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Abstract 45 

Nonalcoholic fatty liver disease (NAFLD) is defined as hepatic fat accumulation in 46 

more than 5% of hepatocytes without significant alcohol consumption and other sec-47 

ondary causes of hepatic steatosis. In 2020, the more inclusive term metabolic (dys-48 

function)-associated fatty liver disease (MAFLD) with broader and “positive” diag-49 

nostic criteria was proposed to replace the old term NAFLD. The new terminology 50 

and definition of MAFLD better emphasize the pathogenic role of metabolic dysfunc-51 

tion and the use of “positive” criteria for diagnosing this common liver disease. In fact, 52 

the diagnosis of MAFLD is based on the evidence of hepatic steatosis (as assessed by 53 

liver biopsy, imaging techniques or blood biomarkers and scores) in persons who have 54 

overweight or obesity, type 2 diabetes or have metabolic dysregulation, regardless of 55 

the coexistence of other liver diseases or excessive alcohol consumption. It is known 56 

that NAFLD is associated with an increased risk of chronic kidney disease (CKD) and 57 

CKD may also be induced by metabolic dysfunction. Thus, compared to the NAFLD 58 

definition, the newly-proposed MAFLD definition is more likely to identify subjects 59 

with fatty liver and metabolic comorbidities, who are at greater risk of CKD. In this 60 

Perspectives article, we discuss the clinical associations between MAFLD and CKD, 61 

the pathophysiological mechanisms by which MAFLD may increase risk of CKD and 62 

the potential drug treatments that may benefit both conditions.  63 

 64 

 65 

 66 
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Introduction 67 

Nonalcoholic fatty liver disease (NAFLD) is histologically defined as hepatic fat ac-68 

cumulation in more than 5% of hepatocytes without excessive alcohol consumption or 69 

other competing causes for hepatic steatosis1,2. To date, it has been estimated that this 70 

liver disease affects approximately 25% of the global adult population 3 and nearly 30% 71 

of Chinese adults with a prevalence that is higher in urban than rural areas; in men 72 

than women, and in the eastern coastal areas than inland. Furthermore in China, 73 

NAFLD also affects approximately 2% of schoolchildren with sedentary lifestyles and 74 

an unhealthy diet 4,5.  75 

 76 

NAFLD shares multiple cardiometabolic risk factors with chronic kidney disease 77 

(CKD), such as obesity, hypertension, insulin resistance, type 2 diabetes (T2DM) or 78 

prediabetes and atherogenic dyslipidemia 6-8. The prevalence of CKD in people with 79 

NAFLD ranges from approximately 20% to 55% compared to 5% to 35% in the 80 

non-NAFLD population. Several studies have shown that the severity of NAFLD is 81 

closely associated with increasing stages of CKD 8-13. For example, a previous me-82 

ta-analysis that included 33 cross-sectional and longitudinal studies showed that there 83 

was a higher prevalence and incidence of CKD in patients with NAFLD and advanced 84 

fibrosis (odds ratio [OR] 5.20, 95% CI 3.14- 8.61) and hazard ratio [HR] 3.29, 95% 85 

CI 2.30- 4.71, respectively) compared to patients with NAFLD without advanced fi-86 

brosis 9. The presence of nonalcoholic steatohepatitis (NASH) on liver histology was 87 

also independently associated with a higher prevalence (odds ratio 2.53, 95% CI 1.58- 88 
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4.05) and incidence (hazard ratio 2.12, 95% CI 1.42-3.17) of CKD than simple steato-89 

sis 9. Similar results were also found in two more recent meta-analyses published in 90 

2018 13 and 2020 14. Patients with NAFLD were also observed to have an increased 91 

risk of abnormal albuminuria in 19 observational studies with 24804 participants 92 

(odds ratio 1.67, 95% CI 1.32-2.11, P<0.05) 15. These data suggest that NAFLD may 93 

be an independent risk factor for CKD. Additionally, the severity of CKD may ad-94 

versely affect long-term clinical outcomes from NAFLD by increasing the risk for 95 

all-cause mortality16. An observational study of 87 adults with biopsy-proven NAFLD, 96 

reported that NAFLD with microalbuminuria was associated with higher fibrosis 97 

scores than those patients with NAFLD without microalbuminuria 17; implying that 98 

the presence of microalbuminuria may help identify those patients with more severe 99 

NAFLD. Another study of 120 patients with biopsy-proven NAFLD diagnosed in 100 

1978-2006 reported that NAFLD patients with long-term CKD had increased mortal-101 

ity risk because of the associated metabolic comorbidities, rather than CKD per se 16. 102 

That said, whether there is a causal association between NAFLD and CKD is unclear 103 

and achieving a better understanding of the link between NAFLD and CKD represents 104 

an important area of research. 105 

 106 

In response to criticisms regarding the use of the adjective “non-alcoholic”, and in 107 

recognition of the fact that NAFLD is a purely metabolic liver disease, in 2020 an in-108 

ternational panel of experts recommended the renaming of NAFLD to metabolic dys-109 

function-associated fatty liver disease (MAFLD). With the new term, different diag-110 



7 
 

nostic criteria for defining MAFLD were also proposed 18. The diagnostic criteria for 111 

MAFLD are based on the evidence of hepatic steatosis (detected either by liver biopsy, 112 

imaging techniques or blood biomarkers and scores), and the coexistence of over-113 

weight or obesity, T2DM or metabolic dysregulation18. The term “MAFLD” repre-114 

sents this disease not as a single or “exclusive” condition, but also embraces metabol-115 

ic disorders, and may coexist with excessive alcohol consumption or other chronic 116 

liver diseases that may have additive or synergistic effects to increase the severity of 117 

the liver condition (e.g. chronic viral hepatitis) 19,20. Thus, the two terms of NAFLD 118 

and MAFLD cannot be considered fully interchangeable or simply equivalent. Alt-119 

hough there is excellent concordance (with a Cohen's kappa statistic >0.90) between 120 

the NAFLD and MAFLD definitions in “real-world” data, there will be some indi-121 

viduals fulfilling the diagnostic criteria for MAFLD but not NAFLD (i.e., persons 122 

with MAFLD who have other coexisting chronic liver diseases), and some individuals 123 

fulfilling the criteria for NAFLD but not MAFLD (i.e. lean persons with NAFLD who 124 

do not have any coexisting metabolic dysfunction) 21. Notably, evidence is now ac-125 

cumulating to suggest that subjects with MAFLD are more likely to have multiple 126 

metabolic comorbidities and to be at greater risk of advanced liver fibrosis or CKD, 127 

compared to those with NAFLD22. In this Perspectives article, we discuss the clinical 128 

associations and the pathophysiological mechanisms underpinning MAFLD with 129 

CKD and how this differs from our understanding of the relationship between 130 

NAFLD and CKD. We also briefly discuss targeted pharmacological treatments for 131 

NAFLD and MAFLD and how these might affect CKD. 132 
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 133 

From NAFLD to MAFLD 134 

The terms of NAFLD and its progressive necro-inflammatory form, NASH, were first 135 

coined in 1980 and 1986 to characterize a liver disease histologically similar to alco-136 

holic fatty liver disease but without a prior history of significant alcohol intake 23,24. 137 

NAFLD includes a histopathological spectrum of progressive liver conditions, rang-138 

ing from nonalcoholic fatty liver (NAFL, simple steatosis without evidence of any 139 

hepatocellular injury) to NASH (hepatic steatosis plus inflammation and hepatocellu-140 

lar injury, with or without varying levels of fibrosis) and cirrhosis 1,25-27. Most indi-141 

viduals with NAFLD or NASH are overweight or obese, and many of them have obe-142 

sity-associated diseases, such as T2DM, hypertension and atherogenic dyslipidemia. A 143 

link between liver damage and obesity had been recognized since 1950s 28 and in 144 

1999 29, an analysis of subjects with biopsy-proven NAFLD reported a strong associa-145 

tion with the typical features of the metabolic syndrome such as hyperinsulinemia, 146 

dysglycemia, hypertension and dyslipidemia. Similar results were also reported 30 in a 147 

study of 551 severely obese individuals undergoing bariatric surgery. Since that time, 148 

various reasons for renaming and redefining NAFLD have been presented and debat-149 

ed (Figure 1) 31-36. Firstly, the definition of NAFLD has exclusiveness and does not 150 

allow for the presence of other coexisting liver diseases. Indeed, the coexistence of 151 

NAFLD with another chronic liver disease is not rare in clinical practice 19. Secondly, 152 

the question of the thresholds of “healthy or unhealthy” alcohol consumption and the 153 

risk of stigmatizing and misleading individuals make the compound adjective 154 
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“non-alcoholic” inappropriate. Some studies have suggested that modest alcohol con-155 

sumption (less than 20 g/day) may exert a protective effect on NAFLD 37-39, but other 156 

large studies have found the opposite result 40,41. The assessment of daily alcohol 157 

consumption is still not standard and accurate, and may be misinterpreted as stigma-158 

tization, especially in adolescents, while alcohol consumption may also be taboo for 159 

religious or cultural reasons 42,43. The compound adjective “non-alcoholic” may mis-160 

lead some persons into thinking that they can drink alcohol and that this disease is not 161 

severe (“non”-alcoholic), compared with alcoholic cirrhosis. Thirdly, there are vary-162 

ing degrees of disease progression and severity, such as Asian people with NAFLD 163 

are leaner but have more severe liver histopathology compared with their counterparts 164 

of Caucasian ethnicity. Additionally, pre-menopausal women often have a lower prev-165 

alence of NAFLD, while post-menopausal women have a higher prevalence of 166 

NAFLD than men of similar age. The high heterogeneity of NAFLD is mainly related 167 

to the diversity of pathogenesis of the condition (involving, for example, genetic pre-168 

disposition, estrogen exposure and presence of underlying metabolic dysfunction). 169 

Fourthly, the term “NAFLD” can be misunderstood as it emphasizes only 170 

“non-alcoholic” factors and does not highlight the key pathogenic role of metabolic 171 

dysfunction. Finally, the high heterogeneity of NAFLD may also affect the reliability 172 

of clinical trial results and the non-invasive assessment of liver fibrosis (by using the 173 

scores of advanced fibrosis, such as the NAFLD fibrosis score (NFS) and fibrosis 4 174 

(FIB-4), or vibration-controlled transient elastography) 44-46. These issues eventually 175 

prompted a panel of international experts from 22 countries to propose that NAFLD 176 
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be renamed and re-classified as MAFLD 18,20 with new diagnostic and “positive” cri-177 

teria better emphasizing the dysmetabolic pathophysiology of this common liver dis-178 

ease and its systemic adverse effects on both liver-related and extra-hepatic outcomes 179 

(including CKD) 47. The details of the diagnosis and the specific features of NAFLD 180 

and MAFLD definitions have been summarized (Figure 2A and Supplementary Ta-181 

ble 1). Moreover, we have utilized a “Venn diagram” to illustrate the overlap between 182 

NAFLD and MAFLD definitions according to a recent study undertaken by our group 183 

in biopsy-proven individuals from Wenzhou 48 (Figure 2B). 184 

 185 

Consequences for clinical practice 186 

Although some experts have endorsed the newly-proposed term and definition of 187 

MAFLD 43,49, others have been less enthusiastic, arguing that this change in nomen-188 

clature is premature. The primary reasons are the ongoing debate about diagnostic 189 

criteria of “metabolic health” and the ambiguity around the aetiological root cause. 190 

The adjective “metabolic” they suggest is too simple and broad to cover all disease 191 

phenotypes and aetiological attributions 50. For example, some lean and metabolically 192 

healthy individuals can have hepatic steatosis, emphasizing that other factors (e.g. 193 

genetic factors) may be dominant in some phenotypes 51-53. What’s more, other rarer 194 

“metabolic” diseases may also cause hepatic steatosis, such as Wilson’s disease and 195 

short gut syndrome-associated fatty liver, but these are not included under the term 196 

“MAFLD” 50. Renaming and re-classifying this common metabolic liver disease may 197 

also have unintended consequences for some stakeholders. For example, with ongoing 198 
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drug trials, reclassification of this liver disease may affect trial outcomes that are fo-199 

cussed on histological resolution of NASH as a primary efficacy endpoint 50,54.  200 

 201 

In our opinion, a growing body of data largely supports the nomenclature change from 202 

NAFLD to MAFLD. For example, a 2020 study of 765 Japanese individuals showed 203 

that the newly proposed definition of MAFLD identified more accurately subjects 204 

with advanced liver fibrosis (assessed by non-invasive tests) compared with the 205 

NAFLD definition. In addition, the presence of MAFLD with coexisting mild alcohol 206 

consumption (less than 20 g/day) was also associated with a higher prevalence of liver 207 

fibrosis than the presence of MAFLD alone (without coexisting alcohol intake) (25.0% 208 

vs. 15.5%, P=0.018) 55, suggesting that even mild alcohol consumption may increase 209 

the prevalence of liver fibrosis; so further emphasizing the inappropriateness of the 210 

term “non-alcoholic”. In a study of 922 adults from Hong Kong, there was no differ-211 

ence in the prevalence of MAFLD and NAFLD (25.9% and 25.7%, respectively), but 212 

the incidence of MAFLD (2.8 per 100 person-years) was lower than that of NAFLD 213 

(3.7 per 100 person-years) and almost 25% of participants with fatty liver (on ultra-214 

sound examinations) were classified as not having MAFLD 56, confirming that the 215 

MAFLD and NAFLD definitions can identify different groups of subjects. However, 216 

the aforementioned difference in incidence rates of MAFLD appears to be more 217 

marked among lean individuals without metabolic dysfunction. Overall, therefore, the 218 

current evidence suggests that the definition of MAFLD can more accurately identify 219 

subjects at higher risk of progressive liver disease than the NAFLD definition. This 220 
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has important implications not only for clinical practice but also for recruitment of pa-221 

tients to clinical trials testing new pharmacotherapies for this liver disease. That said, 222 

as discussed above the currently available ‘real-world’ studies clearly suggest that the 223 

diagnostic criteria for MAFLD are more useful in clinical practice than those for 224 

NAFLD 18,55. Another useful change in clinical practice with the implementation of 225 

the newly proposed definition of MAFLD is the semiquantitative evaluation of the 226 

grade of inflammatory activity and stage of liver fibrosis to replace the dichotomous 227 

stratification into NASH and non-NASH 18. The diagnosis of NASH can be affected 228 

by sampling variability 57 and ballooning of hepatocytes on histology (as a cardinal 229 

feature of NASH) can fluctuate over short timeframes in the same subject 57. Fur-230 

thermore, studies have demonstrated that liver fibrosis, rather than other histologic 231 

features, may predict the most important clinical outcomes of NAFLD 58,59. Conse-232 

quently, we consider that a terminology change from NAFLD to MAFLD will have 233 

little effect on ongoing clinical trials where they evaluate “improvement of liver fi-234 

brosis”; and thus far, no drug has received regulatory approval for the treatment of 235 

NASH 57. Overall, the newly proposed definition of MAFLD may facilitate 236 

much-needed improvements in the prevention, diagnosis, treatment and management 237 

of this common and burdensome liver disease.  238 

 239 

MAFLD is more closely related to CKD 240 

As previously mentioned, metabolic dysregulation is a key feature of MAFLD, and 241 

individuals with MAFLD are not only more likely to have metabolic comorbidities, 242 
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but also have a greater prevalence of advanced liver fibrosis than those with 243 

NAFLD22,55. As NAFLD with advanced liver fibrosis is closely associated with CKD 244 

(and T2DM) 60, it is reasonable to infer that MAFLD may be more closely related to 245 

CKD than NAFLD. Our recent re-examination of the National Health and Nutrition 246 

Examination Survey (NHANES)-III database 1988–1994, involving 12,571 individu-247 

als, who underwent liver ultrasound examinations and who did not have viral hepatitis, 248 

reported that the overall prevalence of MAFLD and NAFLD was 30.2% and 36.6%, 249 

respectively. Notably, individuals with MAFLD had lower values of estimated glo-250 

merular filtration rate (eGFR: 74.9±18.2 vs. 76.5±18.2 ml/min/1.73 m2, P<0.001) and 251 

a higher prevalence of CKD stages 3-5 (20.3% vs. 17.8%, P=0.005), compared to 252 

those with NAFLD22 (Figure 3). Furthermore, in this population-based study, the ul-253 

trasonographic severity of MAFLD was associated with a nearly 1.3-fold increased 254 

risk of prevalent CKD, even after adjustment for sex, age, ethnicity, alcohol intake 255 

and pre-existing diabetes.These results suggested that MAFLD definition can identify 256 

patients with CKD more accurately than the NAFLD definition22. Another study 257 

based on the NHANES database 1999–2016 also found that subjects with MAFLD 258 

had a higher risk of both CKD and abnormal albuminuria than subjects who did not 259 

have MAFLD. Also, subjects with MAFLD had a higher risk of cardiovascular events 260 

(evaluated by the Framingham or the American College of Cardiology and American 261 

Heart Association Atherosclerotic Cardiovascular Disease risk equations) than those 262 

with NAFLD 61. Thus, MAFLD may be associated with a greater risk of cardiovascu-263 

lar disease and CKD than NAFLD. However, in contrast to these aforementioned data, 264 
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the latest cross-sectional analyses of the NHANES database 2017–2018 (involving 265 

4869 subjects) showed that MAFLD was not independently associated with the pres-266 

ence of CKD, although higher FIB-4 score (i.e., a non-invasive score for liver fibrosis, 267 

adjusted-odds ratio [OR] 1.23, 95% CI 1.05-1.01), hyperuricemia (adjusted-OR 1.91, 268 

95% CI 1.55- 2.36), hypertension (adjusted-OR 1.66, 95% CI 1.38- 2.00), and T2DM 269 

(adjusted-OR 2.21, 95% CI 1.89- 3.11) were independently associated with CKD 62. 270 

That said, these latter results are somewhat inconsistent with previously published 271 

studies9,13,22, but further studies are needed to better clarify the association between 272 

MAFLD (or NAFLD) and CKD progression over time. However, from the perspec-273 

tive of integrated care, the newly proposed criteria for MAFLD are easily applied by 274 

clinicians across different healthcare settings, including in most resource-limited parts 275 

of the world 18.  276 

 277 

Mechanisms linking MAFLD and CKD 278 

Preclinical reports, observational studies, genome-wide association studies and 279 

epigenome-wide association studies are useful to define the “crosstalk” existing be-280 

tween CKD and this metabolic liver disease and better decipher the complex underly-281 

ing mechanisms linking both conditions 63-65. To date, the pathophysiological mecha-282 

nisms linking NAFLD and CKD involve metabolic disorders (e.g. abdominal obesity, 283 

insulin resistance, hypertension, atherogenic dyslipidemia and dysglycemia), 284 

low-grade inflammation and, more recently, a possible involvement of the liv-285 

er-gut-kidney axis. Presently, the precise pathophysiological mechanisms linking 286 
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MAFLD and CKD are uncertain, although the putative pathophysiological mecha-287 

nisms that link MAFLD to CKD are likely to be similar to those underlying the asso-288 

ciation between NAFLD and CKD. Herein, we briefly discuss the main putative un-289 

derlying mechanisms linking MAFLD and CKD, focusing on genetic predisposition, 290 

environmental risk factors and metabolic dysfunction. 291 

 292 

Genetic predisposition 293 

Emerging studies suggest that some genetic polymorphisms affecting patatin-like 294 

phospholipase domain-containing 3 (PNPLA3), 17β-hydroxysteroid dehydrogenase 295 

type 13 (HSD17B13), trans-membrane 6 superfamily member 2 (TM6SF2), mem-296 

brane-bound O-acyltransferase domain-containing 7 (MBOAT7), and glucokinase 297 

regulator (GCKR) genes play an important role in the development and progression of 298 

NAFLD 66-68. Some of these NAFLD-associated genetic polymorphisms are also as-299 

sociated with kidney abnormalities although some inconsistencies in study findings 300 

exist (Table 1). A meta-analysis of 23 case-control studies (involving 6071 subjects 301 

with NAFLD and 10366 controls) showed that individuals who carried a PNPLA3 G 302 

allele had a higher risk of NAFLD (additive model: OR 3.41, 95%CI 2.57-4.52) and 303 

NASH (additive model: OR 4.44, 95%CI 3.39-5.82) 69. Notably, an increasing num-304 

ber of studies showed that this gene variant is also associated with lower eGFR levels, 305 

abnormal albuminuria and higher prevalence of CKD in both children and adults with 306 

either biopsy-confirmed or imaging-defined NAFLD, independent of age, sex, adi-307 

posity measures, hypertension, diabetes, and severity of NAFLD 68,70-72. Similarly, we 308 
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observed that the PNPLA3 GG genotype was not only associated with higher risk of 309 

glomerular dysfunction, but was also with higher levels of urinary neutrophil gelati-310 

nase-associated lipocalin (a biomarker of kidney tubular injury) in individuals with 311 

biopsy-proven NAFLD 67. PNPLA3 mRNA is highly expressed in the liver, and also 312 

in adipose tissue and kidney 73, and this gene variant affects the lipid droplet architec-313 

ture and retinol metabolism of hepatic stellate cells, as well as the release of multiple 314 

pro-inflammatory and pro-fibrogenic factors which may contribute to increased he-315 

patic fibrogenesis 73-75. Furthermore, the G allele of PNPLA3 rs738409 may increase 316 

ectopic lipid accumulation in both renal mesangial and tubular cells under conditions 317 

of lipid excess, potentially leading to lipid nephrotoxicity. In fact, PNPLA3 mRNA 318 

levels were found to be highly expressed in renal podocytes compared to renal tubular 319 

cells 76. Kidney damage may activate renal podocytes leading to increased angiogene-320 

sis, dysregulation of both renal medullary and cortical blood flows, and increased 321 

kidney fibrosis 76-78. Thus, it can be implied that PNPLA3 mRNA may adversely af-322 

fect renal podocytes leading to renal dysfunction (Figure 4). 323 

 324 

HSD17B13 rs72613567, a loss-of-function variant, may be a protective factor and a 325 

therapeutic target in NAFLD by affecting the regulation of hepatic lipid metabolism 326 

79,80. In an Italian study of 684 obese children with ultrasound-defined NAFLD, carri-327 

ers of the A allele of rs72613567 had higher eGFR levels than homozygous subjects 81. 328 

However, in another study involving 215 Chinese adults with biopsy-proven NAFLD, 329 

the A/- or A/A HSD17B13 genotypes were associated with a lower risk of abnormal 330 
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albuminuria, but not with altered levels of eGFR or urinary neutrophil gelati-331 

nase-associated lipocalin 82.  332 

 333 

TM6SF2 rs58542926 is associated with a greater susceptibility to NAFLD, but a low-334 

er risk of cardiovascular disease 83. This may be explained by diverting toxic choles-335 

terol away from the vessels into the liver and adipose tissue 84. A small cross-sectional 336 

study of 61 individuals with biopsy-proven NAFLD also reported that the TM6SF2 T 337 

allele was associated with higher eGFR levels and a lower prevalence of abnormal 338 

albuminuria and CKD 85. In another study involving 532 obese children with normal 339 

kidney function, the TM6SF2 rs58542926 T allele was associated with higher eGFR 340 

levels, regardless of the presence or absence of NAFLD 86.  341 

 342 

MBOAT7 rs641738 has also been reported to increase the risk of NAFLD and other 343 

chronic liver diseases 87,88. In a cohort of Asian individuals with biopsy-proven 344 

NAFLD, the MBOAT7 rs641738 variant was associated with worsening stages of 345 

CKD, irrespective of NASH 89.  346 

 347 

The T allele of GCKR rs1260326 increases the risk of NAFLD, possibly via enhanc-348 

ing hepatic de novo lipogenesis 90 and may be related to a greater risk of CKD or 349 

end-stage kidney disease 91. In the Japan Multi-Institutional Collaborative Cohort 350 

Study, the authors reported that the GCKR rs1260326 T allele was associated with a 351 

higher risk of CKD 92. Conversely, another study of 195 individuals found that GCKR 352 
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rs1260326 T allele was associated with higher eGFR levels, but these may be offset 353 

by an adverse effect on risk of coronary artery disease (OR 1.02 per risk allele, 95%CI 354 

1.00-1.04, P=0.01) 93. Finally, a study of 230 Italian overweight or obese children re-355 

ported that TM6SF2, GCKR, and MBOAT7 risk alleles did not show any significant 356 

association with kidney function parameters94. 357 

 358 

All these studies were performed before the newly proposed change in nomenclature 359 

from NAFLD to MAFLD. However, given the close relationship between these ge-360 

netic variants and metabolic dysfunction, it is plausible that these genetic variants will 361 

have equal relevance in people with MAFLD. More importantly, a recent cohort study 362 

of 4653 middle-aged and elderly Chinese adults showed that PNPLA3 or TM6SF2 363 

gene variants are associated with higher liver fat content, especially in individuals 364 

with at least one metabolic disorder, based on the MAFLD definition; whilst no dif-365 

ferences in liver fat content were observed in those without any metabolic disorder 95. 366 

These results support the conclusion that PNPLA3 rs738409 and TM6SF2 rs58542926 367 

gene variants are associated with the development of MAFLD in Chinese adults.  368 

 369 

Environmental risk factors 370 

Emerging studies suggest that the gut microbiota and intestinal barrier integrity may 371 

be linked to NAFLD and CKD (i.e. the so-called gut-liver-kidney axis) (Figure 5) 96. 372 

Gut microbiota is a highly versatile ecosystem contributing to multiple host physio-373 

logical processes 97. Prebiotics, synbiotics and food components (including polyphe-374 
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nols, sugars and proteins) may alter the gut microbiota diversity and the production of 375 

uraemic toxins 98. Gut microbiota-derived metabolites (for example, indoxyl sulfate 376 

and p-cresyl sulfate), which are produced by several obligate or facultative anaerobes, 377 

are harmful to the host and require active elimination by the kidney and this may in-378 

fluence both kidney and liver damage 96,97,99.  379 

 380 

The intestinal microbiome also generates trimethylamine N-oxide (TMAO), endoge-381 

nous alcohol and short-chain fatty acids (SCFAs). TMAO production results from a 382 

multistep process that is affected by dietary ingredients, such as choline and carnitine, 383 

which undergo microbial processing, mainly related to lipid metabolism 100. In a co-384 

hort of 512 patients with CKD followed for 5 years, plasma levels of TMAO were 385 

higher in patients with CKD than in non-CKD control subjects, and were associated 386 

with a nearly 3-fold increased risk of mortality 101; in a preclinical study, dietary 387 

TMAO supplementation also resulted in progressive renal tubulo-interstitial dysfunc-388 

tion and fibrosis 101. Likewise, plasma levels of TMAO were increased in subjects 389 

with NAFLD and associated with higher serum bile acid concentrations. TMAO ad-390 

ministration in high fat diet fed mice also exacerbated hepatic steatosis by inhibiting 391 

hepatic nuclear receptor farnesoid X receptor (FXR) signaling, thus up-regulating he-392 

patic de novo lipogenesis 99. It is known that FXR is a major nuclear receptor for bile 393 

acids, which is expressed in a variety of tissues, including the liver and kidney 102. 394 

FXR is involved in the regulation of lipid and glucose metabolism as well as multiple 395 

inflammation pathways 103 and it is also implicated in the pathogenesis of NAFLD 104. 396 



20 
 

Some preliminary evidence also supports the view that FXR activation has the poten-397 

tial to repair renal tissue damage and prevent renal pathogenic processes 102.  398 

