 ml/min/1.73 m ² , P<0.001) and
252	a higher prevalence of CKD stages 3-5 (20.3% vs. 17.8%, P=0.005), compared to
253	those with $NAFLD^{22}$ (Figure 3). Furthermore, in this population-based study, the ul-
254	trasonographic severity of MAFLD was associated with a nearly 1.3-fold increased
255	risk of prevalent CKD, even after adjustment for sex, age, ethnicity, alcohol intake
256	and pre-existing diabetes. These results suggested that MAFLD definition can identify
257	patients with CKD more accurately than the NAFLD definition ²² . Another study
258	based on the NHANES database 1999–2016 also found that subjects with MAFLD
259	had a higher risk of both CKD and abnormal albuminuria than subjects who did not
260	have MAFLD. Also, subjects with MAFLD had a higher risk of cardiovascular events
261	(evaluated by the Framingham or the American College of Cardiology and American
262	Heart Association Atherosclerotic Cardiovascular Disease risk equations) than those
263	with NAFLD ⁶¹ . Thus, MAFLD may be associated with a greater risk of cardiovascu-
264	lar disease and CKD than NAFLD. However, in contrast to these aforementioned data,

265	the latest cross-sectional analyses of the NHANES database 2017–2018 (involving
266	4869 subjects) showed that MAFLD was not independently associated with the pres-
267	ence of CKD, although higher FIB-4 score (i.e., a non-invasive score for liver fibrosis,
268	adjusted-odds ratio [OR] 1.23, 95% CI 1.05-1.01), hyperuricemia (adjusted-OR 1.91,
269	95% CI 1.55- 2.36), hypertension (adjusted-OR 1.66, 95% CI 1.38- 2.00), and T2DM
270	(adjusted-OR 2.21, 95% CI 1.89- 3.11) were independently associated with CKD 62 .
271	That said, these latter results are somewhat inconsistent with previously published
272	studies ^{9,13,22} , but further studies are needed to better clarify the association between
273	MAFLD (or NAFLD) and CKD progression over time. However, from the perspec-
274	tive of integrated care, the newly proposed criteria for MAFLD are easily applied by
275	clinicians across different healthcare settings, including in most resource-limited parts
276	of the world ¹⁸ .

278 Mechanisms linking MAFLD and CKD

Preclinical reports, observational studies, genome-wide association studies and 279 epigenome-wide association studies are useful to define the "crosstalk" existing be-280 tween CKD and this metabolic liver disease and better decipher the complex underly-281 ing mechanisms linking both conditions ⁶³⁻⁶⁵. To date, the pathophysiological mecha-282 nisms linking NAFLD and CKD involve metabolic disorders (e.g. abdominal obesity, 283 insulin resistance, hypertension, atherogenic dyslipidemia and dysglycemia), 284 low-grade inflammation and, more recently, a possible involvement of the liv-285 er-gut-kidney axis. Presently, the precise pathophysiological mechanisms linking 286

287	MAFLD and CKD are uncertain, although the putative pathophysiological mecha-
288	nisms that link MAFLD to CKD are likely to be similar to those underlying the asso-
289	ciation between NAFLD and CKD. Herein, we briefly discuss the main putative un-
290	derlying mechanisms linking MAFLD and CKD, focusing on genetic predisposition,
291	environmental risk factors and metabolic dysfunction.

293 Genetic predisposition

Emerging studies suggest that some genetic polymorphisms affecting patatin-like 294 phospholipase domain-containing 3 (*PNPLA3*), 17β-hydroxysteroid dehydrogenase 295 type 13 (HSD17B13), trans-membrane 6 superfamily member 2 (TM6SF2), mem-296 brane-bound O-acyltransferase domain-containing 7 (MBOAT7), and glucokinase 297 regulator (GCKR) genes play an important role in the development and progression of 298 NAFLD ⁶⁶⁻⁶⁸. Some of these NAFLD-associated genetic polymorphisms are also as-299 sociated with kidney abnormalities although some inconsistencies in study findings 300 exist (Table 1). A meta-analysis of 23 case-control studies (involving 6071 subjects 301 with NAFLD and 10366 controls) showed that individuals who carried a PNPLA3 G 302 allele had a higher risk of NAFLD (additive model: OR 3.41, 95%CI 2.57-4.52) and 303 NASH (additive model: OR 4.44, 95%CI 3.39-5.82)⁶⁹. Notably, an increasing num-304 ber of studies showed that this gene variant is also associated with lower eGFR levels, 305 abnormal albuminuria and higher prevalence of CKD in both children and adults with 306 either biopsy-confirmed or imaging-defined NAFLD, independent of age, sex, adi-307 posity measures, hypertension, diabetes, and severity of NAFLD ^{68,70-72}. Similarly, we 308

309	observed that the PNPLA3 GG genotype was not only associated with higher risk of
310	glomerular dysfunction, but was also with higher levels of urinary neutrophil gelati-
311	nase-associated lipocalin (a biomarker of kidney tubular injury) in individuals with
312	biopsy-proven NAFLD ⁶⁷ . PNPLA3 mRNA is highly expressed in the liver, and also
313	in adipose tissue and kidney ⁷³ , and this gene variant affects the lipid droplet architec-
314	ture and retinol metabolism of hepatic stellate cells, as well as the release of multiple
315	pro-inflammatory and pro-fibrogenic factors which may contribute to increased he-
316	patic fibrogenesis ⁷³⁻⁷⁵ . Furthermore, the G allele of <i>PNPLA3</i> rs738409 may increase
317	ectopic lipid accumulation in both renal mesangial and tubular cells under conditions
318	of lipid excess, potentially leading to lipid nephrotoxicity. In fact, PNPLA3 mRNA
319	levels were found to be highly expressed in renal podocytes compared to renal tubular
320	cells ⁷⁶ . Kidney damage may activate renal podocytes leading to increased angiogene-
321	sis, dysregulation of both renal medullary and cortical blood flows, and increased
322	kidney fibrosis ⁷⁶⁻⁷⁸ . Thus, it can be implied that <i>PNPLA3</i> mRNA may adversely af-
323	fect renal podocytes leading to renal dysfunction (Figure 4).

albuminuria, but not with altered levels of eGFR or urinary neutrophil gelati nase-associated lipocalin ⁸².

333

TM6SF2 rs58542926 is associated with a greater susceptibility to NAFLD, but a low-334 er risk of cardiovascular disease⁸³. This may be explained by diverting toxic choles-335 terol away from the vessels into the liver and adipose tissue ⁸⁴. A small cross-sectional 336 study of 61 individuals with biopsy-proven NAFLD also reported that the TM6SF2 T 337 allele was associated with higher eGFR levels and a lower prevalence of abnormal 338 albuminuria and CKD ⁸⁵. In another study involving 532 obese children with normal 339 kidney function, the TM6SF2 rs58542926 T allele was associated with higher eGFR 340 levels, regardless of the presence or absence of NAFLD ⁸⁶. 341 342 MBOAT7 rs641738 has also been reported to increase the risk of NAFLD and other 343

chronic liver diseases ^{87,88}. In a cohort of Asian individuals with biopsy-proven
NAFLD, the *MBOAT7* rs641738 variant was associated with worsening stages of
CKD, irrespective of NASH ⁸⁹.

348	The T allele of GCKR rs1260326 increases the risk of NAFLD, possibly via enhanc-
349	ing hepatic <i>de novo</i> lipogenesis ⁹⁰ and may be related to a greater risk of CKD or
350	end-stage kidney disease 91. In the Japan Multi-Institutional Collaborative Cohort
351	Study, the authors reported that the GCKR rs1260326 T allele was associated with a
352	higher risk of CKD ⁹² . Conversely, another study of 195 individuals found that GCKR

rs1260326 T allele was associated with higher eGFR levels, but these may be offset by an adverse effect on risk of coronary artery disease (OR 1.02 per risk allele, 95%CI 1.00-1.04, P=0.01) ⁹³. Finally, a study of 230 Italian overweight or obese children reported that *TM6SF2*, *GCKR*, and *MBOAT7* risk alleles did not show any significant association with kidney function parameters⁹⁴.

358

All these studies were performed before the newly proposed change in nomenclature 359 from NAFLD to MAFLD. However, given the close relationship between these ge-360 netic variants and metabolic dysfunction, it is plausible that these genetic variants will 361 have equal relevance in people with MAFLD. More importantly, a recent cohort study 362 of 4653 middle-aged and elderly Chinese adults showed that PNPLA3 or TM6SF2 363 gene variants are associated with higher liver fat content, especially in individuals 364 with at least one metabolic disorder, based on the MAFLD definition; whilst no dif-365 ferences in liver fat content were observed in those without any metabolic disorder ⁹⁵. 366 These results support the conclusion that PNPLA3 rs738409 and TM6SF2 rs58542926 367 gene variants are associated with the development of MAFLD in Chinese adults. 368

369

370 Environmental risk factors

Emerging studies suggest that the gut microbiota and intestinal barrier integrity may be linked to NAFLD and CKD (i.e. the so-called gut-liver-kidney axis) (Figure 5) ⁹⁶. Gut microbiota is a highly versatile ecosystem contributing to multiple host physiological processes ⁹⁷. Prebiotics, synbiotics and food components (including polyphe-

nols, sugars and proteins) may alter the gut microbiota diversity and the production of
uraemic toxins ⁹⁸. Gut microbiota-derived metabolites (for example, indoxyl sulfate
and p-cresyl sulfate), which are produced by several obligate or facultative anaerobes,
are harmful to the host and require active elimination by the kidney and this may influence both kidney and liver damage ^{96,97,99}.

380

The intestinal microbiome also generates trimethylamine N-oxide (TMAO), endoge-381 nous alcohol and short-chain fatty acids (SCFAs). TMAO production results from a 382 multistep process that is affected by dietary ingredients, such as choline and carnitine, 383 which undergo microbial processing, mainly related to lipid metabolism ¹⁰⁰. In a co-384 hort of 512 patients with CKD followed for 5 years, plasma levels of TMAO were 385 higher in patients with CKD than in non-CKD control subjects, and were associated 386 with a nearly 3-fold increased risk of mortality ¹⁰¹; in a preclinical study, dietary 387 TMAO supplementation also resulted in progressive renal tubulo-interstitial dysfunc-388 tion and fibrosis ¹⁰¹. Likewise, plasma levels of TMAO were increased in subjects 389 with NAFLD and associated with higher serum bile acid concentrations. TMAO ad-390 ministration in high fat diet fed mice also exacerbated hepatic steatosis by inhibiting 391 hepatic nuclear receptor farnesoid X receptor (FXR) signaling, thus up-regulating he-392 patic *de novo* lipogenesis ⁹⁹. It is known that FXR is a major nuclear receptor for bile 393 acids, which is expressed in a variety of tissues, including the liver and kidney ¹⁰². 394 FXR is involved in the regulation of lipid and glucose metabolism as well as multiple 395 inflammation pathways ¹⁰³ and it is also implicated in the pathogenesis of NAFLD ¹⁰⁴. 396

Some preliminary evidence also supports the view that FXR activation has the potential to repair renal tissue damage and prevent renal pathogenic processes ¹⁰².

