Supertoroidal light pulses as electromagnetic skyrmions propagating in free space
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Topological complex transient electromagnetic fields give access to nontrivial light-matter interactions and pro-
vide additional degrees of freedom for information transfer. An important example of such electromagnetic exci-
tations are space-time non-separable single-cycle pulses of toroidal topology, the exact solutions of Maxwell de-
scribed by Hellwarth and Nouchi in 1996 and recently observed experimentally. Here we introduce an extended
family of electromagnetic excitation, the supertoroidal electromagnetic pulses, in which the Hellwarth-Nouchi
pulse is just the simplest member. The supertoroidal pulses exhibit skyrmionic structure of the electromagnetic
fields, multiple singularities in the Poynting vector maps and fractal-like distributions of energy backflow. They
are of interest for transient light-matter interactions, ultrafast optics, spectroscopy, and toroidal electrodynamics.

Introduction — Topology of complex electromagnetic fields
is attracting growing interest of the photonics and electromag-
netics communities [[1H6]], while topologically structured light
fields find applications in super-resolution microscopy [7I,
metrology [8, 9], and beyond [10} [11]]. For example, the vor-
tex beam with twisted phase, akin to a Mobius strips in phase
domain, can carry orbital angular momentum with tunable
topological charges enabling advanced applications of opti-
cal tweezers, machining, and communications [10-13]. The
complex electromagnetic topological strips, knots, and caus-
tic structures were also proposed as high-dimensional infor-
mation carriers [[14H17]. Recently, skyrmions, as topologi-
cally protected quasiparticles in high-energy physics and mag-
netic materials [[18]], were also studied in optical electromag-
netic fields. Optical skyrmionic fields were first demonstrated
in the evanescent field of a plasmonic surface [19, 20], fol-
lowed by the spin field of confined free-space waves [21, 22],
Stokes vectors of paraxial vector beams [23H23], polariza-
tions in momentum-space [26], and pseudospins in pho-
tonic crystals [27]. The sophisticated vector topology of
optical skyrmions holds potential for applications in ultra-
fast nanometric metrology [28], deeply-subwavelength mi-
croscopy [21], and topological Hall devices [27]].

While a large body of work on topological properties of
structured continuous light beams may be found in literatures,
works on the topology of the time-dependent electromagnetic
excitations and pulses only start to appear. For instance, the
“Flying Doughnut” pulses, or toroidal light pulses (TLPs)
first described in 1996 by Hellwarth and Nouchi [29], with
unique spatiotemporal topology predicted recently [30], have
only very recently observed experimentally [31]]. Fuelled by
a combination of advances in ultrafast lasers and metamate-
rials in our ability to control the spatiotemporal structure of
light [32] 33]] together with the introduction of experimental
and theoretical pulse characterization methods [34H37]], TLPs
are attracting growing attention. Indeed, TLPs exhibit their
complex topological structure with vector singularities and in-
teract with matter through coupling to toroidal and anapole
localized modes [38-41]. However, while higher order, su-
pertoroidal modes in matter have been introduced in the form
of the fractal iterations of solenoidal currents [42147]], gener-
alizations of free-space propagating toroidal pulses have not
been considered to date.

In this paper, we report that the Hellwarth and Nouchi
pulses, are, in fact, the simplest example of an extended family
of pulses that we will call supertoroidal light pulses (STLPs).
We will show that supertoroidal light pulses introduced here

exhibit complex topological structures that can be controlled
by a single numerical parameter. The STLP display skyrmion-
like arrangements of the transient electromagnetic fields orga-
nized in a fractal-like, self-affine manner, while the Poynting
vector of the pulses feature singularities linked to the multiple
energy backflow zones.

Results

Supertoroidal electromagnetic pulses — Following Zi-
olkowski, localized finite-energy pulses can be obtained
as superpositions of “electromagnetic directed-energy pulse
trains” [48]]. A special case of the localized finite-energy
pulses was investigated by Hellwarth and Nouchi [29], who
found the closed-form expression describing a single-cycle fi-
nite energy electromagnetic excitation with toroidal topology
obtained from a scalar generating function f(r,t) that satis-

fies the wave equation (V?Z — c%g—;)f (r,t) = 0, where r =

(r,0, z) are cylindrical coordinates, ¢ is time, ¢ = 1//Eq g is
the speed of light, and the € and p( are the permittivity and
permeability of medium. Then, the exact solution of f(r,t)
can be given by the modified power spectrum method [29} 48],
as f(r,t) = fo/[(q1 +i7)(s + ¢2)°], where fy is a normal-
izing constant, s = r%/(q +it) —io, T = 2 —ct, 0 = z +ct,
q1 and g are parameters with dimensions of length and act
as effective wavelength and Rayleigh range under the parax-
ial limit, while « is a real dimensionless parameter that must
satisfy aw > 1 to ensure finite energy solutions In particular,
the parameter « is related to the energy confinement of the
pulse with o < 1 resulting in pulses of infinite energy, such
as planar waves and cylindrical waves, while > 1 leads to
finite-energy pulses. Next, transverse electric (TE) and trans-
verse magnetic (TM) solutions are readily obtained by using
Hertz potentials. The electromagnetic fields for the TE solu-
tion can be derived by the potential A(r,t) = 1oV X Zf(r,?)
as E(r,t) = —po2V x A and H(r,t) = V x (V x A)
[29] 48]. Finally assuming v = 1, the electromagnetic fields
of the TLP are described by [29]:
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Figure 1 From toroidal to supertoroidal light pulses: a,b, Isosurfaces for the electric fields of (a) the fundamental TLP Re[Fy(r, t)], and
(b) a STLP Re[Eéa) (r,t)] of & = 5, at amplitude levels of £ = £0.1 and the Rayleigh range of g2 = 100¢, at different times of ¢ = 0,
+q2/(4c), and g2 /(2c¢). z-z cross-sections of the instantaneous electric field at y = 0. The insets in (a) and (b) are schematics of spatial
topological structures of magnetic vector fields at focus (¢ = 0) for the fundamental TLP and STLP, respectively. The gray dots and rings
mark the distribution of singularities in magnetic field, large purple arrows mark the direction of magnetic field vector, and the smaller

coloured arrows show the skyrmionic structures in magnetic field.

where the electric field Fy is azimuthally polarized with no
longitudinal or radial components, whereas the magnetic field
is oriented along the radial and longitudinal directions, H, and
H ,, with no azimuthal component. The TM toroidal pulse can
be obtained by an exchange of electric and magnetic fields.

J

E = —2qifo, |22

Equations (TH3) derived by Hellwarth and Nouchi for @ =
1 show the simplest example of TLPs. Here we explore the
general solution for values of & > 1. In the TE case, electric
and magnetic fields are given by (see detailed derivation in
Supplementary Information):
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For a = 1, the electromagnetic fields in Eqs. @}6) are re-
duced to that of the fundamental TLP Egs. (1}{3). Moreover,
the real and imaginary parts of equations @H6), simultaneity
fulfill Maxwell equations and therefore represent real electro-
magnetic pulses.

While propagating in free space, toroidal and supertoroidal
pulses exhibit self-focusing. Figure [I] shows the evolution of
the fundamental (o« = 1) TLP and STLP (o« = 5) upon propa-
gation through the focal point. In the former case, the pulse is
single-cycle at focus (z = 0) becoming 1%-cycle at the bound-

(

aries of Rayleigh range z = +¢5/2 (Fig. ). On the other
hand, STLPs with a > 1 (Fig.[Ip, a = 5) exhibit a substan-
tially more complex spatiotemporal evolution where the pulse
is being reshaped multiple times upon propagation. The STLP
also possesses a more complex singular vector field configu-
ration than the fundamental TLP. For instance, the magnetic
vector distribution (see insets to Figs. [Th and [Ip) exhibits
vortex-type singularities (grey lines) and saddle points (full
circles), resulting in sskyrmionic structures in the transverse
plane (colored arrows). See Video 1 and Video 2 in Supple-
mentary Materials for dynamic evolutions upon propagation



Figure 2 Electric field topology of toroidal and supertoroidal light pulses: a,b, The isoline plots of the electric field in the x-z plane for

(a) the fundamental TLP, Re[Ejy(r, t = 0)], and (b) the STLP of o = 5, Re[Eé“zs) (r,t = 0)], in logarithmic scale. Solid black lines indicate
the zeros of the electric field. Dashed lines marked as al-a3 and b1-b3 indicate the z-levels of the cross-sections on the right panels
correspondingly. Panels al-a3 and b1-b3 present isoline plots of the electric field and arrow plots of the electric field direction in the -y
plane, in logarithmic scale. Solid black lines and black dots mark the points and areas, where the electric field vanishes. Blue and red arrows
indicate the two opposite azimuthal directions of the electric fields. Unit for coordinates: g .

of the fundamental TLP and STLP, and Video 3 in Supple-
mentary Materials for the evolution of TLP and STLP with
different focused degrees versus values of ¢ /q;.

Electric field singularities — Figure [2] comparatively shows
the instantaneous electric fields for the TE single-cycle funda-
mental TLP and STLP (a = 5) with go = 20q¢; at the focus
(t = 0). In all cases, the electric field vanishes on the z-axis
(r = 0; see the vertical solid black lines in Figs. 2 and 2b)
owing to the azimuthal polarization and also in the z = 0
plane (see the horizontal solid black lines in Figs.[2a and [2b)
due to the odd symmetry of Eqs. Eqs. ([J4) with respect to
z. For the fundamental TLP, the electric field vanishes on two
spherical shells (indicated by the solid circles in Fig. 2j) on
the positive and negative z-axis, respectively. This behavior
can be more clearly observed in the transverse distributions
at three different propagation distances, z = ¢1, 5q1, 35q1, of
Figs. Za1{2a3. In accordance to Figs. 2l and 2a3, the elec-
tric field at z positions close to and away from the center of
the pulse (cross-sections al and a3) rotates counter-clockwise
forming a vortex around the center singularity along the prop-
agation axis. However, at a distance of z = 5¢; from its center
(Figs. 2), the electric field vanishes on a circular boundary,

which corresponds to a spherical region inside which the elec-
tric field is oriented along the clockwise direction, whereas
outside this region the electric field remains oriented in the
opposite (counter-clockwise) direction (see cross-section a3).
For the STLP case, a more complex matryoshka-like structure
emerges with multiple nested singularity shells, replacing the
single shell of the fundamental TLP, as Fig. 2b shows. The
electric field configuration close the singularity shells can be
examined in detail at transverse planes at z = ¢1, 5q1, 35q1
(Figs. 2b1-b3). In this case, at transverse planes close to
z = 0, the electric field changes orientation from counter-
clockwise close to » = 0 to clockwise away from the z-axis
(see Fig.[2b1). On the other hand, on transverse planes close
to z = Hqp (see Fig. [2b2), two singular rings (correspond-
ing to the two singular shells) emerge as a cross-sections of
the multi-layer singularity shell structure, separating space in
three different regions, in which the electric field direction
alternates between counter-clockwise (/g1 < 7), to clock-
wise (7 < r/q1 < 15), and again to counter-clockwise
(r/q1 > 15).

In general, the pulse of higher order of « is accompanied
by a more complex multi-layer singular-shell structure, see
the dynamic evolution versus the order index in Video 4 in



Figure 3 Magnetic field topology of toroidal and supertoroidal light pulses: a,b, Isoline and arrow plots of the magnetic fields in the
z-z plane for (a) the fundamental TLP and (b) the STLP of oo = 5, in logarithmic scale. Black dots indicate the zeros of the magnetic field
with red arrows correspondingly marking the saddle or vortex style of the vector singularities. Panels al and b1 present the zoom-ins of the
regions highlighted by blue in (a) and (b) respectively. Panels a2 and b2 present isoline and arrow plots of the magnetic fields at z = 0
planes, in logarithmic scale, marked by the black dashed lines in (a) and (b) respectively, where the magnetic fields vanish along the circular
solid black lines with red arrows marking the styles of singularities (vortex for (a2) and saddle for (b2)). Skyrmionic structures in magnetic
fields of toroidal and supertoroidal light pulses: ¢, Various textures of Néel-type skyrmionic structure observed at various transverse planes
(see dashed purple lines in (a-b)) for the fundamental TLP (c1-c2) and the STLP of oo = 5 (¢3-c6), which are demonstrated by the arrows
with color-labeled longitudinal component value of magnetic field. The up-right insert of each panel shows the basic texture of the

skyrmionic structure. Unit for coordinates: ¢ .

Supplementary Materials. Although the above results of elec-
tric fields are instantaneous at ¢ = 0, we note that the multi
layer shall structure propagation of supertoroidal light pulse
is retained during propagation, see such dynamic process in
Video 5 in Supplementary Materials.

Magnetic field singularities — The magnetic field of STLPs
has both radial and longitudinal components, H = H,t +
H .z, which lead to a topological structure more complex than
the one exhibited by the electric field. Figure [3|comparatively
shows the instantaneous magnetic fields for the TLP and the
STLP of a = 5. For the fundamental TLP (Fig. [3p), the
magnetic field has ten different vector singularities on the x-
z plane, including four saddle points [the longitudinal field
component pointing towards (away from) and the radial com-
ponent away from (toward) the singularity] on z-axis and six
vortex rings [the surrounding vector distribution forming a
vortex loop] away from the z-axis. We note that we only con-
sider the singularities existed at an area containing 99.9% of
the energy of the pulse. While the singularity existed at the

region far away from the pulse center with nearly zero en-
ergy can be neglected. A zoom-in of the field structure around
these singularities can be seen in Fig. [3al. For the three off-
axis singularities located at the = > 0 half space, two of them
(at z > 0 and z < 0) are accompanied by counter-clockwise
rotating vortices, whereas the third one (at z = 0) by a clock-
wise rotating vortex. Owing to the cylindrical symmetry of
the pulse, the off-axis singularities correspond in essence to
singularity rings. Such an example is shown in Fig. B2,
which presents the magnetic field on the transverse plane at
z = 0. Here, the magnetic field points toward the positive
(negative) z-axis inside (outside) the circular region resulting
in the formation of a toroidal vortex winding around the singu-
larity ring. For the STLP (Fig. 3b), more vector singularities
are unveiled in the magnetic field with six saddle points on
z-axis and six off-axis singularities. A zoom-in of the field
structure around these singularities can be seen in Fig. 3p1.
The orientation of the magnetic field around the on-axis sad-
dle points is alternating between “longitudinal-toward radial-
outward point” and “adial-toward longitudinal-outward”, sim-



Figure 4 Poynting vector topology of toroidal and supertoroidal light pulses: a,b, Contour and arrow plots of the Poynting vector fields
in the x-z plane, in logarithmic scale, for (a) the fundamental TLP and (b) the STLP of o = 5. Panels (al) and (b1) present zoom-ins of the
areas highlighted by green in (a-b), respectively. Solid black lines and dots mark the zeros of the Poynting vector. Red and blue arrows
indicate areas with forward and backward energy flow, respectively. Unit for coordinates: q;.

ilarly to the on-axis singularities of the TLP. Moreover, the
off-axis singularities at z = 0 become now saddle points con-
tributing to the singularity ring in the z = 0 plane. The re-
maining off-axis singularities are accompanied by clockwise
and counterclockwise magnetic field configurations at z > 0
and = < 0, respectively as shown Fig. 3p2.

Skyrmionic structure in magnetic field — A topological
feature of particular interest here is the skyrmionic struc-
ture observed in the magnetic field configuration of STLPs.
The skyrmion is a topologically protected quasiparticle in
condensed matter with a hedgehog-like vectorial field, that
gradually changes orientation as one moves away from the
skyrmion centre [49-51]]. Recently skyrmion-like configua-
tions have been reported in electromagnetism, including
skyrmion modes in surface plasmon polaritons [[19] and the
spin field of focused beams [21} [23]]. Here we observe the
skymrion field configurations in the magnetic field of propa-
gating STLPs.

The topological properties of a skyrmionic configuration
can be characterized by the skyrmion number s, which can
be separated into a polarity p and vorticity number m [51].
The polarity represents the direction of the vector field, down
(up) atr = 0 and up (down) at r — oo forp =1 (p = —1),
the vorticity controls the distribution of the transverse field
components, and another initial phase v should be added for
determining the helical vector distribution, see Methods for
details. For the m = 1 skyrmion, the cases of v = 0 and
~ = 7 are classified as Néel-type, and the cases of v = /2
are classified as Bloch-type. The case for m = —1 is classi-
fied as anti-skyrmion.

Here the vector forming skyrmionic structure is defined by
the normalized magnetic field H = H/|H| of the STLP.
Two examples of two skyrmionic structures in the fundamen-
tal TLP are shown in Figs. Bkl (p = m = 1,7 = m) and
B2 (p = m = 1,y = 0) occurres at the two transverse planes
marked by purple dashed lines ¢1 and ¢2, which are both Néel-
type skyrmionic structures, where the vector changes its direc-
tion from “down” at the centre to “up” away from the centre.
In the case of the STLPs with more complex topology, it is
possible to observe more skyrmionic structures. The STLP

pulse (o« = 5) exhibits not only the clockwise (p = m =
1,7 = ) and counter-clockwise (p = m = 1,y = 0) Néel-
type skyrmionic structures (Fig. [33 and [3c4), but also those
withp=—-1m=1,y=wmandp=—-1,m=1,7=0,in
Fig. [Bkc6-c6.

In general, as the value of « increases, toroidal pulses
show an increasingly complex magnetic field pattern with
skyrmionic structures of multiple types, see Video 4 in Sup-
plementary Materials. We also note that the topology of the
STLP is maintained during propagation, see Video 5 in Sup-
plementary Materials.

Energy backflow and Poynting vector singularities — The
singularities of the electric and magnetic fields are linked to
the complex topological behavior for the energy flow as rep-
resented by the Poynting vector S = E x H. An interesting
effect for the fundamental TLP is the presence of energy back-
flow: the Poynting vector at certain regions is oriented against
the prorogation direction (blue arrows in Fig. ) [30]. Such
energy backflow effects have been predicted and discussed in
the context of singular superpositions of waves [52| |53]], su-
peroscillatory light fields [8l [54]], and plasmonic nanostruc-
tures [S3). The Poynting vector map reveals a complex multi-
layer energy backflow structure, as shown in Fig. @p. The
energy flow vanishes at the positions of the electric and mag-
netic singularities and inherits their multi-layer matryoshka-
like structure. Poynting vector vanishes at z = 0 plane,
along the z-axis, and on the dual-layer matryoshka-like sin-
gular shells (marked by the black bold lines in Fig. @p). Im-
portantly, energy backflow occurs at areas of relatively low
energy density, and, hence, STLP as a whole still propagates
forward. For the temporal evolution of the energy flow of the
pulse see Videos 4 & 5 in Supplementary Materials.

Fractal patterns hidden in electromagnetic fields — As the
order « of the pulse increases (see Video 4 in Supplementary
Material), the topological features of the STLP appear to be
organized in a hierarchical, fractal-like fashion. A character-
istic case of the STLP of a = 20 is presented in (Fig.[5). For
the electric field, the matryoshka-like singular shells involve
an increasing number of layers as one examines the pulse at



Figure 5 Fractal-like pattern in electromagnetic field of supertoroidal pulses: a, The isoline plot of the electric field in the -z plane for

the STLP of o = 20, Re[Eéa:m) (r,t = 0)], in logarithmic scale. Solid black lines indicate the zeros of the electric field. Panel al presents
the zoom-in of the region highlighted by blue in (a). b, Isoline and arrow plot of the magnetic field in the -z plane for the STLP of a = 20,
in logarithmic scale. Black dots indicate the zeros of the magnetic field with red arrows correspondingly marking the saddle or vortex style of
the vector singularities. Panel b1 presents the zoom-in of the region highlighted by blue in (b). Subwavelength features of skyrmionic
structures: c1-c4, The skyrmionic distributions of magnetic field at several transverse planes marked by dashed lines c1-c4 in (b1). d1-d4,
the distribution of normalized magnetic field and its absolute value versus x for the skyrmionic structures in (c1-c4). Insets illustrate the
Subwavelength features at the regions highlighted by gray bands. Unit for coordinates: q;.

finer length scales, forming a self-similar pattern that seems
infinitely repeated. For the magnetic field, the saddle and vor-
tex points are distributed along the propagation axis and in
two planes crossing the pulse centre, respectively. The dis-
tribution of singularities becomes increasingly dense as one
approaches the centre of the pulse, resulting in a self-similar
pattern. A similar pattern can be seen for the Poynting vector
map (see Videos 4 & 5 in Supplementary Materials).

Deeply subwavelength features of skyrmionic structures
— The fractal-like pattern of vectorial magnetic field of a
high-order STLPs results in skyrmionic configurations with
with features changing much faster than the effective wave-
length ¢;. Figures [Bc1-c4 show the four skyrmionic struc-
tures of the high-order STLP (o = 20) at the four transverse
planes marked by the dashed lines in Fig. [5p1 at positions
of z/q1 = 14,10, 6, 3.5, correspondingly. Here the observed

skyrmionic structure is similar to the photonic skyrmion ob-
served in Ref. [21]]. However, in contrast to the latter case,
where skyrmionic structures were observed in the evanscent
plasmonic field, here skyrmionic field configurations are ob-
served in free-space propagating fields. Moreover, similarly to
the “spin reversal” effect observed in deeply subwavelength
scales in plasmonic skyrmionic fields [21], here we demon-
strate “‘subwavelength” features in propagating skyrmionic
fields at scales much smaller than the effective wavelength
(cycle length) of the STLPs. The four skyrmionic structures
we obtained Figs. [5k1-c4 have two different topologies with
topological numbers of (p,m,v) = (1,1, 7), for ¢l and c3,
and (—1,1,0), for c2 and c4. In addition, they exhibit an ef-
fect of “spin reversal”, where the number reversals is given
by p = %[B(r)]ﬁjx’, e.g. p = 1,2,3,4 for the skyrmionic
structures in Figs. [5Sc1-c4, respectively. Each reversal corre-
sponds to a sign change of H,, which takes place over ar-
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Figure 6 Evolution of on-axis singularity distribution versus
supertoroidal order: a,b, The numbers (a) and positions (b) of
on-axis saddle-singularities of the magnetic field of the STLP

(g2 = 20q1) within the range of z € [0, 80q:1], versus a.. The blue
dashed line marks where the number of singularities decreases.

eas much smaller than the effective wavelength of the pulse
(q1). The full width at half maximum of these areas for the
four skyrmionic structures is 1/6, 1/10, 1/30, 1/50 of the ef-
fective wavelength, respectively. Conclusively, the sign rever-
sals become increasingly rapid in transverse planes closer to
the pulse center (z = 0), see Figs. [5d1-d4. Similarly, increas-
ing the value of « leads to increasingly sharper singularities.
Notably, in contrast to the fundamental TLP, the skyrmionic
configurations in STLP occur at areas of higher energy den-
sity, and thus we expect that they could be observed experi-
mentally.

The topological structure of the STLP is directly related to
the distribution of on-axis saddle-points in its magnetic field.
Indeed, the latter mark the intersection of the F-field singular
shells with the z-axis, which in turn results in the emergence
of different skyrmionic magnetic field patterns (see Fig.|[5and
Videos 4 & 5). The number and position of on-axis magnetic
field saddle points is defined by the supertoroidal parameter
. This is illustrated in Fig. [6p, where we plot the number of
on-axis H-field singularities as a function of alpha for a STLP
with g2 = 20q;. The number of singularities is generally in-
creasing with increasing « apart for values around o = 5.6
(marked by blue dashed line in Fig. [6)). Moreover, the number
of singularities increases in a ladder-like fashion, where only
specific values of alpha lead to additional singularities. The
origin of this behaviour can be traced to changes in the pulse
structure as « increases (see Fig. [6b). For specific values of
«, additional singularities appear away from the pulse center
(z = 0) and then move slowly towards it. On the other hand,
the irregular behavior at o« = 5.6 is a result of two singularities
disappearing (see blue dashed line in Fig. [6b). The topologi-

cal structure of the STLP can be tuned also by the degree of
focusing, which is quantified by the ratio ¢2/¢;. In particu-
lar, tightly focused pulses exhibit a more complex topological
structure at finer scales as opposed to collimated pulses (see
Supplementary Video 6).

Discussion

STLPs exhibit complex and unique topological structure.
The electric field exhibits a matryoshka-like configuration of
singularity shells, which divide the STLP into “nested” re-
gions with opposite azimuthal polarization. The magnetic
field exhibits skyrmionic structures with multiple topological
textures at various transverse planes of a single pulse, related
to the distribution of multiple saddle and vortex singularities.
The electric and magnetic fields can be exchanged respecting
to the difference of TE and TM modes. The instantaneous
Poynting vector field exhibits multiple singularities with re-
gions of energy backflow. The singularities of the STLP ap-
pear to be hierarchically organized resulting in self-similar,
fractal-like patterns for higher-order pulses.

The main challenges for the generation of supertoroidal
pulses involve its toroidal topology, broad bandwidth (single-
cycle duration), and complex spatially-dependent spectral
structure (see Supplementary Information E). We argue that
supertoroidal pulses can be generated similarly to the gener-
ation of fundamental toroidal pulses [31, 132], i.e. by con-
version of ultrashort linearly polarized pulses in a two-stage
process. This process shall involve the linear-to-radial polar-
ization conversion of an ultrashort laser pulse, followed by
the spatio-spectral modification of the pulse in a multi-layered
gradient metasurface. We anticipate that the requirement for
the single-cycle temporal profile will be possible to be met if
we use attosecond laser pulses as input. Alternatively, in the
THz range, single-cycle pulses can be routinely generated by
optical rectification of femtosecond optical pulses.

In conclusion, to the best of out knowledge, STLPs are
so far the only known example of free-space propagating
skyrmions in electromagnetic field. Indeed, higher order
STLPs exhibit a range of different skyrmionic field configu-
rations, which will be of interest in probing the topology of
electromagnetic excitations in matter. Moreover, information
can be encoded in the increasingly complex topological struc-
ture of the propagating pulses, which could be of interest for
optical communications. Finally, the subwavelength features
of the singular structures of the STLPs may lead to advanced
approaches of superresolution imaging and nanoscale metrol-

ogy.

Methods

Solving the supertoroidal pulses — The first step is to solve
the scalar generating function f(r,t) that satisfies the wave
equation (V2 — C%g—;)f (r,t) = 0, where r = (r,6,2)
are cylindrical coordinates, ¢ is time, ¢ = 1/,/Eouo is the
speed of light, and the ¢ and p are the permittivity and per-
meability of medium. The exact solution of f(r,¢) can be
given by the modified power spectrum method as f(r,t) =
fo/ [(q1 +i7)(s + q2)“], where fj is a normalizing constant,
s = 7‘2/(q1+i7) —i0, T=2z—ct,o = z+ct, q; and ¢
are parameters with dimensions of length and act as effective
wavelength and Rayleigh range under the paraxial limit, while
« is a real dimensionless parameter that must satisfy o > 1
to ensure finite energy solutions. The next step is constructing
the Hertz potential. For fulfilling the toroidal symmetric and
azimuthally polarized structure, the Hertz potential should be
constructed as A(r,t) = uoV x Zf(r,t). Then, the exact so-



lutions of solutions of transverse electric (TE) and transverse
magnetic (TM) modes are readily obtained by using Hertz po-
tential. The electromagnetic fields for the TE solution can
be derived by the potential as E(r,t) = —MO%V x A and

H(r,t) = V x (V x A) [29] /48], see Supplementary Infor-
mation A—C for more detailed derivations.

Characterizing topology of skyrmions — A skyrmion is a
topologically stable 3D vector field confined within a 2D do-
main, noted as n(x, y), which can be represented as the vec-
tor distribution unwrapped from the vectors on a spiny sphere
parametrized by longitude and latitude angles, o and 3. The
topological properties of a skyrmionic configuration can be
characterized by the skyrmion number defined by [S1]:

S (e o

that is an integer counting how many times the vector
n(z,y) = n(rcosf,rsinf) wraps around the unit sphere.
For mapping to the unit sphere, the vector can be given by
n = (cosa(f)sinf(r),sina(f)sin f(r), cos f(r)). Also,
The skyrmion number can be separated into two integers:

L[ S

= feos BT [a(ﬂ)]gzé” =p-m (®)

the polarity, p = [cos 3(r)]7=5°, represents the direction
of the vector field, down (up) at r = 0 and up (down) at
r — oo forp = 1 (p = —1). The vorticity number,

m = 5=[a(0)])=2", controls the distribution of the transverse
field components. In the case of a helical distribution, an ini-
tial phase v should be added, o(f) = m# + ~y. For the m = 1
skyrmion, the cases of v = 0 and v = m are classified as
Néel-type, and the cases of ¥ = +7/2 are classified as Bloch-
type. The case for m = —1 is classified as anti-skyrmion.
See Supplementary Information F for some theoretically sim-
ulated results of skyrmions with various topological indices.
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