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Abstract

The hydroelastic vibration analysis of clamped rectangular plates both vertically

and horizontally submerged in fluid is studied by isogeometric FE/BE approach

in this paper. By adopting the linear hydroelasticity theory, the computational

procedure of the fluid-structure interaction problem is divided into two parts.

In the first part, dynamic analysis of the structure in vacuo conditions and in

the absence of external forces is carried out by NURBS-based isogeometric fi-

nite element method (IGAFEM). Then, in the second part, it is assumed that

fluid is inviscid, incompressible and irrotational, and fluid forces directly cor-

respond to inertial effects of the structure. Thus, displacements of the elastic

structure due to modal vibrations are in same phase with the acceleration of the

fluid particles, and fluid forces on the freely vibrating structure are obtained by

NURBS-based isogeometric boundary element method (IGABEM). In order to

verify the accuracy of the present methodology, a convergence study is carried

out with the available numerical and experimental data providing the general-

ized added mass coefficients, and the effects of the thickness and aspect ratio are

also investigated. It is found that the numerical results are in good agreement
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with the previous results, thus validating the proposed approach.

Keywords: isogeometric analysis, hydroelasticity, finite element method,

boundary element method
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1. Introduction

The dynamic behavior of structures in contact with fluid must be accu-

rately determined for performing its task securely while it is being used within

a specific purpose. A velocity potential is induced in the fluid medium due to

transmission of structural vibrations into the fluid, and this leads to an increase5

in the kinetic energy of the system. This phenomenon results in the dynamic

characteristics of the structure in contact with fluid differing significantly from

those exposed only to air. It is therefore very important to have an accurate

understanding of the dynamic interaction effects of the coupled fluid-structure

system in order to design engineering structures. As a structural component,10

curved and flat plates are commonly used in many engineering fields such as

aviation, marine engineering, nuclear power plants, and the petrochemical in-

dustry. In shipbuilding and offshore engineering, plates are typically used as

side plating of hulls, protuberances, rudders, and tank bulkheads.

In the past half century, various studies have been conducted to compute15

the hydroelastic vibration characteristics of plates. The effects of fluid loading

on vibrating rectangular plates were first studied by Lindholm et al. (1965). In

their study, hydroelastic vibration characteristics of both partially and fully sub-

merged rectangular plates were investigated via experiments. Meyerhoff (1970)

modeled fluid motions by dipole singularities, and then calculated added mass20

coefficients for thin rectangular plates. Implementation of the finite element

method for hydroelastic vibration problems has been initiated by Zienkiewicz

and Newton (1969), Marcus (1978) and Muthuveerappan et al. (1979), by mod-

eling the surrounding fluid with finite elements to solve the pressure field around

the structure. Fu and Price (1987) applied the linear hydroelasticity theory by25
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using the boundary element method to predict the dynamic characteristics of

both vertical and horizontal surface-piercing plates including the effects of free

surface waves. Kwak (1996) applied the Rayleigh-Ritz method in conjunction

with the boundary element method to obtain non-dimensionalized added vir-

tual mass incremental (NAVMI) factor for simply supported and clamped plates30

considering free surface and rigid wall conditions. Liang et al. (2001) utilized

the empirical added mass formulation to calculate the hydrodynamic vibration

characteristics of submerged cantilever plates. The boundary element method

in conjunction with the image method to perform the infinite frequency limit

on the free surface was first applied by Ergin and Uğurlu (2003). Kerboua et al.35

(2008) adopted a finite element method framework in conjunction with Sander’s

shell theory to analyze plate structures. In their study, both plates floating on

a free surface and submerged in fluid under different boundary conditions are

considered, and it is observed that the hybrid approach combining Sander’s shell

theory and finite element technique is more precise than conventional finite ele-40

ment methodologies. Hashemi et al. (2012, 2010) studied relatively thick plates

by employing Mindlin plate theory with the Rayleigh-Ritz method. In Hashemi

et al. (2010), rectangular plates resting on a Pasternak foundation were studied,

and the results were compared with the numerical results presented by Zhou and

Cheung (2000) and Uğurlu et al. (2008).45

Besides the aforementioned rectangular plates, plates reinforced by deep or

slender stiffeners are widely used in ship and submarine structures to increase

stiffness and avoid resonant vibrations. Li et al. (2011) studied hydroelastic

vibrations of stiffened bottom plates of fluid tanks through analytical procedures

and noticed the phenomenon of “mode reversal” that implies the reversal of the50

first two mode shapes of stiffened plates in contact with air and water. Cho et al.

(2014) studied vibration characteristics of vertical stiffened plates by combining

strain and kinetic energy expressions of stiffeners and plate. In their study, the

potential flow theory assumptions were adopted ignoring the free surface waves,

and the displacement components of the stiffened plate were obtained by using55

Timoshenko beam functions in conjunction with the Mindlin plate theory.
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In recent studies, several authors have taken an interest in hydroelastic vibra-

tion characteristics of composite plates and active vibration control of structures

under fluid-structure interaction, as well as effects of compressibility of the fluid

on the dynamic characteristics of the plates. Kwak and Yang (2013) studied60

the flexural vibrations of cantilever plate partially submerged into fluid by uti-

lizing elliptical coordinate system to define the mathematical expression of the

dynamically coupled system, and the added virtual mass matrix is combined

with the dynamic model of the plate obtained by the Rayleigh-Ritz approach.

