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ABSTRACT

In low- and middle-income countries (LMICs), household survey data are a main source of
information for planning, evaluation, and decision-making. LMIC survey methods have not
changed substantially in forty years, while population trends and technologies have. This
mismatch is likely excluding an increasing number of vulnerable and mobile populations and
leading to erosion in LMIC household survey data accuracy. When populations are under-
represented in surveys, they are less likely to benefit from funds allocated by governments and
international agencies to promote health and social equity. This thesis evaluates the accuracy of
using gridded population sample frames as an alternative to census sample frames, and the
feasibility of implementing gridded population surveys in a real-world setting.

To compare accuracy of census and gridded population sample frames, a realistic “true”
population was simulated in Khomas, Namibia for 2016. The simulated population was derived
from Namibia’s 2011 census and 2013 Demographic and Health Survey comprising several
household outcome indicators and latitude-longitude coordinates digitised from actual building
locations in satellite imagery. Sixteen versions of realistic outdated-inaccurate censuses were
simulated by (a) removing households in buildings not present in satellite imagery in 2011, 2006,
and 2001, and (b) randomly removing a percentage of rural, urban slum, and urban non-slum
households based on a literature review of LMIC census undercounts. For each realistic census, a
gridded population sample frame was modelled using WorldPop methodologies. Accuracy was
then assessed by drawing repeated samples from the simulated censuses and gridded population
datasets, and comparing them to the “true” population. To evaluate feasibility, a gridded
population survey was conducted in Kathmandu, Nepal and focus group discussions and
observation were made with survey implementers.

In the accuracy assessment, | found that the main source of error in gridded population datasets
was not outdated, inaccurate census inputs, but rather, the WorldPop practice of using average
population density from aggregated census units to predict population density in finer grid cells.
Despite inaccuracies, | found that WorldPop methods disaggregated population in or around
settlements, and that the distribution of population estimates in grid cells within urban areas
were +/-20% the “true” population distribution. Gridded population sample frames derived from
outdated or inaccurate census data produced more accurate survey estimates than the original
outdated, inaccurate census EAs frames. In the Kathmandu feasibility assessment, gridded
population sampling proved to be cost-effective and feasible, and use of an area-microcensus
design identified more vulnerable and mobile households than a comparable two-stage sample.
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Definitions and Abbreviations

AIS
Ambient
ArcGIS
ARK
CDC
CDR
CIPRB
CPS
CRAN
cv
DALYs
DHS

EA

EPI

FGD
FP-MCH
GeoODK
GHDx
GHSL
GHS-POP
GIS
GitHub
GPS
GPW
gridez
GRUMP
GUF
HERD
HIC
HRSL
ICC

iD Editor
IDP

AIDS Indicator Survey

Ambient population is the 24-hour average of day- and night-time population
A platform to create, manage, analyse, and map spatial data
Advancement through Research and Knowledge

Centers for Disease Control and Prevention

Call Detail Record

Centre for Injury Prevention and Research Bangladesh
Contraceptive Prevalence Survey

Comprehensive R Archive Network

Coefficient of Variation

Disability Adjusted Life Years

Demographic and Health Survey

Enumeration Area

Expanded Programme on Immunization

Focus Group Discussion

Family Planning-Maternal Child Health

A tablet-based questionnaire tool that can visualize and store spatial location data
Global Health Data Exchange

Global Human Settlement Layer

Global Human Settlement - Population layer

Geographic Information System

An open-source software development platform

Global Positioning System

Gridded Population of the World

An algorithm to create gridded enumeration zones from gridded population data
Global Rural-Urban Mapping Project

Global Urban Footprint

(formally) Health Research and Social Development Forum
High Income Country

High Resolution Settlement Layer

Inter-cluster correlation

An online, user-friendly tool to edit OpenStreetMap

Internally Displaced Person

XVii



LDC
LMIC
LSMS
MAE
MAUP
MICS
MIS
MSE
NSA
OSM
OSMAnNd
PES
PPES
PPS
PSU
PubMed
R

RHS
RMSE
RTI
Scopus
SDG
Stata
STEPS
SSu
SUE
UNEP
UNICEF
USAID
VAM
WEFS
WHO
WPE

Least Developed Country

Low- or Middle-Income Country

Living Standards Measurement Survey

Mean Absolute Error

Modifiable Areal Unit Problem

Multiple Indicator Cluster Survey

Malaria Indicator Survey

Mean Square Error

National Statistical Agency

OpenStreetMap, a free crowd-sourced map of the world

A tablet-based application for field maps and navigation with OpenStreetMap data
Post Enumeration Survey

Probability Proportionate to Estimated Size

Probability Proportionate to Size

Primary Sampling Unit

A database of peer-reviewed scientific literature from health and medical fields
A language and environment for statistical computing and graphics
Reproductive Health Survey

Root Mean Square Error

(formerly) Research Triangle Institute

A database of peer-reviewed scientific literature from physical and social sciences
Sustainable Development Goals

A statistical software package

STEPwise Approach to Surveillance Surveys

Secondary Sampling Unit

Surveys for Urban Equity

United Nations Environment Programme

United Nations Children’s Emergency Fund

United States Agency for International Development

Vulnerability Analysis and Mapping

World Fertility Survey

World Health Organization

World Population Estimate

XViii



Chapter 1

Chapter 1: Introduction

In low- and middle-income countries (LMICs), household health and economic survey methods
and tools have not changed substantially in forty years. However, in the same time period,
population trends, as well as the methods and tools to measure populations, have changed
significantly. Innovations in survey methods and tools have been widely adopted in high-income
countries, for example, collection of survey responses via phone and the internet. However, in
LMICs, the continued use of outdated survey methods and tools in rapidly changing societies has

excluded important sub-populations and led to an erosion in survey data accuracy.

Household health and economic surveys are essential in this era of the Sustainable Development
Goals (SDGs) where all countries aim to achieve 17 goals by 2030, including zero extreme poverty
and zero hunger whilst leaving no one behind (UN-DESA, 2018). In LMICs, household surveys are
often the only source of information about dozens of the 232 indicators used to track progress
toward the SDGs (IAEG-SDGs, 2017). In countries where other population data exist, surveys may
still be used because survey results are easily disaggregated by income, sex, age, race, and other
characteristics which are required for SDG reporting (Diaz et al., 2017). SDGs are measured for all
countries, but are especially important in LMICs where poverty and poor health are highly

prevalent, and often unequally distributed (Diaz et al., 2017).

SDG and other development indicators are important for planning at all scales — city/district,
national, and international (UN-DESA, 2014; UN-Habitat, 2016). Decision-makers involved with
city planning or district development require representative, timely data about multiple
population characteristics, disaggregated by sub-group and local area to design appropriate
policies, programmes, and infrastructure (UN-Habitat, 2016). Regional and national policy-makers
depend on the same data to prioritize agendas and budgets, and to make decisions. International
decision-makers, namely funders, also use these data, and need them to be comparable across
countries to prioritize global agendas and to target funding (IAEG-SDGs, 2017). Household surveys

are thus, additionally, attractive to collect standardized indicators across countries and over time.

A large number of household surveys are performed on an ad-hoc basis, and often focus on a
single topic. However, with the financial support of routine survey programmes, multi-topic
nationally-representative surveys implemented by national statistical agencies have become
common place. Routine survey programmes such as the Demographic and Health Surveys (DHS)
(ICF International, 2017), Multiple Indicator Cluster Surveys (MICS) (UNICEF, 2019), and Living
Standard Measurement Surveys (LSMS) (Grosh and Munoz, 1996) were each established in the

1980s to collect hundreds of standardized health, demographic, social, and economic indicators
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about populations in LMICs. These surveys use essentially the same methods and tools, which are

considered the gold-standard among development practitioners.

Together the DHS, MICS, and LSMS comprise a large portion of the data being used to monitor the
SDGs and to make development decisions. It is standard practice to report SDG indicators
disaggregated by gender, wealth, geographic area, and other sub-groups. Not only does
disaggregation reveal socioeconomic disparities in health and economic outcomes, it can suggest
issues of under-representation in the underlying household survey data. For example, fewer
urban poor households are sampled in many routine household surveys than would be expected

(Elsey et al., 2016).

In this thesis, | review evidence that millions of people are unintentionally excluded from the DHS,
MICS, LSMS, and other similar surveys worldwide. Exclusion happens first, in census sample
frames, second, during survey design, and third, during survey implementation. Additional
populations, including homeless, nomads, prisoners and people living in care-homes, are
intentionally excluded from surveys by design because they are not considered to be part of the
general, residential target population. Intentionally and unintentionally excluded populations in

household surveys are overwhelmingly poor, vulnerable, and/or mobile.

When populations are excluded or under-represented in surveys, they are much less likely to
benefit from the billions of pounds in funding allocated each year by governments and
international aid agencies to promote health and social equity in LMICs (Development Initiatives,
2018). If survey coverage of the general residential population improves, we can expect a larger
portion of respondents to be poor, vulnerable, and/or mobile. Quantifying the size of intentionally
excluded populations could further contextualize our measurements of the general residential
population for decision-makers. With this more accurate information, governments and donors
stand to make greater, and more equitable, impacts on the health and livelihoods of people in

LMICs.

1.1 Outline of thesis

In Chapter 2, | present evidence that populations in LMICs have undergone massive change over
the last four decades, particularly in urban areas, and that household survey methods have not
changed since the 1980s. | argue that outdated survey methods and tools, likely under-represents
the most vulnerable populations in standard household survey data, leading to bias,
misclassification and poorly informed decisions about the populations which are often of greatest

interest in survey data.
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In Chapter 3, | outline requirements for a simulated, realistic population. Here | summarize the
methods and parameters developed in collaboration with colleagues to generate a realistic,
synthetic population from a census sample, household survey, spatial covariates, and digitized
building locations. The second part of this chapter includes a systematic literature review and
summary of types of populations that are under-counted in LMIC censuses, including ranges of
under-counts in rural, urban slum, and urban non-slum populations. | also estimate change in
population over time (2001-2016) based on satellite imagery. | use these findings to generate 16
realistic census scenarios in which population are missing at low, middle, and high rates, and the

data are five, ten, and 15 years out of date.

Chapter 4 is a study of survey sample frame accuracy. This chapter reviews the methods and
parameters that | used to model each of the simulated census scenarios as a gridded population
dataset using WorldPop’s Random Forest model and publicly available spatial covariate datasets.
This chapter ends with an analysis of gridded population dataset accuracy at the scale of grid cells,
and evaluates whether accuracy of gridded population estimates can be improved by aggregating

cells.

Chapter 5 is a study of gridded population survey accuracy in a typical LMIC urban context. | open
this chapter with a review of standard survey methods and a review of existing gridded
population surveys, comparing the ways in which gridded population sampling and census-based
sampling are similar or different. The focus of this chapter is an assessment of gridded population
survey accuracy, which | evaluate with repeated samples from a census sample frame and two

gridded population sample frames under various scenarios of outdated, inaccurate input data.

Chapter 6 is a study of survey implementation methods and tools, specifically the feasibility of
implementing gridded population surveys in complex urban environments. This chapter describes
a real-world implementation of a gridded population survey in Kathmandu, Nepal, a highly
complex city where standard surveys are thought to omit the urban poorest (Elsey et al., 2016). In
this gridded population survey, | randomize sampling areas to either an area-microcensus or two-
stage sample design, allowing me to compare types of households that are sampled in an area-
microcensus survey but are missed using a typical two-stage survey design. Next | describe
qualitative data collection methods and results from the implementation, including the

experience of survey planners and survey implementers.
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1.2

1.2.1

1.2.2

1.23

1.3

Contributions

Contribution to state of knowledge

Quantification of populations who are unintentionally excluded or misclassified in
census-based household surveys.

Understanding of the specific methods and protocols that lead to unintentional
exclusion and misclassification of vulnerable and mobile populations in census-based

household surveys.

Methodological contribution

Requirements for simulation of a realistic population geo-located to realistic building
locations in a LMIC context.

A method to assess cell-level accuracy of gridded population datasets.

A method to quantify the impact of outdated, inaccurate census data on the accuracy of
top-down gridded population datasets.

A method to compare the accuracy of gridded population surveys and typical census-

based surveys with regard to estimated population indicators.

Contribution to practice

Perform the first cell-level accuracy assessment of gridded population data

Influence the types of accuracy assessments performed by gridded population data
modellers, moving the field from accuracy assessments as the scale of the input data (e.g.,
administrative units) to accuracy assessments at the scale of the output data (i.e., grid
cells).

Feasible methods to implement gridded population surveys and improve representation
of households and individuals who might otherwise be excluded from standard household
surveys.

Influence more equitable targeting of development resources to vulnerable and mobile

populations in LMICs.

Publications

During the course of this thesis, the following publications stemmed directly from this work:
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Thomson DR, Stevens FR, Ruktanonchai NW, Tatem AJ, Castro MC. 2017. GridSample: An R
Package to Generate Household Survey Primary Sampling Units (PSUs) from Gridded
Population Data. Int J Health Geogr; 16: doi: 10.1186/s12942-017-0098-4.

Thomson DR, Kools L, Jochem WC. 2018. Linking synthetic populations to household
geolocations: a demonstration in Namibia. Data; 3(3): doi: 10.3390/data3030030.

Thomson DR, Bhattarai R, Khanal S, Manandhar S, Dhungel R, Gajurel S, et al. 2019.
Addressing unintentional exclusion of vulnerable and mobile households in traditional
surveys in Kathmandu, Dhaka, and Hanoi: A mixed-methods feasibility study. Journal of

Urban Health; doi: 10.1007/s11524-020-00485-z.

Thomson DR, Kuffer M, Boo G, Hati B, Grippa T, Elsey H, et al. Need for an Integrated
Deprived Area “Slum” Mapping System (IDEAMAPS) in LMICs. 2020. Social Sci; 9(5): doi:
10.3390/s0csci9050080.

Thomson DR, Rhoda DA, Tatem AJ, Castro MC. Gridded population survey sampling: A
systematic scoping review of the field and strategic research agenda. 2020. Int J Health

Geogr; 19: doi: 10.1186/512942-020-00230-4.
During the course of this thesis, the following publications were related to this work:
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household surveys and use of data to address health inequities in three Asian cities:
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Open; 8(11): doi:10.1136/bmjopen-2018-024182.
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00363-3.
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Riches: Assessing poverty and vulnerability in urban Nepal. 2020. PLoS One; 15(2): doi:
10.1371/journal.pone.0226646.

Amer S, Thomson DR, Chew R, Rose A. Worldwide population estimates for small
geographic areas: can we do a better job? In: Big Data Meets Survey Science. 2020. Wiley:

Hoboken NJ.
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Chapter 2: Motivation

2.1 Personal motivation

| planned and implemented my first household survey as a graduate student at Harvard School of
Public Health in 2010. One of the two mwamis (traditional kings and administrators) on Idjwi
Island, DR Congo, sought to influence the dozens of international organizations located in eastern
DR Congo to invest in the island’s health system. Idjwi is located in the middle of Lake Kivu, which
separates DR Congo from Rwanda. By 2010, Idjwi had long been a destination for hundreds of
thousands of people escaping violence in Rwanda, Burundi, Uganda, and DR Congo (IRIN, 1996).
Further, population growth had been essentially unconstrained for decades due to lack of
availability of family planning services, along with personal preferences for large families to

ensure security in a context of high child mortality (Romanuik, 2011).

The mwami sought to build new facilities, supply basic medicines, and improve staff training so
that the sick no longer had to choose between no meaningful care, or use of prohibitively
expensive and infrequent motorboats to Goma or Bukavo in mainland DR Congo for care. The
mwami contacted Jacques Sebisaho, a clinician and former resident of Idjwi living in the US, to
organize data collection about the health situation on Idjwi. The aim was to both provide the
mwami with evidence to present to potential donors, and to brandish this evidence as reputable
by inviting researchers from an international recognized institution to collect it. Dr. Sebisaho
reached out to the Harvard Humanitarian Initiative, and organized a multi-disciplinary team of
Harvard graduate students from public health, medicine, policy, and design to conduct several
studies on Idjwi during the summer of 2010. | developed the methods and design for a multi-topic
household survey, and Michael Hadley oversaw the survey fieldwork and data cleaning. Together
we analysed and reported results of the survey to the mwami, Idjwi officials, and organizations

located in eastern DR Congo.

| was initially flummoxed about how to select a representative sample of households on Idjwi.
Then, and now, DR Congo’s last census was collected in 1984. Not only were population estimates
for Idjwi grossly outdated, they were not sufficiently disaggregated to serve as a household survey
sample frame. | had trained and worked as a geographer for the Demographic and Health Survey
programme, and was aware of the LandScan gridded population estimates produced in 1
kilometre by 1 kilometre grid cells for the globe. Out of desperation, | decided to use LandScan as
a sample frame, though at the time, no other survey team teams had reported use of a gridded
population sample frame. Instead, other household surveys in DR Congo had either performed

time-consuming and expensive enumeration activities to update the census sample frame (MdP
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and Macro International, 2008), or listed villages with population estimates from local leaders
(Coghlan et al., 2006). As students with limited funding, we did not have the capacity or time to

use either of these approaches.

With support of my supervisor, Dr. Marcia Castro, and faculty members Dr. Bethany Hedt-
Gauthier and Dr. Gunther Fink, | developed a new approach to select survey clusters of
approximately 40 households each with probability proportionate to population size, and derived
sample probability weights (Thomson et al., 2012). All survey preparations, including selection of
50 sampling units and production of field maps, were performed in the US before we first visited
Idjwi. | was nervous whether navigation with GPS devices and maps of printed satellite imagery
from Google Earth would be feasible and sensible for the field teams. | was also nervous that the

gridded population estimates might be wrong.

However, to our relief and to the benefit of the survey results, the field teams found the maps of
printed satellite imagery and overlaid cluster boundaries intuitive to use. Many had never seen a
laptop computer before, let alone satellite imagery, but these “pictures from the sky” showed
familiar paths, landmarks (e.g., large trees) and buildings clearly. Further, where LandScan
estimated higher population density, we observed greater density of buildings in satellite imagery,
and successfully located and interviewed those structures on the ground. | have since been
involved with a number of typical census-based household surveys, and appreciate, now, that the

Idjwi survey fieldwork ran as smoothly as any survey team could wish for.

During preparations for the Idjwi survey, | received an email announcing the release of a new
open-source gridded population dataset called AfriPop, which had more disaggregated estimates
than LandScan. Following the Idjwi survey, | contacted the AfriPop team lead, Dr. Andrew Tatem,
and described the potential high-impact use of gridded population data as a survey sample frame
in settings with outdated, inaccurate censuses. He agreed to volunteer the time of a researcher
and programmer on his team, Dr. Forest Stevens, to create an algorithm to automate gridded
population sampling methods. Over the next couple of years, Dr. Stevens and | worked remotely
to develop and release the GridSample R package, and presented this work at an international

Health Systems Research conference in 2014.

Through this conference, | met Dr. Helen Elsey, an urban health researcher at University of Leeds,
and Dr. Sushil Baral, director of a public health research organization in Kathmandu, Nepal. Dr.
Elsey, Dr. Baral, and their research teams were struggling at the time to explain why the urban
poorest in Kathmandu appeared to be grossly underrepresented in typical household survey data,
even when the surveys were implemented by highly experienced teams using gold-standard

protocols. They wondered if the typical household survey methodology itself might
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unintentionally exclude the urban poorest, and whether a new sample frame, and/or new survey
protocols could more accurately represent the urban poorest in surveys. In 2014 and 2015, |
worked with Dr. Elsey, Dr. Baral and others to outline possible ways in which poor urban

households might be unintentionally excluded in typical census-based LMIC household surveys.

We set out to test our hypotheses with our own gridded population survey in Kathmandu in 2015,
though it was interrupted by devastating earthquakes in Nepal that year. We had completed the
mapping and listing of households in nearly all of our 90 survey clusters by the time the first
earthquake struck, which provided some evidence about household and dwelling configurations
in the city. This experience and our limited data helped us to further flesh out our hypotheses
about how and why urban poor households are underrepresented in standard surveys (Elsey et

al., 2016).

Following surveys in both Idjwi and Kathmandu, | became deeply concerned that huge numbers of
the most vulnerable people in the poorest countries on this planet, including rural-to-urban
migrants and urban slum dwellers, remain invisible in global health statistics. | was further
concerned that the best efforts by governments and donors to meet the needs of the poorest,
and growing urban inequities, are doomed to fail without accurate survey data. | pursued this
thesis with Dr. Tatem and colleagues to evaluate tools and methods that might improve the
accuracy of household survey data such that the decisions and resources allocated to

development in LMICs stand a chance of improving the lives of the most vulnerable.

2.2 Routinely collected population data

In this section, | review available sources of routinely collected population demographic, health
and economic data, and consider the extent to which these data sources are timely,
representative, and disaggregated for use by planning and development decision-makers at
city/district, national, and international levels. The main sources of routinely collected population
data are decennial censuses, administrative records, and household surveys. The focus of this
section is on population counts, which are useful for decision-making and for selecting
representative household surveys, as well as population characteristics such as health or wealth

status.

2.2.1 Decennial censuses

Censuses are a complete count of the population at a point in time conducted by a national
government. A typical census requires billions of pounds and several years of preparation, is

conducted over the course of a few weeks, and includes age, sex, education, and occupation

8
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information for each person, as well as their household membership, and household physical
structure information. A count of people in the general residential population who do not
respond should be imputed by the responsible national government agency (UNSD, 2010).
Institutional populations, such as those living in army barracks or care-homes, as well as nomadic
populations and homeless street-sleeping populations, are counted separately, and should be
adjusted for under-counts using post-enumeration techniques and imputation (UNSD, 2010;
Skinner, 2018). Depending on the country, informally settled populations, such as people living in
unregistered slums and non-citizens, are sometimes intentionally excluded (UNSD, 2010).
Censuses are customarily conducted decennially (every 10 years), though many LMICs do not

perform censuses on schedule due to funding shortfalls, civil conflict, or political crisis.

The quality and frequency of decennial censuses have steadily improved in LMICs over time.
However, in Africa, Asia, and Latin America during the 2010 round, census accuracy was
guestionable in 13 countries that failed to correct for missing, invalid or inconsistent responses in
their censuses (UNSD, 2010). Without corrections, some of the poorest and most vulnerable
people in these countries would have been excluded from the census, and a majority of those
excluded (e.g., street sleepers, informally settled populations, institutional populations, and non-
citizens) would have been from cities (Carr-Hill, 2013). Seventeen additional countries in these
regions failed to administer a census on schedule (UNSD, 2019). Given the speed and magnitude
of urbanization in African and Asian countries, even high-quality census data can become

outdated within a few years of collection. These issues are explored in greater depth in Chapter 3.

While well-conducted censuses are representative of the population and can be disaggregated to
local area and by socio-demographic characteristics, the data are extremely expensive, collected
infrequently, and cover few indicators used in planning and development initiatives such as the
Sustainable Development Goals (SDGs). In a LMIC national statistical agency (NSA), paying for a
well-conducted census comes at the expense of other quality data. The 2010 Ghana Population
and Housing census, for example, cost 72 million US dollars and accounted for 90% of the NSA
total budget between 2010 and 2013 (Chen et al., 2013). Censuses serve as an ideal survey
sample frame, if they are corrected for missing responses and are not too outdated, though both

of these conditions are rarely met in LMICs.

2.2.2 Administrative records

Administrative records include birth and death registries, health and crime databases, and tax and
land records, which together can provide near-real-time information about population counts and

their demographic, health, and economic conditions. While administrative records can be timely
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and often disaggregated to a local level, they are considered to be egregiously biased in LMICs
due to incomplete coverage and/or poor quality of administrative record-keeping (Mahapatra et
al., 2007; Setel et al., 2007). Part of the problem is that administrative data are extremely
expensive to collect and maintain, as they depend on the entire government apparatus working at

full capacity, continuously.

Only a few LMICs have been able to improve their most basic vital registration systems over the
last 50 years. For example, an estimated 50 million new born children still go unregistered each
year worldwide (Mahapatra et al., 2007). Of the 75 countries in Africa and Asia that reported vital
registration data to the UN for the 2015 Demographic Yearbook, only 9 (28%) African countries
and 26 (60%) Asian countries were thought to have registered more than 90% of their national
births (UNSD, 2016). Administrative records are thus not considered a population-representative
data source on their own; they are used cautiously, or not at all, in decision-making, and never

serve directly as a survey sample frame.

223 Representative household surveys

In the absence of representative administrative data and infrequent censuses in LMICs,
governments tend to turn to nationally-representative household surveys for data. Household
surveys cover far more indicators, and are substantially more affordable than either censuses or
administrative records. The use of nationally-representative probability survey samples originated
in wealthy countries. In the United States (US), for example, the first representative probability
surveys were used to assess the labour force during The Depression and World War Il (Groves et
al., 2009). These methods evolved in the 1940s and 1950s with consumer surveys, the 1960s with
crime and victimisation surveys, and the 1970s with the first population-level health surveys
(Groves et al., 2009). By 1980, the US government and international agencies began funding large-

scale routine health surveys, both domestically and internationally.

The Global Health Database Exchange (GHDx) registered 1,585 nationally-representative multi-
topic household probability surveys in 177 countries between 1980 and 20141, These surveys
focus on reproductive and child health — 39 Reproductive Health Surveys (RHS), 297 Demographic
and Health Surveys (DHS), and 236 Multiple Indicator Cluster Surveys (MICS); chronic illness — 159
STEPwise Approach to Surveillance Surveys (STEPS); malaria or HIV/AIDS — 22 Malaria Indicator
Surveys (MIS) and 10 AIDS Indicator Surveys (AlS); livelihoods — 119 Living Standard Measurement

1] use January 1, 2015 as a cut off because the database was not complete for recent surveys which were
being cleaned and published at the time of this writing in 2017.
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Surveys (LSMS); and at least 703 other national household surveys on similar topics (IHME, 2020).
Over 100 countries have had five such surveys since 1980, and 62 countries have had ten or more

such surveys in the same time frame (IHME, 2020).

As statistical methods and computer-based databases have advanced, governments and
international donors have increased the capacity to administer and use survey data in LMICs,
resulting in a steady increase in the number of national household surveys implemented by
government over time (Figure 1). Although some argue that these investments have come at the
expense of strengthening administrative data collection systems (Setel et al., 2007), the reality is
that survey data are the main source of information used for planning and development decision-
making in LMICs today. Survey data are often preferred to census and administrative data
because they are (intended to be) representative of national and sub-national populations, can be
disaggregated by sub-group, collected more frequently than census data, use standardized
guestionnaires across countries, cover hundreds of indicators each, and cost much less to

implement (Murray, 2007).

The private sector collects dozens of additional nationally-representative surveys globally to
monitor consumer trends (Neilsen, 2017) and public opinions (Gallup, 2017a). Rapid surveys are
also conducted after natural disasters and during conflicts to assess and respond to urgent needs

(HDX, 2017; WFP, 2020).
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The focus of this thesis will be on routine national household probability surveys implemented by
national governments as part of the DHS, MICS, and LSMS programmes because the results of
these surveys are often adapted as official national statistics and widely used for development
decision-making. However, given the similarity of methods and tools, implementers of rapid
assessment, such as the Vulnerable Analysis and Mapping (VAM) surveys by World Food
Programme (WFP, 2020), and private sector surveys, for example, the World Poll by Gallup

(Gallup, 2017a), will find the issues, methods, and results in this thesis relevant to their surveys.

2.3 Standard census sampling

In this section, | review standard census-based sampling practices used by DHS, MICS, LSMS, and
other routine surveys. These are the currently accepted gold-standard survey methods to which |
will compare gridded population sampling in this thesis. Key manuals describing standard survey
design and implementation include: DHS Survey Sampling and Household Listing Manual (ICF
International, 2012a), MICS 5 Manual for Mapping and Household Listing (UNICEF, 2013), and the
LSMS Manual for Planning and Implementing the Living Standards Measurement Study Survey

(Grosh and Munoz, 1996).

Routine nationally-representative health and economic household surveys are generally
comprised of 10,000 or more households, cost approximately half a million US dollars each, and
take roughly two years to plan, implement and publish (UNSD, 2005b). As part of trends toward
decentralized government and increased disaggregation of health and economic statistics to
address local disparities, several surveys have been much larger and more expensive including the
2014 Kenya DHS which included over 36,000 households and was representative of 46 separate
counties (KNBS et al., 2015), and the 2015-16 India National Family Health Survey (DHS
equivalent) with over 600,000 households (IIPS and ICF International, 2017).

