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Summary An empirical likelihood test is proposed for parameters of models defined
by conditional moment restrictions, such as models with non-linear endogenous covari-
ates, with or without heteroscedastic errors or non-separable transformation models.
The number of empirical likelihood constraints is given by the size of the parameter,5

unlike alternative semi-parametric approaches. We show that the empirical likelihood
ratio test is asymptotically pivotal, without explicit studentisation. A simulation study
shows that the observed size is close to the nominal level, unlike alternative empirical
likelihood approaches. It also offers a major advantages over two-stage least-squares,
because the relationship between the endogenous and instrumental variables does not10

need to be known. An empirical likelihood model specification test is also proposed.

Keywords: Endogenous covariate, Fourier transform, heteroscedasticity, model-specification,
two-stage least-squares.

1. INTRODUCTION15

The theory of empirical likelihood is well established for unconditional moment restric-
tions. See Owen (2001) and Chen and Van Keilegom (2009) for reviews. In statistical
modelling and econometrics, conditional moment restrictions models are often consid-
ered (Amemiya, 1977; Chamberlain, 1987; Hansen and Singleton, 1982; Newey, 1993;
Ai and Chen, 2003; Domı́nguez and Lobato, 2004; Smith, 2007; Chen and Pouzo, 2009;20

Lavergne and Patilea, 2013). These models are defined by the conditional expectation of
an estimation function being zero, when evaluated at the target parameter. For example,
(non-)linear regression models with endogenous covariates with instrumental variables,
models with heteroscedastic errors, transformation models, non-linear (in the parameter)
simultaneous equation models or econometric models of optimising agents (Hansen and25

Singleton, 1982). The generalized method of moments (GMM) procedures may not pro-
vide consistent estimator, with non-linear models, because GMM objective functions can
lead to several global minima. Examples can be found in Domı́nguez and Lobato (2004).
Conditional moment restrictions cannot always be solved with least-squares or pseudo-
maximum likelihood. Nonetheless, it is usually possible to solve them semi-parametrically.30

The approach proposed offers an inference free from assumption about the distribution
of an error term, which is particularly well suited with unknown heteroscedasticity.

Kitamura et al. (2004), Donald et al. (2003) and Chang et al. (2015) developed em-
pirical likelihood-based estimators for conditional moment restrictions. Kitamura et al.’s
(2004) “smoothed empirical likelihood function” (SEL) is weighted by a kernel function.35

Donald et al. (2003) approach is based on splines and is a particular case of Chang et al.’s
(2015) approach. They are both based on high dimensional constraints; that is, the num-
ber of constraints increases with the sample size, even when the size of the parameter
is moderate. This makes them computationally heavy. Our approach is low dimensional
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and has the merit of being solely based on a finite number of constraints given by the40

size of the parameter. The correct size is usually achieved with the empirical likelihood
test statistics proposed. On the other hand, the size of the SEL test statistics may have
the wrong size. Donald et al.’s (2003) empirical likelihood ratio function depends on the
number of splines which affects the size. The approach proposed share some similarities
with Domı́nguez and Lobato’s (2004) integrated regression technique.45

We show that our estimator is
√
n-consistent and its empirical likelihood ratio function

is asymptotically pivotal. It is less computationally intensive than Kitamura et al.’s (2004)
and Donald et al.’s (2003) approaches, and it can be easily implemented with standard
empirical likelihood packages. The proposed test is also more powerful than Domı́nguez
and Lobato’s (2004) wald test. The advantage of the proposed approach is its simplicity50

and the fact that it does not require local smoothing, or a bandwidth selection. The
optimisation problem is low dimensional compared to other empirical likelihood-based
methods (Kitamura et al., 2004; Donald et al., 2003). However, the proposed estimator
does not reach the semiparametric efficiency bound, but an ad-hoc solution is proposed
in Section 4.2.55

The approach is suitable with regression models with endogenous covariates, when we
have an unknown non-linear relationship between the instrumental variables and endoge-
nous covariates. In this case, “two-stage least squares” (2SLS) may produce inefficient
estimates, because the first stage may not be based on the correct relationship between
the instrumental variables and the endogenous covariates. When this relationship is non-60

linear, we may have a weak correlation and inconsistent 2SLS estimators. Examples can
be found in Section S2.1 of the Supplement. With the approach proposed, this relation-
ship does not need to be known. It is also suitable with unknown heteroscedasticity,
which usually gives inefficient “ordinary least squares” (OLS) estimators and wrong sizes
with OLS Wald test. It can be also used with hard-to-estimate transformation model65

(e.g. Horowitz, 2009, Ch.6), such as Box-Cox transformation models.
In Section 2, we define the moment restriction considered and derive an unconditional

moment condition which identifies the parameter. The empirical likelihood approach
proposed is given in Section 3. The main results are the asymptotic properties of the
approach proposed, which can be found in Section 4. An empirical likelihood model70

specification test is proposed in Section 5. Section 6 reports briefly some simulation
results which support our findings. Detailed and additional simulation studies can be
found in Sections S2 and S3 of the supplement. Proofs can be found in Appendix A and
in Section S1 of the supplement.

2. CONDITIONAL MOMENT RESTRICTIONS MODELS75

Let Y ∈ RdY and Z ∈ RdZ denote two random vectors. Let Y contains the response
variables and some covariates which can be exogenous or endogenous. The vector Z may
contain instrumental variables or some of the exogenous variables within Y . The data
are n independent realisations {(Y ′i , Z ′i)′ : i = 1, . . . , n}. Hereafter, A′ shall denote the
transpose of A.80

Consider non-linear models defined by ‘conditional moment restrictions’ given by

E
[
ρ(θ) | Z

]
= 0dρ a.s., if and only if θ = θ0, where ρ(θ) = %(Y, θ) (2.1)

and %(·, ·) is Borel measurable function on Rdρ ×Θ, θ ∈ Θ ⊂ Rdθ and 0r denotes a r× 1
vector of zeros. We assume dθ <∞. Here, %(·) is some given differentiable function. We
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assume that θ0 can be identified by (2.1); that is, for each θ 6= θ0, we have E[ρ(θ)|Z] 6= 0dρ
with P(Z) 6= 0.85

In order to solve (2.1), the customary approach consists in using an “instrument ma-
trix” of functions of Z and θ, denoted A(Z, θ) ∈ Rq×dρ , with q > dθ (e.g. Newey, 1993);
such that (2.1) implies

E
[
A(Z, θ0)ρ(θ0)

]
= 0q· (2.2)

The solution to (2.2) can be obtained by minimising a quadratic form based on the
sample moments (e.g. Chamberlain, 1987; Robinson, 1987; Newey, 1990, 1993). However,90

a solution may be inconsistent or not unique (Domı́nguez and Lobato, 2004; Newey, 1993)
because the solution to (2.2) may be different from θ0. Indeed, (2.2) is necessary but may
not be sufficient for (2.1). Therefore, methods of moments based on (2.2) requires an
identification assumption which states that (2.2) is sufficient for (2.1) (e.g. Newey, 1993,
Assumption 4.2). In other words, it is necessary to assume that (2.2) identifies globally95

the parameters and this assumption does not necessarily holds (Domı́nguez and Lobato,
2004). The approach proposed does not have this drawback, and does not rely on such
identification assumption.

Equation (2.1) is equivalent to the continuum of moment conditions (see Bierens, 1982)

E
[
ρ(θ) exp(2πiη′Z)

]
= 0 ∀η ∈ RdZ iff θ = θ0, (2.3)

where i denotes the imaginary unit. Thus,100

M(θ) :=

∫ ∥∥∥E[ρ(θ) exp(2πiη′Z)
]∥∥∥2

Ŵ (η)dη = 0, iff θ = θ0, (2.4)

for some function Ŵ (·), which is such that Ŵ (η) > 0, ∀η ∈ RdZ . Here, ‖ · ‖ denotes the
Frobenius norm. We propose to use the Fourier transform; that is,

Ŵ (η) :=

∫
W (z) exp(−2πiη′z) dz,

whereW (•) : RdZ → R, is any symmetric function which have a strictly positive integrable
Fourier transform. For example, this could be the Gaussian function (6.44). Bierens (1982)
shows that (2.3) only needs to hold for frequencies η within the neighbourhood of zero.105

Indeed, the function Ŵ (·) gives more weight to frequencies close to zero, as in Bierens
(1982, p.111).

Since (2.3) and (2.4) imply M(θ) > 0 for all θ ∈ Θ, with M(θ0) = 0, we have that
M(θ) identifies θ0; in other words,

θ0 = arg min
θ∈Θ

M(θ)· (2.5)

The function W (•) is not used for local smoothing, and does not require a bandwidth110

selection. It simply ensures that (2.5) holds.

The function M(θ) can be re-formulated in a more convenient way. Let (Y ′i , Z
′
i)
′ and

(Y ′j , Z
′
j)
′ (i 6= j) be two independent copies of (Y ′, Z ′)′. Let ρi(θ) := %(Yi, θ). By using
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the inverse Fourier transform, equation (2.4) reduces to

M(θ) =

∫
E
[
ρi(θ) exp(−2πiη′Zi)

]′
E
[
ρj(θ) exp(2πiη′Zj)

]
Ŵ (η)dη

=

∫
E
[
ρi(θ)

′ρj(θ) exp (2πiη′(Zj − Zi))
]
Ŵ (η)dη

= E
[
ρi(θ)

′ρj(θ)

∫
Ŵ (η) exp (2πiη′(Zj − Zi)) dη

]
= E

[
ρ′i(θ)ρj(θ)W (Zi − Zj)

]
· (2.6)

Note that W (Zi − Zj) are bounded almost everywhere, for i 6= j, because Ŵ (η) is
integrable. This prevents M(θ)→ 0 for θ 6= θ0.

The reformulation (2.6) can be found in Lavergne and Patilea (2013) and in Berger
and Patilea (2020) for endogenous selection. Domı́nguez and Lobato (2004) proposed115

to minimise M̃(θ) :=
∫
‖E[ρ(θ)I(Z 6 η)]‖2dPZ(η) instead of (2.4), where PZ denotes

the probability distribution of Z. An alternative expression similar to (2.6), is M̃(θ) =

E[ρ′i(θ)ρj(θ)W̃ (Zi, Zj)], where W̃ (Zi, Zj) := E[I(Zi∨Zj 6 Z) | Zi, Zj ] = 1−PZ(Zi∨Zj).
The function W̃ (•, •) does not belong to the class of functions W (•) considered here, be-

cause W̃ (Zi, Zj) is not a function of Zi−Zj . Furthermore, W̃ (Zi, Zj) has to be estimated,120

unlike W (•).
Under mild usual conditions which ensure differentiation under the integral sign and

that the map θ 7→M(θ) is convex in the neighbourhood of θ0, (2.5) allows us to replace
the optimisation problem (2.5) by the unconditional moment restriction,

∂M(θ)

∂θ
= E

[
gij(θ) + gji(θ)

]
= 0dθ if and only if θ = θ0, (2.7)

where125

gij(θ) :=
∂ρi(θ)

∂θ
ρj(θ)Wij ∈ Rdθ , (2.8)

Wij :={ W (Zi − Zj) if i 6= j,
0 if i = j·

Here, ∂/∂θ stands for the dθ × 1 vector of partial derivatives. We impose Wij = 0 for
i = j, because (2.6) is based upon two independent copies of (Y ′, Z ′)′. Since E[gij(θ)] =
E[gji(θ)], Equation (2.7) is equivalent to

.
M(θ) := E

[
gji(θ)

]
= 0dθ , if and only if θ = θ0· (2.9)

Equation (2.9) identifies globally the parameter of interest.

3. EMPIRICAL LIKELIHOOD ESTIMATOR130

The estimator proposed is the solution to an empirical equivalent of
.
M(θ), based on

empirical likelihood. Consider the “empirical likelihood ratio function” defined by

R(θ) := max
pi:i=1,...,n

( n∏
i=1

npi : pi > 0,

n∑
i=1

pi = 1,
1

n

n∑
i=1

n∑
j=1

pi gji(θ) = 0dθ

)
, (3.10)

where gji(θ) is defined by (2.8). Within (3.10), it is important to use pi gji(θ) and not
pi gij(θ), in order for Condition 4.6 to hold. The main difference between (3.10) and the
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customary empirical likelihood approach (Owen, 1988; Qin and Lawless, 1994) is the135

double sum within the constraint, which creates some asymptotic hurdles to overcome.
For example, the double sum at θ = θ0 when pi = n−1 needs to be Op(n

− 1
2 ), which is

one of the basic requirements for the asymptotic properties of empirical likelihood. This
is straightforward with single sums; but not with double sums (see Section 4).

We assume that θ in (3.10) is such that 0dθ is an inner point of the convex hull formed140

by the {ĥi(θ) : i = 1, . . . , n}, where

ĥi(θ) :=
1

n

n∑
j=1

gji(θ)· (3.11)

The strict concavity of the objective function
∑n
i=1 log(npi) implies that there exists a

unique solution to constraint within (3.10). It can be shown that (e.g. Owen, 1988)

R(θ) =

n∏
i=1

npi(θ), (3.12)

where

pi(θ) := n−1
(

1 + t′(θ)ĥi(θ)
)−1

, (3.13)

The Lagrange multiplier t(θ) satisfies the constraints within (3.10). It can be computed145

using a modified Newton-Raphson approach (e.g. Polyak, 1987).
The approach proposed has the advantage of reducing the dimensionality of the op-

timisation problem. Indeed, the dual optimisation (3.13) yield to a lower-dimensional
Lagrange multiplier than other empirical likelihood-based methods. For example, Kita-
mura et al.’s (2004) approach involves n multipliers of dimension dρ. Donald et al.’s150

(2003) splines-based empirical likelihood function is based on kdρ multipliers, where k
is the number of splines which increases with n. Here, the multiplier t(θ) is a dθ-vector;
that is, the number of components of t(θ) is given by the size of the parameter, which
has the advantage of not increasing with n.

The ‘maximum empirical likelihood point estimator ’ of θ0 is defined by155

θ̂ := arg max
θ∈Θ
R(θ)· (3.14)

It can be shown that θ̂ is also the solution to
.
Mn(θ) = 0dθ , (3.15)

with

.
Mn(θ) :=

1

n2

n∑
i=1

n∑
j=1

gji(θ) (3.16)

is the empirical equivalent of (2.9). It can be used with non-linear models, when the
GMM objective function does not provide consistent estimator or lead to several global
minima. This estimator can be directly computed from (3.15), without invoking (3.10).160

The function (3.10) will be used to derive the test statistics (3.17).
Unlike Kitamura et al. (2004), we use the traditional empirical likelihood function.

Hence, usual empirical likelihood packages can be used with the estimating function
(3.11). With Kitamura et al.’s (2004) and Donald et al.’s (2003) approaches, the number
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of constraints increases with the sample size, which makes them high dimensional. Our165

approach is based on a fixed number of constraints dθ which is unrelated to n, dρ or dZ ,
unlike Kitamura et al.’s (2004) and Donald et al.’s (2003) estimators.

The estimator proposed possessed the analogous property of a likelihood-type esti-
mator, namely

√
n-consistency and asymptotic normality (Theorem 4.1). In Section 4,

we also show that the empirical likelihood ratio function converges in distribution to170

χ2
dθ

-distribution under the null (Theorem 4.2). Thus, −2 logR(θ0) is indeed an ancillary
pivotal statistics, which can be used as an usual parametric likelihood ratio for testing
hypotheses about θ0.

It is often necessary to test a scalar component of θ0 or a sub-vector of θ0 (e.g. when
we compare two nested models). This can be achieved by profiling −2 logR(θ). Let θ†175

denote a sub-vector of θ. Let ψ ∈ Rdψ is the component of θ which are not part of θ†; say
θ = (θ†′, ψ′)′. by using the Theorem 4.3 in Section 4, we have that the ‘profile empirical
likelihood ratio function’ is pivotal; that is,

−2 max
ψ∈Ψ

logR(θ†0, ψ)
d→ χ2

d
θ†

(3.17)

where Ψ denotes the parameter space of ψ (see (4.35)). Hence, the left hand side of

(3.17) is a function of θ†0 which can be used to test θ†0. Property (3.17) can be used for180

model building by treating the profile empirical likelihood ratio function as a traditional
log-likelihood ratio statistics.

4. MAIN RESULTS

In Section 4.1, we outline the regularity conditions needed for the asymptotic proper-
ties. Consistency and efficiency is discussed in Section 4.2. In Section 4.3, we have she185

asymptotic results of the empirical likelihood ratio statistics. Note that Qin and Lawless’s
(1994) asymptotic results do not directly apply, because the constraint within (3.10) is
a double sum, rather than being a single sum, as in Qin and Lawless (1994).

4.1. Regularity conditions

In what follow, bn denotes an arbitrary sequence such that bn → 0 and nb2n → ∞ and190

Bn := (θ : ‖θ − θ0‖ 6 bn) is a ball around θ0. Consider the following mild regularity
conditions.

Condition 4.1. We have E[‖gij(θ)‖4] <∞, for all θ ∈ Bn, i and j.

Condition 4.2. (a) θ 7→
..
Mn(θ) is continuous on Θ a.s. (b) ‖∂

..
Mn(θ)k/∂θ‖ = Op(1)

uniformly, where
..
Mn(θ)k denotes the k-th row of

..
Mn(θ), where195

..
Mn(θ) :=

∂
.
Mn(θ)

∂θ
∈ Rdθ×dθ (4.18)

and Θ denotes the compact parameter space of θ0.

Condition 4.3. There exists m1, m2 and n0 such that for n > n0, we have that
P
(
0 < m1 6 ‖

..
Mn(θ0)‖ 6 m2 <∞

)
→ 1.
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Condition 4.4. There exists λM and n0 such that for n > n0, we have that P
(
λMmin(θ0) >

λM > 0
)
→ 1, where λMmin(θ0) denotes the smallest eigenvalue of

..
Mn(θ0)′

..
Mn(θ0).200

Condition 4.5. There exists λΩ? and n0 such that for n > n0, we have that P
(
λΩ?

min(θ0) >
λΩ? > 0

)
→ 1, where λΩ?

min(θ0) denotes the smallest eigenvalue of

Ω?n(θ0) :=
1

n

n∑
i=1

h?i(θ0)⊗ h?i(θ0), (4.19)

where

h?i(θ0) := E
[
gji(θ0)

∣∣Zi, Yi] (4.20)

and gji(θ) is defined by (2.8). Here, ⊗ denotes the outer product.

Condition 4.6. There exists λΩ and n0 such that for n > n0, we have that205

P
(
infθ∈Bn λ

Ω
min(θ) > λΩ > 0

)
→ 1, where λΩ

min(θ0) denotes the smallest eigenvalue of

Ωn(θ0) :=
1

n

n∑
i=1

ĥi(θ0)⊗ ĥi(θ0) ∈ Rdθ×dθ · (4.21)

For Condition 4.6 to hold, it is necessary to use pi gji(θ) within (3.10). Indeed, Con-
dition 4.6 would not hold if we use pi gij(θ) instead of pi gji(θ), because in this case, the

quantities ĥi(θ0) would be based on gij(θ0) and would converge to zero. Indeed,

1

n

n∑
j=1

gij(θ0) =
∂ρi(θ0)

∂θ0

1

n

n∑
j=1

ρj(θ0)Wij →
∂ρi(θ0)

∂θ0
E
[
%(Y, θ0) | Zi

]
= 0·

and the smallest eigenvalue of Ωn(θ0) would converge to zero. This can be easily avoided210

by using pi gji(θ) within (3.10), and consequently gji(θ0) within ĥi(θ0).

Condition 4.7. The maximum eigenvalue of Ωn(θ) is finite ∀θ ∈ Bn.

Condition 4.8. There exists λΩ̄? and n0 such that for n > n0, we have that P
(
λΩ̄?

min(θ0) >

λΩ̄? > 0
)
→ 1, where λΩ̄?

min(θ0) denotes the smallest eigenvalue of

Ω?(θ0) := E
[
h?i(θ0)⊗ h?i(θ0)

]
· (4.22)

Condition 4.9. ‖E[gji(θ0)⊗ gji(θ0)]‖ <∞, where gji(θ) is defined by (2.8).215

Condition 4.2-4.4 are mild conditions on the Hessian, closely related to the one found
in Qin and Lawless (1994). Conditions 4.4–4.8 are non-singularity conditions.

4.2. Consistency and semi-parametric efficiency

Lemma 4.1. Under Condition 4.1 and Conditions 4.3–4.9, we have that ‖θ̂−θ0‖ = op(1)

The proof of Lemma 4.1 can be found in Appendix A. This lemma is used to establish220

the following theorem.
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Theorem 4.1. Under Condition 4.1–4.9, we have that

n
1
2

∥∥θ̂ − θ0

∥∥ = Op(1), (4.23)

n
1
2 (θ̂ − θ0)

d→ N(0dθ ,Σ), (4.24)

where

Σ :=
( ..
M
′
(θ0)Ω?(θ0)

−1 ..
M(θ0)

)−1

,

Ω?(θ0) is defined by (4.22) and
..
M(θ0) is the second derivative of M(θ) defined by (2.6).

The proof can be found in Appendix A.225

Under conditions outlined in Newey (1993), semi-parametric efficiency can be obtained
by adding an additional constraint to the empirical likelihood function; that is, consider
an “adjusted empirical likelihood ratio function” given by

R◦(θ, θ◦) := max
pi:i=1,...,n

( n∏
i=1

npi : npi >
1

2
,

n∑
i=1

pi = 1,
1

n

n∑
i=1

n∑
j=1

pi gji(θ) = 0dθ ,

n∑
i=1

pi Â◦i (θ)
(∂ρ′i(θ)

∂θ
(θ◦ − θ) + ρi(θ)

)
= 0dθ

)
, (4.25)

where Â◦i (θ) is an estimator of the optimal instrument (e.g. Newey, 1993) given by

A◦(Zi, θ) := E
[∂ρi(θ)

∂θ

∣∣∣Zi]E[ρi(θ)ρ′i(θ)|Zi]−1· (4.26)

Since the estimator Â◦i (θ) involves estimating conditional expectations, regressions or
nearest neighbour estimator needs to be used (Newey, 1990, 1993; Robinson, 1991). For
example, we can use the Nadaraya (1964) and Watson’s (1964) estimator described in
Section S2.1 of the Supplement.230

Let (θ̂′, θ̂◦′)′ := arg maxθ,θ◦∈ΘR◦(θ, θ◦). Thus, the maximum empirical likelihood es-
timator is

θ̂◦ :=
(
0dθ×dθ , Idθ×dθ

)
arg max

θ,θ◦∈Θ
R◦(θ, θ◦), (4.27)

where 0dθ×dθ denotes the dθ × dθ zero matrix and Idθ×dθ is the dθ × dθ identity matrix.

The estimator θ̂◦ is the solution to

1

n

n∑
i=1

Â◦i (θ̂)
(∂ρ′i(θ̂)

∂θ̂
(θ̂◦ − θ̂) + ρi(θ̂)

)
= 0dθ , (4.28)

where θ̂ defined by the first constraint within (4.25); that is, θ̂ is the solution to (3.16).235

Equation (4.28) is one Newton-Raphson iteration towards the solution of

n−1
∑n
i=1 Â◦i (θ)ρi(θ) = 0q, as in Newey (1993). The estimator θ̂◦ is based on an ini-

tial
√
n-consistent estimator θ̂, rather than an initial arbitrary estimator that may be

inconsistent, as in Newey (1993). The
√
n-consistency of θ̂ implies that this iterative step

gives an efficient estimator. This relies on additional regularity conditions which can be240

found in Newey (1993). The key condition is that the unconditional restrictions (2.2)
with A(Z, θ0) = A◦(Z, θ) identifies globally θ0, which may not be true, as pointed out by
Domı́nguez and Lobato (2004) (see Section 2). It also relies on a well-behaved estimator
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Â◦i (θ) of (4.26), which may be difficult to derive. Examples can be found in Section S3.2
of the Supplement.245

The dual optimisation induced by (4.25) also yield to a low dimensional Lagrange
multiplier of dimension 2dθ. However, local smoothing is needed to estimate (4.26), for
example, when the Nadaraya (1964) and Watson’s (1964) estimator is used. This is disad-
vantage over (3.10) which is free of smoothing parameters. Indeed, smoothing parameters
are often required to reach the semiparametric efficiency.250

In Section S3 of the supplement, a simulation study reveals that θ̂◦ can out-perform
θ̂ in some cases, but can also be less efficient than θ̂ in others. Thus, θ̂◦ should be used
cautiously, and only when Â◦i (θ) is a good estimator. The difference (θ̂◦ − θ̂) should be

small and could be used as a diagnostic. For example, a estimate θ̂◦ is not reliable, when
θ̂◦ is not within an 1−α confidence region; that is, when −2 logR(θ̂◦) is larger than the255

(1− α)-quantile of a χ2
dθ

-distribution.

4.3. Empirical likelihood ratio and testing

Lemma 4.2. Under Condition 4.1 and Conditions 4.5 and 4.6, and for any random
matrix Â such that ‖Â‖ <∞, we have that

.
M

?′
n (θ0) ÂΩn(θ0)−1 .

M
?

n(θ0) =
.
M

?′
n (θ0) ÂΩ?n(θ0)−1 .

M
?

n(θ0) +Op(n
− 3

2 ), (4.29)

where Ω?n(θ) is defined by (4.19) and260

.
M

?

n(θ) :=
1

n

n∑
i=1

h?i(θ)· (4.30)

Here, h?i(θ) is defined by (4.20).

Lemma 4.3. Under Condition 4.1, we have t(θ0) = Op(n
− 1

2 ) and

t(θ0) = Ωn(θ0)−1
.
M

?

n(θ0) +Op(n
−1).

The proof of Lemmas 4.2 and 4.3 can be found in the supplement. Note that
.
M

?

n(θ0) is
a single sum, which is a key feature to derive the asymptotic distribution, based on the265

approximation of t(θ0) in Lemma 4.3 (see the proof of Theorem 4.2 and equation (4.35)).

Theorem 4.2. Under Condition 4.1–4.9, we have that

−2 logR(θ0)
d→ χ2

dθ
, (4.31)

where χ2
dθ

denotes the χ2-distribution with dθ degrees of freedom.

Proof of Theorem 4.2 This proof is based on Lemmas S2 and S3, which can be found
in the supplement. Lemma S3 implies that the conditions of Lemma S2 holds with bn270

and θ respectively replaced by n−
1
2 and θ0. Thus, by using Lemma S2, we obtain

−2 logR(θ0) = n t′(θ0)Ωn(θ0)t(θ0) +Op(n
− 1

2 )· (4.32)
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By substituting into (4.32), the expression of t(θ0) within Lemma 4.3, we obtain

−2 logR(θ0) = n
( .
M

?′
n (θ0)Ωn(θ0)−1 .

M
?

n(θ0) + 2
.
M

?′
n (θ0)Op(n

−1)

+Op(n
−1)′Ωn(θ0)Op(n

−1)
)

+Op(n
− 1

2 )· (4.33)

Now, Lemma S3 implies
.
M

?′
n (θ0)Op(n

−1) = Op(n
− 3

2 ). Since the minimum eigenvalue of
Ωn(θ0) is bounded away from zero, we have that Op(n

−1)′Ωn(θ0)Op(n
−1) = Op(n

−2).
Thus, (4.33) reduces to

−2 logR(θ0) = n
.
M

?′
n (θ0)Ωn(θ0)−1 .

M
?

n(θ0) +Op(n
− 1

2 )·

Now, by using Lemma 4.2 with Â being the identity matrix, we obtain275

−2 logR(θ0) = n
.
M

?′
n (θ0)Ω?n(θ0)−1 .

M
?

n(θ0) +Op(n
− 1

2 )· (4.34)

The key feature of (4.34) is that the right hand side is a quadratic form with
.
M

?

n(θ)

being a single sum, despite that (3.16) is an double sum. Since E[
.
M

?

n(θ0)] = 0

and n−1E[Ω?n(θ0)] = V [
.
M

?

n(θ0)], standard central limit theorem implies that

n
1
2 Ω?n(θ0)−

1
2

.
M

?

n(θ0) converges (in distribution) to a standard multivariate normal
distribution. Hence, (4.34) converges in distribution to χ2

dθ
-distribution and (4.31)280

follows. �

Theorem 4.3. Let θ̃0 = (θ†′0 , ψ
′
M )′, where ψM := arg maxψ∈Ψ logR(θ†0, ψ) and θ†0 de-

notes a sub-vector of θ0 and ψ ∈ Rdψ is the remaining sub-vector. Under Conditions
4.1–4.9, we have that285

−2 logR(θ̃0) = n
.
M

?′
n (θ0)(Idθ×dθ −A0)Ω?n(θ0)−1 .

M
?

n(θ0) +Op(n
− 1

2 )
d→ χ2

d
θ†
, (4.35)

where Idθ×dθ denotes the dθ × dθ identity matrix and

A0 := Ωn(θ0)−1∇n
(
∇nΩn(θ0)−1∇′n

)−1

∇′n,

∇n :=
1

n

n∑
i=1

∂ĥi(θ)

∂ψ

∣∣∣
θ†=θ†0,ψ=ψ0

· (4.36)

The proof of Theorem 4.3 can be found in Appendix A.
With (4.25), testing can be based on −2 maxθ∈Θ logR◦(θ, θ◦) which converges in dis-

tribution to χ2-distribution with dθ† degree of freedom, when θ◦ = θ0. The proof is
analogous to the proof of Theorem 4.3, and involves regularity conditions on Â◦i (θ), as290

in Newey (1993).

4.4. Local power and test consistency

We establish an asymptotic expression for the local power. We also show that the em-
pirical likelihood ratio test is consistent.

Lemma 4.4. Let θ̃ = θ0 + Lbn, for some ‖L‖ < ∞, where bn denotes an arbitrary295
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sequence such that nb2n → ∞ and bn → 0. If (nmink=1,...,n pk(θ̃))−1 = Op(1), we have
that

−2 logR(θ̃) = n
.
Mn(θ̃)′Ωn(θ̃)−1 .

Mn(θ̃) +Op(nb
3
n)· (4.37)

The proof of Lemma 4.4 can be found in the supplement. Corollary 4.1 shows that the
empirical likelihood ratio test of the hypothesis H0 : θ = θ̃ is consistent against the
alternative HA : θ 6= θ̃, because the power tends to 1, as n→∞.300

Corollary 4.1. With θ̃ defined as in Lemma 4.4, we have that there exists a sequence
rn →∞, such that P(−2 logR(θ̃) > rn)→ 1 , as n→∞.

The proof of Corollary 4.1 can be found in the supplement.
By using Lemma 4.4, we can derive the local power of the test H0 : θ = θ̆, with

θ̆ = θ0 + Ln−
1
2 against the alternative hypothesis based on the correct value of the305

parameter. By substituting bn by n−
1
2 , Lemma 4.4 implies

−2 logR(θ̆) = n
.
Mn(θ̆)′Ωn(θ̆)−1 .

Mn(θ̆) +Op(n
− 1

2 )· (4.38)

Since Ωn(θ̆)−1 − E
[
Ωn(θ̆)

]−1
= Ωn(θ̆)−1

[
E
[
Ωn(θ̆)

]
− Ωn(θ̆)

]
E
[
Ωn(θ̆)

]−1
, we have that∥∥∥ .

Mn(θ̆)′
[
Ωn(θ̆)−1 − E

[
Ωn(θ̆)

]−1] .
Mn(θ̆)

∥∥∥ 6 ∥∥Ωn(θ̆)−1
∥∥∥∥E[Ωn(θ̆)

]−1∥∥∥∥∥E[Ωn(θ̆)
]
− Ωn(θ̆)

∥∥∥∥∥ .
Mn(θ̆)

∥∥· (4.39)

Note that (S.7) implies
∥∥ .
Mn(θ̆)

∥∥ = Op(n
− 1

2 ). Thus, under Ωn(θ̆)−E
[
Ωn(θ̆)

]
= Op(n

− 1
2 ),

we have that the right hand side of (4.39) is Op(n
− 3

2 ). Hence, (4.38) implies

−2 logR(θ̆) = n
.
Mn(θ̆)′E

[
Ωn(θ̆)

]−1 .
Mn(θ̆) +Op(n

− 1
2 )·

Since, n−1E
[
Ωn(θ̆)

]
l V [

.
Mn(θ̆)], we can conjecture that n

1
2E
[
Ωn(θ̆)

]− 1
2
.
Mn(θ̆) con-

verges (in distribution) to a multivariate normal distribution with a covariance matrix310

Idθ×dθ , we have that−2 logR(θ̆) has a limit χ2-distribution with dθ degree of freedom and

a non-centrality parameter τ(θ̆) := 4nµ(θ̆)′µ(θ̆), where µ(θ̆) := E
[
Ωn(θ̆)

]− 1
2E
[ .
Mn(θ̆)

]
.

Taylor’s theorem and E[
.
Mn(θ0)] imply E[

.
Mn(θ̆)] = E[

..
Mn(θ0)]Ln−

1
2 + O(n−1); where

..
Mn(θ) is defined by (4.18). Thus, the non-centrality parameter can be approximated by

τ(θ̆) l L′Sn(θ0)L,

where315

Sn(θ0) := E[
..
Mn(θ0)]′E

[
Ωn(θ̆)

]−1
E[

..
Mn(θ0)]·

Finally, an asymptotic approximation for the local power is

β(θ̆) l 1− F
(
χ2
dθ;1−α, dθ, τ(θ̆)

)
, (4.40)

where F (·, dθ, τ(θ̆)) is the distribution function of a non-central χ2-distribution with dθ
degree of freedom and a non-centrality parameter τ(θ̆). Here, χ2

dθ;1−α is the (1 − α)-

quantile of a central χ2
dθ

-distribution. Since τ(θ̆) > 0, we have that β(θ̆) is indeed larger

than a type I error α. The asymptotic power increases with τ(θ̆), as expected. The matrix320
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Sn(θ0) characterises the curvature of −2 logR(θ̆). A large curvature increases the values

of τ(θ̆) which implies a greater power and smaller confidence region. For power analysis,

(4.40) can be estimated by replacing the matrix Sn(θ0) by
..
M
′
n(θ̂)Ωn(θ̂+Ln−

1
2 )−1

..
Mn(θ̂).

Simulation results related to the estimation of (4.40) can be found in Section S2 of the
supplement.325

5. AN EMPIRICAL LIKELIHOOD MODEL SPECIFICATION TEST

Suppose we wish to test

H0 : ∃ θ ∈ Θ : E
[
%(Y, θ) | Z

]
= 0dρ , a.s.

against HA : P[E[%(Y, θ) | Z] = 0dρ ] < 1, ∀θ ∈ Θ. By using (2.3), we see that H0 holds
if ∃ θ ∈ Θ such that E[ρ(θ) exp(2πiη′Z)] = 0, ∀η ∈ RdZ , or equivalently if

∃ θ ∈ Θ : E
[
ρ(θ) ⊗z(2πη′Z)

]
= 0dρ×2,

∀η ∈ RdZ , where330

z(x) :=
(
cos(x), sin(x)

)′ ∈ R2·

Consider

R̃(θ, η) := max
pi:i=1,...,n

( n∏
i=1

npi : pi > 0,

n∑
i=1

pi = 1,

n∑
i=1

pi ρi(θ) ⊗z(2πη′Zi) = 0dρ×2

)
·

Following Qin and Lawless (1994), it can be shown that under H0 and for a given η

−2 log R̃(θ0, η)
d→ χ2

2dρ ·

Since θ̂ is a
√
n -consistent estimator of θ0, we have that log R̃(θ̂, η) and log R̃(θ0, η) have

the same asymptotic distribution under H0 (see Theorem S1 in the supplement); that is,

−2 log R̃(θ̂, η)
d→ χ2

2dρ , ∀η· (5.41)

We propose to use the following test statistics.335

S(θ̂) := max
η∈Γε

(
−2 log R̃(θ̂, η)

)
, (5.42)

where Γε denotes a finite set of dΓ vectors randomly chosen within a dZ-ball of dimension
ε centred at zero. By using (5.41), the asymptotic distribution of S(θ̂) under H0, is given
by the distribution of the variable X 2

max := max(X 2
i : i = 1, . . . , dΓ), where X 2

1 , . . ., X 2
i ,

. . ., X 2
dim(Γε)

denote dΓ independent χ2-distributed random variables with 2dρ degrees of

freedom. Thus, X 2
max follows a Gumbel distribution, as dΓ →∞ (Embrechts et al., 1997,

Ch.3), and the asymptotic p-value is

p-value = 1− exp
(
− exp

(1

2
S(θ̂)− log(dΓ) + (1− dρ) log log(dΓ) + log Γ(dρ)

))
· (5.43)

We reject H0 if the p-values is less than a nominal size α. On the other hand, under HA,
the quantity n−1

∑n
i=1 ρi(θ̂) ⊗ z(2πη′Zi) would be significantly different from zero for

some η, leading to large values for S(θ̂), which increases the probability of rejecting H0.
The test depends on the arbitrarily chosen constants ε and dΓ, specifying the size of

the dZ-ball and the number of vectors within it. The p-value is automatically adjusted340

for dΓ. Finding a suitable decision rule to determine ε and dΓ is beyond the scope of
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this paper. The simulation study in Section 6 and in Section S2.6 of the supplement,
shows that the proposed specification test has the right size and acceptable power, with
large sample sizes. The effect of ε and dΓ on the size and the power is minimal when the
sample size is large. For small sample size, having small values for ε and dΓ seems more345

suitable.

6. SIMULATION STUDY

In Section S2 of the supplement, we have the detailed simulation study, additional sim-
ulation results of linear models with endogenous covariates, as well as simulation results
related to Kitamura et al.’s (2004) smoothed empirical likelihood (SEL) approach.350

For the simulation studies, we shall use the Gaussian function for W (•); that is,

W (z) := exp
(
−µ ‖z‖2

)
, (6.44)

where µ is strictly positive.
Consider Domı́nguez and Lobato’s (2004) non-linear model, given by

Y = θ2
0Z + θ0Z

2 + u, (6.45)

with θ0 = 1.25, Z ∼ N (µZ , 1) independent of u ∼ N (0, 1). Here, µZ = 0 or 1. When
µZ = 1, the optimal instrument cannot identify θ0, but it does with µZ = 0 (Domı́nguez355

and Lobato, 2004). Here, µ = 0.5. The sample size is n = 100. We use 1000 replicates. In
Table 1, we have the observed local power based on the EL test based on (4.31) (column
EL) and on Domı́nguez and Lobato’s (2004) Wald statistics (columns DL). The observed
sizes are close to 5%, but the size of DL with µZ = 0 is about 7%. We clearly see that
the EL test is more powerful.

Table 1. Observed local power (%). H0 : θ = θ0 +Ln−
1
2 ; where L = ` 1dθ . Nominal level

= 5%. n = 100. 1000 replicates.

µZ = 0 µZ = 1
` el dl el dl

-1.0 60.6 32.2 99.7 80.7
-0.5 21.1 14.7 72.5 33.2
0.0 6.2 7.1 5.8 4.9
0.5 22.7 11.8 74.9 32.6
1.0 67.2 31.0 99.7 83.8

360

In Section S3.2 of the supplement, we compare the root mean-squared errors for dif-
ferent models. For example, under (6.45), the proposed estimators (3.14) and (4.27) are
more efficient than SEL, SBEL and DL, with DL being the less efficient.

Consider Bierens’s (1982) example to illustrate the model specification test proposed
in Section 5; namely,365

Y = Z(1) + Z(2) + Z(1)Z(2) + ε1, (6.46)

Y = Z(1) + Z(2) + ε2; (6.47)

where Z(1) := (Z2 − 1)/
√

2, Z ∼ N (0, 1), Z(2) ∼ N (1, 1), ε1 ∼ N (0, σ2
ε = 0.04) and
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ε2 ∼ N (0, σ2
ε = 2.04). We wish to test

H0 : ∃ θ = (α, β(1), β(2))′ ∈ Θ: E
[
Y − α− β(1)Z(1) − β(2)Z(2) | (Z(1), Z(2))′

]
= 0dρ , a.s.

Under model (6.46), H0 is false and under (6.47), H0 is true. The number of vectors
within Γε is given by dΓ := dπε2e, where ε is the radius of a 2-ball. We shall consider
dZ-balls of sizes ε = 5, 10, 20 and 30.

In Table 2, we report observed rejection rates of H0, under models (6.46) and (6.47),
with a nominal size 0.05. Under model (6.46), H0 is false and we observe large rates,370

especially with large value of ε. With the model (6.47), the rates are close to the nominal
level, with n = 500 and . Larger rates are observed with n = 100. A small value for ε is
enough to achieve a decent size. Nevertheless, large values of ε increases the power, for
small sample sizes.

Table 2. Rejection rates (%) of H0, under (6.46) and (6.47). Nominal size = 0.05. 1000
replicates.

Model (6.46): H0 false. Model (6.47): H0 true.
n ε = 5 ε = 10 ε = 20 ε = 30 ε = 5 ε = 10 ε = 20 ε = 30
100 51.6 56.9 65.0 73.3 8.7 10.5 14.5 18.2
200 49.4 49.1 55.4 55.5 7.0 6.7 6.3 8.4
500 55.5 50.5 46.8 49.5 7.8 5.0 8.1 4.6

7. EMPIRICAL EXAMPLE375

The 1998–99 UK Family Expenditure Survey (FES) is a random sample stratified by
region which contains n = 6630 private households drawn from the Post Office’s list of
addresses (e.g. Goodman and Webb, 1994). We use the FES data to fit a basic income-
determination model between total household expenditure (Y) and income (X ).

Y = α0 + β0X + ε, with E[ε | Z] = 0 and Z := X − Y·

The income X is potentially endogenous and Z is treated as an instrumental variable.380

To protect the confidentiality, the scale of the variables was changed and the name and
size of the regions are not revealed.

First, we test if Z is instrumental; that is, we test

HZ
0 : ∃α, β : E

[
Y − α− βX | Z

]
= 0dρ , a.s. (7.48)

In Table 3, we report of the p-values (5.43) of the 12 regions, for testing (7.48), with
the approach of Section 5. Here, ε = 30 and dZ = 3000. The regions haven been sorted385

according to their p-value and re-labelled. Coincidentally, we do not reject HZ
0 at 5%

level, for 6 out of the 12 regions.
In Figure 1, we have the estimates (3.14) and those of Domı́nguez and Lobato’s (2004)

(DL) and 2SLS, for the first 6 regions, with p-values less than 5% in Table 3. The vertical
bars represents the 95% confidence intervals of EL, DL and on 2SLS. We also report the390

values of (4.27). The quantity µ within (6.44) is given by µ = (2 σ̂2
z)−1, where σ̂z is the

observed standard deviation of the variable Z.
The OLS estimates are biased, because of the endogeneity of X . The confidence interval

tends of EL and DL overlap, but DL tends to give wider confidence intervals, because
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Table 3. p-values (5.43) for testing (7.48). µ = (2 σ̂2
z)−1.

Region p-value Region p-value Region p-value Region p-value
1 0.40 4 0.13 7 0.04 10 0.01
2 0.30 5 0.11 8 0.04 11 0.00
3 0.26 6 0.08 9 0.03 12 0.00

1 2 3 4 5 6

−
0

.1
0

−
0

.0
5

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
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Intercept

95% Confidence Intervals

EL

DL

2SLS

Point estimates (intercept)

EL Opt DL 2SLS OLS

1 2 3 4 5 6

0
.2

0
0

.2
5

0
.3

0
0

.3
5

0
.4

0
0

.4
5

Regions

Slope

95% Confidence Intervals

EL

DL

2SLS

Point estimates (slope)

EL Opt DL 2SLS OLS

Figure 1. Point estimates (intercept and slope) and 95% confidence intervals. 1998–99 UK
Family Expenditure Survey data. EL: proposed empirical likelihood (3.14). Opt: estimate
(4.27). DL: Domı́nguez and Lobato (2004). 2SLS: two-stage least squares. OLS: ordinary
least squares. µ = (2 σ̂2

z)−1.

the DL point estimator can be less accurate than EL. We notice significant difference395

between the proposed empirical likelihood (EL) approach and 2SLS. Confidence intervals
may or may not overlap. The EL intervals can be asymmetric due to the skewness of the
data. We mostly obtain smaller intercepts and larger slopes for EL compared to 2SLS.
The EL estimates tends to be between the OLS and 2SLS estimates. The estimator (4.27)
(Opt) based on the optimal instrument, is usually close to EL, but drifts slightly in the400

direction of the 2SLS estimates. Since X and Z are skewed, the relationship between X
and Z is heteroscedastic and/or may not be linear. As a result a bias can be introduced
within the fitted values of the first stage of 2SLS. This tends to underestimate the slope
and overestimate the intercept, as observed in Figure 1.

8. CONCLUDING REMARKS405

The empirical likelihood estimator proposed has several advantages over its competitors,
namely Domı́nguez and Lobato’s (2004), Donald et al.’s (2003) and Kitamura et al.’s
(2004) approaches. The point estimator proposed is a solution to a finite number of esti-
mating equations, and can be simply computed with usual empirical likelihood packages.
Donald et al.’s (2003) and Kitamura et al.’s (2004) approaches are based on high dimen-410
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sional constraints, which may creates some instability in the estimates. The simulation
studies in Section S3 of the supplement, show that the estimator proposed is as accurate
as its competitors. It may even be more precise with over-identified moment restrictions.
We also proposed an empirical likelihood test for model specification. The simulation
study in the supplement shows that this test has an acceptable size.415

We showed that the self-normalising property holds. We provide an expression for the
local power and show that the proposed test is asymptotically consistent. The simulation
studies shows that the test proposed has usually the right size and has acceptable power.
Domı́nguez and Lobato’s (2004) Wald test may be less powerful, and its point estimator
can be less accurate. The empirical likelihood ratio function test statistics proposed by420

Donald et al.’s (2003) and Kitamura et al.’s (2004) may not have the right sizes.
In Section 4.2, we also propose an efficient estimator based on an empirical likelihood

ratio function adjusted with an additional constraint. This leads to an efficient estimator,
under some specific conditions. This adjusted estimator should be used with caution,
because our simulation study shows that it can be inefficient, when these conditions are425

not met.
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APPENDIX A: PROOFS OF RESULTS

Proof of Lemma 4.1
Since equation (4.34) is not based on any results derived within the current proof,495

−2 logR(θ0) = Op(1) and ∀e1, and there exists τ <∞ such that

P
(
−2 logR(θ0) 6 τ

)
> 1− e1· (A.1)

Let θ̃ = θ0 + Lbn, for some ‖L‖ = 1, where bn denotes an arbitrary sequence such that

nb2n →∞ and bn → 0. Since θ̂ minimises −2 logR(θ) and θ̂ is assumed unique, we have
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that −2 logR(θ̃) > −2 logR(θ0) implies θ̂ ∈ (θ : ‖θ − θ0‖ 6 bn); that is, ‖θ̂ − θ0‖ 6 bn.
Thus,500

P
(
‖θ̂ − θ0‖ 6 bn

)
> P

(
−2 logR(θ̃) > −2 logR(θ0)

)
· (A.2)

We have that Corollary 4.1 and −2 logR(θ0) 6 τ <∞ imply −2 logR(θ̃) > −2 logR(θ0)

for n large enough, because −2 logR(θ̃) > 0 and −2 logR(θ0) > 0. Thus, (A.2) implies

P
(
‖θ̂ − θ0‖ 6 bn

)
> P

((
−2 logR(θ̃) > rn

)
∩
(
−2 logR(θ0) 6 τ

))
· (A.3)

Now, Corollary 4.1 and (A.1) imply that the right hand side of (A.3) tends to one. Thus,

for n large enough, P(‖θ̂ − θ0‖ 6 bn)→ 1; that is, ‖θ̂ − θ0‖ = op(1). �
505

Proof of Theorem 4.1 Under Conditions 4.2, Young’s theorem (Serfling, 1980, p.45)
implies

.
Mn(θ̂) =

.
Mn(θ0) +

..
Mn(θ0)(θ̂ − θ0) + ‖θ̂ − θ0‖2Op(1),

where
..
Mn(θ) is defined by (4.18). We have

.
Mn(θ̂) = 0, because θ̂ is the solution to (3.16).

Thus, using (S.7), we have

..
Mn(θ0)(θ̂ − θ0) = Op(n

− 1
2 ) + ‖θ̂ − θ0‖2Op(1)· (A.4)

Thus, Lemma 4.1, Condition 4.3 and (A.4) imply (4.23).510

Note that ‖t(θ0)‖ = Op(n
− 1

2 ) follows from Lemma S1 with θ = θ0 and bn = n−
1
2 .

By using (3.13), the constraint within (3.10) reduces to

n∑
i=1

ĥi(θ̂)

1 + t′(θ̂)ĥi(θ̂)
= 0dθ · (A.5)

By substituting (3.13) into (3.12), we obtain

logR(θ̂) = −
n∑
i=1

log
(
1 + t′(θ̂)ĥi(θ̂)

)
·

Since θ̂ is the solution to n−1∂ logR(θ)/∂θ = 0, we have that

n∑
i=1

pi(θ̂)
(∂t′(θ̂)

∂θ̂
ĥ′i(θ) + t′(θ̂)

∂ĥi(θ̂)

∂θ̂

)
= t′(θ̂)

n∑
i=1

pi(θ̂)
∂ĥi(θ̂)

∂θ̂
= 0dθ , (A.6)

because of (A.5). By combining equations (A.5) and (A.6), and by using (3.13), we obtain515

1

n

n∑
i=1

ci(t(θ̂), θ̂)

1 + t′(θ̂)ĥi(θ̂)
= 0dθ+dψ , (A.7)

where ci(t, θ) := [ĥ′i(θ), (∂ĥ
′
i(θ)/∂θ)t]

′. A Taylor approximation of the left-hand side of
(A.7) around (0′dθ , θ

′
0)′ gives

1

n

n∑
i=1

ci(t(θ̂), θ̂)

1 + t′(θ̂)ĥi(θ̂)
=

1

n

n∑
i=1

ci(0dθ , θ0) + D̃0

(
t′, (θ̂ − θ0)′

)′
+ op(n

− 1
2 ), (A.8)
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where

D̃0 :=
1

n

n∑
i=1

∂

∂(t′, θ′)′

( ci(t, θ)

1 + t′ĥi(θ)

)∣∣∣t=0dθ
θ=θ0

=

(
−Ωn(θ0)

..
Mn(θ0)

..
M
′
n(θ0) 0dθ×dθ

)
·

Here,
..
Mn(θ) and Ωn(θ) are respectively defined by (4.18) and (4.21). Equation (S.2)

implies Ωn(θ0) = Ω?n(θ0) +Op(n
− 1

2 )→ Ω?(θ0) given by (4.22) Assuming that
..
Mn(θ0)→

..
M(θ0), the second derivative of M(θ) defined by (2.6). Thus,

D̃0 →

(
−Ω?(θ0) 2

..
M(θ0)

2
..
M
′
(θ0) 0dθ×dθ

)
· (A.9)

We also have that520

1

n

n∑
i=1

ci(0dθ , θ0) =
( .
Mn(θ0), 0′dθ

)′
, (A.10)

where
.
Mn(θ) is defined by (3.16). Using the Schur complement, equations (A.7), (A.8),

(A.9) and (A.10) imply

n
1
2 (θ̂ − θ0) =

( ..
M
′
(θ0)Ω?(θ0)

−1 ..
M(θ0)

)−1 ..
M
′
(θ0)Ω?(θ0)

−1
n

1
2
.
Mn(θ0) + op(1)·

Since V [
.
Mn(θ0)] l V [

.
M

?

n(θ0)] = n−1Ω?(θ0), we have that (4.24) holds. �

Proof of Theorem 4.3 Since ψM is the empirical likelihood estimator after imposing525

the first components θ† to be equal to θ†0. The proof that led to Theorem 4.1 can be used
to show

‖ψM − ψ0‖ = Op(n
− 1

2 )· (A.11)

Condition 4.2 implies
.
Mn(θ̃0) =

.
Mn(θ0) +

..
Mn(θ0)(ψM − ψ0) + ‖ψM − ψ0‖2Op(1),

where
..
Mn(θ) is defined by (4.18). Thus, Lemmas S3 and S4, (A.11) and Condition 4.3

imply530

.
Mn(θ̃0) = Op(n

− 1
2 )· (A.12)

Equation (A.12) implies that we can use Lemma S1 with θ = θ̃0 and bn = n−
1
2 . Thus,

‖t(θ̃0)‖ = Op(n
− 1

2 )· (A.13)

By using (3.13), the constraint within (3.10) reduces to

n∑
i=1

ĥi(θ̃)

1 + t′(θ̃)ĥi(θ̃)
= 0dθ , with θ̃ = (θ†′0 , ψ

′)′· (A.14)

By substituting (3.13) into (3.12), we obtain

logR(θ̃) = −
n∑
i=1

log
(
1 + t′(θ̃)ĥi(θ̃)

)
· (A.15)
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We have that ψM is the solution to n−1∂ logR(θ̃)/∂ψ = 0. This reduces to

n∑
i=1

pi(θ)
(∂t′(θ̃)

∂ψ
ĥi(θ̃) + t′(θ̃)

∂ĥi(θ̃)

∂ψ

)
= t′(θ̃)

n∑
i=1

pi(θ)
∂ĥi(θ̃)

∂ψ
= 0dψ , when ψ = ψM ,

(A.16)

because of (A.14). By combining (A.14) and (A.16), and by using (3.13), we obtain

1

n

n∑
i=1

ci(t(θ̃), ψ)

1 + t′(θ̃)ĥi(θ̃)
= 0dθ+dψ , when ψ = ψM ; (A.17)

where ci(t, ψ) := [ĥ′i(θ), (∂ĥ
′
i(θ̃)/∂ψ)t]′. A Taylor approximation of (A.17) around535

(t′, ψ′)′ = (0′dθ , ψ
′
0)′ gives

1

n

n∑
i=1

ci(t, ψ)

1 + t′ĥi(θ̃)
=

1

n

n∑
i=1

ci(0dθ , ψ0) +D0

(
t′, (ψ−ψ0)′

)′
+
∥∥(t′, (ψ−ψ0)′

)∥∥2
Op(1), (A.18)

where

D0 :=
1

n

n∑
i=1

∂

∂(t′, ψ′)′

( ci(t, ψ)

1 + t′ĥi(θ̃)

)∣∣∣
t=0dθ ;ψ=ψ0

=

(
−Ωn(θ0) ∇n
∇′n 0dψ×dψ

)
· (A.19)

Here, Ωn(θ) and ∇n are respectively defined by (4.21) and (4.36).

Now, by substituting within (A.18), t and ψ respectively by t(θ̃0) and ψM , we have
that (A.11), (A.13) and (A.17) imply that (A.18) reduces to(

t′(θ̃0), (ψM − ψ0)′
)′

= −D−1
0

1

n

n∑
i=1

ci(0dθ , ψ0) +Op(n
−1)

= −D−1
0

( 1

n

n∑
i=1

ĥ′i(θ0), 0′dψ

)′
+Op(n

−1)· (A.20)

Now, by substituting (A.19) within (A.20), we obtain

t(θ̃0) = (Idθ×dθ −A0)Ωn(θ0)−1 .
Mn(θ0) +Op(n

−1)· (A.21)

A Taylor expansion of (A.15), around (t′(θ̃0), ψ′M )′ = (0′dθ , ψ
′
0)′ gives540

−2 logR(θ̃0) =

n∑
i=1

log(1 + δ̃i) = 2

n∑
i=1

δ̃i −
n∑
i=1

δ̃ 2
i + 2

n∑
i=1

ϕ̃i, (A.22)

where δ̃i := t′(θ̃0)ĥi(θ0) and ϕ̃i is such that P(|ϕ̃i| ≤ κ|δ̃i|
3
, i ∈ s) → 1, for some finite

κ > 0. Now, we follow the same derivation that lead to (S.44) from (S.40). By using
(A.13) and (S.37) which holds with θ = θ0, equation (A.22) reduces to

−2 logR(θ̃0) =

n∑
i=1

δ̃ 2
i +Op(n

− 1
2 ) = n t′(θ̃0)Ωn(θ0)t(θ̃0) +Op(n

− 1
2 )· (A.23)

Now, by substituting (A.21) within (A.23) and by using Lemma 4.2, we obtain (4.35) (see

(S.46)–(S.48) for similar derivation). Finally, −2 logR(θ̃0)
d→ χ2

d
θ†

, because (Idθ×dθ−A0)545

is an idempotent matrix with trace dθ† . �


