The University of Southampton
University of Southampton Institutional Repository

Machine learning the carbon footprint of bitcoin mining

Machine learning the carbon footprint of bitcoin mining
Machine learning the carbon footprint of bitcoin mining
Building on an economic model of rational Bitcoin mining, we measure the carbon footprint of Bitcoin mining power consumption using feedforward neural networks. After reviewing the literature on deep learning methods, we find associated carbon footprints of 3.8038, 23.8313 and 19.83472 MtCOe for 2017, 2018 and 2019, which conform with recent estimates, lie within the economic model bounds while delivering much narrower confidence intervals, and yet raise alarming concerns, given recent evidence from climate-weather integrated models. We demonstrate how machine learning methods can contribute to non-for-profit pressing societal issues, like global warming, where data complexity and availability can be overcome.
DP16267
Centre for Economic Policy Research
Calvo-Pardo, Hector
07a586f0-48ec-4049-932e-fb9fc575f59f
Olmo, Jose
706f68c8-f991-4959-8245-6657a591056e
Mancini, Tullio
3e5a59a2-e184-4996-a7d6-7b4394bec08c
Calvo-Pardo, Hector
07a586f0-48ec-4049-932e-fb9fc575f59f
Olmo, Jose
706f68c8-f991-4959-8245-6657a591056e
Mancini, Tullio
3e5a59a2-e184-4996-a7d6-7b4394bec08c

Calvo-Pardo, Hector, Olmo, Jose and Mancini, Tullio (2021) Machine learning the carbon footprint of bitcoin mining (Centre for Economic Policy Research, DP16267) Centre for Economic Policy Research

Record type: Monograph (Working Paper)

Abstract

Building on an economic model of rational Bitcoin mining, we measure the carbon footprint of Bitcoin mining power consumption using feedforward neural networks. After reviewing the literature on deep learning methods, we find associated carbon footprints of 3.8038, 23.8313 and 19.83472 MtCOe for 2017, 2018 and 2019, which conform with recent estimates, lie within the economic model bounds while delivering much narrower confidence intervals, and yet raise alarming concerns, given recent evidence from climate-weather integrated models. We demonstrate how machine learning methods can contribute to non-for-profit pressing societal issues, like global warming, where data complexity and availability can be overcome.

This record has no associated files available for download.

More information

Published date: 16 June 2021

Identifiers

Local EPrints ID: 450503
URI: http://eprints.soton.ac.uk/id/eprint/450503
PURE UUID: 25c48dea-f39a-4ffa-b255-9a390c4affba
ORCID for Hector Calvo-Pardo: ORCID iD orcid.org/0000-0001-6645-4273
ORCID for Jose Olmo: ORCID iD orcid.org/0000-0002-0437-7812

Catalogue record

Date deposited: 30 Jul 2021 16:31
Last modified: 17 Mar 2024 03:32

Export record

Contributors

Author: Jose Olmo ORCID iD
Author: Tullio Mancini

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×