Small areas and then households are sampled at random from a complete dataset of the
population, usually a census. | reviewed the survey designs of all 157 Standard and Interim DHSs
conducted between 2000 and 2016 to get a sense of contemporary survey design practices (Table
1) (ICF International, 2020). Of the reviewed surveys, 94.3% used the last census as a sample
frame, and the remaining 5.7% used some other official government listing of areas or
households. Further, 51.0% used a sample frame more than five years old, and 12.7% used a
sample frame more than 10 years old, with the average sample frame age being 6.6 years. Given
that DHS methods are widely replicated; | consider these results to be reflective of broader survey

practice.
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Table 1. Sample frame source and age, Demographic and Health Surveys 2000-2016

Data from Demographic and Health Surveys (ICF International, 2020)

Census Other Sample Sample
Number of  sample government  Age of sample frame >5  frame >10
surveys frame sample frame  frame in years vyearsold years old
Region 2000-2016 Percent Percent Mean [Range] Percent Percent
Africa 90 95.6 4.4 6.8 [0-30] 52.2 12.2
Asia, Oceania 39 87.2 12.8 5.5 [1-15] 41.0 5.1
Central & South 19 100.0 0.0 8.2 [0-18] 63.2 36.8
America
Europe, Middle 9 100.0 0.0 5.7 [1-9] 55.6 0.0
East
All 157 94.3 5.7 6.6 [0-30] 51.0 12.7

Complex sampling techniques are used to achieve the greatest amount of statistical power while
minimizing costs. These techniques include stratification and multistage cluster sampling.
Stratification means that independent samples are drawn from each sub-region of the country
(Figure 2). Two-stage cluster design means that census enumeration areas (EAs) with non-zero
populations are sampled first with probability proportionate to population size (PPS), and then
households are listed in selected EAs and sampled (UNSD, 2005b). Three-stage designs are
sometime used where census EAs are not available or when the EA listing is extremely long
(UNSD, 2005a). In a three-stage design, larger administrative areas are sampled first with PPS,
smaller administrative areas are sampled second at random or with PPS, and households are
listed and sampled third. Example three-stage cluster surveys include the 2005 Egypt DHS (El-
Zanaty and Way, 2006) and 2015 Colombia DHS (MINSALUD and Profamilia, 2015).

Stratify by In each Sample Blercampie Enumerate List households Sample from Interview
subnational stratum, from EA P buildings in each household selected
urban domain in each PSU

region list EAs (PSU) listing PSU listing households

Figure 2. Overview of the standard household survey sampling workflow
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Routine national household surveys use the same field implementation methods today as were
developed in the 1980s for a, then, majority-rural context. Generally, the buildings in each
sampled EA (also called cluster or primary sampling unit — PSU) are manually mapped, and all
households are listed by a mapper-lister team several months before an interview team returns
and interview 20-30 sampled households per PSU (Figure 2). A team of one mapper and one lister
visits each PSU and performs the following. The mapper hand-draws all structures, streets, paths,
and landmarks on a blank piece of paper (Grosh and Munoz, 1996; ICF International, 20123;
UNICEF, 2013). Generally, available detailed satellite imagery (e.g., Google Earth) or digital maps
(e.g., based on OpenStreetMap) are not used. In routine surveys, if the population identified on
the ground is much larger than the target PSU size, the mapper segments the PSU into two or
more approximately equal-sized segments in the field, randomly selects one segment using a

segmentation form, and then maps the selected segment.

The lister records all dwelling units and households within each mapped structure. According to
the DHS and MICS mapping-listing guidelines, all dwellings should be listed in all structures,
including mixed residential-commercial and non-residential structures, for example, a guard living
inside a factory or in a church (ICF International, 2012a; UNICEF, 2013). Presumably, dwelling and
household information is obtained when the lister speaks to residents or their neighbours about
the living arrangements in each structure, including questioning guards of commercial and
institutional buildings about staff who live on site. However, no explicit guidance or training is
provided by the DHS, MICS, or LSMS manuals to operationalize these listing activities (Grosh and
Munoz, 1996; ICF International, 2012a; UNICEF, 2013).

The household listing is then used by the survey planning team as the final sample frame to select
households to be interviewed. The final step of survey implementation is to send trained
interviewers to the field to locate the selected households and administer the survey
questionnaire. A great deal of training and guidance is provided to the interview teams to ensure
that respondents are well-informed, that confidentiality is achieved during the interview, and that
questions are administered and recorded in a standardized way (ICF International, 2012b; UNICEF,
2017). In recent years, the interview process was modernized; interviewers now administer
lengthy questionnaires on tablets rather than paper forms in most surveys. After interviews, a
number of important steps take place by the survey organizing team to clean, analyse, and

distribute the data.
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24 The unintentionally excluded and masked poor

There are at least five places in this standard household survey workflow where people are
unintentionally excluded from the listing (Figure 3). Each of these points is described below and
revisited in later chapters. Additionally, there are at least two ways in which urban people,
particularly the urban poorest, are misclassified and thus masked in current survey designs (Figure
3). I group these issues by their place in the survey workflow starting with sample frame (Chapter

4), then sample design (Chapter 5), and finally sample implementation (Chapter 6).

The exclusion of homeless, nomadic, and institutional populations from surveys is intentional. This
is partly because censuses have well-documented challenges to accurately count these
populations (UNSD, 2008, 2017). In addition, survey practitioners often consider homeless,
nomadic, and institutional populations as having special needs beyond those of the general
residential population, and thus separate surveys with different indicators employing different
methods and tools are used, including capture-recapture (Wright and Devine, 1992; Gurgel et al.,
2004; Stark et al., 2017), sampling from aggregation points (Peressini, Mcdonald and David, 2010;
Troisi et al., 2015), sampling from institutional registrars, and snowball sampling (Mckenzie and

Mistiaen, 2009).

However, unintentional exclusion of members of the target population threatens the accuracy of
survey results (Biemer, 2010). Furthermore, misclassification of populations and/or failing to
disaggregate population figures into meaningful sub-groups masks key survey findings and
renders the data unfit for use by decision-makers (Groves and Lyberg, 2010). The Total Survey
Error Framework outlines multiple, compounding sources of error in surveys, including errors in
sample frame coverage, respondent non-response, sampling, indicator measurement, and data
processing (Biemer, 2010). A broader Total Survey Quality Framework encompasses all issues of
survey error, but also considers issues of data relevance, usability, accessibility, timeliness,

completeness, credibility and comparability (Groves and Lyberg, 2010).
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Census-based ISIERIAW In each Sample Oversample Map List Sample the Interview
survey workflow EERERIGE] stratum, the EA urban buildings in households household selected

region list EAs listing domain clusters in clusters listing households

Strata Frame Design Domain Tools Protocols
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Figure 3. Five ways that poor people may be excluded, and two ways they may be masked, in
standard household surveys resulting in bias and/or misclassification

Adapted with permission from (Thomson, Bhattarai, et al., 2020)

24.1 Unintentional sample frame exclusion

Exclusion 1: Outdated or inaccurate census sample frame. In outdated or inaccurate sample
frames, newly settled communities especially in and around cities, are missing, or communities
are over/under-represented due to population shifts driven by births, deaths, and migration
resulting in sample frame coverage error. This problem is widespread in LMICs. Weak
government, lack of funding, technological limitations, and instability mean that censuses have
not been conducted in dozens of LMICs for more than ten years, for example, the D.R. Congo,

Somalia, Afghanistan, and Yemen (UNSD, 2019).

On the other end of the spectrum, most LMICs that are stable and developing rapidly have had a
recent census; however these datasets become quickly out-of-date due to high levels of migration
and urbanization (UNSD, 2005a). For example, the urban population grew by 10 percentage
points or more between 2005 and 2015 in Namibia (36.6% to 46.7%), Laos (27.4% to 38.6%), and
Thailand (37.5% to 50.4%) (UN-Habitat, 2016). While globalisation drives migration among all
socio-economic groups, poor households likely go missing from census sample frames at greater

rates than other households in countries where policies lead to mass eviction and displacement of

the poor (Carr-Hill, 2013).

In other LMICs, quality of census data is not trusted due to corruption or poor oversight. All of the
modern censuses in Nigeria, including the 1962-3, 1973, 1991, and 2006 censuses, have been
contentious with accusations of under-counts of rural populations and women, and over-counts
in the north of the country (Ahonsi, 1988; Okolo, 1999; Yin, 2007). In these contexts, it is often the
poor and marginalized who lack socio-political power who are not accurately recognized and

counted (Cobham, 2014), posing problems of under-coverage in the sample frame (Biemer, 2010).
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24.2 Unintentional sample design exclusion

Exclusion 2: Census EA sample frames require two- or three-stage sampling. Nearly every major
household survey conducted since the early 1980s has used census EAs or an equivalent
government administrative area dataset as the first-stage sample frame (Table 1). By using census
EAs for the initial sample frame, survey designers are forced to use multi-stage cluster sampling
techniques because each sample frame unit has a relatively large population. Multi-stage cluster
sampling introduces a time lag of several months between the mapping-listing and interview
phases (Lé and Verma, 1997), and in practice the lag time can be as long as two years, particularly
if the national statistical agency maintains a predefined national sample frame of households for

use in multiple surveys (UNSD, 2005a).

Standard household surveys seek to interview 20 to 30 households in each PSU (UNSD, 2005a; ICF
International, 2012a). In practice, the number of households per PSU ranges from five (MoH, BoS
and ICF Macro, 2010) to 45 (NPC and ICF International, 2014). Typical EAs, on the other hand, are
comprised of 100 to 300 households each, and it would not be statistically beneficial or logistically
feasible to interview them all (UNSD, 2005a; ICF International, 2012a; UNICEF, 2013). To choose a
small sample of households in each PSU, all households must be thoroughly mapped and listed,
which is a time-consuming, expensive, and — as | will outline in the following paragraphs — an
under-interrogated process. Seasonal or temporary migrants may be systematically under-listed
when the migrant household (or neighbour) is not present during the household listing resulting
in non-response error. In cases where seasonal and temporary migrant households are mapped
and listed, non-response error can be higher in this sub-group if interviews take place during a

different season.

While sampling experts expect that the specific households in EAs move or change between
decennial censuses, they expect that the total number and type of households in each EA to
remain relatively stable over a multi-year period (UNICEF, 2013). Stability of EA population totals
might have been a reasonable assumption in 1985, but it is unlikely to hold true in many LMICs

undergoing urban transitions today.

24.3 Unintentional sample implementation exclusion

Exclusion 3: In practice, households are excluded from surveys resulting in sampling error when
non-permanent structures are excluded (Table 2). Manuals by DHS, MICS, and LSMS assume that
structures are distinct and have a single use; the manuals provide no specific guidance to map and
list non-permanent tent or shack structures in neighbourhoods with permanent buildings, or non-

permanent structures occupied by seasonal migrants or construction workers (ICF International,
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2012a). If the structures of low-wage workers, including migrants, are not mapped, then their

households will be excluded from the household listing.

Exclusion 4: In practice, households are routinely not listed in hostels, shops, and guesthouses
resulting in further sampling error. Definitions of a household differ widely by survey and reflect
characteristics such as head of household type, sleeping arrangements, shared housekeeping,
and/or shared food (Randall et al., 2015) (Table 2). A dwelling is a single living space in a structure
which is shared by one or more households (Table 2). Long-term occupants of hostels, shops, and
guesthouses are likely excluded from many surveys because their dwellings are not perceived by
the mapping-listing team to be residential and thus not approached. Instead, these households
might be perceived as settled elsewhere, or otherwise external to the target residential

population (UNSD, 2005b).

However, given the high cost of housing in modern cities, a growing number of the working poor
take-up permanent residence in non-traditional and shared spaces. People who live in hostels and
guest-houses for months at a time are no more homeless or visitors than a young professional
who rents a converted garage or shipping container in San Francisco, or who lives on a canal boat
in London (Miles, 2016; Parry, 2018). Although these households may move often, they
participate in local economies and use local public services and should be considered as part of

the general residential population for the purpose of household surveys.

Exclusion 5: In practice, dwellings and households are conflated by the mapper-lister or
residents. There are no standard protocols for listers to interact with residents to identify the
correct number of dwellings and households per structure (Elsey et al., 2016). The DHS provides
the most guidance about mapping-listing, yet still does not provide specific guidance to
operationalize definitions and protocols in practice. The LSMS provides the least guidance and
only requires a dwelling listing rather than a household listing (Grosh and Munoz, 1996). |
summarize the content, and the lack thereof, of DHS, MICS, and LSMS mapping-listing manuals in

Table 3.

Questions should be asked of the mapping-listing protocol. In practice, do mappers-listers assume
that commercial and institutional buildings are unoccupied? If so, this would lead to an under-
listing of cleaning staff, guards, and professionals such as teachers or nurses who live part-time or
full-time at their place of work. Also, in practice, do mappers-listers assume the number of
dwellings per structure (e.g., one dwelling per structure)? If so, this would result in an under-

listing of households in poorer dwellings in many rapidly urbanizing contexts. This is because
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Table 2. Definitions of "dwelling" and "household" used in DHS, MICS, and LSMS

Survey Structure Dwelling Household
DHS A free-standing A room or a group of A person or a group of related or
(ICF building or other rooms normally intended  unrelated persons, who live
International, construction that can as a residence for one together in the same dwelling unit,
2012a) have one or more household (for example: who acknowledge one adult male
dwelling units for a single house, an or female 15 years old or older as
residential or apartment, a group of the head of the household, who
commercial use. rooms in a house); a share the same housekeeping
Residential structures  dwelling unit can also arrangements, and are considered
can have one or more  have more than one as one unit. In some cases, one
dwelling units (for household. may find a group of people living
example: single house, together in the same house, but
apartment structure). each person has separate eating
arrangements; they should be
counted as separate one-person
households. Collective living
arrangements such as army camps,
boarding schools, or prisons will
not be considered as households.
Examples of households are:

e a man with his wife or his
wives with or without children

e a man with his wife or his
wives, his children and his
parents

e a man with his wife or his
wives, his married children
living together for some social
or economic reasons (the
group recognize one person as
household head)

e a widowed or divorced man or
woman with or without
children

MICS A free-standing A room or a group of A person or a group of related or
(UNICEF, building that can have  rooms normally intended  unrelated persons, who live
2013) one or more dwellings  as a place of residence together in the same dwelling unit,
for residential or for one household (e.g.,a who share common living
commercial use. single house, an arrangements, who acknowledge
Residential structures  apartment, or a group of  the same person as the household
can have one or more  rooms in a house). head, who eat together and are
dwelling units (e.g., a However, a dwelling unit  considered as one unit.
single house or an can also be shared by
apartment building). more than one
household.
LSMS Not clear. “Dwelling” A group of rooms or a A group of people who share a
(Grosh and and “building” often single room occupied or roof and a cooking pot.
Munoz, used interchangeably. intended for occupancy
1996) as separate living

quarters by a family or
some other group of
persons living together,
or by a person living
alone.
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developers add new levels to the tops of structures and landlords carve dwellings into smaller
units to meet demands for affordable housing. These scenarios were encountered routinely

during a household survey in Kathmandu, which will be discussed in Chapter 6.

As a result of limited guidance, mappers-listers are very unlikely to have standardized, detailed
interactions with residents. Instead, mappers-listers may make assumptions about the types of
structures that are occupied, number of dwellings per structure, and the number of households
per dwelling. When mapper-listers hold brief conversations with residents, residents may not fully
understand the distinction between households and dwellings, and thus a multi-household

dwelling may be listed as one household. All of these issues would result in sampling error.

Multi-household dwellings are increasingly common in LMIC cities among the poor. While the
LSMS manual reports, “the average number of households per dwelling ranges from 0.9 to 1.1 in
most countries” (Grosh and Munoz, 1996), this text is more than 20 years old, and misleading if it
averages across rural and urban settings. The average number of households per dwelling today is
likely to vary widely between urban and rural settings, and by country. A 2015 urban health
survey in Kathmandu, Nepal, for example, reported a median of 2 households per dwelling, with a

range of 1 to 4 household per dwelling across 72 randomly selected PSUs (Elsey et al., 2016).

The lack of materials to train mappers and listers stands in stark contrast to the training of
interviewers. The Training Field Staff for DHS Surveys manual includes a template interviewer job
description, a candidate assessment screening tool, a template training schedule, content and
exercises for the training, sample tests, and field evaluation criteria (ICF Macro, 2009).
Additionally, template training manuals for the interviewers are provided by DHS and MICS
covering methods to build rapport with respondents, with detailed procedures to locate a
dwelling, approach a household, identify an eligible respondent, handle refusals, and complete
each question of the questionnaire on a tablet versus back-up paper form (ICF International,
2012b; UNICEF, 2017). Table 3 includes similar materials that mappers-listers and their trainers
would need to operationalize their work, but which are largely absent in routine survey

programmes.
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Table 3. Summary of DHS, MICS, and LSMS protocols for the survey mapping-listing process
Three green blocks indicate that the manual has an operational protocol, two blocks
indicates a partially operational protocol, and one block indicates a summary

description of a protocol that is not operational.

Criteria DHS MICS LSMS
GENERAL

Overview of survey aims and design ..- ...
Overview of the mapping-listing process . - ..- .
N

Definitions of key terms

Two-person mapping-listing team specified

Recommend # of mapping-listing teams

General responsibilities given, by role
TRAINING MATERIALS FOR TRAINERS

Candidate profile

Candidate assessment tools

Template training schedule

Template training content

Template location (of cluster) form

Template structure mapping form

Template dwelling/household listing form

Template segmentation form

Materials checklist for fieldwork

Training evaluation criteria / tool
TRAINING MATERIALS FOR MAPPERS-LISTERS

How to build rapport with local authorities

How to build rapport with residents

Protocol to prepare location map

Example (cluster) location map

Protocol to locate a cluster

Protocol to record cluster GPS coordinate .-- .
Protocol to segment large cluster .
Example completed cluster segmentation .--

Protocol to locate structure
Protocol to record structure
Example completed structure map ..-
Protocol to locate dwelling

Protocol to record dwelling

Protocol to locate household
Protocol to record household

H
N
Example completed listing .
Il

Protocol to split mapping & listing activities

Protocol for supervisor quality control
GUIDANCE FOR PLANNING TEAM

Protocol to securely store listing

Protocol to select household/dwelling sample .-- .. ...
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24.4 Masking the urban poor by design

Masking the poorest 1: Slum area boundaries are not available to stratify urban populations.
Slums are a growing reality in LMIC cities, and are associated with disparities in individual health
due to lack of basic water and sanitation systems, security of tenure, and/or access to
government services (Ezeh et al., 2017). While surveys and censuses have long reported
disaggregated statistics for urban and rural populations due to major differences in their health
and wellbeing, such disaggregation is extremely rare for urban slum and urban non-slum
populations, masking stark disparities between these groups. The 2005-06 and 2015-16 India
DHSs are among the few surveys to stratify urban slum and non-slum areas and report
disaggregated results (IIPS and Macro International, 2007; IIPS and ICF International, 2017). A
number of studies in LMICs have found that urban slum dwellers have similar, or even poorer,
child health outcomes than the poorest rural populations (Agarwal, 2011; Ezeh et al., 2017). Given
the importance of slum/non-slum disaggregated statistics for monitoring SDGs and making city-
level investment and development decisions (Lilford et al., 2017; UN-DESA, 2018; Thomson,
Linard, et al., 2019), the Total Survey Quality framework indicates that absence of slum/non-slum
disaggregation in survey statistics threatens the relevance of survey results (Biemer, 2010; Groves
and Lyberg, 2010). The main reason that urban estimates are not disaggregated, is that national
statistical offices lack a common slum area definition, and the capacity to map all slum areas in all

urban areas in LMICs is limited (Lilford et al., 2017).

Computer generated boundaries from high resolution satellite imagery around areas of
concentrated, disorganized, small buildings has yielded several slum area maps in LMICs;
however, these maps are limited in their coverage by the cost of high-resolution satellite imagery
and need for extensive computing power (Kuffer, Pfeffer and Sliuzas, 2016). Satellite imagery-
based slum area maps often lack field validation, and only reflect one characteristic of a slum:
unplanned, densely arranged structures. In select countries such as Bangladesh (Angeles et al.,
2009) and Brazil (Snyder et al., 2014), the government has been involved with lengthy and costly
field-based slum mapping efforts. Given the growing recognition that urban slum populations
comprise an increasing and substantial portion of urban populations in LMICs, the international
community is beginning to push for scalable efforts to map slum area boundaries to disaggregate

urban data in future censuses and surveys (Lilford et al., 2017).

Masking the poorest 2: Outdated urban boundaries misclassify peri-urban populations as rural.
It is common for the urban poorest to reside in peri-urban areas in order to access the city’s
economy and services whilst maintaining affordable housing. Around rapidly expanding cities,

basic water and sanitation infrastructure and government facilities are not installed at the same
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pace as new housing, resulting in concentrated slums (UN-Habitat, 2016). Depending on the last
time that official urban and rural area boundaries were updated, households located in these
peri-urban regions may function as part of the city but be misclassified as rural during a survey
threatening relevance of survey results for decision-making (Groves and Lyberg, 2010). Counting
urban slum dwellers as rural masks their unique urban poverty which results from living in high

density conditions and being more dependent on a cash economy than rural households.

2.5 Gridded population sampling

This section provides a brief explanation of gridded population data sources and sampling
approaches for context, though gridded population data and gridded population sampling are
detailed in Chapters 4 and 5, respectively. Gridded population sampling refers to any survey
sample selected from a gridded population dataset. Gridded population sampling is an emerging
field that began around 2010 after gridded population datasets had been freely and publically

available for LMICs for several years.

251 Gridded population data

Gridded population data are estimates of the total population in small grid cells derived from a
geo-statistical model using a number of spatial datasets (see Figure 4). The grid cells generally
range in size from 100 metres by 100 metres to 1 kilometre by 1 kilometre, and many of these

disaggregated population estimates are free and publicly available.

WorldPop 2017

. 1538 People

0 People

}N\ 0 5 ¥ 10 Kilometers

L 1 |

Figure 4. Example 100 metre by 100 metre gridded population dataset, Kathmandu, Nepal
Data from WorldPop (WorldPop, 2019)

23



Chapter 2

Gridded population data provide analysts the flexibility to model population phenomena at a local
level across a surface (Alegana et al., 2016; Perkins et al., 2016), and to re-aggregate population
estimates to new geographic units that are more relevant to the study (Tatem et al., 2014; Tatem,
2017). For example, in countries where population micro data (individual- or household-level
data) are available, including most European countries, aggregation of point-level population data
to grid cells maintains a high level of detail whilst preserving confidentiality of individuals
(European Commission, 2012). Decoupling population counts from administrative boundaries —
which may vary in shape and size, and may not follow environmental, cultural, or political
features — means that population counts can used in a wide range of health (Perkins et al., 2016;
Tatem et al., 2016), environmental (Early et al., 2016), and economic (Buhaug and Urdal, 2013)

applications.

Data sources used to model gridded populations vary and include: total population counts (e.g.
census data) or population counts in select small areas (e.g. microcensuses or survey household
listings); geographic vector data such as roads, water bodies, and building locations; satellite
raster data such as temperature, elevation, and night-time lights; and other modelled spatial data
layers such as urban extent boundaries. A number of gridded population datasets now
incorporate “big data” such as geo-tweets or Facebook account locations (Facebook Connectivity
Lab and CIESIN, 2016; Patel et al., 2017) and aggregated mobile phone call detail records (Deville
et al., 2014; Lu et al., 2016; Wilson et al., 2016) as ancillary data.

Geo-statistical techniques used to model gridded population data range in complexity from
uniform disaggregation of total population counts (UNEP, 2006; Doxsey-Whitfield et al., 2015); to
informed-disaggregation of total population counts using areal weighting with ancillary data (Balk
et al., 2005; Facebook Connectivity Lab and CIESIN, 2016; Pesaresi, Ehrlich, et al., 2016); to
advanced disaggregation using complex models (Dobson et al., 2000; Azar et al., 2010, 2013;
Stevens et al., 2015). All of the aforementioned modelling techniques are considered “top-down”

approaches, as they involve disaggregating total population counts to small grid cells.

The benefit of top-down gridded population models is the possibility of improving the relative
distribution and/or detail of population dataset within smaller areas, though this is constrained to
circumstances when population totals are reasonably accurate. Thus, “top-down” gridded
population models derived from 15-year-old census data may result in an improved population
distribution, but population totals would be incorrect. This hypothesis will be evaluated in
Chapter 4. There may be ways to improve the accuracy of these gridded population distributions
before sampling, for example, by aggregating to 500 metre by 500 metre grid cells, also addressed

in Chapter 4.
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Additional “bottom-up” modelling techniques are being developed to model population totals
from population counts in small areas, and are thus attractive when census data are not available.
Bottom-up gridded population models use the relationship between population density in a
selection of small areas (e.g., microcensus) and a number of spatial covariates to predict

population counts in unmeasured areas of the country (Weber et al., 2018).

2.5.2 New inclusive survey methods

New survey methods and tools might improve the accuracy of household surveys (Figure 5).
When census data are outdated or inaccurate, gridded population datasets might instead be used
as a sample frame (Alkire and Samman, 2014). Even “top-down” gridded population datasets
derived from outdated or inaccurate census data, might result in more accurate samples of PSUs
if the relative distribution of population density is more detailed and accurate compared to the

census data.

Area-microcensus sampling (also called one-stage sampling or modified cluster design) means
that all households in a small area are sampled. Gridded population sample frames with 100
metre by 100 metre grid cells enable area-microcensus sampling, and eliminate the time gap
between the household listing and interviewers, potentially improving representation of mobile
populations. Interviewing PSUs across different seasons could additionally improve response rates
of seasonal migrants. Chapter 6 compares the number and types of households that were
sampled in an area-microcensus versus two-stage survey conducted concurrently in Kathmandu,

Nepal in 2017.

Finally, robust mapper-lister protocols to interact with residents in a standardized, detailed way
are needed in household surveys of any design. These protocols should include clear definitions of
structures, dwellings, and households which are present in complex urban settings, and guidance
about how to approach residents of all structures to ensure that informal and atypical households

are not omitted from the listing.
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Figure 5. Potential tools and methods to improve accuracy of household surveys

Adapted with permission from (Dana R. Thomson et al., 2020)

253 Gridded population surveys

Selecting survey samples from “top-down” or “bottom-up” gridded population data is worth
considering in LMICs with outdated or inaccurate census data. More than two dozen national
gridded population surveys have been conducted across diverse settings including Iraq (Galway et
al., 2012; Hagopian et al., 2013), Somalia (Pape and Wollburg, 2019), Colombia (Cajka et al.,
2018), and Thailand (Cajka et al., 2018). Multiple sub-national surveys have also been conducted
in settings that include eastern DR Congo (Thomson et al., 2012), Kathmandu Valley Nepal (Elsey
et al., 2016), and Chin State Myanmar (Sollom et al., 2011). A review of gridded population

surveys is provided in Chapter 5.

All of the aforementioned gridded population surveys were motivated for one of two reasons. The
first reason, and by far the most common reason, was that the census sample frame was
unavailable, outdated, or had known inaccuracies. The second reason was that the survey was
based in a complex urban environment where an area-microcensus sampling design was

preferred to ensure representation of vulnerable and mobile populations.

2.6 Change in survey accuracy as a result of population trends

It is likely that household survey samples were more accurate at the time that DHS, MICS, and
LSMS were established compared to today. It is not that standard survey methods are inherently
biased, but rather than population characteristics and behaviour have changed substantially over
the last four decades resulting in an increasing proportion of people who fall through the cracks of

dated survey methods and tools.
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Most LMICs are in the midst of urban transitions, or will be soon (UN-DESA, 2014). Urban
transitions are comprised of both a demographic transition — in terms of increased population

density, change in household structure and

size, and change of population composition resulting from reduced mortality and fertility — as well
as a mobility transition (Woud, Jan and Hayami, 1990). Urbanization has been associated with
some of the greatest achievements in human history, including reductions in mortality, extended
life spans, production of material wealth and wellbeing, and harnessing of diverse minds to create
social and economic movements (UN-DESA, 2014; UN-Habitat, 2016). However, urbanization is
also closely linked with socioeconomic inequalities that trap generations of families in cycles of
crushing poverty and insecurity (Diaz et al., 2017). Socioeconomic inequalities within countries are
more pronounced today than at any other time in the last 30 years, particularly in LMICs (UN-

Habitat, 2016).

Future population growth is expected to be concentrated in LMICs. The global population doubled
between 1970 and 2015 from 3.7 to 7.4 billion, and it is projected to reach 9.8 billion by 2050
(UN-DESA, 2017). Asia has been, and will remain, the most populous region (Figure 6), with five
countries - Bangladesh, China, India, Indonesia, and Pakistan - accounting for 45% of the global
population (Roser, Ritchie and Ortiz-Ospina, 2016). However, more than half of the projected
global population growth between now and 2050 is expected to occur in Africa where 33 the
world’s 47 least developed countries (LDC) are located (UN-DESA, 2017). The United Nations (UN)
designates LDCs as low-income countries which face major structural obstacles to sustainable

development.

M South America
M Oceania
MNorth and Central

America
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Figure 6. World population by world region, 1820-2010
Data from Our World in Data (Roser, Ritchie and Ortiz-Ospina, 2016)
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Future population growth in LMICs will be concentrated in urban areas. In 2007, the world’s
population became majority urban with most of the urban population living in Asia, followed by
Europe, and the Americas (UN-DESA, 2014). Despite high rates of urbanization, most LMICs are
still majority rural today, but this is changing rapidly as LMICs enter urban transitions. By 2030, a
majority of the population in LMICs will live in urban rather than rural areas, and by 2050, two-
thirds of the population in LMICs is expected to be urban (UN-DESA, 2014). An estimated 2.5
billion people will be added to the planet by 2050, with 90% of that population increase

concentrated in Asian and African cities alone (UN-DESA, 2014).

While rates of urban growth in LMICs are currently on par with, or lower than, urban growth rates
previously observed in high-income countries (Satterthwaite, 2010), the absolute number of
people being added to urban areas today creates entirely new scenarios of urbanization. In 2014,
the world had 28 cities with 10 million or more residents each, and by 2030, the number of these
so called “megacities” is expected to double with most new megacities being added in LMICs (UN-
DESA, 2014). While some of this rapid urban growth can be explained by changes in the
definitions of city boundaries and the use of old projected population data (Satterthwaite, 2010),
undeniably, the absolute number of people moving to urban centres in LMICs over the last two
decades is unprecedented. Since the early 1990s, a majority of megacities in Asia were thought to
have added more than 400,000 people per year on average (Figure 7) (UN-DESA, 2019). The UN
projects that Lagos (Nigeria), Delhi (India), and Dhaka (Bangladesh) will each add more than
700,000 people per year on average through 2030 (Figure 7) (UN-DESA, 2019).

Megacities, however, are not the fastest growing cities, nor do they represent a majority of the
world’s urban population. Most of the urban growth over the next 15 years will be in medium and
small cities of less than 1 million people in Africa and Asia (UN-DESA, 2014). Even if population
projections are high, measurements of urban extents and informal housing settlements via
satellite imagery have recorded rapid sprawl of city boundaries and concentrations of informal
housing in LMIC cities (Pesaresi, Melchiorri, et al., 2016), both of which place excessive demands
on city officials to extend city infrastructure and services (UN-Habitat, 2016). It is in this context of
rapid urbanisation that updated survey methods and tools are needed to accurately measure

modern LMIC populations.
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Figure 7. Absolute average population increase in 28 megacities for periods 1970-1990, 1990-
2014 and 2014-2030
Data from World Urbanization Prospects: 2014 Revision (UN-DESA, 2014)

2.7 Aims and Objectives

This thesis aims to evaluate the accuracy and feasibility of gridded population sampling when

census sample frames are outdated or inaccurate.
Chapter 3: Simulation. Objectives:

e Simulate a geo-located synthetic “true” population with demographic and health
characteristics for a LMIC
e From the synthetic population, simulate several censuses with realistic patterns of

outdatedness and inaccuracy due to under-counts
Chapter 4: Frames. Objectives:

e For each simulated census, generate a top-down gridded population dataset
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e Evaluate cell-level accuracy of gridded population datasets derived from outdated-
inaccurate census data at multiple geographic scales by comparing to the “true” synthetic

population
Chapter 5: Sampling. Objective:

e Evaluate the accuracy of survey results that are sampled from equivalent outdated-
inaccurate censuses and gridded population datasets, using characteristics in the “true”

synthetic population for comparison
Chapter 6: Implementation. Objectives:

e Describe the implementation of a real-world gridded population survey in a LMIC

e Assess the feasibility of the implementation methods based on qualitative data from the
survey planning team and field teams

e Compare the types of households listed and interviewed in an area-microcensus versus

two-stage sample design
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Chapter 3: Simulation

3.1 Overview

There are two ways in which census sample frame coverage errors directly bias surveys. First, by
being grossly outdated, and second by being poorly conducted, both of which result in
inaccuracies that overwhelmingly omit the poorest populations in low- and middle-income
countries (LMICs) (Cobham, 2014). Census inaccuracies can be deliberate or unintentional.
Deliberate inaccuracies may be introduced to gain or maintain socio-political power; for example,
manipulating population totals to influence where district boundaries are drawn, the number of
seats in parliament, or national budget allocation (Yin, 2007). Likewise, census inaccuracies may
be introduced to prevent the allocation of resources to new political parties or groups. For
example, the refusal to recognize slum areas prevents governments from being obliged to spend
limited public funds on infrastructure and services in communities who generate limited tax
revenue, and ensures that those communities do not gain the political power to demand

otherwise (Agarwal and Taneja, 2005; Subbaraman et al., 2012).

Recent examples of deliberate census manipulation come from Nigeria, India, and Ethiopia where
censuses were criticized for inflating population counts in sub-regions, widespread omission of

|ll

“illegal” slum residents, or wilful negligence during data collection (Yin, 2007; Carr-Hill, 2013;
Bekele, 2017). Falsification of population counts has long been a problem in Nigerian censuses
(Ahonsi, 1988; Okolo, 1999), and the 2006 census was no exception with accusations that
numbers in the north of the country were vastly inflated for political and economic gains (Yin,
2007). A comparison of the 2006 Nigeria census with a parallel census of Lagos city conducted by
the city government revealed an under-count of 8.5 million inhabitants in the national census,
though political motives may have been involved in the city census as well (Yin, 2007). In Ethiopia,
independent analyses of the 1994 and 2007 censuses identified major anomalies in reported age-
sex demographics, suggesting substantial problems with the quality of data collection (Randall
and Coast, 2016; Bekele, 2017). In India, the 2001 census was widely criticized for excluding

unrecognized informal settlements and people living in poor-quality inner city housing who

account for up to half of poor urban households (Agarwal, 2011; Carr-Hill, 2013).

While deliberate inaccuracies may make headlines, unintentional census under-counts are
perhaps more common in LMICs, especially among informally-housed and mobile populations due
to the complexity of classifying their dwellings and households (Lavely, 2001). A well-conducted
census is expected to have under-counts up to 5% due to logistical difficulties, and should be

adjusted based on post-enumeration surveys (PES) in randomly selected enumeration areas (EAs),
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especially if the under-counts are concentrated in certain sub-groups (UNSD, 2017).

Unfortunately, relatively few LMICs conduct PESs (UNSD, 2010).

Censuses generally count institutional, homeless, and nomadic populations separately from the
main census. Institutional populations are enumerated from institutional registrars, and special
enumeration activities are conducted to count homeless and nomadic populations because they
move often, and generally do not live in permanent structures. In some countries, certain
refugees or internal displaced people (IDPs) may be omitted by design as well (Cobham, 2014).
However, many censuses in LMICs are not resourced to carry out additional enumeration
activities, so homeless and nomadic populations either go uncounted or are estimated with crude
methods (UNSD, 2010). Due to difficulties in counting institutional, homeless and nomadic
populations in censuses, large-scale surveys in LMICs are designed to only represent permanent
and semi-permanent conventional households. Technically, survey results are not biased if
populations missing from the sample frame are excluded by design; however, these exclusions

have important policy implications.

| chose to simulate a “true” population rather than use an existing census for two reasons. The
primary reason is that no LMIC census publicly releases the type of data that | need. | need the
geographic point location for each household, as well as the 100% census for a region to be able
to measure the reference (true) population for accuracy assessments in Chapters 4 and 5.
Furthermore, censuses, particularly in LMICs, inevitably exclude some vulnerable and mobile
populations, and few LMIC censuses have performed a PES to appropriately adjust population

counts.

In this chapter, | simulate a realistic “true” 2016 population in Khomas, the capital city region of
Namibia, and spatially allocate simulated households to actual 2016 building locations according
to satellite imagery. From these “true” households, | simulate 16 realistic census datasets with
varying degrees of outdatedness and inaccuracies. Outdatedness is simulated by removing
households assigned to buildings that were not present in satellite imagery in 2011, 2006, and
2001. Census inaccuracy is simulated by removing households based on rates of census under-
counts identified in a literature review. In the following chapters | use the simulated census
datasets and the “true” reference population to assess cell-level accuracy of gridded population
datasets derived from censuses, and the accuracy of subsequent gridded population survey

samples.
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3.1.1 Aims

Aim 1: Simulate realistic household locations and characteristics based on the geography of
Khomas, Namibia, utilising 2011 Namibia census and 2013 Demographic and Health Survey (DHS)

data.

Aim 2: Conduct a literature review to determine rates of under-counting in LMIC censuses among

different sub-populations.

Aim 3: Simulate several census datasets from the realistic population by applying rates of

outdatedness and inaccuracy, and aggregating to enumeration (EA) boundaries.

3.2 Requirements

To achieve the research aims of this PhD, | outline four requirements for the simulated realistic

population.

III

First, the simulated “real” population should be geo-located to an actual place where covariate
datasets exist with all of their own imperfections to be able to generate gridded population
datasets in later analyses. While | could have chosen to simulate a population in a theoretical
place, and simulate dozens of spatial covariates typically used in gridded population models, |
want to ensure that the covariate datasets are not unrealistically perfect. Like census data,
covariate datasets such as road networks and building footprints are subject to inaccuracies and

outdatedness, and these imperfections need to be reflected in the analysis if the results of this

thesis are to be relevant to researchers, practitioners, and decision-makers.

The second requirement is that the simulated “real” population needs to include sizable numbers
of vulnerable and mobile populations to reflect the different components of missingness and
outdatedness described above. This will enable the evaluation of census population missingness

and outdatedness on gridded population estimates, and ultimately on gridded population surveys.

A third requirement is that the setting should have highly concentrated populations as well as vast
unsettled areas. A key difference among gridded population modelling approaches is that some
models estimate population everywhere including in deserts and forests (Doxsey-Whitfield et al.,
2015; Stevens et al., 2015), while other models constrain population estimates to areas classified
as settled, and are thus subject to inaccuracies in the settlement layer (Dobson et al., 2000;
Pesaresi, Ehrlich, et al., 2016). The former approach is likely to estimate population where none
exists and underestimate population in settled areas, while the latter approach is likely to

estimate zero population in small rural settlements and overestimate counts in urban areas. Thus,
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to evaluate accuracy of gridded population datasets in settled and unsettled areas, settings that

contain both major cities and large deserts or forests are considered.

Lastly, for the simulated population to be realistic, it needs to be based on high quality and very

detailed census and survey data, thus countries with a record for high data quality are considered.

3.3 Setting

| selected Namibia for this simulation because the government has produced numerous high-
quality population datasets and the geography is defined by vast unsettled areas. | focus
specifically on Khomas, one of Namibia’s 13 regions, located in the centre-south of the country
(Figure 8). Khomas covers an area of 37,007 square kilometres and is home to roughly 342,000
people according to the 2011 census (NSA, 2011b). Simulating a population for the whole country
was not feasible, as building locations had to be manually digitized to locate simulated

households.

Windhoek, Namibia’s capital, and its suburbs are where essentially all of the population in
Khomas are located; the surrounding areas are mainly unpopulated desert with a few small
hamlets. Namibia, like many other countries that inherited colonial boundaries, placed
restrictions on freedom of movement until independence in 1990 (Newaya, 2010). After
independence, vast numbers of the population migrated to Windhoek, exaggerating rural-to-
urban migration patterns observed globally during this time period (IOM, 2015; Lai et al., 2019).
Windhoek is also a destination for immigrants from neighbouring countries including financially
unstable Zimbabwe (IOM, 2015; WorldPop, 2016). The population of the Windhoek metropolitan
area grew by a staggering 37% between the 2001 and 2011 censuses (NSA, 2011b), with much of

that growth in informal settlements (Newaya, 2010).
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Windhoek Area

Figure 8. Location of Khomas region in Namibia, and of constituencies in Windhoek area

Although a PES was not conducted, the 2011 Namibia census meets the UN recommendations for
a high quality census (UNSD, 2019), including checks and editing during paper-based data
collection, checks and editing during electronic data entry, imputation of missing and implausible
values for select variables such as person’s age, and collection of homeless and institutional
population counts (NSA, 2013). The Namibia National Statistics Agency (NSA) makes its census EA
boundaries available (NSA, 2011a), and distributes census microdata samples in the IPUMS
database with detailed documentation (Minnesota Population Center, 2018). Furthermore, the

NSA publishes routine household survey data including DHSs (MoHSS and ICF International, 2014).

3.4 Simulating a “real” population by household location

This section describes the methods | used to simulate a “real” population of every person and
household in Khomas in 2016, and the methods | used to link synthetic households to actual
building point locations digitized from 2016 satellite imagery. Results are presented and discussed

for each phase of the process.

34.1.1 Approaches to population simulation

Several simulation approaches are available to construct a synthetic population and its spatial
distribution. The most common approach is to expand or reweight observations from a survey of
individuals to meet totals and marginal distributions in more aggregated areal units reported in a

census. These approaches include iterative proportional fitting (IPF) (Birkin and Clarke, 1988,
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1989), and combinatorial optimization procedures such as simulated annealing (SA) (Ballas et al.,
2007) or quota sampling (Farrell, Morrissey and O’Donoghue, 2012). IPF models incrementally
improve the fit of a joint probability distribution of person- or household-level attributes (e.g.,
from a household survey) subject to known joint probabilities of these attributes (e.g., from an
aggregated census). Combinatorial optimization procedures follow a similar approach but prevent
sub-optimal combinations of attributes in the simulated dataset. These models can be
implemented with open-source software such as the simPop R package (Templ et al., 2017). Other
approaches to population simulation include agent-based models of agents (i.e., individual
people) with key attributes and relationships (Macal, 2016; Chapuis et al., 2018), including models
that incorporate agent interactions in space (Heppenstall, Malleson and Crooks, 2016). The vast
majority of simulation models produce synthetic population counts in small output areas, such as

census EAs.

Some have gone further to assign synthetic households to spatial point locations. To create the
RTI U.S. Synthetic Household Population, RTI assigns households from US census tracts or block to
random point locations alongside roads for the entire country (RTI International, 2016). In the
U.S., this can result in a reasonably accurate simulation of households by point location because
nearly every household is located along a road, and road datasets are very complete. However, in
most LMICs, road datasets are not complete and many households are located far from roads
with only foot access. To simulate spatial locations of households globally, the Synthetic
Populations and Ecosystems of the World (SPEW) project creates a random point for each
household within in the smallest administrative unit available (Richardson et al., 2017). While this
simplistic assumption about spatial location is sensible for their global models of infectious

disease, it is not sufficiently detailed or realistic to simulate household locations for this analysis.

To evaluate the accuracy of gridded population sample frames in the next chapter (Chapter 4), |
model 100 metre by 100 metre gridded population estimates from each of the simulated census
datasets created in this chapter. Gridded population models use dozens of fine scale spatial
covariates that together identify areas of likely human activity on the Earth’s surface. For this
reason, it is important that simulated household locations are as realistic as possible so | can
calculate a realistic reference population in every 100 metre by 100 meter grid cell to assess
gridded population model accuracy. | decided that the best way to approach this was to digitize

actual building locations.

3.4.1.2 Approach used

To simulate a realistic population in Khomas, Namibia, | simulated a synthetic population by

second-level administrative boundaries (i.e., constituencies), then distributed synthetic
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households to actual building point locations that | digitized over satellite imagery. The allocation
of simulated households to point locations was based on socio-demographic household types and
environmental covariates. | worked closely with Dr. Lieke Kools and Dr. Warren C. Jochem to
develop this methodology. Our methods are described in detail in the literature, and
demonstrated for Oshikoto, Namibia (Thomson, Kools and Jochem, 2018). In this chapter, | repeat
the simulation for Khomas in three phases, and provide interim outputs, a summary of the final
simulation, and quality assessments of the final simulation. These simulation methods should not
be considered a unique contribution of this thesis as they were conceived and developed jointly

with Dr. Kools and Dr. Jochem.

3.4.1.3 Data

All input datasets used in the simulation are publicly available. These include the 2011 Namibia
census 20% microdata sample (NSA, 2013) and 2011 Namibia census enumeration area
boundaries (NSA, 2011a) available by request from the Namibia NSA, as well as the 2013 Namibia
DHS recode files and geo-displaced cluster coordinates available by request from the DHS Project
(ICF International, 2020). The simulation also used 2014-2016 Quickbird (30cm) satellite imagery
available in ArcGIS10.5 (Maxar, 2019); 2004-2016 Maxar and SPOT (40cm) satellite imagery
available in Google Earth Pro (Google LLC, 2019), and spatial covariates from the WorldPop-Global
project including land cover type, night-time lights intensity, and health facility locations (Lloyd,

Sorichetta and Tatem, 2017). All datasets used in this simulation are summarized in Table 4.

| expected environmental covariates to have a relationship with both population density and
population characteristics across space, and thus used them to allocate simulated household
records to digitized building locations. To prevent overtraining of models, | used different
microdata sources to simulate the population (20% microdata census sample) and to train

household-to-point allocation models (DHS sample).
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Table 4. Data sources for simulated population in Khomas, Namibia

Adopted with permission from (Thomson, Kools and Jochem, 2018)

Short name Long name Source, original unit Output unit
Population
dhs_hh Individual recode file summarized by 2013 Demographic and Health region
household Survey (1)
dhs_geo Geo-displaced cluster coordinates 2013 Demographic and Health coordinate (cluster)

Survey (1)

census_housing,
census_person

20% microdata census sample

2011 Namibia Statistics Agency

constituency

census_report Final census report 2011 Namibia Statistics Agency ©®) constituency
Used to generate new spatial data
Imagery_2014 High resolution satellite imagery 2014-2016 Maxar (DigitalGlobe) Coordinate

Quickbird imagery, 30cm 4

(2016 household)

Imagery_2004 High resolution satellite imagery 2004-2016 Maxar (DigitialGlobe) Coordinate
SPOT imagery, 40cm (4 (2001, 2006, 2011
household)
census_ea 2011 Census EA boundaries 2011 Namibia Statistics Agency EA
Spatial covariates
ccilc_dst011_2012 Dist to land-cover: Cultivated 2008-2012 GlobCover, 300m (©) 100m
terrestrial lands
ccilc_dst040_2012 Dist to land-cover: Woody / Trees 2008-2012 GlobCover, 300m (© 100m
ccilc_dst130_2012 Dist to land-cover: Shrubs 2008-2012 GlobCover, 300m (6 100m
ccilc_dst140_2012 Dist to land-cover: Herbaceous 2008-2012 GlobCover, 300m (©) 100m
ccilc_dst150_2012 Dist to land-cover: Other vegetation 2008-2012 GlobCover, 300m (©) 100m
ccilc_dst190_2012 Dist to land-cover: Urban 2008-2012 GlobCover, 300m (©) 100m
ccilc_dst200_2012 Dist to land-cover: Bare 2008-2012 GlobCover, 300m (6 100m
cciwat_dst Dist to water bodies 2000 OSM ™ 100m
dmsp_2011 Night-time lights intensity 2012 Suomi VIIRS, 500m (@) 100m
gpw4coast_dst Dist to coastline GPWv4, 1km ©) 100m
osmint_dst Dist to road intersections 2000 OSM ™ 100m
osmriv_dst Dist to major water ways 2000 OSM ) 100m
slope Slope 2000 HydroSHEDS, 100m (10) 100m
topo Elevation 2000 HydroSHEDS, 100m (10) 100m
tt50k_2000 Travel time to populated places 2000 JRC-EC (11 100m
urbpx_prp_1_2012 Proportion of urban pixels with 1 cell 2009 Modis (12); Global Human 100m
radius Settlement City Model, 1km (13)
hfacilities_dst Dist to health centre or hospital 2001 UN-OCHA (14) 100m
schools_dst Dist to primary/secondary school 2001 UN-OCHA (13 100m
npp_2012 Annual net primary productivity 2010 MODIS, 1km (16) 100m
1. (ICF International, 2020) 10. (Lehner, Verdin and Jarvis, 2006)
2. (NSA, 2013) 11. (Nelson, 2008)
3. (NSA, 2011b) 12. (Schneider, Friedl and Potere, 2009, 2010)
4. (Maxar, 2019) 13. (European Commission, 2017)
5. (NSA, 2011a) 14. (UN-OCHA-ROSA, 2001b)
6. (European Space Agency, 2012) 15. (UN-OCHA-ROSA, 2001a)
7. (OpenStreetMap contributors, 2000) 16. (Steven W. et al., 2004)
8. (NOAA, 2012)
9. (CIESIN, 2018)

38



Chapter 3

3.4.14 Phase A: Methods and results

In phase A, | predicted the spatial distribution of various household types in Khomas using DHS
data, spatial covariates, and visual inspection of satellite imagery. The output was a probability
surface for each household type. Four steps were taken in phase A as follows, and are outlined in

Figure 9.

(1) Instep Al, | used all variables common between the 2013 DHS and 2011 census to define
household types. These included urban/rural location, toilet type, water source, number of
sleeping rooms, floor material, cooking fuel type, education level of each household member, and
age and sex of each household member. Using the 2013 DHS data of 931 households in Khomas, |
calculated eight demographic and social characteristics summarized to 53 PSU locations (i.e.,
clusters). Characteristics were coded at the household-level as binary, and at the PSU-level as
percentages: urban, improved toilet, improved water source, sufficient sleeping space, durable
structure, non-solid fuel for cooking, whether the head of household had any formal education,
and whether there were any children under age five. “Improved” toilet and water source were
defined according to the 2013 DHS which follows World Health Organization guidelines (WHO,
2012).
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Phase A: Predict spatial distribution of household types

Coverage: Khomas

Input: dhs_geo (N=53 clusters), dhs_hh
(N=9,849 households). Variables:

* urban_rural *  water

* noedu_head * structure
* any_u5 * space

* toilet * fuel

Method: average characteristics by cluster [R],
kmeans by cluster [R]

Output: hh_types (N=4 types).

* Urbannon-poor + Rural non-poor
e Urban poor * Rural poor

b
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Input: 19 spatial covariates, e.g.
ccilc_dst011_2012 (cultivated land),
dmsp_2011 (nighttime lights), and
hfacilities_dst (health facilities)

Method: min, max, and ave in 2km buffer [R]

Output: Statistic in 2km buffer for each of 19
spatial covariates, by 100m, e.g.
hfacilities_dst_2kmin,
hfacilities_dst_2kmax, hfacilities_dst_2kave

Reprinted with
permission
from Lloyd CT,
etal. (2017)

Coverage: Namibia 2

Coverage: Namibia

Input: dhs_geo (N=550 clusters), dhs_hh
(N=9,849 households), hh_types (N=4
types), 19 covariates 2kmin, 19 covariates
2kmax, 19 covariates Zkave

Method: Apply kmeans from step 1 to
calculate mean cluster hhtype in DHS points
[R], join 2km spatial covariates [R], train
random forest model & predict probability of
existence of hhtypes in each 100m cell [R]

Output: layer for each hhtype_prob, 100m
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Coverage: Khomas
Input: imagery, census_ea (N=772 urban EAs)

Method: Classify each EA as urban/rural
[ArcGIS], estimate % poor households in
each urban EA [ArcGIS]

Output: urban_reweight (N=922 EAs)

Figure 9. Phase A simulation steps to create household types and probability surfaces for each

household type location in Khomas, Namibia

Adopted with permission from (Thomson, Kools and Jochem, 2018). Orange text is an

original dataset, green text is a created dataset
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| used k-means multivariate statistical methods (Groves et al., 2009) to generate an arbitrary large
number of clusters (20 potential household types) from the eight demographic and social
variables common to the 2011 Census and 2013 DHS (Hartigan and Wong, 1979). Use of a
dendrogram allowed me to display the Euclidean distance between each two child clusters and
their combined parent cluster (Figure 10). | chose to use the first four clusters (cut off = 1.0) to
define household types because the distinctions were easy to interpret as urban poor, urban non-
poor, rural poor, and rural non-poor (Table 5). | considered use of the first six clusters (cut off =
0.75), but the interpretation of household type was unclear, and the statistical distinction

between six and seven clusters (observed in the dendrogram) were minor (Appendix A).
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Figure 10. Dendrogram of 2013 DHS household types in Khomas, Namibia

Table 5. Average prevalence of variables for each k-means household type in Khomas, Namibia
Red indicates that value is 0.05+ above the Khomas average (less desirable), and green

indicates that value is 0.05+ below the Khomas average (desirable)

g T
n . o S Lo} =]
= ® 2 £z E& 2% gg 3
5 8 Z ST 5% 85 E2 %
Cluster = © = = = v Household type label
Type 1 0.00 0.02 0.30 0.30 0.01 0.08 0.10 0.01 Urban non-poor
Type 2 0.00 0.35 0.01 0.09 Urban poor
Type 3 1.00 Rural poor
Type 4 1.00 0.04 0.21 0.43 0.00 0.08 0.00 0.00 Rural non-poor

Khomas 0.06 0.05 0.31 0.50 0.01 0.21 0.09 0.09
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(2) Instep A2, | converted the 19 spatial covariates (from Table 4) to 100 meter by 100 meter
grid cells, the scale at which | would later aggregate the simulated “real” population as a
reference for gridded population data accuracy assessments. For each cell, | calculated two
kilometre average, minimum, and maximum values for each covariate. | used a two kilometre
moving window average because the DHS displaces urban PSUs up to this distance (Burgert,
Zachary and Colston, 2013; Perez-Heydrich et al., 2016), and the vast majority of households in

Khomas are urban. These urban probability surfaces were further improved manually in step A4.

(3) Instep A3, | calculated the most common household type (as defined in step Al) in each of
the 550 PSUs in the Namibia 2013 DHS, and extracted the two kilometre average covariate values
(from step A2) for each PSU. The distribution of average household type in DHS clusters was: 185
(34%) Typel - urban non-poor, 82 (15%) Type 2 - urban poor, 249 (45%) Type 3 - rural poor, and
34 (6%) Type 4 - rural non-poor. | used the 550 cluster household types as training data, and the
average covariate values across Namibia in a Random Forest machine classification model to
predict a probability surface for each household type in each 100 meter by 100 meter cell in

Namibia (Breiman, 2001).

The model performed well for Type 1 - urban non-poor and Type 3 - rural poor household
types, but poorly for the other two household types as indicated by model

classification error in

Table 6. Covariate performance in Random Forest models is measured with importance scores,
summarising average variance explained over all regression trees. Table 7 reveals low importance
scores across all covariates for Type 2 - urban poor and Type 4 - rural non-poor areas, but high
importance scores for multiple covariates associated with Type 1 - urban non-poor areas (i.e.
mean distance to intersections and schools, and mean and maximum proportion of urban pixels in
a two kilometre buffer) and Type 3 - rural poor areas (i.e. mean distance to intersections,
minimum distance to cultivated land, minimum elevation, and mean proportion of urban pixels in
a two kilometre buffer). While it was not a surprise that covariate values generalized to two
kilometre buffers did a poor job distinguishing household types within urban and rural areas, |
was particularly concerned about the spatial allocation of poor and non-poor households within
Windhoek. Households are highly segregated by socioeconomic class in cities around the world
(UN-Habitat, 2016), and visual inspection of satellite imagery indicated that there was substantial

socioeconomic segregation in Windhoek as well.
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Table 6. Random Forest confusion matrix for average household type in 550 DHS clusters

in the Khomas, Namibia simulation

Type 1 Type 2 Type 3 Type 4 Classification Error
Type 1 158 23 3 1 0.14594595
Type 2 40 34 7 1 0.58536585
Type 3 3 230 8 0.07630522
Type 4 4 0 22 8 0.76470588

Table 7. Random Forest importance scores for average household type in 550 DHS

clusters in the Khomas, Namibia simulation

Covariate Type 1 Type 2 Type 3 Type 4

osmint_dst_mean 25.161662 8.89861202 20.091511 2.4142762
urbpx_prp_1_2012_mean 23.69525 15.415276 21.666851 2.6154466
schools_dst_mean 20.53483 3.86763197 12.046593 2.6770044
urbpx_prp_1_2012_max 14.714099 8.58676466 14.164805 1.5658259
NPP_2012_mean 13.973209 5.20754873 12.809764 1.9270368
ccilc_dst011_2012_min 12.940781 4.2685531 19.327524 3.9007588
NPP_2012_max 10.395984 5.25913327 16.285916 2.2096814
topo_min 9.72906 8.36047528 18.804455 0.9571754
hfacilities_dst_min 9.64691 15.37554307 12.211315 1.6536184
ccilc_dst190_2012_min 8.977913 11.49792198 8.052405 6.8093129
ccilc_dst200_2012_min 7.488454 7.1721323 8.971329 -2.7270707
ccilc_dst130_2012_max 6.986184 10.44480083 -1.504759 -0.8511626
osmriv_dst_mean 5.028809 9.27800633 8.447977 1.5117583
osmroa_dst_min 4.725465 -0.06461723 1.951167 1.7723995

(4) Instep A4, | manually assigned urban poor and urban non-poor probability weights

to census EAs to reduce the classification error of Type 2 (i.e., urban poor) households.

Before beginning this process, | split several large census EAs located around the periphery

of Windhoek to create new EAs for areas that had undergone urban expansion since the

2011 census boundaries were drawn (Figure 11). This increased the number of EAs in

Khomas from 920 in the 2011 census to 922 for this 2016 simulation. | used the 922 EAs for

this simulation, but in later analyses, | dissolved the boundaries of two small, narrow EAs in

Windhoek city centre (Figure 11).

43



Chapter 3

O

N

-~

) gr(u‘
{

2 A
4 %"in
A0
a

:_\
U

4
Y
#
4

&
o
&S
W

‘
R

Key:
[ ] EA2011 census n=000
:] Added boundaries n=922

== Substracted boundaries n=920
(Frame and survey analyses only)

Y

Figure 11. Modifications to 2011 census EA boundaries in and around Windhoek, Namibia to

reflect 2016 urban expansion for population simulation

I manually created urban poor/non-poor probability weights for each of the 922 EAs based on
visual inspection of satellite imagery, such that the probabilities summed to one within each EA. |
considered areas comprised of organized larger buildings surrounded by green space to be non-
poor, and areas characterised by disorganized smaller buildings located among earthen paths to
be poor. Probability weights reflected my judgement of the proportion of buildings (and
households) located in poor/non-poor areas within a given EA. Rural EAs had a null probability in

this step. | multiplied the predicted household type probability surfaces created in step A3 by
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these manually created EA-level poor/non-poor household probability weights to create final 100

meter by 100 meter household type probability surfaces (Figure 12).

Type 1 Type 2

Urban non-poor Urban poor
. xd - . -
N N -

Legend: Rural probabilities Legend: Urban probabilities

[ Jor[ ozl os N o7 M o2 [ Jo.025 [ 0.075 [l o.15 [N o.25 M 0.4
[ Joz2 o4 M oc N o N 10 [ Joos o1 o2 MMo: MMos

Type 3
Rural poor

Type 4
Rural non-poor

/‘f/..; :

2y

Figure 12. Household type probability surfaces from step A4 in Khomas, Namibia population

simulation

3.4.1.5 Phase B: Methods and results

Phase B was comprised of steps 5 through 7 to geo-locate the synthetic population to realistic

building locations (Figure 13).
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Phase B: Generate synthetic population, assign to household locations

Coverage: Khomas 5 Coverage: Khomas 7

Input: imagery (30cm resolution), Input: hhtype_prob, urban_reweight, hhpt

census_report (N=10 constituencies) Method: multiply hhtype proband

urban_reweight to get hhtype probabilities
per cell [R], join hhtype probabilities to
hhpt [R], for each hh_obs created in step 5,
sample and assign one hhpt based on
joined hhtype probability [R]

Method: Digitize household points to match
census totals [ArcGIS]

Output: hhpt (N=97,667 households)

suolje’oq Suip|ing ajear)
Su0I1e207 03 SP|OY3asNOoH usissy

Output: hh_obs_pts(N=97,667 households)

Coverage: Khomas 6

Input: census_housing (N=17,893
households), census_report (N=10
constituencies), hh_types (N=4 types)

Method: multinomial logistic regression [R],
apply kmeans from step 1 to calculate
hhtype [R]

Output: hh_obs (N=195,335 households).
Example variables:
* urban_rural *  water
* constituency * structure
* sex_hhhead * space
* age_hhhead *  fuel
* toilet * hhtype

1

2
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97,667

Figure 13. Phase B simulation steps to generate a synthetic population and assign simulated
households to realistic geo-locations locations in Khomas, Namibia
Adopted with permission from (Thomson, Kools and Jochem, 2018). Orange text is an

original dataset, green text is a created dataset.

(5) Instep B5, | manually digitized realistic household locations across Khomas using 2014-2016
high-resolution (30cm) Quickbird imagery in ArcGIS 10.5. Subjective judgement was required for
this process, for example, deciding not to digitize buildings on main streets in densely populated
areas where non-residential shops and offices seemed likely. | also chose not to digitize main
buildings in industrial compounds because | assumed they were unoccupied factories or
warehouses; however, in larger compounds | digitized buildings that appeared to be residential
barracks. In areas of dense settlement, | duplicated some points to represent more than one
household in the same building. A total of 97,667 points (i.e., households) were digitized in 2016
in Khomas. As a benchmark, | exported points to Google Earth and used 2011 Maxar and SPOT
(40cm) imagery to identify buildings that were missing in 2011, and ensured that the reduced

number of points matched constituency household counts in the 2011 census (NSA, 2011b).
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(6) Instep B6, | simulated a population of realistic households in Khomas using iterative

proportional fitting (IPF) with combinatorial optimisation in the R simPop package (Alfons et al.,

2011; Templ et al., 2017) (Table 8). IPF starts by defining a basic household structure to ensure

the synthetic population is realistic. | defined household structure with household size,

urban/rural residence, age of household head, and sex of household head at the household-level,

and age, sex, and relationship (to household head) at the individual-level. Inputs to the model

were the 2011 Population and Housing Census 20% microdata sample, as well as urban and rural

household sizes, and constituency population by age, sex, and relationship based on the 2011

census report (NSA, 2011b). The IPF model selects random samples of records from the microdata

with replacement until each of the household structure targets per constituency are met.

Table 8. Iterative proportional fitting of household structure in Khomas, Namibia simulation by

constituency

Tobias Katutura Katutura Khomasdal Samora Windhoek Windhoek Windhoek Moses

Hainyeko  Central East North Soweto Machel East Rural West Garoéb
N 60553 30868 24078 60465 19570 80036 27309 30028 62588 62807
HH Size
Average 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49
Residence
Urban 100% 100% 100% 100% 100% 100% 100% 26% 100% 100%
Rural 0% 0% 0% 0% 0% 0% 0% 74% 0% 0%
Relationship
Head 27% 21% 20% 24% 22% 26% 34% 30% 28% 30%
Spouse 10% 6% 5% 9% 6% 8% 18% 13% 13% 9%
Child 26% 27% 27% 31% 25% 27% 28% 28% 29% 23%
Grandchild 4% 8% 12% 4% 10% 6% 1% 7% 2% 5%
Extended 29% 31% 29% 26% 31% 28% 12% 14% 20% 29%
Other 5% 8% 7% 6% 5% 5% 8% 7% 8% 5%
Sex
Female 45% 55% 56% 53% 53% 52% 51% 46% 53% 47%
Male 55% 45% 44% 47% 47% 48% 49% 54% 47% 53%
Age
<1 4% 2% 3% 3% 2% 3% 2% 3% 2% 4%
1-4 9% 8% 9% 8% 7% 9% 7% 9% 7% 9%
5-9 9% 10% 10% 9% 9% 8% 6% 10% 7% 8%
10- 14 8% 10% 10% 10% 9% 9% 6% 10% 8% 6%
15-19 8% 11% 11% 11% 11% 10% 8% 9% 11% 7%
20-24 15% 12% 13% 14% 17% 15% 8% 9% 15% 14%
25-29 14% 12% 10% 10% 12% 14% 9% 8% 10% 15%
30-34 11% 10% 8% 9% 9% 11% 9% 7% 9% 13%
35-39 9% 7% 7% 8% 6% 7% 9% 7% 7% 11%
40- 44 6% 5% 5% 6% 4% 5% 9% 7% 6% 6%
45 - 49 4% 4% 4% 5% 3% 4% 6% 5% 5% 4%
50-54 2% 3% 3% 3% 4% 2% 6% 5% 4% 2%
55-59 1% 2% 2% 2% 3% 2% 5% 3% 3% 1%
60 - 64 1% 1% 2% 1% 1% 1% 3% 3% 2% 1%
65-74 0% 1% 2% 1% 1% 1% 5% 4% 2% 0%
75+ 0% 1% 1% 1% 0% 0% 2% 2% 1% 0%
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Next, in the R simPop package, | added household and individual characteristics present in the
20% microdata census dataset (toilet, water, structure, space, fuel, education) to the simulated
dataset using a multinomial logistic regression technique and conditional annealing (Table 9)
(Alfons et al., 2011; Templ et al., 2017). This treated age, sex, relationship, household size, and
urban/rural residence as predictors, and each of the household characteristic as a conditional

outcome.

Table 9. Multinomial logistic regression output of household characteristics in Khomas, Namibia

simulation by constituency

Tobias Katutura Katutura Khomasdal Samora Windhoek Windhoek Windhoek Moses

Hainyeko Central East North Soweto Machel East Rural West Garoéb
N (individuals) 60553 30868 24078 60465 19570 80036 27309 30028 62588 62807
Water
Improved 100% 100% 100% 100% 100% 100% 100% 96% 100% 100%
Unimproved 0% 0% 0% 0% 0% 0% 0% 4% 0% 0%
Toilet
Improved 25% 58% 67% 76% 69% 44% 97% 52% 94% 24%
Unimproved 75% 42% 33% 24% 31% 56% 3% 48% 6% 76%
Floor
Durable 44% 97% 99% 88% 96% 72% 96% 80% 98% 44%
Non-durable 56% 3% 1% 12% 4% 28% 4% 20% 2% 56%
Space
Adequate 81% 64% 64% 78% 74% 74% 96% 75% 93% 81%
Inadequate 19% 36% 36% 22% 26% 26% 4% 25% 7% 19%
Fuel
Non-solid 87% 99% 97% 93% 99% 94% 100% 50% 100% 92%
Solid 13% 1% 3% 7% 1% 6% 0% 50% 0% 8%
HH Head
Education
No formal 24% 20% 21% 18% 16% 21% 14% 30% 14% 24%
Some primary 22% 20% 19% 19% 17% 18% 10% 24% 12% 20%
Primary 37% 38% 35% 32% 32% 36% 14% 28% 18% 38%
Secondary 15% 19% 20% 22% 26% 21% 33% 12% 32% 18%
Tertiary 2% 3% 5% 9% 8% 4% 29% 6% 24% 1%

| confirmed that there were not major differences between the distributions of characteristics in
the 20% microdata and simulated dataset (Table 10). Confident that the simulated household and
individual characteristics were realistic, | calculated the most likely household type for each

household based on variable factor weights created in the k-means analysis in step Al.
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Table 10. Differences in percent distribution between (weighted) Khomas census 20% microdata

sample and simulated dataset in Khomas, Namibia

Constituency Diff
Tobias Hainyeko -0.002
Katutura Central 0.001
Katutura East -0.001
Khomasdal North 0.000
Soweto -0.001
Samora Machel -0.002
Windhoek East 0.000
Windhoek Rural -0.001
Windhoek West 0.002
Moses Garoéb 0.001
Residence Diff
Urban 0.000
Rural 0.000
Water Diff
Improved -0.002
Unimproved 0.002
Toilet Diff
Improved 0.000
Unimproved 0.000
Floor Diff
Durable -0.001
Non-durable 0.001
Space Diff
Adequate 0.002
Inadequate -0.002
Fuel Diff
Non-solid -0.001
Solid 0.001

Household size Diff
1 0.000
2 0.000
3 0.000
4 0.000
5 0.000
6 0.000
7 0.000
8 0.000
9 0.000
10 0.000
11 0.000
12 0.000
13 0.000
14 0.000
15 0.000
16 0.000
17 0.000
18 0.000
19 0.000
20 0.000
21 0.000
24 0.000
29 0.000
30 0.000
31 0.000
32 0.000
33 0.000
Sex Diff
Female 0.002
Male -0.002

Relationship Diff
Head 0.000
Spouse 0.000
Child -0.001
Grandchild 0.000
Extended 0.001
other 0.000
Age Diff
<1 0.000
1-4 0.000
5-9 -0.001
10-14 0.000
15-19 0.000
20-24 0.000
25-29 0.000
30-34 0.000
35-39 0.000
40-44 0.000
45 -49 0.000
50-54 0.000
55-59 0.000
60-64 0.000
65-74 0.000
75+ 0.000
Education Diff
No formal 0.000
Some primary -0.001
Primary -0.001
Secondary 0.000
Tertiary 0.002

Finally, | scaled up the number of simulated observations to ensure there were enough simulated

households to assign to the digitized 2016 coordinates created in step B5. The 2011 microdata

sample was provided with a weight of approximately five for each observation to scale the 20%

microdata sample to the total population in 2011. | calibrated the simulation to create an extra

20% of households to ensure there were enough simulated households to assign to 2016 point

locations; left over simulated households were discarded in step B7. This resulted in 122,079

simulated households in Khomas before assignment to point locations.
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(7) Instep B7, | joined the re-weighted household type probabilities created in step A4 to the
household latitude-longitude coordinates created in step B5. For each latitude-longitude
coordinate created for 2016 household point locations, | randomly sampled a simulated
household created in step B6 from the corresponding constituency and urban/rural strata based
on the probabilities of household types at each coordinate. | repeated assignment of simulated
households to coordinate point locations until all coordinates were assigned a simulated
household, and then discarded the extra unassigned simulated households for a total of 97,667

simulated households located at realistic coordinate locations in Khomas for 2016.

3.4.1.6 Phase C: Methods and results

Phase C consisted of just one step, to predict population outcomes in the synthetic population

based on information in the 2013 DHS (Figure 14).

Phase C: Predict additional population characteristics

Coverage: Khomas 8

Input: dhs_hh (N=9,849 households), hh_obs_pts
(N=97,667 households)

Method: multinomial regression on DHS [R], mumnm
1

predicted probability on synthetic pop [R]

Output: hh_obs_pts_out(N=97,667 households).
New variables:
* Household wealth index
*  Women’s use of modern contraception 97,667
* Child’s (under five) DPT3 vaccination

2
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Figure 14. Phase C simulation steps to generate outcome characteristics in the synthetic
population in Khomas, Namibia
Adopted with permission from (Thomson, Kools and Jochem, 2018). Orange text is an

original dataset, green text is a created dataset.

(8) Instep C8, | used the 2013 DHS records in Khomas (n=931 households) to develop
multinomial models in R to simulate individual and household outcomes that are typically
collected in a household survey. Based on the recommendations of survey experts Dr. Felicity
Cutts and Mr. Dale Rhoda, three outcomes were chosen to represent different prevalence levels
and patterns of dispersion in the population, as well as clustering of children, in women, in
households: household wealth quintile (five ordinal categories), woman’s use of modern
contraception (binary in women age 15 to 49), and child’s receipt of 3" DPT vaccination (binary in

children under five). Dr. Kools leveraged these outcomes in the Oshikoto simulation to compare
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survey sample designs (Kools, 2018). | simulated the same outcomes in step C8 in Khomas to test

sampling accuracy later in the thesis. As in the Oshikoto simulation (Thomson, Kools and Jochem,

2018), | used a multinomial model to calculate associations between each outcome and

household-level covariates in the 2013 DHS dataset (Table 11). | stored the coefficients from the

2013 DHS models and applied them to the simulated dataset to predict wealth quintile, modern

contraceptive use, and receipt of 3" DTP vaccine for each household, woman 15 to 49, and child

under five, respectively.

Table 11. Multinomial model coefficients and fit statistics for three outcomes in the 2013 DHS for

Khomas, Namibia

Predictor Household wealth quintile (ref=poorest) Women 15-49 Child <5
use of modern DPT3 vaccination
poorer middle richer richest contraception coverage

Rural 0.479 0.773* 2.299%** 2.061%** -0.227** 2.334%**
HH Head

15-29 (ref.) (ref.) (ref.) (ref.)

30-49 -11.595%**  -11.222***  -11.581***  -10.890***

50+ -9.957*** -9.171%** -8.901*** -7.715%**
HH Head Female 1.003*** 0.778** 0.929** 0.333
Age

15-19 -1.290%**

20-24 -0.111**

25-29 0.208***

30-34 (ref)

35-39 0.030

40-44 0.123**

45 - 49 -0.023
Childage 1-4 0.795***
Female -0.188***
HH Head

No education (ref.) (ref.) (ref.) (ref.) (ref.) (ref.)

Some primary 0.133 -0.133 0.121 0.166 0.562*** 0.680***

Primary 1.459%** 2.243%** 2.401%** 3.216%** -0.038 0.447***

Secondary 0.466 1.651%** 2.675%** 4.092%** 0.023 0.258

Tertiary 4.844*** 6.455%** 7.491%** 9.515%** -0.259*** 0.667***
Water Unimproved -1.262* 0.429 -106.655 -0.169 -0.023 11.129
Toilet Unimproved -23.935%**  .26.157***  -28.908***  -30.603*** -0.018 0.021
Space Inadequate -0.771%* -1.652%*** -0.292 -1.216*** 0.028 0.293%**
Floor Non-durable -21.756***  -22.962***  -24.338***  -26.003*** 0.297*** 0.748%**
Fuel Solid -19.316%**  -20.937***  -23.301***  -105.303*** -0.197** -0.621%**
Constant 77.205%** 80.003*** 82.729%** 82.498*** 0.446%** -0.250
AIC 30,400 27,470 6,344

Note: *p<0.1; **p<0.05; ***p<0.01
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To evaluate the realism of the simulated outcomes, | aggregated DHS records to PSU, and
aggregated simulated records to EA, then compared the inter-cluster correlation (ICC) and
distributions of household and individual characteristics and outcomes. The household
characteristics and outcomes — average household size, average wealth quintile, percent with
improved toilet, percent with improved water source, percent with sufficient sleeping space, and
percent with durable floors — appeared to be consistent between the DHS and the simulated
population in terms of both distribution and ICC (Figure 15). Individual characteristics and
outcomes — average age, percent female, prevalence of modern contraceptive use among
women, and DPT3 vaccine coverage among children under five - were less consistent, and more
heaped around the mean in the simulated dataset, likely due to more observations in the
simulated dataset (892 EAs) compared to the 2013 DHS dataset (53 clusters) (Figure 16). For this

reason, | only analyse household-level covariates in later analyses.
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Figure 15. Comparison of household outcomes by 2013 Namibia DHS cluster (Khomas region only)

and simulated population EA in Khomas, Namibia
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Figure 16. Comparison of individual outcomes by 2013 Namibia DHS cluster (Khomas region only)

and simulated population EA in Khomas, Namibia

3.5 Simulating 16 censuses with realistic outdatedness and inaccuracies

Satisfied that | had simulated a realistic “true” population in Khomas in 2016, | set out to simulate
several realistic census datasets with varying degrees of outdatedness and inaccuracy. The
simulation of realistically imperfect census datasets from the “true” population are important to
generate realistic gridded population datasets for later analyses in chapters 4 and 5. This is
particularly relevant because survey practitioners often turn to gridded population sampling when
they feel that the standard census frame is too outdated or inaccurate to sample directly, with an
implied assumption that samples selected from gridded population datasets derived from

outdated or inaccurate surveys will be more accurate.

One in four countries located in Africa, Asia, Oceania and Latin America has not had a census in 15
or more years (UNSD, 2019) or is a recipient of long-term humanitarian aid due to protracted or
recurring crises and population displacement (Development Initiatives, 2018) (Figure 17). Given
increasing levels of mobility and urbanization described in Chapter 2, censuses become outdated
faster now than in the past, especially in urban populations (UN-Habitat, 2016). Even in LMICs
with well-conducted, routine national censuses, population distributions change substantially
over a decade. Population redistribution becomes a greater problem as censuses age, and is
especially likely in countries where conflict, natural disasters, or economic distress have placed
strong pressures on the population to relocate. Often, major political crisis or weak government
are reasons for both census delays and large-scale population movements, resulting in the least

amount of data in countries with the greatest data need. These countries include Afghanistan (last
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census 1979), DR Congo (last census 1984), Yemen (last census 1986), Somalia (last census 1987),
and Iraq (last census 1997) (UNSD, 2019).

Age of census Updated July 2019
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Figure 17. Map of last census year in Africa, Asia, Latin America, and Oceania

Data from 2020 World Population and Housing Census Programme (UNSD, 2019)

As described above (section 3.3), very high rates of population redistribution have occurred in
Namibia in the three decades since independence, with most of the population shift occurring
from rural to urban areas. As Khomas is dominated by the Windhoek metropolitan area, the bulk
of the population redistribution is characterized by in-migration from other regions in Namibia or
nearby countries. Based on this, | decided to simulate 5-, 10-, and 15-year-old census datasets

I”

from the “real” 2016 simulated population. For simplicity, | assumed that households present in
2001 still existed in 2016 and maintained the same household and individual characteristics. This
means, that households were only added to Khomas between 2001 and 2016, and | did not apply

any method to change household composition or outcomes over time.

3.5.1 Simulating census outdatedness in Khomas

To simulate population outdatedness in Khomas, | imported the 2016 simulated population
household point locations into Google Earth, and used the software’s historical Maxar and SPOT
imagery (40cm) to identify buildings that were not present in 2011, 2006, and 2001 (Figure 18).
The oldest imagery available at 40cm resolution in Google Earth for Khomas was from 2004, so |

used some judgement to flag buildings that looked recently built in 2004 (e.g., bare fresh soil or
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rooftops that look incomplete without nearby foliage) and assumed they were not present in
2001. During this exercise, | ensured that the number of household coordinates in each
constituency matched the number of households reported in the 2001 and 2011 Population and
Housing Census final reports to ensure that both patterns and degree of outdatedness were

realistic (NSA, 2011b).
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Figure 18. Household point locations in Khomas, Namibia classified by presence in years 2016,

2011, 2006, and 2001

3.5.2 Quantifying census inaccuracies in LMICs

Without a post-enumeration survey (PES) for the 2011 Namibia census, | was not able to derive
realistic census inaccuracies from my data directly. Furthermore, | expected the Namibia 2011
census to be of high quality with few under-counts, which is why | chose to use Namibia’s 2011
census as the foundation of this simulation. In order to quantify realistic ranges of census
inaccuracies in LMICs, | turned to the scientific literature and PESs in other LMICs to (a) develop a
household typology of sub-populations that are often under-counted in a LMIC census, and (b)

perform a systematic literature review of LMIC census inaccuracy due to sub-population under-
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counts. Later in this chapter, | simulate several versions of an outdated-inaccurate census in

Khomas with realistic low, medium, and high rates of inaccuracy.

3.5.2.1 Household typology

To identify meaningful sub-populations for the literature review of LMIC census under-counts, |
started with UN census guidelines. The updated guidelines for the 2020 census round provide a
typology and definitions of the following dwelling/household types: conventional dwellings, other
housing units, guesthouses, institutions, and camps (UNSD, 2017). Outside of normal census
activities, the guidelines recommend special enumerations of nomads, persons living in remote
locations, and civilians/military personnel located outside of the country or traveling during the
census (UNSD, 2017). For these special enumerations, the guidelines recommend that official
registration data be used to count expatriates/travellers, and that one of the following methods
be used to enumerate nomads and remote populations: meeting with tribal leaders, walking
systematically across whole areas, or posting enumerators at known water points or camps

(UNSD, 2017).

The guidelines, however, are unclear about the definitions of “roofless” and “secondary”
homeless populations living in “other housing units”, and how these populations should be
counted (UNSD, 2017). One might infer that “other housing units” include non-durable structures
and mobile structures such as tents, and are likely located in slum-areas (Ezeh et al., 2017; Lilford
et al., 2017; UN-Habitat, 2017). Furthermore, the guidelines do not mention methods to perform
special enumerations of roofless homeless (street-sleepers) such as capture-recapture (Wright
and Devine, 1992; Gurgel et al., 2004; Stark et al., 2017) or point-in-time counts (Peressini,
Mcdonald and David, 2010; Troisi et al., 2015) which have been used successfully in LMICs. For a
clearer typology of the households and dwellings that comprise the urban poorest, | turned to
Tipple and Speak (2005) who provide criteria for understanding and measuring homelessness in
LMICs (Tipple and Speak, 2005). Combining the Tipple and Speak (2005) and UN 2020 census
guidelines, | used the following categories to quantify LMIC census under-counts in the literature

review:

Urban slum households

e Households in permanent/semi-permanent dwellings (e.g., shack or tent)
e Homeless, non-permanent households (e.g., couch surfer)
e Homeless, roofless households (e.g., street sleeper)

e Homeless, guest house dwellers (e.g., staying in temporary, paid accommodation)
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Urban non-slum households

e Households in permanent dwellings

Rural households

e Households in permanent/semi-permanent dwellings (e.g., brick walls, traditional hut)
e Remote households (e.g., located in an area far from road access)

e Nomad households (e.g., move seasonally, non-permanent or semi-permanent dwelling)

3.5.2.2 Methods: Census inaccuracies in LMICs (Systematic Review)

To determine prevalence of census under-counts in LMICs, | reviewed census PESs and performed
a systematic literature search of studies in LMICs. Only references reporting under-counts in sub-

population in censuses conducted since 1990 were used.

| performed the review of PESs in Google Chrome in English using the search phrase “census post
enumeration survey [country name]”, which means that PESs published in other languages might
have been omitted. This search was conducted for the 108 LMICs listed on the UN Statistical
Division Census Programme website and where a census had been conducted in the last 15 years
(UNSD, 2019). Ten PESs from LMICs reported separate under-counts in urban and rural

conventional households (Figure 19).

| then conducted a literature review in two waves. First, | searched PubMed and Scopus for peer-
reviewed public health, economic, and related articles published from January 1, 1990 through
February 28, 2017. The search was restricted to English-language articles about human population

censuses that have taken place since 1990. The articles met all of the following criteria:

e The word “census” in the title or abstract

e One of the following terms in the title or abstract describing a problem of census
coverage: listing, enumerat*, count, coverage, miss*

e One of the following terms in the title or abstract describing a census sub-population:
nomad*, pastoral*, refugee, displaced, migrant, slum, poorest, unregistered, homeless,

[street] sleeper, pavement [dweller], floating

The first wave of the literature search resulted in 459 unique articles, of which | screened all titles
and abstracts. Of 72 potentially eligible articles from LMICs, | reviewed the full-text, and kept five

which reported a census under-count (Figure 19).

In a second wave, | used Google Scholar to identify the top 20 “cited by” and top 20 suggested

“related” articles for each of the five articles identified in the first wave of the review. | also
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searched all references of these articles, and then repeated the screening and full-text review.
The second wave resulted in 334 unique articles, of which 49 had potentially relevant titles or
abstracts. After a full-text review of these articles, | found eight reported census under-counts

(Figure 19). Together, census under-counts in LMICs were estimated from 10 PESs, and 13 articles.

iterature Title/Abstract Full-text Include
LMIC last PubMed
15 yrs N=77
N=108
¥ y ¥

A

Scopus Dup. Remove Remove
N=447 N=65 N=387 N=67

Urban & Google
S e] Scholar

under- N=151
counts v v
(English) References Dup. Remove Remove
N=10 N=226 N=33 N=295 N=41
Remove Reasons: Remove Reasons:
tal N=23 * Notahumancensus ¢ Censusunder-
* No missing pop freq. count frequency
* Before 1990, non- not reported

English, no full-text * Not about a LMIC
PES: Post-enumeration survey

Pubmed: Since 1990. (census*[Title/Abstract]) AND (listing*[Title/Abstract] OR enumerat*[Title/Abstract] OR
count/Title/Abstract] OR coverage[Title/Abstract] OR miss*[Title/Abstract]) AND (nomad*[Title/Abstract] OR
pastoral*[Title/Abstract] OR refugee[Title/Abstract] OR displaced/Title/Abstract] OR migrant/Title/Abstract] OR
slum[Title/Abstract] OR poorest/[Title/Abstract] OR unregistered/Title/Abstract] OR homeless[Title/Abstract] OR
sleeper[Title/Abstract] OR pavement/Title/Abstract] OR floating[Title/Abstract])

Scopus: TITLE-ABS-KEY ((census OR censuses) AND (listing OR enumeration OR enumerate OR count OR
coverage OR missing OR missed) AND (nomad OR nomadic OR pastoral OR pastoralist OR refugee OR displaced
OR migrant OR slum OR poorest OR unregistered OR homeless OR sleeper OR pavement OR floating)) AND
PUBYEAR > 1989

Google Scholar: Of the 5 articles kept and summarized in the first search ,performed an additional search in
Google Scholar using the first 20 “cited by” and first 20 “related” articles.

References: Of the 5 articles, kept and summarized in the fist search, reviewed all references.

Figure 19. Search terms and process used in the census under-count literature review
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3.5.2.3 Results: Census inaccuracies in LMICs (Systematic Review)

Results of the review are summarized in Table 12, and detailed in Appendix B. Census omissions
are presented separately for rural, urban slum, and urban non-slum households, following the
typology developed in Section 3.5.2.1. The literature search, however, resulted in several articles
separately reporting census under-counts in settled versus mobile populations, or institutional
populations specifically, thus it became important to track these population types across

household types (rural, urban slum, urban non-slum).

Mobile populations in LMICs represent migrants, IDPs, refugees, homeless, and nomads or
migratory pastoralists who may live in urban slum or rural areas. Institutional populations in
LMICs refer to a wide range of populations with different living circumstances including refugee
and IDP camps, workers’ camps, homeless shelters, prisons, military barracks, religious orders,
care homes, hospitals, schools, or university dormitories. While institutional populations can,
technically, be located in any area type, | categorise them by the type of area in which they are
most likely to be located. For example, urban IDP and refugee camps are most likely located in
slum areas, and hospitals and care homes in cities are most likely to be located in non-slum areas.
Some household-population type groupings do not exist (in any meaningful numbers), for
example, mobile urban non-slum households living in permeant structures, and thus no estimates
of under-counts are reported. Using this approach, | created 14 unique population-household

groups and assigned each a range of census under-counts in LMICs (Table 12).

The greatest percentage of under-counts were among urban slum households; urban slum
residents were roughly four times more likely to be excluded from a census than urban non-slum
residents (Table 12). In urban slum areas, between 33% and 61% of the mobile population (not
living in camps) were under-counted in recent LMIC censuses, and 5% to 59% of the non-mobile
population living in permanent or semi-permanent dwellings were under-counted, compared to
just 2% to 15% in non-slum urban areas (Table 12). The range of under-counts in urban non-slum
areas was probably less than reported in Table 12, as these figures are from PES surveys which

combined urban slum and non-slum populations.

According to several PESs, census under-counts in rural areas for residents of permanent and
semi-permanent dwellings were as low as 2% and high as 13% among non-mobile populations
(Table 12). Evidence suggests that mobile populations in rural areas may, in fact, be over-counted
in censuses due to misclassification of rural-to-urban migrants (Table 12). Only one measure of
remote or nomad census under-counts were found. The combined figure of 12% under-count was

likely low based on a review of census and survey coverage of nomadic populations (Randall,
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2015), though measurement of nomad under-counts are particularly difficult to estimate because

nomad under-counts are not measured with PESs.

Table 12. Range of measured census under-counts in LMICs since 1990 by household type

Population type

Household type Non-mobile Mobile
Population Population
(% under-count) (% under-count)

Institutional
(% under-count)

Urban slum
. Ref IDP: 10-15 %
Permanent/semi-permanent 5-59 % (1-5) 33-61 % (68) efugee / 0-15%
Worker: Unknown
Homeless — Non-permanent - 33-100 % (368 ---
Homeless — Roofless 64-100 % (3.9.10) Homeless shelter: Unknown
Homeless — Guesthouse Unknown

Urban non-slum

Prison: 9 % 3

Military: Unknown
Permanent 2-15 % (11-20) Religious: Unknown

Care home / Hospital: <1 % 3

Education: Unknown

Rural
Refugee / IDP: 10-15 % @3
Worker: Unknown
Prison: Unknown

i _13 o/ (11-20) _6 o/ (8)

Permanent/semi-permanent 2-13% 6 % Military: Unknown
Religious: Unknown
Education: Unknown

Remote 12 % (21)

Nomad - 12 % (21) -

1. (Sabry, 2010)

2. (Karanja, 2010) 1; 2&2?’02232)9)

3. (Carr-Hill, 2013) 14' (NISR ’2010)

4. (Carr-hill, 2017) 15' (BIDSI 2012)

5.  (Lucci, Bhatkal and Khan, 2018) 16. (GSS ’2012)

6. (Treiman etal., 2005) 17' (CSO’ 2013)

7. (Kronenfeld, 2008) 18' (NSC’ 2014)

8. (Ebenstein and Zhao, 2015) ' L

9. (Gurgel et al., 2004) 19. (Oliveira et al., 2003)

20. (SSA, 2012)
21. (Gidado etal., 2013)

-
°©

(Stark et al., 2017)
(Korale, 2002)

-
=
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3,53 Simulating census inaccuracy in Khomas

To model inaccuracies due to census under-counts, | classified each of the simulated households
in 2016, 2011, 2006, and 2001 as urban slum, urban non-slum, or rural. My household-level
slum/non-slum classification was based on visual inspection of building morphology and
community characteristics in Google Earth’s Maxar and SPOT (40cm) imagery of every building in
all four years, paying attention to features described in the household typology section (3.5.2.1).
While classifying the presence and types of buildings across years, | observed that building
morphologies remained virtually unchanged, with only new structures being added in and around

Windhoek.

All images were mostly free of cloud cover in the study area for all years; in case of cloud cover, |
used imagery collected slightly before and after the target date which was cloud free. | made the
assumption that household occupancy and characteristics remained constant over time, except
for a small numbers of households changing from rural to urban slum in peri-urban areas. The
change from rural to urban slum type was observed in 3 simulated households between 2001 and
2006, 68 simulated households between 2006 and 2011, and 838 simulated households between
2011 and 2016.

Note that urban slum/non-slum classification of households for each year was different, though
aligned with, the probability of “poor” household type assigned to urban EAs earlier in this
chapter during simulation of the “true” 2016 population (Table 13). Most areas of Khomas did not
change over time in terms of occupation by slum/non-slum households; however, a small number
of EAs (probability weights 0.25-0.74) had few slum households in 2016, but were majority slum
households in 2001 (Table 13). The manual classification of slum/non-slum households is reused
later in Chapter 5 to assess household survey outcomes in urban slum versus non-slum

households.
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Table 13. Comparison of manually created EA-level urban "poor" probability weights in the 2016
simulated “true” population, and manually created household-level classification of

“slum” households for the 2016, 2011, 2006, and 2001 census simulations

Manual classification of slum/non-slum

EA prob. households for census simulations

weights for 2016 slum 2011 slum 2006 slum 2001 slum
poor households households households households

urban HH

type 2016 n % n % n % n %

0.00-0.24 60,097 0.3% 58,506 1.0% 54,669 2.6% 46,665 3.4%

0.25-0.74 2,838 8.0% 2,777 22.9% 2,317 75.2% 1,842 82.4%

0.75-1.00 34,732 99.7% 28,155 97.2% 14,920 99.4% 10,073 99.5%

Using ranges of actual census under-counts from the literature review (section 3.5.2.2), |
simulated three levels of census inaccuracy — low, middle, and high — across rural, urban slum,
and urban non-slum households (Table 14). | classified low inaccuracy as 2% missing among rural
and urban non-slum households, and 10% missing among urban slum households. Middle
inaccuracy was considered to be 5% missing among rural and urban non-slum households, and
30% missing among urban slum households. Finally, high inaccuracy was classified as 10% missing
among rural and urban non-slum households, and 60% missing among urban slum households. |
applied the inaccuracy rates to all households within household type such that there was no

spatial pattern inherent to the simulated household under-counts.

Table 14. Realistic levels of LMIC census inaccuracy applied to the 2016, 2011, 2006, and 2001

simulated populations to simulate census under-counts (missingness)

Household type Low Middle High
inaccuracy inaccuracy inaccuracy
Urban slum 10% 30% 60%
Urban non-slum 2% 5% 10%
Rural 2% 5% 10%

This exercise resulted in one “true” and 15 simulated outdated-inaccurate populations to be used
for analysis in the following chapters. The characteristics of these datasets are summarized in

Table 15 with total number of urban slum, urban non-slum, and rural residents, reflecting the

62



Chapter 3

varying degrees of outdatedness (five, ten, 15 years old) and inaccuracy (low, middle, high under-

count) identified in actual LMIC censuses in the literature review. In the next chapter, | use these

simulated censuses to generate realistic gridded population datasets that reflect the types of

estimates currently available across LMICs, and evaluate the accuracy of each gridded population

dataset against the “true” reference population.

Table 15. Number of households simulated in the "true" population and 15 realistic scenarios of

census outdatedness-inaccuracy, by year and household type

Year No Low Middle High
inaccuracy inaccuracy inaccuracy inaccuracy
2016 (current)
Urban slum 35,001 31,500 24,500 14,000
Urban non-slum 57,843 56,677 54,942 52,073
Rural 4,823 4,735 4,590 4,326
2011 (5 years old)
Urban slum 28,583 25,724 20,008 11,433
Urban non-slum 55,680 54,566 52,895 50,122
Rural 5,175 5,071 4,917 4,647
2006 (10 years old)
Urban slum 18,018 16,216 12,612 7,207
Urban non-slum 49,742 48,747 47,258 44,769
Rural 4,146 4,063 3,935 3,730
2001 (15 years old)
Urban slum 13,149 11,834 9,204 5,259
Urban non-slum 41,700 40,866 39,612 37,514
Rural 3,731 3,656 3,547 3,373
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Chapter 4: Frames

4.1 Overview

Selection of a representative household survey sample depends on having a complete sample
frame of the current population. While census data may seem like an ideal sample frame, some
populations may be missing, and other populations may be under-represented in LMIC censuses.
As detail in Chapter 3, the most vulnerable populations, including urban poor and mobile
populations, are the most likely to be under-counted and omitted in a LMIC census, and
consequently, the most likely to be under-sampled in household surveys (Ezeh et al., 2017; Lilford

etal., 2017).

Gridded population datasets are viewed as an alternative sample frame for household surveys
when census data are outdated, inaccurate, or too coarsely aggregated. However, the majority of
available gridded population datasets for LMICs are derived from the very outdated-inaccurate
census data that survey practitioners wish to avoid. The use of a gridded population dataset as a
sample frame is often done as a last resort with the approach that it is better than nothing
(Galway et al., 2012; Thomson et al., 2012). While gridded population estimates will reflect
outdated, inaccurate census counts, a gridded population model may improve the distribution of
the population and provide omitted populations with some probability of sample selection; for
example, in areas where new housing developments were added after the census, or if

unregistered slums were omitted from the census.

This chapter evaluates the accuracy of gridded population sample frames derived from census
data. | input 16 simulated EA-level and constituency-level census datasets into a Random Forest
model, producing multiple 100 metre by 100 metre population estimates across Khomas. In
section 4.4, | compare the accuracy of these gridded population datasets derived from outdated-
inaccurate censuses against the “true” population. | also consider whether the accuracy of
gridded population data can be improved through aggregation of grid cells. Section 4.5 reports
the results of these analyses, and provides guidance to optimise accuracy of gridded population

data derived from Random Forest models via aggregation of grid cells.

4.1.1 Research questions

| hypothesize that accuracy of gridded population datasets can be improved by aggregating small
grid cells into larger grid cells. This is because, depending on the detail, accuracy, or completeness

of the spatial covariates used in the Random Forest model, populations might be allocated to the
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correct vicinity, but not to the exact location, and thus combining neighbouring cells may smooth

out local spatial errors. By the end of the chapter, | will have answered the following questions.

Research Question A: How accurate are gridded population estimates derived from outdated,

inaccurate censuses in 100 metre by 100 metre grid cells as measured with RMSE and MAE?

Research Question B: How much do 100 metre by 100 metre gridded population datasets derived
from outdated, inaccurate censuses data need to be aggregated in order to achieve the true

population distribution (+/-20% percent) or count (+/- 10 people per hectare)?

4.2 Gridded population sample frames

Given the prevalence of inaccuracies in LMIC census sample frames, we now turn to gridded
population sample frames. This section describes top-down and bottom-up gridded population
datasets derived from geo-statistical models, which may serve as alternative survey sample
frames. | only consider cross-sectional gridded population datasets; gridded population datasets
showing population flows derived from mobile phone data, social media, or other novel sources
are not considered because sampling from dynamic population counts would require different
survey methods and statistics than are typically used in household surveys (Singh and Mangat,
1996; Randall, 2015). Gridded population datasets in HICs are also excluded, including HIC “top-
down” models (discussed below) (e.g., (Martin, Cockings and Leung, 2010; Martin, Lloyd and
Shuttleworth, 2011)) and HIC datasets derived from aggregated administrative datasets (e.g.,
(European Commission, 2011, 2012)).

4.2.1 Top-down (census-based) gridded population sample frames

Top-down gridded population datasets are generated by models that disaggregate census (or
other administrative) population counts from administrative areas to smaller grid cells (Figure 20).
The simplest models assume a uniform distribution of population within administrative areas,
while the most advanced models use spatial data to inform the spatial disaggregation. Some of
these advanced models aim to reflect the average night-time residential population distribution
(e.g., WorldPop-Random Forest and WorldPop-Global), while other models aim to reflect a daily
“ambient” population (e.g., LandScan-Global), which can be conceived as the average between
night-time residential and daytime commuter populations. To estimate population numbers
beyond the last census year, population birth, migration, and death rates are used to project new

population totals by administrative region (Long and McMillen, 1987).
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Gridded population datasets are published as total population estimates per grid cell, where cells
are generally measured in decimal degrees and are thus slightly smaller and less square-shaped
toward the Earth’s poles compared to the equator. | describe grid cell size in terms of metres or
kilometres to facilitate understanding for a general scientific audience, though bear in mind that
these are area approximations at the equator. Furthermore, when | refer to hectares, | mean grid
cells that are approximately 100 metres by 100 metres at the equator. Within countries,
differences in cell size are generally negligible; exceptions include Brazil and Russia with large
north-south coverage. Multi-country gridded population datasets for LMICs are listed in Table 16
along with their geographic coverage, resolution, time coverage, and modelling approach.

Gridded population datasets that do not have estimates after the year 2000 are excluded.

Figure 20. General workflow to create top-down, census-based gridded population data
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4.2.1.1 Terms

This section introduces several technical terms in italics associated with gridded population data

modelling. First, dasymetric mapping refers to the partitioning of an aerial unit into smaller units
to introduce greater resolution than originally captured. Dasymetric partitions can directly reflect
the ancillary data sources, for example, partitioning along land cover type boundaries. However,

in the case of gridded population datasets, partitions are made along predefined grid cell

boundaries, and each grid cell is assigned values from one or more ancillary data sources.

Pycnophylactic describes any disaggregation technique which ensures that the disaggregated
values sum to the aggregated total; this is also called “volume preserving.” All top-down gridded
population datasets are pycnophylactic so that population totals in grid cells sum to the
population total of the original input census data unit. This means that top-down gridded
population datasets inherit outdated or inaccurate population totals at the scale of the input

census data.
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Table 16. Summary and comparison of top-down census-based gridded population datasets

Name Coverage Resolution Years Method Pros Cons
GPwW M Global ~1 km? 2000- Direct Easy, no Accuracy and
2020  disaggregation ancillary precision of a
(uniform spatial data given pixel is
distribution) needed directly related
Maintain to size of input
fidelity of cer.15us areal
input data unit
GRUMP @ Global ~1 km? 1990- Informed Maintain Few ancillary
2000 disaggregation fidelity of variables do
GHS-POP Global ~250 m? 1975-  (basic input data not well reflect
@) 2015 dasymetri.c Estimatesina  uman actiyity
HRSL 4 18 countries  ~30 m2 2015  such as with given pixel are  3CT0SS multiple
areal more accurate physical and
wet/ght/ng' ' than simple sou.al
using auxiliary disaggregation environments
variables) 5-7)
LandScan Global ~1 km? 2000- Complex Maintain Can feel like a
@ 2017 models fidelity of “black box”
Demobase 3 countries ~100 m? 2002- (intelligent input data because
(9,10) 2010 dasymetri.c Estimates in a popu.lz.ation
WorldPop- 57 countries  ~100 m? 2010- such as with given pixel are densities do
LC (11-13) 2015 Random Forest more accurate Nt relate
WorldPop- 69 countries  ~100 m? 2010- model) than both directly to
RF (14) 2020 simple pre.dlctor
WorldPop- Global ~100 m? disaggregation variable
Global ©*%) or informed
disaggregation
(12,13)
1. (Doxsey-Whitfield et al., 2015) 9. (Azaretal., 2010)
2. (Balk etal., 2005) 10. (Azaretal., 2013)
3. (Pesaresi, Ehrlich, et al., 2016) 11. (Tatem et al., 2007)
4. (Facebook Connectivity Lab and CIESIN, 2016)  12. (Linard et al., 2012)
5. (Tatemetal., 2007) 13. (Gaughan et al., 2013)
6. (Linard et al., 2010) 14. (Stevens et al., 2015)
7. (Hayetal., 2005) 15. (WorldPop, 2019)
8. (Dobson et al., 2000)

4.2.1.2

Basic dasymetric methods

The earliest gridded population datasets were based on direct disaggregation approaches

including simple areal weighting where each cell was assigned the same population count within a

census administrative unit (e.g., GPW: (Doxsey-Whitfield et al., 2015)). More accurate basic

dasymetric methods soon followed using one or two ancillary datasets, such as urban settlement

area boundaries or land cover type, to inform the location and density of the disaggregated

population (e.g., GRUMP (Balk et al., 2005), GHS-POP (Pesaresi, Ehrlich, et al., 2016), HRSL

(Facebook Connectivity Lab and CIESIN, 2016)).
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For gridded population datasets that rely on areal weighting or basic dasymetric approaches,
model errors are difficult to estimate, and to even conceptualize, as these datasets are essentially
gridded representations of the input census data (Doxsey-Whitfield et al., 2015). Areal weighting
and basic dasymetric methods remain in use today, in part, due to the large computing power
required to perform more advanced population disaggregation techniques, which become
particularly demanding at a regional or global scale. Simpler modelling techniques and limited
covariates are also used to isolate and study relationships between population density and other
factors. However, when visually compared to actual population counts, areal weighting and basic
dasymetric methods consistently produce less accurate cell-level population estimates than
advanced dasymetric modelling techniques, which exploit multiple ancillary variables related to

human activity (Azar et al., 2013; Stevens et al., 2015).

4.2.1.3 Sources of error

In addition to the modelling algorithm itself, errors in gridded population estimates are
introduced by: (i) inaccuracy of the input population data, (ii) the geographic scale of the input
population data (e.g., census tract versus district), (iii) the age, accuracy, completeness, and type
of ancillary data, (iv) the nature of the relationship between ancillary data and population density,
and (v) the geographic scale of the output grid (e.g., estimates for 1 kilometre by 1 kilometre cells
will almost always be more accurate than estimates for 100 metre by 100 metre cells). Of these,
the strongest predictor of accuracy in top-down gridded population models is the resolution of

the input population data, with population age also playing a big role (Hay et al., 2005).

Generally, the input population data are third, fourth, or fifth-level administrative units from the
most recent census. The finest scale administrative data available in LMICs are georeferenced
household locations or census EAs, though these are rarely available. The differences in accuracy
between basic dasymetric methods and advanced dasymetric modelling techniques diminish with
more detailed input population data (Hay et al., 2005). Some LMICs do not have digitized census
EAs, and survey fieldwork in these contexts involves asking local leaders from communities where
EA boundaries fall, which can result in over- and under-counting near EA boundaries.
Furthermore, differences in administrative boundaries used to collect and report the data versus
boundaries used in the modelling process can lead to population misallocation. The lack of detail
in population data is the motivation for developing gridded population models to begin with, and
thus | focus on more accurate advanced dasymetric methods: WorldPop-Land Cover, WorldPop-

Random Forest, WorldPop-Global, LandScan-Global, and Demobase.
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4.2.1.4 Advanced dasymetric methods

WorldPop-Land Cover (hereafter called WorldPop-LC) has been supplanted by WorldPop-Random
Forest and WorldPop-Global datasets, however much of the initial evaluation of gridded
population datasets was performed on WorldPop-LC. WorldPop-LC datasets were produced for
100 metre by 100 metre cells in 57 African, Asian, and Latin American countries for 2010 and
2015. This modelling technique used boundaries of settled areas and several land cover type
datasets to develop detailed land cover classes (Linard, Gilbert and Tatem, 2011; Gaughan et al.,
2013). A subset of the census input population data were used to calculate the average
population density in each land cover class, then land cover class population densities were used
as weights to distribute census population totals across the whole country. Finally, accuracy was
assessed at the scale of the input census data by comparing the modelled population counts with

the reserved non-subset census counts (Linard, Gilbert and Tatem, 2011).

WorldPop-Random Forest (hereafter called WorldPop-RF), supplanted by WorldPop-Global,
produced 100 metre by 100 metre population estimates by country in five-year periods between
2000 and 2015 for 69 countries in Africa, Asia, and Latin America. In WorldPop-RF models, input
census data and all available covariate data were aggregated at two scales to test and tailor the
model to local areas, producing a population probability weight for each grid cell which was then
used to dasymetrically disaggregate census population counts (Stevens et al., 2015). The
WorldPop-RF datasets superseded the earlier WorldPop-LC datasets because the Random Forest
model was found to be more accurate than land cover weights (Stevens et al., 2015). WorldPop-
RF methods are well documented in the public domain, and include source code to recreate

datasets (Stevens et al., 2015).

WorldPop-Global is a free, open-source 100 metre by 100 metre dataset of population for
individual countries covering the entire global based on the same modelling techniques as
WorldPop-RF. WorldPop-Global supplanted WorldPop-RF because it includes annual population
estimates between 2000 and 2020 for all countries, with harmonized gridded boundaries across
the globe (Lloyd et al., 2019). In a few countries, WorldPop-Global has fewer covariate datasets
than the WorldPop-RF models which, in theory, would produce slightly less accurate results if the
models were run for the same country at the same time. However, WorldPop-Global has been
updated much more recently (2019) than WorldPop-RF models (2013-2016), so the accuracy and
completeness of dynamic covariate datasets, such as roads and points of interest from

OpenStreetMap, are more accurate in the WorldPop-Global datasets (WorldPop, 2019).

LandScan-Global is a 1 kilometre by 1 kilometre daily ambient population estimate for the globe

from 2000 to the current year. The probability weights matrix used for dasymetric disaggregation
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is generated with co-kriging, a multivariate spatial interpolation method, and four ancillary
datasets with global coverage: roads, slope, land cover, and night-time lights (Dobson et al.,
2000). To account for economic, physical, and cultural differences that might affect the
relationship between covariate datasets and population density in local areas, a LandScan analyst
assigns relative weights by location to each of the ancillary datasets to adjust the model. While
these weights are made available, LandScan’s process for generating them is opaque. LandScan-
Global does not publish model errors related to the co-kriging model, nor does it include
metadata for the ancillary data used. LandScan-Global is a commercial dataset and made free to
US Federal Government agencies and to some humanitarian, education and commercial

organizations, upon request (ORNL, 2017).

Demobase 100 metre by 100 metre datasets have been created by the US Census Bureau for
Haiti, Pakistan, Rwanda, and South Sudan for 2003, 2010, 2000-2013, and 2017, respectively. The
probability weights matrix used for dasymetric disaggregation is based on ancillary variables
derived entirely from satellite imagery. This modelling approach is considerably more complex
than basic dasymetric datasets modelled from built area types; in Demobase the population
weights matrix is modelled from dozens of ancillary variables generated through semi-automated
classification of high resolution satellite imagery and supervised classification of medium
resolution satellite imagery (Azar et al., 2013). Model errors are derived during the classification
process based on pixels that were classified by Demobase analysts and withheld from the model.
Demobase data are free and publicly available (USCB, 2013), and the methods are clearly

documented in the public domain (Azar et al., 2010, 2013).

4.2.1.5 Accuracy of advanced dasymetric methods

Accuracy of gridded population datasets derived with advanced dasymetric methods are often
measured with mean absolute error (MAE), a measure of precision, and root mean square error
(RMSE), a measure of error magnitude that penalises large errors. In MAE, the absolute difference
between the predicted population and actual population in each census unit is calculated and
averaged.
n A. — .
MAE = Yi=1l¥i — il
n

In RMSE, the difference in each census unit is taken and squared. Next, the squared differences

are averaged and the square root is taken to calculate a mean difference across census units,

which makes this measure sensitive to outliers and large differences.
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n

RMSE =

There are no studies comparing model accuracy of all WorldPop-LC, WorldPop-RF, WorldPop-
Global, LandScan-Global, and Demobase for reasons | will describe in the next paragraph.
However, there are a few studies comparing output accuracy from these models, though the
benefits of each modelling approach are difficult to discern because both the models and the
input population datasets vary in most comparisons. For example, the producers of Demobase
compared population estimates in Pakistan derived from tehsils (a low-level administrative unit
approximately the size of townships in the United States) to LandScan-Global population
estimates, and found lower RMSE in Demobase when both datasets were aggregated to census
EA boundaries and compared to 1998 Pakistan census EA counts (Azar et al., 2013). Without
running the LandScan model with the same tehsil population input data, it is not clear whether
the greater accuracy of Demobase was due to the modelling technique, or due to greater
resolution of the input population data. Similarly, WorldPop-LC compared population estimates
for Somalia with LandScan-Global and found much lower RMSE in the WorldPop-LC dataset.
However, this was likely because the validation data were the population data used as an input to

the WorldPop-LC model (Linard et al., 2010).

A key challenge of comparing these data sources is that LandScan-Global methods and datasets
are not publically available. LandScan-Global’s producer, Oakridge National Laboratories with
support from the United States Department of Defence, does not provide sufficient information
about their modelling methods and input data to enable replication (Stevens et al., 2015), thus it
is not possible for researchers to generate LandScan datasets for the purpose of accuracy

comparison.

LandScan-Global’s internal accuracy evaluations have been against earlier, much simpler methods
developed by the US Government to model global gridded populations between 1965 and 1995
(Dobson et al., 2000). With regard to Demobase, the high resolution imagery needed for the
model covariates is not only cost-prohibitive to obtain, it is computationally demanding to process

at a regional and global scale.

WorldPop-Global was released in 2019, and no studies were yet published at the time of this
writing that compared accuracy of WorldPop-Global with other gridded population datasets.
However, given that WorldPop-Global uses the same modelling approach as WorldPop-RF, albeit
with fewer covariates, similar model accuracy to WorldPop-RF is assumed. | confirmed this

assumption by comparing EA and cell-level accuracy for all top-down gridded population datasets
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in approximately the same year (2014/15) in Oshikoto, Namibia where | simulated a realistic
population with colleagues (Thomson, Kools and Jochem, 2018). In Oshikoto, WorldPop-RF and
WorldPop-Global were more accurate than other gridded population estimates, and their level of

accuracy was similar (see Appendix C for details).

For the purposes of selecting a top-down gridded population modelling approach to evaluate the
accuracy of a gridded population estimates at the cell-level, the WorldPop-RF / WorldPop-Global
Random Forest technique was a natural choice for several reasons. First, WorldPop’s Random
Forest methods are well documented and assessed against WorldPop-LC and simpler
disaggregation models such as GPW (Gaughan et al., 2013; Stevens et al., 2015) and GRUMP
(Gaughan et al., 2013; Stevens et al., 2015). Second, Random Forest models allow for estimation
of model errors. Third, the WorldPop Global project provides all model covariates pre-processed
at the 100 metre by 100 metre scale (WorldPop, 2018a; Lloyd et al., 2019). The 100 metre by 100
metre resolution of the WorldPop-RF and WorldPop-Global datasets are a major advantage over 1
kilometre by 1 kilometre datasets in terms of survey feasibility, as their finer resolution means
that cells can be combined to meet various sample design requirements. Finally, WorldPop-RF
and WorldPop-Global both model the residential night-time population rather than ambient

population, which is appropriate for household surveys.

4.2.2 Bottom-up (micro-census-based) gridded sample frames

Researchers are experimenting with gridded population modelling techniques that are census-
independent which would be especially useful where census data are unavailable, outdated, or
inaccurate. Bottom-up gridded population modelling methods involve establishing a statistical
relationship between population density and spatial covariates in a sample of small areas (Figure
21). This relationship is used to predict population densities across a whole country based on

spatial covariates alone (Tatem, 2017; Wardrop et al., 2018).

Bottom up gridded population mapping methods are still being developed, evaluated, and scaled
up. Examples of bottom up maps include Sierra Leone (Hillson et al., 2014), Nigeria (Weber et al.,
2018), and Afghanistan (Wardrop et al., 2018). The GRID3 project, funded by Gates Foundation
and the UK Department for International Development, and the LandScan-HD project, funded by
the US Oakridge National Laboratories, are both currently working on bottom-up gridded
population estimates in 100 metre by 100 metre grid cells for multiple LMICs (CIESIN et al., 2018).
A bottom up map in Namibia was not available at the time of this writing, and was thus not

considered in this thesis.
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Figure 21. General workflow to create “bottom-up,” census-independent gridded population data
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4.2.3 WorldPop — Random Forest Model

In this section, | detail the Random Forest model used in the WorldPop-RF and WorldPop-Global
datasets, which | use to generate gridded population datasets in this thesis. The WorldPop-RF /
WorldPop-Global model generates per-pixel population weights which are applied to a census or
projected census dataset to dasymetrically disaggregate population counts from administrative
units to cells such that the population counts are pycnophylactic. The Random Forest model is a
non-parametric ensemble machine-learning algorithm that grows a “forest” of decision trees
through the modelling process (Breiman, 2001). Machine-learning describes a computational
algorithm which “learns” patterns in very large datasets and uses the acquired information to
improve predictions. Each Random Forest tree is a model of the potential relationships between
the spatial covariates and the census population counts, and this relationship is not tied to
linearity constraints. A non-parametric machine learning algorithm is one which is not based on
an assumed probability distribution in the data, nor does it have a set number of parameters. The
Random Forest model is non-parametric in the sense that the number of decisions within each
tree is not fixed; rather, the number of decision points increases with the number of ancillary
variables. However, users of the Random Forest model will note that it has just two modelling

parameters, which | will describe.

The Random Forest model is part of a family of ensemble machine learning algorithms. Ensemble
algorithms are comprised of many sub-models, or decision trees, in this case. Boosted Regression
Trees is a related ensemble machine learning algorithm (Breiman, 1996). Both Random Forest and
Boosted Regression Trees build decision trees from ancillary data. Each decision point, or node, of
a tree is associated with one ancillary variable, and each node has two branches. The node for a
temperature variable might split, for example, at temperature >= 17°C or temperature < 17°C.
Random Forests are essentially Boosted Regression Trees with an added layer of randomness

introduced into the bagging process (Liaw and Wiener, 2002).
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Bagging is the process used to create decision trees, including calculation of the split value at
each node. Bagging stands for “bootstrap aggregating” and it means that a portion of
observations are randomly sampled with replacement from the training dataset, and successive
decision trees are independently built such that the n decision tree does not depend on earlier
decision trees. In Boosted Regression Trees, the split value at each node is based on an optimal
split calculation using all ancillary variables in the dataset. In Random Forest models, the optimal
split values are calculated from a subset of ancillary variables randomly selected at each node.
This added element of randomness prevents overfitting, avoids a variable selection process, and

addresses collinearity issues (Breiman, 2001).

The two parameters in a Random Forest model are the number of variables in the random subset
at each node, and the number of trees in the forest (Liaw and Wiener, 2002). The WorldPop-RF /
WorldPop-Global algorithm builds decision trees using census unit population counts and spatial
covariates processed at the census unit scale (Figure 22) (Stevens et al., 2015). Data are initially
prepared by census unit such that for each census unit identifier, the population is known and
multiple spatial ancillary data values are joined. WorldPop-Global uses a standard set of 24
covariates from 10 sources (Lloyd et al., 2019) in which values are converted to categorical values
(e.g., land cover type, urban-rural) or continuous values (e.g., intensity of night-time lights,

distance to roads) for each administrative area.

In the second step of the Random Forest model, all of the ancillary datasets are prepared in 100
metre by 100 metre cells. The second step uses the split values of each classification tree
developed in the first step to parameterize a corresponding regression model to predict
population density within cells (Stevens et al., 2015). For each cell, the predicted population
values from all regression models are averaged to make a single population estimate, though

these population estimates are not pycnophylactic.

Thus WorldPop-RF / WorldPop-Global perform a third step outside of the Random Forest model
to normalize cell-level predicted population densities (Stevens et al., 2015). This is done by
summing the predicted population densities by census unit, and calculating the proportion of
census unit population located in each cell. Multiplication of this proportion by the census unit

population dasymetrically disaggregates the census counts and ensures they are pycnophylactic.
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Figure 22. WorldPop-RF and WorldPop-Global classification, regression, and weighting process

using Random Forest models with remotely-sensed and ancillary data

Benefits of the Random Forest model are: (1) it is non-parametric so it can model complex
relationships between population density and ancillary variables without a priori assumptions, (2)
prediction errors can be estimated at the census unit scale, (3) the model accommodates both
continuous and categorical variables allowing many diverse covariate datasets to be used during
the modelling process, and (4) the model is capable of dealing with collinear covariates and non-

linear associations.

A limitation of the Random Forest model is that predictions of the outcome are bounded by the
range of observed values in the original census training data. This has two consequences for the
prediction of population in WorldPop-RF / WorldPop-Global datasets (Stevens et al., 2015). First,
the number of values may be limited, resulting in cell estimates that lack “realistic” gradations
and instead have abrupt edges within and around population centres. Second, the lower and
upper range of average population density in census units may not represent the lower and upper
range of population density in cells. This limitation is particularly relevant in countries with coarse
input census data. In these circumstances, a combined model for two countries can be built —the
country of interest with course census data, and a second country in the same region which has
more detailed census data — to introduce a wider, and more realistic, range of population values

which can be assigned to 100 metre cells (Gaughan et al., 2015).
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Another limitation of the WorldPop-RF / WorldPop-Global model results from the choice to
transform population counts to a log-scale (Stevens et al., 2015). As a result of the log
transformation, these datasets have a non-zero population prediction for all cells, and thus a
small fraction of the census population is allocated to uninhabited areas, for example in deserts or

forests, where the estimated cell population might be 0.00001 persons.

Finally, many of the covariate datasets used to model population counts in WorldPop-RF /
WorldPop-Global 100 by 100 metre cells are only available at a coarser resolution, limiting cell-
level accuracy in the model. Land cover classes are available at approximately 300 by 300 metre
resolution (ESA-CCI, 2017a); and night-time lights (NOAA, 2012, 2017; Zhang, Pandey and Seto,
2016), distance to nature reserves (UNEP-WCMS and IUCN, 2016), travel time to cities (Weiss et
al., 2018), and precipitation and temperature (Fick and Hijmans, 2017) are all published at
approximately 900 by 900 metre resolution. The only covariates available at a similar resolution to
the output grid cells are distance to major roads (OpenStreetMap contributors, 2000),
intersections (OpenStreetMap contributors, 2000), waterways (OpenStreetMap contributors,
2000), inland water bodies (ESA-CCI, 2017b), coastlines (CIESIN, 2016), urban areas (Pesaresi, et
al., 2016), and built settlements (DLR Earth Observation Center, 2017), as well as slope and
elevation (de Ferranti, 2017a, 2017b). None of the finer resolution datasets are particularly
informative about the distribution of population within urban areas; and those datasets which
might be informative (e.g., distance to roads or intersections) are likely to perform poorly in slums
either because roads are absent or not well mapped in OpenStreetMap. Coarse datasets which
are likely to correlate with population density and distribution, such as night-time lights, will
result in a “halo” effect with population being disaggregated to cells in the vicinity of a true high

dense cell, but not necessarily the correct cell itself.

4.3 Simulated gridded population sample frames

In Chapter 3, | simulated 16 realistic census scenarios from household points of a “true”
population in Khomas, Namibia. The scenarios represent varying degrees of outdatedness (zero,
five, ten, and 15 years) and inaccuracy (low, middle, and high levels of missingness among urban
slum, urban non-slum, and rural populations). In this chapter, | aggregate each of the simulated
household populations to EA and constituency (second-level administrative unit) boundaries, and
simulate a total of 32 realistic gridded population datasets. It is important to evaluate the
accuracy of gridded population datasets derived from different census aggregations because cell-
level accuracy of all top-down gridded population datasets is highly influenced by aggregation of
the input population. The names of all 32 simulated gridded population input datasets are listed

in Table 17.
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Table 17. Names of all simulated census scenario datasets, reflecting different years of

outdatedness, realistic levels of population under-counts (inaccuracy), and levels of

model input aggregation (EA versus constituency)

Year No inaccuracy Low inaccuracy Middle inaccuracy High inaccuracy
2016 (current) EA_2016_true EA_2016_L EA_2016_M EA_2016_H
Const_2016_true Const_2016_L Const_2016_M Const_2016_H
2011 (5 years old) EA_2011_true EA_2011_L EA_2011_M EA_2011_H
Const_2011_true Const_2011_L Const_2011_M Const_2011_H
2006 (10 years old) EA_2006_true EA_2006_L EA_2006_M EA_2006_H
Const_2006_true Const_2006_L Const_2006_M Const_2006_H
2001 (15 years old) EA_2001_true EA_2001_L EA_2001_M EA_2001_H

Const_2001_true

Const_2001_L

Const_2001_M

Const_2001_H

43.1 Methods

| used the same methods and parameters as WorldPop-RF / WorldPop-Global to prepare
covariates and population data, run Random Forest models, and to reweight population densities

after modelling. The steps are detailed below and visualized in Figure 23 and Figure 24.

Step 1: Population in Khomas. To prepare population counts in Khomas for Random Forest
modelling, | aggregated the number of household members to EA and constituency boundaries
for each of the 16 simulation scenarios, resulting in 32 shapefiles with scenario-specific
population totals. As mentioned in section 3.4.1.4, | combined two EAs in Windhoek city centre
with a neighbouring EA which had similar housing characteristics in satellite imagery because
zonal statistics could not be calculated for their small narrow shapes; this reduced the number of

EAs in Khomas from 922 to 920.

Step 2: Population in Namibia without Khomas. The number of constituencies (n=10) inside
Khomas did not provide a sufficient number of observations to run a Random Forest model on
their own. To boost the number of observations in the Random Forest training dataset, | tested
inclusion of another population dataset for the rest of Namibia on model results. Population
totals outside of Khomas represented actual 2011 census EA and constituency population counts,
projected to 2016. These numbers were derived by aggregating WorldPop-Global 2016 population
estimates based on 2011 Census EA populations (WorldPop, 2019). The additional data comprised
of 4,575 EAs, and 97 constituencies outside of Khomas, and were generated in ArcGIS 10.5 using

zonal statistics (ESRI, 2018) (Figure 23).
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Step 1: Aggregate populations in simulated households (left) to EA and
constituency boundaries (right) in Khomas

Step 2: Aggregate WorldPop-Global 2016 estimates from 100x100m grid cells
(left) to EA and constituency boundaries (right) outside of Khomas

b f—'v.*l

|
P/

Figure 23. First two steps in WorldPop-RF/WorldPop-Global gridded population modelling

workflow: Preparing population data for Random Forest models

Step 3: Combined Namibia population. Using the ArcGIS 10.5 merge tool, | combined 2016 EA
and constituency population estimates outside of Khomas with each of the 32 simulated EA and
constituency population datasets, resulting in 5,495 EA estimates, and 107 constituency estimates
(Figure 24). | was not concerned that population totals outside of Khomas were all for 2016, and
that they did not include population missingness per my simulated population scenarios. The sole
purpose of including these counts was to provide the Random Forest model with a sufficient
number of observations and sensible population densities to train the model. | only interpreted

and analysed model outputs for Khomas. This step is in-line with the practice of combining
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neighbouring area population data to train Random Forest models when the target area

population data is coarse and thus has few units (Stevens et al., 2015).

Step 4: Covariate zonal statistics. Nearly all of the covariates that | used to train Random Forest
models were pre-processed by the WorldPop-Global project and downloaded from the WorldPop
FTP server (WorldPop, 2018a). In total, | used the same 24 covariates as WorldPop-Global
including distance to road, road intersection, coastline, land cover type, built area, and protected
area, as well as topography (elevation), slope, and night-time light intensity (Table 18). The
WorldPop-Global covariates are resampled to a common 3-arc second (approximately 100 metre
by 100 metre) raster and projected to GCS WGS 1984 (Lloyd et al., 2019). Due to license
redistribution restrictions, average annual temperature and average annual precipitation were
not available via the WorldPop FTP server. To generate these covariates, | used the EA-level zonal
statistics calculated by WorldPop-Global (WorldPop, 2018b), and then rasterized those datasets
to the same dimension as other covariates in R 3.5.2 using the rasterize function. Finally, |
calculated mean zonal statistics for each covariate by EAs (which included my boundary

modifications) and constituencies for the whole of Namibia in R 3.5.2 using the zonal function.

Note that some of the underlying datasets used in this Random Forest model of gridded
populations are the same datasets used in Chapter 3 to simulate the “true” population; however,
the datasets are processed differently in the two analyses resulting in different covariates. In
Chapter 3’s simulation, covariates represented minimum, maximum, and mean values of
covariates in 100 metre pixels summarised to a two kilometre moving window. In the gridded
population models in this chapter, covariates are averaged by EA and later resampled to 100
metre by 100 metre grid cells. Other important differences between the analyses are (1) the
Random Forest model in the Chapter 3 simulated population was used to classify household types
(but their density and distribution was predetermined by manual digitisation of building point
locations), whereas the Random Forest model in this chapter is used to estimate population
density and distribution; and (2) the Random Forest household type probability surfaces were
reweighted by probabilities (proportion) of poor and non-poor households in each EA, adding
noise to the results. If use of the same underlying datasets induced any correlation between
household types (Chapter 3) and population density and distribution (Chapter 4), the correlations

likely reflected actual phenomena, and not statistical artefacts (Engstrom, 2016).

Step 5: Random Forest model and reweighting. Random Forest models were produced in R 3.5.2
using the randomForest function (Liaw and Wiener, 2002) on the University of Southampton
Iridis 5 high performance computing cluster. Before running the models, the area of each EA and
constituency was calculated in hectares, and average population densities were calculated for

each EA and constituency across the 32 population datasets by dividing total population by area.

79



Chapter 4

These raw population densities were highly skewed to the right and many EAs in protected areas
and deserts had zero population. To provide the Random Forest model with an even distribution
of population densities to ensure the algorithm found optimal splits in the data, EAs with zero
population were dropped. Next, a log function was applied to population density in each EA and
constituency census scenario to transform them into normal distributions. During development of
the WorldPop-RF / WorldPop-Global modelling approach, other approaches and transformations
were tested including square root and logio, however, this combination of dropping zero values
and log transforming densities consistently resulted in the best fitting models across settings

(Stevens et al., 2015).

To evaluate the effect of including areas outside of Khomas on the model results, and to test
whether the default 500 trees was sufficient, | ran three versions of the Random Forest Model on
EA-level datasets: (1) Khomas EAs with 500 trees (n=920), (2) Khomas EAs with 1000 trees
(n=920), and (3) EAs for Khomas combined with rest of Namibia with 500 trees (n=4,575). After
confirming that 500 trees were sufficient, and that the inclusion of areas outside of Khomas had
minimal effect on the Random Forest model results (detailed in next section), | used the third
model results based on the combined population in Khomas and the rest of Namibia. | additionally
ran a model that combined simulated constituencies in Khomas with 2016 constituency

populations for the rest of Namibia.

Each model involved the following steps. First, an initial tuning model was run using the non-zero
log population counts and mean zonal statistics of all 24 covariate datasets. The models were
parameterized with the same values as WorldPop-RF and WorldPop-Global including number of
variables in the random subset at each node (mtryStart = n variables + 3) and number of trees in
the forest (ntreeTry = n observations + 20) (Stevens et al., 2015). By using the tuneRF function, |
identified which covariates contributed positive increases to node purity (e.g., increase of
variance explained), and the optimal number of covariates to randomly select at each branch of
the model. Each model was then retuned using the reduced set of covariates which increased

node purity (Figure 24).

After the second model tuning, the remaining covariates and corresponding trees were used to
predict population estimates in 100 metre by 100 metre grid cell based on the original rasterized
covariate values (Figure 24). Note that temperature and precipitation covariates in this step may

have lacked spatial detail compared to other covariates, as they represented EA-level means.

In the models based on Khomas data only, cell estimates were reweighted so that cell-level
estimates summed to the original EA population totals used to fit the models. In the model that

combined Khomas with the rest of Namibia, areas outside of Khomas were first dropped before
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Khomas cell estimates were reweighted, so that cell-level estimates summed to the original EA or

constituency population totals used to fit the model in Khomas only:

_cell(pop)oia X unit(pop)sim

cell(pop) =
new Yunie cell(pop)oia
Step 3: For each simulated EA and Step 4: Calculate (mean) zonal
Constituency population, merge the statistics for each covariate by
WorldPop-Global 2016 estimates Namibia EA and Constituency
outside of Khomas boundaries

Reprintedwith
permission
from Lloyd CT,
etal.(2017)

Step 5: Random Forest models, including tuning, predictions, transforming
log(population), and dasymetric reweighting to EA/constituency inputs
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A) Each decision tree in the ensemble is built upon a random bootstrap sample of the log-transformed population and
ancillary data by administrative unit. B) Population density prediction for each cell § ., . is based on an average of the
individual trees. C) Predicted cell densities are normalized by administrative unit and used to dasymetrically
disaggregate log-transformed administrative unit population, then untransformed to predict population per cell.

Figure 24. Last three steps in WorldPop-RF/WorldPop-Global gridded population modelling

workflow: Preparing covariates and running Random Forest models

81



Chapter 4

Table 18. Covariate data sources for Random Forest gridded population estimates

Name Description (Year) Original scale  Original source
cov_road Distance to OSM major roads (2016) Vector, <30 m OpenStreetMap ()
cov_intsec Distance to OSM major road intersections (2016) Vector, <30 m OpenStreetMap (1)

cov_waterw Distance to OSM major waterways (2016)

Vector,<30m  OpenStreetMap (1)

cov_wdpa Distance to IUCN nature reserve (2000-17)

30” (~900 m) UNEP-WCMS & IUCN @

cov_viirs Resampled VIIRS night-time lights (2012-2016)

30" (~900m)  NOAA®

cov_dmsp Resampled DMSP-OLS night-time lights (2011)

30” (~900 m) NOAA & Zhang, et al. (45

cov_tt50k Resampled travel time to cities of 50,000+ (2000)

30” (~900 m) Weiss, et al. (6)

cov_001 Distance to cultivated areas (2015) 9” (~300 m) ESACClI-LC (™)
cov_040 Distance to woody areas (2015) 9” (~300 m) ESACClI-LC (™)
cov_130 Distance to cultivated areas (2015) 9” (~300 m) ESACCI-LC™
cov_140 Distance to herbaceous areas (2015) 9” (~300 m) ESACCI-LC™
cov_150 Distance to sparse vegetation areas (2015) 9” (~300 m) ESACClI-LC ()
cov_160 Distance to aquatic vegetation areas (2015) 9” (~300 m) ESACClI-LC (™)
cov_190 Distance to urban areas (2015) 9” (~300 m) ESACCI-LC™
cov_200 Distance to bare areas (2015) 9” (~300 m) ESACCI-LC™

cov_cciwat Distance to ESA-CCI-LC inland waterbodies (2000-12)

4.5” (~150m)  ESACCI®

cov_slope SRTM-based slope (2000) 3” (~90 m) de Ferranti (9:10)
cov_topo SRTM-based elevation (2000) 3” (~90 m) de Ferranti (9:10)
cov_coast Distance to open-water coastline (2000-20) 3”(~90 m) CIESIN (11)
cov_ghsl Distance to urban area (2012) 1.26” (~¥38 m) Pesaresi, et al. (12)
cov_guf Distance to settlement built-up areas (2012) 2.8” (~“84 m) DLR EOC (13)

cov_bsgme Distance to built settlement expansion (2016)

3” (~90 m) Nieves, et al. (14)

cov_prec Average total annual precipitation (1970-2000)

30” (~900 m) Fick and Hijmans (15)

cov_temp Average annual temperature (1970-2000)

30” (~900 m) Fick and Hijmans (15)

1. (OpenStreetMap contributors, 2000) 9. (de Ferranti, 2017b)

Datasets accessed via the
WorldPop FTP server

2. (UNEP-WCMS and IUCN, 2016) 10. (de Ferranti, 2017a)
(WorldPop, 2018a). Data
3. (NOAA, 2012) 11. (CIESIN, 2018) processed by the WorldPop
4. (NOAA, 2017) 12. (European Commission, 2017) team at 3 minute (~100x100m
5. (Zhang, Pandey and Seto, 2016) 13. (DLR Earth Observation Center, 2017) resolution) and projected to
GCS WGS 1984 (Lloyd,
6. (Weiss et al., 2018) 14. (Nieves et al., 2020) Sorichetta and Tatem, 2017;
7. (ESA-CCI, 2017a) 15. (Fick and Hijmans, 2017) Lloyd et al., 2019).

8. (ESA-CCI, 2017b)
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4.3.2 Results

The comparison of 500 and 1000 trees in the Khomas EA-level Random Forest models showed no

effect of increasing the number of trees, thus | decided to use 500 trees in all models (Table 19).

The comparison of models run with Khomas simulated EA-level populations only, and Khomas EA-
level simulated populations combined with 2016 estimates for the rest of Namibia, also resulted
in minimal differences. Due to the greater number of observations, the models that included data
for all of Namibia performed better in terms of mean square error (MSE) and coefficient of
variance (CV) (square root of MSE divided by number of households), and explained roughly 1%
more of the overall variance in population densities (Table 19). Given the minimal effect on MSE
and percent variance explained of including population outside of Khomas to train the EA-level
models, | chose to use 2016 population in constituencies outside of Khomas to train the
constituency-level models for Khomas’s 10 constituencies. To maintain comparability between
EA- and constituency-level results throughout the rest of this thesis, | used the EA-level model
outputs trained with data for all of Namibia. Again, only the gridded population estimates inside

Khomas were analysed.

The Random Forest models with EA-level input population data performed slightly better
(approximately 95% variance explained) (Table 19) than models with constituency-level input
population data (approximately 94% variance explained) (Table 20), which is to be expected due
to the finer resolution of EAs. The randomForest function provides MSE results for each
model, enabling assessment of model error at the scale of the input population (Liaw and Wiener,
2002). MSE in the EA-level models (0.47 to 0.50) (Table 19) were higher than constituency-level
models (0.34 to 0.38) (Table 20) because population totals at the EA-level vary more than at the

constituency-level.

Across models, CV increased as the input population was increasingly outdated and as the level of
population missingness increased, as was expected due to mismatches between population
density and spatial covariates (Table 19, Table 20). Table 21 summarises covariate importance
scores (see section 3.4.1.4) for population estimates derived from select EA- and constituency-
level models. See Appendix D for plots of covariate importance and observed versus predicted
population in each of the 32 models that included data outside of Khomas for training, as well as

for the 16 EA-level models (500 trees) that were trained on data from Khomas only.

Before advancing to sample frame accuracy assessments, | confirmed that the rescaled gridded

population estimates aggregated to the correct simulated census totals in EAs or constituencies.
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Table 19. Comparison of Random Forest model fit statistics for EA-level input census scenarios

Bold indicates model outputs used in further analyses, * multiplied by 10,000,000

Scenario model Coverage Number Number MeanSquare Coefficient of Percent variance
of trees of splits  Error (MSE) variation (CV)*  explained
EA_2016_true Khomas 1000 6 0.6452042 82.24 94.85
500 6 0.6341473 81.54 94.94
Namibia 500 5 0.4754283 3.57 95.84
EA_2016_L Khomas 1000 5 0.6390794 86.04 94.86
500 6 0.6465398 86.54 94.80
Namibia 500 8 0.4763202 3.58 95.81
EA_2016_M Khomas 1000 6 0.6197341 93.68 94.92
500 6 0.6212137 93.79 94.91
Namibia 500 7 0.4739785 3.59 95.79
EA_2016_H Khomas 1000 8 0.6040675 110.40 94.90
500 6 0.6223167 112.06 94.75
Namibia 500 6 0.4705776 3.60 95.75
EA_2011_true Khomas 1000 7 0.6172502 87.84 95.11
500 7 0.5979264 86.46 95.27
Namibia 500 6 0.4651136 3.54 95.92
EA_2011_L Khomas 1000 7 0.6020828 90.90 95.20
500 6 0.6107100 91.55 95.13
Namibia 500 7 0.4669534 3.56 95.89
EA_2011_M Khomas 1000 8 0.6021614 99.72 95.14
500 6 0.6264232 101.71 94.94
Namibia 500 7 0.4688343 3.58 95.83
EA_2011_H Khomas 1000 6 0.6018100 117.18 94.96
500 7 0.5960483 116.62 95.01
Namibia 500 8 0.4712438 3.61 95.73
EA_2006_true Khomas 1000 7 0.7476114 120.25 94.39
500 7 0.7438385 119.94 94.42
Namibia 500 7 0.4919520 3.68 95.61
EA_2006_L Khomas 1000 7 0.7370870 124.38 94.43
500 8 0.7372104 124.39 94.43
Namibia 500 7 0.4938965 3.69 95.57
EA_2006_M Khomas 1000 6 0.6757099 128.83 94.80
500 7 0.6671515 128.01 94.87
Namibia 500 7 0.4841646 3.66 95.63
EA_2006_H Khomas 1000 7 0.6889540 149.00 94.55
500 8 0.6949817 149.65 94.51
Namibia 500 8 0.4902797 3.70 95.50
EA_2001_true Khomas 1000 9 0.7004286 142.87 94.87
500 8 0.6985975 142.68 94.89
Namibia 500 8 0.4948715 3.71 95.51
EA_2001_L Khomas 1000 10 0.6891912 147.31 94.93
500 8 0.6938707 147.81 94.90
Namibia 500 8 0.4976646 3.73 95.47
EA_2001_M Khomas 1000 6 0.7014662 159.95 94.80
500 6 0.7094756 160.86 94.74
Namibia 500 7 0.4948384 3.73 95.47
EA_2001_H Khomas 1000 6 0.6953790 180.71 94.69
500 6 0.6913627 180.19 94.72
Namibia 500 7 0.4915084 3.73 95.44
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Table 20. Random Forest model fit statistics for constituency-level input census scenarios

Scenario model Coverage Number Number Mean Square Coefficient of Percent variance
of trees of splits  Error (MSE) variation (CV)*  explained
Const_2016_true Namibia 500 5 0.3647471 3.12 94.76
Const_2016_L Namibia 500 6 0.3527696 3.08 94.91
Const_2016_M Namibia 500 5 0.3550769 3.10 94.83
Const_2016_H Namibia 500 6 0.3713581 3.20 94.49
Const_2011_true Namibia 500 5 0.3647895 3.14 94.73
Const_2011_L Namibia 500 6 0.3545479 3.10 94.85
Const_2011_M Namibia 500 5 0.3408526 3.05 95.01
Const_2011_H Namibia 500 5 0.3573817 3.14 94.67
Const_2006_true Namibia 500 6 0.3594167 3.14 94.70
Const_2006_L Namibia 500 6 0.3650124 3.17 94.59
Const_2006_M Namibia 500 5 0.3667935 3.19 94.52
Const_2006_H Namibia 500 6 0.3500677 3.13 94.69
Const_2001_true Namibia 500 6 0.3750283 3.23 94.33
Const_2001_L Namibia 500 5 0.3532104 3.14 94.64
Const_2001_M Namibia 500 5 0.3616736 3.19 94.47
Const_2001_H Namibia 500 7 0.3623336 3.20 94.39
* multiplied by 10,000,000
Table 21. Covariate importance scores for select final gridded population models
EA EA EA EA Const. Const. Const. Const.
Covariate 2016 2011 2006 2001 2016 2011 2006 2001
True Low Med High True Low Med High
cov_011 1,565.7 1,466.3 1,468.4 1,487.0 12.0 13.8 15.2 13.3
cov_040 399.7 321.0 304.3 344.0 14.7 12.2 145 14.4
cov_130 208.2 189.6 178.4 201.3 2.8 1.8 24 2.2
cov_140 493.1 311.2 290.7 449.4 24 1.7 2.5 1.8
cov_150 457.0 422.9 370.7 356.6 4.0 2.8 3.7 2.6
cov_160 446.2 414.1 401.4 370.7 3.8 2.9 3.2 2.8
cov_190 5,710.1 5,200.9 5,550.0 5,258.2 98.0 102.0 110.9 95.2
cov_200 466.6 338.9 362.0 365.0 3.5 2.6 5.0 2.2
cov_bsgme 11,929.0 13,650.1 13,433.1 13,855.7 148.4 167.9 136.6 185.6
cov_cciwat 1,152.3 688.8 799.8 928.1 47.2 45.0 49.8 42.6
cov_coast 685.9 532.5 500.8 571.8 6.3 4.4 5.6 3.1
cov_guf 14,885.8 18,960.6 16,996.1 14,547.7 77.2 74.3 90.2 68.7
cov_intsec 2,928.9 1,802.7 1,674.7 1,939.7 144.9 161.6 128.9 148.8
cov_prec 258.2 222.7 245.1 251.9 55.7 45.6 44.6 30.0
cov_road 5,518.9 3,094.2 4,092.4  4,484.8 1.6 1.6 1.8 1.2
cov_slope 557.3 516.3 533.2 624.6 58.2 45.1 44.7 39.8
cov_topo 1,535.2 1,419.0 1,437.7 1,519.2 7.3 7.3 7.7 6.2
cov_tt50k 1,127.7 660.2 619.5 692.8 12.0 8.5 8.5 2.8
cov_viirs 10,469.3 10,369.6 8,985.0 7,778.2 8.8 9.6 11.4 4.7
cov_waterw 814.6 664.9 596.6 623.2 24.7 13.7 22.6 8.0
cov_wdpa 935.1 717.4 739.7 835.5 3.5 2.0 2.0 2.2
cov_011 1,565.7 1,466.3 1,468.4 1,487.0 12.0 13.8 15.2 13.3
cov_040 399.7 321.0 304.3 344.0 14.7 12.2 14.5 14.4
cov_130 208.2 189.6 178.4 201.3 2.8 1.8 2.4 2.2
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4.4 Cell-level accuracy of simulated gridded population sample frames

versus simulated “real” populations

4.4.1 Methods

No accuracy assessments have been performed on gridded population data at the cell-level;
accuracy has always been assessed at the scale of the input population data (see section 4.2.1.5).
Using the simulated “real” population household locations, this analysis provides a rare
opportunity to assess Random Forest model accuracy at the scale of the output grid cell. This
section summarizes the statistics used to make comparisons in grid cells that ranged in size from
100 metres by 100 metres to 1 kilometre by 1 kilometre. All analyses were performed in R 3.5.2

on the Iridis 5 high performance computing cluster.

To evaluate cell-level accuracy, | used two error metrics, RMSE and MAE (both detailed in 4.2.1.5),
to understand the degree of inaccuracy at the cell-level. | additionally created two usability
measures with respect to maximum error in both the population estimate and the estimated
population distribution. Accuracy of the estimated population distribution (percent of overall
estimated population in each cell) is important for drawing an accurate sample and calculating
accurate sampling probabilities. However, accuracy in the total population estimate is also
important for field operations. A sampling unit with too few people wastes resources and
potentially decreases sample size, while a sampling unit with too many people requires additional
resources and time to perform segmentation (i.e., manually splitting the sampling units during

fieldwork).

To measure accuracy of the population distribution, | calculated the percent of cells whose
estimated population was +/- 20% the “true” population (PerDiff20). Given that a typical EA has
200 households and ranges from 100 to 300 households, 20% larger than 300 households would
be 360 households, roughly the point at which an EA would need to be segmented in survey
practice. To generate this statistic, | first calculated percent difference between the estimated and
“true” populations in each cell i.

