Practical geospatial and sociodemographic predictors of human mobility
Practical geospatial and sociodemographic predictors of human mobility
Understanding seasonal human mobility at subnational scales has important implications across sciences, from urban planning efforts to disease modelling and control. Assessing how, when, and where populations move over the course of the year, however, requires spatially and temporally resolved datasets spanning large periods of time, which can be rare, contain sensitive information, or may be proprietary. Here, we aim to explore how a set of broadly available covariates can describe typical seasonal subnational mobility in Kenya pre-COVID-19, therefore enabling better modelling of seasonal mobility across low- and middle-income country (LMIC) settings in non-pandemic settings. To do this, we used the Google Aggregated Mobility Research Dataset, containing anonymized mobility flows aggregated over users who have turned on the Location History setting, which is off by default. We combined this with socioeconomic and geospatial covariates from 2018 to 2019 to quantify seasonal changes in domestic and international mobility patterns across years. We undertook a spatiotemporal analysis within a Bayesian framework to identify relevant geospatial and socioeconomic covariates explaining human movement patterns, while accounting for spatial and temporal autocorrelations. Typical pre-pandemic mobility patterns in Kenya mostly consisted of shorter, within-county trips, followed by longer domestic travel between counties and international travel, which is important in establishing how mobility patterns changed post-pandemic. Mobility peaked in August and December, closely corresponding to school holiday seasons, which was found to be an important predictor in our model. We further found that socioeconomic variables including urbanicity, poverty, and female education strongly explained mobility patterns, in addition to geospatial covariates such as accessibility to major population centres and temperature. These findings derived from novel data sources elucidate broad spatiotemporal patterns of how populations move within and beyond Kenya, and can be easily generalized to other LMIC settings before the COVID-19 pandemic. Understanding such pre-pandemic mobility patterns provides a crucial baseline to interpret both how these patterns have changed as a result of the pandemic, as well as whether human mobility patterns have been permanently altered once the pandemic subsides. Our findings outline key correlates of mobility using broadly available covariates, alleviating the data bottlenecks of highly sensitive and proprietary mobile phone datasets, which many researchers do not have access to. These results further provide novel insight on monitoring mobility proxies in the context of disease surveillance and control efforts through LMIC settings.
15389
Ruktanonchai, Corrine W.
44e6fcd0-246b-480e-8940-9557dbb7c0cc
Lai, Shengjie
b57a5fe8-cfb6-4fa7-b414-a98bb891b001
Utazi, Chigozie E.
e69ca81e-fb23-4bc1-99a5-25c9e0f4d6f9
Cunningham, Alex D.
5fc20e44-6b0c-4866-be89-d94cbe46ce10
Koper, Patrycja
6dc66b8a-6e8e-45c9-9a1b-6322e70a39bf
Rogers, Grant E.
68812a4d-98bf-42a5-b21a-593462f34691
Ruktanonchai, Nick W.
fe68cb8d-3760-4955-99fa-47d43f86580a
Sadilek, Adam
8f38d1c3-da97-4ae8-9dbb-5b756ba878f3
Woods, Dorothea
2a542d84-18c1-48d5-b039-ebba67562006
Tatem, Andrew J.
6c6de104-a5f9-46e0-bb93-a1a7c980513e
Steele, Jessica E.
5cbba8c8-f3fd-41ee-82c8-0aa13c04c04d
Sorichetta, Alessandro
c80d941b-a3f5-4a6d-9a19-e3eeba84443c
28 July 2021
Ruktanonchai, Corrine W.
44e6fcd0-246b-480e-8940-9557dbb7c0cc
Lai, Shengjie
b57a5fe8-cfb6-4fa7-b414-a98bb891b001
Utazi, Chigozie E.
e69ca81e-fb23-4bc1-99a5-25c9e0f4d6f9
Cunningham, Alex D.
5fc20e44-6b0c-4866-be89-d94cbe46ce10
Koper, Patrycja
6dc66b8a-6e8e-45c9-9a1b-6322e70a39bf
Rogers, Grant E.
