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Abstract

In this study, the dynamic characteristics (i.e. natural frequencies and associ-
ated mode shapes) of a partially filled horizontal cylindrical shell are investi-
gated experimentally and by an isogeometric finite element-boundary element
method. The proposed numerical procedure is divided into two parts. In the
first part, the dynamic characteristics of the cylindrical shell under in-vacuo
conditions are obtained by the isogeometric finite element method (IGAFEM)
based on a linear Kirchhoff-Love shell formulation. In the second part, the fluid-
structure interaction effects are calculated in terms of generalized added mass
coefficients by using the isogeometric boundary element method (IGABEM),
assuming that the structure vibrates in its in-vacuo principle mode shapes. By
adopting the linear hydroelasticity theory, it is assumed that the fluid flow is
ideal, i.e., an incompressible flow and inviscid fluid. In order to show the versa-
tility of the numerical method, the results are compared with those obtained by
the conducted experiments. Relevant numerical challenges in the hydroelastic
vibration analysis are highlighted and it is shown that the numerical predictions
and experimental results are in good agreement.
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Nomenclature

= Knot Vector Ca Linearized rotation angles
£ 2-D parameter space € Linearized Green-Lagrange strain tensor
NP B-spline basis functions D Reduced stiffness matrix of plane-stress
prq condition
Rij 2-D Euclidean space
E Young’s modulus
sij Position vector of control points
v Poisson’s ratio
Weights of control points
h Uniform thickness of shell body
S Surface in 3-D Euclidean space
M Global mass matrix
Nep Number of control points
K Global stiffness matrix
nep Number of control points of an element
U Vector of global displacements
0e Element domain in parameter space
w Natural frequency of the shell body
s€ Element surface
U Amplitude of the modal displacements
@y, xg, xg Global rectangular Cartesian coordinates
P Vector of principle coordinates
61,602 03 Global rectangular Cartesian coordinates
D Modal matrix
X Position vector of a material point in shell
body in undeformed configuration a Normalized mass matrix
R Position vector of a material point on mid- P Normalized stiffness matrix
surface in undeformed configuration £ Velocity vector of a fluid particle
Ag Director vector in undeformed configura- P Velocity potential function
tion
Pk Time-independent velocity potential due
An Covariant base vectors of mid-surface in to structural deformations in kP modal
undeformed configuration vibration
x Position vector of a material point in shell X g Global Cartesian coordinates of source
body in deformed configuration point
r Position vector of a material point on mid- X Global Cartesian coordinates of field
surface in deformed configuration point
ag Director vector in deformed configuration Sw Wet surface area
2] Rotation vector of the director vector rep- S, Imaginary surface area
resenting its linearized rotation
ps Density of the material of structure
Gt Contravariant base vectors of shell body
of Density of the fluid
G; Covariant base vectors of shell body
Apg Generalized added mass due to the cou-
u Displacement vector of a material point in pled vibration modes of  and k
shell body . . .
Frp Generalized fluid-structure interaction
v Translational displacement vector of mid- forces due to the coupled vibration modes
surface of r and k

boundary element method, experimental modal analysis
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1. Introduction

Dynamic response analysis of plates and shells has attracted the attention of
researchers due to their wide range of applications in many engineering fields (for
example, see [1-9]). Thin-walled structures interacting with fluid constitutes
an important class of fluid-structure interaction problems. The presence of a
fluid of comparable density significantly alters the dynamic characteristics of
the structure compared to those in vacuo. This is due to the vibration of
the structural surface in contact with the fluid medium imparting motion to
the fluid, thus altering its pressure, and, hence inducing reactive forces on its
surface.

The free vibration of cylindrical shells partially in contact with fluid has
been of great interest to engineers and scientists for the last half century. One
of the earlier pioneering work in this field was performed by Warburton [10]
using an analytical approach, where the cylindrical shell is either filled with
fluid or submerged into an infinite fluid domain. Lindholm et al. [11] conducted
an experimental study to predict the natural frequencies of partially fluid-filled
vertical cylindrical shells. In a number of further studies, researchers investi-
gated the effect of fluid on the dynamic response characteristics of thin and thick
cylindrical shells (for example, see Zhang et. al. [12], Wang et al. [13], and Ji et
al. [14]) by using analytical approaches. There are also studies using the wave
propagation approach and Fourier series expansion method (for example, see
Zhang [15], Jeong and Lee [16], Jeong [17]). Recently, the free vibration charac-
teristics of fluid-filled composite cylindrical shells were investigated analytically,
for instance, by Thinh and Nguyen [18] and Izyan et al. [19].

Additionally, semi-analytical approaches have also been used in combination
with various shell theories and fluid-structure interaction models. In these stud-
ies, the wet natural frequencies and the corresponding mode shapes were often
obtained by using the Rayleigh-Ritz (Ergin [20], Amabili [21], Askari and Jeong
[22]) and Galerkin (Chiba et al. [23], Amabili [24, 25]) methods. Furthermore,

Gongalves and Ramos [26] utilized the reduced linear form of Sander’s shell the-
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ory, where the fluid motion is governed by the Laplace’s equation in cylindrical
coordinates. In this study, the effect of linearized free surface condition was
also included into the mathematical model and the resulting linearized system
of differential equations was solved by Galerkin error minimization procedure.
Liao et al. [27] investigated the vibration and sound radiation characteristics of
reinforced cylindrical shells in an acoustic medium by using a method based on
modal analysis procedure. In the study, based on the work of Laulagnet and
Guyader [28], the effect of fluid was represented by a series expansion of acoustic
pressure. Recently, Chiba and Magata [29] used the Rayleigh-Ritz method to
obtain the dynamic characteristics of a beam-rigid tank-fluid coupled system.

Utilization of numerical methods in fluid-structure interaction problems has
become more and more important with everyday increasing computer power,
as analytical approaches are only applicable for some basic geometries and con-
siderably simplified cases. The finite element method (FEM) has found wide
application in vibration problem of shell structures in contact with fluid (for ex-
ample, see Bochkarev et al. [30, 31]). Hybrid finite element methods, in which
approximation functions are directly derived from classical shell theories, have
been implemented in several studies. For instance, Lakis et al. [32] investigated
the dynamic response characteristics of partially liquid-filled horizontal cylin-
drical shells by using a hybrid finite element formulation based on Sander’s shell
theory. The obtained results were compared with those computed by Selmane
and Lakis [33], which is based on the same approach but without including the
free surface effects. In a further study, Sabri and Lakis [34] investigated the
dynamic responses of horizontal cylindrical shells partially in contact with fluid
under internal pressure and axial compression.

On the other hand, the boundary element method (BEM) has found wide ap-
plication in fluid-structure interaction problems due to its inherent advantages,
especially in modeling of fluid domain. In hydroelastic vibration problems, BEM
is generally used to model fluid-structure interaction effects in conjunction with
the structural model solved via FEM (for example, see Ergin et al. [35], Ventsel

et al. [36], Yildizdag et al. [37]). In this context, Ergin and Temarel [38]
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analyzed the free vibration characteristics of a horizontal circular cylindrical
shell, which is partially liquid-filled and/or submerged, by a combined FE-BE
method. Zheng et al. [39] performed the free vibration analysis of spherical and
cylindrical shells by a FE-BE method.

The isogeometric analysis (IGA) is a computational approach forming a di-
rect connection between numerical analysis and computer aided design (CAD)
by using the same basis functions. In this concept, overall computational do-
main directly matches to the geometry generated in CAD. The IGA-based nu-
merical procedures were first applied to the structural problems and have been
steadily developed due to its advantages over classical FEM-based numerical
tools. Following the pioneering work of Hughes and his co-workers [40], the
concept of isogeometric analysis proceeded with significant promise in various
fields such as elastostatics (Cazzani ct al. [41-44], Kefal et al. [45], Yildizdag
et al. [46], Hasim et al. [47]), contact problems (Temizer [48], Nishi et al.
[49]), bioengineering (Bartezzaghi et. al. [50]), turbulent flow (Bastl et al.
[51]), vibration analysis (Chen et al. [52], Xue et al. [53]) and acoustics (Jin
et al. [54]). Recently, Khakalo and Niiranen [55/have been successully applied
IGA for higher-order gradient elasticity problems (Alibert et al. [56], dell’Isola
[57], Giorgio et al. [58], dell'Isola et al. [59, 60]). As for the developments in
hydrodynamics, Maestre et al. [61] used three-dimensional isogeometric bound-
ary element method (IGABEM) to model nonlinear free surface gravity waves.
Kostas et al. [62] utilized IGABEM to optimize the shapes of 2D hydrofoils. To
assess the degree of confidence of IGABEM in the calculation of wave resistance
of ships, Wang et al. [63] conducted a comparative study with a commercial
CFD solver.

The main objective of this study is to present an isogeometric FE-BE method
for analyzing the free vibration characteristics of a partially filled horizontal cir-
cular cylindrical shell. Furthermore, an experimental study is also conducted to
measure the natural frequencies and associated mode shapes. The main novelty
of this study is the proposed numerical model using the isogeometric concept in

both FE and BE formulations. According to a deep literature review, there is no
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other study found employing the IGA concept into both formulations for the hy-
droelastic analysis of shell structures partially in contact with fluid. In this con-
text, the numerical framework to analyze the fluid-structure interaction system
is divided into two parts. The dry analysis involves obtaining the natural fre-
quencies and corresponding mode shapes of the cylindrical shell under in-vacuo
conditions. Then, in the wet analysis, the fluid flow is considered as ideal, i.e. in-
compressible flow and inviscid fluid. In the formulation, it is assumed that each
in-vacuo principal mode contributes to the total radiation potential, and the
instantaneous pressure acting on the wetted part of the structure is determined
from the linearized form of the Bernoulli equation. Furthermore, free surface
waves are neglected by assuming that the structure vibrates in high frequency
region, so that the hydrodynamic forces are associated only with the inertial
cffect of fluid in terms of the generalized added mass coefficients. Therefore, the
mathematical model for the cylindrical shell is combined with the generalized
added mass matrix, and the wet resonant frequencies and corresponding mode
shapes are obtained by solving this coupled eigenvalue problem. The natural
frequencies and corresponding mode shapes are compared with those obtained
from the experiments performed in this study. In addition, the calculated in-
vacuo and wet dynamic characteristics are validated with those obtained by a
commercial FEM software, ANSYS®. In order to assess the influence of fluid
filling ratio on the natural frequencies and mode shapes, a number of further
studies is performed experimentally and numerically. The results clearly reveal
that the isogeometric FE-BE procedure can determine the dynamic response
behavior of fluid-coupled shell structures in the presence of free surface, with
excellent precision.

The organization of the rest of the paper is as follows: In Section 2, the isoge-
ometric FE-BE procedure is presented in detail. In Section 3, the experimental
setup and conducted measurements are briefly explained. The numerical results
obtained by the proposed numerical framework is presented and compared with
those obtained by experiments and ANSYS for the horizontal cylindrical cir-

cular shell under study in Section 4. Finally, in Section 5, the conclusions are
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2. Mathematical Formulation of Isogeometric FE-BE Model

2.1. Non-Uniform Rational B-Splines (NURBS)

Isogeometric Analysis (IGA) [40] unifies the design and analysis environ-
ments through utilization of non-uniform rational B-splines (NURBS) basis
functions to describe the structural geometry and physical unknown fields,
e.g., displacements for solid mechanics problems. The main advantage of using
NURBS basis function is that it can be easily enabled to model exact physi-
cal geometry and provides basic mesh refinement via smooth interpolations. A
large collection of literature [64, 65] has already established the mathematical
preliminaries of the NURBS and B-Splines, thus only a brief introduction is
provided herein to constitute a clear notation in the rest of the study.

A B-spline curve can be defined using a set of control points and a one-
dimensional knot vector. For a given curved geometry, the control points do not
necessarily need to conform the actual physical geometry, they rather behave like
a scaffold or control mesh that controls the shape of the geometry. Therefore,
the coordinates of a point cloud defined in the three-dimensional rectangular
Cartesian coordinate system represent the control points. On the other hand, a
non-decreasing coordinates of the one-dimensional parameter space, £, defines
the knot vector as Z = {&1,&2,....&n—p—1} Where & is the ith knot, n is the
number of basis functions, and p is the polynomial order (degree). For a given E
vector, the B-spline basis functions, N7 (§), can be defined through the Cox-de
Boor recursive formula for p =0

NOE) = 1 if& <E€< &y, )

0 otherwise,

and for p >0

() + S =8 g 2)

§—& —1
NP(€) = —>—Si_NP
+(©) Sitp+1 — Cit1

=&



Each repetition of any knot in the interior of a knot vector locally decreases the
degree of continuity by one. Thus, B-splines provide C?~™ continuity across the
knots, where m represents the multiplicity of the knots in = vector. Addition-
ally, the B-spline basis functions constitute a partition of unity and are point-
wise non-negative. Essentially, the NURBS can be considered as the B-splines
in homogeneous coordinates. From a geometric point of view, the NURBS are
obtained by projective transformation of B-splines from Rt to R? through uti-
lizing geometric weights defined at each control point. Therefore, the NURBS
basis function has a generalized mathematical form of the B-splines, such that
setting the weights of each control point to unity, a NURBS becomes identi-
cal to a B-spline. A surface, S(&,7n), in three-dimensional Euclidean space R®
can be constructed from a linear combination of two-dimensional NURBS basis
functions, Rff({, n), control points, s;; € R3, and associated weights, w;;, as

n m

S(€m) = > RISy (3)

i=1 j=1
where the NURBS basis functions are defined as

— sz(f)Miq(n)wij
> ohe1 ey N M (n)wr”

Alternatively, mapping of the surface given in Eq. 4 can be written more con-

R7I(E,n) (4)

cisely as

Nep

S(&) =) Ra(&)sa (5)
A=1

where & represents the two-dimensional parameter space, (£,7), A=n(j—1)+1
interrelates the local ij subscript with a global one, and number of global control
points is calculated as N, = n x m. In addition, the pg superscript denoting
the order of the individual B-splines is removed for brevity of the notation.
The locations of the knot define the boundaries of isogeometric elements in
the parametric space. Hence, the non-zero parametric region bounded by the

line of unique (non-repeating) knots constitutes an element domain as ¢ =

[€is &iva] % [0, m541] with & # &1 and n; # nj11 for any ¢ and j knot. Then,
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the physical surface corresponding to the element domain can be written as

Nep

SY€) =) Ri(€)sa (e=1,2,..,nc) (6)

where ng = (n — p)(m — p) is total number element available on S surface, s,
represents the control points belong to an element with a = 1,2, ...,n., index
being the local identities of the control points, and n. = (p+ 1)(¢ + 1) is
the total number of control points of the element. In the rest of the study, in
addition to the geometry discretization, we will utilize NURBS basis functions
to approximate the main unknown fields (e.g. displacement of the structure and

velocity potential of fluid) of the hydroelastic vibration problem.

2.2. Isogeometric Finite Element Formulation

2.2.1. Shell Kinematics and Differential Geometry

To establish a compact notation in the remainder of the mathematical model,
unless otherwise specified, indices « and g range from one to two. Consider an
arbitrary curved shell body with a uniform thickness A that is at least two order
of magnitude smaller than the characteristic dimension of the body such as
span or diameter. General convected curvilinear coordinate system (61,62, 63)
is used to identify a material point of the curved shell body. The in-plane
(surface) coordinates are represented by 6% € S, where S denotes the area
of the mid-surface. The coordinate §* € [—h/2,+h/2] identifies the thickness
direction of the shell and material points located at the mid-surface of the
shell are described as 8 = 0. In addition to curvilinear coordinate system, a
fixed rectangular cartesian coordinate system (1, z2,x3) is utilized to describe
orthogonal position of the points. The (1, z2, x3) system has orthonormal basis
(e1, €2, e3) pointing the direction of the coordinate axes as shown in Fig. 1. The
position vector X is attributed to the position of the arbitrary material points
in undeformed configuration of the shell body. This vector can be written as a

linear function of 6% coordinate

X(0.6%,6%) = R(6",6%) + 0°As(0",6°) (7)
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Figure 1: Kinematics of shell body in undeformed and deformed configurations

where R represents the position vector to a material point on the mid-surface
in reference configuration and A3 denotes the unit-magnitude vector field (the
director vector) that is perpendicular to the tangent plane of any point belongs
to mid-surface in reference configuration (Fig. 1). Taking partial derivative of
R with respect to 0 provides the covariant base vectors A, of the mid-surface
in reference configuration as A, = R . Normalized cross product of the A,
covariant base vectors can be utilized to define the director vector as follows

A1><A2

A= — =,
P AL X Aq

(®)

The position vector x of any material point in deformed configuration of the

shell body can be described analogous to Eq. 7 as
x(0',6%,0%) =r(0',6%) + 03a3(6',6%) (9)

where r is the position vector to a material point on the mid-surface and ag
is the director vector in deformed configuration (Fig. 1). According to the
thin shell model of Etcher et al. [66] developed based on Kirchhoff-Love shell
kinematics, the director vector ag can be defined by linearized rotation of the

director vector A3 as

a3:A3+0><A3 (10)

10



Deformed Configuration

Figure 2: The effect of rotation vector during deformation of shell body.

where @ is the rotation vector and € x Ajz represents the rotational difference
between the directors of the reference and current configurations as depicted
in Fig. 2. Subtracting the position vector of undeformed configuration from
the position vector of deformed configuration, displacement vector u of any

arbitrary point in the shell body can be defined as
u=x-X=v+6%0 x A3) (11)

where v is mid-surface displacement vector representing the translational dis-
placements of the mid-surface of the shell body. The orthogonal components
of this vector can be explicitly defined as v = [u,v,w]’ where the functions
u = u(6',0%),v = v(6,6?%), and w = w(H', #?) represent translations along the
21, x9, and x3 coordinates, respectively (Fig. 1). In addition, the rotation
vector @ can be described in terms of in-plane covariant base vectors A, and

related rotation angles ¢, as [66]

0= SolAl + SOQA.Q (12)
with
Vao- A3 —V- A3
= 228 and g = 13
O v e G T O W 19)

11



us  where the rotation vector @ is a function of v . Therefore, the orthogonal com-
ponents of the v vector are the only unknowns (namely, the kinematic variables)
during the analysis in order to predict the u displacements of any material point

in the shell body.
The linearized Green-Lagrange strain tensor can be defined with respect to

the convected curvilinear coordinates as
e=¢,;G @G’ (14)

where G* denotes the contravariant base vectors and the coefficients ¢; ; of strain

tensor are defined in terms of covariant base vectors, G;, of the shell body as

1
Eij = 5 (u’z- . Gj + u; - Gz) (15)
with
Ga = Xya = Aa + 93A37a and Gg = Xyg = A3 (16)

Once the covariant base vectors are evaluated for a position X in the shell
domain, the contravariant base vectors G* can be calculated for the same lo-
cation as G = GYG; where the contravariant components G% of the metric
tensor are obtained by taking the inverse of the covariant tensor components,
Gij = Gy - Gj. For clarity of the Eq. 16, the derivatives of the director vector

with respect to in-plane curvilinear components can be explicitly written as

1
A3a

o= ||A1><A2||<A1"°‘ % Ap+ Ay X Ao — As [Al,a ((As X Ag) + Agg - (Ag x Al)]>.

(17)
Taking derivatives of the u displacement and subsequently substituting these

derivatives into Eq. 15, the g;; strains can be explicitly defined as
1 =vi-A+6? (V,1 “Asq+ (A3 x Aq) - 0,1), (18)
€29 =Vo-Ag+0° (V,Q “Azo+ (As x Ay) - 9,2), (19)
210 =y2=V1-As+Vvo-A +6° (V,l “A3o+vo- Az + (A3 x Ay)- 01+ (A3 x Ay) '9,2),
(20)

2603 =Y3=Uqn G3+uz -G, =0. (21)

12



150

Note that, during the derivation of the Egs. 18-21, all strain contributions of
(6 x As ) Ap vanish identically because the vectorial quantities obtained from
the cross products of 8 and Ajs, are normal to the mid-surface of the shell
body. In addition, as given in Eq. 21, the Kirchhoff-Love shell model exhibits
zero transverse-shear strains, 4,3 = 0, indicating that the deformations of the
shell body will be physically dictated by only membrane and bending actions.
For clarity of the strain definition for computational implementation, the
explicit form of the derivatives of rotation vector with respect to coordinates

are written as
0.0 =01aA1+01A1 0+ P2.0A2 +02As . (22)

Applying plane-stress condition (i.e., zero normal stress, o33 = 0, along the
thickness coordinate, 83) to Hooke’s stress-strain relations of a linear elastic and
isotropic material, the constitutive model according to the Cartesian coordinates
of the shell body can be defined using the Voigt notation as & = Dé where the

in-plane strains and stresses are written as

€=len e ’712]T and o [011 O22 Ti2 ! ) (23)
and reduced stiffness matrix can be written as
(G vGM G+ (1 - v)(G'?)? Gtag'?
D = 1_7E‘I/2 (G22)2 G22G12
sym (@ = v)GMG?? + (1 4+ v)(G1?)?)

(24)
with the material coefficients being transformed from local (curvilinear) to
global (Cartesian) coordinates. The contravariant metric coeflicients of the shell
mid-surface are utilized for this transformation since the present shell model ac-
counts for thin shell bodies. Accordingly, these coefficients can be calculated

as
-1

Gll G12 . Al‘Al Al'A2 (25)
G2 g2 Ar-As As-Ag|

13
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2.2.2. Rotation-Free Isogeometric Kirchhoff-Love Shell Element

Both position vector of shell mid-surface, R, and kinematic variables of the
shell, v, are the only functions of the surface coordinates, 8% (refer to Eq. 7).
Hence, the NURBS basis functions can be readily utilized to approximate both
these geometrical and analysis terms while establishing an analogy between the

curvilinear and parametric coordinates, i.e., &€ = (&,7) = (6%, 60?), as

Py
R(g)=in(g>P¢=[ SO . R (©T] 1 b =NPT o (26)
P,
and
" Vi
Vg =S o= [RigT . m @ =N e
v

where the N¢ = N(£) matrix, and the P¢ and v® vectors represent the 3 x
(3 x n¢p) matrix of NURBS basis functions, and the (3 X n¢,) x 1 position
and displacement degrees-of-freedom (DOF) vectors of control points belonging
to an individual isogeometric shell element, respectively. As depicted in Fig.
3, the P; and v; vectors given in Eqs. 26 and 27 denote the position and
displacement DOF of ith control point, respectively. Thanks to the high-order
continuity provided by NURBS basis functions, there is no need to allocate an
extra DOF for the rotations of the shell, which can be directly incorporated into
the kinematics as the first-order derivatives of the v(€) vector. Note that the
direction of displacement DOF are aligned with the components of the Cartesian
coordinate system and the positions of control points are defined with respect
to the same system.

Substituting Eqs. 26 and 27 into strain definition, the in-plane strains given
in Eq. 23 can be written in the compact discrete form for an individual isogeo-

metric element as

& =m(v°) + 0°b(v®) = (B, + 0°Bf) v* (28)

m

14
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Isogeometric Kirchhoff-Love Shell Element i" Control Point DOF
93

A,

Figure 3: Isogeometric shell element and its displacement DOF for ith control point.

where m(v®) is the membrane strains associated with stretching of the mid-
surface, b(v®) is the bending curvatures of the mid-surface, and the matrices

By, and Bjf are the corresponding strain-displacement relation matrices.

2.2.8. In-vacuo analysis

To account for the free vibrations of the in-vacuo shell body, we employ
principle of virtual work utilizing the classical weak form of the equations of
motion. Accordingly, sum of the virtual works done by the inertial and internal

forces become equal to zero as:
swhyswil =0 (29)

where the virtual work corresponding to inertia forces can be written in a com-

pact matrix-vector form as

owt = / psoulindV ~ / ps VIV dV
14 1%

— 6(V5)T pst/(Ne)TNe Ve
Se

= 6(v9) ' meve (30)

15
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and similarly the virtual work done by internal forces can be defined as

SW = / setedv
v

. 3 .
=5(v)T | n / (B¢,)"DB¢, dse+% / (B)T DB dS°® | v°

Se

=5(ve)Tkeve (31)

where V' denotes the volume of the shell body and S¢ represents the mid-surface
area of an isogeometric shell element. In Egs. 30 and 31, the m® and k® ma-
trices stand for mass and stiffness matrices of a thin isogeometric shell element,
respectively. The area integrations given in Egs. 30 and 31 can be performed
numerically by using, for instance, Gauss quadrature method. For this purpose,
two subsequent domain transformation is required: (1) from physical domain to
parameter domain, S¢ — Q¢ and (2) from parameter domain to parent domain,
Q¢ — Q°, where parent domain is defined as Q¢ = [—1,+1] ® [—1,+1]. Hence,
two different Jacobian matrices associated with these transformations should be
established for each isogeometric element. For conciseness of the mathemati-
cal derivations, the details of defining Jacobian matrices are not given herein.
Further details can be readily implemented in accordance with classical IGA
procedures [67].

Substituting Eqgs. 30 and 31 into Eq. 29, a set of algebraic equations is

obtained to solve the free vibration problem of an isogeometric element as:
SW oWl =5(v9)T (m*v® +kv) =0 = mVv°+kv=0. (32

For a given isogeometric discretization (i.e., composed of n.; number of element

contributions) can be assembled into a global set of final equations as:
MU + KU = 0. (33)
where the M and K matrices are the global mass and stiffness matrices of

the discretization, and U vector is the global displacement DOF of the whole

16



structure. Here, we are interested in finding natural frequencies and modal dis-
placements of the discretization. For harmonic vibration of a free and undamped

structure, the time-dependent displacements can be expressed as
U(t) = Ue™t (34)

where the 7 = /—1 term represents the complex number, w is natural frequency
of the shell body, and U is the amplitude of the modal displacements which is
only a function of spatial variable X. Substituting the trial solution given by

Eq. 34 into Eq. 33 and eliminating the common exponential term yields to
K- MU=0 (\=uw? (35)

which can be solved through eigenvalue decomposition, thus resulting in N,
number of roots A := {A1, Ag, ..., An,, }, i.e., the so-called ”eigenvalues”, for each
of which an ”eigenvector” is also obtained, U = {U;,Us,..., Uy, }. Herein,
the term NN, represents the total number of modes of interest, which can be
elevated up to total degrees-of-freedom of the system, 3 x N,,. Note that the
physical counterpart of eigenvalues are the square of each natural frequency of
the modal vibration while the each corresponding eigenvector represents the
vibration mode. In fact, the cluster of eigenvectors is dynamically uncoupled
and linear superposition of these vectors can be utilized to describe the modal
displacements as

U =Ujn + Uips +---+ Uy, bn,, = Dp (36)
where the term pp(k = 1,2,..., N,,,) represents the kth principle (natural) co-
ordinates of modal vibration, the term p is the vector of principle coordinates,
and D is the modal matrix with size of (3 x Ngp) X N, whose columns consist

of eigenvectors, Uy. For clarity, the eigenvector of kth modal vibration can be

explicitly expressed as
Uy = |:\_’k1 Vi, t° \_kaCp (37)

with
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where the v, is vector of modal displacements of kth vibration mode at the
control point ¢. Substituting Eq. 36 into Eq. 35 and pre-multiplying the
resulting equation from left-hand-side by D” matrix, a generalized form of the

equation of motion for vibration analysis can be obtained as
(b—w?a)p=0 (39)

where a and b denote generalized mass and stiffness matrices, respectively,

which are defined as
a=D"MD and b=D'KD (40)

If the mass normalization is enforced on the modal displacements for kth vi-
bration mode, UngJk = 1, then a = I matrix become an identity matrix,
and accordingly b = A matrix will be formed as the diagonal matrix of squared

frequencies of the system as

A=| (41)

which automatically satisfies Eq. 39 and enables to obtain mass normalized

modal displacement.

2.3. Isogeometric Boundary Element Formulation

Assuming an ideal fluid flow, velocity vector £ = f(X,¢) of a fluid particle
due to structural vibration can be expressed in terms of the gradient of the

velocity potential function, ®(X,t), as
f = V(X 1) (42)

where X is the vector attributed to the position of the fluid particle with respect
to the origin of Cartesian coordinate system (x1, 2, z3) throughout the fluid

domain. When a structure is under vibration with a frequency of w in the fluid

18



domain, the velocity potential functional due to structural displacements in kth

modal vibration can be written as
(I)k(X7 t) = Re{iw¢k(x)ﬁkeiwt} (k = 17 27 s va) (43)

where ¢;(X) term represents the time-independent velocity potential, which
is only function of spatial coordinates. This potential satisfies the Laplace’s

equation at any position in the fluid domain as
VZ6r(X) = 0 (44)

For the fluid motion at the boundary, the velocity of the fluid and structure
should be in equilibrium along the normal direction of the wetted surface. This

kinematical boundary condition can be expressed as

a%x) = @(X) n(X) ~ 7,(X) - A3(X) (45)

where 1 (X) vector corresponds to kth modal displacements at position X on
the fluid-structure interaction boundary surface, the n(X) vector denotes the
unit vector directed out of the fluid at position X, and the partial derivative
0/0n signifies the derivative in this unit direction. We simplify this kinematic
boundary condition by taking the advantage of thin shell assumption, X ~ R.
Therefore, the unit normal at the boundary surface is assumed to be equivalent
to the Aj director of the mid-surface of the shell, and the v vector represents
the kth modal displacements at the mid-surface. One can readily attain this
vector at any position over an isogeometric element domain e by utilizing the
in-vacuo modal displacements at the control points and associated NURBS basis

functions as

Nep

Vk(R(E)) = Vi (8) = Z RE(&)Vi, (46)

Additionally, the contribution of the free surface waves are neglected by assum-
ing oscillations with relatively high frequency. Consequently, the free surface
boundary condition is defined as ¢, = 0, which is referred to as “infinite fre-

quency limit condition”. In this study, the free surface boundary condition is

19
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satisfied by applying the method of images, as explained in Ergin and Ugurlu
[68]. Accordingly, the method of images (classical Neumann’s case) fulfills this
particular condition during the solution of velocity potential. The velocity po-
tentials ¢y in the fluid domain can be calculated by using the boundary element
method. Therefore, the boundary integral equation for ¢p potential can be

written as

C(Xs)op(Xs) = / (G(X&XF)&MG(T)Z(F)_QW(XF) o

Sw+Si

8G(X3,XF)> S

(47)

where X g and X denotes the global Cartesian coordinates of the source and
field points, respectively. Note that the integral in the right-hand-side of Eq.
47 should be calculated over the area of wet S, and imaginary S; surface of
the domain of the interest. The wet surface (S, ) represents the total fluid-
structure interaction area of the structure and the imaginary surface (.9;) can
be effortlessly defined by mirroring the wet surface of structure with respect to

the free surface plane of the fluid domain (see Fig. 4).

Rl

Figure 4: Wetted surface and its image.

Moreover, in Eq. 47, the solid (space) angles of the source locations can be

20



defined as

N e (13)
Suw+Si

Besides, the G(Xg, X ) denotes the fundamental solution of the Laplace’s equa-
tion for which the basic Green’s function can be selected by neglecting terms
associated with wave mechanics as

1
G(Xs,XF) = m (49)
which satisfies the continuity condition and all boundary conditions everywhere
in the fluid domain with the exception of evaluation point (e.g., when field and
source locations coincide). The surface normal derivative of the Green’s function

at the field locations can be expressed as

0G(Xs,XF)

on = VG(Xs,Xp) - n(Xp) =)

i=1

0G(Xs,XF)
TS AE) A (X ) - e
( o 3(XF) - e;
(50)
where the derivatives of Green’s function with respect to components of the

global coordinate system can be calculated as

aG(Xs,XF) (XF _XS) - e; .
Dz, = — Xr = x5 (i1=1,2,3) (51)

Once the wetted and imaginary surfaces of the structure are discretized by
NURBS basis functions, the same geometry functions can be utilized to ap-
proximate the velocity potentials (i.e., main unknowns) of boundary integral
equation for its numerical solution. The geometrical discretization of the wet

surface can be performed similar to the approach used in Eq. 26 as
X =R(&) = N°P°¢ (52)

whereas the ¢, = @1 (&) potential can be approximated over a boundary element

surface as

o,
o =Y RO, = [Re(©) - R @) ¢ p=NE (59)
=1
Pk,

21



where the ¢} (i = 1,2,...,n¢p) terms represent the source strengths at the
1th control point of element e = 1,2,...,n. due to the kth vibration mode.
For brevity, these unknown DOF and their associated non-zero NURBS basis
functions are in the @; and N¢ vectors, respectively. Substituting Eqs. 53 and
52 into Eq. 47 and applying the kinematic boundary condition, the surface

integral equation for a given source location Xg can be cast in a vector form as
C(Xs)0k(Xs) = Gi(Xs) + H(Xs) s (54)

with scalar terms obtained by summation of integral terms taken over the S°¢

arca of NURBS clement domain as

OXs) = Z/ E( X e ||§ZA3(X)'E"> - (%)

and
Nel
vi(X X)
Gy(Xs) = / as (56)
EZ ||X Xs||
and vectorial terms obtained through the assembly of element contributions as
N Nel 5 5 Nel N
&= J &, HXs) =|JH((Xs) (57)
e=1 e=1

where the H¢ vector has the size of 1 x nep and explicitly defined as
3
~ 0G(Xs.X <
H(Xs) = —="A3(X) -e; | N°dS*®
o) = [0 (T A ) s (59
Se =

In Eq. 57, the ®;, and H vectors with the size of N, x 1 and 1x N, contain all
unknown source strengths and derivatives of the Green’s function for the whole
discretization, respectively. Once the Jacobian matrices are established for in-
dividual isogeometric elements, the inverse of Jacobians and their determinants
can be utilized to compute the Cartesian derivatives 9G/0x; given in Eq. 58 and
perform the area integrals in Eqgs. 55-58, respectively. The Gaussian quadra-
ture is applied to perform the integrations numerically. Here, by following the

strategy presented by Beer [69], a number of quadrature points is determined
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due to the distance between source and field points. In this study, the number
of quadrature points are varied from 2 x 2 to 10 x 10 points. If the Eq. 54 is
written for finite number of source locations and these positions are selected as
being coincident with the position of control points, S =1,2,..., Ny, then the
velocity potentials ¢ (Xg) become identical to the source strengths at the Sth
control point. Therefore, the overall N, number of vectorial equations of the

fluid domain can be cast in the following matrix-vector representation

C(X4) 0 0 H(X,) Gr(Xy)
C(Xy) - : . H(?Cz) B _ Gr(X2) s E&d,
0
sym C(Xn.,) H(Xy,,) Gr(Xn,,)

(59)
which can be solved to identify unknown source strengths @, of all control points
utilized to define the whole NURBS discretization. Once the source strengths
of control points are obtained, they can be interpolated as given in Eq. 53 to

calculate the velocity potentials at any position in the fluid domain.

2.3.1. Wet Analysis — Calculation of wet frequencies and mode shapes
Neglecting the high-order terms in the Bernoulli’s equation, the dynamic
fluid pressure corresponding to the kth dry mode of the vibration can be ex-

pressed as
Pu(X,t) = —p,®r(X, 1) = Re{¢p(X)w?pre™t} (60)

which can be integrated over the wet surface of the elastic structure to be able

to calculate the generalized fluid-structure interaction forces as

Frk(t) = /Pk‘_/'r -A3dS = pf / OrVy - Az dS Re{wQﬁkei“t} = _Ark]-jk(t) (1"
Sw Sw

(61)
where A, represents the generalized added mass due to the coupled vibration

modes of r and k, and Fi.; is the corresponding inertial force, i.e., fluid-structure
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interaction force. For the sake of convenience with the matrix-vector definition,

the Eq. 61 can be rewritten as
F = —Ap(t) = w?Ape™? (62)

where the A matrix has the size of N,, X N,, and contains the generalized
added masses, and the F vector with the size of N,,, x 1 denotes the generalized
fluid-structure force. While canceling the common exponential term, the fluid-
structure forces can be set to the right-hand-side of natural vibration equations

for an in vacuo structure (i.e., Eq. 39) as
(b—w’(a+A))p=0 (63)

which attains a classical form of an eigenvalue problem to evaluate the vibration
modes and associated modal displacements of a structure partially in contact

with fluid.

3. Experimental Modal Analysis

3.1. Equipment

Experimental modal testing requires several hardware components. The
required basic equipments are identified as an excitation system to provide a
known or controlled input force to the structure, a transducer that converts
the accelerations or motions of the structure into an electrical signal, signal
conditioning device, analyzer for executing signal processing and modal analysis
software (see Fig. 5).

In this study, Bruel & Kjaer 8206-001 impact hammer was used for excita-
tion. The impact hammer has a total voltage range of 445 N, with a typical
voltage accuracy of 11.4 mV/N, and a total weight of 100 grams. The ham-
mer is made of stainless steel and has a BNC type connection. Bruel & Kjaer
4507B Deltatron transducer was used as an accelerometer. Accuracy of the ac-
celerometer is 9.63 mV/ms™ 2, frequency range is between 0.3 Hz—6 kHz, and

the measurement range is +/- 71 g. The base material of the accelerometer is
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Figure 5: Diagram of experimental setup

made of titanium ATM grade 2, with a total weight of 4.8 grams. The ana-
lyzer used in this study is the Bruel & Kjaer 3560-B-040 PULSE 5-channel data
acquisition system. The frequency range of the system is between 0-25.6 kHz.
The system has five input and one output channels and also has a 24 bit analog

digital converter and 24 bit data transfer capacity.

3.2. Ezperimental Setup

In this study, experimental modal analysis of a horizontal circular cylindrical
shell partially filled with water was performed, and the natural frequencies and
corresponding mode shapes of the structure were measured. A cylindrical shell
of length L = 1284 mm, radius r = 180 mm, and thickness h = 3 mm is
considered in this study (see Fig. 6). The structure is made of stainless steel
with the following material characteristics: Young’s modulus £ = 200 GPa,
Poisson’s ratio ¥ = 0.29 and mass density p, = 7900 kg/m3. The cylindrical
shell is sealed at both ends, and it was experimentally investigated, respectively,
in air and when partially or fully filled with water. The cylinder was attached to
steel-made carrier by elastic springs of which rigidity were chosen to eliminate
the natural modes of the carrier system. In the experiments in air, in order
to accurately determine the mode shapes of the shell both in longitudinal and
circumferencial directions, an appropriate number of excitation points has been

chosen along the cylinder and around its circumference. Therefore, 11 points
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Figure 6: Experimental setup for modal analysis

along the length and 10 points around the circumference were selected for the
experiments in air. In case of the cylindrical shell partially or fully filled with
water, circumferential modes were measured at 30 equally-spaced excitation
points chosen around the circumference at a distance of L/4 from one end. The
experimental setup for the wet analysis is shown in Fig. 6.

In all the experiments, the standard modal testing procedures were applied,
and the elastic structure was excited impulsively at the selected excitation points
by the instrumented hammer. The accelerometer was attached at a specific fixed
position during the tests (see Fig. 6). The frequency response functions (FRF)
for each excitation is obtained by PULSE LabShop software.

4. Numerical Results and Comparison with Experiments

In this section, the vibration characteristics of the horizontal circular cylin-
drical shell partially filled with water are obtained by the proposed numerical
framework. The numerical results are compared with those obtained by exper-
iments to show the applicability of the numerical framework. The term d/2r is

used to denote the filling ratio, where d is the filling depth of fluid with a density
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ps = 1000 kg/m*. As can be seen from Fig. 6, the cylindrical shell used in the
experiments is sealed by steel plates at both ends. These end plates restrain
the motion in radial direction and behave as simple supports at the ends of the
cylindrical shell. Therefore, in the numerical simulations, instead of modeling
end plates, simple support boundary condition is applied for both ends.

In the dry part of the numerical framework, the in-vacuo dynamic charac-
teristics were obtained by solving the free vibration problem formulated based
on isogeometric finite element method (IGAFEM). The cylindrical shell was
represented by a 2nd-order NURBS patch. Importantly, the computational do-
main was modeled as a half cylinder to take the advantage of symmetry of the
structure. As reported in Ergin and Temarel [38], the results occur in pairs
when the problem is solved by using the whole geometry (i.e. cylinder) in the
simulations. In this case, for each natural frequency, a pair of mode shapes-
symmetric and antisymmetric-is obtained. Indeed, the obtained pairs have the
same modal shapes (and the same frequencies) but different orientations: one
of them becomes symmetric while the other one is antisymmetric with respect
to a plane. Therefore, in this study, the following procedure is adopted in the
dry analysis of the horizontal cylindrical shell: (1) Antisymmetric mode shapes
are obtained by solving the eigenvalue problem by modeling the computational
domain as a half cylinder and applying appropriate antisymmetry boundary
conditions; (2) the symmetric mode shapes are generated accordingly by using
the antisymmetric mode shapes (i.e. antisymmetric modal shapes are appro-
priately rotated); (3) the orthogonality condition is checked for the generated
modes. Here, it must be remarked that the symmetric boundary conditions
cannot be applied as the IGAFEM procedure is purely displacement-based, i.e.
rotation-free formulation does not allow us to apply symmetric boundary con-
ditions. Moreover, by modeling the structure as a half cylinder, the symmetry
plane is automatically defined in the numerical simulations.

For the dry analysis, a convergence study was carried out to assess the accu-
racy of the calculated dry natural frequencies. The numerical results obtained

via isogeometric finite element method (IGAFEM) are compared with those ob-
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tained by ANSYS and experiments. The half cylinder was modeled with four
different idealizations (i.e. NURBS patches). In the first test study, the NURBS
patch was discretized with 1800 elements-30 elements along circumference and
60 elements along length. Then, the number of elements was increased to 2592
(36 elements along circumference and 72 elements along length) and 3528 (42
elements along circumference and 84 elements along length), respectively, in the
second and third idealizations. Finally, in the fourth test study, the NURBS
patch was discretized with 4608 elements (48 elements along circumference and
96 elements along length). In the ANSYS simulation, the computational domain
was modeled as a cylinder with 9216 elements. The dry natural frequencies ob-
tained for each idealization can be seen in Table 1, for the first twelve modes
(i.e., for the first six mode pairs). Here, the dry mode numbers (m,n) of the
cylindrical structure are identified with the number of standing waves around
the circumference (n), and the number of half-waves along the length of the shell
(m). Tt must also be realized that the fundamental dry natural frequency does
not correspond to the mode shape with the lowest number of waves around
the circumference (n = 2). The order of modes depends on the geometrical
characteristics of the cylindrical shell.

As presented in Table 1, the converged dry natural frequencies are validated
with experimental results. Moreover, IGAFEM results compare very well with
those obtained by ANSYS. Here, in the ANSYS simulation, the problem was
solved by discretizing the whole geometry. In this way, the validity of the
adopted numerical strategy (i.e. applying antisymmetric boundary conditions
to a half cylinder in IGAFEM simulations) is shown. Furthermore, the mode
shapes obtained by experiments and numerical simulations (both ANSYS and
IGAFEM) are presented in Fig. 7, for the first six mode pairs, namely, (1,2),
(1,3), (1,4), (2,3), (2,4), and (1,5). The predicted mode shapes using IGAFEM
compare very well with the corresponding experimentally measured mode shapes
and with those obtained by ANSYS.

In the wet part of the study, the proposed IGABEM procedure is applied

for obtaining the wet dynamic characteristics, i.e. wet natural frequencies and
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Mode No IGAFEM FEM (ANSYS®) Experiment
(m,n) 1800 El. 2592 El 3528 El. 4608 El. 9216 El. Measurements
(1,2) 193.49 193.34 193.27 193.24 193.35 187.70
(1,2) 193.49 193.34 193.27 193.24 193.35 -

(1,3) 197.33 196.00 195.41 195.11 194.58 190.30
(1,3) 197.33 196.00 195.41 195.11 194.58 -
(1,4) 340.97 337.77 336.30 335.53 333.03 328.10
(1,4) 340.97 337.77 336.30 335.53 333.03 -
(2,3) 379.65 378.98 378.67 378.51 380.76 370.20
(2,3) 379.65 378.98 378.67 378.51 380.76 -
(2,4) 399.16 396.46 395.21 394.55 394.48 386.00
(2,4) 399.16 396.46 395.21 394.55 394.48 -
(1,5) 546.56 540.26 537.31 535.72 530.75 521.00
(1,5) 546.56 540.26 537.31 535.72 530.75 -

Table 1: Convergence of in-vacuo natural frequencies (Hz) and comparison with FEM and
experimental results (the 9216 elements of FEM solution refer to the whole geometry while

the 4608 elements of IGAFEM solution refer to the half of the geometry).

corresponding mode shapes, for the horizontal cylindrical circular shell under
study. In order to test the convergence of the hydrodynamic predictions, various
numbers of boundary elements (panels) were distributed over the wetted sur-
face. The numerical simulations were carried out for four different filling ratios,
namely, d/2r = 0.25, 0.50, 0.75, and 1.00. Here, the idealizations are identified
by the number of hydrodynamic panels distributed around the circumference
and along the shell, respectively. In the first idealizations, the number of total
panels distributed over the wetted surfaces was 180, 270, 360, and 540 for the
filling ratios 0.25, 0.50, 0.75, and 1.00, respectively. For each filling ratio, the
number of panels was 15 along the length of the cylinder while the number of
panels was 12, 18, 24, and 36 around the circumference, respectively, for d/2r =
0.25, 0.50, 0.75, and 1.00. Subsequently, the number of total panels distributed
over the wetted surfaces was increased to 320, 480, 640, and 960 for the second
idealization and 500, 750, 1000, and 1500 for the third idealization, respectively,
for the filling ratios d/2r = 0.25, 0.50, 0.75, and 1.00. In the second and the
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Mode 180 320 500 720 Mode | 270 480 750 1080

No | Panels Panels Panels Panels No | Panels Panels Panels Panels

1 128.30 125.76 124.03 123.57

[

110.44 109.11 108.49 108.15

2 129.35 127.45 126.14 126.02 2 112.85 111.22 110.45 110.03
3 180.26 178.95 178.25 177.81 3 161.20 159.22 158.26 157.72
4 192.08 191.77 191.57 191.43 4 166.35 165.16 164.56 164.22
5 259.45 252.71 249.47 247.65 5 239.51 233.48 230.65 229.10
6 273.53 265.68 261.70 259.40 6 243.26 236.57 233.42 231.69
(a) d/2r =0.25 (b) d/2r = 0.50
Mode | 360 640 1000 1440 Mode | 540 960 1500 2160
No | Panels Panels Panels Panels No | Panels Panels Panels Panels
1 102.62 101.33 100.72 100.39 1 96.39 95.41 94.96 94.72
2 104.46 103.04 102.38 102.01 2 96.54 95.62 95.19 94.95
3 138.71 137.11 136.35 135.93 3 108.93 106.96 106.05 105.56
4 142.23 140.21 139.24 138.71 4 109.37 107.53 106.66 106.18
5 225.31 219.40 216.65 215.15 5 207.56 201.89 199.26 197.82
6 228.37 222.22 219.34 217.76 6 208.63 203.41 200.91 199.53
(c) d/2r = 0.75 (d) d/2r = 1.00

Table 2: Convergence of wet natural frequencies (Hz) for filling ratios d/2r = 0.25, 0.50, 0.75
and 1.00.

third idealizations, the number of panels along the length of the wetted surfaces
was 20 and 25, respectively. In the last group of simulations, the number total
panels was increased to 720, 1080, 1440, and 2160 for filling ratios d/2r = 0.25,
0.50, 0.75, and 1.00, respectively. The number of panels along the length was 30
for each filling ratio while the number of panels along the circumference was 36,
48, 60, and 72, for filling ratios d/2r = 0.25, 0.50, 0.75, and 1.00, respectively.
Also, an additional convergence study was carried out to determine the number
of in-vacuo modes needed for the wet converged results. As a result of this
additional analysis, 48 in-vacuo modes (24 in-vacuo mode pairs) were included

in the calculations.
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Mode IGAFEM-IGABEM Results FEM (ANSYS®) Experiment
Filling Ratio (d/2r) Filling Ratio (d/2r) Filling Ratio (d/2r)
0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

123.57 | 108.15 | 100.39 | 94.72 129.28 | 109.50 | 102.88 | 97.20 128.10 | 111.10 | 99.70 93.70
126.02 | 110.03 | 102.01 | 94.95 131.65 | 111.40 | 105.83 | 97.20 130.80 | 114.00 | 104.20 | 94.60
177.81 | 157.72 | 135.93 | 105.56 || 182.53 | 158.70 | 135.34 | 108.20 || 179.20 | 159.20 | 137.10 | 105.50
191.43 | 164.22 | 138.71 | 106.18 || 191.56 | 159.90 | 138.46 | 108.20 || 186.20 | 164.90 | 143.00 | 106.50
247.65 | 229.10 | 215.15 | 197.82 || 261.10 | 235.40 | 225.62 | 195.20 || 256.40 | 228.40 | 222.10 | 195.20
259.40 | 231.69 | 217.76 | 199.53 || 266.88 | 238.90 | 227.76 | 195.20 || 262.40 | 230.90 | 224.90 | 196.40

DT W N =

Table 3: Comparison of wet frequencies (Hz) obtained by both numerical simulations and

experiments

The convergence of wet natural frequencies are presented in Table 2, for four
different filling ratios, d/2r = 0.25, 0.50, 0.75, and 1.00, respectively. As shown
in Table 2, the results show monotonic convergence, and it is clear that the dif-
ferences between the third and fourth groups of calculations are reasonably small
for each filling ratio. Therefore, the last group of idealizations (720, 1080, 1440,
and 2160 panels) are used in the computation of wet dynamic characteristics.

The calculated wet natural frequencies are compared with those obtained by
ANSYS and experiments in Table 3 for the first six wet modes. As presented
in Table 3, the predicted wet natural frequencies compare very well with the
experimental measurements and FEM results. The differences are in the range
of 0.78%-3.66% for d/2r = 0.25, 0.3%-3.48% for d/2r = 0.50, 0.69%-3.17%
for d/2r = 0.75, and 0.06%-1.59% for d/2r = 1.00. The maximum difference
(3.66%) was obtained for the second mode of the filling ratio d/2r = 0.25. As
expected, wet natural frequencies are lower than their dry counterparts due
to the presence of fluid. In ANSYS, the cylindrical shell was discretized with
four-node quadrilateral SHELL181 elements, and the fluid was modeled with
FLUID30 elements. The density and sonic velocity of fluid are taken as 1000
kg/m® and 1507 m/s, respectively. As the structure vibrates in high frequency
region, the infinite frequency limit condition is imposed on the free surface of
contained fluid. The circular sealings at the ends of the shell are assumed to be
rigid, and therefore, the fluid actions are omitted over the ends of the cylinder.

Additionally, the wet mode shapes obtained by the isogemetric FE-BE pro-
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Experiment — 128.10 Hz FEM - 129.28 Hz IGABEM - 123.57 Hz Experiment — 130.80 Hz FEM - 131.65 Hz IGABEM - 126.02 Hz

(a) 1st Wet Mode (b) 2nd Wet Mode

Experiment — 179.20 Hz FEM - 182.53 Hz IGABEM - 177.81 Hz Experiment — 186.20 Hz FEM - 191.56 Hz IGABEM -191.43 Hz
(c) 3rd Wet Mode (d) 4th Wet Mode

Experiment — 256.40 Hz FEM -261.10 Hz IGABEM - 247.65 Hz Experiment — 262.40 Hz FEM - 266.88 Hz IGABEM‘—.259.40 Hz
(e) 5th Wet Mode (f) 6th Wet Mode

Figure 8: Calculated and measured wet mode shapes for filling ratio d/2r = 0.25

cedure are presented in Figs. 8, 9, 10 and 11 for the filling ratios d/2r = 0.25,
0.50, 0.75 and 1.00, respectively. For each filling ratio, the first six wet mode
shapes are presented and compared with those obtained by ANSYS and ex-
periments. As can be seen from Figs. 8, 9, 10, in case of that the horizontal
cylindrical circular shell is partially-filled, the mode shapes are quite similar
to each other but considerably different from those obtained in air/vacuo. On
the other hand, for the fully-filled case (d/2r = 1.00), the calculated wet mode
shapes are similar to those measured in air but with lower natural frequency
values (see Fig. 11). It should also be said that the calculated mode shapes
obtained by the proposed isogeometric FE-BE method compare perfectly well
to the mode shapes obtained by ANSYS and experiments.

Furthermore, the calculated generalized added mass values are presented for

33



Experiment — 111.10 Hz FEM -109.50 Hz IGABEM - 108.15 Hz Experiment — 114.00 Hz FEM - 111.40 Hz IGABEM - 110.03 Hz

_Q

(a) 1st Wet Mode (b) 2nd Wet Mode

Experiment — 159.20 Hz FEM - 158.70 Hz IGABEM - 157.72 Hz Experiment — 164.90 Hz FEM - 159.90 Hz IGABEM - 164.22 Hz

(¢) 3rd Wet Mode d) 4th Wet Mode

Experiment — 228.40 Hz FEM -235.40 Hz IGABEM - 229.10 Hz Experiment — 230.90 Hz FEM -238.90 Hz IGABEM - 231.69 Hz

POV RU

(e) 5th Wet Mode (f) 6th Wet Mode

Figure 9: Calculated and measured wet mode shapes for filling ratio d/2r = 0.50
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Experiment — 99.70 Hz FEM - 102.88 Hz IGABEM -100.39 Hz Experiment — 104.20 Hz FEM -105.83 Hz IGABEM -102.01 Hz

o

(a) 1st Wet Mode (b) 2nd Wet Mode
Experiment — 137.10 Hz FEM - 138.46 Hz IGABEM - 135.93 Hz Experiment — 143.00 Hz FEM - 13534 Hz IGABEM - 138.71 Hz
(c) 3rd Wet Mode (d) 4th Wet Mode

Experiment — 222.10 Hz FEM - 225.62 Hz IGABEM -215.15 Hz Experiment — 224.90 Hz FEM -227.76 Hz IGABEM -217.76 Hz

QU TV

(e) 5th Wet Mode (f) 6th Wet Mode

Figure 10: Calculated and measured wet mode shapes for filling ratio d/2r = 0.75
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Experiment — 93.70 Hz FEM - 972 Hz IGABEM - 94.72 Hz Experiment — 94.60 Hz FEM - 97.2 Hz IGABEM - 94.95 Hz

(a) 1st Wet Mode (b) 2nd Wet Mode

Experiment — 105.50 Hz FEM -108.2 Hz IGABEM - 105.56 Hz Experiment — 106.50 Hz FEM -108.2 Hz IGABEM -106.18 Hz
(¢) 3rd Wet Mode (d) 4th Wet Mode

Experiment — 195.20 Hz FEM -201.2 Hz IGABEM - 197.82 Hz Experiment — 196.40 Hz FEM -201.2 Hz IGABEM 199 53 Hz
(e) 5th Wet Mode (f) 6th Wet Mode

Figure 11: Calculated and measured wet mode shapes for filling ratio d/2r = 1.00

36



"(apoN orremAg
'S ‘OpoJN StewWASY ) 00'T PU® GL°0°0S°0 ‘Ge 0 = /P SOMel Sul[[y 0] [[9YS [EILPUIAD JO (LW 83) SIUSIOYIO0D SSBW POPPE PozI[BIdUSY) F S[qEL,

00T = g/p (P) GL'0 = 4g/p (9)

€€ 000 000 000 000 00°0 000 00°0 00°0 00°0 00°0 00°0|(S)2T 96°0 T0°0- 000 000 00°0 00°0 9%°0- T0°0- 6T°0- T0°0 60°0- ¥0°0-|(S)2T
000 ¥€'€ 000 000 00°0 00°0 00°0 000 000 00°0 00°0 00°0|(V)IT 10°0- S6°0 00°0 00°0 00°0 00°0 00°0 ¥S°0- 00°0 €g'0- 000 9T°0-{(V)IT
000 000 ¥8T 000 0000 00°0 00°0 000 00°0 00°0 00°0 00°0|(S)OT 000 000 TIg'T 00°0 29°0- T0°0- 00°0 000 00°0 00°0 00°0 00°0|(S)0T
000 00°0 000 68T 000 00°0 00°0 000 00°0 00°0 00°0 000 (V)6 00°0 000 0070 6T'T TO'0 ¥9°0- 00°0 000 00°0 00°0 000 00°0|(V)6
000 000 000 000 ¥€T 000 00°0 000 000 000 00°0 00°0| (S)8 00°0 000 89°0- T0°0 OF'T 000 00°0 00°0 00°0 00°0 000 00°0| (S)8
000 00°0 000 00°0 000 8€' 000 000 000 00°0 00°0 000 (V)L 00'0 000 TO'0- ¥9°0- 00°0 28T 00°0 00°0 00°0 00°0 00°0 00°0| (V)L
000 00°0 00°0 00°0 00°0 00°0 €8T 00°0 00°0 00°0 00°0 00°0| (S)9 9%'0- 00°0 00°0 00°0 000 000 TIZ'T 00°0 $9°0- 00°0 T€'0 00°0| (S)9
000 00°0 000 000 00°0 00°0 000 88T 00°0 000 00°0 000 (V)S 10°0- ¥¢°0- 00°0 00°0 00°0 00°0 00°0 8T'T 00°0 €9°0- 0000 LT°0| (V)¢
000 00°0 000 000 000 00°0 000 00°0 8€°¢ 00°0 00°0 00°0| (S)¥ 61°0- 000 00°0 00°0 000 00°0 99°0- 00°0 ¥¥'T 000 68°0 00°0| (S)¥
000 00°0 000 00°0 000 00°0 000 000 000 &¥'E 00°0 000 (V)€ 10°0 €20~ 000 00°0 00°0 00°0 00°0 &9°0- 00°0 65T 00°0 08°0|(V)E
000 00°0 0070 00°0 00°0 00°0 00°0 000 000 000 ¥I'€ 000 (9)T 60°0- 000 000 00°0 00°0 00°0 I€0 000 06°0 000 96'T 00°0| (S)T
000 00°0 0070 000 00°0 00°0 000 000 000 00°0 000 91°€| (V)T ¥0°0- 9T°0- 00°0 00°0 00°0 00°0 00°0 LT°0 00°0 08°0 0070 €8°1|(V)T

(8)z1 (W11 ()01 (V)6 ()8 (V)L (9)9 (W)g (8)¥ (V) (s)z (V)T]|°oPoIN  (8)zT (W)TT ()0t (V)6 (S)8 (V)L (8)9 (V)g (8)¥ (V)e (S)z (V)1|ePon

090 = +¢/p (q) gg'0 = 4g/p (®)
L0 T0°'0 000 00°0 00°0 000 IS0 TO'0 000 100 20 €0°0|(S)ZT 9¢'0 00°'0 000 000 000 000 9€°0 T0°0-2Z0- T0°0 T0'0 10°0|(S)TT
10°0 69°0 00°0 00°0 00°0 000 00°0 ¥S'0 000 OT'0- 00°0 ¥2 0|(V)IT 00°0 TIE€0 0000 0000 00°0 00°0 00°0 8Z°0 00°0 8T°0- 00°0 80°0-|(V)IT
00°0 00°0 I8°0 00°0 99°0- T0°0- 00°0 00°0 00°0 00°0 00°0 00°0|(S)0T 00°0 000 S¥'0 00°0 6£°0-T10°0- 00°0 00°0 00°0 00°0 00°0 000 |(S)0T

000 00°0 00°0 ¥6°0 TO'0 69°0- 00°0 00°0 000 00°0 000 00°0| (V)6 00°0 000 00°0 ZF'0 00°0 L¥0- 00°0 000 00°0 000 00°0 00°0| (V)6
000 000 99°0- 100 LT'T 00°0 00°0 00°0 000 00°0 000 000 (S)8 00°0 000 6£°0- 00°0 8%°0 000 00°0 00°0 00°0 00°0 000 00°0| (S)8
000 000 TO°0- 69°0- 00°0 660 00°0 00°0 000 00°0 000 000 (V)L 00°0 000 TO'0- 870~ 00°0 290 00°0 000 00°0 00°0 000 000 | (V)L
160 00°0 000 00°0 000 00°0 IS0 00°0 $9°0- 00°0 LT°0- 00°0| (S)9 9¢°0 00°0 00°0 000 00°0 000 L¥°0 000 0F°0- 00°0 020~ 00°0| (S)9

100 %S0 000 00°0 000 00°0 000 €6°0 00°0 L9°0- 00°0 00°0| (V)S 10°0- 82°0 00°0 000 00°0 000 00°0 €0 00°0 6%°0- 00°0 T¥'0-| (V)¢
000 000 000 000 00°0 00°0 $9°0- 00°0 61'T 00°0 98°0 00°0| (S)¥ 2g'0- 00°0 00°0 00°0 000 00°0 T¥'0- 00°0 ¥S'0 00°0 95°0 00°0| (S)¥

10°0 0T°0- 00°0 00°0 00°0 00°0 00°0 L9°0- 00°0 €O'T 0070 ¢80| (V)€ 10°0 61°0- 00°0 00°0 00°0 00°0 00°0 6%°0- 00°0 L0 000 69°0|(V)e
2g'0 000 00°0 000 000 000 LT°0- 00°0 98°0 00°0 2Z'T 00°0| (S)e 100 00°0 00°0 00°0 00°0 00°0 1g°0- 000 LS'0 00°0 ¥6°0 00°0| (S)e
€0°0 %30 00°0 00°0 00°0 00°0 000 00°0 000 $80 000 LS T| (V)T 10°0 60°0- 000 00°0 000 00°0 00°0 Z¥0- 00°0 69°0 00°0 00| (V)T

()21 (V)TT (8)01 (V)6 (S)8 (V)2 ()9 (V) (9)% (V)e (S)T (V)I[oPon (8)zt (W11 ()01 (V)6 (8)8 (V)L (8)9 (V)& (8)¥ (W)e (8)z (V)1|oPoIN

37



375

380

385

390

395

400

the first 12 modes (first 6 mode pairs) in Table 4 for four different filling ratios,
d/2r = 0.25, 0.50, 0.75 and 1.00, respectively. These values correspond to a gen-
eralized structural mass of 1 kgm?. As expected, the generalized added mass
values increase with increasing filling ratios, due to increased wetted surface
arca. It can be observed that the diagonal terms of the generalized added mass
matrices are significantly higher compared to the off-diagonal terms. Here, the
off-diagonal terms represent the hydrodynamic coupling between the dry modes.
It is also clear that hydrodynamic coupling between symmetric and antisym-
metric modes is negligibly small. Importantly, as can be seen from Table 4d,
when the cylindrical shell is fully-filled, hydrodynamic coupling between modes
is negligibly small. Therefore, hydrodynamic coupling becomes more important
for partially-filled cases (see Tables 4a, 4b, and 4c). Ergin and Temarel [38]
reported that some symmetric and antisymmetric modes may have coupling
as mode shapes obtained by FEM analysis is not perfectly symmetric or anti-
symmetric with respect to the plane of symmetry of the fluid-coupled system.
In other words, the plane of symmetry of both the fluid-free and fluid-coupled
analyses must be the same. However, as the cylindrical shell in vacuo has infi-
nite number of symmetry planes when the whole cylinder is considered in the
dry analysis, it is not guaranteed that the FEM results are symmetrical about
the symmetry plane of the fluid-coupled system. One must assign a symme-
try plane to the fluid-free system (dry structure), which is quite challenging,
and this requires rotation of mode shapes accordingly to the symmetry plane
assigned. In this study, this issue is eliminated by following the previously men-
tioned IGAFEM procedure. In the dry analysis, the problem was solved by
modeling the cylindrical shell as a half cylinder, and therefore, the dry mode
shapes were obtained perfectly symmetric or antisymmetric with respect to the

plane of symmetry of the fluid-filled system.
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5. Conclusions

In this study, the hydroelastic vibration characteristics (i.e. natural fre-
quencies and associated mode shapes) of a partially filled cylindrical shell were
investigated by an isogeometric FE-BE method. In order to show the appli-
cability of the proposed method, the numerical predictions are compared and
validated with those obtained from the experiments.

In the dry analysis, the in-vacuo dynamic characteristics of the cylindrical
shell were obtained by the isogeometric finite element method (IGAFEM) based
on a linear Kirchhoff-Love shell formulation. The dry natural frequencies and
associated mode shapes were obtained with a discretization of 2nd-order NURBS
patch with 4608 elements (48 elements around circumference and 96 elements
along the shell). From the results presented (see Table 1 and Fig. 7), the
IGAFEM calculations show a good agreement with standard FEM results and
experimental measurements. Importantly, as explained in Section 4 in detail,
to have the same plane of symmetry both in the fluid-free and fluid-coupled
systems, the dynamic characteristics of the cylindrical shell was obtained by
modeling the structure as a half cylinder in IGAFEM simulations.

In the wet analysis, 48 in-vacuo modes (24 symmetric and 24 antisymmet-
ric) were included to investigate the wet dynamic characteristics of the cylin-
drical shell for four different filling ratios. For the hydrodynamic calculations,
the converged wet dynamic characteristics were obtained with discretizations
of 720, 1080, 1440, and 2160 hydrodynamic panels, respectively, for filling ra-
tios d/2r = 0.25,0.50,0.75, and 1.00 (see Table 2). As can be seen from the
presented results (see Table 3), numerical calculations (both FEM and IGA-
BEM) and experimental measurements are in an excellent agreement with the
differences being in an acceptable range. The calculated wet natural frequencies
significantly decrease with increasing filling ratios. In other words, the gener-
alized added mass terms increase as a result of increase in wetted surface area,
causing decrease in wet natural frequencies. In addition, it is observed that di-

agonal generalized added mass terms are considerably higher than off-diagonal
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ones, and the hydrodynamic coupling between symmetric and antisymmetric
modes is negligibly small (see Table 4).

The present work has demonstrated the versatility of the proposed iso-
geometric FE-BE framework for the hydroelastic vibration analysis of high-
frequency structures. In a further study, in order to account the free surface
effects, extension of the existing code is currently under development to imple-
ment isogeometric FE-BE method in conjunction with the free surface Green’s

function.
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