In the same manner, Kwak and Yang (2015) studied active vibration control of65

rectangular plates either partially or fully submerged in fluid. In their study, an

added virtual mass matrix obtained by using the authors’ previous work (Kwak

and Yang, 2013) was combined with the dynamic model of the plate. It was

also observed a high degree of consistency between theoretical and experimen-

tal results, and sufficient damping of the vibrations of the rectangular plate are70

obtained both in air and water. Canales and Mantari (2017) presented an ana-

lytical solution for hydroelastic vibration analysis of thick composite plates by

adopting combined higher order shear deformation theory. Liao and Ma (2016)

studied the effects of compressibility of the surrounding fluid on the hydroelastic

vibration characteristics of the structures.75

Although Computer Aided Engineering (CAE) and Computer Aided Design

(CAD) have had spectacular progress in the last decades, drawbacks in terms

of geometry and data transfer, especially for complex structures, were major

bottlenecks until recently. In order to create an analysis-suitable geometry for

the use of discretization-based numerical methods, mesh generation is tedious80

and time-consuming, especially in regions with high curvature which require

mesh refinement. The main idea underlying the isogeometric analysis (IGA) is

to provide a straightforward and non-adjusting interconnection between CAD

and CAE tools that enables reduction in major time-consuming engineering pro-

cesses such as mesh generation and geometry construction, which span 80% of85

the overall analysis time (Cottrell et al., 2009). The principles of IGA were first

introduced by Hughes et al. (2005) to perform numerical computations with
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desirable accuracy even with low mesh density, using the same basis functions

both in geometry and analysis with low computational cost. The detailed math-

ematical theory of IGA was presented by Bazilevs et al. (2006b). In pursuit of90

these seminal papers, IGA was extensively applied in a wide range of fields such

as biomedical engineering (Zhang et al., 2007), fracture mechanics (De Luycker

et al., 2011), contact mechanics (Temizer et al., 2011), fluid-structure interaction

(Bazilevs et al., 2006a), elastostatics (Simpson et al., 2012), shape optimization

(Yoon and Cho, 2016) and structural vibration (Shojaee et al., 2012). Thai et al.95

(2012) and Luu et al. (2015) studied the vibration problems of laminated plates

and curved beams, respectively. Wang et al. (2015) proposed a novel approach

by using isogeometric higher order mass matrices possessing 4th- and 6th-order

accuracies in the eigenvalue problems. Zhao et al. (2017) applied a multi-patch

isogeometric finite element method for free vibration analysis of thick plates. As100

for the developments in hydrodynamics, Politis et al. (2009) extended the IGA

concept to boundary element method to solve 2D exterior Laplace problems.

Belibassakis et al. (2013) extended the previous analysis of Politis et al. (2009)

to solve the wavemaking resistance problem of surface-piercing 3D geometries.

Takahashi and Matsumoto (2012) implicated the fast multiple method (FMM)105

into the isogeometric boundary element method to deal with 2D large-scale

Laplace problems. Recently, Gong and Dong (2017) extended the standard

3D isogeometric boundary element method by employing an adaptive integra-

tion for potential problems and indicated that the effectiveness of the adaptive

method appears where the lengths of adjacent panels are considerably different.110

The hydroelastic vibration analysis of cantilever rectangular plates both ver-

tically and horizontally in contact with fluid is studied with different submer-

gence ratios in this paper. According to the authors’ best knowledge, this is

the first study to investigate hydroelastic vibration characteristics of plates by

employing the versatile IGA concept into both finite element-based in-vacuo115

structural analysis and boundary element-based potential flow analysis. In ad-

dition, it can be emphasized as a result of deep literature review by the authors

that there are not any other studies employing the infinite frequency free sur-
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face condition by using the image method in conjunction with the isogeometric

boundary element method. In this study, fluid-structure interaction effects are120

obtained by a NURBS-based isogeometric boundary element method. The zero

velocity potential on the free surface is applied by using the image method with

the assumption that the structure vibrates in the high frequency region. Be-

sides, it is also assumed that the fluid is ideal, and fluid forces are in phase with

inertial effects of the surrounding fluid, in other words, the fluid pressure on the125

wetted surface is associated with the structural acceleration which enables the

application of hydroelasticity theory. In this theory, the hydroelastic vibration

problem can be divided into two sub-problems, called as “in-vacuo” and “wet”

analyses, respectively. The in-vacuo analysis involves determining the dynamic

characteristics of the structure by solving the equations of motion in the ab-130

sence of structural damping and external force. In this study, the Kirchhoff

plate theory is applied and material is assumed to be isotropic, and the struc-

tural mass and stiffness matrices are formed by employing the isogeometric finite

element method (IGAFEM). In the wet analysis, in-vacuo structural displace-

ments obtained by using IGAFEM directly constitute the boundary conditions135

of the potential problem, and the discretized integral equation of Laplace prob-

lem is solved by the isogeometric boundary element method (IGABEM). Fluid-

structure interaction effects are represented by the generalized hydrodynamic

added mass coefficients. In this study, the computational domain is defined

by non-uniform rational b-splines (NURBS) and the isoparametric approach is140

adopted to obtain source strengths which are also represented by NURBS basis

functions. The total mass matrix is obtained by merging the structural mass

matrix with the added-mass matrix and the eigenvalue problem is solved for

partially or totally submerged cantilever plates.

The organization of the rest of the paper is as follows: a brief review of145

non-uniform rational b-splines is given in Section 2, then Section 3 details the

numerical approach to calculate the hydroelastic vibration characteristics of

plates partially or fully submerged into fluid in the context of the isogeometric

approach. The numerical implementation of the proposed method is detailed in
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Section 4. Finally, in Section 5, cantilever rectangular plates both submerged in150

vertical and horizontal positions are analyzed with different submergence ratios,

and the predicted hydroelastic vibration characteristics are compared with the

available experimental and numerical results.

2. Non Uniform Rational B-Splines (NURBS)

Because of its ability to represent geometries more accurately, NURBS be-155

comes a standard tool in CAD systems to design complex objects. Since B-

Splines are the progenitors of the NURBS, definition of the B-Splines is an

essential starting point on the way to comprehend the NURBS, which is the key

structure to implement a IGA framework. In this section, formulation of the

NURBS is briefly explained following Piegl and Tiller (1995), Rogers (2000),160

and Hughes et al. (2005).

In order to create a NURBS patch, three parameters - knot vector(s), control

points and weights - have to be defined. A knot vector is the non-decreasing

coordinates of the parametric domain, and it is defined in each parametric di-

rection of the NURBS patch. Also, it defines the partition of the parametric

domain in the corresponding direction in the form of

Ξ = [ξ1, ξ2, . . . , ξn+p+1] ξi ∈ R, (1)

where i is the knot index, i = 1, 2, ..., n + p + 1, p is the polynomial order,

and n is the number of basis functions which comprise the B-Spline. Control

points are defined as vector valued coefficients of the basis functions in order to

control the shape of the patch, and weights are assigned to reflect how much

the particular control point affects the curve. A pth-order 1-D NURBS patch

(curve), therefore, may be expressed as follows

C(ξ) =

n∑
i=1

Rp
i (ξ)P i, (2)

where Rp
i (ξ) is the pth-order rational basis function defined by

Rp
i (ξ) =

Ni,p(ξ)wi∑n
ĵ=1Nĵ,p(ξ)wĵ

, (3)
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P i is the coordinates of the ith control point, wi is the weight of the ith control

point, and Ni,p is the pth-order B-spline basis function given as follows for p = 0,

Ni,0(ξ) =

1 if ξi ≤ ξ ≤ ξi+1,

0 otherwise,

and for p = 1, 2, 3, ...,

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (4)
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Figure 1: NURBS curve with knot vector Ξ=[0, 0, 0, 0, 1
3

, 2
3

, 1, 1, 1, 1] and uniform weights

A 3rd-order NURBS curve and its B-spline basis functions are depicted in

Figs. 1 and 2, respectively.
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Likewise, NURBS surfaces are defined as follows

S(ξ, η) =

n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)P i,j , (5)
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where

Rp,q
i,j =

Ni,p(ξ)Mj,q(η)wi,j∑n
î=1

∑m
ĵ=1Nî,p(ξ)Mĵ,q(η)wî,ĵ

(6)

is the 2-D rational basis functions, P i,j is the control points (control net).

Here, Ni,p and Mj,q are pth and qth order b-spline basis functions defined with165

knot vectors Ξ = [ξ1, ξ2, . . . , ξn+p+1] and H = [η1, η2, . . . , ηm+q+1]. Also, n

and m are the number of basis functions in each parametric direction ξ and η,

respectively. In this study, all the spline and IGA connectivity algorithms have

been implemented following Piegl and Tiller (1995) and Cottrell et al. (2009).

3. Mathematical Model170

3.1. In-vacuo Analysis

In this part, we present the mathematical model of the in-vacuo analysis

which consists of the formulation of the free vibration analysis for thin plates. In

order to formulate the problem, we consider a plate on a right-handed Cartesian

coordinate system with the thickness t in z direction (Fig. 3).175

z y

x

Figure 3: Plate geometry

Based on the Kirchhoff plate theory, it is assumed that a line normal to the

midplane remains normal after the deformation, the normal stress σzz is negli-

gible, the thickness does not change during the deformation, and the points on

the mid-plane move only in the vertical direction. Therefore, the displacement

field is expressed as follows

u = −z ∂w
∂x

i− z ∂w
∂y

j + w k, (7)
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where w is the deflection in z direction, and it is the only independent variable

in the problem. Then, the infinitesimal strain tensor reads

εxx = ux,x = −z ∂
2w

∂2x
,

εyy = uy,y = −z ∂
2w

∂2y
,

εxy =
1

2
(ux,y + uy,x) = −z ∂

2w

∂x∂y
,

εxz = εyz = εzz = 0.

The displacement field and the infinitesimal strain tensor are inserted into the

weak form of the free vibration problem,∫
Ω

δε · σ(u) dΩ +

∫
Ω

ρ δu · ü dΩ = 0, (8)

and by substituting suitable approximations with rational basis functions,

w =

n∑
i=1

m∑
j=1

Rp,q
i,j wi,j , δw =

n∑
i=1

m∑
j=1

Rp,q
i,j δwi,j , (9)

and integrating over the thickness (in z direction), the following system of equa-

tions is obtained (by imposing the condition is valid for every δw)

[M] {ẅ}+ [K] {w} = 0, (10)

where [M] and [K] are the global mass and stiffness matrices, respectively. In

IGAFEM procedure, these matrices are assembled calculating the local stiffness

matrix,

[Ke] =

∫
Ωe

[Be]
T

[D] [Be] dΩe (11)

where

[Be] =
[
Be

1,1 Be
2,1 ... Be

p+1,q+1

]
, Be

i,j =


∂2Re

i,j

∂2x
∂2Re

i,j

∂2y
∂2Re

i,j

∂x∂y

 , (12)
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and the local mass matrix,

[Me] =

∫
Ωe

(
ρt [Ne

1]
T

[Ne
1] + ρ

t3

12
[Ne

2]
T

[Ne
2]

)
dΩe (13)

where

[Ne
1] =

[
Re

1,1 Re
2,1 ... Re

p+1,q+1

]
(14)

and

[Ne
2] =

∂Re
1,1

∂x

∂Re
2,1

∂x ...
∂Re

p+1,q+1

∂x
∂Re

1,1

∂y

∂Re
2,1

∂y ...
∂Re

p+1,q+1

∂y

 , (15)

over the each finite element, and Re
i,j represents the non-zero rational basis func-

tions within the corresponding element, Ωe. Also, for linear isotropic materials,

the elasticity tensor takes the following matrix form

[D] =
Et3

12(1− ν2)


1 ν 0

ν 1 0

0 0 1− ν

 , (16)

where E and ν are the Young’s modulus and the Poisson’s ratio, respectively.

By solving the formulated eigenvalue problem Eq. (10), the in-vacuo natural

frequencies and corresponding mode shapes are obtained to be used in the wet

analysis.

3.2. Wet Analysis180

When the fluid is assumed ideal, i.e. inviscid and incompressible, and its

motion is irrotational, there exist a fluid velocity vector due to structural vi-

brations, v, which defined as the gradient of the velocity potential function Φ

as

v(x, y, z, t) = ∇Φ(x, y, z, t), (17)

where

Φ(x, y, z, t) =

M∑
j=1

Re
[
iωφj(x, y, z)e

iωt
]
, (18)
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and φj satisfies the Laplace’s equation, ∇2φ(x, y, z) = 0, throughout the fluid

domain. On the wetted surface of the structure, the kinematic boundary condi-

tion is appropriate. This condition implies that the surface normal component

of the fluid velocity must be equal to the normal velocity of the boundary surface

due to the modal vibrations and it can be defined as

∂φr
∂n

= −ur · n, (19)

where ur corresponds to the median surface displacement vector due to rth

modal vibration of the structure that is obtained by IGAFEM procedure.

In this study, it is assumed that the structure oscillates at relatively high

frequencies, so that the effect of free surface waves due to the modal vibrations of

the structure can be neglected. In this way, the free surface boundary condition

can be approximated by the infinite frequency limit condition (Ergin and Uğurlu,

2003),

φr = 0. (20)

In order to satisfy the condition defined above, the method of images is adopted.

The implementation of this method is based on satisfying the zero potential free

surface condition by an image body, symmetrically disposed on the opposite side185

of the free surface. Thus, the problem is reduced to a classical Neumann’s case.

3.2.1. Numerical evaluation of perturbation potential φ

The boundary integral equation for perturbation potential φ can be written

as follows

c φ(P ) =

∫
Sw

q(Q)φ∗(P,Q) dΓ(Q)−
∫
Sw

φ(Q) q∗(P,Q) dΓ(Q) (21)

where Q and P define the field and evaluation points on the wetted surface,

respectively. q(Q) and Sw define the flux and total fluid-structure interaction

area of the structure, respectively. φ∗(P,Q) which is a fundamental solution

of the Laplace’s equation everywhere except the evaluation point, defines a
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potential at the point Q due to unit point source at P and can be defined as

φ∗(P,Q) =
1

4πr
, (22)

for the three-dimensional case where

r =

√
(xQ − xP )

2
+ (yQ − yP )

2
+ (zQ − zP )

2
(23)

is the distance between the source and field points. Moreover, q∗(P,Q) is the

surface normal derivative of the fundamental solution, φ∗, and its components

in the cartesian coordinate system are expressed as follows

q∗x =
−r,x
4πr2

, q∗y =
−r,y
4πr2

, q∗z =
−r,z
4πr2

(24)

where

r,x =
xQ − xP

r
, r,y =

yQ − yP
r

, r,z =
zQ − zP

r
. (25)

Here, Eq. (21) is the Fredholm integral equation of the second kind and it must

be satisfied over the wetted and imaginary surfaces of the body. Eq. (21) can

be numerically solved by discretizing the wetted and imaginary surfaces of the

structure over which the velocity potential and flux is approximated by control

point values and the corresponding non-zero rational basis functions at each

element as follows

φe =

p+1∑
i=1

q+1∑
j=1

Re
i,jφ

e
i,j , (26)

qe =

p+1∑
i=1

q+1∑
j=1

Re
i,jq

e
i,j . (27)

Then, by substituting Eqs. (26) and (27) into Eq. (21) and applying the kine-

matic boundary condition, the surface integral equation can be written in dis-
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cretized form for each principal mode as follows

ckφ
(r)
k +

np∑
e=1

p+1∑
i=1

q+1∑
j=1

∫
Se
w+i

Re
i,j φ

e(r)

i,j q∗(P,Q) dΓ(Q)

=

np∑
e=1

p+1∑
i=1

q+1∑
j=1

(ur,ij · nr,ij)

∫
Se
w+i

Re
i,jφ

∗(P,Q) dΓ(Q), k = 1, ..., ncp,

(28)

where np is the total number of hydrodynamic panels (boundary elements), ncp

denotes the total number of control points over the discretized surface. Se
w+i

represents the surface of the eth hydrodynamic panel on the wetted and imag-190

inary surface of the structure. ur,ij and nr,ij denote the modal displacement

vector and the surface normal at corresponding control points, respectively. The

superscript r figures the sequence of the considered principal modes.

3.2.2. Generalized fluid-structure interaction forces

The kth component of the generalized fluid-interaction forces due to rth

modal vibration of the structure can be expressed in terms of the pressure

acting on the wetted surface of the structure as follows

Z̄rk =

∫
Sw

n · ur P̄k dΓ. (29)

where P̄k is the fluid pressure acting on the wetted surface and it can be ex-

pressed by neglecting the second order terms in the Bernoulli’s equation

P̄k = −ρ∂Φk

∂t
. (30)

By substituting Eq. (18) into the above equation, one obtains the fluid pressure

acting on the wetted surface of the elastic structure in terms of velocity potential

P̄k = ω2ρΦk. (31)

By using the harmonic pressure force given Eq. (31) into the Eq. (29), the fluid

force acting on the wet surface of the structure is expressed in terms of the
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velocity potential

Z̄rk =

∫
Sw

n · ur

(
ω2ρΦk

)
dΓ, (32)

and the generalized added mass term, Ark, can be expressed as follows

Ark =
ρ

ω2

∫
Sw

n · ur ω
2Φk dΓ. (33)

It is clear that the generalized added mass matrix will be in M -by-M dimension,

representing the maximum number of vibration modes considered in the fluid-

structure interaction problem. Finally, the discretized form of the generalized

added mass term can be rewritten as follows

Ark =
ρ

ω2

np∑
e=1

p+1∑
i=1

q+1∑
j=1

∫
Se
w

Re
i,j φ

e(r)

s,ij (ur,ij · nr,ij) dΓ. (34)

Therefore, the generalized fluid-structure interaction force, Zrk, is given as

Zrk = Arkω
2pre

iωt = −Arkpr. (35)

3.2.3. Calculation of wet frequencies and mode shapes195

For the structure vibrates nearly the free surface or in case where it is par-

tially submerged, the existence of the free surface is significantly alter the fluid

effects (added mass and damping) on the structure in the low frequency region.

As the frequency increases, the generalized added mass terms tend to decrease

and converge to a specific value, while the hydrodynamic damping and stiffness

tend to be zero. For the plate considered in this study, it has been observed

that the characteristic frequencies obtained from the in-vacuo analysis are in

relatively high-frequency region, hence in this case, the generalized added mass

terms are independent from the frequency. Therefore, the generalized equation

of motion for the fluid-structure interaction system can be expressed as follows[
−ω2 (a + A) + c

]
= 0 (36)

where a and c denote the generalized structural mass and stiffness matrices,

respectively. The M -by-M A matrix is formed by the infinite frequency gener-

alized added-mass terms.
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By solving the eigenvalue problem expressed in Eq. (36), one can obtain

the wet frequencies and associated wet mode shapes of the structure in contact

with fluid. For each eigenfrequency, ωr, there is a corresponding eigenvector

p0r = [pr1, pr2, ..., prM ]. The corresponding wet mode shapes for a structure in

contact with fluid can be written as

qr(x, y, z) = {ūr, v̄r, w̄r} =

M∑
j=1

uj(x, y, z)prj (37)

where M denotes the number of modes considered in the analysis and qr(x, y, z)

represents the shape of the each wet mode in modal space. It should be noted200

that the fluid-structure interaction forces associated with the inertial effect of

the fluid may not have the same spatial distribution as those of the in-vacuo

modal forms. As a consequence, this situation points hydrodynamic coupling

between the in-vacuo modes. This coupling effect is introduced into Eq. (36)

through the generalized added-mass matrix A.205

4. IGAFEM/IGABEM Implementation

In order to calculate the hydroelastic vibration characteristics of plates par-

tially or fully immersed into fluid, the flowchart given in Fig. 4 is followed for

both in-vacuo and wet analyses in the context of isogemetric approach. In our

numerical framework, the geometry is first created, and then following the sim-210

ple CAD - FEM integration given by Yildizdag (2014), IGA input files which

essentially include the geometry data are generated and read by main IGA codes.

Then, in-vacuo dynamic characteristics (in-vacuo natural frequencies and mode

shapes) of the plate is obtained by solving Eq. (10) as formulated in Section 3.

Next, in order to calculate the generalized added-mass terms, the wet analy-215

sis is conducted by solving IGABEM formulation in conjuction with the image

method as explained in Section 3, and the wet natural frequencies and mode

shapes are obtained by solving the eigenvalue problem given in Eq. (36).
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CAD Model
In-Vacuo Analysis

(IGAFEM - 2D Model)

Wet Analysis Wet Frequencies

and Mode Shapes

In-Vacuo Frequencies

(IGABEM - 3D Model) and Mode ShapesAdded-Mass Terms

Generalized

Figure 4: Flowchart for calculating hydroelastic vibration characteristics

Importantly, it must be noticed that different computational domains are

used for in-vacuo and wet analyses (see Fig. 5). In-vacuo analysis requires a220

2-D mesh (single NURBS patch) to solve the free vibration problem. However,

in the wet analysis, thickness of the plate has to be included as both sides of

the plate have fluid-structure interface. Thus, six NURBS patches are used to

represent the computational domain of the wetted area in the wet analysis.

2−D Model

3−D Model

Figure 5: Comparison of computational domains (IGAFEM vs. IGABEM)

In this study, as the plate geometry is represented by flat NURBS surfaces,225

control points lie on the NURBS surfaces, and their locations are assigned as

collocation points for IGABEM procedure. Alternatively, one can determine

Greville abscissae (for example, see Simpson et al. (2012)) to assign collocation

points if the control points do not lie on the surface of the domain.
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5. Numerical Results and Comparisons230

In this section, hydroelastic vibration characteristics of plates partially and

fully submerged into fluid is studied and calculations have been performed in

order to demonstrate the applicability of the aforementioned numerical proce-

dure.

5.1. Cantilever plate vertically in contact with fluid235

In the first numerical example, a cantilever plate experimentally studied

by Lindholm et al. (1965) was adopted to conduct the numerical study. The

plate has length a = 1.016 m, width b = 0.2032 m, thickness t = 4.84 mm

(see Fig. 6), and it is made of steel with the following material characteristics:

Young’s Modulus, E = 206.8 GPa, Poisson’s Ratio, ν = 0.3, and density, ρ =240

7830 kg/m3. Also, the fresh water is used as surrounding fluid with density, ρf

= 1000 kg/m3. In order to represent the computational domains as explained

in Section 4, 2nd-order NURBS patches were used throughout the numerical

simulations.

b

d

x

d

xa

y z

t

Figure 6: Geometry of the cantilever plate vertically in contact with fluid

5.1.1. In-vacuo analysis245

In-vacuo natural frequencies and mode shapes were obtained by solving the

free vibration problem formulated for the Kirchhoff plate theory (see Section
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3) via IGAFEM procedure. The computational domain was represented by a

2nd-order NURBS patch with 1024 elements (64 elements along the length and

16 elements along the width of the plate) taking into account the convergence250

study done by Ergin and Uğurlu (2003) for the same problem.

Mode Mode IGAFEM FEM Kwak and Yang (2013) Lindholm et al. (1965)

No Shape (1024 Elements) (1024 Elements)

1 S 3.94 3.95 3.98 3.84

2 S 24.69 24.72 24.91 24.20

3 A 39.37 39.13 39.55 39.10

4 S 69.32 69.33 69.84 68.10

5 A 120.44 119.71 121.05 121.00

6 S 136.39 136.28 137.35 -

Table 1: In-vacuo frequencies (Hz)

In order to verify the calculated results and have a better comparison, the

same problem was also solved by a standard finite element software, ANSYS R©.

The same mesh structure (1024 elements with 2nd-order finite elements) were

adopted in standard FEM solution. In Table 1, the calculated in-vacuo frequen-255

cies by IGAFEM are compared with FEM, semi-analytical, and experimental

results, for the first six modes. Also, corresponding in-vacuo mode shapes are

depicted in Fig. 7, for the first six modes. Here, the mode shapes can be di-

vided into two groups due their displacement characteristics: symmetric (S)

and antisymmetric (A). The displacement characteristics of a symmetric mode260

shape has symmetry about x-axis while an antisymmetric mode shape has the

opposite characteristics. As seen in Table 1, IGAFEM results show excellent

agreement with standard FEM, semi-analytical, and experimental results.

5.1.2. Wet analysis

A series of calculations were performed by using IGABEM procedure to265

test the convergence of the hydrodynamic properties of the cantilever plate.

The numerical tests were carried out separately for four different depth ratios,

namely d/a = 0.25, 0.5, 0.75, and 1. In the convergence study, each test case

was identified by the number of panels (boundary elements) along the width of
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(a) (b)

(c) (d)

(e) (f)

Figure 7: In-vacuo mode shapes of cantilever plate (IGAFEM results): (a) 1st mode (3.94

Hz); (b) 2nd mode (24.69 Hz); (c) 3rd mode (39.37 Hz); (d) 4th mode (69.32 Hz); (e) 5th

mode (120.44 Hz); (f) 6th mode (136.39 Hz)
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the plate, and the aspect ratio (a/b) of the panels on top and bottom surfaces270

of the plate was taken same in each test.

In the first group of calculations, NURBS patches with the total discretiza-

tion of 44, 84, 124, and 164 panels were used for the depth ratios d/a = 0.25,

0.5, 0.75, and 1, respectively. The number of elements along the width was 4

for each depth ratio while the number of elements along the length of the wet-275

ted plate was 4, 8, 12, and 16, respectively. After that number of panels was

increased to 90, 174, 258, and 342 for the second group of calculations, with

6 elements along the width and 6, 12, 18, and 24 elements along the length of

the wetted plate, respectively, for the depth ratios d/a = 0.25, 0.5, 0.75, and

1. Subsequently, the number of panels was increased to 152, 174, 440, and 584,280

and finally to 230, 450, 670, and 890 for d/a = 0.25, 0.5, 0.75, and 1, respec-

tively. The number of panels along the width was 8 for the third group, and 10

for the fourth group of calculations. Additionally, another convergence study

was carried out to determine the number of modes needed for the calculations.

As a result of this additional analysis, 12 in-vacuo modes were included in the285

calculations.

The predicted wet natural frequencies are presented in Table 7 for d/a = 0.25

and 0.5, and in Table 3 for d/a = 0.75 and 1. The differences between the last

two groups are reasonably small for all different depth ratios and therefore,

it may be said that the final group of calculations (230, 450, 670, and 890290

panels) adequately represents the hydroelastic vibration characteristics of the

cantilever plate. The calculated results are compared with the experimental

results in Table 4. The calculated wet frequencies show very good agreement

with the experimental data and it is observed that the differences are in the

range of 0.2%-6%. The highest relative error (5.77%) in wet frequencies has295

been observed in the fourth mode of the depth ratio 0.25.
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Mode Mode Depth Ratio (d/a)

No Shape 0.25 0.5

44 Panels 90 Panels 152 Panels 230 Panels 84 Panels 174 Panels 296 Panels 450 Panels

1 S 2.34 2.30 2.29 2.29 1.78 1.81 1.84 1.86

2 S 21.40 21.41 21.42 21.42 17.08 16.34 16.08 15.98

3 A 30.88 29.97 29.67 29.42 26.15 25.34 25.16 25.16

4 S 62.75 61.69 61.06 60.67 54.90 53.56 53.03 52.80

5 A 106.13 105.46 105.30 105.25 99.80 96.62 95.34 94.87

6 S 123.68 120.39 118.79 117.93 112.06 105.34 102.29 100.84

Table 2: Convergence of wet natural frequencies (Hz) for depth ratios 0.25 and 0.5

Mode Mode Depth Ratio (d/a)

No Shape 0.75 1.0

124 Panels 258 Panels 440 Panels 670 Panels 164 Panels 342 Panels 584 Panels 890 Panels

1 S 1.68 1.72 1.75 1.77 1.66 1.71 1.74 1.76

2 S 12.53 12.18 12.11 12.11 11.46 11.36 11.40 11.45

3 A 24.92 24.09 23.86 23.85 24.64 23.85 23.65 23.64

4 S 44.23 41.19 39.99 39.48 36.76 34.88 34.29 34.12

5 A 83.13 79.14 77.73 77.30 77.70 74.35 72.96 71.82

6 S 100.92 93.14 89.46 87.65 82.70 75.66 73.32 73.10

Table 3: Convergence of wet natural frequencies (Hz) for depth ratios 0.75 and 1.0

Moreover, Table 5 compares the predicted wet frequencies with the results

presented by Ergin and Uğurlu (2003) and Kwak and Yang (2013). Importantly,

it can be seen that less number of panels is required for the convergence com-

pared with the study presented by Ergin and Uğurlu (2003) which uses the same300

methodology with the conventional BEM procedure (with constant boundary

elements). In their study, the convergence of the wet frequencies has been ob-

tained with 320, 608, 896, and 1184 panels, respectively, for the depth ratios

d/a = 0.25, 0.5, 0.75, and 1.
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Mode Mode This study Lindholm et al. (1965)

No Shape In vacuo Depth Ratio (d/a) In air Depth Ratio (d/a)

0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

1 S 3.94 2.29 1.86 1.77 1.76 3.84 2.17 1.82 1.79 1.78

2 S 24.69 21.42 15.98 12.11 11.45 24.20 21.01 15.50 11.99 11.50

3 A 39.37 29.42 25.16 23.85 23.64 39.10 29.75 25.50 24.20 24.20

4 S 69.32 60.67 52.80 39.48 34.12 68.10 57.36 51.61 38.27 33.50

5 A 120.44 105.25 94.87 77.30 71.82 121.00 106.35 95.99 79.00 75.26

6 S 136.39 117.93 100.84 87.65 73.10 - - - - -

Table 4: Comparison with the experimental results

It can be seen from Tables 4 and 5 that the wet frequencies behave as305

expected, and they decrease with increasing area of fluid contact. Therefore,

the lowest frequency values have been obtained for the depth ratio d/a = 1.

Mode Mode This study Ergin and Uğurlu (2003) Kwak and Yang (2013)

No Shape Depth Ratio (d/a) Depth Ratio (d/a) Depth Ratio (d/a)

0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

1 S 2.29 1.86 1.77 1.76 2.29 1.90 1.83 1.82 2.46 1.89 1.78 1.77

2 S 21.42 15.98 12.11 11.45 21.32 15.69 12.20 11.68 20.37 16.00 12.55 11.56

3 A 29.42 25.16 23.85 23.64 29.42 25.43 24.16 24.00 31.11 26.53 25.04 24.67

4 S 60.67 52.80 39.48 34.12 59.32 52.23 38.67 34.31 59.81 49.81 40.50 34.07

5 A 105.25 94.87 77.30 71.82 105.01 93.84 77.31 73.91 106.97 95.00 80.66 70.53

6 S 117.93 100.84 87.65 73.10 116.64 98.71 84.46 71.22 119.05 101.95 85.75 75.85

Table 5: Comparison with the numerical and semi-analytical results
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Figure 8: Generalized diagonal added mass terms for the first five mode

The generalized diagonal added mass terms for first 5 distortional modes for

the depth ratios d/a= 0.25, 0.5, 0.75, 1 are shown in Fig. 8 and they correspond

to a generalized structural mass of 1 kg m2. In order to calculate the generalized310

added mass terms, pressure distribution over the wet part of the structure is

obtained on the assumption that the structure vibrates in its vacuo principal

mode shapes in the fluid. As seen from Fig. 8, the generalized diagonal added

mass terms become larger as the total wet surface area of the plate increases.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Wet mode shapes of cantilever plate for depth ratio d/a=0.5: (a) 1st mode (1.86

Hz); (b) 2nd mode (15.98 Hz); (c) 3rd mode (25.16 Hz); (d) 4th mode (52.80 Hz); (e) 5th

mode (105.25 Hz); (f) 6th mode (120.39 Hz)

The generalized added mass coefficients corresponding to the first 6 in-vacuo315

modes, 4 symmetric (S) and 2 antisymmetric (A), are compared with the re-

sults given by Ergin and Uğurlu (2003) in Table 6 for the submergence rate

d/a = 0.5. The generalized added mass coefficients are calculated under the

assumption that the rectangular plate is vibrating in-vacuo mode shapes when

it has contact with fluid; thereby, each mode has unique surface pressure dis-320

tribution related to its in-vacuo modal configuration. Following that, the gen-

eralized added mass coefficients were calculated by utilizing Eq. (34) over the

wetted part of the structure. It is observed from Table 6 that the diagonal

elements of the generalized added mass matrix are considerably larger that the

non-diagonal ones, which stand for the hydrodynamic interaction between the325
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in-vacuo modes of the structure, in related row and column. This situation also

clarifies the negligible difference between the in-vacuo and wet mode shapes of

the plate (see Fig. 7 and Fig. 9). Additionally, the symmetrical formation of the

generalized added mass matrix emphasizes the reciprocal characteristic of the

problem, which indicates that the hydrodynamic coupling effects of the mutual330

modes on each other are the same. As the mode number increases, in other

words, as the number of stationary points increases in the modal configuration

of the structure, the generalized added mass coefficients for the respective mode

are reduced. Furthermore, the hydrodynamic interaction between the symmet-

ric and antisymmetric modes seems to be quite strong in itself compared to the335

interaction with the modes in opposing group.

Mode Mode This study

No Shape

1 S 3.368 0.380 0.000 0.735 0.000 0.510

2 S 0.380 1.361 0.000 1.030 0.000 0.004

3 A 0.000 0.000 1.396 0.000 0.516 0.000

4 S 0.735 1.030 0.000 1.364 0.000 0.644

5 A 0.000 0.000 0.516 0.000 0.630 0.000

6 S 0.510 0.004 0.000 0.644 0.000 1.027

Mode Mode Ergin and Uğurlu (2003)

No Shape

1 S 3.301 0.316 0.001 0.719 0.001 0.440

2 S 0.316 1.424 0.002 1.019 0.002 0.086

3 A 0.001 0.002 1.349 0.000 0.472 0.000

4 S 0.719 1.019 0.000 1.337 0.001 0.602

5 A 0.001 0.002 0.472 0.001 0.630 0.000

6 S 0.440 0.086 0.000 0.602 0.000 1.074

Table 6: Comparison of generalized added mass values

In addition, another convergence study was conducted to determine the num-

ber of hydrodynamic panels needed to obtain the generalized added mass values,

and the results are given in Fig. 10 for the first three diagonal added mass terms

for different submergence ratios. As can be seen from Fig. 10, the difference be-340

tween the generalized added mass values become negligibly small for the third

and fourth discretization levels for all submergence ratios, and all the added

mass values converge monotonically.
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(a) (b)

(c) (d)

Figure 10: Convergence of the generalized added mass coefficients

Later, the numerical study was extended to investigate the effects of the

plate aspect ratio (a/b) and thickness ratio (t/b) on the hydroelastic vibration345

characteristics. Fig. 11 shows the predicted wet natural frequencies for five

different aspect ratios, a/b = 1, 2, 3, 4, and 5, with using three different thickness

ratios, t/b = 0.0238, 0.0476, and 0.0714, for the first six modes and depth ratio

0.5. In the calculations the width (b) of the plate was kept constant, and the

length (a) and the thickness (t) were changed for different values of aspect and350

thickness ratios. It is clear that wet natural frequencies increase with increasing

thickness ratio, and decrease with increasing aspect ratio.
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(c) 3rd mode
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Figure 11: Wet frequencies for different t/b values and depth ratio d/a = 0.5
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5.2. Cantilever plate horizontally in contact with fluid

In a further study, the results obtained for the partially submerged vertical

cantilever plate in the previous section are expanded to the case where the355

cantilever plate is in a horizontal position within the fluid environment. In this

case, the cantilever plate is totally submerged near the free surface of the fluid

(see Fig. 12). This type of hydroelastic vibration problem have been investigated

experimentally (Lindholm et al., 1965) and numerically (Fu and Price, 1987) by

several authors. The geometric properties of the plate are: a = b = 10 m,360

and the thickness t = 0.238 m. The mechanical properties of the plate are:

Young’s modulus E = 206.8 GPa, material density ρ = 7830 kg/m3, and the

Poisson’s ratio ν = 0.3. In this examination, it is assumed that the horizontal

cantilever plate is placed into unbounded fluid medium, in the absence of any

rigid wall effects. The same approach in the previous section is followed, the365

infinite frequency limit on the free surface is adopted by the image method

and fluid-structure coupling effects are represented by generalized added mass

matrix in the equation of motion.

a x

z

a

t

d

x

y

b

Figure 12: Geometry of the cantilever plate horizontally in contact with fluid

The numerical studies are performed for four different depth ratios, namely

d/a = 0.05, 0.1, 0.3, and 0.5, and additionally, the case where the cantilever370

plate is infinitely submerged is also included into the series of calculations. The

domain was discretized along both in-plane directions with 16 equally-spaced
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quadrilateral elements, and they correspond to a total 256 elements for the in-

vacuo analysis. On the other hand, 576 quadrilateral panels (512 panels on both

sides of the plate and 64 panels along the thickness) were used to conduct the wet375

analysis. The first six wet frequencies for different d/a ratios are listed in Table 8

and compared with the numerical results provided by Fu and Price (1987) and

Kerboua et al. (2008). The discrepancies between the predicted results in this

study and the results obtained in Fu and Price (1987) are negligibly small due

to adopting the boundary element method in the calculation of the effects of380

the fluid on the structure in both studies. The differences between these studies

lie between 0.1% and 4.1%.
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Table 7: Convergence of wet natural frequencies (Hz) for horizontal cantilever plate
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Mode Mode This study Fu and Price (1987) (240 Panels) Kerboua et al. (2008)

No Shape Depth Ratio (d/a) Depth Ratio (d/a) Depth Ratio (d/a)

0.05 0.1 0.3 0.5 0.05 0.1 0.3 0.5 0.05 0.1 0.3 0.5

1 S 1.32 1.26 1.17 1.15 1.42 1.28 1.20 1.17 1.37 1.30 1.18 1.11

2 S 3.56 3.42 3.24 3.21 3.68 3.43 3.24 3.21 3.36 3.19 2.89 2.73

3 A 8.83 8.47 7.99 7.90 8.86 8.47 8.09 7.98 8.42 8.01 7.26 6.84

4 S 11.43 11.05 10.65 10.61 12.03 11.49 11.27 11.06 - - - -

5 A 13.58 13.06 12.51 12.46 13.60 12.99 12.47 12.35 - - - -

6 S 23.64 22.89 22.28 22.24 - - - - - - - -

Table 8: Comparison of wet frequencies (Hz) for horizontal cantilever plate

The generalized diagonal added mass terms for depth ratios d/a = 0.05,

0.1, 0.3, 0.5 and also for the infinitely submerged state are shown in Fig. 13.

As expected, the generalized diagonal added mass terms become larger as the385

submergence ratio of the plate increases. It can be said that the difference

between the generalized diagonal added mass terms are noticeable until the

d/a is equal to 0.3. This difference decreases considerably when the d/a ratio is

between 0.3 and 0.5; and further increment of d/a ratio up to 0.5, the generalized

diagonal added mass terms are virtually fixed to certain value. In other words,390

when the depth ratio exceeds 0.5, the generalized diagonal added mass terms

are equal to the case where the plate infinitely immersed into fluid medium.
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Figure 13: Generalized diagonal added mass terms for the first five mode (horizontal cantilever

plate)
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6. Conclusions

The hydroelastic vibration characteristics (wet natural frequencies and mode

shapes) of cantilever plates was investigated by the proposed numerical proce-395

dure in the context of isogeometric approach. In this numerical framework,

in-vacuo natural frequencies and mode shapes have been first obtained by solv-

ing the free vibration problem with the isogeometric finite element method

(IGAFEM). Then, in the second part of the analysis, using in-vacuo vibration

characteristics, the generalized added-mass terms have been calculated by iso-400

geometric boundary element method (IGABEM) in conjuction with the image

method.

In the first numerical example, a cantilever plate vertically in contact with

fluid was considered. The numerical results presented for in-vacuo and wet

natural frequencies show very good agreement with the experimental results405

presented by Lindholm et al. (1965) (see Table 4), and it is observed that the

differences are in the acceptable range. On the other hand, the predicted wet

frequencies were compared with the numerical and semi-analytical results (see

Table 5) given by Ergin and Uğurlu (2003) and Kwak and Yang (2013), re-

spectively. Here, it is also showed that less number of panels is required in the410

convergence study (see Tables 3 and 7). Then, the calculations were carried out

to study the effects of aspect and thickness ratios on the hydrodynamic char-

acteristics of the cantilever plate. Later, a horizontally submerged cantilever

plate was considered, and the predicted hydroelastic vibration characteristics

were compared with the numerical results (see Table 8) presented by Fu and415

Price (1987) and Kerboua et al. (2008).

The results presented in this study show that the proposed method is suitable

for relatively high-frequency vibrations of partially or fully submerged elastic

structures.
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