400	SCFAs (e.g. acetate, sodium butyrate, and propionate), which are generated from the
401	degradation of indigestible carbohydrates via anaerobic bacteria, may activate
402	G-protein coupled receptors in various cells and regulate blood pressure through the
403	renin-angiotensin system ¹⁰⁵⁻¹⁰⁷ . SCFAs may also inhibit histone deacetylases
404	(HDACs), which regulate epigenetic modification through changes of histone tails ¹⁰⁸ .
405	Thus, decreased SCFAs may lead to an increase in blood pressure further impairing
406	kidney function ^{109,110} . Animal and clinical studies also support the notion that SCFAs
407	may have anti-hypertensive properties, but the exact underlying mechanisms have not
408	been completely identified ¹¹⁰⁻¹¹² . A recent small study also showed that individuals
409	with NAFLD had higher faecal SCFA levels and faecal bacteria, such as Prevotella
410	copri, Megashpaera, Fusobacterium, Ruminococcus torques and Eubacterium bi-
411	forme ¹¹³ . Notably, SCFAs, such as sodium butyrate which is a bacterial fermentation
412	product, may increase the secretion of glucagon-like peptide (GLP)-1 (that enhances
413	glucose-induced pancreatic insulin secretion) from intestinal epithelial cells and in-
414	crease the expression of hepatic GLP-1 receptors ¹¹⁴ . Thus, it has been speculated that
415	sodium butyrate supplementation might prevent the progression of NAFLD to NASH
416	¹¹⁴ . Additionally, treatment with sodium butyrate may improve insulin resistance, se-
417	rum urea concentrations and urinary protein excretion, possibly via improving
418	5'-adenosine monophosphate-activated protein kinase phosphorylation, increasing

GLP-1 secretion and/or promoting colonic mucin and tight junction proteins in a ne phrectomy-CKD model ¹¹⁵.

421

Disrupted intestinal barrier integrity is another mechanism potentially implicated in
the gut-liver-kidney axis, which may cause the release of endotoxins and bacterial
DNA into the circulation, thereby causing low-grade chronic inflammation. The progression of CKD and NAFLD may, in turn, contribute to further disrupting epithelial
tight junctions and affecting intestinal barrier function ^{96,116,117}.

427

The imbalance of diet and nutrition (e.g. high fructose intake and vitamin-D deficien-428 cy or insufficiency) may also contribute to the development of NAFLD and CKD. A 429 high fructose intake increases hepatic de novo lipogenesis and uric acid production. In 430 turn, uric acid further increases endogenous fructose production via stimulating aldose 431 reductase in the polyol pathway ¹¹⁸. One study suggested that hyperuricemia may be a 432 risk factor for NAFLD, particularly in men, via inducing the suppression of silent in-433 formation regulator-1 (SIRT1) signaling ¹¹⁹. SIRT1 is a NAD(+)-dependent deacety-434 lase and responds to oxidative stress and inflammation by inducing p53 mediated 435 apoptosis, participating in the nuclear factor kappa-B (NF- κ B) mediated inflammatory 436 responses, forkhead box class O 3a (FOXO3a)-mediated autophagy and oxidative 437 stress ^{120,121}. Meanwhile, SIRT1 activation may be beneficial for obesity and NAFLD 438 through inhibiting hepatic *de novo* lipogenesis, increasing fatty acid β -oxidation, as 439 well as reducing hepatic oxidative stress and improving hepatic glucose metabolism 440

^{122,123} . SIRT1 is abundantly expressed in mouse kidneys and may exert a protective
effect on the development of renal injury in these animals through the protection of
podocyte function and reduction of renal medullary cell damage following oxidative
stress ^{124,125} . There was also a strong inverse association between SIRT1 expression,
serum uric acid levels and liver pathology in humans ¹¹⁹ . Observational studies also
showed an association between higher serum uric acid levels and various
CKD-related outcomes (e.g. lower eGFR and abnormal albuminuria) ¹²⁶⁻¹²⁹ .
Metabolic dysfunction
The metabolic dysfunction in the MAFLD definition includes a cluster of metabolic
risk factors such as abdominal overweight or obesity, hypertension, insulin resistance,
prediabetes/diabetes, atherogenic dyslipidemia and low-grade inflammation (as re-
flected by increased plasma C-reactive protein levels) ¹⁸ . These metabolic risk factors
have individually been associated with an increased risk of both NAFLD and CKD
¹³⁰⁻¹³² . Using the NHANES-III database, the investigators reported that subjects with
metabolic syndrome had a ~2.5-fold increased risk of CKD compared with those
without metabolic syndrome ¹³³ .
Obesity also plays an important role in the development and progression of NAFLD
and CKD. Ectopic lipid deposition triggers oxidative stress by two main intracellular
transcription factor signaling pathways, i.e., the nuclear factor- κB (NF- κB) pathway
and the c-Jun-amino-terminal kinase (JNK) pathway ¹³⁴ . It is known that perivascular

463	fat may contribute to the impairment of endothelium-dependent vasodilatation, which
464	is involved in CKD pathogenesis. Furthermore, a study of 146 individuals showed
465	that increased renal sinus fat had an adverse effect on urinary albumin excretion and
466	kidney function ¹³⁵ ¹³⁶ . Additionally, adipose tissue is an endocrine organ that secretes
467	several adipokines (for example, leptin and adiponectin), which may regulate food in-
468	take, insulin sensitivity, low-grade chronic inflammation and even activate the ren-
469	in-angiotensin system, thereby affecting the development of MAFLD and CKD 137 .
470	
471	Obesity, T2DM and MAFLD can promote systemic and hepatic insulin resistance and,
472	in turn, insulin resistance can lead to hepatic macrophage activation, hepatic fat ac-
473	cumulation and impaired glucose metabolism ¹³⁸ . This may further aggravate renal
474	hemodynamics, leading to renal disease progression via activation of the sympathetic
475	nervous system, sodium retention, and down-regulation of natriuretic peptide
476	system ¹³⁹ .
477	
478	As discussed above, CKD represents the final result of interactions of multiple factors,
479	many of which have a close association with the metabolic dysfunction (for example,
480	abdominal obesity, T2DM, insulin resistance, dyslipidaemia, hypertension, intestinal
481	dysbiosis, high fructose intake and vitamin-D deficiency, etc). Since the MAFLD
482	definition specifically includes individuals who have any metabolic dysfunction
483	(which is not applicable to all subjects with NAFLD), it is reasonable to assume that
484	metabolic dysfunction may be an important factor mediating the link between

485 MAFLD and CKD.

486

487	It is also worth noting that MAFLD can coexist with other chronic liver diseases (e.g.
488	viral hepatitis), but a definition of NAFLD precludes the co-existence of other liver
489	diseases. An observational study found that MAFLD patients with co-existing viral
490	hepatitis had higher risk of cardiovascular disease, compared to their counterparts
491	without viral infection ¹⁴⁰ . Infections with hepatitis B virus (HBV) or hepatitis C virus
492	(HCV) can both induce HBV-related or HCV-related glomerulonephritis, which usu-
493	ally manifests clinically with varying levels of proteinuria and microscopic hematuria
494	¹⁴¹ . These results suggest that HBV and HCV might also be directly involved in the
495	pathogenic processes linking MAFLD and CKD, but further studies are needed.
496	
497	Pharmacologic agents for CKD and NAFLD

Pharmacotherapy (e.g., lipid-lowering, blood pressure-controlling, glucose-lowering 498 and weight loss) has become a major focus for management of NAFLD and CKD ¹⁴². 499 Based on the aforementioned links between these two conditions, the development of 500 common drugs for NAFLD (or MAFLD) and CKD has become an important research 501 area. A number of pharmacological treatments have the potential to benefit both CKD 502 and NAFLD. In Table 2, we summarize the results of completed and ongoing trials, 503 testing drugs that are relevant to the treatment of both NAFLD/NASH and CKD. In 504 Supplementary Table 2, we have also listed other promising drugs and therapeutic 505 targets for NAFLD/NASH and CKD that are in preclinical or early development for 506

507	NASH or CKD. However, to date, there are no definitive curative common treatments
508	for both MAFLD (or NAFLD) and CKD. Drugs targeting environmental risk factors
509	for MAFLD (or NAFLD) and CKD demonstrate the concept of "food as medicine"
510	and of a "healthy diet". The most important treatment of environmental risk factors is
511	to change eating habits, which is extremely hard to maintain. Drugs targeting redox
512	regulation, inflammation and fibrosis but of unproven efficacy to date. Drugs target-
513	ing metabolic risk factors are considered to be the most promising to date. As dis-
514	cussed below, although the currently published controlled trials involved individuals
515	with NAFLD (or NASH) and not MAFLD, it is plausible that drugs targeting meta-
516	bolic risk factors may be even more effective in people with MAFLD.

518 Targeting of metabolic risk factors

Drugs targeting metabolic risk factors exert their actions mainly on regulation of lipid 519 and glucose metabolism. Peroxisome proliferator-activated receptors (PPARs), as the 520 key nuclear receptors involved in lipid and glucose metabolism, have three main iso-521 types: PPAR- α , PPAR- γ and PPAR- δ^{143} . Glucagon-like peptide 1 receptor agonists 522 (GLP-1RAs) and sodium-glucose cotransporter-2 (SGLT2) inhibitors are two newer 523 classes of glucose-lowering agents. GLP-1 as a gut-derived incretin hormone induces 524 beta-cell insulin secretion and reduces glucagon secretion ¹⁴⁴ Thus, GLP-1RAs have 525 been developed for the treatment of type 2 diabetes through increasing insulin and 526 decreasing glucagon levels. SGLT2 inhibitors (e.g. empagliflozin, dapagliflozin and 527 canagliflozin) improve plasma glucose levels by preventing glucose reabsorption in 528

529	the proximal renal tubule ¹⁴⁵ . We have listed the principal clinical trials that directly
530	target CKD and NAFLD (or NASH) in Table 2. However, many clinical trials target-
531	ing metabolic dysfunction (e.g. in those T2DM) were not designed to study CKD or
532	fatty liver disease. Semaglutide is an approved GLP-1RA for the treatment of type 2
533	diabetes. In the SUSTAIN-1 (Efficacy and Safety of Semaglutide Once-weekly Versus
534	Placebo in Drug-naïve Subjects With Type 2 Diabetes, NCT02054897) ¹⁴⁶ and SUS-
535	TAIN-6 (Trial to Evaluate Cardiovascular and Other Long-term Outcomes With
536	Semaglutide in Subjects With Type 2 Diabetes, NCT01720446) ¹⁴⁷ , semaglutide had a
537	similar safety profile and no greater cardiovascular risk profile compared to placebo.
538	The SUSTAIN-1 trial showed that semaglutide was better than placebo in reducing
539	body weight ¹⁴⁶ . The SUSTAIN-6 trial also found that treatment with semaglutide was
540	associated with lower rates of new or worsening nephropathy ¹⁴⁷ . Since obesity and
541	T2DM are established risk factors for fatty liver disease, CKD and cardiovascular
542	events, semaglutide is likely to become a suitable treatment option for both MAFLD
543	and CKD. In the recent trial (Investigation of Efficacy and Safety of Three Dose Lev-
544	els of Subcutaneous Semaglutide Once Daily Versus Placebo in Subjects With
545	Non-alcoholic Steatohepatitis, NCT02970942) ¹⁴⁸ , semaglutide was associated with
546	greater histologic resolution of NASH than placebo, but did not improve liver fibrosis
547	stage. There were no changes of renal function in the PIONEER-5 (Efficacy and
548	Safety of Oral Semaglutide Versus Placebo in Subjects With Type 2 Diabetes and
549	Moderate Renal Impairment, NCT02827708) ¹⁴⁹ , thereby suggesting that semaglutide
550	is safe in CKD. GLP1RAs and SGLT-2 inhibitors may be the most promising drugs

- for treatment of both fatty liver disease and CKD, but well designed trials are needed
 to test the effects of these classes of drugs on both outcomes.
- 553

554 Conclusion

555	Increasing evidence suggests that the newly proposed definition of MAFLD is more
556	closely related to CKD than the NAFLD definition. We strongly believe that a multi-
557	disciplinary and person-centred approach is needed to manage subjects with MAFLD
558	and CKD as most of these individuals have common metabolic comorbidities, such as
559	obesity, hypertension, atherogenic dyslipidemia or T2DM. Therefore, it is clinically
560	important to assess kidney function in people with MAFLD. Lastly, emerging evi-
561	dence suggests that some drug classes targeting metabolic risk factors, such as
562	GLP1RAs and SGLT-2 inhibitors, may benefit both the liver and the kidney in indi-
563	viduals with MAFLD and CKD.
564	Acknowledgements: None.
565	
566	Author contributions: Dan-Qin Sun and Ming-Hua Zheng designed the study.
567	Dan-Qin Sun and Ting-Yao Wang draft the manuscript and prepared the figures.
568	Rui-Fang Wang and Zhi-Yin Bo were responsible for information retrieval. Giovanni
569	Targher and Christopher D Byrne contributed to the writing, critical evaluation and
570	proof reading of the manuscript. All authors contributed to the manuscript for im-

- ⁵⁷¹ portant intellectual content and approved the submission.
- 572

575 Funding Sources

- 576 This work was supported by grants from the National Natural Science Foundation of
- 577 China (82070588, 82000690), High Level Creative Talents from Department of Pub-
- ⁵⁷⁸ lic Health in Zhejiang Province, Project of New Century 551 Talent Nurturing in
- ⁵⁷⁹ Wenzhou and Project of Science and Technology Development Fund in Wuxi
- 580 (N20202001). Dan-Qin Sun is supported in part by grants from Youth Research Pro-
- ject Fund from Wuxi Municipal Health Commission (Q201932), Top-notch Talents
- from Young and Middle-Age Health Care in Wuxi (BJ2020026). GT is supported in
- part by grants from the University School of Medicine of Verona, Verona, Italy. CDB
- is supported in part by the Southampton NIHR Biomedical Research Centre
- 585 (IS-BRC-20004), UK.

586 References

- Chalasani, N. *et al.* The diagnosis and management of non-alcoholic fatty liver disease:
 practice Guideline by the American Association for the Study of Liver Diseases, American
 College of Gastroenterology, and the American Gastroenterological Association.
 Hepatology (Baltimore, Md.) 55, 2005-2023, doi:10.1002/hep.25762 (2012).
- EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic
 fatty liver disease. *Diabetologia* 59, 1121-1140, doi:10.1007/s00125-016-3902-y (2016).
- ⁵⁹³ 3 Bellentani, S. The epidemiology of non-alcoholic fatty liver disease. *Liver international* :
- 594 official journal of the International Association for the Study of the Liver **37 Suppl 1**, 595 81-84, doi:10.1111/liv.13299 (2017).
- Sarin, S. K. *et al.* Liver diseases in the Asia-Pacific region: a Lancet Gastroenterology & Hepatology Commission. *The lancet. Gastroenterology & hepatology* 5, 167-228, doi:10.1016/s2468-1253(19)30342-5 (2020).
- 599 5 WHO. Global Health Estimates 2015: deaths by cause, age, sex, by country and by 600 region, 2000–2015. (2016).
- 6016Musso, G. *et al.* Emerging Liver-Kidney Interactions in Nonalcoholic Fatty Liver Disease.602Trends in molecular medicine **21**, 645-662, doi:10.1016/j.molmed.2015.08.005 (2015).

603	7	Targher, G. & Byrne, C. D. Non-alcoholic fatty liver disease: an emerging driving force in
604		chronic kidney disease. <i>Nature reviews. Nephrology</i> 13 , 297-310,
605		doi:10.1038/nrneph.2017.16 (2017).
606	8	Targher, G., Chonchol, M. B. & Byrne, C. D. CKD and nonalcoholic fatty liver disease.
607		American journal of kidney diseases : the official journal of the National Kidney
608		<i>Foundation</i> 64 , 638-652, doi:10.1053/j.ajkd.2014.05.019 (2014).
609	9	Musso, G. et al. Association of non-alcoholic fatty liver disease with chronic kidney
610		disease: a systematic review and meta-analysis. <i>PLoS medicine</i> 11 , e1001680,
611		doi:10.1371/journal.pmed.1001680 (2014).
612	10	Sun, D. Q. et al. Higher liver stiffness scores are associated with early kidney dysfunction
613		in patients with histologically proven non-cirrhotic NAFLD. Diabetes Metab 46, 288-295,
614		doi:10.1016/j.diabet.2019.11.003 (2020).
615	11	Park, H., Dawwas, G. K., Liu, X. & Nguyen, M. H. Nonalcoholic fatty liver disease increases
616		risk of incident advanced chronic kidney disease: a propensity-matched cohort study. J
617		Intern Med 286 , 711-722, doi:10.1111/joim.12964 (2019).
618	12	Musso, G., Tabibian, J. H. & Charlton, M. Chronic kidney disease (CKD) and NAFLD: time
619		for awareness and screening. <i>Journal of hepatology</i> 62 , 983-984,
620		doi:10.1016/j.jhep.2014.11.044 (2015).
621	13	Mantovani, A. et al. Nonalcoholic fatty liver disease increases risk of incident chronic
622		kidney disease: A systematic review and meta-analysis. Metabolism: clinical and
623		<i>experimental</i> 79 , 64-76, doi:10.1016/j.metabol.2017.11.003 (2018).
624	14	Mantovani, A. et al. Non-alcoholic fatty liver disease and risk of incident chronic kidney
625		disease: an updated meta-analysis. <i>Gut</i> , doi:10.1136/gutjnl-2020-323082 (2020).
626	15	Wijarnpreecha, K. et al. Nonalcoholic fatty liver disease and albuminuria: a systematic
627		review and meta-analysis. <i>European journal of gastroenterology & hepatology</i> 30 ,
628		986-994, doi:10.1097/meg.000000000001169 (2018).
629	16	Paik, J. et al. Chronic kidney disease is independently associated with increased mortality
630		in patients with nonalcoholic fatty liver disease. Liver international : official journal of the
631		International Association for the Study of the Liver 39 , 342-352, doi:10.1111/liv.13992
632		(2019).
633	17	Yilmaz, Y. et al. Microalbuminuria in nondiabetic patients with nonalcoholic fatty liver
634		disease: association with liver fibrosis. Metabolism: clinical and experimental 59,
635		1327-1330, doi:10.1016/j.metabol.2009.12.012 (2010).
636	18	Eslam, M. et al. A new definition for metabolic dysfunction-associated fatty liver disease:
637		An international expert consensus statement. <i>Journal of hepatology</i> 73 , 202-209,
638		doi:10.1016/j.jhep.2020.03.039 (2020).
639	19	Brunt, E. M. et al. Concurrence of histologic features of steatohepatitis with other forms
640		of chronic liver disease. Modern pathology : an official journal of the United States and
641		<i>Canadian Academy of Pathology, Inc</i> 16 , 49-56,
642		doi:10.1097/01.mp.0000042420.21088.c7 (2003).
643	20	Eslam, M., Sanyal, A. J., George, J. & International Consensus, P. MAFLD: A
644		Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease.
645		Gastroenterology 158, 1999-2014 e1991, doi:10.1053/j.gastro.2019.11.312 (2020).
646	21	Targher, G. Concordance between MAFLD and NAFLD diagnostic criteria in 'real-world'

647		data. Liver international : official journal of the International Association for the Study of
648		<i>the Liver</i> 40 , 2879-2880, doi:10.1111/liv.14623 (2020).
649	22	Sun, D. Q. et al. MAFLD and risk of CKD. Metabolism: clinical and experimental 115,
650		154433, doi:10.1016/j.metabol.2020.154433 (2021).
651	23	Ludwig, J., Viggiano, T. R., McGill, D. B. & Oh, B. J. Nonalcoholic steatohepatitis: Mayo
652		Clinic experiences with a hitherto unnamed disease. Mayo Clinic proceedings 55,
653		434-438 (1980).
654	24	Schaffner, F. & Thaler, H. Nonalcoholic fatty liver disease. <i>Progress in liver diseases</i> 8,
655		283-298 (1986).
656	25	Sanyal, A. J. AGA technical review on nonalcoholic fatty liver disease. <i>Gastroenterology</i>
657		123 , 1705-1725, doi:10.1053/gast.2002.36572 (2002).
658	26	Neuschwander-Tetri, B. A. & Caldwell, S. H. Nonalcoholic steatohepatitis: summary of an
659		AASLD Single Topic Conference. Hepatology (Baltimore, Md.) 37, 1202-1219,
660		doi:10.1053/jhep.2003.50193 (2003).
661	27	Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease:
662		Practice guidance from the American Association for the Study of Liver Diseases.
663		<i>Hepatology (Baltimore, Md.)</i> 67, 328-357, doi:10.1002/hep.29367 (2018).
664	28	Zelman, S. The liver in obesity. A.M.A. archives of internal medicine 90, 141-156,
665		doi:10.1001/archinte.1952.00240080007002 (1952).
666	29	Cortez-Pinto, H., Camilo, M. E., Baptista, A., De Oliveira, A. G. & De Moura, M. C.
667		Non-alcoholic fatty liver: another feature of the metabolic syndrome? Clinical nutrition
668		<i>(Edinburgh, Scotland)</i> 18 , 353-358, doi:10.1016/s0261-5614(99)80015-6 (1999).
669	30	Marceau, P. et al. Liver pathology and the metabolic syndrome X in severe obesity. The
670		Journal of clinical endocrinology and metabolism 84, 1513-1517,
671		doi:10.1210/jcem.84.5.5661 (1999).
672	31	Loria, P., Lonardo, A. & Carulli, N. Should nonalcoholic fatty liver disease be renamed?
673		<i>Digestive diseases (Basel, Switzerland)</i> 23 , 72-82, doi:10.1159/000084728 (2005).
674	32	Brunt, E. M. What's in a NAme? <i>Hepatology (Baltimore, Md.)</i> 50 , 663-667,
675		doi:10.1002/hep.23070 (2009).
676	33	Ratziu, V., Bellentani, S., Cortez-Pinto, H., Day, C. & Marchesini, G. A position statement
677		on NAFLD/NASH based on the EASL 2009 special conference. <i>Journal of hepatology</i> 53,
678		372-384, doi:10.1016/j.jhep.2010.04.008 (2010).
679	34	Balmer, M. L. & Dufour, J. F. [Non-alcoholic steatohepatitis - from NAFLD to MAFLD].
680		Therapeutische Umschau. Revue therapeutique 68, 183-188,
681		doi:10.1024/0040-5930/a000148 (2011).
682	35	Bellentani, S. & Tiribelli, C. Is it time to change NAFLD and NASH nomenclature? The
683		lancet. Gastroenterology & hepatology 2, 547-548, doi:10.1016/s2468-1253(17)30146-2
684		(2017).
685	36	Eslam, M., Sanyal, A. J. & George, J. Toward More Accurate Nomenclature for Fatty Liver
686		Diseases. <i>Gastroenterology</i> 157 , 590-593, doi:10.1053/j.gastro.2019.05.064 (2019).
687	37	Dunn, W., Xu, R. & Schwimmer, J. B. Modest wine drinking and decreased prevalence of
688		suspected nonalcoholic fatty liver disease. <i>Hepatology (Baltimore, Md.)</i> 47, 1947-1954,
689		doi:10.1002/hep.22292 (2008).
690	38	Dunn, W. et al. Modest alcohol consumption is associated with decreased prevalence of

691		steatohepatitis in patients with non-alcoholic fatty liver disease (NAFLD). Journal of
692		<i>hepatology</i> 57 , 384-391, doi:10.1016/j.jhep.2012.03.024 (2012).
693	39	Kwon, H. K., Greenson, J. K. & Conjeevaram, H. S. Effect of lifetime alcohol consumption
694		on the histological severity of non-alcoholic fatty liver disease. Liver international : official
695		journal of the International Association for the Study of the Liver 34 , 129-135,
696		doi:10.1111/liv.12230 (2014).
697	40	Ekstedt, M. et al. Alcohol consumption is associated with progression of hepatic fibrosis
698		in non-alcoholic fatty liver disease. Scandinavian journal of gastroenterology 44,
699		366-374, doi:10.1080/00365520802555991 (2009).
700	41	Ascha, M. S. et al. The incidence and risk factors of hepatocellular carcinoma in patients
701		with nonalcoholic steatohepatitis. <i>Hepatology (Baltimore, Md.)</i> 51 , 1972-1978,
702		doi:10.1002/hep.23527 (2010).
703	42	Arfken, C. L., Arnetz, B. B., Fakhouri, M., Ventimiglia, M. J. & Jamil, H. Alcohol use among
704		Arab Americans: what is the prevalence? Journal of immigrant and minority health 13,
705		713-718, doi:10.1007/s10903-011-9447-8 (2011).
706	43	Fouad, Y. et al. What's in a name? Renaming 'NAFLD' to 'MAFLD'. Liver international :
707		official journal of the International Association for the Study of the Liver 40, 1254-1261,
708		doi:10.1111/liv.14478 (2020).
709	44	Sun, W. et al. Comparison of FIB-4 index, NAFLD fibrosis score and BARD score for
710		prediction of advanced fibrosis in adult patients with non-alcoholic fatty liver disease: A
711		meta-analysis study. Hepatology research : the official journal of the Japan Society of
712		<i>Hepatology</i> 46 , 862-870, doi:10.1111/hepr.12647 (2016).
713	45	Tokuhara, D., Cho, Y. & Shintaku, H. Transient Elastography-Based Liver Stiffness
714		Age-Dependently Increases in Children. <i>PloS one</i> 11 , e0166683,
715		doi:10.1371/journal.pone.0166683 (2016).
716	46	McPherson, S. et al. Age as a Confounding Factor for the Accurate Non-Invasive
717		Diagnosis of Advanced NAFLD Fibrosis. The American journal of gastroenterology 112 ,
718		740-751, doi:10.1038/ajg.2016.453 (2017).
719	47	Dufour, J. F. Time to Abandon NASH? <i>Hepatology (Baltimore, Md.)</i> 63, 9-10,
720		doi:10.1002/hep.28276 (2016).
721	48	Zheng, K. I., Sun, D. Q., Jin, Y., Zhu, P. W. & Zheng, M. H. Clinical utility of the MAFLD
722		definition. <i>Journal of hepatology</i> 74 , 989-991, doi:10.1016/j.jhep.2020.12.016 (2021).
723	49	Zheng, K. I. et al. From NAFLD to MAFLD: a "redefining" moment for fatty liver disease.
724		<i>Chinese medical journal</i> 133 , 2271-2273, doi:10.1097/cm9.0000000000000981 (2020).
725	50	Younossi, Z. M. et al. From NAFLD to MAFLD: Implications of a premature change in
726		terminology. Hepatology (Baltimore, Md.), doi:10.1002/hep.31420 (2020).
727	51	Younes, R. & Bugianesi, E. NASH in Lean Individuals. Seminars in liver disease 39, 86-95,
728		doi:10.1055/s-0038-1677517 (2019).
729	52	Chen, F. et al. Lean NAFLD: A Distinct Entity Shaped by Differential Metabolic Adaptation.
730		<i>Hepatology (Baltimore, Md.)</i> 71 , 1213-1227, doi:10.1002/hep.30908 (2020).
731	53	Frey, S. et al. Prevalence of NASH/NAFLD in people with obesity who are currently
732		classified as metabolically healthy. Surgery for obesity and related diseases : official
733		journal of the American Society for Bariatric Surgery 16, 2050-2057,
734		doi:10.1016/j.soard.2020.07.009 (2020).

735	54	Kuchay, M. S. & Misra, A. From non-alcoholic fatty liver disease (NAFLD) to
736		metabolic-associated fatty liver disease (MAFLD): A journey over 40 years. Diabetes &
737		<i>metabolic syndrome</i> 14 , 695-696, doi:10.1016/j.dsx.2020.05.019 (2020).
738	55	Yamamura, S. et al. MAFLD identifies patients with significant hepatic fibrosis better than
739		NAFLD. Liver international : official journal of the International Association for the Study
740		<i>of the Liver</i> , doi:10.1111/liv.14675 (2020).
741	56	Wai-Sun Wong, V. et al. Impact of the new definition of metabolic associated fatty liver
742		disease on the epidemiology of the disease. <i>Clinical gastroenterology and hepatology :</i>
743		the official clinical practice journal of the American Gastroenterological Association,
744		doi:10.1016/j.cgh.2020.10.046 (2020).
745	57	Yilmaz, Y., Byrne, C. D. & Musso, G. A single-letter change in an acronym: signals,
746		reasons, promises, challenges, and steps ahead for moving from NAFLD to MAFLD.
747		Expert review of gastroenterology & hepatology 15, 345-352,
748		doi:10.1080/17474124.2021.1860019 (2021).
749	58	Angulo, P. et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With
750		Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease.
751		Gastroenterology 149, 389-397.e310, doi:10.1053/j.gastro.2015.04.043 (2015).
752	59	Hagström, H. et al. Fibrosis stage but not NASH predicts mortality and time to
753		development of severe liver disease in biopsy-proven NAFLD. Journal of hepatology 67,
754		1265-1273, doi:10.1016/j.jhep.2017.07.027 (2017).
755	60	Yeung, M. W. et al. Advanced liver fibrosis but not steatosis is independently associated
756		with albuminuria in Chinese patients with type 2 diabetes. Journal of hepatology 68,
757		147-156, doi:10.1016/j.jhep.2017.09.020 (2017).
758	61	Zhang, H. J., Wang, Y. Y., Chen, C., Lu, Y. L. & Wang, N. J. Cardiovascular and renal
759		burdens of metabolic associated fatty liver disease from serial US national surveys,
760		1999-2016. <i>Chinese medical journal</i> , doi:10.1097/cm9.000000000001513 (2021).
761	62	Deng, Y., Zhao, Q. & Gong, R. Association Between Metabolic Associated Fatty Liver
762		Disease and Chronic Kidney Disease: A Cross-Sectional Study from NHANES 2017-2018.
763		Diabetes, metabolic syndrome and obesity : targets and therapy 14, 1751-1761,
764		doi:10.2147/dmso.s292926 (2021).
765	63	Eslam, M., Valenti, L. & Romeo, S. Genetics and epigenetics of NAFLD and NASH: Clinical
766		impact. <i>Journal of hepatology</i> 68 , 268-279, doi:10.1016/j.jhep.2017.09.003 (2018).
767	64	Lonardo, A., Leoni, S., Alswat, K. A. & Fouad, Y. History of Nonalcoholic Fatty Liver
768		Disease. International journal of molecular sciences 21 , doi:10.3390/ijms21165888
769		(2020).
770	65	Morgado-Pascual, J. L. et al. Epigenetic Modification Mechanisms Involved in
771		Inflammation and Fibrosis in Renal Pathology. <i>Mediators of inflammation</i> 2018 , 2931049,
772		doi:10.1155/2018/2931049 (2018).
773	66	Byrne, C. D. & Targher, G. NAFLD as a driver of chronic kidney disease. Journal of
774		<i>hepatology</i> 72 , 785-801, doi:10.1016/j.jhep.2020.01.013 (2020).
775	67	Sun, D. Q. et al. PNPLA3 rs738409 is associated with renal glomerular and tubular injury
776		in NAFLD patients with persistently normal ALT levels. Liver international : official journal
777		of the International Association for the Study of the Liver 40 , 107-119,
778		doi:10.1111/liv.14251 (2020).

779	68	Targher, G. et al. Relationship Between PNPLA3 rs738409 Polymorphism and Decreased
780		Kidney Function in Children With NAFLD. <i>Hepatology (Baltimore, Md.)</i> 70, 142-153,
781		doi:10.1002/hep.30625 (2019).
782	69	Xu, R., Tao, A., Zhang, S., Deng, Y. & Chen, G. Association between patatin-like
783		phospholipase domain containing 3 gene (PNPLA3) polymorphisms and nonalcoholic
784		fatty liver disease: a HuGE review and meta-analysis. <i>Scientific reports</i> 5 , 9284,
785		doi:10.1038/srep09284 (2015).
786	70	Oniki, K. et al. Influence of the PNPLA3 rs738409 Polymorphism on Non-Alcoholic Fatty
787		Liver Disease and Renal Function among Normal Weight Subjects. <i>PloS one</i> 10 ,
788		e0132640, doi:10.1371/journal.pone.0132640 (2015).
789	71	Mantovani, A. et al. Association between PNPLA3rs738409 polymorphism decreased
790		kidney function in postmenopausal type 2 diabetic women with or without non-alcoholic
791		fatty liver disease. <i>Diabetes & metabolism</i> 45 , 480-487, doi:10.1016/j.diabet.2019.01.011
792		(2019).
793	72	Marzuillo, P. et al. Nonalcoholic fatty liver disease and eGFR levels could be linked by the
794		PNPLA3 I148M polymorphism in children with obesity. <i>Pediatric obesity</i> 14, e12539,
795		doi:10.1111/ijpo.12539 (2019).
796	73	Pirazzi, C. et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate
797		cells. <i>Human molecular genetics</i> 23 , 4077-4085, doi:10.1093/hmg/ddu121 (2014).
798	74	Bruschi, F. V. et al. The PNPLA3 I148M variant modulates the fibrogenic phenotype of
799		human hepatic stellate cells. <i>Hepatology (Baltimore, Md.)</i> 65, 1875-1890,
800		doi:10.1002/hep.29041 (2017).
801	75	Mitsche, M. A., Hobbs, H. H. & Cohen, J. C. Patatin-like phospholipase domain–
802		containing protein 3 promotes transfer of essential fatty acids from triglycerides to
803		phospholipids in hepatic lipid droplets. The Journal of biological chemistry 293,
804		6958-6968, doi:10.1074/jbc.RA118.002333 (2018).
805	76	Mantovani, A. et al. PNPLA3 I148M gene variant and chronic kidney disease in type 2
806		diabetic patients with NAFLD: Clinical and experimental findings. Liver international :
807		official journal of the International Association for the Study of the Liver 40, 1130-1141,
808		doi:10.1111/liv.14419 (2020).
809	77	Kramann, R. & Humphreys, B. D. Kidney pericytes: roles in regeneration and fibrosis.
810		<i>Seminars in nephrology</i> 34 , 374-383, doi:10.1016/j.semnephrol.2014.06.004 (2014).
811	78	Shaw, I., Rider, S., Mullins, J., Hughes, J. & Péault, B. Pericytes in the renal vasculature:
812		roles in health and disease. <i>Nature reviews. Nephrology</i> 14 , 521-534,
813		doi:10.1038/s41581-018-0032-4 (2018).
814	79	Gellert-Kristensen, H., Nordestgaard, B. G., Tybjaerg-Hansen, A. & Stender, S. High Risk
815		of Fatty Liver Disease Amplifies the Alanine Transaminase-Lowering Effect of a
816		HSD17B13 Variant. <i>Hepatology (Baltimore, Md.)</i> 71 , 56-66, doi:10.1002/hep.30799
817		(2020).
818	80	Luukkonen, P. K. <i>et al.</i> Hydroxysteroid 17- β dehydrogenase 13 variant increases
819		phospholipids and protects against fibrosis in nonalcoholic fatty liver disease. JCl insight
820		5 , doi:10.1172/jci.insight.132158 (2020).
821	81	Di Sessa, A. et al. Pediatric non-alcoholic fatty liver disease and kidney function: Effect of
822		HSD17B13 variant. <i>World journal of gastroenterology</i> 26 , 5474-5483,

823		doi:10.3748/wjg.v26.i36.5474 (2020).
824	82	Sun, D. Q. et al. The HSD17B13 rs72613567 variant is associated with lower levels of
825		albuminuria in patients with biopsy-proven nonalcoholic fatty liver disease. Nutr Metab
826		<i>Cardiovasc Dis</i> , doi:10.1016/j.numecd.2021.02.018 (2021).
827	83	Luukkonen, P. K. et al. Impaired hepatic lipid synthesis from polyunsaturated fatty acids
828		in TM6SF2 E167K variant carriers with NAFLD. <i>Journal of hepatology</i> 67 , 128-136,
829		doi:10.1016/j.jhep.2017.02.014 (2017).
830	84	Musso, G., Cassader, M., Paschetta, E. & Gambino, R. TM6SF2 may drive postprandial
831		lipoprotein cholesterol toxicity away from the vessel walls to the liver in NAFLD. Journal
832		<i>of hepatology</i> 64 , 979-981, doi:10.1016/j.jhep.2015.11.036 (2016).
833	85	Musso, G., Cassader, M. & Gambino, R. PNPLA3 rs738409 and TM6SF2 rs58542926 gene
834		variants affect renal disease and function in nonalcoholic fatty liver disease. <i>Hepatology</i>
835		<i>(Baltimore, Md.)</i> 62 , 658-659, doi:10.1002/hep.27643 (2015).
836	86	Marzuillo, P. et al. Transmembrane 6 superfamily member 2 167K allele improves renal
837		function in children with obesity. <i>Pediatric research</i> 88, 300-304,
838		doi:10.1038/s41390-020-0753-5 (2020).
839	87	Mancina, R. M. et al. The MBOAT7-TMC4 Variant rs641738 Increases Risk of
840		Nonalcoholic Fatty Liver Disease in Individuals of European Descent. Gastroenterology
841		150, 1219-1230.e1216, doi:10.1053/j.gastro.2016.01.032 (2016).
842	88	Thabet, K. et al. The membrane-bound O-acyltransferase domain-containing 7 variant
843		rs641738 increases inflammation and fibrosis in chronic hepatitis B. Hepatology
844		<i>(Baltimore, Md.)</i> 65 , 1840-1850, doi:10.1002/hep.29064 (2017).
845	89	Koo, B. K. et al. Association Between a Polymorphism in MBOAT7 and Chronic Kidney
846		Disease in Patients With Biopsy-Confirmed Nonalcoholic Fatty Liver Disease. Clinical
847		gastroenterology and hepatology : the official clinical practice journal of the American
848		Gastroenterological Association 18, 2837-2839.e2832, doi:10.1016/j.cgh.2019.09.017
849		(2020).
850	90	Sliz, E. et al. NAFLD risk alleles in PNPLA3, TM6SF2, GCKR and LYPLAL1 show divergent
851		metabolic effects. <i>Human molecular genetics</i> 27 , 2214-2223, doi:10.1093/hmg/ddy124
852		(2018).
853	91	Böger, C. A. et al. Association of eGFR-Related Loci Identified by GWAS with Incident
854		CKD and ESRD. <i>PLoS genetics</i> 7, e1002292, doi:10.1371/journal.pgen.1002292 (2011).
855	92	Hishida, A. et al. GCK, GCKR polymorphisms and risk of chronic kidney disease in
856		Japanese individuals: data from the J-MICC Study. <i>Journal of nephrology</i> 27 , 143-149,
857		doi:10.1007/s40620-013-0025-0 (2014).
858	93	Simons, P. et al. Association of common gene variants in glucokinase regulatory protein
859		with cardiorenal disease: A systematic review and meta-analysis. PloS one 13, e0206174,
860		doi:10.1371/journal.pone.0206174 (2018).
861	94	Di Costanzo, A. et al. Nonalcoholic Fatty Liver Disease (NAFLD), But not Its Susceptibility
862		Gene Variants, Influences the Decrease of Kidney Function in Overweight/Obese
863		Children. International journal of molecular sciences 20, doi:10.3390/ijms20184444
864		(2019).
865	95	Xia, M., Zeng, H., Wang, S., Tang, H. & Gao, X. Insights into contribution of genetic
866		variants towards the susceptibility of MAFLD revealed by the NMR-based lipoprotein

867		profiling. <i>Journal of hepatology</i> 74 , 974-977, doi:10.1016/j.jhep.2020.10.019 (2021).
868	96	Raj, D., Tomar, B., Lahiri, A. & Mulay, S. R. The gut-liver-kidney axis: Novel regulator of
869		fatty liver associated chronic kidney disease. <i>Pharmacological research</i> 152 , 104617,
870		doi:10.1016/j.phrs.2019.104617 (2020).
871	97	Meijers, B., Evenepoel, P. & Anders, H. J. Intestinal microbiome and fitness in kidney
872		disease. <i>Nature reviews. Nephrology</i> 15 , 531-545, doi:10.1038/s41581-019-0172-1
873		(2019).
874	98	Mafra, D. <i>et al.</i> Food as medicine: targeting the uraemic phenotype in chronic kidney
875		disease. Nature reviews. Nephrology 17, 153-171, doi:10.1038/s41581-020-00345-8
876		(2021).
877	99	Tan, X. <i>et al.</i> Trimethylamine N-Oxide Aggravates Liver Steatosis through Modulation of
878		Bile Acid Metabolism and Inhibition of Farnesoid X Receptor Signaling in Nonalcoholic
879		Fatty Liver Disease. <i>Molecular nutrition & food research</i> 63 , e1900257,
880		doi:10.1002/mnfr.201900257 (2019).
881	100	Ravid, J. D., Kamel, M. H. & Chitalia, V. C. Uraemic solutes as therapeutic targets in
882		CKD-associated cardiovascular disease. <i>Nature reviews. Nephrology</i> ,
883		doi:10.1038/s41581-021-00408-4 (2021).
884	101	Tang, W. H. <i>et al.</i> Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway
885		contributes to both development of renal insufficiency and mortality risk in chronic
886		kidney disease. Circulation research 116, 448-455, doi:10.1161/circresaha.116.305360
887		(2015).
888	102	Herman-Edelstein, M., Weinstein, T. & Levi, M. Bile acid receptors and the kidney.
889		Current opinion in nephrology and hypertension 27, 56-62,
890		doi:10.1097/mnh.0000000000000374 (2018).
891	103	Wang, X. X. et al. A dual agonist of farnesoid X receptor (FXR) and the G protein-coupled
892		receptor TGR5, INT-767, reverses age-related kidney disease in mice. The Journal of
893		<i>biological chemistry</i> 292 , 12018-12024, doi:10.1074/jbc.C117.794982 (2017).
894	104	Jiao, N. et al. Suppressed hepatic bile acid signalling despite elevated production of
895		primary and secondary bile acids in NAFLD. <i>Gut</i> 67 , 1881-1891,
896		doi:10.1136/gutjnl-2017-314307 (2018).
897	105	Lu, Y. et al. Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by
898		Regulating G Protein-coupled Receptors and Gut Microbiota. Scientific reports 6, 37589,
899		doi:10.1038/srep37589 (2016).
900	106	Pluznick, J. L. Microbial Short-Chain Fatty Acids and Blood Pressure Regulation. Current
901		<i>hypertension reports</i> 19 , 25, doi:10.1007/s11906-017-0722-5 (2017).
902	107	Tanaka, M. & Itoh, H. Hypertension as a Metabolic Disorder and the Novel Role of the
903		Gut. Current hypertension reports 21, 63, doi:10.1007/s11906-019-0964-5 (2019).
904	108	Vinolo, M. A., Rodrigues, H. G., Nachbar, R. T. & Curi, R. Regulation of inflammation by
905		short chain fatty acids. <i>Nutrients</i> 3 , 858-876, doi:10.3390/nu3100858 (2011).
906	109	Chu, H., Duan, Y., Yang, L. & Schnabl, B. Small metabolites, possible big changes: a
907		microbiota-centered view of non-alcoholic fatty liver disease. Gut 68, 359-370,
908		doi:10.1136/gutjnl-2018-316307 (2019).
909	110	Felizardo, R. J. F., Watanabe, I. K. M., Dardi, P., Rossoni, L. V. & Câmara, N. O. S. The
910		interplay among gut microbiota, hypertension and kidney diseases: The role of

911		short-chain fatty acids. Pharmacological research 141, 366-377,
912		doi:10.1016/j.phrs.2019.01.019 (2019).
913	111	Miura, K. et al. Relation of vegetable, fruit, and meat intake to 7-year blood pressure
914		change in middle-aged men: the Chicago Western Electric Study. American journal of
915		<i>epidemiology</i> 159 , 572-580, doi:10.1093/aje/kwh085 (2004).
916	112	Natarajan, N. et al. Microbial short chain fatty acid metabolites lower blood pressure via
917		endothelial G protein-coupled receptor 41. <i>Physiological genomics</i> 48 , 826-834,
918		doi:10.1152/physiolgenomics.00089.2016 (2016).
919	113	Rau, M. et al. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human
920		NAFLD as a putative link to systemic T-cell activation and advanced disease. United
921		<i>European gastroenterology journal</i> 6 , 1496-1507, doi:10.1177/2050640618804444
922		(2018).
923	114	Zhou, D. <i>et al.</i> Sodium butyrate reduces high-fat diet-induced non-alcoholic
924		steatohepatitis through upregulation of hepatic GLP-1R expression. <i>Experimental &</i>
925		<i>molecular medicine</i> 50 , 1-12, doi:10.1038/s12276-018-0183-1 (2018).
926	115	Gonzalez, A. et al. Sodium butyrate ameliorates insulin resistance and renal failure in CKD
927		rats by modulating intestinal permeability and mucin expression. <i>Nephrology, dialysis,</i>
928		transplantation : official publication of the European Dialysis and Transplant Association
929		- European Renal Association 34, 783-794, doi:10.1093/ndt/gfy238 (2019).
930	116	Giorgio, V. <i>et al.</i> Intestinal permeability is increased in children with non-alcoholic fatty
931		liver disease, and correlates with liver disease severity. <i>Digestive and liver disease : official</i>
932		journal of the Italian Society of Gastroenterology and the Italian Association for the Study
933		<i>of the Liver</i> 46 , 556-560, doi:10.1016/j.dld.2014.02.010 (2014).
934	117	Shi, K. <i>et al.</i> Gut bacterial translocation may aggravate microinflammation in
935		hemodialysis patients. <i>Digestive diseases and sciences</i> 59, 2109-2117,
936		doi:10.1007/s10620-014-3202-7 (2014).
937	118	Sanchez-Lozada, L. G. <i>et al.</i> Uric acid activates aldose reductase and the polyol pathway
938		for endogenous fructose and fat production causing development of fatty liver in rats.
939		The Journal of biological chemistry 294 , 4272-4281, doi:10.1074/jbc.RA118.006158
940		(2019).
941	119	Xu, K. et al. Gender effect of hyperuricemia on the development of nonalcoholic fatty
942		liver disease (NAFLD): A clinical analysis and mechanistic study. <i>Biomedicine &</i>
943		<i>pharmacotherapy = Biomedecine & pharmacotherapie</i> 117 , 109158,
944		doi:10.1016/j.biopha.2019.109158 (2019).
945	120	Castro, R. E. <i>et al.</i> miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat
946		liver and activated by disease severity in human non-alcoholic fatty liver disease. Journal
947		<i>of hepatology</i> 58 , 119-125, doi:10.1016/j.jhep.2012.08.008 (2013).
948	121	Tian, Y. <i>et al.</i> Resveratrol supplement inhibited the NF-κB inflammation pathway through
949		activating AMPK α -SIRT1 pathway in mice with fatty liver. <i>Molecular and cellular</i>
950		<i>biochemistry</i> 422 , 75-84, doi:10.1007/s11010-016-2807-x (2016).
951	122	Ding, R. B., Bao, J. & Deng, C. X. Emerging roles of SIRT1 in fatty liver diseases.
952		International journal of biological sciences 13, 852-867, doi:10.7150/ijbs.19370 (2017).
953	123	Erion, D. M. et al. SirT1 knockdown in liver decreases basal hepatic glucose production
954		and increases hepatic insulin responsiveness in diabetic rats. Proceedings of the National

955		Academy of Sciences of the United States of America 106, 11288-11293,
956		doi:10.1073/pnas.0812931106 (2009).
957	124	He, W. et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. The
958		Journal of clinical investigation 120, 1056-1068, doi:10.1172/jci41563 (2010).
959	125	Nakatani, Y. & Inagi, R. Epigenetic Regulation Through SIRT1 in Podocytes. Current
960		<i>hypertension reviews</i> 12 , 89-94, doi:10.2174/1573402112666160302102515 (2016).
961	126	Jalal, D. I. <i>et al.</i> Serum uric acid levels predict the development of albuminuria over 6
962		years in patients with type 1 diabetes: findings from the Coronary Artery Calcification in
963		Type 1 Diabetes study. Nephrology, dialysis, transplantation : official publication of the
964		European Dialysis and Transplant Association - European Renal Association 25,
965		1865-1869, doi:10.1093/ndt/gfp740 (2010).
966	127	Jing, J. et al. Prevalence and correlates of gout in a large cohort of patients with chronic
967		kidney disease: the German Chronic Kidney Disease (GCKD) study. Nephrology, dialysis,
968		transplantation : official publication of the European Dialysis and Transplant Association
969		- <i>European Renal Association</i> 30 , 613-621, doi:10.1093/ndt/gfu352 (2015).
970	128	Sircar, D. et al. Efficacy of Febuxostat for Slowing the GFR Decline in Patients With CKD
971		and Asymptomatic Hyperuricemia: A 6-Month, Double-Blind, Randomized,
972		Placebo-Controlled Trial. American journal of kidney diseases : the official journal of the
973		National Kidney Foundation 66, 945-950, doi:10.1053/j.ajkd.2015.05.017 (2015).
974	129	Badve, S. V. et al. Effects of Allopurinol on the Progression of Chronic Kidney Disease.
975		The New England journal of medicine 382 , 2504-2513, doi:10.1056/NEJMoa1915833
976		(2020).
977	130	Kurella, M., Lo, J. C. & Chertow, G. M. Metabolic syndrome and the risk for chronic kidney
978		disease among nondiabetic adults. Journal of the American Society of Nephrology : JASN
979		16 , 2134-2140, doi:10.1681/asn.2005010106 (2005).
980	131	Singh, A. K. & Kari, J. A. Metabolic syndrome and chronic kidney disease. <i>Current opinion</i>
981		<i>in nephrology and hypertension</i> 22 , 198-203, doi:10.1097/MNH.0b013e32835dda78
982		(2013).
983	132	Yki-Järvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of
984		metabolic syndrome. <i>The lancet. Diabetes & endocrinology</i> 2 , 901-910,
985		doi:10.1016/s2213-8587(14)70032-4 (2014).
986	133	Chen, J. et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Annals
987		<i>of internal medicine</i> 140 , 167-174, doi:10.7326/0003-4819-140-3-200402030-00007
988		(2004).
989	134	Tsaousidou, E. et al. Distinct Roles for JNK and IKK Activation in Agouti-Related Peptide
990		Neurons in the Development of Obesity and Insulin Resistance. <i>Cell reports</i> 9, 1495-1506,
991		doi:10.1016/j.celrep.2014.10.045 (2014).
992	135	Yudkin, J. S., Eringa, E. & Stehouwer, C. D. "Vasocrine" signalling from perivascular fat: a
993		mechanism linking insulin resistance to vascular disease. <i>Lancet (London, England)</i> 365,
994		1817-1820, doi:10.1016/s0140-6736(05)66585-3 (2005).
995	136	Wagner, R. et al. Exercise-induced albuminuria is associated with perivascular renal sinus
996		fat in individuals at increased risk of type 2 diabetes. <i>Diabetologia</i> 55 , 2054-2058,
997		doi:10.1007/s00125-012-2551-z (2012).
998	137	Stojsavljević, S., Gomerčić Palčić, M., Virović Jukić, L., Smirčić Duvnjak, L. & Duvnjak, M.

999		Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of
1000		nonalcoholic fatty liver disease. <i>World journal of gastroenterology</i> 20 , 18070-18091,
1001		doi:10.3748/wjg.v20.i48.18070 (2014).
1002	138	Mantovani, A. et al. Non-alcoholic fatty liver disease and risk of incident diabetes mellitus:
1003		an updated meta-analysis of 501 022 adult individuals. <i>Gut</i> ,
1004		doi:10.1136/gutjnl-2020-322572 (2020).
1005	139	Spoto, B., Pisano, A. & Zoccali, C. Insulin resistance in chronic kidney disease: a
1006		systematic review. American journal of physiology. Renal physiology 311 , F1087-f1108,
1007		doi:10.1152/ajprenal.00340.2016 (2016).
1008	140	Guerreiro, G. T. S., Longo, L., Fonseca, M. A., de Souza, V. E. G. & Álvares-da-Silva, M. R.
1009		Does the risk of cardiovascular events differ between biopsy-proven NAFLD and MAFLD?
1010		<i>Hepatology international</i> 15 , 380-391, doi:10.1007/s12072-021-10157-y (2021).
1011	141	Gupta, A. & Quigg, R. J. Glomerular Diseases Associated With Hepatitis B and C.
1012		Advances in chronic kidney disease 22, 343-351, doi:10.1053/j.ackd.2015.06.003 (2015).
1013	142	Eslam, M. et al. The Asian Pacific Association for the Study of the Liver clinical practice
1014		guidelines for the diagnosis and management of metabolic associated fatty liver disease.
1015		<i>Hepatology international</i> , doi:10.1007/s12072-020-10094-2 (2020).
1016	143	Berger, J. & Moller, D. E. The mechanisms of action of PPARs. Annual review of medicine
1017		53 , 409-435, doi:10.1146/annurev.med.53.082901.104018 (2002).
1018	144	Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor
1019		agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet (London,
1020		<i>England)</i> 368 , 1696-1705, doi:10.1016/s0140-6736(06)69705-5 (2006).
1021	145	Ferrannini, E. & Solini, A. SGLT2 inhibition in diabetes mellitus: rationale and clinical
1022		prospects. <i>Nature reviews. Endocrinology</i> 8 , 495-502, doi:10.1038/nrendo.2011.243
1023		(2012).
1024	146	Sorli, C. <i>et al.</i> Efficacy and safety of once-weekly semaglutide monotherapy versus
1025		placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised,
1026		placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. <i>The lancet.</i>
1027		<i>Diabetes & endocrinology</i> 5 , 251-260, doi:10.1016/s2213-8587(17)30013-x (2017).
1028	147	Marso, S. P. <i>et al.</i> Semaglutide and Cardiovascular Outcomes in Patients with Type 2
1029		Diabetes. <i>The New England journal of medicine</i> 375 , 1834-1844,
1030		doi:10.1056/NEJMoa1607141 (2016).
1031	148	Newsome, P. N. <i>et al.</i> A Placebo-Controlled Trial of Subcutaneous Semaglutide in
1032		Nonalcoholic Steatohepatitis. <i>The New England journal of medicine</i> 384 , 1113-1124,
1033		doi:10.1056/NEJMoa2028395 (2021).
1034	149	Mosenzon, O. <i>et al.</i> Efficacy and safety of oral semaglutide in patients with type 2
1035		diabetes and moderate renal impairment (PIONEER 5): a placebo-controlled,
1036		randomised, phase 3a trial. <i>The lancet. Diabetes & endocrinology</i> 7 , 515-527,
1037		doi:10.1016/s2213-8587(19)30192-5 (2019).
1038	150	Ikizler, T. A. <i>et al.</i> KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update.
1039	-	American journal of kidney diseases : the official journal of the National Kidney
1040		<i>Foundation</i> 76 , S1-s107, doi:10.1053/i.aikd.2020.05.006 (2020).
1041	151	Zeng, Y. <i>et al.</i> Vitamin D signaling maintains intestinal innate immunity and out
1042		microbiota: potential intervention for metabolic syndrome and NAFLD. American journal

1043		of physiology. Gastrointestinal and liver physiology 318 , G542-g553,
1044		doi:10.1152/ajpgi.00286.2019 (2020).
1045	152	Rossi, M. et al. Synbiotics Easing Renal Failure by Improving Gut Microbiology (SYNERGY):
1046		A Randomized Trial. Clinical journal of the American Society of Nephrology : CJASN 11,
1047		223-231, doi:10.2215/cjn.05240515 (2016).
1048	153	Scorletti, E. et al. Synbiotics Alter Fecal Microbiomes, But Not Liver Fat or Fibrosis, in a
1049		Randomized Trial of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology
1050		158 , 1597-1610.e1597, doi:10.1053/j.gastro.2020.01.031 (2020).
1051	154	Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for
1052		non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised,
1053		placebo-controlled trial. <i>Lancet</i> 385, 956-965, doi:10.1016/s0140-6736(14)61933-4
1054		(2015).
1055	155	Pockros, P. J. et al. CONTROL: A randomized phase 2 study of obeticholic acid and
1056		atorvastatin on lipoproteins in nonalcoholic steatohepatitis patients. Liver international :
1057		official journal of the International Association for the Study of the Liver 39 , 2082-2093,
1058		doi:10.1111/liv.14209 (2019).
1059	156	Younossi, Z. M. et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis:
1060		interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet
1061		<i>(London, England)</i> 394 , 2184-2196, doi:10.1016/s0140-6736(19)33041-7 (2019).
1062	157	Kimura, K. et al. Febuxostat Therapy for Patients With Stage 3 CKD and Asymptomatic
1063		Hyperuricemia: A Randomized Trial. American journal of kidney diseases : the official
1064		<i>journal of the National Kidney Foundation</i> 72 , 798-810, doi:10.1053/j.ajkd.2018.06.028
1065		(2018).
1066	158	Yokote, K. et al. Long-Term Efficacy and Safety of Pemafibrate, a Novel Selective
1067		Peroxisome Proliferator-Activated Receptor- α Modulator (SPPARM α), in Dyslipidemic
1068		Patients with Renal Impairment. International journal of molecular sciences 20,
1069		doi:10.3390/ijms20030706 (2019).
1070	159	Shinozaki, S., Tahara, T., Lefor, A. K. & Ogura, M. Pemafibrate decreases markers of
1071		hepatic inflammation in patients with non-alcoholic fatty liver disease. Clinical and
1072		<i>experimental hepatology</i> 6 , 270-274, doi:10.5114/ceh.2020.99528 (2020).
1073	160	GENFIT: Announces Results from Interim Analysis of RESOLVE-IT Phase 3 Trial of
1074		Elafibranor in Adults with NASH and Fibrosis.
1075	161	Mann, J. F. E. et al. Effects of Liraglutide Versus Placebo on Cardiovascular Events in
1076		Patients With Type 2 Diabetes Mellitus and Chronic Kidney Disease. <i>Circulation</i> 138 ,
1077		2908-2918, doi:10.1161/circulationaha.118.036418 (2018).
1078	162	Khoo, J. et al. Randomized trial comparing effects of weight loss by liraglutide with
1079		lifestyle modification in non-alcoholic fatty liver disease. Liver international : official
1080		journal of the International Association for the Study of the Liver 39 , 941-949,
1081		doi:10.1111/liv.14065 (2019).
1082	163	McMurray, J. J. V. et al. Effect of Dapagliflozin on Clinical Outcomes in Patients With
1083		Chronic Kidney Disease, With and Without Cardiovascular Disease. <i>Circulation</i> 143,
1084		438-448, doi:10.1161/circulationaha.120.051675 (2021).
1085	164	Eriksson, J. W. et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic
1086		fatty liver disease in people with type 2 diabetes: a double-blind randomised

1087		placebo-controlled study. <i>Diabetologia</i> 61 , 1923-1934, doi:10.1007/s00125-018-4675-2
1088		(2018).
1089	165	Jardine, M. J. et al. Renal, Cardiovascular, and Safety Outcomes of Canagliflozin by
1090		Baseline Kidney Function: A Secondary Analysis of the CREDENCE Randomized Trial.
1091		Journal of the American Society of Nephrology : JASN 31 , 1128-1139,
1092		doi:10.1681/asn.2019111168 (2020).
1093	166	Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the
1094		CANVAS Program randomised clinical trials. <i>The lancet. Diabetes & endocrinology</i> 6 ,
1095		691-704, doi:10.1016/s2213-8587(18)30141-4 (2018).
1096	167	Inoue, M. et al. Effects of canagliflozin on body composition and hepatic fat content in
1097		type 2 diabetes patients with non-alcoholic fatty liver disease. Journal of diabetes
1098		<i>investigation</i> 10 , 1004-1011, doi:10.1111/jdi.12980 (2019).
1099	168	Fitchett, D. et al. Empagliflozin Reduced Mortality and Hospitalization for Heart Failure
1100		Across the Spectrum of Cardiovascular Risk in the EMPA-REG OUTCOME Trial.
1101		<i>Circulation</i> 139 , 1384-1395, doi:10.1161/circulationaha.118.037778 (2019).
1102	169	Kuchay, M. S. <i>et al.</i> Effect of Empagliflozin on Liver Fat in Patients With Type 2 Diabetes
1103		and Nonalcoholic Fatty Liver Disease: A Randomized Controlled Trial (E-LIFT Trial).
1104		<i>Diabetes care</i> 41 , 1801-1808, doi:10.2337/dc18-0165 (2018).
1105	170	Wada, T. et al. Apararenone in patients with diabetic nephropathy: results of a
1106		randomized, double-blind, placebo-controlled phase 2 dose-response study and
1107		open-label extension study. <i>Clinical and experimental nephrology</i> 25 , 120-130,
1108		doi:10.1007/s10157-020-01963-z (2021).
1109	171	Kim, W. <i>et al.</i> Randomised clinical trial: the efficacy and safety of oltipraz, a liver X
1110		receptor alpha-inhibitory dithiolethione in patients with non-alcoholic fatty liver disease.
1111		Alimentary pharmacology & therapeutics 45, 1073-1083, doi:10.1111/apt.13981 (2017).
1112	172	Chertow, G. M. et al. Effects of Selonsertib in Patients with Diabetic Kidney Disease.
1113		Journal of the American Society of Nephrology : JASN 30 , 1980-1990,
1114		doi:10.1681/asn.2018121231 (2019).
1115	173	Harrison, S. A. et al. Selonsertib for patients with bridging fibrosis or compensated
1116		cirrhosis due to NASH: Results from randomized phase III STELLAR trials. Journal of
1117		<i>hepatology</i> 73 , 26-39, doi:10.1016/j.jhep.2020.02.027 (2020).
1118	174	Leite, N. C. et al. Efficacy of diacerein in reducing liver steatosis and fibrosis in patients
1119		with type 2 diabetes and non-alcoholic fatty liver disease: A randomized,
1120		placebo-controlled trial. <i>Diabetes, obesity & metabolism</i> 21 , 1266-1270,
1121		doi:10.1111/dom.13643 (2019).
1122	175	Ridker, P. M. <i>et al.</i> Inhibition of Interleukin-1 β by Canakinumab and Cardiovascular
1123		Outcomes in Patients With Chronic Kidney Disease. Journal of the American College of
1124		<i>Cardiology</i> 71 , 2405-2414, doi:10.1016/j.jacc.2018.03.490 (2018).
1125	176	Friedman, S. L. et al. A randomized, placebo-controlled trial of cenicriviroc for treatment
1126		of nonalcoholic steatohepatitis with fibrosis. Hepatology (Baltimore, Md.) 67, 1754-1767,
1127		doi:10.1002/hep.29477 (2018).
1128	177	Gale, J. D. et al. Effect of PF-04634817, an Oral CCR2/5 Chemokine Receptor Antagonist,
1129		on Albuminuria in Adults with Overt Diabetic Nephropathy. Kidney international reports
1130		3 , 1316-1327, doi:10.1016/j.ekir.2018.07.010 (2018).

1131	178	de Zeeuw, D. et al. Efficacy of a novel inhibitor of vascular adhesion protein-1 in reducing
1132		albuminuria in patients with diabetic kidney disease (ALBUM): a randomised,
1133		placebo-controlled, phase 2 trial. <i>The lancet. Diabetes & endocrinology</i> 6 , 925-933,
1134		doi:10.1016/s2213-8587(18)30289-4 (2018).
1135	179	Chalasani, N. et al. Effects of Belapectin, an Inhibitor of Galectin-3, in Patients With
1136		Nonalcoholic Steatohepatitis With Cirrhosis and Portal Hypertension. Gastroenterology
1137		158 , 1334-1345.e1335, doi:10.1053/j.gastro.2019.11.296 (2020).
1138	180	Harrison, S. A. et al. Utility and variability of three non-invasive liver fibrosis imaging
1139		modalities to evaluate efficacy of GR-MD-02 in subjects with NASH and bridging fibrosis
1140		during a phase-2 randomized clinical trial. <i>PloS one</i> 13 , e0203054,
1141		doi:10.1371/journal.pone.0203054 (2018).
1142	181	KASL clinical practice guidelines: management of nonalcoholic fatty liver disease. <i>Clinical</i>
1143		<i>and molecular hepatology</i> 19 , 325-348, doi:10.3350/cmh.2013.19.4.325 (2013).
1144	182	Koay, Y. Y. et al. A Phase IIb Randomized Controlled Trial Investigating the Effects of
1145		Tocotrienol-Rich Vitamin E on Diabetic Kidney Disease. Nutrients 13,
1146		doi:10.3390/nu13010258 (2021).
1147	183	Polyzos, S. A., Kang, E. S., Boutari, C., Rhee, E. J. & Mantzoros, C. S. Current and emerging
1148		pharmacological options for the treatment of nonalcoholic steatohepatitis. Metabolism:
1149		<i>clinical and experimental</i> 111s , 154203, doi:10.1016/j.metabol.2020.154203 (2020).
1150	184	Beyea, M. M., Garg, A. X. & Weir, M. A. Does orlistat cause acute kidney injury?
1151		<i>Therapeutic advances in drug safety</i> 3 , 53-57, doi:10.1177/2042098611429985 (2012).
1152	185	Gaich, G. et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with
1153		type 2 diabetes. <i>Cell metabolism</i> 18 , 333-340, doi:10.1016/j.cmet.2013.08.005 (2013).
1154	186	Talukdar, S. et al. A Long-Acting FGF21 Molecule, PF-05231023, Decreases Body Weight
1155		and Improves Lipid Profile in Non-human Primates and Type 2 Diabetic Subjects. Cell
1156		<i>metabolism</i> 23 , 427-440, doi:10.1016/j.cmet.2016.02.001 (2016).
1157	187	Sanyal, A. <i>et al.</i> Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21
1158		analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind,
1159		placebo-controlled, phase 2a trial. <i>Lancet (London, England)</i> 392 , 2705-2717,
1160		doi:10.1016/s0140-6736(18)31785-9 (2019).
1161	188	Loomba, R. et al. GS-0976 Reduces Hepatic Steatosis and Fibrosis Markers in Patients
1162		With Nonalcoholic Fatty Liver Disease. <i>Gastroenterology</i> 155 , 1463-1473.e1466,
1163		doi:10.1053/j.gastro.2018.07.027 (2018).
1164	189	Harrison, S. A. <i>et al.</i> Resmetirom (MGL-3196) for the treatment of non-alcoholic
1165		steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2
1166		trial. <i>Lancet (London, England)</i> 394 , 2012-2024, doi:10.1016/s0140-6736(19)32517-6
1167		(2019).
1168	190	Harrison, S. A. et al. A randomized, placebo-controlled trial of emricasan in patients with
1169		NASH and F1-F3 fibrosis. <i>Journal of hepatology</i> 72 , 816-827,
1170		doi:10.1016/j.jhep.2019.11.024 (2020).

LEGENDS TO THE TABLES AND FIGURES 1173 Table 1. Genotypes associated with risk of both NAFLD and CKD. 1174 Table 2. Potential pharmacologic agents and targets for CKD and NAFLD. 1175 Supplementary table 1. Features of NAFLD and MAFLD. 1176 Supplementary table 2. Other potential pharmacological options and therapeutic 1177 targets for NAFLD/NASH or CKD. 1178 1179 Figure 1. Timeline of key comments on the renaming of NAFLD to MAFLD. 1180 Abbreviations: AASLD, the American association for the study of liver diseases; 1181 NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steato-1182 hepatitis; ALD, alcoholic liver disease; AFLD, alcoholic fatty liver 1183 disease; MAFLD, metabolic dysfunction-associated fatty liver disease; 1184 CKD, chronic kidney disease; EASL, the European association for the 1185 study of the liver. 1186 1187 Figure 2. Framework for the diagnosis of NAFLD and MAFLD (A) and "Venn 1188 diagram" showing schematically the overlap between MAFLD and 1189 NAFLD in individuals with biopsy-proven fatty liver disease (B). 1190 1191 Figure 3. Mean levels of eGFR (A) and prevalence of CKD stage (B) in MAFLD 1192 and NAFLD populations. 1193 Data are presented as mean with 95% confidence intervals (CI) (A) and percentages 1194

(B), respectively. * P < 0.05. Data were extrapolated from the study by Sun et al²².

1196

Figure 4. *PNPLA3* rs738409 polymorphism and related potential mechanisms between NAFLD and CKD.

- The *PNPLA3* gene is highly expressed in the liver (mostly in hepatocytes and hepatic stellate cells), adipose tissue and kidney (mostly in renal podocytes and tubular cells). It has been found that the *PNPLA3* gene has a lipase activity but the G allele of
- 1202 PNPLA3 rs738409 is associated with loss of this lipase activity. The G allele of
- 1203 PNPLA3 rs738409 may affect lipid droplet architecture and retinol metabolism, and
- release multiple pro-inflammatory and pro-fibrogenic factors, thereby promoting the
- development and progression of NAFLD. The G allele of *PNPLA3* rs738409 also in-
- creases ectopic lipid accumulation in both renal mesangial and tubular cells, poten-
- tially leading to lipid nephrotoxicity. This genetic variant may also adversely affect

the activation of renal podocytes causing kidney damage.

Abbreviations: *PNPLA3*, patatin-like phospholipase domain-containing 3; NAFLD,

non-alcoholic fatty liver disease; CKD, chronic kidney disease.

1211

Figure 5. Potential mechanisms implicated in the gut-liver-kidney axis.

An imbalance diet (e.g. high fructose and high fat) can result in intestinal dysbiosis (mainly increasing the Gram-negative bacteria), which may disrupt the intestinal barrier integrity and increase gut permeability. These intestinal disorders may further promote the release of lipopolysaccharide (LPS), small molecules and even bacteria

into the portal and systemic circulation, causing endotoxemia and low-grade inflam-1217 mation. Intestinal dysbiosis also increases the production of endogenous alcohol, 1218 short-chain fatty acids, secondary bile acids, trimethylamine N-oxide, p-cresyl sulfate, 1219 indoxyl sulfate, and so on, which may affect the development of both NAFLD and 1220 CKD. Short-chain fatty acids (e.g. acetate, sodium butyrate, and propionate) provide 1221 up to 9% of the energy requirements. These molecules may also participate in the 1222 regulation of blood pressure, hepatic lipogenesis and gluconeogenesis, though the ex-1223 act underlying mechanisms have not been fully elucidated. Thus, sodium butyrate 1224 supplementation might prevent the progression of NAFLD and CKD. Secondary bile 1225 acids and trimethylamine N-oxide can inhibit the activation of hepatic nuclear recep-1226 tor farnesoid X receptor (FXR) signaling, but FXR activation can decrease lipid syn-1227 thesis, gluconeogenesis, as well as renal inflammation and fibrosis. Trimethylamine 1228 N-oxide, p-cresyl sulfate and indoxyl sulfate, as the uremic toxins, can adversely af-1229 fect the kidney by activating oxidative stress and renin-angiotensin system, and injur-1230 ing vascular endothelium. 1231

1232