
Online Resource Allocation in Edge Computing
Using Distributed Bidding Approaches

Caroline Rublein
Pennsylvania State University, USA

Email: clr292@psu.edu

Sebastian Stein
University of Southampton, UK

Email: ss2@ecs.soton.ac.uk

Fidan Mehmeti
Pennsylvania State University, USA

Email: fidan.mehmeti@psu.edu

Mark Towers
University of Southampton, UK

Email: mt6g17@soton.ac.uk

Thomas F. La Porta
Pennsylvania State University, USA

Email: tlp@psu.edu

Abstract—Edge computing has become a very popular service
that enables mobile devices to run complex tasks with the help
of network-based computing resources. However, edge clouds are
often resource-constrained, which makes resource allocation a
challenging issue. We focus on a distributed resource allocation
method in which servers operate independently and do not
communicate with each other, but interact with clients (tasks)
to make allocation decisions. This provides robustness and does
not require service providers to share information about their
configurations or workloads. We propose a two-round bidding ap-
proach of assigning tasks to edge cloud servers, while taking into
account various processing requirements and server constraints.
We consider cases in which all jobs have equal utility, cases where
jobs have different utilities but users do not disclose these utilities
to servers, and cases where users disclose the utility of their jobs
to servers. We evaluate the performance using extensive realistic
simulations. Results show that our approach is very close to an
optimal assignment, with discrepancy not exceeding 5%.

Index Terms—Edge cloud computing, Optimization, Bidding.

I. INTRODUCTION

Edge computing [1] is an important new paradigm that
enables mobile devices to request complex processing ser-
vices. Edge clouds may be used for emergency services or
tactical situations [2] where an access network with processing
resources is deployed in the field, or in cases in which
access service providers provide some computing resources to
subscribers. Edge clouds are not as well-resourced as backbone
cloud networks, so resource allocation in these edge clouds is
an important problem.

In this paper we consider a distributed system in which the
computing resources in the edge cloud do not communicate
or collaborate with each other, but interact with clients to
make allocation decisions. In this way, there is no need for
centralized management, and the system is more robust. By
not requiring centralization, we allow edge cloud resources
provided by different entities to be shared without requiring
the service providers to share details of their deployments. Our
goal is to maximize the utility of the jobs served.

There are other possible architectures for such a system [3].
A centralized system can be built where all requests are
submitted to a server that allocates jobs to computing re-
sources in the edge cloud [4]. This has the advantage of

having complete knowledge of submitted and running jobs
while making allocation decisions. However, this is not ideal
because the server performing resource allocation must have
synchronized reports from all processing resources which may
not be desirable from the service provider perspective.

There has been much work on auctions for resource allo-
cation [5]. Many of these approaches provide guarantees on
performance and are strategy-proof, meaning that the resource
allocation is robust against dishonest clients. However, they
often require a central server or many rounds of negotiation
to converge to a solution [4]. Given that we are striving for a
simple and robust solution, we use a simple bidding protocol
limited to two communication rounds between clients and
servers.

We consider a system in which users may not want to
disclose the utility of their job to the edge cloud provider.
We develop and evaluate algorithms for three different cases
to account for this: (i) all users have equal utility; (ii) jobs
have different utility, but users do not disclose the utility
to servers; and (iii) users disclose the utility of their jobs
to servers. Case (ii) is motivated by the situation in which
partners share processing resources but may not want to share
full information about their actions. Cases (ii) and (iii) raise
certain challenges. For case (ii), the servers must set prices
that are on sclae with job utilities so that users can evaluate
whether it is profitable for them to execute a job. In case
(iii), there is an incentive for users to over-value their jobs to
improve their chances of being accepted. We design a method
to cap this advantage while keeping the system simple.

We propose a two-round bidding method for delivering
remote processing services to users. The users submit job
requests that include their processing requirements (memory,
network capacity, processing capacity and deadline), and may
or may not include their utility, as described above. Servers
set a price for each job depending on their current state and
which jobs they would like to serve based on different criteria
we describe below.

We consider two processing disciplines - pipeline and batch.
In pipeline processing, data elements that are uploaded from a
client are processed as they arrive. In this case, the bandwidth,

processing, and memory are all used simultaneously. In batch
processing, all data is uploaded before processing takes place.
In this case, the bandwidth is used at the start and the end of
a job, but not while the job is executing.

We make the following contributions in this paper:
• We formally define an optimization problem for the

online version of both the pipeline and batch processing
for our system and solve them using a commercially
available solver.

• We design the framework as a simple two-round bidding
system for resource allocation.

• We develop algorithms for setting server prices depending
on the problem setting: all jobs are equal, users do not
disclose utility, and users disclose utility.

• We consider two basic pricing mechanisms and compare
them to an optimal solution. We find that a best-fit pricing
mechanism based on a knapsack problem is better than a
congestion-based pricing scheme, and that our algorithm
is within approximately 5% of the optimal.

II. SYSTEM OVERVIEW

Our system has two sets of procedures that run in parallel
- the bidding procedure and the processing procedure. Our
work focuses on the bidding procedure, but is impacted on
the discipline of the processing procedure. The bidding system
runs in epochs and consists of two rounds, R1 and R2. In
each epoch, the jobs that have arrived in the previous epoch
participate in the bidding for server resources.

Clients submit requirements of jobs to a set of servers to
request resources. The servers, based on the requirements and
their current state, set a price for each job and reply to the
clients with this price. The clients then choose which server
to select for their job and notify that server. The server will
then either accept the job, or if it receives too many positive
responses, reject it in which case the client is not served.

As soon as the bidding phase is complete, accepted jobs
start to execute as described below, and the next bidding
epoch begins considering the jobs that arrived during the just
completed bidding epoch. Fig. 1 shows the system operation
at one server. Consider bid epoch 2. In this epoch, the request
for jobs that were submitted to the server in the previous bid
epoch (bid epoch 1, job set 2) are processed at the server
and the interaction between the server and users take place.
The server considers the state of all the jobs it is currently
processing when setting prices. At the end of bid epoch 2, a
new set of jobs are accepted and start to execute. At this time,
all the job requests that were received during bid epoch 2 (job
set 3) are processed.

In the processing phase, we consider both pipeline and
batch processing for the processing procedure. These differ in
the way that resources are used, so they impact the resource
allocation. In the pipeline system, once a job is accepted, the
user starts to upload materials to be processed, processing
begins and processing memory is occupied. Thus all three
resources (storage, computation, and bandwidth) we consider
in our bidding phase are used simultaneously. In the batch

Fig. 1. The arrival of jobs, along with the bidding and processing procedures.

system, once a job is accepted, the client uploads all the
material to the server, but processing does not begin until the
full upload is complete. Results are returned to the user after
processing is completed. Thus bandwidth is used before and
after processing resources and processing memory, but not at
the same time.

The main challenge in the system is how to set the prices
for jobs. We consider two approaches to price setting. In the
first, servers set a price based solely on their current usage,
which we call congestion pricing. In the second, servers set a
price based on best-fit, that is, a server favors jobs that have
requirements that best fit its unused resources.

Both methods face a similar challenge: if prices are set too
high, then too few jobs may respond in the second round,
leading to under-utilization. However, if prices are set too low,
then too many jobs may respond in the second round, causing
servers to reject jobs which are then not served.

In the next sections we present our optimal bidding formula-
tions and heuristics for the pipeline and batch processing cases.
Although the bidding structure is the same, the formulation
and heuristics for setting prices and accepting jobs is different
in the two cases because of the way in which the processing
resources are used.

III. PIPELINE PROCESSING OPTIMIZATION FORMULATION

In this section, we provide the optimization formulation for
resource allocation for an online system in which jobs arrive
over time and are processed in a pipeline fashion. Recall that
in pipeline processing, data items are processed as they are
uploaded by the users. For example, if a user is submitting
stored images for object classification or labeling, the images
are processed as they are received.

There are |I| servers, and a total of |J | tasks submitted
over time. The system is time slotted, and we consider a
time horizon of |N | slots. The arrival time of task j is aj ;
its deadline, by which the task must be served after arrival,
is dj . The utility achieved if a task is served is Uj . Task j
has a storage requirement of sj , and a total computational
requirement of Kj .1 The total storage capacity of server i is
Si, and its total computational capacity is Ci units per slot.

Note that we do not include the bandwidth constraint in this
formulation because it would make the problem infeasible to
solve even with a solver. This will lead to our optimization
formulation yielding higher performance than if we were able

1We assume that in this case the data storage for a task is loaded instantly.

to model the bandwidth constraint, but this is acceptable be-
cause in our heuristic we account for the bandwidth constraint
so the comparison to the optimal is conservative.

The decision variables are: (i) xi,j , whose value is 1 if task
j is assigned to server i, and 0 otherwise, and (ii) κj(n), which
denotes the amount of computing resources allocated to task
j in slot n.

Once a job is allocated to a server, the data needed to run
the task are stored in the server and will occupy the memory
until the task is executed completely. On the other hand,
the computation power has an elastic nature, meaning that
a task can receive a different amount of computing resources
in different slots. E.g., if at a given slot all the other tasks
are finished, and in the next slot only one task remains active
while no other tasks have been assigned, the server can decide
to increase the assigned computing power in order to complete
the task more quickly to reclaim resources for jobs that may
arrive in the future. Alternatively, if there are too many jobs
assigned at a given slot, for a job whose deadline is not close,
the server can decide not to allocate any processing power to
that job in a slot, in order to optimize performance.

To capture the fact that while the task data is stored on a
server it will remain there until the task is run completely, we
use an indicator variable, which for slot n is defined as

θj(n) =

1,
ifmin{aj + lj |κj(aj + lj) > 0} ≤ n

≤ max{aj + lj |κj(aj + lj) > 0}
0, otherwise.

where lj is a timestep2 during which the job will run to
completion (0 ≤ lj ≤ dj − 1).