68812a4d-98bf-42a5-b21a-593462f34691
Ruktanonchai, Nick W.
fe68cb8d-3760-4955-99fa-47d43f86580a
Sadilek, Adam
8f38d1c3-da97-4ae8-9dbb-5b756ba878f3
Woods, Dorothea
2a542d84-18c1-48d5-b039-ebba67562006
Tatem, Andrew J.
6c6de104-a5f9-46e0-bb93-a1a7c980513e
Steele, Jessica E.
5cbba8c8-f3fd-41ee-82c8-0aa13c04c04d
Sorichetta, Alessandro
c80d941b-a3f5-4a6d-9a19-e3eeba84443c
Ruktanonchai, Corrine W., Lai, Shengjie, Utazi, Chigozie E., Cunningham, Alex D., Koper, Patrycja, Rogers, Grant E., Ruktanonchai, Nick W., Sadilek, Adam, Woods, Dorothea, Tatem, Andrew J., Steele, Jessica E. and Sorichetta, Alessandro
(2021)
Practical geospatial and sociodemographic predictors of human mobility.
Scientific Reports, 11 (1), , [15389].
(doi:10.1038/s41598-021-94683-7).
Abstract
Understanding seasonal human mobility at subnational scales has important implications across sciences, from urban planning efforts to disease modelling and control. Assessing how, when, and where populations move over the course of the year, however, requires spatially and temporally resolved datasets spanning large periods of time, which can be rare, contain sensitive information, or may be proprietary. Here, we aim to explore how a set of broadly available covariates can describe typical seasonal subnational mobility in Kenya pre-COVID-19, therefore enabling better modelling of seasonal mobility across low- and middle-income country (LMIC) settings in non-pandemic settings. To do this, we used the Google Aggregated Mobility Research Dataset, containing anonymized mobility flows aggregated over users who have turned on the Location History setting, which is off by default. We combined this with socioeconomic and geospatial covariates from 2018 to 2019 to quantify seasonal changes in domestic and international mobility patterns across years. We undertook a spatiotemporal analysis within a Bayesian framework to identify relevant geospatial and socioeconomic covariates explaining human movement patterns, while accounting for spatial and temporal autocorrelations. Typical pre-pandemic mobility patterns in Kenya mostly consisted of shorter, within-county trips, followed by longer domestic travel between counties and international travel, which is important in establishing how mobility patterns changed post-pandemic. Mobility peaked in August and December, closely corresponding to school holiday seasons, which was found to be an important predictor in our model. We further found that socioeconomic variables including urbanicity, poverty, and female education strongly explained mobility patterns, in addition to geospatial covariates such as accessibility to major population centres and temperature. These findings derived from novel data sources elucidate broad spatiotemporal patterns of how populations move within and beyond Kenya, and can be easily generalized to other LMIC settings before the COVID-19 pandemic. Understanding such pre-pandemic mobility patterns provides a crucial baseline to interpret both how these patterns have changed as a result of the pandemic, as well as whether human mobility patterns have been permanently altered once the pandemic subsides. Our findings outline key correlates of mobility using broadly available covariates, alleviating the data bottlenecks of highly sensitive and proprietary mobile phone datasets, which many researchers do not have access to. These results further provide novel insight on monitoring mobility proxies in the context of disease surveillance and control efforts through LMIC settings.
Text
s41598-021-94683-7
- Version of Record
More information
Submitted date: 9 April 2021
Accepted/In Press date: 13 July 2021
Published date: 28 July 2021
Additional Information:
Publisher Copyright:
© 2021, The Author(s).
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
Identifiers
Local EPrints ID: 450771
URI: http://eprints.soton.ac.uk/id/eprint/450771
ISSN: 2045-2322
PURE UUID: 1b263067-7d6e-46db-af57-b02479a01d8e
Catalogue record
Date deposited: 11 Aug 2021 16:30
Last modified: 17 Mar 2024 03:52
Export record
Altmetrics
Contributors
Author:
Corrine W. Ruktanonchai
Author:
Alex D. Cunningham
Author:
Grant E. Rogers
Author:
Nick W. Ruktanonchai
Author:
Adam Sadilek
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics