

Dual RNASeq reveals NTHi-macrophage transcriptomic changes during intracellular persistence

Jodie Ackland $^{1,2^*}$, Ashley I. Heinson 2 , David W. Cleary 2 , Myron Christodoulides 2 , Tom M. Wilkinson 2 , Karl J. Staples $^{2^*}$

¹University of Southampton, United Kingdom, ²Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom

Submitted to Journal: Frontiers in Cellular and Infection Microbiology

Specialty Section: Bacteria and Host

Article type: Original Research Article

Manuscript ID: 723481

Received on: 10 Jun 2021

Revised on: 23 Jul 2021

Journal website link: www.frontiersin.org

Conflict of interest statement

The authors declare a potential conflict of interest and state it below

Dr Cleary reports that he was a post-doctoral researcher on projects funded by Pfizer and GSK between April 2014 and October 2017. Prof. Wilkinson reports grants and personal fees from AstraZeneca, personal fees and other from MMH, grants and personal fees from GSK, personal fees from BI, and grants and personal fees from Synairgen, outside the submitted work. Dr Staples reports grants from AstraZeneca, outside the submitted work. Dr Ackland, Dr Heinson and Prof Christodoulides report that they have no conflicts of interest.

Author contribution statement

JA and KJS conceptualized the project; JA, AH, DC, MC and KJS contributed to methodology; JA and AH undertook the formal analysis; KJS administered the project; JA performed the investigation; DC, MC, TW and KJS provided resources and acquired funding; DC, MC, TW and KJS supervised the project; JA, AH and DC curated the data; JA and KJS wrote the original draft; all authors contributed to writing, reviewing and editing and approved the final manuscript.

Keywords

macrophage, NTHI, Intracellular persistence, Dual RNAseq, Host-Pathogen Interactions

Abstract

Word count: 230

Nontypeable Haemophilus influenzae (NTHi) is a pathobiont which chronically colonises the airway of individuals with chronic respiratory disease and is associated with poor clinical outcomes. It is unclear how NTHi persists in the airway, however accumulating evidence suggests that NTHi can invade and persist within macrophages. To better understand the mechanisms of NTHi persistence within macrophages, we developed an in vitro model of NTHi intracellular persistence using human monocytederived macrophages (MDM). Dual RNA Sequencing was used to assess MDM and NTHi transcriptomic regulation occurring simultaneously during NTHi persistence. Analysis of the macrophage response to NTHi identified temporally regulated transcriptomic profiles, with a specific 'core' profile displaying conserved expression of genes across time points. Gene list enrichment analysis identified enrichment of immune responses in the core gene set, with KEGG pathway analysis revealing specific enrichment of intracellular immune response pathways. NTHi persistence was facilitated by modulation of bacterial metabolic, stress response and ribosome pathways. Levels of NTHi genes bioC, mepM and dps were differentially expressed by intracellular NTHi compared to planktonic NTHi, indicating that the transcriptomic adaptation was distinct between the two different NTHi lifestyles. Overall, this study provides crucial insights into the transcriptomic adaptations facilitating NTHi persistence within macrophages. Targeting these reported pathways with novel therapeutics to reduce NTHi burden in the airway could be an effective treatment strategy given the current antimicrobial resistance crisis and lack of NTHi vaccines.

Contribution to the field

NTHi airway colonisation is associated with increased airway inflammation, disease severity and exacerbation risk in individuals with chronic respiratory disease. No vaccine against NTHi is currently available and antibiotic therapy is often ineffective at clearing NTHi. As such, identifying mechanisms of persistence that could be therapeutically targeted to reduce the burden of NTHi in the airway would greatly benefit individuals with chronic respiratory disease. This work demonstrates that NTHi can invade and persist within human macrophages, with macrophages upregulating innate immune response pathways in response. NTHi persistence was facilitated by transcriptomic adaptations in bacterial metabolic, stress response and ribosome pathways, with persistent NTHi gene expression distinct to that of planktonic state NTHi. This research provides transcriptomic insights into NTHi-macrophage interactions, enhances our understanding of how NTHi can utilise host immune cells to chronically colonise the airway and identifies potential bacterial gene pathways that may be attractive therapeutic targets.

Funding statement

This work was funded by an Asthma UK studentship award (AUK-PHD-2016-363). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics statements

Studies involving animal subjects

Generated Statement: No animal studies are presented in this manuscript.

Studies involving human subjects

Generated Statement: The studies involving human participants were reviewed and approved by Hampshire A Research Ethics Committee (13/SC/0416). The patients/participants provided their written informed consent to participate in this study.

Inclusion of identifiable human data

Generated Statement: No potentially identifiable human images or data is presented in this study.

Data availability statement

Generated Statement: The authors acknowledge that the data presented in this study must be deposited and made publicly available in an acceptable repository, prior to publication. Frontiers cannot accept a manuscript that does not adhere to our open data policies.

1 Dual RNASeq reveals NTHi-macrophage transcriptomic changes

- 2 during intracellular persistence
- 3 Jodie Ackland¹, Ashley I. Heinson¹, David W. Cleary^{1,3}, Myron Christodoulides¹, Tom M.A.
- 4 Wilkinson^{1,2,3}, Karl J. Staples^{1,2,3*}
- ¹Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton,
- 6 UK

14

- ²Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine,
- 8 Southampton General Hospital, Southampton, UK
- 9 ³NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS
- 10 Foundation Trust, Southampton, UK
- 11 * Correspondence:
- 12 Karl J. Staples
- 13 K.Staples@soton.ac.uk
- 15 Keywords: Macrophage, NTHi, Intracellular persistence, Dual RNASeq, Host-pathogen
- 16 interactions. (Min.5-Max. 8)
- 18 Word Count:
- 19 Abstract: 230
- 20 Main text: 7096
- 21 Figure/table count:
- 22 Figures: 8
- 23 Tables: 1

24 Abstract

25 Nontypeable *Haemophilus influenzae* (NTHi) is a pathobiont which chronically colonises the airway of individuals with chronic respiratory disease and is associated with poor clinical outcomes. It is 26 27 unclear how NTHi persists in the airway, however accumulating evidence suggests that NTHi can 28 invade and persist within macrophages. To better understand the mechanisms of NTHi persistence 29 within macrophages, we developed an in vitro model of NTHi intracellular persistence using human 30 monocyte-derived macrophages (MDM). Dual RNA Sequencing was used to assess MDM and NTHi 31 transcriptomic regulation occurring simultaneously during NTHi persistence. Analysis of the 32 macrophage response to NTHi identified temporally regulated transcriptomic profiles, with a specific 'core' profile displaying conserved expression of genes across time points. Gene list enrichment 33 34 analysis identified enrichment of immune responses in the core gene set, with KEGG pathway analysis revealing specific enrichment of intracellular immune response pathways. NTHi persistence 35 36 was facilitated by modulation of bacterial metabolic, stress response and ribosome pathways. Levels 37 of NTHi genes bioC, mepM and dps were differentially expressed by intracellular NTHi compared to 38 planktonic NTHi, indicating that the transcriptomic adaption was distinct between the two different 39 NTHi lifestyles. Overall, this study provides crucial insights into the transcriptomic adaptations 40 facilitating NTHi persistence within macrophages. Targeting these reported pathways with novel 41 therapeutics to reduce NTHi burden in the airway could be an effective treatment strategy given the 42 current antimicrobial resistance crisis and lack of NTHi vaccines.

1 Introduction

- 45 Haemophilus influenzae is a human-restricted pathobiont(Erwin & Smith, 2007) and is commonly
- isolated from the nasopharynx, middle ear and respiratory tract(Ahearn et al., 2017; King, 2012;
- 47 Swords, 2012). *H. influenzae* can be divided into typeable and nontypeable strains depending on the
- 48 presence or absence of a polysaccharide capsule. Encapsulated strains are classified into six serotypes
- 49 (a-f), with strains not in possession of a capsule unable to be serotyped and are designated as
- 50 nontypeable *Haemophilus influenzae* (NTHi). NTHi is associated with various diseases including
- 51 pneumonia, meningitis, sinusitis, otitis media and exacerbations of chronic respiratory diseases such
- as Chronic Obstructive Pulmonary Disease (COPD) and asthma(Finney et al., 2014; Green et al.,
- 53 2014; King, 2012; McCann et al., 2016; Van Eldere et al., 2014). Although NTHi is implicated in
- 54 exacerbations of chronic respiratory diseases, NTHi has also been isolated from the airway during
- stable periods of disease(Iikura et al., 2015; Mayhew et al., 2018; Wilkinson et al., 2017; Wood et al.,
- 56 2010; Zhang et al., 2016). The duration of NTHi airway colonisation varies, with longitudinal studies
- suggesting persistence ranges from months up to as long as 7 years(Gallo et al., 2018; Murphy et al.,
- 58 2004; Román et al., 2004).
- 59 NTHi has traditionally been considered an extracellular pathogen, however an increasing number of
- 60 reports suggest NTHi is able to invade immune cells to enhance airway persistence and
- 61 survival(Ahrén et al., 2001; Craig et al., 2001, 2002; King et al., 2008; Morey et al., 2011). The
- 62 predominant innate immune cell in the healthy respiratory tract is the macrophage, which
- orchestrates the airway immune defence response, regulates inflammation, maintains homeostasis
- and participates in immune resolution processes (Byrne et al., 2015; Mosser & Edwards, 2008).
- Despite these key processes, accumulating evidence suggests that macrophages are a target of
- 66 infection for NTHi. One of the first indications of NTHi invasion of immune cells was provided by
- Forsgren et al., who used transmission electron microscopy to visualise replicating, intracellular
- NTHi within macrophage-like cells isolated from adenoid tissue(Forsgren et al., 1994). Subsequent
- 69 in vitro studies have reported varying mechanisms of NTHi invasion of phagocytic cells including
- 70 receptor-mediated endocytosis(Ahrén et al., 2001), lipid raft mediated endocytosis(Martí-Lliteras et
- al., 2009) and phagocytosis(Clementi & Murphy, 2011), with strain-dependent differences between
- 72 clinical isolates reported(Craig et al., 2001). Despite the prominent role of macrophages in the innate
- 73 immune response against NTHi, the mechanisms of NTHi intracellular persistence within
- 74 macrophages are not well understood.
- 75 Furthermore, macrophage dysfunction has been demonstrated in chronic respiratory diseases. In
- asthma, macrophages have an altered phenotype(Staples et al., 2012) and reduced phagocytic
- activity, which worsens with asthma severity(Liang et al., 2014). Monocyte-derived macrophages
- from the blood of asthma patients also exhibit impaired phagocytosis, suggesting the phagocytic
- 79 defect is not limited to the lung(Liang et al., 2014). A similar defect in phagocytic capacity has also
- 80 been reported in patients with COPD, with reduced uptake of NTHi by both alveolar macrophages
- and monocyte-derived macrophages (Berenson et al., 2006; Taylor et al., 2010), which is associated
- with exacerbation frequency(Singh et al., 2021) and disease severity(Berenson et al., 2013).
- 83 Impairment in macrophage regulation and clearance of NTHi could contribute to persistent and
- 84 chronic NTHi colonisation of the lung.
- 85 Genomic studies have identified NTHi genome evolution during airway persistence(Pettigrew et al.,
- 86 2018), however RNASeq can offer insights into the dynamic transcriptomic changes which occur
- 87 during host-pathogen interactions. Previous studies have shown modulation of NTHi gene expression
- 88 contributes to enhanced intracellular survival within epithelial cells by upregulation of bacterial stress

89 response genes and metabolic pathways (Baddal et al., 2015; Craig et al., 2002). It is not clear 90 whether NTHi similarly modulates gene expression during intracellular persistence of macrophages, 91 enabling NTHi survival and evasion of macrophage immune responses to facilitate chronic airway colonisation. Given the challenges associated with developing an efficient NTHi vaccine, identifying 92 93 how NTHi can persist within the airway could be crucial in guiding the development of antimicrobial 94 therapeutics aimed at reducing NTHi burden in chronic respiratory disease. Although the initial 95 stages of NTHi invasion and entry into macrophages have been documented(Ahrén et al., 2001; Clementi & Murphy, 2011; Martí-Lliteras et al., 2009), it is not clear how NTHi is able to survive 96 97 once inside a macrophage. Therefore, the aim of this work was to investigate NTHi-macrophage 98 interactions using dual RNASeq to determine transcriptomic changes during intracellular persistence.

99 2 **Results**

100

NTHi persists intracellularly within macrophages

- 101 To determine NTHi-macrophage transcriptomic changes during intracellular persistence, NTHi
- 102 persistence was modelled using a monocyte-derived macrophage (MDM) model that has previously
- 103 been described to resemble alveolar macrophages(Akagawa et al., 2006; Taylor et al., 2010; Tudhope
- 104 et al., 2008). However, as a challenging and limiting factor of dual RNASeq is that bacterial RNA
- can make up less than 1% of the total RNA in an infected cell(Marsh et al., 2017), it was first 105
- 106 important to determine the time point at which the highest amount of intracellular NTHi was present.
- 107 As such, a timecourse was first performed to assess the ability of NTHi to reside intracellularly.
- 108 MDM were challenged with a clinical isolate of NTHi (ST14) for 2 h, 6 h or 24 h followed by a 90
- 109 min gentamicin wash to kill and remove extracellular NTHi, resulting in only intracellular NTHi
- 110 present in the model. Higher levels of NTHi CFU were recovered from MDM after 6 h compared to
- 111 both 2 h (not significant) and 24 h (p=0.04 - Figure S1). As intracellular NTHi presence was highest
- 112 at 6 h, the infection model was extended following the 90 min gentamicin wash. MDM were
- 113 incubated in antibiotic-free media until 24 h to assess the ability of the intracellular NTHi to persist
- 114 (Figure 1A).
- 115 At both 6 h and 24 h, NTHi was detected and quantified by live viable counting, with no significant
- 116 difference in NTHi CFU between time points indicating the ability of NTHi to persist until at least 24
- 117 h (Figure 1B). Although live NTHi was quantified using CFU, it was important to determine whether
- 118 NTHi RNA could be detected at these recovered amounts, to ensure NTHi RNA was detectable prior
- 119 to sequencing. The *hel* gene encodes for a conserved NTHi outermembrane protein (lipoprotein e)
- 120 and has previously been used to assess the presence of *H.influenzae* in clinical samples by
- PCR(Coughtrie et al., 2018; Yadav et al., 2003). Expression of the NTHi hel gene was detected at 121
- 122 both 6 h and 24 h by qPCR (Figure 1C). Despite continued presence of NTHi, no impact on MDM
- 123 viability was detectable, as measured by LDH release into cell culture supernatants (Figure 1D).
- 124 Next, this optimised model was used to visualize NTHi persistence within MDM at 6 h and 24 h
- using a GFP-NTHi strain (GFP-NTHi-375^{SR}). MDM were infected as described and harvested after a 125
- gentamicin wash was used to kill and remove all extracellular NTHi. MDM infected with GFP-NTHi 126
- 127 had clear evidence of GFP fluorescence at both 6 h and 24 h, which was closely associated with the
- 128 macrophage nuclei (Figure 1E-1G). The use of a gentamicin wash indicated that the visualized NTHi
- 129 resided intracellularly within MDM, which was further confirmed by recovery of live GFP-NTHi by
- 130 viable counting at 6 h and 24 h (Figure S2A). Intracellular GFP-NTHi was further quantified by flow
- 131 cytometry and no significant difference was observed between the two time points (Figure S2B&C).

132

133

134

2.2 Distinct temporal transcriptomic profiles elicited by macrophages during intracellular persistence

- Dual RNASequencing was performed using RNA harvested at the 6 h and 24 h time points from five 135
- 136 biological repeats. Mapping to the reference human genome accounted for 93% of total unique reads
- 137 in uninfected samples (Figure S3). For infected samples, a lower median number of unique reads
- 138 mapped to the human genome (77%), likely due to the presence of NTHi, which accounted for 11%
- 139 of the total median unique reads. The remaining reads consisted of unmapped or multiple-mapped
- 140 reads.

- Exploratory analysis of the macrophage data using principal component analysis (PCA) identified
- two distinct clusters separated by the first principal component (PC1, 69.3%), which were identified
- to be either infected or uninfected MDM (Figure 2A). Differential gene expression analysis between
- uninfected and infected MDM identified 1802 differentially expressed genes (DEGs) at 6 h and 1763
- DEGs at 24 h (Figure 2B, log₂ FC±2, FDR p<0.05). This represents 11.9% and 11.7% of the starting
- number of MDM genes (15048) at 6 h and 24 h, respectively. Overall, a higher number of genes were
- 147 upregulated (1249 at 6 h, 1028 at 24 h) compared to downregulated (553 at 6 h, 735 at 24 h) in
- 148 response to NTHi.
- To assess regulation of the 1802 and 1763 DEGs at each time point, the 6 h and 24 h DEG lists were
- 150 compared for conserved genes. This comparison identified 863 DEGs (hereafter designated as 'core
- DEGs') to be differentially expressed between uninfected and infected MDM at both 6 h and 24 h
- 152 (Figure 2C). The remaining 1839 DEGs were differentially expressed at a single time point only,
- with 939 DEGs only differentially expressed at 6 h and 900 DEGs only differentially expressed at 24
- 154 h between uninfected and infected MDM.
- 155 The clustering profiles of each DEG group visualised with heatmaps, demonstrated time-dependent
- expression differences between the three groups. For the 6 h only DEGs, all 6 h infected samples
- 157 clustered together, however they also clustered independently of the 24 h infected samples (Figure
- 2D). Similarly, for the 24 h only DEGs, the 24 h infected samples clustered together but away from
- the 6 h infected samples and the uninfected samples (Figure 2E). In contrast, for the 863 core DEGs,
- all infected samples clustered independently of the uninfected samples, but clustered together
- regardless of time point (Figure 2F). The absence of a strong time point signal within this core DEG
- list was perhaps due to sustained gene expression across time points, emphasised by only 9 out of the
- 163 863 genes changing direction of expression between 6 h and 24 h (Table S1).
- Gene list enrichment analysis found only a small number of significantly enriched GO:terms within
- the 6 h only DEG list for all three GO categories. Only 6 terms (1 Biological Process and 5 Cellular
- 166 Component) were determined to be significantly enriched (FDR p<0.05), with no enrichment in the
- Molecular Function GO category. In contrast, significantly enriched terms were identified for all
- three GO categories for the 24 h only DEGs (Table 1). Finally, significant enrichment of numerous
- immune response terms in the GO:Biological Process category was identified in the core DEG list
- 170 (Table 1).

171

172

2.3 Enrichment of macrophage immune responses during NTHi persistence

- 173 As the core DEG list was significantly functionally enriched in immune processes, this core DEG list
- was explored further. To facilitate easier interpretation of functional enrichment, a network of the top
- 175 500 significantly enriched Biological Process terms was created using EnrichmentMap(Merico et al.,
- 176 2010). The network further highlighted the immune response signal in the data, with gene terms
- 177 clustering together under immune response phrases such as 'immune cell regulation', 'innate
- 178 response', 'response to bacteria' and 'leukocyte chemotaxis/migration' (Figure 3).
- 179 Validation of MDM genes by qPCR confirmed activation of macrophage immune responses.
- Expression of *RELA* (p65 subunit for the transcription factor NF-kappa-B) and *ACOD1* (Aconitate
- Decarboxylase 1) was significantly increased at both 6 h (2.4 FC for *RELA* and 179 FC for *ACOD1*)
- and 24 h (2.7 FC for *RELA* and 2759 FC for *ACOD1*) compared to the uninfected macrophage
- 183 controls (all p<0.05, Figure S4&B).

184 Protein level validation further demonstrated activation of macrophage pro-inflammatory responses 185 during NTHi persistence, with increased levels of IL-1β, IL-6, TNF-α, and IL-10 released into culture supernatants detected in all infected samples compared to uninfected samples at each time 186 187 point (all p<0.05, Figure S4C-F). Increased MDM release of neutrophil (IL-8, IL-17C) and lymphocyte (IL-15, IL-36β) related mediators in cell culture supernatants was also observed (Figure 188 189 S4G-J). 190 191 Enrichment of macrophage intracellular immune response pathways indicates 192 intracellular residence of NTHi 193 A total of 75 KEGG pathways were significantly functionally enriched (ShinyGo(Ge et al., 2020), 194 FDR p<0.05, hypergeometric test) in the core DEG list, which included a number of immune 195 response pathways (Figure 4A). Significant enrichment of specific intracellular immune response 196 pathways such as the 'NOD-like receptor signalling', 'Influenza A' and 'Cytosolic DNA-sensing' 197 KEGG pathways indicate activation of macrophage intracellular responses during NTHi persistence. 198 Within the Cellular Component category, enrichment of the GO:term 'symbiont-containing vacuole' 199 (GO:0020003, FDR p=0.0433, Figure 4B), also suggest intracellular responses to NTHi. The genes 200 enriched in this category (GBP2, GBP4, GBP6, and GBP7) are members of the guanylate-binding 201 protein (GBP) family, which play a role in antibacterial defence against intracellular pathogens. 202 Although not included within this particular GO:term annotation, 3 other GBP family members 203 (GBP1, GBP3 and GBP5) were also differentially expressed at both 6 h and 24 h (all FDR p<0.05, 204 Figure 4C). 205 206 NTHi transcriptomic regulation during adaptation to intracellular persistence 207 Despite activation of macrophage innate immune responses, NTHi was still able to persist within 208 MDM for the duration of this model. Thus, the NTHi transcriptome was assessed to determine NTHi 209 transcriptomic adaptations to intracellular persistence. PCA identified two distinct clusters separated 210 by the first principal component (94.3%) which was associated with the 6 h or 24 h time point 211 (Figure 5A). Differential gene expression analysis identified 107 DEGs between 6 h and 24 h, with 212 69 upregulated and 38 downregulated DEGs (Figure 5B, log₂ FC±1, FDR p<0.05). 213

214

NTHi modulation of metabolic pathways during intracellular persistence

215 Gene list enrichment analysis of the NTHi DEG list identified numerous significantly enriched terms 216 in Biological Process, Molecular Function and Cell Component categories (Figure S5). Clustering the 217 significantly enriched Biological Process terms identified that the majority of significantly enriched 218 GO:term clusters were metabolic related, with 'vitamin biosynthesis', 'amino acid metabolism', 219 'nucleoside metabolism' and 'fatty acid synthesis' clusters identified (Figure 5C). Due to the high 220 redundancy and ambiguity surrounding gene ontology terms, the functional role of the 107 DEGs 221 was summarised using the results of the enrichment analysis and gene function (Figure 6A). The

222 highest number of genes (29) were primarily involved in metabolic processes. The remaining genes

223 were involved in regulation of gene expression (23), stress responses (8), virulence (5), replication

- 224 (5) and protein regulation (2). The 35 remaining genes were uncharacterised, resulting in no gene
- 225 name or function being available for analysis. Of these uncharacterised genes, 22 were hypothetical
- protein coding genes, 9 were transcripts assigned as novel genes and 2 were sRNA.
- Out of the 107 DEGs, 29 metabolic-associated genes were identified, with upregulation of 5 genes
- 228 (rsxC, rsxD, rsxE, rsxG and cydD) involved in aerobic respiration. The remaining genes, except
- 229 *yhje_1*, were assigned to an alternative metabolic pathway, revealing a diverse array of metabolic
- pathways including biotin (vitamin B7), riboflavin (vitamin B2) and thiamine (vitamin B1) pathways
- 231 (Figure 6B). Other annotated clusters demonstrated enrichment of bacterial stress responses
- 232 ('stress/stimulus response' and 'response to toxic substance' clusters) and processes involved in gene
- 233 expression and protein synthesis ('ribosome biogenesis' and 'tRNA/ncRNA processing' clusters).
- 234 Although KEGG pathway analysis confirmed enrichment of several metabolic KEGG pathways, the
- 235 most significantly enriched KEGG pathway was the 'Ribosome' pathway (Figure 6C). All 11 DEGs
- assigned to this pathway were downregulated at 24 h. In total, 46 ribosomal protein genes were
- present in the annotated NTHi gene list, with 37 genes downregulated at 24 h (all FDR p<0.05,
- Figure 6D). However, only 11 of these 37 DEGs (rplB, rplC, rplD, rplL, rplP, rplV, rplW, rpmC,
- 239 rpsI, rpsJ and rpsQ) were above the log₂ FC1 cut off. Nonetheless, it was clear that between 6 h and
- 24 h, NTHi globally downregulated the expression of ribosomal protein genes.

241

242

243

2.7 The top regulated NTHi genes during intracellular persistence were differentially expressed compared to planktonic NTHi.

- 244 It was important to confirm that NTHi DEGs were only differentially expressed during intracellular
- persistence of MDM. Two significantly upregulated DEGs (bioC and mepM) and the top
- significantly downregulated DEG (dps) were selected for in vitro investigations. The expression of
- 247 bioC (1.8 FC, p=0.0156), mepM (2.5 FC, p=0.0313) and dps (0.4 FC, p=0.0156) during NTHi
- 248 persistence in MDM was first validated by qPCR (Table S2).
- Next, the expression of each gene was compared between planktonic NTHi and intracellular NTHi at
- 6 h and 24 h. All three genes were more highly expressed by intracellular NTHi. The two upregulated
- DEGs bioC and mepM were more highly expressed at 24 h (p=0.0014 and p=0.0178, respectively,
- 252 Figure 7A&B). The *dps* gene was more highly expressed by NTHi at 6 h compared to planktonic
- 253 (p=0.0018), with expression levels decreasing by 24 h (p=0.0954), in line with the decrease in
- expression detected by dual RNASeq and qPCR validation between 6 h and 24 h (Figure 7C).
- Despite this decrease in expression, *dps* expression levels did not revert back to similar expression
- levels as planktonic NTHi, indicating the regulation of these genes during intracellular persistence
- were distinct compared to planktonic NTHi.

258 **2.8** Strain-dependent differences in NTHi transcriptomic adaptations during intracellular persistence

- As NTHi strains are heterogeneous and have been suggested to have different capacities to persist
- within host cells(Craig et al., 2001), we also assessed whether the expression of the top three
- 262 identified NTHi genes were conserved in additional clinical strains during intracellular persistence of
- 263 MDM at 24 h. The genomic relatedness of seven clinical strains of NTHi isolated from nasal brushes,
- lung protected brushes or sputum obtained from patients with chronic respiratory disease was
- assessed by ParSNP(Treangen et al., 2014) (Figure 8A). Three strains were selected based on the

266	diversity inferred from the phylogenetic tree, including the ST14 strain, which has been used for this
267	work so far. To ensure diverse strains were selected, one strain from each clade representing a
268	different anatomical sampling location was chosen: ST408 (nasal brushing), ST14 (lung protected
269	brushing), ST201 (sputum).
270	All three strains were able to persist within MDM (Figure 8B), however higher levels of ST201 were
271	recovered from MDM at 6 h (p=0.0016 compared to ST408) and 24 h (p=0.0281 compared to both
272	ST14 and ST408). When comparing the expression of each of the three genes across strains, it was
273	apparent that NTHi ST201 modulated expression of the three genes more robustly than ST14 and

The review

ST408 during persistence (Figure 8C).