 399 

SCFAs (e.g. acetate, sodium butyrate, and propionate), which are generated from the 400 

degradation of indigestible carbohydrates via anaerobic bacteria, may activate 401 

G-protein coupled receptors in various cells and regulate blood pressure through the 402 

renin-angiotensin system 105-107. SCFAs may also inhibit histone deacetylases 403 

(HDACs), which regulate epigenetic modification through changes of histone tails 108. 404 

Thus, decreased SCFAs may lead to an increase in blood pressure further impairing 405 

kidney function 109,110. Animal and clinical studies also support the notion that SCFAs 406 

may have anti-hypertensive properties, but the exact underlying mechanisms have not 407 

been completely identified 110-112. A recent small study also showed that individuals 408 

with NAFLD had higher faecal SCFA levels and faecal bacteria, such as Prevotella 409 

copri, Megashpaera, Fusobacterium, Ruminococcus torques and Eubacterium bi-410 

forme 113. Notably, SCFAs, such as sodium butyrate which is a bacterial fermentation 411 

product, may increase the secretion of glucagon-like peptide (GLP)-1 (that enhances 412 

glucose-induced pancreatic insulin secretion) from intestinal epithelial cells and in-413 

crease the expression of hepatic GLP-1 receptors 114. Thus, it has been speculated that 414 

sodium butyrate supplementation might prevent the progression of NAFLD to NASH 415 

114. Additionally, treatment with sodium butyrate may improve insulin resistance, se-416 

rum urea concentrations and urinary protein excretion, possibly via improving 417 

5'-adenosine monophosphate-activated protein kinase phosphorylation, increasing 418 
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GLP-1 secretion and/or promoting colonic mucin and tight junction proteins in a ne-419 

phrectomy-CKD model 115. 420 

  421 

Disrupted intestinal barrier integrity is another mechanism potentially implicated in 422 

the gut-liver-kidney axis, which may cause the release of endotoxins and bacterial 423 

DNA into the circulation, thereby causing low-grade chronic inflammation. The pro-424 

gression of CKD and NAFLD may, in turn, contribute to further disrupting epithelial 425 

tight junctions and affecting intestinal barrier function 96,116,117. 426 

 427 

The imbalance of diet and nutrition (e.g. high fructose intake and vitamin-D deficien-428 

cy or insufficiency) may also contribute to the development of NAFLD and CKD. A 429 

high fructose intake increases hepatic de novo lipogenesis and uric acid production. In 430 

turn, uric acid further increases endogenous fructose production via stimulating aldose 431 

reductase in the polyol pathway 118. One study suggested that hyperuricemia may be a 432 

risk factor for NAFLD, particularly in men, via inducing the suppression of silent in-433 

formation regulator-1 (SIRT1) signaling 119. SIRT1 is a NAD(+)-dependent deacety-434 

lase and responds to oxidative stress and inflammation by inducing p53 mediated 435 

apoptosis, participating in the nuclear factor kappa-B (NF-κB) mediated inflammatory 436 

responses, forkhead box class O 3a (FOXO3a)-mediated autophagy and oxidative 437 

stress 120,121. Meanwhile, SIRT1 activation may be beneficial for obesity and NAFLD 438 

through inhibiting hepatic de novo lipogenesis, increasing fatty acid β-oxidation, as 439 

well as reducing hepatic oxidative stress and improving hepatic glucose metabolism 440 
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122,123. SIRT1 is abundantly expressed in mouse kidneys and may exert a protective 441 

effect on the development of renal injury in these animals through the protection of 442 

podocyte function and reduction of renal medullary cell damage following oxidative 443 

stress 124,125. There was also a strong inverse association between SIRT1 expression, 444 

serum uric acid levels and liver pathology in humans 119. Observational studies also 445 

showed an association between higher serum uric acid levels and various 446 

CKD-related outcomes (e.g. lower eGFR and abnormal albuminuria) 126-129.  447 

 448 

Metabolic dysfunction 449 

The metabolic dysfunction in the MAFLD definition includes a cluster of metabolic 450 

risk factors such as abdominal overweight or obesity, hypertension, insulin resistance, 451 

prediabetes/diabetes, atherogenic dyslipidemia and low-grade inflammation (as re-452 

flected by increased plasma C-reactive protein levels)18. These metabolic risk factors 453 

have individually been associated with an increased risk of both NAFLD and CKD 454 

130-132. Using the NHANES-III database, the investigators reported that subjects with 455 

metabolic syndrome had a ~2.5-fold increased risk of CKD compared with those 456 

without metabolic syndrome 133. 457 

 458 

Obesity also plays an important role in the development and progression of NAFLD 459 

and CKD. Ectopic lipid deposition triggers oxidative stress by two main intracellular 460 

transcription factor signaling pathways, i.e., the nuclear factor-κB (NF-κB) pathway 461 

and the c-Jun-amino-terminal kinase (JNK) pathway 134. It is known that perivascular 462 
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fat may contribute to the impairment of endothelium-dependent vasodilatation, which 463 

is involved in CKD pathogenesis. Furthermore, a study of 146 individuals showed 464 

that increased renal sinus fat had an adverse effect on urinary albumin excretion and 465 

kidney function 135 136. Additionally, adipose tissue is an endocrine organ that secretes 466 

several adipokines (for example, leptin and adiponectin), which may regulate food in-467 

take, insulin sensitivity, low-grade chronic inflammation and even activate the ren-468 

in-angiotensin system, thereby affecting the development of MAFLD and CKD 137.  469 

 470 

Obesity, T2DM and MAFLD can promote systemic and hepatic insulin resistance and, 471 

in turn, insulin resistance can lead to hepatic macrophage activation, hepatic fat ac-472 

cumulation and impaired glucose metabolism138. This may further aggravate renal 473 

hemodynamics, leading to renal disease progression via activation of the sympathetic 474 

nervous system, sodium retention, and down-regulation of natriuretic peptide 475 

system139.  476 

 477 

As discussed above, CKD represents the final result of interactions of multiple factors, 478 

many of which have a close association with the metabolic dysfunction (for example, 479 

abdominal obesity, T2DM, insulin resistance, dyslipidaemia, hypertension, intestinal 480 

dysbiosis, high fructose intake and vitamin-D deficiency, etc). Since the MAFLD 481 

definition specifically includes individuals who have any metabolic dysfunction 482 

(which is not applicable to all subjects with NAFLD), it is reasonable to assume that 483 

metabolic dysfunction may be an important factor mediating the link between 484 
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MAFLD and CKD.  485 

 486 

It is also worth noting that MAFLD can coexist with other chronic liver diseases (e.g. 487 

viral hepatitis), but a definition of NAFLD precludes the co-existence of other liver 488 

diseases. An observational study found that MAFLD patients with co-existing viral 489 

hepatitis had higher risk of cardiovascular disease, compared to their counterparts 490 

without viral infection 140. Infections with hepatitis B virus (HBV) or hepatitis C virus 491 

(HCV) can both induce HBV-related or HCV-related glomerulonephritis, which usu-492 

ally manifests clinically with varying levels of proteinuria and microscopic hematuria 493 

141. These results suggest that HBV and HCV might also be directly involved in the 494 

pathogenic processes linking MAFLD and CKD, but further studies are needed. 495 

 496 

Pharmacologic agents for CKD and NAFLD 497 

Pharmacotherapy (e.g., lipid-lowering, blood pressure-controlling, glucose-lowering 498 

and weight loss) has become a major focus for management of NAFLD and CKD 142. 499 

Based on the aforementioned links between these two conditions, the development of 500 

common drugs for NAFLD (or MAFLD) and CKD has become an important research 501 

area. A number of pharmacological treatments have the potential to benefit both CKD 502 

and NAFLD. In Table 2, we summarize the results of completed and ongoing trials, 503 

testing drugs that are relevant to the treatment of both NAFLD/NASH and CKD. In 504 

Supplementary Table 2, we have also listed other promising drugs and therapeutic 505 

targets for NAFLD/NASH and CKD that are in preclinical or early development for 506 
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NASH or CKD. However, to date, there are no definitive curative common treatments 507 

for both MAFLD (or NAFLD) and CKD. Drugs targeting environmental risk factors 508 

for MAFLD (or NAFLD) and CKD demonstrate the concept of “food as medicine” 509 

and of a “healthy diet”. The most important treatment of environmental risk factors is 510 

to change eating habits, which is extremely hard to maintain. Drugs targeting redox 511 

regulation, inflammation and fibrosis but of unproven efficacy to date. Drugs target-512 

ing metabolic risk factors are considered to be the most promising to date. As dis-513 

cussed below, although the currently published controlled trials involved individuals 514 

with NAFLD (or NASH) and not MAFLD, it is plausible that drugs targeting meta-515 

bolic risk factors may be even more effective in people with MAFLD. 516 

 517 

Targeting of metabolic risk factors 518 

Drugs targeting metabolic risk factors exert their actions mainly on regulation of lipid 519 

and glucose metabolism. Peroxisome proliferator-activated receptors (PPARs), as the 520 

key nuclear receptors involved in lipid and glucose metabolism, have three main iso-521 

types: PPAR-α, PPAR-γ and PPAR-δ 143. Glucagon-like peptide 1 receptor agonists 522 

(GLP-1RAs) and sodium-glucose cotransporter-2 (SGLT2) inhibitors are two newer 523 

classes of glucose-lowering agents. GLP-1 as a gut-derived incretin hormone induces 524 

beta-cell insulin secretion and reduces glucagon secretion 144 Thus, GLP-1RAs have 525 

been developed for the treatment of type 2 diabetes through increasing insulin and 526 

decreasing glucagon levels. SGLT2 inhibitors (e.g. empagliflozin, dapagliflozin and 527 

canagliflozin) improve plasma glucose levels by preventing glucose reabsorption in 528 
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the proximal renal tubule145. We have listed the principal clinical trials that directly 529 

target CKD and NAFLD (or NASH) in Table 2. However, many clinical trials target-530 

ing metabolic dysfunction (e.g. in those T2DM) were not designed to study CKD or 531 

fatty liver disease. Semaglutide is an approved GLP-1RA for the treatment of type 2 532 

diabetes. In the SUSTAIN-1 (Efficacy and Safety of Semaglutide Once-weekly Versus 533 

Placebo in Drug-naïve Subjects With Type 2 Diabetes, NCT02054897)146 and SUS-534 

TAIN-6 (Trial to Evaluate Cardiovascular and Other Long-term Outcomes With 535 

Semaglutide in Subjects With Type 2 Diabetes, NCT01720446) 147, semaglutide had a 536 

similar safety profile and no greater cardiovascular risk profile compared to placebo. 537 

The SUSTAIN-1 trial showed that semaglutide was better than placebo in reducing 538 

body weight 146. The SUSTAIN-6 trial also found that treatment with semaglutide was 539 

associated with lower rates of new or worsening nephropathy 147. Since obesity and 540 

T2DM are established risk factors for fatty liver disease, CKD and cardiovascular 541 

events, semaglutide is likely to become a suitable treatment option for both MAFLD 542 

and CKD. In the recent trial (Investigation of Efficacy and Safety of Three Dose Lev-543 

els of Subcutaneous Semaglutide Once Daily Versus Placebo in Subjects With 544 

Non-alcoholic Steatohepatitis, NCT02970942) 148, semaglutide was associated with 545 

greater histologic resolution of NASH than placebo, but did not improve liver fibrosis 546 

stage. There were no changes of renal function in the PIONEER-5 (Efficacy and 547 

Safety of Oral Semaglutide Versus Placebo in Subjects With Type 2 Diabetes and 548 

Moderate Renal Impairment, NCT02827708) 149, thereby suggesting that semaglutide 549 

is safe in CKD. GLP1RAs and SGLT-2 inhibitors may be the most promising drugs 550 
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for treatment of both fatty liver disease and CKD, but well designed trials are needed 551 

to test the effects of these classes of drugs on both outcomes. 552 

 553 

Conclusion 554 

Increasing evidence suggests that the newly proposed definition of MAFLD is more 555 

closely related to CKD than the NAFLD definition. We strongly believe that a multi-556 

disciplinary and person-centred approach is needed to manage subjects with MAFLD 557 

and CKD as most of these individuals have common metabolic comorbidities, such as 558 

obesity, hypertension, atherogenic dyslipidemia or T2DM. Therefore, it is clinically 559 

important to assess kidney function in people with MAFLD. Lastly, emerging evi-560 

dence suggests that some drug classes targeting metabolic risk factors, such as 561 

GLP1RAs and SGLT-2 inhibitors, may benefit both the liver and the kidney in indi-562 

viduals with MAFLD and CKD.  563 
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 1179 

Figure 1. Timeline of key comments on the renaming of NAFLD to MAFLD. 1180 

Abbreviations: AASLD, the American association for the study of liver diseases;   1181 

NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steato-1182 

hepatitis; ALD, alcoholic liver disease; AFLD, alcoholic fatty liver 1183 

disease; MAFLD, metabolic dysfunction-associated fatty liver disease; 1184 

CKD, chronic kidney disease; EASL, the European association for the 1185 

study of the liver. 1186 

 1187 

Figure 2. Framework for the diagnosis of NAFLD and MAFLD (A) and “Venn 1188 

diagram” showing schematically the overlap between MAFLD and 1189 

NAFLD in individuals with biopsy-proven fatty liver disease (B).  1190 

 1191 

Figure 3. Mean levels of eGFR (A) and prevalence of CKD stage (B) in MAFLD 1192 

and NAFLD populations.  1193 

Data are presented as mean with 95% confidence intervals (CI) (A) and percentages 1194 
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(B), respectively. * P<0.05. Data were extrapolated from the study by Sun et al22. 1195 

 1196 

Figure 4. PNPLA3 rs738409 polymorphism and related potential mechanisms 1197 

between NAFLD and CKD.  1198 

The PNPLA3 gene is highly expressed in the liver (mostly in hepatocytes and hepatic 1199 

stellate cells), adipose tissue and kidney (mostly in renal podocytes and tubular cells). 1200 

It has been found that the PNPLA3 gene has a lipase activity but the G allele of 1201 

PNPLA3 rs738409 is associated with loss of this lipase activity. The G allele of 1202 

PNPLA3 rs738409 may affect lipid droplet architecture and retinol metabolism, and 1203 

release multiple pro-inflammatory and pro-fibrogenic factors, thereby promoting the 1204 

development and progression of NAFLD. The G allele of PNPLA3 rs738409 also in-1205 

creases ectopic lipid accumulation in both renal mesangial and tubular cells, poten-1206 

tially leading to lipid nephrotoxicity. This genetic variant may also adversely affect 1207 

the activation of renal podocytes causing kidney damage.  1208 

Abbreviations: PNPLA3, patatin-like phospholipase domain-containing 3; NAFLD, 1209 

non-alcoholic fatty liver disease; CKD, chronic kidney disease. 1210 

  1211 

Figure 5. Potential mechanisms implicated in the gut-liver-kidney axis.  1212 

An imbalance diet (e.g. high fructose and high fat) can result in intestinal dysbiosis 1213 

(mainly increasing the Gram-negative bacteria), which may disrupt the intestinal bar-1214 

rier integrity and increase gut permeability. These intestinal disorders may further 1215 

promote the release of lipopolysaccharide (LPS), small molecules and even bacteria 1216 
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into the portal and systemic circulation, causing endotoxemia and low-grade inflam-1217 

mation. Intestinal dysbiosis also increases the production of endogenous alcohol, 1218 

short-chain fatty acids, secondary bile acids, trimethylamine N-oxide, p-cresyl sulfate, 1219 

indoxyl sulfate, and so on, which may affect the development of both NAFLD and 1220 

CKD. Short-chain fatty acids (e.g. acetate, sodium butyrate, and propionate) provide 1221 

up to 9% of the energy requirements. These molecules may also participate in the 1222 

regulation of blood pressure, hepatic lipogenesis and gluconeogenesis, though the ex-1223 

act underlying mechanisms have not been fully elucidated. Thus, sodium butyrate 1224 

supplementation might prevent the progression of NAFLD and CKD. Secondary bile 1225 

acids and trimethylamine N-oxide can inhibit the activation of hepatic nuclear recep-1226 

tor farnesoid X receptor (FXR) signaling, but FXR activation can decrease lipid syn-1227 

thesis, gluconeogenesis, as well as renal inflammation and fibrosis. Trimethylamine 1228 

N-oxide, p-cresyl sulfate and indoxyl sulfate, as the uremic toxins, can adversely af-1229 

fect the kidney by activating oxidative stress and renin-angiotensin system, and injur-1230 

ing vascular endothelium. 1231 
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 1233 


