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Abstract—Low complexity approximate message passing
(AMP) orthogonal frequency division multiplexing combined
with index modulation (OFDM-IM) detection algorithms are
proposed, which exploit the sparse structure of the frequency
domain (FD) OFDM-IM symbols. To circumvent the high root
mean square error (RMSE) in the conventional AMP algorithm,
a minimum mean square error (MMSE) denoiser is proposed
based on the classic Bayesian approach and on the state evolution
of AMP. Our simulation results demonstrate that it is capable
of improving both the RMSE as well as the convergence rate.
However, in practice, the channel’s diagonal FD matrix may
be a non-Gaussian sensing matrix, hence a damping strategy is
conceived. In conclusion, the proposed MMSE denoiser based
damping-assisted AMP-aided detector strikes a compelling bit
error ratio vs. complexity trade-off.

Index Terms—OFDM, index modulation (IM), MMSE, com-
pressed sensing (CS), approximate message passing.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) com-
bined with index modulated (OFDM-IM) has been regarded
as a competitive candidate for next-generation systems [1],
[2]. As a benefit, OFDM-IM systems are capable of striking
a flexible trade-off between SE and energy efficiency (EE),
while reducing both the peak-to-average ratio (PAPR) and bit
error ratio (BER) of classical OFDM [3], [4].

Since the performance of OFDM-IM is dependent on the
amplitude-phase modulated (APM) symbols and the subcar-
rier activation patterns (SAPs), it is crucial to design joint
APM and IM detectors having a low complexity [5]–[7]. By
exploiting the fact that the frequency-domain symbols (FD)
in OFDM-IM may either be zero or non-zero, a reduced-
complexity log-likelihood ratio detector (LLRD) has been
proposed in [8]. Then later a low-complexity greedy detec-
tion algorithm was proposed for multicarrier index keying
(MCIK) [9]. Furthermore, inspired by the conception of
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greedy pursuit, a low-complexity detector based on iterative
residual checking (IRC) has been conceived, where locally
optimal estimates are obtained at each iteration [2]. Adition-
ally, based on the above-mentioned compressed sensing (CS)
algorithms, a low-complexity generalized iterative residual
checking aided detector (GIRCD) was proposed in [10].

As a further advance, it has been shown that the approxi-
mate message passing (AMP) algorithm has the advantages of
low-complexity and fast convergence [11]. Then a generalized
approximate message passing (GAMP) detector has been
proposed in [12]. Later in [4], Zhang et al. proposed an
AMP-assisted detector for OFDM-IM using single subcarrier
activation for improving the system performance.

By exploiting the statistics of the frequency domain (FD)
OFDM-IM symbols, we conceive low-complexity minimum
mean square error (MMSE) denoiser based AMP detectors
for OFDM-IM systems. Our new contributions are boldly and
explicitly contrasted to the existing solutions in Table I at a
glance, which are also detailed as follows:

• We propose a computationally efficient AMP-aided de-
tector by specifically designing the MMSE denoiser for
OFDM-IM, which is referred to as the MMSE de-
noiser based damping-assisted AMP detector (MMSE-
DAMPD). We first introduce a conventional AMP-aided
detector by exploiting the sparsity of the received FD
symbols. Then, based on the state evolution of the
AMP algorithm, a sophisticated MMSE denoiser is pro-
posed relying on the powerful Bayesian approach by
exploiting the statistics of the FD symbols. Furthermore,
we conceived a novel damping strategy for improving
the convergence of the AMP algorithm as and when
the measurement matrix does not obey the zero-mean
independent and identically distributed (i.i.d.) Gaussian
distribution.

• The root mean square error (RMSE) performance of
the AMP detector relying on soft thresholding denoiser
[13] and that using an MMSE denoiser is compared
for different SAPs vs. the signal-to-noise ratio (SNR).
It is demonstrated that the proposed MMSE denoiser
is capable of achieving lower RMSE and faster conver-
gence. Furthermore, the BER performance of MMSE-
DAMPD-aided OFDM-IM systems is evaluated at differ-
ent throughput values, showing that the proposed detector
is capable of striking an attractive BER vs. complexity
trade-off.

The rest of the paper is organized as follows. In Section
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II, our system model is illustrated. Section III introduces both
the AMP algorithm and the MMSE-DAMPD. Our simulation
results are provided in Section IV, while our conclusions are
summarized in Section V.

II. SYSTEM MODEL

TABLE I
SUMMARY OF LITERATURE REVIEW ON OFDM-IM DETECTION

Contributions Our scheme [4] [12] [7] [2], [10]
Generalized OFDM-IM X X X X
Sparsity X X X X X
AMP X X X X
Damping X X X
MMSE Denoiser X
RMSE Performance X
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Fig. 1. Illustration of the IM-OFDM system

Consider an OFDM system having M subcarriers, which
are divided into G groups, yielding m = M/G subcarriers
in each group. Correspondingly, as shown in Fig. 1, Lb bits
are first split into G groups, each containing L = Lb/G =
L1 + L2 bits. In each group, L1 bits are mapped to an index
symbol based on an index mapper µ1 : BL1 → Z , where Z
contains C = 2L1 subsets and each subset is generated by
selecting k active indices from m indices. Therefore, we have
L1 = log2 C =

⌊
log2

(
m
k

)⌋
. In the gth group, L1 bits are

mapped into a subset of Z and the set of index symbols is
denoted by Ig ↔ Zc ⊂ Z , where Zc denotes the cth subset of
Z . Furthermore, we employ an APM mapper µ2 : Blog2 Q →
A to map L2 = k log2Q bits onto k APM symbols in the
normalized constellation set A , {a1, . . . , aQ} of a Q-ary
quadrature amplitude modulation (QAM)/phase-shift keying
(PSK) scheme. Let us denote the APM symbols in the gth
group by xxxdg = [xd0, . . . , x

d
k−1]T , thus we can attain a symbol

vector xxxg = ΥΥΥIgxxx
d
g , where xxxg = [x0, . . . , xm−1]T and ΥΥΥIg is

an (m× k)-element mapping matrix formed according to Ig .
Given the subcarrier activation scheme, the rate is formulated
as R = L/m =

(⌊
log2

(
m
k

)⌋
+ k log2Q

)
/m bits/s/Hz [10].

As shown in Fig. 1, the symbols in all the G groups
are combined to form the FD symbols expressed as xxxF =
[xF,0, xF,1, . . . , xF,M−1]T . After the M -point inverse fast
Fourier transform (IFFT) and inserting a cyclic prefix (CP),
we obtain the transmitted baseband signals xxxcp.

Overall a frequency-selective Rayleigh fading channel hav-
ing Lh taps is considered, whose channel impulse response
(CIR) is denoted as hhh = [h0, h1, . . . , hLh−1]T , and the CIR-
taps are independent and identically distributed (i.i.d.) random
variables obeying the distribution CN (0, 1/Lh). Then, upon
assuming Lcp ≥ Lh, after removing the CP and the FFT-based
demodulation, the received FD symbol vector in the gth group
can be written as

yyyg = H̄̄H̄Hgxxxg + n̄̄n̄ng, g = 1, 2, . . . , G, (1)

where n̄̄n̄ng is the FD noise vector of the gth group. Furthermore,
it can be readily shown that H̄̄H̄Hg = diag{h̄g,0, . . . , h̄g,m−1}.
According to [2], we have h̄g,i ∼ CN (0, 1) and n̄g,i ∼
CN (0, N0), ∀g, i. As a result, the average SNR per symbol
can be evaluated as γs , E[‖xxxg‖22]/E[‖n̄̄n̄ng‖22] = k/(mN0).
Furthermore, if the candidates in Ω are independent and
equiprobable, the optimum detector is the maximum likeli-
hood (ML) detector, which is defined by the following the
optimization problem

xxxML
g = arg min

xxxg∈Ω

{∥∥yyyg − H̄̄H̄Hgxxxg
∥∥2

2

}
. (2)

III. DAMPING AMP AIDED DETECTION RELYING ON AN
MMSE DENOISER

However, the complexity of the optimal ML detector be-
comes excessive, if the number of bits L per symbol is high.
To mitigate this problem in this section, we propose a low-
complexity detector termed as MMSE-DAMPD by exploiting
the sparse structure of the FD symbols at the receiver. We
continue by first discussing the conventional AMP OFDM-IM
receiver, followed by the MMSE denoiser. Finally, we detail
the MMSE-DAMPD.

A. Conventional AMP Algorithm

The operation of the AMP commences from xxx
[0]
g = 000 and

zzz
[0]
g = yyyg and proceeds iteratively as follows [11]:

x̌xx[t]
g = xxx[t]

g + H̄HH
H
g zzz

[t]
g , (3)

xxx[t+1]
g = η(x̌xx[t]

g ;σg,t), (4)

zzz[t+1]
g = yyyg − H̄HHgxxx

[t+1]
g +

zzz
[t]
g

2m
∇η(x̌xx[t]

g ;σg,t), (5)

where xxx[t]
g = [x

[t]
g,0, . . . , x

[t]
g,m−1]T is the estimate of xxxg at iter-

ation t. In the conventional AMP algorithm, the component-
wise complex soft threshold denoiser η(uuu;σ) of [13] is used,
when the a priori distribution of xxxg is unknown.

Let us assume that k,m→∞ and the marginal distribution
of xxxg converges to pXg

. Then, the performance of the AMP
receiver can be predicted according to the state evolution
function of [11]

σ2
g,t+1 = E

[
|η(Xg + σg,tZ;σg,t)−Xg|2

]
+N0, (6)

where σg,t characterizes the RMSE of x̌xx[t]
g at iteration t,

and the expectation is taken with respect to the independent
random variables of Z ∼ CN (0, 1) and Xg ∼ pXg

.

B. MMSE Denoiser in MMSE-DAMPD

One of our main objectives is to exploit the statistical
characteristics of the transmitted symbols for improving the
detection performance. By applying this approach to OFDM-
IM, we propose an AMP detector amalgamated with an
MMSE denoiser, which is detailed below. Note that since the
received signals of different groups are processed similarly,
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for the sake of simplicity, we omit the group subscript g
throughout this section.

Bearing in mind that the elements in xxx can be zero or non-
zero, we have Pr(xi 6= 0) = ρ, ∀i ∈ {i = 0, . . . ,m− 1} =
M, where ρ = k/m is the signal sparsity. According to the
characteristics of IM and APM modulation, the PDF of the
entries of xxx can be formulated as

pX(x
[t]
i ) = (1− ρ)δ0 + ρp̄X(x

[t]
i ), (7)

where δ0 denotes the point mass measure at 0 and p̄X(x
[t]
i ) =∑Q

q=1 δ(x
[t]
i − aq)/Q, i = 0, . . . ,m− 1. Based on (6), the

MMSE denoiser can be formulated as

ηMMSE(x̌
[t]
i ;σt) = E

[
X|X̌ [t] = x̌

[t]
i

]
, (8)

where X̌ = X + σtZ is a random variable having a mixed
distribution. Let us omit the superscript [t] and subscript i
for notation simplicity. Then, based on the Bayesian rule, the
conditional expectation can be expressed as

E[X|X̌ = x̌] =

∫
x
pX(x)

pX̌(x̌)
pX̌|X(x̌|x)dx

=

∫
x

pX(x)

πσ2pX̌(x̌)
exp

(
−|x̌− x|

2

σ2

)
dx. (9)

Specifically, it may be readily shown that pX̌|X(x̌|X = 0) =
pW (x̌), where W = σZ, and pX̌|X(x̌|X 6= 0) = pY (x̌) with
Y = X +W and X ∼ p̄X(x). In more detail, we have

pX̌|X(x̌|X = 0) =
1

πσ2
exp

(
−|x̌|

2

σ2

)
, (10)

pY (x̌) =

∫
pX(x̌− ω)pW (ω)dω

=

Q∑
q=1

1

πσ2Q
exp

(
−|x̌− aq|

2

σ2

)
. (11)

Furthermore, upon substituting (10) and (11) into (7), we can
show that the PDF of x̌ can be formulated as

pX̌(x̌) =
1− ρ
πσ2

exp

(
−|x̌|

2

σ2

)
+

Q∑
q=1

ρ

πσ2Q
exp

(
−|x̌− aq|

2

σ2

)
.

(12)

Based on (7) and (12), after evaluating the integral of (9), the
MMSE denoiser, i.e. the conditional expectation in (8) can be
expressed as

E[X|X̌ = x̌] =
u(x̌)

v(x̌)
, (13)

where u(x̌) and v(x̌) are given by

u(x̌) =
ρ

Q

Q∑
q=1

aq exp

(
−|x̌− aq|

2

σ2

)
, (14)

v(x̌) = (1− ρ) exp

(
−|x̌|

2

σ2

)
+

Q∑
q=1

ρ

Q
exp

(
−|x̌− aq|

2

σ2

)
.

(15)

The divergence ∇ηMMSE(x̌) of the MMSE denoiser ηMMSE(x̌)
can be formulated as

∇ηMMSE(x̌) =
1

σ2
Var(X|X̌ = x̌), (16)

while the conditional moment E[|X|2|X̌ = x̌] can be ex-
pressed as

E[|X|2|X̌ = x̌] =

∫
|x|2 pX(x)

pX̌(x̌)
pX̌|X(x̌|x)dx =

ξ(x̌)

v(x̌),
(17)

where v(x̌) is given in (15), and ξ(x̌) is

ξ(x̌) =
ρ

Q

Q∑
q=1

|aq|2 exp

(
−|x̌− aq|

2

σ2

)
. (18)

Hence, upon substituting the results into (16), the divergence
of the MMSE denoiser is expressed as

∇ηMMSE(x̌) =
1

σ2

[
ξ(x̌)

v(x̌)
−
∣∣∣∣u(x̌)

v(x̌)

∣∣∣∣2
]
, (19)

where u(x̌) can be obtained from (14). Consequently, the
divergency ∇ηMMSE(uuu;σ) required by (5) can be obtained.

C. MMSE Denoiser Based Damping-assisted AMP-aided De-
tection

In order to reduce the number of errors at the beginning of
iterations and also to minimize the number of iterations in the
iterative detection process, at the first stage, the observation
vector yyy is firstly processed by the linear minimum mean
square error (LMMSE) detector, yielding

x̄xx =

(
H̄HH

H
H̄HH +

1

γs
IIIm

)−1

H̄HH
H
yyy, (20)

where x̄xx = [x̄0, . . . , x̄m−1]T ∈ Cm×1 is a soft estimate of xxx.
Then, we set xxx[0] = x̄xx, and the enhanced estimation x̃xx =

[x̃0, . . . , x̃m−1]T of xxx is carried out by the MMSE-DAMPD
using T iterations during the second stage, as detailed below.

As for the operation of the MMSE-DAMPD, the reliabilities
of index symbols can be quantified by sorting the amplitudes
of the elements in x̃xx in descending order as [10]

{i0, . . . , im−1} corresponding to |x̃i0 |
2 > . . . >

∣∣x̃im−1

∣∣2 ,
(21)

where we have ij ∈ M for j = 0, . . . ,m − 1 and ij 6= iq
for any j 6= q. Then, after picking the first k elements in
{i0, . . . , im−1} and sorting their indices in ascending order,
we obtain the estimated index set ZE , {b0, b1, . . . , bk−1},
where bj ∈ M, ∀j ∈ {0, . . . , k − 1}. Furthermore, by
identifying the k elements having the highest amplitudes in
x̃xx, the preliminary estimate x̃xxd of the conventional APM data
symbols can expressed as x̃xxd = [x̃db0 , x̃

d
b1
, . . . , x̃dbk−1

]T . There-
fore, the estimated APM symbols in x̂xxd = [x̂d0, x̂

d
1, . . . , x̂

d
k−1]T

can be obtained by applying simple symbol-by-symbol ML
detection, formulated as

x̂di = arg min
aq∈A

|x̃dbi − aq|
2, i = 0, . . . , k − 1. (22)
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Fig. 2. RMSE performance of the soft thresholding denoiser and the MMSE denoiser operating at (a) (m = 8, k = 2, Q = 4) (b) (m = 4, k = 2, Q = 4)
(c) (m = 4, k = 2, Q = 16) and γs =10 dB or 20 dB.

Then MMSE-DAMPD then enters the third stage of detect-
ing the index symbols, we define indicator vectors uuuZc =
[uc,0, uc,1, . . . , uc,m−1]T for c = 1, 2, . . . , C and the check
vector ǔuuZE

= [ǔ0, ǔ1, . . . , ǔm−1]T based on the index dictio-
nary set Z and the estimation set ZE , respectively. Moreover,
we have uc,i = I(i∈Zc) and ǔj = I(j∈ZE), where i, j =
0, 1, . . . ,m − 1. The candidates can be obtained by finding
N subsets Zij in Z that minimize ‖uuuZij

− ǔuuZE
‖0, where

we have ij ∈ {1, 2, . . . , C} for j = 1, . . . , N . Thus we have
Z̃ = {Zi1 ,Zi2 , . . . ,ZiN } ⊂ Z . Explicitly, if the candidate
is detected correctly at this step, we have uuuZc = ǔuuZE

. This
implies that there is only a single subset in Z̃ , which satisfies
that Z̃i1 = ZE . Consequently, based on the candidate space
Z̃ , which is regarded as a priori information for the ensuing
detection of the activated symbols, the estimation of active
indices I can be formulated as

Î = arg max
Zij
∈Z̃
‖diag(uuuZij

)x̃xx‖22. (23)

The performance of the AMP algorithm may be poor for
non-i.i.d zero-mean complex Gaussian sensing matrices. To
mitigate this problem, a damping strategy is conceived for the
conventional AMP algorithm, in which the iterative equations
(4) and (5) are modified to

xxx[t+1] = θη(x̌xx[t];σt) + (1− θ)xxx[t], (24)

zzz[t+1] = yyy − H̄HHxxx[t+1] + θ
zzz[t]

2m
∇ · η(x̌xx[t];σt), (25)

respectively, where θ denotes the damping factor.
Remark 1: At the third stage of the MMSE-DAMPD, by

searching in Z , we first obtain N active index combinations
that satisfy the condition that uuuZij

and ǔuuZE
have the least

number of different elements at the same indices. Furthermore,
we calculate the total symbol energy of k elements in x̃xx corre-
sponding to the N -selected active index combinations. Finally,
Î is obtained by finding the highest energy value. However,
the estimation of active indices ÎLLR is calculated by finding
the k highest LLR values in the LLRD. If ÎLLR 6⊂ Z , i.e.
ÎLLR represents an unused index combination (corresponding
to the case of N 6= 1 in MMSE-DAMPD), the output bits
L̂1 are all erroneous [8]. Since the MMSE-DAMPD further
processes the unused index combinations theoretically, it has
a better BER performance than the LLRD.

D. Complexity Analysis

First, the ML detection complexity of each group is given
by searching all the possible candidates in Ω as well as
the matrix calculation based on (2). Therefore the detection
complexity order is given by

O
[
m(m+m)2L

]
= O

(
m22L+1

)
, (26)

which represents an exponential growth with the number of
bits L. Thus, the ML detector becomes excessively complex,
if the value of L is relatively high. Moreover, the complexity
of the LLRD is on the order of (3Q+ 2)m per group [8].

According to our analysis in Section III-C, the LMMSE
detection complexity is on the order of O(4m), while the
MMSE-DAMPD complexity order without the expectations
is given by O(3mT ). Furthermore, the MMSE denoiser com-
plexity is on the order of O[(4Q+ 4)mT ] and the divergence
of the denoiser complexity is given by O(2mT ). Therefore,
it can be readily shown that the overall complexity is on the
order of

O [4m+ (4Q+ 9)mT ] , (27)

since the components of (22) and (23) have been calculated
in (14).

IV. NUMERICAL RESULTS

In this section, our simulation results are provided for
characterizing the performance of the proposed MMSE de-
noiser and MMSE-DAMPD. The number of CIR-taps, the
tolerance parameter and the damping factor are set as Lh = 10,
ε = 10−12 and θ = 0.2, respectively. We assume an OFDM-
IM system having M = 256 subcarriers and a CP-length
of Lcp = 16. For the sake of comparison, ζM subcarri-
ers are employed for transmitting Q-ary QAM symbols in
the classic OFDM systems, yielding a transmission rate of
ζ log2Q bits/s/Hz, corresponding to different SAPs in OFDM-
IM systems, as detailed in Table II.

According to Section III-A and the constellation set A,
beginning with σg,0 = ρ/δ + N0, the RMSE performances
of the soft thresholding denoiser and of the MMSE denoiser
in the cases of different system parameters are compared
in Fig. 2. The maximum number of iterations is T = 10.
Based on the results, we have the following observations.
Firstly, the RMSE performance of the MMSE denoiser is
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Fig. 3. BER versus SNR for the classic OFDM using MLD and OFDM-IM using MLD, AMPD, DAMPD, MMSE-AMPD, MMSE-DAMPD and LLRD
when communicating over an Lh = 10-path Rayleigh fading channel, and operating at (a) 1bits/s/Hz (b) 1.5bits/s/Hz (c) 2.5bits/s/Hz
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Fig. 4. BER versus SNR for the classic OFDM using MLD and interleaved OFDM-IM using MLD, MMSE-DAMPD, and LLRD when communicating over
an Lh = 10-path Rayleigh fading channel, and operating at (a) 1bits/s/Hz (b) 1.5bits/s/Hz (c) 2.5bits/s/Hz.

TABLE II
SIMULATIONS PARAMETERS

Rate R
in bits/s/Hz

System Parameters
(m, k,Q)

Ratio of
Data Subcarriers ζ

1 (8, 2, 4) 0.5
1.5 (4, 2, 4) 0.75
2.5 (4, 2, 16) 0.625

better than that of the soft thresholding denoiser. This is
because the MMSE denoiser exploits the a priori distribution
of the transmitted symbol vector xxxg . Secondly, for a given γs
and when the RMSE becomes stable, our proposed MMSE
denoiser significantly outperforms the classic soft thresholding
based denoiser. This observation can be explained by the fast
that the MMSE denoiser minimizes the RMSE generated by
the reconstruction process at every iteration. Thirdly, as seen
in Fig. 2 (a) and Fig. 2 (b), when the values of Q and
δ are fixed, the lower sparsity ρ leads to a better RMSE
performance. This is because the AMP algorithms can obtain
a higher successful reconstruction probability, as the sparsity
increases. Furthermore, the RMSE performance of the MMSE
denoiser shown in Fig. 2 (c) is slightly worse than that
shown in Fig. 2 (b). According to (16) and (19), since higher
divergency ∇ηMMSE(uuu;σ) can be attained for Q = 16, the
attainable RMSE performance degrades, when a higher-order
modulation scheme is used.

In Fig. 3, the BER performance of the proposed MMSE-
DAMPD is investigated at different attainable rates where
OFDM operating in additive white Gaussian noise (AWGN)
channels is used as a benchmark. The maximum number of

iterations is T = 6. Based on Fig. 3, we have the following
observations. Firstly, for a given rate, we observe that the
BER performance of the OFDM-IM systems using the MMSE
denoiser based AMP detector (MMSE-AMPD) is significantly
better than those employing the conventional AMP detector
(AMPD). This is because MMSE-AMPD attains a better
RMSE. Secondly, the OFDM-IM systems using our damping-
assisted detectors are capable of achieving better BER per-
formances than that using non-damping detectors. This is
because the convergence performance of the AMP algorithm
is improved with the aid of our damping strategy in the face
of practical sensing matrixes. The above analysis can also
explain why the BER performance of AMPD is the worst
among the different detectors considered. Moreover, when the
transmission rate R is fixed, our MMSE-DAMPD significantly
outperforms the DAMPD, and a satisfactory BER performance
can be attained for MMSE-DAMPD. Furthermore, observe in
Fig. 3 (a) and Fig. 3 (b) for BER values of 10−4, and in Fig.
3 (c) for 10−3, that the BER performance of MMSE-DAMP
is about 1 dB better than that of the LLRD. This observation
can be explained with the aid of the analytical results shown
in Section III-C. Explicitly, we define the percentage of the
number of unused combinations η = [

(
m
k

)
− C]/

(
m
k

)
. Since

η is equal to 42.9% for (m = 8, k = 2) and 33.3% for
(m = 4, k = 2), which are higher than the 8.6% employed
in [8], the receiver is more likely to decide on a catastrophic
set of active indices. A further active index detection stage
based on the set of unused index combinations is employed
by MMSE-DAMPD, rather than simply deciding that the
corresponding bits are erroneous. As a benefit, the MMSE-
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DAMPD is capable of achieving a lower BER than the LLRD.
Finally, observe from Fig. 3 (b) and Fig. 3 (c) that better BER
performance can be achieved for lower APM constellation
sizes, which have an increased Euclidean minimum distance.

To further demonstrate the efficiency of our proposed
scheme, we employ a subcarrier-level interleaved OFDM-
IM that gleans additional frequency diversity [10]. The BER
performances of OFDM-MLD and OFDM-IM using different
detectors are compared in Fig. 4. Firstly, for a given rate,
we observe from this figure that the BER performance of the
interleaved OFDM-IM is better than that of OFDM in the
region of γs > 5 dB. This trend can be explained by the fact
that the interleaver increases the Euclidean distances among
the modulated OFDM-IM symbols. Moreover, for a BER
value of 10−4, the MMSE-DAMPD provides approximately
1 dB better BER performance than the LLRD, which is
consistent with the observations from Fig. 3.
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Fig. 5. Rate versus detection complexity for the OFDM-IM using LLRD,
MMSE-DAMPD, and MLD.

In Fig. 5, we compare the detection complexity of LLRD,
MMSE-DAMPD and MLD, where Fig. 5 (b) represents the
detail view of Fig. 5 (a). The parameters corresponding to
R = 2 bits/s/Hz are (m = 4, k = 3, Q = 4). Observe
that the LLRD and MMSE-DAMPD have a much lower
complexity than the MLD. This can be explained as follows.
Firstly, as seen in Fig. 2, a faster and also more accurate
convergence is achieved by the MMSE denoiser. Secondly,
the AMP algorithm relies on low-complexity linear operations
in each of the iterations. Moreover, based on (2) and (22), it
may be observed that the MMSE-DAMPD is a symbol-by-
symbol detection scheme, while the MLD carries out joint
group-based detection. Finally, based on Fig. 3, Fig. 4 and
Fig. 5, we may conclude that the MMSE-DAMPD achieves
a better BER performance than the LLRD at the cost of a

slightly higher complexity.

V. CONCLUSIONS

An AMP-assisted OFDM-IM detection framework has been
investigated. By exploiting the PDF of transmitted symbols
and the classic Bayesian approach, an MMSE denoiser has
been proposed for AMP detection. As shown by our theoreti-
cal analysis, the proposed MMSE denoiser provides estimates
having the minimum RMSE at each and every iteration. Our
simulation results have shown that the MMSE denoiser attains
both a better RMSE and a better convergence performance
than the soft thresholding denoiser. Moreover, new MMSE-
AMPD schemes have been proposed for reducing the detection
complexity. Furthermore, a novel damping strategy has been
conceived for AMP detectors. Simulation results have shown
that compare to non-damping detectors, the damping AMP
detectors which has improved the BER performance. The pro-
posed MMSE-DAMPD can attains a good BER performance
at a low complexity.
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