3 **Discussion**

- 276 Rapid advances in sequencing technologies now allow for simultaneous profiling of host-pathogen
- interactions, giving novel insights into the cellular cross-talk occurring during clinically relevant 277
- 278 infections. NTHi is still considered an extracellular pathogen, despite increasing evidence of an
- intracellular lifestyle(Craig et al., 2001; Morey et al., 2011; Olszewska-Sosińska et al., 2016). NTHi 279
- 280 was first demonstrated to be residing and replicating within the phagocytic compartment of
- 281 mononuclear cells(Farley et al., 1986), but in epithelial cells, NTHi colocalised with acidic
- 282 compartments displaying late endosomal features and did not appear to be replicating (Morey et al.,
- 2011). Subsequent in vitro studies have shown the ability of NTHi to invade and persist within 283
- 284 monocytes and macrophages (Ahrén et al., 2001; Craig et al., 2001, 2002; King et al., 2008). The
- 285 mechanism underlying this NTHi persistence within host cells is unclear. As such, we used dual
- 286 RNASeq to simultaneously assess host and pathogen transcriptomic changes during intracellular
- 287 persistence to better understand the mechanism of NTHi persistence within human macrophages.
- 288 Analysis of macrophage transcriptomic changes in response to NTHi persistence identified time-
- 289 dependent macrophage responses. Specifically, a core transcriptomic profile was consistently
- 290 expressed across both 6 h and 24 h, which was enriched in intracellular immune responses. A
- 291 component of the macrophage intracellular pathogen detection machinery includes GBPs, of which
- 292 all 7 GBPs were upregulated during NTHi persistence. The importance of GBPs in restricting
- 293 intracellular pathogens have been shown in studies using GBP-deficient macrophages, which
- 294 demonstrate impaired responses to intracellular pathogens including Mycobacterium bovis, L.
- 295 monocytogenes, Francisella novis and Salmonella typhimurium(Kim et al., 2011; Meunier et al.,
- 296 2014, 2015). GBPs are thought to facilitate rupturing of either bacteria-containing vacuoles or
- 297 bacteria present in the cytosol. Subsequent release of bacterial content results in cytosolic detection
- 298 of the invading pathogen and inflammasome activation (Meunier et al., 2014, 2015), which could
- 299 explain macrophage enrichment of the 'Cytosolic DNA-sensing' pathway in response to NTHi.
- 300 Conversely, recent work has shown GBPs associate with the bacterial surface moments after bacterial
- 301 escape from host vacuoles, without bacteriolysis (Santos et al., 2020). The second highest upregulated
- 302 NTHi DEG was an endopeptidase, mepM, which could suggest GBP-NTHi interactions.
- 303 Endopeptidases are responsible for incorporation of peptidoglycan into the bacterial cell wall, a
- crucial process not just for bacterial growth and replication, but also bacterial cell viability. Thus, 304
- 305 upregulation of mepM could suggest activation of NTHi defences against host immune mechanisms
- 306 that target the cell wall of bacteria. Functional work investigating physical NTHi-GBP interactions
- within MDM are therefore warranted to assess the role of GBPs in the response to intracellular 307
- 308 NTHi.
- 309 We identified ACOD1 as one of the top most significantly upregulated MDM genes across both 6 h
- 310 and 24 h. ACOD1 encodes for a cis-aconitate decarboxylase involved in the production of itaconate
- 311 from cis-aconitate produced in the TCA (Kreb) cycle(Michelucci et al., 2013). Itaconate inhibits
- succinate dehydrogenase (SDH), resulting in accumulation of succinate and diversion of macrophage 312
- 313 metabolism towards aerobic glycolysis(O'Neill & Artyomov, 2019). ACOD1 was previously
- 314
- designated IRG1 (immune responsive gene 1) as it appeared to play an unknown function in the 315 inflammatory immune response, with increased gene expression measured in LPS-stimulated
- 316 macrophages(Lee et al., 1995). ACOD1 and itaconate are suggested to be immunomodulatory, with
- 317 studies demonstrating that ACOD1 expression was important for the host immune response to
- 318 Mycobacterium tuberculosis (Mtb) infection(Hoffmann et al., 2019; Nair et al., 2018). However,

- 319 Michelucci et al., confirmed that itaconate also functions as an antimicrobial metabolite, important for
- restricting growth of Mtb and Salmonella enterica (Michelucci et al., 2013).
- In contrast, some pathogens can utilise itaconate to enhance pathogenicity. Riquelme *et al.*, found that
- 322 in response to itaconate, Pseudomonas aeruginosa adapted metabolic activity towards biofilm
- formation and extracellular polysaccharide (EPS) production, which in turn resulted in increased
- itaconate release from host cells(Riquelme et al., 2020). Similarly, Salmonella has shown to be able to
- sense and respond to macrophage itaconate by upregulating expression of itaconate degradation
- 326 proteins(Hersch & Navarre, 2020). It is not known whether NTHi is similarly able to interfere with
- 327 ACOD1/itaconate regulation of macrophage inflammatory processes, however the presence of genes
- for itaconate degradation in numerous other bacteria suggests this possibility(Sasikaran et al., 2014).
- 329 Further work assessing the exact impact of the anti-bacterial and immunomodulatory activity of
- itaconate during NTHi persistence will help identify whether these properties of itaconate can feasibly
- be used therapeutically to reduce the burden of NTHi persistence in chronic respiratory diseases. This
- is particularly important given recent findings that airway itaconate levels and expression levels of
- 333 ACOD1 were decreased in AM from patients with IPF compared to controls(Ogger et al., 2020).
- A crucial macrophage function is to orchestrate and regulate the immune response, which includes
- recruitment and activation of other immune cells(Arango Duque & Descoteaux, 2014). NTHi
- persistence has been specifically associated with a switch to T17 and neutrophilic inflammation in
- asthma(Yang et al., 2018). In this current work, KEGG analysis identified enrichment of IL-17
- signalling, with upregulation of numerous macrophage genes for neutrophil and T cell
- 339 chemoattractants present in the 'leukocyte chemotaxis/migration' biological process cluster.
- Macrophage release of specific neutrophil-associated mediators (IL-8 and IL-17C) was detected in
- 341 cell culture supernatants. NTHi-infected macrophages could be a cellular source of neutrophil
- 342 chemoattractants *in vivo*, driving the recruitment of neutrophils to the lung. This has previously been
- postulated by Song et al., who suggested that alveolar macrophages are the cellular source of
- increased IL-17 in the BALF of asthmatic patients, not Th17 cells(Song et al., 2008).
- In contrast, Singhania et al., suggested that activated T cells drive an IL-17 response in severe
- asthma(Singhania et al., 2018). We have previously demonstrated the ability of macrophages to
- activate T cells in response to challenge with influenza A(Staples et al., 2015) or NTHi(Wallington et
- al., 2018). In particular, a role for the PD1/PDL1 exhaustion pathway in regulating T cell function
- has been suggested to contribute to dysfunctional cytotoxic responses and impaired immune
- regulation in an experimental lung explant model (McKendry et al., 2016). Given the vital role of the
- macrophage in immune regulation, the complex, inflammatory environment in asthma may be driven
- by dysregulation of the NTHi-infected macrophages ability to recruit and activate both neutrophils
- 353 and T cells.
- 354 Intracellular invasion and persistence within host cells is a strategy employed by numerous bacteria
- 355 to evade the immune response. As described previously, invasion of macrophages by NTHi has been
- reported by numerous studies(Ahrén et al., 2001; Craig et al., 2001, 2002; King et al., 2008; Morey et
- al., 2011), but the mechanism of persistence and survival of NTHi within macrophages is unclear.
- Following invasion of host cells, bacteria are faced with a hostile environment which is only
- available as a niche for those bacteria able to adapt to unfavourable conditions. Macrophage
- activation of responses are crucial for killing intracellular pathogens, with some pathogens such as
- 361 Mtb able to persist within macrophages that have become activated, whereas other pathogens, such as
- 362 Listeria monocytogenes are more readily killed following activation of macrophage intracellular
- immune responses(Kaufmann & Dorhoi, 2016). Thus, bacterial adaptations to a hostile intracellular

- 364 environment can determine the ability of pathogens to persist. Adaptations to environmental changes,
- 365 such as nutrient or oxygen availability, can be regulated by the bacterial stringent response(Wilson &
- Nierhaus, 2007). Differential regulation of NTHi genes involved in various metabolic pathways, 366
- stress responses and the ribosome pathway, as well as no change in NTHi CFU between 6 h and 24 h, 367
- suggested potential activation of the bacterial stringent response by NTHi to enhance intracellular 368
- 369 survival.
- 370 Global modulation of the ribosome pathway has been observed in other pathogens during
- 371 intracellular infection of macrophages, including Bordetella pertussis and Leishmania(Dillon et al.,
- 2015; Petráčková et al., 2020). As well as a component of the stringent response, ribosomes are 372
- 373 targets of antibiotics, so it is possible that downregulation of ribosome biogenesis may be a
- 374 mechanism of bacterial defence against antibiotics. One such antibiotic which targets the bacterial
- 375 ribosome is the macrolide azithromycin. A study by Taylor et al., demonstrated that long term
- 376 azithromycin treatment reduced *H. influenzae* load and exacerbation risk in severe asthmatics(Taylor
- 377 et al., 2019). However, this reduction was associated with increased carriage of antibiotic resistance
- 378 genes by certain bacteria. Furthermore, Olszewska-Sosińska et al., found that persistent NTHi
- 379 isolates recovered from macrophages obtained from azithromycin-treated children were not
- 380 azithromycin resistant(Olszewska-Sosińska et al., 2016). As such, rather than active resistance to
- 381 antibiotics conferred by specific antibiotic resistance genes, the maintenance of persister cells and
- 382 drug tolerance may occur by other mechanisms, such as downregulation of ribosomes during
- 383 intracellular persistence. These findings highlight the crucial importance of rapidly identifying and
- developing novel antimicrobials, given the global antimicrobial resistance crisis. The data set 384
- 385 generated from this work provides a rich resource for exploration or screening of bacterial genes that
- 386 may be associated with intracellular survival which identify novel targets for antimicrobial
- 387 therapeutics.
- This work identified significant enrichment of various bacterial metabolic pathways, in agreement 388
- 389 with a previous pioneering dual RNASeq study investigating NTHi-epithelial cell
- 390 interactions(Baddal et al., 2015). Metabolic adaptations to changes in host substrate availability have
- 391 been suggested to contribute to NTHi pathogenesis(Othman et al., 2014). In this current work, the
- 392 bioC gene displayed the highest level of upregulation in the NTHi data set and was significantly
- 393 upregulated compared to planktonic NTHi. Encoding for an O-methyltransferase, bioC is involved in
- 394 generating the pimeloyl acyl carrier protein (ACP) by the fatty acid synthesis pathway and can be
- 395 used as a precursor for biotin synthesis (also known as vitamin H or B7)(Lin & Cronan, 2012). Biotin
- 396 is a limited intracellular resource, thus intracellular pathogens able to scavenge or generate biotin in
- 397 biotin-restricted environments could be better adapted to survive in an intracellular niche. This
- 398
- concept is supported by studies demonstrating the importance of biotin for survival and fitness of 399 other intracellular pathogens(Napier et al., 2012; Sprenger et al., 2020; Yu et al., 2011). As biotin
- 400 synthesis pathways are absent in humans, components of the biotin synthesis pathway could be
- 401 attractive targets for therapeutics against intracellular pathogens. Determining whether NTHi
- 402 intracellular persistence is dependent on the ability of NTHi to scavenge host biotin could identify
- 403 biotin synthesis pathways as a potential therapeutic target.
- 404 In the current dataset, several genes previously reported to be important for NTHi oxidative stress
- 405 responses(Harrison et al., 2007) were downregulated or not differentially expressed. This could
- 406 suggest NTHi escape from macrophage intracellular killing mechanisms by 24 h. In particular, the
- 407 dps gene has been suggested to play a role in protecting NTHi from oxidative stress and has also
- been identified to be crucial for NTHi biofilm growth (Pang et al., 2012; Swords, 2012). The dps gene 408
- 409 exhibited the highest decrease in expression at 24 h, suggesting NTHi adaptation to intracellular

- 410 residence within MDM is distinct to that of biofilm growth. Differences between NTHi lifestyles
- 411 could have important implications for development of effective therapeutics. Although this work
- 412 attempted to validate the results of the dual RNASeq transcriptomic analysis using planktonic NTHi
- by qPCR, one of the main limitations of this analysis is the absence of sequenced planktonic
- 414 comparisons. Sequencing planktonic NTHi would have allowed for assessment of the differences in
- 415 the transcriptomic profiles between planktonic and intracellular NTHi.
- 416 Additionally, as well as antibacterial functions discussed above, azithromycin also exhibits
- immunomodulatory functions, including antioxidant properties(Bergamini et al., 2009; Mal et al.,
- 418 2013). However, dampening of oxidative stress responses in the airway may in fact promote NTHi
- 419 persistence. NTHi utilises multiple strategies to promote a multifaceted defence response against
- 420 oxidative stress, including regulation of dps(Harrison et al., 2012). As dps was downregulated at 24 h
- compared to 6 h in all three strains tested in this current work, it is possible that multiple strains of
- NTHi can overcome host oxidative stress responses to facilitate intracellular persistence. Thus,
- 423 azithromycin-mediated dampening of antioxidant responses may contribute to NTHi persistence in
- 424 the airway. Instead, the other immunomodulatory functions of azithromycin may be more important
- 425 in reducing NTHi load, including increasing macrophage phagocytosis, upregulating expression of
- 426 cell surface receptors (e.g. mannose receptor) and reducing pro-inflammatory cytokine levels(Euba et
- al., 2015; Hodge et al., 2008; Hodge et al., 2006). The AMAZES trial showed that despite a
- significant decrease in *H. influenzae* copy number, carriage of NTHi was still evident in some
- patients(Taylor et al., 2019). Thus, strain-dependent differences in NTHi adaptation to the lung
- environment may be responsible for the chronic airway colonisation by some strains; determining the
- 431 transcriptomic profile of multiple diverse NTHi strains persisting despite azithromycin treatment
- would be informative.
- NTHi strains are heterogeneous, with strain-dependent differences in macrophage persistence shown
- in this current work and that of Craig et al., 2001). The seven strains of NTHi used for
- phylogenetic analysis were all clinical isolates cultured from either protected bronchial brushings,
- induced sputum or nasal brushings. However, strains did not cluster according to sample type.
- 437 Although this is a small sample size, dissimilarity of NTHi strains derived from the same clinical
- source has also been shown in two larger studies (De Chiara et al., 2014; Erwin et al., 2008).
- Furthermore, two invasive NTHi strains (C188 and R2866) displayed increased ability to metabolise
- diverse substrates compared to a COPD isolate (Hi2019), whereas Hi2019 was better able to invade
- and reside within airway cells(Muda et al., 2019). This comparative analysis suggests differences in
- metabolic adaptations could underpin the ability of NTHi to persist in certain anatomical niches,
- further supported by the different levels of gene expression exhibited by the three diverse strains used
- in this current study. Thus, stratifying NTHi strains by transcriptomic adaptations during persistence,
- could be a better method by which to identify strains better able to persist *in vivo*. However, a
- limitation of our model is that it is likely too acute to consider the long-term implications of NTHi
- colonisation and associated transcriptomic changes in the airway. Future investigations assessing the
- key gene targets identified in this analysis using macrophages isolated from individuals chronically
- colonised with NTHi will confirm the significance of transcriptomic adaptations to NTHi
- intracellular persistence within macrophages in the airway.
- We recognise another limitation of our current work was the use of MDM to model lung
- 452 macrophages. Although MDM have been extensively used and display similar phenotypes and
- responses to alveolar macrophages (Akagawa et al., 2006; Taylor et al., 2010; Tudhope et al., 2008),
- 454 they are likely to not be completely reflective of NTHi-macrophage interactions in the airway,
- particularly given the reported functional impairments of macrophages from individuals with chronic

- respiratory disease(Belchamber et al., 2019; Berenson et al., 2013; Liang et al., 2014; Staples et al.,
- 457 2012; Taylor et al., 2010). Moreover, lung macrophages in COPD consist of various subpopulations,
- 458 which also differ from control lung macrophages in terms of pro-inflammatory and phagocytic
- ability(Dewhurst et al., 2017). As such, it is possible that a specific sub population of macrophages
- 460 may function as a preferred niche for intracellular persistence. Notably, dual RNASeq analysis
- 461 comparing responses of alveolar and interstitial macrophages (AM and IM, respectively) to infection
- with Mtb found that Mtb growth was more restricted in IM, which demonstrated a more pro-
- inflammatory response than AM(Pisu et al., 2020). Thus, it would be important to confirm the
- 464 transcriptomic findings in this study using lung macrophages from chronic respiratory disease
- patients colonised with NTHi.

466

467

4 Final Conclusions

- In summary, this work demonstrates that despite significant enrichment of immune processes and
- intracellular pathways by MDM, NTHi was able to persist for the duration of our experiments. Thus,
- 470 macrophages may act as a protected niche within the airway, promoting NTHi colonisation,
- especially in chronic respiratory diseases that already have evidence of macrophage dysfunction.
- Furthermore, this persistence may contribute to the dysregulated immune response in chronic
- 473 respiratory disease, as upregulation of macrophage pro-inflammatory responses, including mediators
- of other inflammatory immune cells, were detected in response to NTHi persistence. Analysis of
- NTHi gene expression during persistence revealed metabolic adaptations which may be crucial for
- bacterial persistence. However, further functional work is needed to confirm the importance of genes
- and pathways before they are deemed key targets to be taken forward into drug development
- 478 pipelines for validation. Nonetheless, this work provides a rich transcriptomic resource for
- exploration of host-pathogen interactions, which could unveil novel gene targets for therapeutic
- interventions to reduce the burden of NTHi in the airway.

481 5 Materials and Methods

482

494

515

5.1 MDM culture and infection

- Blood from healthy volunteers was collected in accordance with the protocol as approved by the
- 484 Hampshire A Research Ethics Committee (13/SC/0416). Monocytes isolated from blood were seeded
- at 5 x 10⁵ cells per well and differentiated for 12 d as previously described (Cooper et al., 2018;
- Staples et al., 2012). On day 12, culture media was replaced with reduced serum (0.1% foetal bovine
- serum, FBS), antibiotic-free RPMI media and either left uninfected or were challenged with NTHi at
- 488 multiplicity of infection (MOI) 100 for 6 h. At 6 h, media was removed and cells washed twice
- 489 before addition of reduced serum RPMI supplemented with 500 μg/ml gentamicin to wells for 90 min
- in order to kill and remove extracellular bacteria (referred to as '6 h time point'). Gentamicin-
- 491 containing RPMI media was removed and cells were washed before further incubation in reduced
- serum RPMI media until harvest at 24 h (referred to as '24 h time point'). Presence of NTHi at this
- 493 24 h time point in the absence of antibiotics is regarded as persistence.

5.2 NTHi culture and growth

- NTHi strains ST14, isolated from a COPD patient undergoing bronchoscopy(Osman et al., 2018),
- and NTHi-GFP-375^{SR} (kindly gifted by Dr. Derek Hood, MRC Harwell, UK)(Mulay et al., 2016)
- 497 were grown as previously described(Kirkham et al., 2013). Briefly, NTHi was cultured from frozen
- 498 stock on to chocolate blood agar plates (CHOC, Oxoid, Basingstoke, UK) and incubated overnight at
- 499 37°C, 5% CO₂. Single NTHi colony forming units (CFU) were selected and inoculated in
- 500 supplemented Brain Heart Infusion (BHI) media (30 mg/L Hemin (Sigma-Aldrich, Paisley, UK), 10
- 501 mg/L β-Nicotinamide adenine dinucleotide (β-NAD, Sigma) and 44 ml/L glycerol at 37°C, 5% CO₂
- for 8 h to achieve mid-log phase. Heat inactivated FBS (20%) was added to culture and 1 ml aliquots
- were stored at -80°C until required. Counts of frozen NTHi stocks were routinely performed to
- determine the concentration of aliquots and to ensure NTHi viability remained stable over time,
- NTHi aliquots for infection were defrosted and transferred to a fresh tube containing 500 µl PBS and
- centrifuged at 800 g for 10 min, 4°C to pellet the bacteria. The remaining supernatant was discarded
- and the pellet was resuspended in reduced, antibiotic-free RPMI media and added to MDM. For
- assessment of gene expression in planktonic state NTHi, NTHi was prepared for infection as above,
- but the cell pellet was not resuspended in RPMI and added to MDM and instead was treated with
- 510 TRIzol reagent (Life Technologies)

5.1 5.3 Quantifying intracellular NTHi persistence

- To enumerate NTHi recovered from MDM, MDM were lysed with 1 x PermWashTM (PW, BD
- Biosciences) for 20 min. Cells were serially diluted and plated on CHOC agar plates (Oxoid) and
- incubated at 37°C, 5% CO₂ overnight.

5.4 Visualisation of NTHi persistence

- MDM were challenged with GFP-375^{SR} as described and cells were harvested using Cell
- 517 Dissociation Solution (Sigma) for 20 min at 37°C. The cell suspension was recovered and
- centrifuged to generate a cell pellet. The cell pellet was resuspended in PBS and streaked onto
- PolyFrost Microslides (Solmedia, Shrewsbury, UK). Once dry, slides were fixed using 4%
- 520 paraformaldehyde (PFA) for 15 min. Excess PFA was removed and slides were washed in PBS and
- 521 left until completely dried. Once dry, 25 μl Vectashield® Mounting Medium solution containing
- 522 DAPI nuclear stain (1.5 µg/ml) (Vector Laboratories, Inc. Burlingame, CA) was added to each spot

- and a glass coverslip mounted on top. Slides were visualised using Axioscope KS400 fluorescence
- microscope using Carl Zeiss Axioscope 3.0 software.

5.5 Dual RNASeq

525

- 526 RNA extraction for sequenced samples was performed using a miRNeasy kit (QIAGEN®,
- Manchester, UK), including a DNase I (QIAGEN®) treatment step, according to the manufacturer's
- 528 instructions. RNA quality was assessed using an Agilent Bioanalyzer 2100 system, prior to
- 529 sequencing of ribosomal RNA-depleted RNA (Illumina® Ribo-Zero Plus rRNA Depletion Kit),
- which was performed by Novogene (Hong Kong). Libraries were generated using the
- NEBNext®Ultra™ Directional RNA Library Prep Kit for Illumina® (NEB, USA). Library quality
- was assessed on the Agilent Bioanalyzer 2100 system and quantified using a Qubit 2.0 fluorometer
- 533 (Life Technologies). Sequencing was performed using NovaSeq 6000 Illumina® platform and 150-
- base pair (bp) paired end reads were generated using a sequencing depth of 90 million reads. Reads
- containing adapter sequences, poly-N and low quality reads were removed to obtain clean reads.
- Mapping of the cleaned, raw data to the respective reference genomes separated MDM and NTHi
- transcripts in silico. The Spliced Transcripts Alignment to a Reference (STAR)(Dobin et al., 2013)
- software (version 2.5) was used to map reads to the human genome (hg38) and Bowtie2(Langmead
- & Salzberg, 2012) (version 2.2.3) was used to map reads to the NTHi ST14 genome. Aligned reads
- were quantified using HTSeq(Anders et al., 2015) and data were filtered to remove lowly expressed
- reads prior to differential gene expression analysis. Two packages, edgeR(Robinson et al., 2009) and
- 542 DESeq2(Anders & Huber, 2010), were used to determine changes in host gene expression between
- uninfected or NTHi-challenged MDM at 6 h or 24 h or to determine changes in NTHi gene
- expression between 6 h and 24 h. Significantly differentially expressed genes (DEGs) were
- determined as $\log_2 FC \pm 2$ (MDM) or $\log_2 FC \pm 1$ (NTHi) and FDR p-value <0.05 by both edgeR and
- 546 DESeq2. To explore the biological relevance of the significant DEGs, gene list enrichment analysis
- and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis was performed using
- ToppFunn(Chen et al., 2009) and ShinyGo(Ge et al., 2020) using default parameter settings (FDR
- multiple correction method and enrichment significance cut off level 0.05). Clustering of the top gene
- ontology terms was performed in Cytoscape using the EnrichmentMap(Merico et al., 2010) and
- AutoAnnotate(Kucera et al., 2016) plugins.

552 **5.6 Strain comparisons.**

- To assess NTHi strain diversity, the ParSNP package from the Harvest suite(Treangen et al., 2014)
- was used to analyse 7 clinical isolates of NTHi. The 86-028NP assembly, (GenBank number
- 555 CP000057.2), was downloaded from https://www.ncbi.nlm.nih.gov/nuccore to be used as a reference.
- Default parameters were used to construct an assembly-based core-SNP phylogeny. From this
- analysis, three strains isolated from different anatomical locations and identified on three different
- clades of the constructed phylogenetic tree were chosen to infect MDM as described for strain
- 559 comparison infection experiments.

560

5.7 RNA isolation and qPCR

- Samples were treated with TRIzol reagent (Life Technologies) and RNA was isolated according to
- manufacturer's instructions. Reverse transcription to produce cDNA was carried out according to the
- 563 manufacturer's instructions using a High Capacity cDNA Reverse Transcription Kit (Life
- Technologies) with random hexamers. Quantitative PCR (qPCR) was performed using TaqMan
- universal PCR master mix, with all primers obtained from Applied Biosystems (Table S3). The
- 566 qPCR reactions were performed at 95°C for 10 min and 40 cycles of 95°C for 15 s and 60°C for 1

- min using a 7900HT Fast Real-Time PCR System. Gene expression of target genes were normalised
- either to B2M (MDM) or rho (NTHi) using the delta-delta Ct method.

569 5.8 Lactate Dehydrogenase Assay (LDH)

- 570 LDH release into culture supernatants was assessed by the CytoTox 96® Non-Radioactive
- 571 Cytotoxicity Assay according to the manufacturer's instructions (Promega, Madison, USA). Briefly,
- 572 $50 \,\mu l$ of harvested supernatant and 50 μl CytoTox 96® Reagent was added to a 96 well plate and
- incubated for 30 min in the dark at room temperature. 50 µl of stop solution was added and the
- absorbance read on a microplate reader at 490 nm (Multiskan Ascent, Agilent Technologies,
- Wokingham, UK). Optical Density (OD) reading of a media only control was regarded as
- 576 background and subtracted from sample values.

577 5.9 Quantification of MDM mediator release

- 578 IL-1β, IL-6 and IL-8 release into cell culture supernatants was assessed by DuoSet ELISA kits,
- which was carried out according to manufacturer's instructions (R&D Systems). IL-10, IL-15, IL-
- 580 17C, IL-36β and TNF-α release into cell culture supernatants was assessed by a customised Luminex
- Human Magnetic Assay according to manufacturer's instructions (R&D Systems). Further
- information is supplied in the supplementary methods.

583 5.10 Statistics

- Statistical analysis was performed using GraphPad Prism (version 8 GraphPad Software, San Diego,
- 585 USA) and statistical significance was determined as p<0.05. For paired data, Wilcoxon matched-
- pairs signed rank test between two groups or Friedman test with Dunn's post hoc test for multiple
- comparison testing between more than two groups for one independent variable were used. For
- unpaired data, Kruskal-Wallis with Dunn's post hoc test for multiple comparison testing was used.

589 5.11 Data Availability

- 590 RNA sequencing reads have been deposited in the Gene Expression Omnibus (GEO) repository
- under the accession number *GSE180166* and can be accessed at http://www.ncbi.nlm.nih.gov/geo/

592 6 **Conflict of Interest** 593 Dr Cleary reports that he was a post-doctoral researcher on projects funded by Pfizer and GSK 594 between April 2014 and October 2017. Prof. Wilkinson reports grants and personal fees from 595 AstraZeneca, personal fees and other from MMH, grants and personal fees from GSK, personal fees 596 from BI, and grants and personal fees from Synairgen, outside the submitted work. Dr Staples reports 597 grants from AstraZeneca, outside the submitted work. Dr Ackland, Dr Heinson and Prof 598 Christodoulides report that they have no conflicts of interest. 599 7 **Author Contributions** 600 JA and KJS conceptualized the project; JA, AH, DC, MC and KJS contributed to methodology; JA and AH undertook the formal analysis; KJS administered the project; JA performed the investigation; 601 602 DC, MC, TW and KJS provided resources and acquired funding; DC, MC, TW and KJS supervised 603 the project; JA, AH and DC curated the data; JA and KJS wrote the original draft; all authors contributed to writing, reviewing and editing and approved the final manuscript. 604 605 8 **Funding** This work was funded by an Asthma UK studentship award (AUK-PHD-2016-363). The funders had 606 607 no role in study design, data collection and interpretation, or the decision to submit the work for 608 publication. 609 9 Acknowledgments The authors would like to express gratitude to all the volunteers who kindly provided blood samples 610 for this study. 611 612 613 10 Contribution to the field 614 NTHi airway colonisation is associated with increased airway inflammation, disease severity and 615 exacerbation risk in individuals with chronic respiratory disease. No vaccine against NTHi is currently available and antibiotic therapy is often ineffective at clearing NTHi. As such, identifying 616 617 mechanisms of persistence that could be therapeutically targeted to reduce the burden of NTHi in the airway would greatly benefit individuals with chronic respiratory disease. This work demonstrates 618 619 that NTHi can invade and persist within human macrophages, with macrophages upregulating innate

immune response pathways in response. NTHi persistence was facilitated by transcriptomic

into NTHi-macrophage interactions, enhances our understanding of how NTHi can utilise host

adaptations in bacterial metabolic, stress response and ribosome pathways, with persistent NTHi gene expression distinct to that of planktonic state NTHi. This research provides transcriptomic insights

immune cells to chronically colonise the airway and identifies potential bacterial gene pathways that

may be attractive therapeutic targets.

620

621

622 623

624 625

- 627 11 References
- Ahearn, C. P., Gallo, M. C., & Murphy, T. F. (2017). Insights on persistent airway infection by non-
- typeable Haemophilus influenzae in chronic obstructive pulmonary disease. *Pathogens and*
- 630 *Disease*, 75(4). https://doi.org/10.1093/femspd/ftx042
- Ahrén, I. L., Williams, D. L., Rice, P. J., Forsgren, A., & Riesbeck, K. (2001). The importance of a
- β-glucan receptor in the nonopsonic entry of nontypeable Haemophilus influenzae into human
- monocytic and epithelial cells. *Journal of Infectious Diseases*, 184(2), 150–158.
- 634 https://doi.org/10.1086/322016
- Akagawa, K. S., Komuro, I., Kanazawa, H., Yamazaki, T., Mochida, K., & Kishi, F. (2006).
- Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived
- 637 macrophages. *Respirology*, 11(SUPPL. 1), 27–34. https://doi.org/10.1111/j.1440-
- 638 1843.2006.00805.x
- Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. *Genome*
- 640 Biology, 11(10), R106. https://doi.org/10.1186/gb-2010-11-10-r106
- Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq-A Python framework to work with high-
- throughput sequencing data. *Bioinformatics*, 31(2), 166–169.
- https://doi.org/10.1093/bioinformatics/btu638
- Arango Duque, G., & Descoteaux, A. (2014). Macrophage cytokines: involvement in immunity and
- infectious diseases. Frontiers in Immunology, 5(OCT), 491.
- https://doi.org/10.3389/fimmu.2014.00491
- Baddal, B., Muzzi, A., Censini, S., Calogero, R. A., Torricelli, G., Guidotti, S., Taddei, A. R.,
- 648 Covacci, A., Pizza, M., Rappuoli, R., Soriani, M., & Pezzicoli, A. (2015). Dual RNA-seq of
- nontypeable haemophilus influenzae and host cell transcriptomes reveals novel insights into
- 650 host-pathogen cross talk. *MBio*, 6(6), 1–13. https://doi.org/10.1128/mBio.01765-15
- Belchamber, K. B. R., Singh, R., Batista, C. M., Whyte, M. K., Dockrell, D. H., Kilty, I., Robinson,
- M. J., Wedzicha, J. A., Barnes, P. J., & Donnelly, L. E. (2019). Defective bacterial phagocytosis
- is associated with dysfunctional mitochondria in COPD macrophages. *European Respiratory*
- 654 *Journal*, 54(4). https://doi.org/10.1183/13993003.02244-2018
- Berenson, C. S., Garlipp, M. A., Grove, L. J., Maloney, J., & Sethi, S. (2006). Impaired phagocytosis
- of nontypeable Haemophilus influenzae by human alveolar macrophages in chronic obstructive
- pulmonary disease. *Journal of Infectious Diseases*, 194(10), 1375–1384.
- 658 https://doi.org/10.1086/508428
- Berenson, C. S., Kruzel, R. L., Eberhardt, E., & Sethi, S. (2013). Phagocytic dysfunction of human
- alveolar macrophages and severity of chronic obstructive pulmonary disease. *Journal of*
- 661 Infectious Diseases, 208(12), 2036–2045. https://doi.org/10.1093/infdis/jit400
- Bergamini, G., Cigana, C., Sorio, C., Della Peruta, M., Pompella, A., Corti, A., Huaux, F. A., Leal,
- T., Assael, B. M., & Melotti, P. (2009). Effects of azithromycin on glutathione S-transferases in
- 664 cystic fibrosis airway cells. American Journal of Respiratory Cell and Molecular Biology,
- 665 41(2), 199–206. https://doi.org/10.1165/rcmb.2008-0013OC

- Byrne, A. J., Mathie, S. A., Gregory, L. G., & Lloyd, C. M. (2015). Pulmonary macrophages: Key
- players in the innate defence of the airways. *Thorax*, 70(12), 1189–1196.
- https://doi.org/10.1136/thoraxjnl-2015-207020
- Chen, J., Bardes, E. E., Aronow, B. J., & Jegga, A. G. (2009). ToppGene Suite for gene list
- enrichment analysis and candidate gene prioritization. *Nucleic Acids Research*, 37(SUPPL. 2),
- 671 305–311. https://doi.org/10.1093/nar/gkp427
- 672 Clementi, C. F., & Murphy, T. F. (2011). Non-typeable Haemophilus influenzae invasion and
- persistence in the human respiratory tract. Frontiers in Cellular and Infection Microbiology, 1,
- 1. https://doi.org/10.3389/fcimb.2011.00001
- 675 Cooper, G. E., Ostridge, K., Khakoo, S. I., Wilkinson, T. M. A., & Staples, K. J. (2018). Human
- 676 CD49a+ lung natural killer cell cytotoxicity in response to influenza A virus. Frontiers in
- 677 Immunology, 9(JUL), 1671. https://doi.org/10.3389/fimmu.2018.01671
- 678 Coughtrie, A. L., Morris, D. E., Anderson, R., Begum, N., Cleary, D. W., Faust, S. N., Jefferies, J.
- M., Kraaijeveld, A. R., Moore, M. V, Mullee, M. A., Roderick, P. J., Tuck, A., Whittaker, R. N.,
- Yuen, H. M., Doncaster, C. P., & Clarke, S. C. (2018). Ecology and diversity in upper
- respiratory tract microbial population structures from a cross-sectional community swabbing
- study. Journal of Medical Microbiology, 67(8), 1096–1108.
- 683 https://doi.org/10.1099/jmm.0.000773
- 684 Craig, J. E., Cliffe, A., Garnett, K., & High, N. J. (2001). Survival of nontypeable Haemophilus
- influenzae in macrophages. FEMS Microbiology Letters, 203(1), 55–61.
- 686 https://doi.org/10.1016/S0378-1097(01)00328-7
- 687 Craig, J. E., Nobbs, A., & High, N. J. (2002). The extracytoplasmic sigma factor, σE, is required for
- intracellular survival of nontypeable Haemophilus influenzae in J774 macrophages. *Infection*
- 689 and Immunity, 70(2), 708–715. https://doi.org/10.1128/IAI.70.2.708-715.2002
- 690 De Chiara, M., Hood, D., Muzzi, A., Pickard, D. J., Perkins, T., Pizza, M., Dougan, G., Rappuoli, R.,
- Moxon, E. R., Soriani, M., & Donati, C. (2014). Genome sequencing of disease and carriage
- isolates of nontypeable Haemophilus influenzae identifies discrete population structure.
- 693 Proceedings of the National Academy of Sciences of the United States of America, 111(14),
- 694 5439–5444. https://doi.org/10.1073/pnas.1403353111
- 695 Dewhurst, J. A., Lea, S., Hardaker, E., Dungwa, J. V., Ravi, A. K., & Singh, D. (2017).
- 696 Characterisation of lung macrophage subpopulations in COPD patients and controls. *Scientific*
- 697 Reports, 7(1), 7143. https://doi.org/10.1038/s41598-017-07101-2
- 698 Dillon, L. A. L., Suresh, R., Okrah, K., Corrada Bravo, H., Mosser, D. M., & El-Sayed, N. M.
- 699 (2015). Simultaneous transcriptional profiling of Leishmania major and its murine macrophage
- host cell reveals insights into host-pathogen interactions. *BMC Genomics*, 16(1), 1108–1108.
- 701 https://doi.org/10.1186/s12864-015-2237-2
- Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., &
- Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics*, 29(1), 15–
- 704 21. https://doi.org/10.1093/bioinformatics/bts635

- Erwin, A. L., Sandstedt, S. A., Bonthuis, P. J., Geelhood, J. L., Nelson, K. L., Unrath, W. C. T.,
- Diggle, M. A., Theodore, M. J., Pleatman, C. R., Mothershed, E. A., Sacchi, C. T., Mayer, L.
- W., Gilsdorf, J. R., & Smith, A. L. (2008). Analysis of genetic relatedness of Haemophilus
- influenzae isolates by multilocus sequence typing. *Journal of Bacteriology*, 190(4), 1473–1483.
- 709 https://doi.org/10.1128/JB.01207-07
- 710 Erwin, A. L., & Smith, A. L. (2007). Nontypeable Haemophilus influenzae: understanding virulence
- and commensal behavior. *Trends in Microbiology*, 15(8), 355–362.
- 712 https://doi.org/10.1016/j.tim.2007.06.004
- Euba, B., Moleres, J., Viadas, C., Barberán, M., Caballero, L., Grilló, M. J., Bengoechea, J. A., De-
- Torres, J. P., Liñares, J., Leiva, J., & Garmendia, J. (2015). Relationship between azithromycin
- susceptibility and administration efficacy for nontypeable Haemophilus influenzae respiratory
- infection. Antimicrobial Agents and Chemotherapy, 59(5), 2700–2712.
- 717 https://doi.org/10.1128/AAC.04447-14
- Farley, M. M., Stephens, D. S., Mulks, M. H., Cooper, M. D., Bricker, J. V, Mirra, S. S., Wright, A.,
- 8 Farley, M. M. (1986). Pathogenesis of IgAl Protease-Producing and-Nonproducing
- Haemophilus influenzae in Human Nasopharyngeal Organ Cultures. In *THE JOURNAL OF*
- 721 *INFECTIOUS DISEASES* (Vol. 154, Issue 5).
- https://academic.oup.com/jid/article/154/5/752/906314
- Finney, L. J., Ritchie, A., Pollard, E., Johnston, S. L., & Mallia, P. (2014). Lower airway
- colonization and inflammatory response in COPD: A focus on Haemophilus influenza.
- 725 International Journal of COPD, 9, 1119–1132. https://doi.org/10.2147/COPD.S54477
- Forsgren, J., Samuelson, A., Ahlin, A., Jonasson, J., Rynnel-Dagoo, B., & Lindberg, A. (1994).
- Haemophilus influenzae resides and multiplies intracellularly in human adenoid tissue as
- demonstrated by in situ hybridization and bacterial viability assay. *Infection and Immunity*,
- 729 62(2), 673–679. https://doi.org/10.1128/iai.62.2.673-679.1994
- Gallo, M. C., Kirkham, C., Eng, S., Bebawee, R. S., Kong, Y., Pettigrew, M. M., Tettelin, H., &
- Murphy, T. F. (2018). Changes in IgA protease expression are conferred by changes in genomes
- during persistent infection by nontypeable Haemophilus influenzae in chronic obstructive
- pulmonary disease. *Infection and Immunity*, 86(8), e00313-18.
- 734 https://doi.org/10.1128/IAI.00313-18
- Ge, S. X., Jung, D., Jung, D., & Yao, R. (2020). ShinyGO: A graphical gene-set enrichment tool for
- animals and plants. *Bioinformatics*, 36(8), 2628–2629.
- 737 https://doi.org/10.1093/bioinformatics/btz931
- Green, B. J., Wiriyachaiporn, S., Grainge, C., Rogers, G. B., Kehagia, V., Lau, R., Carroll, M. P.,
- Bruce, K. D., & Howarth, P. H. (2014). Potentially pathogenic airway bacteria and neutrophilic
- inflammation in treatment resistant severe asthma. *PLoS ONE*, 9(6), e100645.
- 741 https://doi.org/10.1371/journal.pone.0100645
- Harrison, A., Bakaletz, L. O., & Munson, R. S. (2012). Haemophilus influenzae and oxidative stress.
- In Frontiers in cellular and infection microbiology (Vol. 2, p. 40). Frontiers Media SA.
- 744 https://doi.org/10.3389/fcimb.2012.00040

- Harrison, A., Ray, W. C., Baker, B. D., Armbruster, D. W., Bakaletz, L. O., & Munson, R. S. (2007).
- The OxyR regulon in nontypeable Haemophilus influenzae. *Journal of Bacteriology*, 189(3),
- 747 1004–1012. https://doi.org/10.1128/JB.01040-06
- Hersch, S. J., & Navarre, W. W. (2020). The Salmonella LysR Family Regulator RipR Activates the
- 749 SPI-13-Encoded Itaconate Degradation Cluster. *Infection and Immunity*, 88(10).
- 750 https://doi.org/10.1128/IAI.00303-20
- Hodge, Sandra, Hodge, G., Jersmann, H., Matthews, G., Ahern, J., Holmes, M., & Reynolds, P. N.
- 752 (2008). Azithromycin improves macrophage phagocytic function and expression of mannose
- receptor in chronic obstructive pulmonary disease. *American Journal of Respiratory and*
- 754 *Critical Care Medicine*, 178(2), 139–148. https://doi.org/10.1164/rccm.200711-1666OC
- Hodge, Sandy, Hodge, G., Brozyna, S., Jersmann, H., Holmes, M., & Reynolds, P. N. (2006).
- Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar
- macrophages. European Respiratory Journal, 28(3), 486–495.
- 758 https://doi.org/10.1183/09031936.06.00001506
- Hoffmann, E., Machelart, A., Belhaouane, I., Deboosere, N., Pauwels, A. M., Saint-André, J. P.,
- Song, O. R., Jouny, S., Poncet, A., Marion, S., Beyaert, R., Majlessi, L., & Brodin, P. (2019).
- 761 Irg1 controls immunometabolic host response and restricts intracellular mycobacterium
- tuberculosis infection: Immunometabolic host response to tuberculosis. *BioRxiv*.
- 763 https://doi.org/10.1101/761551
- 764 Iikura, M., Hojo, M., Koketsu, R., Watanabe, S., Sato, A., Chino, H., Ro, S., Masaki, H., Hirashima,
- J., Ishii, S., Naka, G., Takasaki, J., Izumi, S., Kobayashi, N., Yamaguchi, S., Nakae, S., &
- Sugiyama, H. (2015). The importance of bacterial and viral infections associated with adult
- asthma exacerbations in clinical practice. *PLoS ONE*, 10(4), e0123584.
- 768 https://doi.org/10.1371/journal.pone.0123584
- Kaufmann, S. H. E., & Dorhoi, A. (2016). Molecular Determinants in Phagocyte-Bacteria
- 770 Interactions. *Immunity*, 44(3), 476–491. https://doi.org/10.1016/j.immuni.2016.02.014
- Kim, B.-H., Shenoy, A. R., Kumar, P., Das, R., Tiwari, S., & MacMicking, J. D. (2011). A family of
- 1772 IFN-γ-inducible 65-kD GTPases protects against bacterial infection. Science (New York, N.Y.),
- 332(6030), 717–721. https://doi.org/10.1126/science.1201711
- King, P. (2012). Haemophilus influenzae and the lung (Haemophilus and the lung). Clinical and
- 775 *Translational Medicine*, *I*(1), 10. https://doi.org/10.1186/2001-1326-1-10
- King, P., Ngui, J., Oppedisano, F., Robins-Browne, R., Holmes, P., & Holdsworth, S. (2008). Effect
- of interferon gamma and CD40 ligation on intracellular monocyte survival of nontypeable
- Haemophilus influenzae. APMIS: Acta Pathologica, Microbiologica, et Immunologica
- 779 *Scandinavica*, 116(12), 1043–1049. https://doi.org/10.1111/j.1600-0463.2008.01078.x
- 780 Kirkham, L.-A. S., Corscadden, K. J., Wiertsema, S. P., Currie, A. J., & Richmond, P. C. (2013). A
- practical method for preparation of pneumococcal and nontypeable Haemophilus influenzae
- inocula that preserves viability and immunostimulatory activity. BMC Research Notes, 6(1),
- 783 522. https://doi.org/10.1186/1756-0500-6-522

- Kucera, M., Isserlin, R., Arkhangorodsky, A., & Bader, G. D. (2016). AutoAnnotate: A Cytoscape
- app for summarizing networks with semantic annotations. F1000Research, 5, 1717.
- 786 https://doi.org/10.12688/f1000research.9090.1
- Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature*
- 788 *Methods*, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923
- Lee, C. G. L., Jenkins, N. A., Gilbert, D. J., Copeland, N. G., & O'Brien, W. E. (1995). Cloning and
- analysis of gene regulation of a novel LPS-inducible cDNA. *Immunogenetics*, 41(5), 263–270.
- 791 https://doi.org/10.1007/BF00172150
- Liang, Z., Zhang, Q., Thomas, C. M. R., Chana, K. K., Gibeon, D., Barnes, P. J., Chung, K. F.,
- Bhavsar, P. K., & Donnelly, L. E. (2014). Impaired macrophage phagocytosis of bacteria in
- 794 severe asthma. *Respiratory Research*, 15(1), 72. https://doi.org/10.1186/1465-9921-15-72
- Lin, S., & Cronan, J. E. (2012). The BioC O-methyltransferase catalyzes methyl esterification of
- malonyl-acyl carrier protein, an essential step in biotin synthesis. *Journal of Biological*
- 797 *Chemistry*, 287(44), 37010–37020. https://doi.org/10.1074/jbc.M112.410290
- Mal, P., Dutta, K., Bandyopadhyay, D., Basu, A., Khan, R., & Bishayi, B. (2013). Azithromycin in
- combination with riboflavin decreases the severity of Staphylococcus aureus infection induced
- septic arthritis by modulating the production of free radicals and endogenous cytokines.
- 801 Inflammation Research, 62(3), 259–273. https://doi.org/10.1007/s00011-012-0574-z
- Marsh, J. W., Humphrys, M. S., & Myers, G. S. A. (2017). A laboratory methodology for dual RNA-
- sequencing of bacteria and their host cells in vitro. Frontiers in Microbiology, 8(SEP), 1830.
- 804 https://doi.org/10.3389/fmicb.2017.01830
- Martí-Lliteras, P., Regueiro, V., Morey, P., Hood, D. W., Saus, C., Sauleda, J., Agustí, A. G. N.,
- Bengoechea, J. A., & Garmendia, J. (2009). Nontypeable Haemophilus influenzae clearance by
- alveolar macrophages is impaired by exposure to cigarette smoke. *Infection and Immunity*,
- 808 77(10), 4232–4242. https://doi.org/10.1128/IAI.00305-09
- Mayhew, D., Devos, N., Lambert, C., Brown, J. R., Clarke, S. C., Kim, V. L., Magid-Slav, M.,
- Miller, B. E., Ostridge, K. K., Patel, R., Sathe, G., Simola, D. F., Staples, K. J., Sung, R., Tal-
- Singer, R., Tuck, A. C., Van Horn, S., Weynants, V., Williams, N. P., ... Wilkinson, T. M. A.
- 812 (2018). Longitudinal profiling of the lung microbiome in the AERIS study demonstrates
- repeatability of bacterial and eosinophilic COPD exacerbations. *Thorax*, 73(5), 422–430.
- 814 https://doi.org/10.1136/thoraxjnl-2017-210408
- 815 McCann, J. R., Mason, S. N., Auten, R. L., St. Geme, J. W., & Seed, P. C. (2016). Early-life
- intranasal colonization with nontypeable Haemophilus influenzae exacerbates juvenile airway
- disease in mice. *Infection and Immunity*, 84(7), 2022–2030. https://doi.org/10.1128/IAI.01539-
- 818 15
- McKendry, R. T., Spalluto, C. M., Burke, H., Nicholas, B., Cellura, D., Al-Shamkhani, A., Staples,
- K. J., & Wilkinson, T. M. A. (2016). Dysregulation of Antiviral Function of CD8+ T Cells in
- the Chronic Obstructive Pulmonary Disease Lung. Role of the PD-1-PD-L1 Axis. *American*
- *Journal of Respiratory and Critical Care Medicine*, 193(6), 642–651.
- 823 https://doi.org/10.1164/rccm.201504-0782OC

- Merico, D., Isserlin, R., Stueker, O., Emili, A., & Bader, G. D. (2010). Enrichment Map: A Network-
- Based Method for Gene-Set Enrichment Visualization and Interpretation. *PLoS ONE*, *5*(11),
- 826 e13984. https://doi.org/10.1371/journal.pone.0013984
- Meunier, E., Dick, M. S., Dreier, R. F., Schürmann, N., Broz, D. K., Warming, S., Roose-Girma, M.,
- Bumann, D., Kayagaki, N., Takeda, K., Yamamoto, M., & Broz, P. (2014). Caspase-11
- activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. *Nature*,
- 830 509(7500), 366–370. https://doi.org/10.1038/nature13157
- Meunier, E., Wallet, P., Dreier, R. F., Costanzo, S., Anton, L., Rühl, S., Dussurgey, S., Dick, M. S.,
- Kistner, A., Rigard, M., Degrandi, D., Pfeffer, K., Yamamoto, M., Henry, T., & Broz, P. (2015).
- Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection
- with Francisella novicida. *Nature Immunology*, 16(5), 476–484. https://doi.org/10.1038/ni.3119
- Michelucci, A., Cordes, T., Ghelfi, J., Pailot, A., Reiling, N., Goldmann, O., Binz, T., Wegner, A.,
- Tallam, A., Rausell, A., Buttini, M., Linster, C. L., Medina, E., Balling, R., & Hiller, K. (2013).
- Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid
- production. *Proceedings of the National Academy of Sciences of the United States of America*,
- 839 110(19), 7820–7825. https://doi.org/10.1073/pnas.1218599110
- Morey, P., Cano, V., Martí-Lliteras, P., López-Gómez, A., Regueiro, V., Saus, C., Bengoechea, J. A.,
- & Garmendia, J. (2011). Evidence for a non-replicative intracellular stage of nontypable
- Haemophilus influenzae in epithelial cells. *Microbiology (Reading, England)*, 157(Pt 1), 234–
- 843 250. https://doi.org/10.1099/mic.0.040451-0
- Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation.
- 845 *Nature Reviews Immunology*, 8(12), 958–969. https://doi.org/10.1038/nri2448
- Muda, N. M., Nasreen, M., Dhouib, R., Hosmer, J., Hill, J., Mahawar, M., Schirra, H. J., McEwan,
- A. G., & Kappler, U. (2019). Metabolic analyses reveal common adaptations in two invasive
- Haemophilus influenzae strains. *Pathogens and Disease*, 77(2), 15.
- 849 https://doi.org/10.1093/femspd/ftz015
- Mulay, A., Akram, K. M., Williams, D., Armes, H., Russell, C., Hood, D., Armstrong, S., Stewart, J.
- P., Brown, S. D. M., Bingle, L., & Bingle, C. D. (2016). An in vitro model of murine middle ear
- epithelium. *DMM Disease Models and Mechanisms*, 9(11), 1405–1417.
- 853 https://doi.org/10.1242/dmm.026658
- Murphy, T. F., Brauer, A. L., Schiffmacher, A. T., & Sethi, S. (2004). Persistent colonization by
- haemophilus influenzae in chronic obstructive pulmonary disease. American Journal of
- *Respiratory and Critical Care Medicine*, 170(3), 266–272.
- 857 https://doi.org/10.1164/rccm.200403-354oc
- Nair, S., Huynh, J. P., Lampropoulou, V., Loginicheva, E., Esaulova, E., Gounder, A. P., Boon, A. C.
- M., Schwarzkopf, E. A., Bradstreet, T. R., Edelson, B. T., Artyomov, M. N., Stallings, C. L., &
- Diamond, M. S. (2018). Irg1 expression in myeloid cells prevents immunopathology during M.
- tuberculosis infection. *Journal of Experimental Medicine*, 215(4), 1035–1045.
- https://doi.org/10.1084/jem.20180118
- 863 Napier, B. A., Meyer, L., Bina, J. E., Miller, M. A., Sjöstedt, A., & Weiss, D. S. (2012). Link

- between intraphagosomal biotin and rapid phagosomal escape in Francisella. *Proceedings of the*
- National Academy of Sciences of the United States of America, 109(44), 18084–18089.
- 866 https://doi.org/10.1073/pnas.1206411109
- 867 O'Neill, L. A. J., & Artyomov, M. N. (2019). Itaconate: the poster child of metabolic reprogramming
- in macrophage function. In *Nature Reviews Immunology* (Vol. 19, Issue 5, pp. 273–281). Nature
- 869 Publishing Group. https://doi.org/10.1038/s41577-019-0128-5
- Ogger, P. P., Albers, G. J., Hewitt, R. J., O'Sullivan, B. J., Powell, J. E., Calamita, E., Ghai, P.,
- Walker, S. A., McErlean, P., Saunders, P., Kingston, S., Molyneaux, P. L., Halket, J. M., Gray,
- R., Chambers, D. C., Maher, T. M., Lloyd, C. M., & Byrne, A. J. (2020). Itaconate controls the
- severity of pulmonary fibrosis. *Science Immunology*, 5(52).
- https://doi.org/10.1126/sciimmunol.abc1884
- Olszewska-Sosińska, O., Zielnik-Jurkiewicz, B., Stępińska, M., Antos-Bielska, M., Lau-Dworak, M.,
- Kozłowska, K., & Trafny, E. A. (2016). Persistence of non-typeable Haemophilus Influenzae in
- the pharynx of children with adenotonsillar hypertrophy after treatment with azithromycin.
- Pathogens and Disease, 74(1), ftv106. https://doi.org/10.1093/femspd/ftv106
- Osman, K. L., Jefferies, J. M. C., Woelk, C. H., Devos, N., Pascal, T. G., Mortier, M.-C., Devaster,
- J.-M., Wilkinson, T. M. A., Cleary, D. W., Clarke, S. C., & AERIS Study Group. (2018).
- Patients with Chronic Obstructive Pulmonary Disease harbour a variation of Haemophilus
- species. Scientific Reports, 8(1), 14734. https://doi.org/10.1038/s41598-018-32973-3
- Othman, D. S. M. P., Schirra, H., McEwan, A. G., & Kappler, U. (2014). Metabolic versatility in
- Haemophilus influenzae: a metabolomic and genomic analysis. Frontiers in Microbiology,
- 5(MAR), 69. https://doi.org/10.3389/fmicb.2014.00069
- Pang, B., Hong, W., Kock, N. D., & Swords, W. E. (2012). Dps promotes survival of nontypeable
- Haemophilus influenzae in biofilm communities in vitro and resistance to clearance in vivo.
- Frontiers in Cellular and Infection Microbiology, 2, 58.
- https://doi.org/10.3389/fcimb.2012.00058
- 890 Petráčková, D., Farman, M. R., Amman, F., Linhartová, I., Dienstbier, A., Kumar, D., Držmíšek, J.,
- Hofacker, I., Rodriguez, M. E., & Večerek, B. (2020). Transcriptional profiling of human
- macrophages during infection with Bordetella pertussis. RNA Biology, 17(5), 731–742.
- 893 https://doi.org/10.1080/15476286.2020.1727694
- Pettigrew, M. M., Ahearn, C. P., Gent, J. F., Kong, Y., Gallo, M. C., Munro, J. B., D'Mello, A.,
- Sethi, S., Tettelin, H., & Murphy, T. F. (2018). Haemophilus influenzae genome evolution
- during persistence in the human airways in chronic obstructive pulmonary disease. *Proceedings*
- of the National Academy of Sciences of the United States of America, 115(14), E3256–E3265.
- 898 https://doi.org/10.1073/pnas.1719654115
- Pisu, D., Huang, L., Grenier, J. K., & Russell, D. G. (2020). Dual RNA-Seq of Mtb-Infected
- 900 Macrophages In Vivo Reveals Ontologically Distinct Host-Pathogen Interactions. *Cell Reports*,
- 901 30(2), 335-350.e4. https://doi.org/10.1016/j.celrep.2019.12.033
- 902 Riquelme, S. A., Liimatta, K., Wong Fok Lung, T., Fields, B., Ahn, D., Chen, D., Lozano, C., Sáenz,
- 903 Y., Uhlemann, A. C., Kahl, B. C., Britto, C. J., DiMango, E., & Prince, A. (2020). Pseudomonas

- aeruginosa Utilizes Host-Derived Itaconate to Redirect Its Metabolism to Promote Biofilm
- 905 Formation. Cell Metabolism, 31(6), 1091-1106.e6. https://doi.org/10.1016/j.cmet.2020.04.017
- Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: A Bioconductor package for
- differential expression analysis of digital gene expression data. *Bioinformatics*, 26(1), 139–140.
- 908 https://doi.org/10.1093/bioinformatics/btp616
- 909 Román, F., Cantón, R., Pérez-Vázquez, M., Baquero, F., & Campos, J. (2004). Dynamics of Long-
- 910 Term Colonization of Respiratory Tract by Haemophilus influenzae in Cystic Fibrosis Patients
- Shows a Marked Increase in Hypermutable Strains. *Journal of Clinical Microbiology*, 42(4),
- 912 1450–1459. https://doi.org/10.1128/JCM.42.4.1450-1459.2004
- 913 Santos, J. C., Boucher, D., Schneider, L. K., Demarco, B., Dilucca, M., Shkarina, K., Heilig, R.,
- Chen, K. W., Lim, R. Y. H., & Broz, P. (2020). Human GBP1 binds LPS to initiate assembly of
- a caspase-4 activating platform on cytosolic bacteria. *Nature Communications*, 11(1), 3276.
- 916 https://doi.org/10.1038/s41467-020-16889-z
- 917 Sasikaran, J., Ziemski, M., Zadora, P. K., Fleig, A., & Berg, I. A. (2014). Bacterial itaconate
- degradation promotes pathogenicity. *Nature Chemical Biology*, 10(5), 371–377.
- 919 https://doi.org/10.1038/nchembio.1482
- 920 Singh, R., Belchamber, K. B. R., Fenwick, P. S., Chana, K., Donaldson, G., Wedzicha, J. A., Barnes,
- P. J., & Donnelly, L. E. (2021). Defective monocyte-derived macrophage phagocytosis is
- associated with exacerbation frequency in COPD. Respiratory Research, 22(1), 113.
- 923 https://doi.org/10.1186/s12931-021-01718-8
- 924 Singhania, A., Wallington, J. C., Smith, C. G., Horowitz, D., Staples, K. J., Howarth, P. H., Gadola,
- 925 S. D., Djukanović, R., Woelk, C. H., & Hinks, T. S. C. (2018). Multitissue transcriptomics
- delineates the diversity of airway T cell functions in asthma. In American Journal of
- 927 Respiratory Cell and Molecular Biology (Vol. 58, Issue 2, pp. 261–270). American Thoracic
- 928 Society. https://doi.org/10.1165/rcmb.2017-0162OC
- 929 Song, C., Luo, L., Lei, Z., Li, B., Liang, Z., Liu, G., Li, D., Zhang, G., Huang, B., & Feng, Z.-H.
- 930 (2008). IL-17-Producing Alveolar Macrophages Mediate Allergic Lung Inflammation Related to
- 931 Asthma. *The Journal of Immunology*, *181*(9), 6117–6124.
- 932 https://doi.org/10.4049/jimmunol.181.9.6117
- 933 Sprenger, M., Hartung, T. S., Allert, S., Wisgott, S., Niemiec, M. J., Graf, K., Jacobsen, I. D.,
- Kasper, L., & Hube, B. (2020). Fungal biotin homeostasis is essential for immune evasion after
- macrophage phagocytosis and virulence. *Cellular Microbiology*, 22(7).
- 936 https://doi.org/10.1111/cmi.13197
- 937 Staples, K. J., Hinks, T. S. C., Ward, J. A., Gunn, V., Smith, C., & Djukanović, R. (2012).
- Phenotypic characterization of lung macrophages in asthmatic patients: Overexpression of
- 939 CCL17. Journal of Allergy and Clinical Immunology, 130(6), 1404-1412.e7.
- 940 https://doi.org/10.1016/j.jaci.2012.07.023
- 941 Staples, K. J., Nicholas, B., McKendry, R. T., Spalluto, C. M., Wallington, J. C., Bragg, C. W.,
- Robinson, E. C., Martin, K., Djukanović, R., & Wilkinson, T. M. A. (2015). Viral infection of
- human lung macrophages increases PDL1 expression via IFNβ. *PLoS ONE*, 10(3), e0121527.

- 944 https://doi.org/10.1371/journal.pone.0121527
- 945 Swords, W. E. (2012). Nontypeable Haemophilus influenzae biofilms: role in chronic airway
- infections. Frontiers in Cellular and Infection Microbiology, 2, 97.
- 947 https://doi.org/10.3389/fcimb.2012.00097
- Taylor, A. E., Finney-Hayward, T. K., Quint, J. K., Thomas, C. M. R., Tudhope, S. J., Wedzicha, J.
- A., Barnes, P. J., & Donnelly, L. E. (2010). Defective macrophage phagocytosis of bacteria in
- 950 COPD. *European Respiratory Journal*, *35*(5), 1039–1047.
- 951 https://doi.org/10.1183/09031936.00036709
- Taylor, S. L., Leong, L. E. X., Mobegi, F. M., Choo, J. M., Wesselingh, S., Yang, I. A., Upham, J.
- W., Reynolds, P. N., Hodge, S., James, A. L., Jenkins, C., Peters, M. J., Baraket, M., Marks, G.
- B., Gibson, P. G., Rogers, G. B., & Simpson, J. L. (2019). Long-Term Azithromycin Reduces
- 955 Haemophilus influenzae and Increases Antibiotic Resistance in Severe Asthma. *American*
- *Journal of Respiratory and Critical Care Medicine*, 200(3), 309–317.
- 957 https://doi.org/10.1164/rccm.201809-1739OC
- 958 Treangen, T. J., Ondov, B. D., Koren, S., & Phillippy, A. M. (2014). The Harvest suite for rapid
- core-genome alignment and visualization of thousands of intraspecific microbial genomes.
- 960 Genome Biology, 15(11), 524. https://doi.org/10.1186/s13059-014-0524-x
- Tudhope, S. J., Finney-Hayward, T. K., Nicholson, A. G., Mayer, R. J., Barnette, M. S., Barnes, P. J.,
- & Donnelly, L. E. (2008). Different mitogen-activated protein kinase-dependent cytokine
- 963 responses in cells of the monocyte lineage. Journal of Pharmacology and Experimental
- 964 Therapeutics, 324(1), 306–312. https://doi.org/10.1124/jpet.107.127670
- Van Eldere, J., Slack, M. P. E., Ladhani, S., & Cripps, A. W. (2014). Non-typeable Haemophilus
- influenzae, an under-recognised pathogen. *The Lancet Infectious Diseases*, 14(12), 1281–1292.
- 967 https://doi.org/10.1016/S1473-3099(14)70734-0
- 968 Wallington, J. C., Williams, A. P., Staples, K. J., & Wilkinson, T. M. A. (2018, September 1). IL-12
- and IL-7 synergize to control mucosal-associated invariant T-cell cytotoxic responses to
- bacterial infection. *Journal of Allergy and Clinical Immunology*, 141(6), 2182-2195.e6.
- 971 https://doi.org/10.1016/j.jaci.2017.08.009
- Wilkinson, T. M. A., Aris, E., Bourne, S., Clarke, S. C., Peeters, M., Pascal, T. G., Schoonbroodt, S.,
- Tuck, A. C., Kim, V., Ostridge, K., Staples, K. J., Williams, N., Williams, A., Wootton, S., &
- Devaster, J. M. (2017). A prospective, observational cohort study of the seasonal dynamics of
- airway pathogens in the aetiology of exacerbations in COPD. *Thorax*, 72(10), 919–927.
- 976 https://doi.org/10.1136/thoraxinl-2016-209023
- 977 Wilson, D. N., & Nierhaus, K. H. (2007). The weird and wonderful world of bacterial ribosome
- 978 regulation. Critical Reviews in Biochemistry and Molecular Biology, 42(3), 187–219.
- 979 https://doi.org/10.1080/10409230701360843
- 980 Wood, L. G., Simpson, J. L., Hansbro, P. M., & Gibson, P. G. (2010). Potentially pathogenic bacteria
- cultured from the sputum of stable asthmatics are associated with increased 8-isoprostane and
- airway neutrophilia. Free Radical Research, 44(2), 146–154.
- 983 https://doi.org/10.3109/10715760903362576

984 985	Yadav, M. C., Chakraborti, A., Ray, P., Sapru, S., Majumdar, S., & Narang, A. (2003). Rapid detection of Haemophilus influenzae by hel gene polymerase chain reaction. <i>Letters in Applied</i>				
986	Microbiology, 37(3), 190–195. https://doi.org/10.1046/j.1472-765X.2003.01342.x				
987	Yang, X., Wang, Y., Zhao, S., Wang, R., & Wang, C. (2018). Long-term exposure to low-dose				
988	Haemophilus influenzae during allergic airway disease drives a steroid-resistant neutrophilic				
989	inflammation and promotes airway remodeling. <i>Oncotarget</i> , 9(38), 24898–24913.				
990	https://doi.org/10.18632/oncotarget.24653				
991	Yu, J., Niu, C., Wang, D., Li, M., Teo, W., Sun, G., Wang, J., Liu, J., & Gao, Q. (2011).				
992					
993	Mycobacterium marinum in macrophages and zebrafish. <i>Microbes and Infection</i> , 13(1), 33–41.				
994	https://doi.org/10.1016/j.micinf.2010.08.010				
995	Zhang, Q., Cox, M., Liang, Z., Brinkmann, F., Cardenas, P. A., Duff, R., Bhavsar, P., Cookson, W.,				
996	Moffatt, M., & Chung, K. F. (2016). Airway microbiota in severe asthma and relationship to				
997	asthma severity and phenotypes. <i>PLoS ONE</i> , 11(4), 1–16.				
998	https://doi.org/10.1371/journal.pone.0152724				
999					
1000					
1000					

12 Figure legends

1002 Figure 1. Modelling NTHi infection of macrophages. (A) Model workflow: MDM were 1003 challenged with NTHi for 6 h, washed with gentamicin for 90 min to remove extracellular NTHi and 1004 left to incubate in antibiotic-free media until 24 h (created using BioRender.com). (B) The 6 h and 24 1005 h time point MDM samples were lysed and plated to quantify the amount of NTHi associated with 1006 MDM. (C) RNA was harvested from the 6 h and 24 h uninfected and NTHi-infected MDM samples 1007 to assess the presence of NTHi RNA through detection of the hel gene by qPCR. Expression of the 1008 hel gene was normalised to B2M. (D) MDM viability was not impacted by NTHi ST14 infection, as 1009 assessed by LDH release into cell culture supernatants at 6 h and 24 h. Figures B-D (n=5) show 1010 paired data and lines indicate medians. Data were analysed by Wilcoxon signed-rank test and no 1011 statistical significance was determined. GFP-NTHi was used to visually confirm NTHi association 1012 with MDM at the 6 h and 24 h time points. Uninfected and NTHi-infected MDM were streaked and 1013 fixed onto glass sides followed by staining with DAPI. Slides were visualised using the AxioScope 1014 KS400 fluorescence microscope at 100x magnification. (E) Uninfected MDM, (F) GFP-NTHi 1015 infected MDM at the 6 h time point and (G) GFP-NTHi infected MDM at the 24 h time point. White 1016 arrows indicate NTHi associated with MDM cell nuclei.

1017

1018 1019

1001

1020 infection status, with uninfected samples in blue and NTHi infected samples in red. (B) Differential 1021 gene expression analysis found 1802 MDM DEGs at the 6 h time point (left) and 1763 MDM DEGs 1022 at 24 h time point (right) (log₂ FC2 cut off, FDR p<0.05). (C) Venn diagram showing the regulation 1023 of MDM DEGs in a time-dependent manner, with 939 genes only differentially expressed at 6 h, 900 genes only differentially expressed at 24 h and 863 genes differentially expressed across both 6 h and 1024 1025 24 h. Heatmap visualisation of the gene expression profiles indicate time-dependent clustering of 1026 samples. (D) Clustering of samples based on the expression profile of the MDM DEGs at the 6 h 1027 time point only show clustering of the 6 h time point sample away from uninfected samples at both 1028 time points, as well as the NTHi infected 24 h time point samples. (E) Similarly, the NTHi infected

Figure 2. Distinct macrophage transcriptomic profiles in response to NTHi persistence. (A)

Principal component analysis of the MDM data set identified that samples clustered based on

samples harvested at the 24 h time point cluster away from all uninfected and 6 h infected samples.

(F) In contrast, based on the expression of the 863 'core' DEGs, the NTHi-infected samples clustered together separately away from the uninfected samples, with no sub clustering based on time point.

1032 Clustering was performed using Euclidean distance and Ward linkage methods. Heatmap colour key 1033 indicates sample metadata; blue = uninfected samples, red = infected samples, purple = 6 h time point

samples and green = 24 h time point samples.

1035

1036

1037

1038

1039

1040

1041

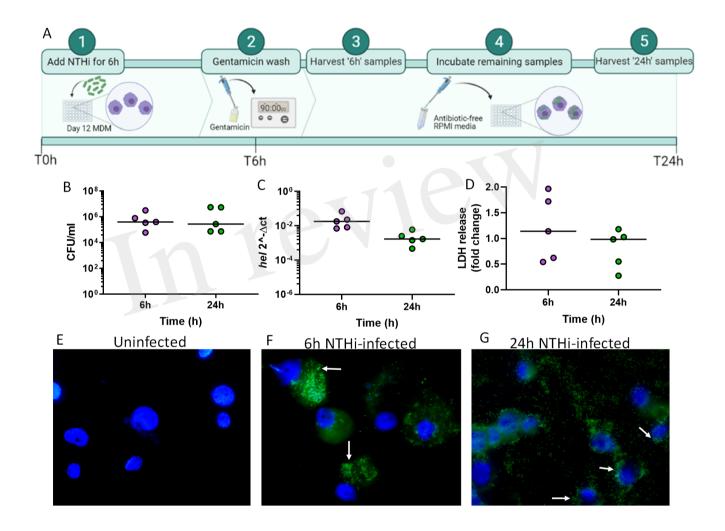
1034

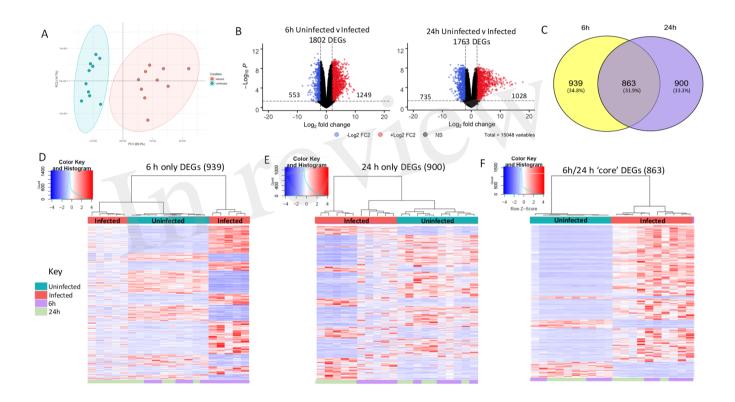
Figure 3. Enrichment of macrophage immune responses during NTHi persistence. Enrichment analysis using ToppFunn identified over 500 significantly enriched biological processes which were clustered using EnrichmentMap and AutoAnnotate in Cytoscape to identify the key major biological processes involved in the MDM response to NTHi. Nodes represent individual GO:terms, with size relating to the number of genes in each term and the colour indicating enrichment significance. Edges represent connections between nodes that share genes.

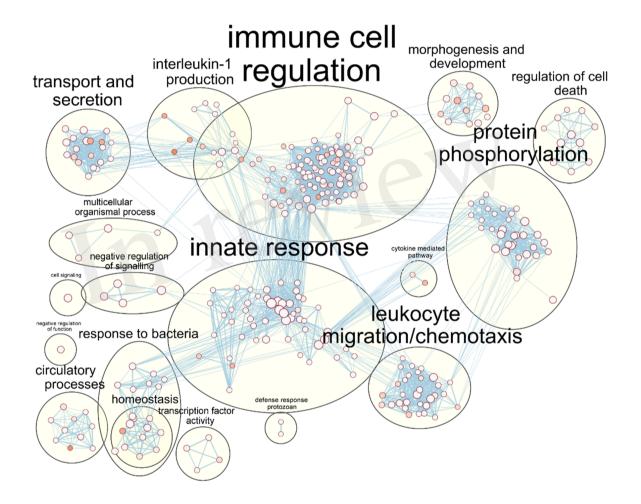
1042

- Figure 4. Enrichment of macrophage intracellular immune responses during NTHi persistence.
- 1045 (A) KEGG pathway analysis identified a number of enriched immune processes, with a number of
- pathways indicating a response to an intracellular pathogen. The genes assigned to each process were
- more highly upregulated at both 6 h (purple) and 24 h (green). Pathway/category IDs are ordered by
- enrichment significance (FDR). (B) Significantly enriched GO terms in the Biological Process and
- 1049 Cellular Component categories relating to host-pathogen symbiosis for the 863 core genes
- differentially expressed at 6 h and 24 h (log₂ FC±2, FDR p<0.05). P-value indicates the enrichment
- FDR, I = input number of genes, T= total number of genes in annotation. (C) MDM upregulation of
- guanylate-binding proteins (GBPs) 1-7 involved in host response to intracellular pathogens. Purple
- bar = 6 h, green bar = 24 h. Dotted line indicates log_2 FC2 cut off. All genes were statistically
- significantly upregulated at both time points (FDR p<0.05).

1055

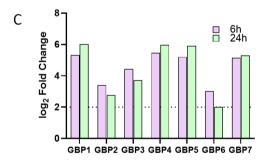

- Figure 5. NTHi transcriptomic regulation during adaptation to intracellular persistence. (A)
- Principal component analysis identified clustering of NTHi samples based on time point (6 h time
- point samples in purple and 24 h time point samples in green). (B) Differential gene expression
- analysis identified 107 NTHi DEGs at 24 h (log₂ FC1 cut off, FDR p<0.05). (C) Clustering of the
- enriched Biological Process GO:terms performed using EnrichmentMap and AutoAnnotate in
- 1061 Cytoscape found enrichment of numerous metabolic processes. Nodes represent individual
- GO:terms, with size relating to the number of genes in each term and the colour indicating
- enrichment significance. Edges represent connections between nodes that share genes

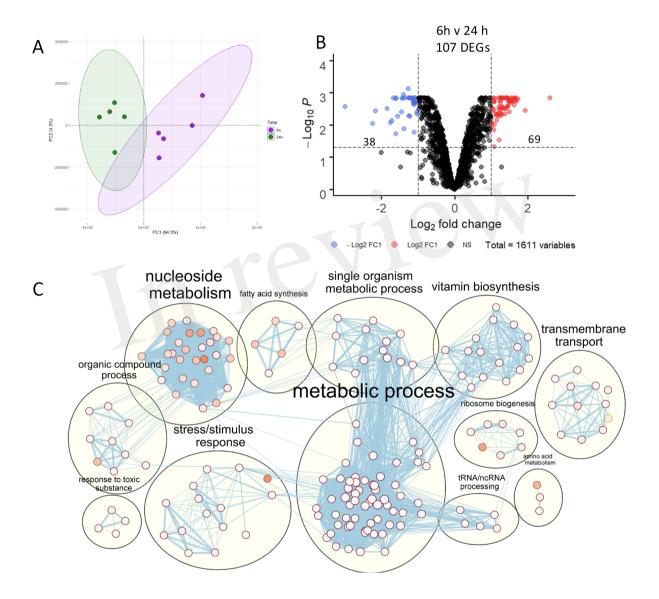

1064

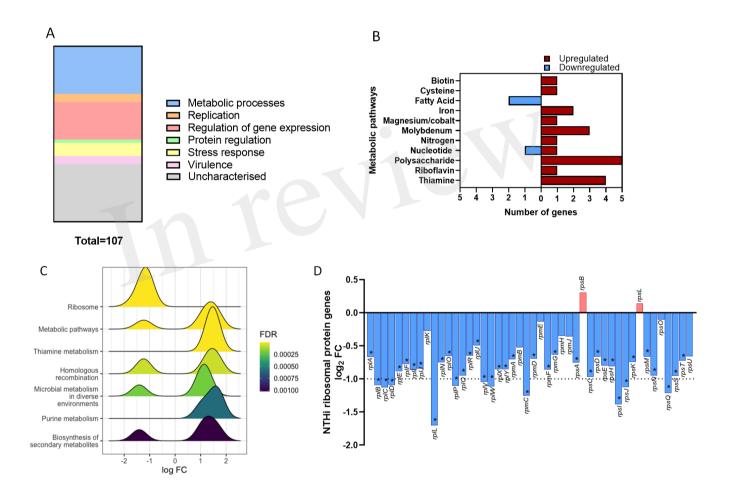

- Figure 6. Modulation of NTHi processes during adaption to intracellular persistence. (A) The
- stacked bar chart highlights the main processes that the 108 NTHi DEGs are involved in. The process
- 1067 with the highest number of genes was metabolic processes (29), followed by regulation of gene
- expression (23), stress responses (8), virulence (5), replication (5) and protein regulation (2). The
- remaining genes (36) were uncharacterised (hypothetical, novel genes or sRNA). (B) Genes involved
- in bacterial metabolism were assigned to specific alternate metabolic pathways. Red = upregulated,
- blue = downregulated. (C) KEGG pathway analysis identified enrichment of KEGG pathways during
- intracellular persistence, ordered by enrichment significance (FDR). (D) KEGG pathway analysis
- identified the most significantly enriched pathway was the 'Ribosome'. Exploration of ribosomal
- protein gene expression identified global downregulation of NTHi ribosomal protein genes during
- infection. Bar chart shows log₂ FC values of the 46 ribosomal protein genes detected in the NTHi
- data set. Dotted line indicates $\log_2 FC$ 1 cut off, with asterisk indicating genes (37) that were
- determined to be significantly differentially expressed at FDR p<0.05.

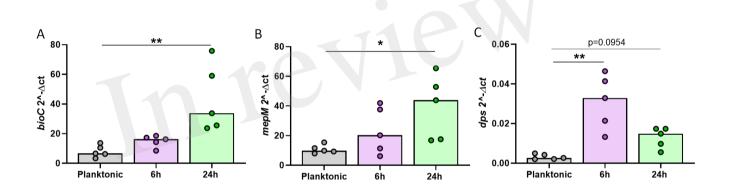

- Figure 7. The top regulated NTHi genes during intracellular persistence were differentially
- 1080 **expressed compared to planktonic NTHi.** To compare gene expression between planktonic and
- intracellular, persisting NTHi, RNA was harvested from NTHi ST14 grown in culture media alone
- 1082 (regarded as planktonic NTHi) or from NTHi-infected MDM at the 6 h and 24 h time points, as
- previously described (n=5). The expression of the top regulated NTHi genes (A) bioC, (B) mepM and
- 1084 (C) dps was assessed by qPCR. Gene expression was normalised to NTHi rho gene. Graphs show
- unpaired data and lines indicate medians. N=5. Data were analysed using a Kruskal-Wallis test with
- 1086 Dunn's multiple comparisons; *p<0.05, **p<0.01

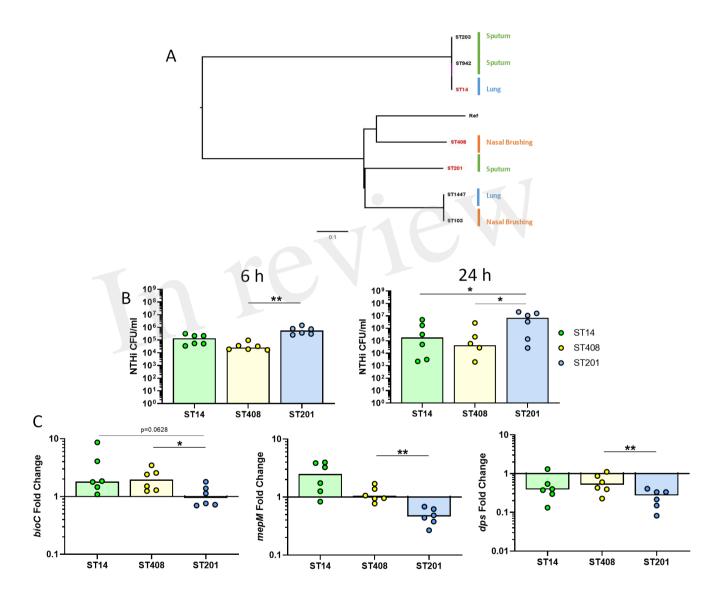
1087	
1088	Figure 8. Strain-dependent differences during NTHi persistence. (A) The diversity of seven
1089	clinical NTHi isolates were assessed by ParSNP using default parameters and NTHi 86-028NP as the
1090	reference strain. Strains were isolated from either from sputum sample (green), nasal brushing
1091	(orange) or protected bronchial brushes of the lung (blue). Phylogenetic tree was created in FigTree
1092	using ParSNP output files and strains highlighted in red (ST14, ST408 and ST201) indicate the
1093	strains chosen for further in vitro experimental analysis. (B) Invasion and persistence within MDM
1094	by the three chosen different strains of NTHi was measured by live viable counting at the 6 h and 24
1095	h time points. (C) Expression of the top regulated NTHi genes were differentially expressed by
1096	additional clinical strain of NTHi during intracellular persistence. Gene expression was normalised to
1097	NTHi <i>rho</i> gene and data are shown as fold change in expression from 6 h to 24 h. Graphs show
1098	paired data and lines indicate medians. N=6. Data were analysed using Friedman test with Dunn's
1099	multiple comparisons; *p<0.05, **p<0.01
1100	
1101	Table 1. Time-dependent enrichment of macrophage processes during NTHi persistence. A
1102	maximum of 5 of the most significantly functionally enriched terms for each category are shown,
1103	with fewer terms meaning lower enrichment significance for a specific category or time point. Genes
1104	in input show the number of MDM genes assigned to each term, which were compared against the
1105	full gene list for each category used by ToppFunn/ToppGene.










В	ID	Term	p-value	I/T
	GO:Biological			
	GO:0043903	regulation of symbiosis, encompassing mutualism through parasitism	1.35E-10	38/232
	GO:0044403	symbiotic process	3.57E-04	67/911
	GO:0051817 ^r	modification of morphology or physiology of other organism involved in symbiotic interaction	1.57E-02	15/124
	GO:Cellular Co	omponent		
	GO:0020005	symbiont-containing vacuole membrane	2.47E-02	4/6
	GO:0020003	symbiont-containing vacuole	4.33E-02	4/7