The optimization problem is as follows.

max

|I|∑
i=1

|J |∑
j=1

Ujxi,j (1)

s.t.
dj−1∑
lj=0

κj(aj + lj) = Kjxi,j , ∀i ∈ I,∀j ∈ J , (2)

|J |∑
j=1

sjxi,jθj(n) ≤ Si, ∀i ∈ I, ∀n ∈ N , (3)

|J |∑
j=1

κj(n)xi,j ≤ Ci, ∀i ∈ I, ∀n ∈ N , (4)

|I|∑
i=1

xi,j ≤ 1, ∀j ∈ J , (5)

xi,j ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J , (6)
κj(n) = 0, ∀j ∈ J , n = {1, . . . , aj−1, aj + dj , . . . , N},

(7)
κj(n) ≥ 0, ∀j ∈ J , n = {aj , . . . , aj + dj − 1}. (8)

The objective (1) is to maximize the total utility value over
all tasks in all the servers. The left-hand side of Constraint
(2) is the sum of allocated processing cycles over all slots
that the task is active, whereas the right-hand side is either

2We will use notions slot and timestep interchangeably throughout the
paper.

the total computing power required to finish the task (if the
task is allocated), or 0 in the case when the task does not
receive service. Note that when the latter occurs, it enforces
all the κj’s to be 0. The finite storage capacity of a server is
described by (3), whereas its finite computing power per slot
by (4). Constraint (5) imposes the limitation that a task can be
served by at most one server, while (6) depicts the fact that a
task is either assigned or not. Finally, the last two constraints
capture the fact that before the arrival and after the departure
of a task, no resource allocation is needed, and while the task
is active the amount of resources in a slot will either be strictly
positive or 0, as explained above.

This optimization formulation corresponds to an optimal
case in which there is a centralized entity with a complete
knowledge of all the parameters for all the servers and tasks,
and even of the future arrivals, i.e., it acts like an oracle.

The solution of this problem for instances with a large
number of users and time horizon is infeasible. First, it is
unrealistic to assume that the centralized entity will know
when a given task of given characteristics will arrive. Second,
this in an NP-hard problem. Namely, even for a single slot
n, this optimization problem is a 2-dimensional knapsack
problem, which are known to be NP-hard [6].

Therefore, in the next section we propose a heuristic that, as
will be seen in Section V, provides a result that is very close
to that of the optimal solution (for not very large instances of
the problem). It is a two-round bidding method of assigning
tasks to the servers and allocating the resources to them, which
gives both servers and users some agency over the outcome.

IV. PIPELINE HEURISTICS

In this section we present our algorithms for the pipeline
processing for three different cases of what information the
users disclose to the servers. In particular, the algorithms focus
on how the prices are set, and we evaluate the different pricing
mechanisms for each case in the subsequent section.

A. Case 1: No Disclosure

In this first case, neither the users nor the servers use utility
to make any decisions. So, the objective is to maximize the
number of jobs completed by the system. We consider both
congestion pricing and best-fit pricing to judge the burden a
job will place on a server.

1) Congestion Pricing: In this method, each server’s first-
round price is directly proportional to the size of the job
in each dimension and to the ratio of the job’s size to the
server’s free space in each dimension (i.e., the currently unused
server resources). Although we have assumed bandwidth to be
infinite in the optimal case, we account for it in the heuristics.
The parameters Ŝi, Ĉi, and B̂i represent the remaining (non-
allocated) storage, computation, and bandwidth resources on
server i; and sj , κj(n), and bj represent the storage, compu-
tation per timestep, and bandwidth of job j. A scaling factor
f exists so that this pricing can still be useful in Case 2. This
is described in the next subsection. The first round prices for
timestep n are set at

(
sj

Ŝi
+
κj(n)

Ĉi
+
bj

B̂i

)
· f, ∀i ∈ I,∀j ∈ J . (9)

Each user receives a price from all servers, and then
chooses the lowest price server to request service. When the
servers receive the second round request, they run a knapsack
algorithm to fit the most jobs. The jobs that do not fit are
rejected. Allocated jobs may receive excess server resources
(if they are available) to complete more quickly.

2) Best-Fit Pricing: The goal in this method is to fit jobs by
taking into account the different resources. Thus a knapsack
algorithm is used in both rounds. The first round consists of
running a knapsack on all the jobs submitted to the server and
assigning prices based on if jobs fit in the knapsack. As with
Case 1 described above, the second round consists of running
another knapsack, but only for the jobs that chose a particular
server, since not all jobs may return to a particular server.

The first-round pricing now falls into two tiers for the two
categories of jobs: those inside the knapsack and those outside.
If a job is inside the knapsack, its price is 1 in order to most
strongly attract that job to the server. If the job is outside the
knapsack, its price must be determined some other way. If the
price is set too high, then no other jobs other than those that
fit in the knapsack will return in the second round.

One simple method is to set the price of jobs that do not fit
in the knapsack in round one to a common high value. Since it
is likely that some jobs will fit in the knapsack of one or more
servers, not all jobs that fit in the knapsack in round one will
return in the second round, thus leaving some space in servers
in round two. Other jobs may not fit in any knapsack in round
one, and if all the prices they receive are the same, they will
not know which server has the best chance to serve them in
round two. As an alternative, instead of setting the price of
those jobs that do not fit in the knapsack in round one to a
high common value, we increase the price of the jobs that do
not fit to be a value above 1 by adding a factor related to how
close they were to fitting. In this way, jobs that do not fit in
any knapsack can pick the server they are most likely to be
accepted by for the second round. We consider two ways to
increase the price, according to congestion or violation, below.
1) Outside knapsack (KP) - Congestion:

1 +

(
sj

Ŝi
+
κj(n)

Ĉi
+
bj

B̂i

)
· f, ∀i ∈ I,∀j ∈ J . (10)

2) Outside KP - Violation:

1 +
(sj + ks(n)

Ŝi
+
κj(n) + kc(n)

Ĉi
+
bj + kb(n)

B̂i

)
· f,

∀i ∈ I,∀j ∈ J .
(11)

The parameters ks(n) =
∑
sjθj(n), kc(n) =

∑
κj(n), and

kb(n) =
∑
bjθj(n) are the sums of the storage, computation,

and bandwidth requirements, respectively, of all jobs in the
knapsack in timestep n. Essentially, congestion represents
what proportion of the server’s currently available resources
job j would consume, whereas violation represents how easily
job j could have been added to the knapsack result.

Using these methods of setting the price, some jobs that are
outside of the knapsack may still return in the second round,

allowing the server to fill in gaps left by jobs that did not
return.

B. Case 2: Utility Considered by Users

In this case, each job has its own utility. The users know
the utility of their jobs, but do not disclose the utility to the
servers. The users consider their utility when deciding if they
should request service after seeing prices from the servers. If
the prices a job receives from the servers in the first round
are all greater than its utility, then the job will remove itself
from the system and place itself back into the pool for the
next timestep.

Since jobs are now comparing their prices to their utility,
the scaling factor shown in Case 1 is now important. The
scaling factor must be set based on the distribution of utilities.
Through simulation, our optimal scaling factor was found to
be about 1.1 standard deviations below the mean utility.

The algorithms that are run on the servers for this case are
the same as for Case 1. The only difference is that users will
not reply to a server that has a higher price than their job’s
utility.

C. Case 3: Disclosure to Servers

In this case, the users disclose the utility of their jobs when
they submit the requirements. Now, the servers maximize the
utility of their remaining space in the R1 knapsack, rather than
the number of jobs. Due to the best-price (violation variant)
producing the best performance in Case 2’s results, we choose
to use only that variant for Case 3 testing.

Since jobs disclose their utilities, they can now lie to the
servers about their utility. There are two underlying reasons
for jobs’ dishonesty: to have a better chance of getting in the
knapsack (over-reporting utility), or to receive a cheaper price
(under-reporting utility). Given that under-reporting utility will
make it less likely for a job to be accepted, we focus on
capping the damage that can be done by users over-reporting
the utility of their jobs.

In R1, the server reduces their price by a factor that caps
the impact of cheating by the user. If a job returns in R2
and is accepted, the server charges the actual price without
a discount. Algorithm 1 shows how the price is computed
in each round. The parameter α is the margin of cheating
(percentage), and the parameter β is any positive constant.
The inverse of the violation is used so that jobs with a smaller
violation are given a larger discount (and thus a lower price).
The knapsack runs in O(ng) time, where n is the number of
active jobs in the slot, and g is the number of generations
(constant ≈50) used in the off-the-shelf genetic algorithm
knapsack implementation. Pricing decisions are run in O(n)
time, so the overall complexity of the algorithm is O(ng).

The factor α works as follows. If a job bids a factor of
β above its real value and it fits in the knapsack in R1, it
will receive a bid price of its real utility, U + βU − αU . If
β is greater than α, i.e., it over-reported by more than α, the
returned bid will be higher than the actual utility of the job,
so the job will not accept the bid. In this case the server will

Algorithm 1: Case 3 pricing
Round 1 (R1) if Accepted into knapsack then

price = U − αU ;
else

if Under threshold then
price = U −min(1

violation(Eq.11) ,
α
2)U ;

else
price = U + βU ;

end
end
Round 2 (R2) if Accepted into knapsack then

price = U − 1
violation(Eq.11)U ;

else
Go to pool;

end

accept another job in R2. If the job over-reported by less than
α, the returned bid would still allow the job to be profitable
so it could be selected in R2, perhaps at the cost of an honest
job that would achieve higher utility. However, the amount of
over-reporting and lost profit is capped by α. The value of α
must be set carefully because if it is too high, then the system
will attract too many jobs in R1 that it cannot fit in R2.

Consider a server that advertises a price that is discounted
by 10% (α = 0.1) from the actual price it will charge. A
dishonest user submits a job that has a real utility of 92, but
reports a utility of 105 (14% higher than its real value) to the
server in hopes of being accepted because of its high utility.
Now consider that the cost of this job to the server is 100.
Given the discount, the server will advertise a price of 90 to
the user. The user will accept the bid because 90 is below
its real utility of 92. However, when the job is accepted the
server will actually charge the user 100, its real price, and thus
the user will pay more than its job is worth. The only way
that the user can be guaranteed to not lose value is to cap its
over-reporting at the percentage of the discount being given
by the server. The server does not disclose the value of this
discount, but it effectively caps the loss of utility.

V. RESULTS FOR PIPELINE PROCESSING

In this section we evaluate the performance of the pipeline
processing system including different settings, workloads, and
pricing methods.

Servers each have storage, computation, and bandwidth
resources. Jobs also have particular storage, computation, and
bandwidth requirements, as well as a deadline and utility. Each
of these resources is normally distributed among the jobs in the
workload. The distribution variables for both jobs and servers
are shown in Table I, and are chosen to provide moderate
congestion (≈ 50%) when the arrival rate almost matches the
number of servers. The chosen ratio of storage to bandwidth
resembles the case where images are uploaded, and those with
particular features are downloaded to the user. The servers
are client-agnostic, i.e., each job is treated individually and

clients are assumed to consider each job’s profit independently.
Therefore, client ownership of multiple jobs is not represented
in the simulations.3

TABLE I
NORMALLY DISTRIBUTED VARIABLES FOR SERVERS AND JOBS

Resource µ σ

Storage Si (GB) 3.6 0.3
Computation Ci (MB/s) 72 30
Bandwidth Bi (MB/s) 2000 400

No. of images sj (MB) 200 50
Storage sj (MB) 1240 50

Computation Kj (MB/s) 47 15
Bandwidth bj (MB/s) 620 50

Deadline dj (slots) 8 2
Utility Uj 40 10

We consider two workloads: “small” and “large”. The small
workload has an arrival rate of µ = 4 jobs per timestep, and
the large workload has an arrival rate of µ = 7 (both are
normally distributed, with σ = 2). Both workloads have 200
timesteps of job arrivals, and 20 empty timesteps to allow
allocated jobs to finish running. Thus, the small workload has
a total of ≈ 800 jobs (a moderately loaded system), and the
large workload a total of ≈ 1400 jobs (a congested system).
Both workloads are based on [7], which details the amount
of time required to perform edge detection on 1980 × 1020
images using a core i5 processor (hence the MB/s units for
Ci and Kj). We assume the time required scales linearly with
the number of images being processed. Each timestep of the
heuristic takes about 5 seconds to run, the majority of which
is spent computing the knapsack.

A. Optimal Results

The optimization formulation was modeled using Gurobi.
In a small scenario consisting of 4 servers and 22 jobs, our
Case 3 heuristic (utility disclosure, no cheating) is within 5.2%
of the optimal achieved utility (i.e. the most optimal solution
found by the Gurobi solver). For the optimization formulation,
we assume bandwidth is infinite, and the heuristic simulation
still performs well even when the optimal solution is given this
advantage. In the remainder of the simulation results shown
below, 8 servers were used. For each set of results, 10 instances
of the problems were run and the average is shown.

B. Case 1 Results

As shown in Figs. 2 and 3, the best-fit pricing clearly
performs better than the congestion pricing. Fig. 2 shows
the average percentage of jobs rejected out of the entire
workload. Fig. 3 displays the average total utility completed
per workload. The difference in performance is particularly
apparent in the large workload, where the best-fit pricing
shows a 30% average decrease in rejection, and an almost
200% increase in utility completed.

3We have run simulations with other values of the parameters with similar
conclusions drawn.

Fig. 2. Rejection rates of the small & large workloads under different pricing
schemes (congestion, and the 3 best-fit variants) for Case 1.

Fig. 3. Total utility completed for the small & large workloads under different
pricing schemes (congestion, and the 3 best-fit variants) for Case 1.

Within the best-fit pricing, the violation variant resulted in
a slightly greater utility completed than the congestion pricing
and also provides higher utility than when a simple two-tier
pricing system is used in which jobs that do not fit in the
knapsack in R1 are given a price of 50.

C. Case 2 Results

The total utility for Case 2 (users do not disclose job utility
to the servers, but consider it in their choice of server) shown
in Fig. 4 reveals that the various best-fit pricing schemes
perform significantly better than congestion pricing. Here,
however, the violation variant improves performance more
significantly than in Case 1.

D. Case 3 Results

For Case 3 (users disclose job utility) we tested various
cheating profiles for the job, in addition to the all-honest case.
In each profile, 20% of the users over-value their jobs by a
certain amount (5, 10, 15, or 20%).

Our simulations demonstrate that the loss of utility due to
cheating is always capped to α%, as shown in Fig. 5. Fig. 5
also demonstrates that as jobs cheat by higher percentages,
their chance of being accepted drops drastically, thereby
discouraging cheating by high amounts. Fig. 6 shows the total
utility completed under each profile. Although most of the
cheating profiles do not have a clear maximum, the honest
profile completes the most utility when α = 10%. Therefore,
choosing α = 10% will result in the most honest utility being
completed, while cheating is capped at 10%.

Fig. 4. Total utility completed for the small & large workloads under different
pricing schemes (congestion, and the 3 Best-fit variants) for Case 2.

Fig. 5. The percentage of overvalued jobs that are accepted for different
cheating profiles.

As shown in Fig. 7, using any best-fit pricing results
in better performance, especially for a congested system.
Revealing the utility of the jobs to the servers results in the
greatest performance. However, simply having users consider
the utility of their own jobs when making decisions without
disclosing the utility to the servers still performs within 5%
of full disclosure, which bodes well for the environments in
which users decline to disclose their utility.

VI. BATCH PROCESSING OPTIMIZATION AND HEURISTICS

In this section we consider the batch processing policy. In
this case, once a job is accepted via the bidding process, all
data must be uploaded before processing can begin. This might
be the case, for example, if a full video is being uploaded for
action analysis.

A. Formulation

The process for batch jobs consists of three phases after the
task has “arrived” to the system: loading the data to one of
the servers, processing the task, and sending the resulting data
to the user after the task is done. In this formulation we do
include the bandwidth constraints. The time it takes to load
the data of task j is denoted by dj,u, the processing time by
dj,p, and the time it takes to send back the results by dj,d.
These are expressed in the number of timesteps.

The amount of data sent per slot from the task to the server
is σj(n), whereas the amount of data of the results (server-
user) sent during slot n is σ

′

j(n). The total amount of the
results for the solved task j is s

′

j . The parameter Bu,i denotes

Fig. 6. The total utility completed for different cheating profiles.

Fig. 7. Total utility for the small & large workloads for the 3 different cases.

the maximum amount of data that can be uploaded per slot
to server i (equivalent to uplink bandwidth), whereas Bd,i
denotes the maximum amount of results that can be sent per
slot to the corresponding tasks by server i. The parameter
θp,j in (16) is the same as θj(n), defined in Section III. The
other parameters not specified here remain unchanged from
Section III.

The optimization formulation related to this approach is
given by the following. The decision variables are: xi,j , σj(n),
κj(n), σ

′

j(n), dj,u, dj,p, and dj,d.

max

|I|∑
i=1

|J |∑
j=1

Ujxi,j (12)

s.t.
N∑

lj=1

σj(lj) = sjxi,j , ∀i ∈ I, ∀j ∈ J , (13)

N∑
lj=1

κj(lj) = Kjxi,j , ∀i ∈ I,∀j ∈ J , (14)

N∑
lj=1

σ
′
j(lj) = s

′
jxi,j , ∀i ∈ I, ∀j ∈ J , (15)

|J |∑
j=1

sjxi,jθp,j(n) ≤ Si, ∀i ∈ I, ∀n ∈ N , (16)

|J |∑
j=1

κj(n)xi,j ≤ Ci, ∀i ∈ I, ∀n ∈ N , (17)

|J |∑
j=1

σj(n)xi,j ≤ Bu,i, ∀i ∈ I, ∀n ∈ N , (18)

|J |∑
j=1

σ
′
j(n)xi,j ≤ Bd,i, ∀i ∈ I, ∀n ∈ N , (19)

|I|∑
i=1

xi,j ≤ 1, ∀j ∈ J , (20)

xi,j ∈ {0, 1}, ∀i ∈ I,∀j ∈ J , (21)
σj(n) = 0, ∀j ∈ J , n = {1, . . . , aj−1, aj + dj,u, . . . , N},

(22)
σj(n) ≥ 0, ∀j ∈ J , n = {aj , . . . , aj + dj,u − 1}, (23)
κj(n) = 0, ∀j ∈ J ,

n = {1, ..., aj + dj,u − 1, aj + dj,u + dj,p,..., N}
(24)

κj(n) ≥ 0, ∀j ∈ J ,
n = {aj + dj,u, . . . , aj + dj,u + dj,p − 1},

(25)

σ
′
j(n) = 0, ∀j ∈ J ,

n = {1, ..., aj + dj,u + dj,p − 1, aj + dj ,..., N},
(26)

σ
′
j(n) ≥ 0, ∀j ∈ J ,

n = {aj + dj,u + dj,p, . . . , aj + dj − 1},
(27)

dj,u + dj,p + dj,d ≤ dj , ∀j ∈ J , (28)
1 ≤ dj,u ≤ dj − 2, ∀j ∈ J , (29)
1 ≤ dj,p ≤ dj − 2, ∀j ∈ J , (30)
1 ≤ dj,d ≤ dj − 2, ∀j ∈ J . (31)

Constraint (13) captures the amount of uploaded data to
the server over time until the entire data is stored, if the
task is served, or 0 otherwise. Similarly, constraints (14) and
(15) correspond to the allocation of processing resources and
bandwidth for sending the results back to the user, respectively.
As there is a strict order of performing actions (processing
cannot start until the entire data is stored on the server,
and sending back the results cannot start before the task is
processed completely), we use the constraints (22)-(27) to
restrict the order of operations. The finite storage capacity
of every server is captured by (16). Note that we use the
same indicator variable θ, as in the pipeline formulation, to
denote the time instants when a part of the server’s storage
is taken by the task’s data. The servers’ finite computational
capabilities are described by (17), whereas the finite bandwidth
of the servers both in uplink and downlink are represented
by (18) and (19), respectively. Inequality (20) constrains the
assignment of every task to at most one server, while (21)
expresses the fact that a task is either assigned or not. Finally,
(29)-(31) impose the need for each of the three phases to take
at least one slot.

Note: The unit of B is in fact MB (megabytes). However,
as the slot duration is fixed (∆t), we have B = W ·∆t, where
W is the bandwidth in Mbps. So, B is proportional to W .
Hence, we use B to describe the bandwidth.

As in the pipeline optimization formulation, this optimiza-
tion problem corresponds to the optimal case of a central entity
that has a complete overview of the system. Since this is also

an NP-hard problem, in Section VI-B we resort to tractable
heuristics.

B. Heuristic

For the batch processing, we define a heuristic for Case 3
(in which the clients disclose their utility to the servers). This
provides a basis for the other cases’ heuristics to be easily
developed. The general process of job submission and the
double bidding remain the same under the batch paradigm.
However, some changes were made to the knapsack, pricing,
and storage/memory usage.

Since each job must strictly progress through its three
phases, the servers must guarantee that different resources
will be available for each allocated job at different times.
Therefore, just before the knapsack process is begun, the server
will assign temporary intermediate deadlines (dj,u, dj,p, and
dj,d) to each job that keep dj,u and dj,d as long as possible
while still fitting the job’s computation onto the server. Then,
the knapsack process involves checking multiple timesteps. A
knapsack is run for each timestep from the current one until the
maximum deadline in the pool. If a job will not be consuming
a certain resource in a timestep (for example, processing
resources are not consumed while upload bandwidth is being
used), it will be zeroed out for that timestep.

Since the upload phase is now distinct from the processing
phase, a job is allocated storage/memory space on the server
only once it has completely finished uploading its data. This
memory is kept throughout the entire processing phase, and
released as soon as the results download begins. This emulates
a server that stores data in storage device as it is received,
and then moves it into processing memory, which is the
constrained memory in our system, for processing. When the
processing is complete, the results are moved into external
memory to be downloaded to the user, thus freeing processing
memory for other jobs.

For pricing, we are only considering Case 3, in which jobs’
utility is disclosed to servers. In this system, we do not use
the congestion or violation factor as the basis for the price
discount. Instead, we based the discount on the number of
times a job succeeds in the knapsack process since there will
be a knapsack process corresponding to each timestep. The
higher the number of timesteps in which a job is successful,
the closer it is to fitting into the system. This maintains the
spirit of the pipeline discounts since the score is also directly
correlated to a job’s size.

C. Comparison to Optimal

We modeled the optimization formulation using Gurobi
to emulate a centralized, omniscient solution. We tested the
performance on smaller scenarios consisting of 8 servers and
24 jobs under three traffic scenarios using the same job and
server dimensions and workloads as described in Table II: (i)
the same amount of data is uploaded to the server at the start
of processing as is downloaded as results to the user (50/50);
(ii) 90% of the total data used is uploaded to the server to
start the job, and 10% of the total data is downloaded to the

user as results; and (iii) 10% of data is uploaded and 90% of
data is downloaded. The memory the jobs require is equal to
the total bandwidth consumed.

The optimal solution completed all jobs for the 50/50 case,
but rejected 1

24 jobs for the 10/90 and 90/10 cases. The
heuristic rejected 4

24 jobs for all 3 scenarios, thereby showing
reasonably good performance, within about 20% of the optimal
for the 50/50 case, and 15% for the 10/90 and 90/10 cases.

D. Utility Achieved in Batch Workload

Here we consider the following scenario. Users have
recorded and stored videos on their devices. They submit their
videos to the network to have actions detected and marked.
The videos are returned to the mobile devices after they have
been processed. An equal amount of bandwidth is required in
the uplink and downlink, and the memory required is equal
to the size of the videos being processed. As far as memory
usage is concerned, we make the same assumption as in the
optimization formulation. As data is uploaded, it is stored in
external memory until it is fully received. It is then moved
into processing memory. Once the processing is complete, the
results are moved into external memory to be downloaded.

The statistics for the jobs and servers in this scenario are
shown in Table II (video statistics based on [8], [9]). Eight
servers and 250 jobs were created based on these normal
distributions. Total job bandwidth bj is not listed, as it equals
the storage size of the job. For this workload, users upload
videos with a length of 10 minutes on average and resolution
of 320×180. The “small” workload has an arrival rate of µ = 4
jobs per timestep, and the “large” workload has an arrival rate
of µ = 7 (both are normally distributed, with σ = 2).

In general, batch processing achieved ≈80% of the total
utility while rejecting 20% or fewer jobs under the small
workload, and achieved 65-72% utility and rejected 28-34%
of jobs under the large workload. Within each workload, as
the traffic split increasingly favored the upload bandwidth (e.g.
10/90 to 50/50), the rejection rate increased by ≈2%, causing
the total utility achieved to drop by the same amount.

We also ran simulations to determine if the traffic split
between upload and download impacted the performance of
the resource allocation algorithm. We describe the results here
briefly due to space constraints. We considered cases of equal
upload and downloads, where 90% of the bandwidth used was
for upload and 10% was for download, and where 10% of the
bandwidth used was for upload and 90% was for download.
The 90/10 case emulates, for example, a user uploading photos
for object localization, and the server returning 10% of the
photos that contained the object in a bounding box. The
memory required for each job is the total bandwidth used.

Our results showed that the more upload bandwidth jobs
require, the fewer jobs are allocated, leading to less utility
completed. This is because jobs immediately consume some
upload bandwidth when they are allocated to a server. Then,
as jobs continue to arrive in the pool, a server may not have
enough upload resources in the next few timesteps to fit new
jobs in the knapsack. This does not occur in the 10/90 case

because jobs are moved into processing faster and can make
use of extra processing resources that are available.

TABLE II
VIDEO CASE STUDY STATISTICS

Resource µ σ

Total video length (min) 10 2.5
Storage sj (MB) 18.9 3.5

Computation Kj (kB/s) 360 60
Deadline dj (slots) 12 4

Utility Uj 40 10
Storage Si (MB) 30 4

Computation Ci (kB/s) 300 50
Bandwidth Bi (MB/s) 30 4

VII. RELATED WORK

Within the broad area of cloud computing, a wide range
of resource allocation approaches exist, such as: application
placement, resource scheduling, task offloading, load balanc-
ing, resource allocation, and resource provisioning [3], [10].
The concept of multi-dimensional bin packing has been pro-
posed in [11], whereas basic auction-based resource allocation
mechanisms in cloud computing, and auction variations, are
described in [5]. Additional auction mechanisms that can be
applied to cloud computing are presented in [4].

While in most of the proposed auction mechanisms truth-
fulness is a concept that is user-related, a truthful multi-unit
double auction mechanism was proposed in [12] that enforces
both users and servers to act truthfully.

Edge-MAP [13] proposes a client-to-cloud model for tasks
with extremely short deadlines (lower than 100 ms). Using a
Vickrey-English-Dutch (VED) auction, the system achieves a
unique minimum competitive equilibrium price. Due to this
property, the system is scalable and adjustable to network
topologies that change.

An alternative market-based framework by Nguyen et al.
allows for resources to be efficiently allocated by edge nodes
that are dispersed [14], where the market equilibrium is found
through an optimal resource allocation of bundles to services
such that the task budget is not violated.

In [15], the authors consider the problem of joint service
placement and request scheduling that maximizes the ex-
pected number of requests served per time slot, given various
constraints in terms of the resources. To achieve this, the
authors propose a two-time-scale framework, where the service
placement is performed on a longer time scale (of frames),
whereas the request scheduling is performed on the shorter
time scale of slots. The proposed algorithm in [15] achieves
90% of the optimal performance. The main difference in our
setup is that we try to maximize the total utility of served jobs,
and we also consider the case where the users are not truthful.

VIII. CONCLUSION

In this paper, we proposed a decentralized approach in
assigning tasks to servers in edge clouds, in which we allow a
flexible allocation of resources to tasks over time, so long
as they meet the deadline requirements of the tasks. Two

processing disciplines were considered: pipeline and batch. We
proposed a two-round bidding approach of delivering process-
ing tasks remotely to servers. Results show that our algorithms
provide a performance that is close to the optimal, with the
level of mismatch not larger than 5%, while introducing a
significantly lower complexity.

ACKNOWLEDGMENT

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army Research Laboratory,
the U.S. Government, the U.K. Ministry of Defence or the
U.K. Government. The U.S. and U.K. Governments are au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

REFERENCES

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
2018.

[2] F. Mehmeti, N. Felemban, Z. Lu, K. Wheatman, G. Cirincione, and
T. F. La Porta, “Quality of information in gathering information via
video analytics for military networks,” IEEE Communications Magazine,
vol. 59, no. 2, 2021.

[3] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource manage-
ment approaches in fog computing: A comprehensive review,” Journal
of Grid Computing, 2019.

[4] D. Kumar, G. Baranwal, Z. Raza, and D. P. Vidyarthi, “A systematic
study of double auction mechanisms in cloud computing,” Journal of
Systems and Software, vol. 125, 2017.

[5] H. Wang, H. Tianfield, and Q. Mair, “Auction based resource allocation
in cloud computing,” Multiagent and Grid Systems, vol. 10, 2014.

[6] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems. Springer,
2004.

[7] N. Naz, A. H. Malik, A. B. Khurshid, F. Aziz, B. Alouffi, M. I.
Uddin, and A. AlGhamdi, “Efficient processing of image processing
applications on CPU/GPU,” Mathematical Problems in Engineering,
vol. 2020, pp. 1–14, Oct. 2020.

[8] N. Felemban, Z. Lu, T. L. Porta, and K. Chan, “Video processing of
complex activity detection in resource-constrained networks,” in Proc.
of IEEE GlobalSIP, 2016.

[9] N. Felemban, “On-demand video processing in wireless networks an
application: Action recognition,” Master’s thesis, The Pennsylvania State
University, 2016.

[10] X. Fang, Z. Cai, W. Tang, G. Luo, J. Luo, R. Bi, and H. Gao, “Job
scheduling to minimize total completion time on multiple edge servers,”
IEEE Tran. on Network Science and Engineering, vol. 7, no. 4, 2020.

[11] L. Epstein and M. Levy, “Dynamic multi-dimensional bin-packing,”
Journal of Discrete Algorithms, vol. 8, no. 4, 2010.

[12] E. Segal-Halevi, A. Hassidim, and Y. Aumann, “MUDA: A truthful
multi-unit double-auction mechanism,” in Proc. of AAAI, 2018.

[13] A. G. Tasiopoulos, O. Ascigil, I. Psaras, and G. Pavlou, “Edge-map:
Auction markets for edge resource provisioning,” in Proc. of IEEE
WoWMoM, 2018.

[14] D. T. Nguyen, L. B. Le, and V. Bhargava, “Price-based resource
allocation for edge computing: A market equilibrium approach,” IEEE
Transactions on Cloud Computing, 2018.

[15] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang,
and K. S. Chan, “Service placement and request scheduling for data-
intensive applications in edge clouds,” in Proc. of IEEE INFOCOM,
2019.