PerDiff; = M x 100

i

To be able to measure percent difference, | added 0.000001 to every cell in the estimated
population and the “true” population to have non zero values in the denominator; this amounted

to 4 people being added to each dataset for all of Khomas. Then | classified each cell as 0 if it was
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greater than 20%, or 1 if it was less than or equal to 20%. Finally, | calculated the percentage of

n cells less than or equal to 20% of the “true” population distribution.

PerDiff20 = @ x 100
| additionally calculated the percent of cells that had an absolute difference of 10 people
(AbsDiff10) or 25 people (AbsDiff25) per hectare from the “true” population count using a similar
approach. In Khomas, where the average household size is 3.7 people (NSA, 2011b), this would
amount to +/- 3 or 7 households per hectare. First | calculated the absolute difference between

the estimated and true populations in cell i.

AbsDiff; = |J; — yil

Then | classified cells as 0 if the difference was greater than 10 (or 25) people per hectare, and 1 if
the difference was 10 (or 25) people and fewer. To calculate people per hectare, this number was
increased by the same factor f2 as cell size (e.g., factor = 2 for 200 metre by 200 metre cell). Then
| calculated the percent of n cells with an estimated population less than or equal to that value.

Abspiff10 = "E10 XS

AbsDiff25 = w

Given that the WorldPop-RF / WorldPop-Global model attribute a fraction of a person to each cell
in unsettled areas, | ran these statistics on the full estimated population for each scenario, as well
as a version of the dataset in which 100 metre by 100 metre cells with a population estimate less
than 1 were excluded, and another version in which cells with an estimated population less than 4
(approximately 1 household) were excluded. | also stratified the analysis by urban and rural cells
using my earlier classification of EAs in 2016 (see section 3.5.3) to evaluate whether the model

performed differently by urbanicity.

4.4.2 Results

| first reviewed a summary of all statistics across all 16 scenarios and 10 cell sizes to evaluate
whether stratification by urbanicity was necessary, and whether | would present results with any
population exclusion. The statistics were highly influenced by near zero population estimates in

|”

cells located in Khomas’s vast unsettled areas. Whereas the “real” population covered a total of
11,206 100 metre by 100 metre cells (not reported), the estimated population covered 4,672,293

rural cells, and 14,403 urban cells (Table 22). Millions of near zero cell-level estimates in the
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gridded population severely skewed MAE (3), AbsDiff10 (99.8%), and AbsDiff25 (99.9%) to appear
highly accurate because so many cells with near zero population estimates were compared to a

“true” population of zero (Table 22).

After excluding cell estimates less than 1 or 4, the same statistics were far more reasonable (MAE:
483 and 656; AbsDiff10: 69.8% and 60.0%; AbsDiff25: 84.3% and 78.2%) (Table 22). Visual
inspection of the 100 metre by 100 metre gridded population dataset derived from 2016 “true”
population counts aggregated to EA showed that a substantial number of “true” population would
be omitted from the analysis if | excluded cells with a population estimate less than 4 (Figure 25),
but only a few people in the “true” population would be omitted if | excluded cell population
estimates less than 1 (Figure 26), thus all results are presented for areas with 1 or more estimated

people in the original 100 metre by 100 metre model.

The results revealed marked urban-rural differences in cell-level accuracy. For example, in cells

with 1+ estimated persons, the average accuracy statistics across datasets and scales were: RMSE
(U:1,506 vs. R:185), MAE (U:987 vs. R:64), AbsDiff10 (U:44.0% vs R:92.1%), AbsDiff25 (U:68.6% vs
R:97.9%), and PerDiff20 (U:77.9% vs R:18.4%) (Table 22). Thus, all further results are stratified by

urbanicity.

Table 22. Summary of accuracy statistics across all simulated gridded population datasets and grid
cell sizes, by urban/rural and exclusion of cells with small estimated population

Red indicates the results presented in detail in this chapter

100m RMSE MAE AbsDiff10 AbsDiff25 PerDiff20

N cells Mean Mean  Mean Range Mean Range Mean Range
No exclusion
All 4,686,696 78 3 99.8% (99.7,99.9) 99.9%  (99.8,99.9) 2.1% (0.0, 6.6)
Rural 4,672,293 11 0 100.0% (99.8,100.0) 100.0% (99.9,100.0) 1.8% (0.0, 6.3)
Urban 14,403 1,405 874 50.8% (45.1, 66.3) 72.3% (68.8,85.8) 74.9% (3.1,97.9)
Exclude cells with estimated population < 1
All 25,746 1,024 483 69.8% (39.8,76.3) 843% (71.6,87.8) 453% (2.0, 78.6)
Rural 13,861 185 64 92.1% (24.3,99.3) 97.9% (64.4,100.0) 18.4% (0.1, 54.0)
Urban 11,885 1,506 987 44.0% (35.8,60.0) 68.6% (63.2,83.1) 77.9% (3.5,100.0)
Exclude cells with estimated population < 4
All 21,824 1,209 656 60.0%  (31.1,72.5) 782% (63.0,86.2) 50.3% (2.9,93.4)
Rural 12,333 238 98 88.5% (17.4,99.4) 97.2% (61.1,100.0) 20.8% (0.0, 78.6)
Urban 9,491 1,665 1,176  34.1% (21.7,51.4) 61.9% (50.0,79.2) 80.9% (4.0,100.0)
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Below | visualise each statistic for EA and constituency on the same scale so that relative
differences are easier to spot across the different simulated census scenarios and aggregated grid
cell sizes. | present results for absolute difference of +/- 10 people per hectare (AbsDiff10), rather
than +/- 25 people (AbsDiff25), because the larger value would represent huge errors in the
estimated population in large grid cells. In 1 kilometre by 1 kilometre cells, for example, +/- 10
people per hectare would result in +/- 1000 people overall, while +/- 25 people per hectare would

result in +/- 2500 people.

A summary of RMSE is presented in Figure 27, a summary of MAE is presented in Figure 28, and
AbsDiff10 and PerDiff20 are visualized together in Figure 29. | visualized absolute and percent
population differences together because they are both important to survey fieldwork, and |
wanted to make recommendations of for a minimum grid cell size to use in the next analysis of

gridded population sampling with both in mind. All statistics are presented in full in Appendix E.
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No exclusion Excluding estpop <4

EA_2016_True input

D No households

] I:l Potential households excluded

Random Forest
model sums to 24 in
EA, but each cell is <4

Figure 25. Visual of areas included in the analysis, and select EAs with "true" population, when

cells with an estimated population <4 are excluded (EA_2016_true 100m dataset)
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No exclusion Excluding estpop <1

EA_2016_True input

Cl No households

[:l Potential households excluded |

Random Forest
model sums to 24 in
EA, but each cell is <1

Figure 26. Visual of areas included in the analysis, and select EAs with "true" population, when

cells with an estimated population <1 are excluded (EA_2016_true 100m dataset)
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Figure 27. RMSE in gridded population cells, by grid cell size, simulated census scenario, and
aggregation of input population
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MAE (EA-level input data)
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Figure 28. MAE in gridded population cells, by grid cell size, simulated census scenario, and

aggregation of input population
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Percent of cells +/- 10 people per hectare (colour) or +/- 20% (black)
of the true population (EA-level input data)
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Figure 29. Percent of cells +/- 10 people per hectare (AbsDiff10) or +/- 20% of the true population
of input population



Chapter 4

RMSE and MAE in grid cells did not differ substantially across the simulated census scenarios
which included varying degrees of population missingness and outdatedness (Figure 27, Figure
28). Furthermore, errors only slightly decreased when the input data were aggregated to EA
rather than constituency. The major driver of RMSE and MAE in cells was urban location; error in
urban cell-level estimates was substantially higher than rural cells according to both metrics
(Figure 27, Figure 28). The errors increased linearly with cell size, likely because large errors in
urban areas were compounded as cell size increased; RMSE and MAE only increased slightly in

rural areas with cell size.

At the 100 metre by 100 metre scale, few grid cells in urban or rural areas were accurately
estimated to have +/- 10 people when compared to the "true" population (Figure 29). However,
this quickly increased in rural grid cells but decreased in urban grid cells when grid cells were
aggregated. At 300 metres by 300 metres, there was a sharp increase in cells that had +/- 20% the
true population in urban areas (PerDiff20), with smaller increases in rural areas (Figure 29). In
both urban and rural areas, the number of cells with +/- 20% the true population (PerDiff20)
remained fairly constant when cells were aggregated to cells larger than 300 metres by 300
metres. As with RMSE and MAE, the cell-level statistics for AbsDiff10 and PerDiff20 were
dominated by urban/rural differences, rather than outdatedness or inaccuracies in the input

population, or level of input population aggregation.

At 300 metres by 300 metres, most estimates in rural cells were +/- 10 people per hectare and
most estimates in urban cells were +/- 20% the true population. To demonstrate that differences
due to input population outdated and inaccuracy were subtle or negligible, Table 23 presents
statistics for select census scenarios in 300 metre by 300 metre cells. There were only slight
increases in RMSE and MAE as input datasets were increasingly outdated and inaccurate, and
when the input data were aggregated. For example, RMSE was 238 for EA_2016_True (most
accurate, fine scale input) and 286 for Const_2001_H (least accurate, coarse input). AbsDiff10 and
AbsPer20 were negligible or decreased very slightly in scenarios of greater outdatedness or
inaccuracy, but only when the input data were at the EA scale (Table 23). There was an
unexpected improvement in PerDiff20 in scenarios of greater outdatedness and inaccuracy
among input datasets aggregated to constituency (from 41.4% to 49.2%), likely because the
incorrect low constituency population counts approached the underestimated population

produced by the Random Forest model (Table 23).
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Table 23. Summary of accuracy statistics in 300 metre by 300 metre grid cells for select simulated

census scenarios, excluding areas with an original estimated population less than 1

RMSE MAE AbsDiff10 PerDiff20

All R v All R U All R U Al R U
EA
2016_True 238 36 353 112.9 22.1 2236 73.5 97.3 447 446 10.8 86.6
2011_L 245 40 365 118.1 25.5 233.0 72.6 96.4 43.4 436 9.1 87.1
2006_M 245 35 374 1142 22.7 237.9 73.7 97.7 416 415 7.2 88.6
2001_H 254 36 394 117.6 23.0 252.5 73.4 97.8 39.0 39.7 46 90.3
Constituency
2016_True 253 25 361 111.6 10.0 218.0 74.3 98.7 48.7 414 8.8 75.6
2011_L 258 25 365 1142 9.4 2213 73.6 98.5 48.2 422 9.1 76.0
2006_M 266 26 372 119.0 8.1 226.5 724 98.3 47.3 43.6 9.5 76.7
2001_H 286 29 379 135.8 85 2321 68.4 97.7 46.3 49.2 11.8 77.6

To determine the magnitude and potential sources of the massive cell-level errors, particularly in
urban areas, | performed two sub-analyses. | calculated cell-level bias, the average difference
between the “true” population and the estimated population, and percent of the total population

in Khomas that was misallocated to cells which were unsettled according to the “true” population.

In the 100 metre by 100 metre estimates derived from “true” 2016 census data, cell-level bias
ranged from 245 population underestimate to 525 population overestimate with EA-level input,
and from 333 population underestimate to 96 population overestimate with constituency-level
input (unreported). A visual comparison of bias is presented in Figure 30 for a select EA and
constituency, demonstrating that within-urban cell-level estimates based on the most accurate

data available differed substantially from reality.

The average 300 metre by 300 metre urban cell underestimated the population by more than 200
people, while the average rural cell was underestimated by 3 (constituency-level input) to 14 (EA-
level input) people (Table 24). In this analysis, where | excluded millions of cells in unsettled areas
with a fraction of an estimated person, both urban and rural cell-level estimates suffered greater
bias when grid cells were aggregated. The average 1 kilometre by 1 kilometre urban cell was
missing approximately 2,400 people, while the average rural cell of the same size was missing
approximately 140 people (Table 24). When these same statistics were performed on datasets
without exclusions, the bias in rural areas was close to zero due to the enormous number of near
zero estimates compared to zero “true” population, while the bias in urban areas was nearly

identical (unreported).
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Figure 30. Example 100 metre by 100 metre gridded population estimate bias versus "true"

population in a select EA and constituency
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Table 24. Bias in the 2016 gridded population estimates derived from “true” population counts, by
grid cell size and aggregation level of the input data, excluding areas with an original

estimated population less than 1

Grid cell size EA_2016_true Const_2016_true

(m?) All Rural Urban All Rural Urban
100 10 20 0 0 7 -8
200 -29 18 -85 -39 6 -86
300 -92 14 -223 -103 3 -214
400 -177 8 -416 -192 -1 -394
500 -283 3 -650 -306 -8 -616
600 -407 -22 -933 -445 -34 -891
700 -551 -33 -1,293 -611 -51 -1,229
800 -718 -72 -1,664 -787 -90 -1,556
900 -891 -126 -2,026 -994 -152 -1,974
1000 -1,073 -126 -2,476 -1,233 -167 -2,421

Table 25 summarises the percent of the estimated population misallocated to “true” unsettled
cells. The exclusion of cells with fewer than one estimated person was lifted for this analysis to
understand error in the underlying estimates. Roughly 20% (EA-level input) or 10% (constituency-
level input) of the population was misallocated to unsettled 100 metre by 100 metre cells (Table
25). However, as cells were aggregated, the percent of misallocated population dropped
precipitously. For example, at 300 metres by 300 metres, less than 3% (EA-level input) or 1%
(constituency-level input) of Khomas’s population was misallocated to unsettled cells. This
indicated that most of the population was disaggregated within, or near to, settlements. The rates
of misallocation were similar across grid cell sizes when cells with less than one person were

excluded (not reported).
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Table 25. Percent of the overall population (no exclusion) that is misallocated to unsettled cells,

by simulated census scenario, aggregation level of the input data, and grid cell size

Grid cell size (m?)

100 200 300 400 500 600 700 800 900 1000
Scenario % % % % % % % % % %
EA_2001_H 2005 495 222 128 081 059 041 032 026 021
EA_2001_L 2115 521 233 135 086 062 043 034 0.27 0.22
EA_2001_M 2063 5.08 227 131 083 060 042 033 026 0.21
EA_2001_true 2190 540 242 140 089 064 045 035 0.28 0.23
EA_2006_H 2098 515 230 132 084 061 043 033 026 0.22
EA_2006_L 2268 557 249 144 091 066 046 036 029 0.24
EA_2006_M 2047 500 223 129 082 059 041 032 026 0.21
EA_2006_true 23.16 5.69 254 147 093 067 047 037 029 0.24
EA_2011_H 2063 503 224 129 082 059 041 033 026 0.21
EA_2011_L 2334 568 253 146 093 066 047 037 029 0.24
EA_2011_M 26,50 6.50 290 167 106 0.76 054 042 033 0.27
EA_2011_true 2167 526 234 135 085 062 043 034 0.27 0.22
EA_2016_H 2029 494 220 127 081 058 041 032 025 0.21
EA_2016_L 2200 534 238 137 087 063 044 035 027 023
EA_2016_M 1869 450 200 115 0.73 052 037 029 023 0.19
EA_2016_true 20.82 5.02 223 128 081 059 041 032 026 0.21
const_2001_H 580 119 046 0.23 0.13 0.08 006 0.04 0.03 0.02
const_2001_L 733 153 060 030 0.17 0.11 0.07 0.05 0.04 0.03
const_2001_M 6.77 140 054 0.28 0.16 010 0.07 0.05 0.04 0.02
const_2001_true 759 158 061 031 0.18 011 007 0.05 0.04 0.03
const_2006_H 710 146 056 0.29 0.16 0.10 0.07 0.05 0.04 0.03
const_2006_L 878 183 071 036 021 013 008 0.06 0.04 0.03
const_2006_M 813 169 066 034 0.19 0.12 0.08 0.06 0.04 0.03
const_2006_true 9.22 193 075 038 0.22 014 009 0.06 0.05 0.03
const_2011_H 835 173 067 034 019 012 008 0.06 0.04 0.03
const_2011_L 10.86 228 089 046 0.26 0.16 0.11 0.08 0.06 0.04
const_2011_M 9.79 204 079 041 023 015 0.09 0.07 0.05 0.03
const_2011_true 1134 239 094 048 0.27 0.17 011 0.08 0.06 0.04
const_2016_H 895 187 073 037 0.21 013 0.09 0.07 0.05 0.03
const_2016_L 11.66 245 096 049 0.28 0.18 0.11 0.08 0.06 0.04
const_2016_M 10.69 225 088 045 0.26 0.16 0.11 0.08 0.06 0.04
const_2016_true 1247 263 103 053 030 019 0.12 0.09 0.06 0.05
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4.5 Discussion

4.5.1 Accuracy of simulated gridded population sample frames

Urban/rural population difference in Khomas dominated the results. While | found clear evidence
of my hypothesis that the accuracy of gridded population estimates can be improved by
aggregating grid cells, there was limited evidence in this context that outdated, inaccurate census
data plays a major role in the cell-level accuracy of gridded population estimates using a
WorldPop-RF / WorldPop-Global modelling approach. Three potential issues might explain cell-

level inaccuracies:

(1) non-zero population estimates were attributed to millions of unsettled cells;

(2) presence of local spatial inaccuracies due to the coarse resolution of some covariates
and/or a weak relationship between population density and the covariates; and

(3) the assumption that average EA- or constituency-level population densities per hectare
provide a sufficient range of population values from which to model population density at

the 100 metre by 100 metre (hectare) scale.

The first issue, non-zero population estimates in millions of unsettled cells, probably played only a
minor role in cell-level inaccuracies. Table 25 demonstrates that even in this context of vast
unsettled areas, only a small portion of Khomas’s population was misallocated to cells far from
actual settlements. Nearly all of the population was estimated to be in cells within 200 to 300

metres of the “true” population.

The second issue, related to covariate resolution and the relationship of covariates with
population density, probably played a larger role. A number of the Random Forest model
covariates, such a land cover type and night-time lights, had an original resolution substantially
larger than 100 metre by 100 metres, which could have resulted in a halo effect around
settlements, causing populations to be disaggregated to cells near a settlement, but not directly
over it. Figure 29 and Table 25 provide evidence of this; the accuracy of the estimated population
distribution, and correct allocation of population to settled cells, both performed well when the

estimated population was aggregated to 300 metres by 300 metres or larger.

Other covariates, such as road and intersection locations, and urban or built-up settlement area,
were available at very fine spatial resolution and thus were precise at the 100 metre by 100 metre
scale. Although they are good indicators of a settlement, they are not necessarily good indicators
of higher or lower population density within a settlement. The lack of fine-scale covariates

associated with population density within cities and towns likely explains a portion of the cell-
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level error observed. Other issues that might further decrease local spatial accuracy are temporal
miss-match of covariates (Leyk et al., 2019) and covariate spatial autocorrelation (Sinha et al.,

2019).

The third potential source of cell-level inaccuracies, using average population densities from large
administrative units to estimate population density in much smaller grid cells, is known as the
ecological fallacy (Thorndike, 1939; Selvin, 1958), and probably played the largest role in cell-level
inaccuracies. Population densities are used by the random forest model to establish relationships
between covariates and population (total population divided by total area), not population totals.
In the simulated “true” 2016 household point locations dataset, the maximum number of people
in a 100 metre by 100 metre cell was 386 people. However, in the same 100 metre by 100 metre
grid, the maximum population estimated by the Random Forest model was 469 people (EA-level
input) and 112 (constituency-level input). Even with perfect covariates and exclusion of unsettled
areas, this means that cells with high population density might be severely underestimated, and
that the excess population will be disaggregated to other less dense cells in the same input

administrative unit due to dasymetric reweighting.

The ecological fallacy was likely the main source of
cell-level error in the WorldPop-RF / WorldPop-Global

model results.

Population density per hectare in administrative areas

did not reflect population density at the cell-level.

The likely underestimation of cell-level high population density in existing WorldPop-RF /
WorldPop-Global datasets gives me pause about the value of gridded population sampling to
ensure coverage of slum dwellers in household surveys. A defining characteristics of LMIC slum
areas is high population density (Nuissl and Heinrichs, 2013; Ezeh et al., 2017; Mahabir et al.,
2018; Lilford et al., 2019), though high-rise apartment buildings are another form of high density
urban living. The relationship between high population density and socioeconomic status likely
varies by city, and is an area that needs further study to understand the accuracy of gridded
population estimates. Given that many of the highest density cells are likely located in slum areas,
gridded population sampling from a WorldPop-RF / WorldPop-Global dataset might result in an

under sample of slum dwellers.
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4.5.2 Recommendations

I have three recommendations to potentially address sources of cell-level error in WorldPop-RF/
WorldPop-Global gridded population estimates. The first recommendation is in light of a high
quality building footprint dataset that has only recently become available for multiple LMICs from
Maxar, Digital Global, and Ecopia (Maxar, 2019). This group produces a building footprint layer by
country, derived by extracting building boundary features from very high resolution satellite
imagery. Each country dataset is reported to include 95% or more of actual buildings, including
structures made with traditional materials (Maxar, 2019). These building footprint datasets are
initially a commercial product, but are released freely and publicly after three years. Accurate
building footprints are likely associated with population density within settlements and have a
finer spatial resolution than 100 metres by 100 metres, making it a potentially powerful covariate
to include in Random Forest models, and likely to improve within urban cell-level estimates.
Gridded population data producers are already evaluating how to incorporate this dataset into

gridded population models (D. Leasure, personal communication, 9 Feb 2020).

Although there are good arguments against using a modelled settlement layer to mask gridded
population estimates because this tends to omit small rural settlements and remote households
(Stevens et al., 2015), use of the new Maxar, Digital Globe, Ecopia building footprints layer might
be sufficiently accurate to do just this. If buildings made from traditional materials are reflected in
the dataset, then building footprints could be used to create a 100 metre by 100 metre mask to
constrain the Random Forest model, or to set Random Forest outputs to zero before
dasymetrically reweighting with the input population counts. This would mean that only cells
containing buildings would be attributed population, and that cell-level population estimates
would still sum to the total population of the input unit. However, the use of building footprints as

a covariate might not, alone, address cell-level inaccuracies within urban areas.

A third recommendation is to create 100 metre by 100 metre population training datasets that
could be incorporated with other training data during the Random Forest modelling phase of
WorldPop-RF / WorldPop-Global workflow. This would help to address the third issue driving cell-
level inaccuracies, which is that Random Forest models generally do not have sensible population-
per-hectare densities to predict population densities accurately in 100 metre by 100 metre cells
within cities. The training datasets might be simulated, like the one | created in Chapter 3, or they
might come from existing household survey enumerations. For example, World Bank LSMS
surveys record household size and household latitude-longitude coordinate for every household
in every sampling unit (i.e., cluster/PSU) during the mapping-listing activity before drawing a final

sample of households (M. Wild, personal communication, July 2019). While household
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geolocations are quite sensitive data and are never shared, aggregation of population counts to
100 metre by 100 metre grids cells by the data collection team, would produce an anonymised,
non-sensitive dataset. Even if these densities are only available for a sample of locations, they
would provide the Random Forest model with more accurate maximum population values in 100
metre by 100 metre cells, as compared to administrative-level averages. Recent communication
with the World Bank indicates their openness to producing and sharing this type of information

from LSMS surveys (M. Wild, personal communication, July 2019).

Addressing the ecological fallacy in the WorldPop-RF / WorldPop-Global workflow by
incorporating training data from smaller areas, and adding fine scale spatial covariates to the
Random Forest model that are correlated with variation in urban population density, would
together likely improve the accuracy of gridded population estimates and subsequent gridded
population surveys. Further evaluation of these recommendations ought to be a priority for teams

using the WorldPop-RF / WorldPop-Global modelling workflow.

4.5.3 Decision: Gridded population sample frame scale in this thesis

The analyses in this chapter indicate that aggregating existing WorldPop-RF / WorldPop-Global
gridded population estimates to 300 metre by 300 metre grid cells or larger in a setting similar to
Khomas, Namibia is the best available choice for fieldwork. Results indicate that areas which are
at least 300 metres by 300 metres contain +/- 20% the true population distribution in urban areas,
and +/- 10 people per hectare in rural areas. However, the results also indicate large errors in
urban cell-level estimates, which could be addressed by stratifying samples or analyses along
urban/rural boundaries. In the next chapter, | limit the analysis to urban Khomas, and choose a
method to aggregate gridded population estimates into units larger than 300 metres by 300

metres for household survey sampling.
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Chapter 5: Sampling

5.1 Overview

The accuracy of household survey sample data is dependent on the accuracy of the sample frame
from which it was drawn. Biased estimates of indicators can have major economic and political
implications if survey data are used for decision-making and resource allocation. Thus, this
chapter explores the effect of sample frame choice on accuracy of survey results. Specifically, this
chapter explores whether sampling from an outdated or inaccurate census sample frame is
better, the same, or worse than sampling from a WorldPop-RF / WorldPop-Global gridded

population dataset derived from that underlying outdated or inaccurate census.

5.1.1 Research Questions

Research Question C: Can a gridded population sample frame be used to select a representative

sample of the population under realistic scenarios of outdated, inaccurate census input data?

Research Question D: Do gridded population samples more accurately represent poor and
vulnerable households compared to equivalent census-based samples, under realistic scenarios of

outdated, inaccurate censuses?
5.2 Background

5.2.1 Typical sampling: High income countries

The methods considered typical in household surveys today were initially established in high
income countries (HICs) and later adopted in low- and middle-income countries (LMICs). The first
recorded systematic collection of household-level data began at the end of the 18" century in
England, Saxony, Prussia, Belgium, and the United States, and the earliest generalizations about
household characteristics from these types of data began in the middle of the 19t century (Grosh
and Glewwe, 2000). Is was not until the 1920s, however, that probability-based statistical

theories, at the heart of modern household survey statistics, were developed.

Groves (2011) describes “three eras of survey research” that ensued in HICs (Groves, 2011). The
first of which was the era of invention from 1930 to 1960 during which all of the basic methods
and tools still used in household survey sampling were established. At the start of this era,

Neyman (1934) published a seminal article about the use of probability-based sampling to
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generate unbiased estimates and measurable sampling errors. During this era, area-based sample
frames (e.g., counties, census geographic units), stratification, and multistage sampling methods
were all developed (Groves, 2011) and applied by governments in the US and Europe to monitor
household welfare and poverty throughout the great depression and after World War Il (Grosh
and Glewwe, 2000; Groves et al., 2009). Until 1960, most household surveys were paper-based,
with face-to-face interviews conducted mainly by women or mailed questionnaires, and response

rates were generally over 90% (Groves, 2011).

Groves (2011) describes the 1960s through the 1980s as the era of expansion. This is when
computerized data processing become available to governments, academia, and the private
sector, and when most private homes in HICs acquired a landline telephone (Groves, 2011).
During the 1960s, mechanical punch-card readers made it possible to process paper-based survey
responses rapidly, and Computer Assisted Telephone Interviewing (CATI) technologies along with
random digit dialling made household surveys possible to implement at much reduced costs
(Groves, 2011). As survey research evolved, cluster-based sampling rather than strata-based
sampling became common place, and an improved understanding of response bias due to

question wording and question order improved the quality of questionnaires (Groves, 2011).

During this era, governments across HICs invested in large-scale health, economic, and opinion
surveys at home and abroad. Eurobarometer, a public opinion survey conducted across Europe,
was established in 1973 consisting of approximately 1000 face-to-face interviews per country,
supplemented with telephone surveys; nine Western European countries were initially covered
and today the survey covers 27 European Union member countries (European Commission, 2008).
In 1982, countries from across Europe began the process of harmonizing their national Labour
Force Surveys, many of which were established in the 1960s (Eurostat, 2018). In 1984, the
International Social Survey Programme was founded when four existing survey programmes from
the US, Great Britain, Germany, and Australia merged; the ISSP survey is now conducted in some
57 countries across Europe, Asia, South America, Oceania plus South Africa using a range of
survey modes (Skaarhoj, 2018). Also in 1984, the US Centers for Disease Control and Prevention
launched the Behavioral Risk Factor Surveillance System survey in 15 US states to collect health
information, and this annual phone survey continues today with coverage of all 50 US states and
the District of Columbia (CDC, 2014). In addition to the explosion of household survey
programmes in HICs, governments in North America and Europe began to sponsor large-scale

household surveys in LMICs, which | will discuss next.

However, by the 1980s, typical survey methods in HICs began to pose new challenges. Foremost,

phone-based surveys were becoming problematic as respondents grew less tolerant of unplanned
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calls and long questionnaires. Non-response rates and incomplete questionnaires became a new
concern for survey researchers. The use of post-stratification weighting became common place to
adjust for incomplete responses, and formal statistical models were proposed to adjust for
incomplete coverage of sample frames and for large non-response rates (Rubin, 1987). Until this
point, most surveys were cross-sectional, meaning that respondents were enrolled at one point in
time. However, longitudinal surveys, meaning surveys that enrol respondents over a period of

time and collect multiple survey measurements, were introduced during this period.

According to Groves (2011), the 1990s through the present represents the third era in survey
research described as “designed data” supplemented by “organic data.” In this era, face-to-face
household surveys declined substantially in HICs, and are now limited mainly to the first wave of
data collection in longitudinal surveys. Cross-sectional surveys now tend to rely on a mix of mail,
phone, and internet-based samples, with internet surveys drawing from volunteer panels. None
of these sample modes are particularly representative of the population. As mobile phones have
become ubiquitous, landline phones represent an increasingly middle- and upper-class section of
older residents, and surveys from mobile phone numbers make households difficult to track,
because mobile phones are usually associated with an individual rather than a household (Groves,
2011). For these reasons, survey researchers have, in recent years, turned to the use of organic
data, generated passively by the general population and collected via internet scraping, social
media aggregation, and other methods, to supplement imperfectly designed survey data (Groves,

2011).

It was during the second era, the era of expansion, that HICs began to invest in large-scale survey
programmes in LMICs, and the trajectory of survey research methods in HIC and LMIC contexts
diverged. Throughout the 1970s, countries around the world prioritized investments in primary
healthcare, specifically investing in basic maternal, reproductive, and child health at local health
centres and via community health worker programmes (Rohde et al., 2008). These efforts
culminated in the signing of the Alma Ata declaration by 134 countries, 67 international
organizations, and numerous non-governmental organizations in 1978. The declaration prioritized
primary healthcare “based on practical, scientifically sound and socially acceptable methods and
technology made universally accessible through people’s full participation and at a cost that the
community and country can afford” so that everyone globally would have access to basic

healthcare by the year 2000 (Rohde et al., 2008). This shaped the focus of LMIC surveys.
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5.2.2 Typical sampling: Low- and middle-income countries

As HICs scaled up funding for development in LMICs, they also scaled up funding of nationally-
representative household survey programmes to fill a gap in data to monitor health needs and
progress. A timeline of all major demographic, health, and economic survey programmes in LMICs
sponsored by HICs is presented in Figure 31. In the 1970s, few LMICs had fully functioning vital
registration systems or data from health systems; furthermore, few LMICs had existing household
surveys to fill this information gap. India was among the first and only LMICs to establish a
nationally-representative household survey programme, which launched in 1950 and continues
today (Katyal et al., 2013). In 1972, the United Nations (UN), International Statistical Institute, and
International Union for the Scientific Study of Population joined forces to launch the five-year
World Fertility Surveys (WFS) in several LMICs (International Statistical Institute, 1973). The WFS
used an area-based sample frame, two stages of sampling (small areas, then households), and
interviewed women of reproductive age about fertility, child mortality, and family planning. In
1975, the US Centers for Disease Control and Prevention (CDC) and the US Agency for
International Development (USAID) collaborated to launch the Contraceptive Prevalence Survey
(CPS) programme using a similar sample design, which evolved into the Family Planning and
Maternal Child Health Survey (FP-MCH) when additional questions about breastfeeding,

immunizations, health, and mortality where included (Lewis, 1983).

Smallpox survey — CDC *
World Fertility Survey (WFS) — ISl
Contraceptive Prevalence Survey (CPS) - CDC
—

Expanded Programme on Immunization (EPI) survey — WHO * (Probability sampling introduced in 2015)

Family Planning and Maternal Child Health (FP-MCH) survey - CDC

Reproductive Health Survey (RHS) - CDC

Young Adult Reproductive Health Survey (YARHS) - CDC

Demographic and Health Survey (DHS) - USAID

Living Standards Measurement Survey (LSMS) - World Bank

Multiple Indicator Cluster Survey (MICS) - UNICEF

STEPS Adult Risk Factor Surveillance survey - WHO

1970 1980 1990 2000 2010 2020
CDC - US Centers for Disease Control and Prevention USAID — US Agency for International Development
ISI = International Statistical Institute WHO — World Health Organization
UNICEF — United Nations Children’s Emergency Fund * Non-probability sample designs

Figure 31. Timeline of household survey programmes in low- and middle-income countries
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Meanwhile, the CDC and World Health Organization (WHO) each conducted household surveys
focused on immunizations during smallpox and other vaccination campaigns starting in the 1970s
(Morris, 2000). The vaccination coverage surveys, however, used non-probability sample designs,
including the “30x7” quota design in which 30 small areas were sampled, and then seven
households with young children were identified and interviewed using a random-walk or spin-the-
pen method (Henderson and Sundaresan, 1982). In these quota designs, non-responding and
absent households were not tracked, and then they were replaced with a neighbouring household
preventing statistical adjustments for bias using sample weights. The further use of the random-
walk or spin-the-pen methods, in which fieldworkers decided which households to sample,
introduced potential bias from interviewers avoiding undesirable households (Grais, Rose and
Guthmann, 2007; Cutts et al., 2016). It would take years before strong critiques of these
household survey methods took hold. Initially, household surveys in LMICs provided
unprecedented information to international donors and national governments alike. Though,
despite efforts, by 1985, less than 25% of all LMICs, and only about 6% of Sub-Saharan Africa’s

population, had reliable data about household health or wellbeing (Grosh and Glewwe, 2000).

The mid-1980s saw a surge in new survey programmes and a large increase in the number of
LMICs conducting household surveys. In 1982, CDC replaced the FP-MCH survey with the
Reproductive Health Survey (RHS), and in 1985, they launched a version of the RHS tailored to
women and men age 15 to 24 called the Young Adult Reproductive Health Survey (YARHS)
(Morris, 2000). In 1984, USAID launched a follow-on programme to the WFS called the
Demographic and Health Survey (DHS) which is still in operation today, expanding the WFS about
fertility, family planning, and child mortality to also include questions on health and nutrition
(Boerma and Sommerfelt, 1993). In 1985, the World Bank launched the Living Standards
Measurement Survey (LSMS) also still in operation today with questions about household
consumption, income, employment, housing conditions, and health (Grosh and Glewwe, 1995). By
1995, nearly all countries worldwide had had at least one national demographic, health, or

economic survey (Figure 32).
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Figure 32. Coverage of at least one national household survey, by decade

Source: GHDx database (IHME, 2020). Dark green indicates coverage.

Still, large data gaps about health and wellbeing existed in the 1990s. Following the 1990 World
Summit for Children, the UN Children’s Emergency Fund (UNICEF) assessed available data on child
health indicators across 99 countries and found that most survey data were too outdated to be
useful (e.g., a DHS has been conducted more than five years earlier) or that existing surveys
lacked important indicators (e.g., school enrolment, Vitamin A supplement, stunting) and/or did
not cover children over the age of five (UNICEF, 2015). In fact, the only data widely available
about child health in 1995 in LMICs was immunization coverage, mainly from EPI surveys (UNICEF,
2015). Thus, in 1995, UNICEF launched the Multiple Indicator Cluster Surveys (MICS) which
covered nutrition and education indicators in children up to age 15, fertility and reproductive
health of women, and household living conditions (UNICEF, 2015). Given substantial overlap in
the target populations and content of the DHS and MICS, the two programmes have coordinated
to ensure, for the most part, that their surveys are not conducted in the same countries, and
today two-thirds of the questions in their questionnaires are identical or can be directly compared

(Lisowska, 2016).
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The 1990s saw a rise in biometric data collection in LMIC national household survey programmes.
This is because as LMICs urbanized, the double burden of infectious and chronic diseases rose
(Marshall, 2004; Bygbjerg, 2012). The WHO introduced the STEPS Adult Risk Factor Surveillance
surveys in 2002 with methods to administer a questionnaire and take both physical and
biochemical measurements from a sample of adults (Riley et al., 2016). In the late 1990s, the DHS
added several new modules to its standard questionnaire to respond to changing health needs,
including blood sample collection to test for anaemia, malaria, HIV, and other key conditions, a
domestic violence module, and calculation of a widely used assets-based wealth index (Fabic, Choi
and Bird, 2012). Following the establishment of the Global Fund to Fight AIDS, Tuberculosis and
Malaria in 2002, which has since provided billions of pounds in health funding to LMICs, shorter,
topic-specific versions of the DHS have been implemented in select countries to monitor targeted
indicators: the Malaria Indicator Survey (MIS) and AIDS Indicator Survey (AIS) (Fabic, Choi and
Bird, 2012).

Today the DHS, MICS, and LSMS are the main sources of demographic, health, and economic data
collected in LMICs. The EPI programme is still highly active, and in 2015, it underwent a major
transformation and adopted probability-based sampling methods like those used in DHS, MICS,
LSMS, and others (WHO, 2018). STEPS data are also still routinely collected today, though not in
as many countries as DHS, MICS, and LSMS, and the STEPS datasets are rarely released publicly.

Thus, the remainder of this chapter will focus on the DHS, MICS, and LSMS programmes.

The DHS, MICS, and LSMS programmes collectively cover more than 130 countries. Nearly 70
countries have participated in two of the three survey programmes, and 19 countries have
participated in all three of the survey programmes (Development Initiatives, 2017) (Table 26).
Survey sample sizes across all programmes are driven by the number of subnational areas (e.g.,
provinces, districts) and sub-populations (e.g., urban/rural) to be represented in the final results.
All of these survey programmes adhere to the sampling methods and designs introduced in the
1970s and 1980s: two- or three-stage cluster sampling from small geographic areas — generally
census enumeration areas from the last census — with household listing based on hand-drawn
maps, and face-to-face interviews from a sample of selected households (Grosh and Munoz, 1996;
ICF International, 2012a; UNICEF, 2013). Each of the survey programmes includes roughly a dozen
modules with hundreds of questions, and each interview takes several hours to conduct. The
number of households sampled in DHSs, MICSs, and LSMSs vary widely by country and year, and
have generally increased over time with the need for further disaggregated national statistics.
DHS surveys, for example, range from just over 2,000 households in the 1998-99 Cote D’Ivoire
survey (INS and ORC Macro, 1999), to over 600,000 households in the 2015-16 India survey (IIPS

and ICF International, 2017).
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Table 26. Summary of DHS, MICS, and LSMS household survey coverage and sample designs

Survey Programme & Countries & Surveys Coverage & Sample Frame &
Years by Dec 2018 Strata Target Population
DHS, 86 countries National by province  Census,
1985-present 272 surveys or district All women age 15-49
(DHS Program, 2019)
LSMS, 37 countries National by province  Census,
1985-present 108 surveys or district Households
(World Bank, 2018)
MICS, 64 countries National by province  Census,
1995-present 293 surveys or district, or One woman age 15-
(UNICEF, 2019) province only 49

Household surveys in LMICs have not undergone the changes experienced in HICs toward mail,
phone, or internet based surveys because a large portion of households in LMICs still lack a
mailing address, phone, or the internet. Although access to mobile phones and the internet are
increasing rapidly, huge disparities exist between and within LMICs. The International
Telecommunications Union estimates that there are 75 mobile phone subscriptions per 100
people across Africa, with a range of 12 (Angola) to 162 (Senegal) subscriptions per 100 people
(International Telecommunications Union, 2018). Subscription counts per population cannot be
interpreted as percent coverage, as some people own multiple phone subscriptions, and many
others have none. Those who do not have a mobile phone subscription are overwhelmingly the
poorest, experience the worst health outcomes, and face the most barriers to accessing services
(Jennings et al., 2015). Thus, use of random digit dialling to mobile phones is not recommended
for survey sampling in LMICs (Gibson et al., 2017). However, use of mobile phones to follow
participants and collect data in longitudinal surveys when a mobile phone is provided at no cost in
an initial face-to-face interview can be effective. This approach has been tested with success by
the World Bank for a household living conditions surveys in select countries with reliable mobile
phone service, though it is worth noting that a traditional area-based sample frame is still used to
identify an initial sample of households in these surveys (Dabalen et al., 2016). Perhaps the
greatest innovation in LMIC household surveys since they began is the use of modelled gridded
population datasets as a sample frame in countries with outdated or inaccurate census data. This

is the focus of the rest of this chapter.
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5.2.3 Probability theory and survey design characteristics

Throughout the evolution of typical household surveys, important theories and survey design
characteristics emerged. | briefly summarize key ideas and approaches that developed in the field

before introducing the emerging field of gridded population sampling.

Probability sampling. A “good” sample is not biased, meaning that it represents a microcosm of
the population, or universe, from which it was drawn. Probability sampling means that every unit
in the population (e.g., household) has a known, non-zero probability of being sampled before the
sample is drawn (Lohr, 2009). Random selection is a necessary condition for a probability sample
because it prevents conscious bias. Non-randomised sampling, for example purposefully selecting
units from the population, or sampling units that are convenient, might also have non-zero,

known probabilities of selection, but the lack of randomisation can lead to bias.

Simple random sampling. A simple random sample is the most basic form of a randomized
sample. In a simple random sample we make a list of all units in the population, and select a set

number of units at random with or without replacement.

Stratification. Strata refer to non-overlapping groups that comprise the entire population (Lohr,
2009). Operationally, to stratify is to select an independent sample in groups within the

population. Stratification is used for one or more of the following reasons.

First, to ensure representation of important groups in the sample (Lohr, 2009). For example, in
most countries, urban and rural population have very different characteristics, risks, and
outcomes. It is possible that, by chance, no households are sampled from one of the groups (i.e.,
urban or rural) in a given random sample of households. Stratification calibrates the sample by
ensuring a specified number of units are sampled from each group, reducing the probability that

any one draw will result in an unlucky, unrepresentative sample.

Second, stratification is used to achieve a set level of precision in the estimates for each group
(Lohr, 2009). This is useful if we want to compare group characteristics in the population. In our
example of urban and rural households, stratification on urban/rural could ensure that an

estimate for urban households has similar precision as estimates for rural households.

A third reason to use stratification is feasibility of implementing the survey (Lohr, 2009). In
national household surveys, it is often logistically more feasible and cost effective to have
state/provincial statistical offices administer the survey, so administrative units would be used to

stratify the national sample.
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Finally, stratification can increase the statistical power of a sample if the units within each stratum
are more similar to each other than to units in the rest of the population (Lohr, 2009). Statistical
power is gained when the variance of indicators within each stratum is lower than the variance of

indicators in the population overall.

Household surveys often stratify on urban/rural and by first or second administrative region for all
of these reasons: to ensure coverage, increase precision for group comparisons, facilitate
implementation, and to increase statistical power, especially in countries with major regional

population differences.

Multi-stage cluster sampling. Every time that all units in a population are listed and then
sampled, we call this a stage of sampling. Multi-stage sampling refers to surveys where more than
one list is created and sampled, for example, a list and a sample of enumeration areas, followed
by a list and a sample of households (see Figure 33). The first set of samples is referred to as the
primary sampling unit (PSU), the second set of samples is called the secondary sampling unit

(SSU), and so on. Multi-stage sampling is used for two reasons.

First, because a list, or sample frame, of the units that the survey team wishes to sample does not
exist (Lohr, 2009). Until recently, many census agencies did not have a complete list of households
with geo-coordinates or unique address locations by which to locate households for interviews
(UNFPA, 2019), and even in the upcoming 2020 census round, many LMICs will not have these
data in a format suitable for a household survey sample frame. Thus, the smallest administrative
unit for which population counts are recorded by census — usually enumeration area (EA) — are
used as the first-stage sample frame. Then a second list of households is developed for each
sampled EA (i.e., cluster, PSU), and sampled. Even in countries with a full geo-located list of
households, survey planners would likely not use it because it would be outdated by the time of

survey fieldwork.

The second reason to use multi-stage cluster sampling is feasibility of implementing the survey
(Lohr, 2009). A simple random sample of households in a province or country would simply cost
too much money and time to justify, as interviewers would need to travel potentially long
distances between each sampled household. Cluster sampling enables field teams to plan logistics

in one village or neighbourhood for several days at a time.

More than two stages of sampling can be performed; in countries with highly aggregated census
population counts, or countries with extremely long EA sample frames, survey teams may sample
a higher-level administrative unit, such as district, first, then sample smaller areas, before

sampling households (e.g., (MINSALUD and Profamilia, 2015)).
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Simple random

Non-probability

One-stage
area-microcensus

sample
List List
Sample Sample
Sample Random walk Census
Three-stage Two-stage Two-stage
area-microcensus segmented

List List EAs List
Sample Sample Sample
List List Segment
Sample Sample
Households List Households List
Sample Census Sample

Figure 33. Depiction of select survey sampling concepts

Area-microcensus. This is not a term widely used by survey statisticians, but | use it throughout
this thesis to refer to single-stage cluster surveys in which all households are sampled in a small
area. The term “census” indicates that there is no further listing and sampling steps (Figure 33). |
specify “area”-microcensus to differentiate the concept from other uses of the term
“microcensus.” Census agencies use the term “microcensus” to both refer to a census of all
residents in a small area (e.g., Alba, Muller and Schimpl-Neimanns, 1994), as well as a census of all

residents in a sample of households (e.g., Meraner, Gumprecht and Kowarik, 2016).

Segmentation. Segmentation is a step performed in the field when a sampling area (i.e., cluster,
PSU) is found to have far more people than expected, for example, due to a new housing
development or emergence of a slum. In surveys such as DHS, MICS, and LSMS that perform full
household listings before sampling households, there are usually not enough resources and time
allocated to list more than 200 to 300 households per PSU. Thus the mapping-listing team divides
the area into two or more approximately equal-sized segments, and randomly selects one
segment to represent the PSU (ICF International, 2012a). As long as the segments have

approximately equal population totals, probability of household selection can be calculated by
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recording the number of segments (because number of households in the listed segment,
multiplied by the number of segments, equals approximately the number of households in the
originally sampled EA). Segmentation is considered an additional stage of sampling if it is
performed in every unit as part of the sample design (e.g., early MICS surveys (UNICEF, 2000);
however, it is treated as a separate step when performed ad-hoc in large sampling units in the

field (e.g., DHS (ICF International, 2012a)).

Oversampling. Oversampling means that the sample size is boosted in part of the population. In
countries with majority rural populations, it is routine to oversample urban areas if there are not
enough resources to stratify by both administrative unit and urban/rural areas. The purpose of
oversampling, in this case, is to produce a sufficient sample size in the smaller important sub-
group to generate precise estimates at the national level (ICF International, 2012a). In HICs, some
health surveys oversample geographic regions where minority groups tend to live to boost the
sample size of racial, ethnic, LGBT, and other sub-populations (Chen and Kalton, 2015; Anderssen

and Malterud, 2017).

Although rarely practiced in human population surveys, another reason to oversample is to
ensure spatial coverage of the sample. This type of oversampling is more common in
environmental and animal population surveys (Kermorvant et al., 2019), though could be useful in
human population surveys to improve errors of small area estimates generated with household

survey data (Dana R Thomson, Rhoda, et al., 2020).

Design effect. Stratification, cluster sampling, oversampling, and other complex survey designs
modify the precision of household survey estimates. The design effect quantifies the difference in
precision in a given survey's estimates compared to a hypothetical simple random sample of the
same size (Lohr, 2009). The design effect varies by indicator, depending on the variability and
pattern of dispersion of that indicator in the population. Thus, survey implementers often report
the design effects (DEFFs) or square root of the design effects (DEFTs) of key indicators with their
survey results. Design effect can be interpreted as a factor by which to increase the sample size
calculated for a simple random sample to achieve the target level of precision in a sample drawn
with a complex design (e.g., 95% confidence level). The planners of household survey review past
surveys which used a similar sample design in a similar context, and use reported DEFFs/DEFTs to

calculate sample size requirements for key indicators.

Coverage error. An ideal sample frames includes all units of the target population (e.g., census
EAs) such that the units are exhaustive, non-overlapping, and uniquely identifiable; however,
perfect frames are rare (Kish, 1965; UN, 1982). Known problems in population sample frames

include under-coverage and over-coverage, and can occur at each stage of sampling. Under-
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coverage means that units which are missing from the frame (e.g., EAs in a disputed territory), but
might be supplemented from a different sample frame and treated as a separate stratum (Kish,
1965). In the case that two combined frames overlap (over-coverage), the overlapping units in
one frame can be weighted by the proportion of non-overlapping area, essentially subtracting
duplicate populations in the combined frame (Kish, 1965). Under-coverage can also occur when
the auxiliary information (e.g., population size) associated with each sample frame units (e.g.,
census EAs) are differentially too small (or large) in some units due to an outdated sample frame
(UN, 1982). In practice, this is sometimes addressed by conducting pre-survey field enumerations
in units that are known to have experienced substantial population change since the sample

frame was developed (e.g., EAs in and around cities) (UN, 1982).

Under- and over-coverage can also occur during survey implementation if areal unit boundaries
are not identified accurately in the field, resulting, for example, in a unit not being fully
enumerated, or a field enumeration extending incorrectly beyond the unit boundary (UN, 1982).
Coverage errors also occur at the household- or individual-level because a household has recently
moved, or an individual moved between households. These coverage errors can be minimised
with field protocols and strict definitions of the household and its members (e.g., usual residence
(dejure) versus presence at time of survey (defacto)) to minimise the chance that any one person
or household can be counted more than once (UN, 1982). An error increasingly common in cities
today is under-coverage of individuals or households living in atypical dwellings (e.g., shops)
because data collectors were not provided a protocol to identify these households (Thomson et

al., 2021).

Non-response error. Non-response error occurs when an individual refuses to participate in a
survey, is unavailable or unable to participate in the survey (e.g. not at home, unwell), or stops
responding part-way through the survey (Kish, 1965). Usually survey protocols require several
follow-up visits to households that were unavailable to minimise this type of non-response error.
It is important to document, as best as possible, all eligible respondents and the specific reason
for non-response (e.g., refusal, unavailable, incomplete survey) so that the effects of different
types of non-response on sample results can be assessed (Kish, 1965). The number of
respondents completing a survey divided by the number of eligible respondents is called the

“response rate.”

There might be systematic geographic or social patterns in non-response rates (e.g., urban
residents are less likely to be home during the day and more sceptical about answering the door
for strangers than rural residents). Geographic patterns in non-response are easier to assess

because we often have geographic information about the non-responding households, and can
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compare the geographic distribution of non-responding households to those who responded.
However, non-response that follows social patterns (e.g. household wealth status) is difficult to
assess because we do not typically have social data about the non-responding households to

compare with respondents.

Sample probability weights. If the probability of selection for each unit in the population is equal
and non-response occurred completely at random, we call this a self-weighting sample. In
practice, surveys are rarely, if ever, self-weighting. Most surveys use a combination of
stratification, oversampling, and segmentation which results in some households having a greater
probability of selection than others, and essentially all surveys will face some level of non-
response. Furthermore, unequal population growth since the last census (e.g., due to different
birth rates or migration) will mean that the number of households observed in the field at the

time of survey differ from the counts made in the last census, and used to select PSUs.

In this case, we calculate and apply a weight for each unit (e.g., household) in the sample to make
unbiased estimates about the population. The sample weight for each unit (i) is the reciprocal of

the probability that the unit was selected (;) (Kish, 1965):

w; = —
l T[i

In household surveys, sample weights account for the selection probability of the stratum (if

samples were not allocated proportionally to strata population totals), the selection probability of

a PSU (usually an EA population count), the selection probability of a household within the PSU

(based on a field listing of all households in that PSU), and PSU and household response rates. A

household survey sample weight would thus be calculated as:

Hy, M N Mk
w; = ——— X—2= X bj X — X —~
Ny X Ry myy M Myjes

Where:
H,, is number of households in stratum k according to the sample frame
hijy is the number of households in PSU j according to the sample frame
ny is the number of clusters sampled in stratum k
Ny is the number of sampled clusters that were found and visited in stratum k

Mj is the number of households enumerated in PSU j in stratum k during fieldwork
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m;y is the number of sampled households in PSU j in stratum k
M. is the number of sample households that responded in PSU j in stratum k

bj is the number of equal-sized segments created in PSU j in stratum k

Non-probability sampling. Non-probability sampling means that the probability of being sampled

is unknown for each unit in the population (Lohr, 2009).

Convenience / purposeful sampling. The most obvious non-probability sample is one in which
randomisation is not applied. For example, by sampling the households of people that you already
know, or households along major roads, neither would provide data that could be generalized to

the population.

Random-walk and spin-the-pen. Random-walk and spin-the-pen are field methods designed to
randomly sample households in a PSU. In a random-walk, the interview team starts at a main
street or intersection, and follows a strict pattern of left and right turns, skipping a set number of
buildings or dwellings between interviews (UNICEF, 2000). Similarly, spin-the-pen literally means
that the field team spins a pen to randomise the direction of their walk after each interview
(Grais, Rose and Guthmann, 2007). If implemented strictly, random-walk and spin-the-pen can
result in a random selection of households in a given PSU. However, these methods result in a
non-probability sample because the probability of household selection is unknown without the
full enumeration of all households in the PSU. In practice, survey teams that use these methods
often apply sample probability weights to adjust for stratification and oversampling in earlier

stages of the sample.

Random-walk, spin-the-pen, and other types of randomized field-based household selection
methods are harshly criticised for their susceptibility to conscious and unconscious bias by
fieldworkers to avoid undesirable households, which can lead to systematic bias toward middle-

class or accessible households (Grais, Rose and Guthmann, 2007; WHO, 2018).

Quota sampling. In quota sampling, the population is divided into groups and a target number of
samples is set for each group before sampling (Lohr, 2009). In LMIC household surveys, quota
sampling is often combined with random-walk or spin-the-pen methods; for example, in old EPI
surveys, a quota of seven children between certain ages was set (Henderson and Sundaresan,
1982). The field protocol was to continue the random-walk/spin-the-pen method until the set
number of households were identified and interviewed to meet the quota. Not only was this

problematic because the sample probabilities of sampled households could not be known, the
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protocol also ignored eligible households that refused or were unavailable, biasing the survey
toward the types of households who were at home at the time of interview and responded (WHO,

2018).

5.3 Gridded population sampling

The rest of this chapter is focused on gridded population surveys, defined as any sample drawn

from a gridded population sample frame.

5.3.1 Literature review

To identify existing gridded population surveys, | conducted a literature review in Scopus using
the terms: (“gridded” OR “landscan” OR “worldpop” OR “gpw” OR “ghs-pop” OR “hrs|” OR “wpe”
OR “demobase”) AND (“population” OR “household”) AND “survey.” This resulted in 65 potential
articles as of May 2019. | screened all article abstracts and retained any that referred to sampling
of human populations, resulting in 13 publications. | performed a full-text review of all screened
articles and reports, and retained six that described a method, tool, or survey sampled from
gridded population data. | additionally solicited colleagues for additional reports, websites, and
articles describing a gridded population survey method or implementation, resulting in six

additional resources (Figure 34).
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65 potentially eligible articles

52 excluded:
—>| - 42 not a survey/sample
- 10 non-human population

\ 4

13 identified for screening

| 7 excluded after full-text
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\ 4

6 eligible articles

. 7 additional articles/reports
identified by colleagues
\ 4
13 unique eligible articles or
reports
v ¢
10 articles/reports of gridded 3 articles of gridded population
population surveys survey tools/methods only

Figure 34. Gridded population survey literature review workflow and results

This literature review resulted in 13 articles and reports describing 37 gridded population surveys
across 22 LMICs and 3 HICs. The surveys in LMICs spanned Asia (Bangladesh, India, Indonesia,
Myanmar, Nepal, Thailand, Vietnam), the Middle East (Iraq), Africa (DR Congo, Ghana, Kenya,
Ivory Coast, Mozambique, Nigeria, Rwanda, Somalia, Tanzania, Togo, Uganda), and Latin America
(Brazil, Colombia, Guatemala) (Table 27). Three documents described tools or methods for
selecting gridded population survey clusters (Mufioz and Langeraar, 2013; Thomson et al., 2017,
Chew et al., 2018) (Table 27). Although gridded population surveys have been conducted in three

HICs (Greece, ltaly and Slovenia), they are not reported here.

Twenty-four of the 37 surveys had national coverage with 100 to 405 clusters each (Table 27). The
first national gridded population survey was conducted in Iraq in 2011 by an academic team
evaluating mortality rates in collaboration with Iragi government officials (Galway et al., 2012;
Hagopian et al., 2013). This survey followed a two-stage design from LandScan-Global 1 kilometre
by 1 kilometre grid cells, with a random-walk to identify households in the field to minimize risks

for fieldworkers (Galway et al., 2012; Hagopian et al., 2013). The firm RTI supported a commercial
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client to design and implement 12 national surveys and 1 sub-national survey across 11 countries
in approximately 2014 and 2015 (year not reported) using a two-stage sample design based on
LandScan-Global 1 kilometre by 1 kilometre grid cells, where an area-microcensus of eligible
households was performed in the secondary sampling units (Cajka et al., 2018). The company
Gallup used gridded population sample frames in 10 LMIC and 3 HIC World Polls in 2017, 2018,
and 2019 (with additional gridded population surveys planned for 2020) using WorldPop-RF 100
metre by 100 metre estimates for the first or second stage of sampling, and a random walk in the

field to identify households (Gallup, 2017b).

Most sample frames in early gridded population surveys were derived from LandScan-Global 1
kilometre by 1 kilometre estimates, however most of the recent gridded population surveys
derived sample frames from WorldPop 100 metre by 100 metre estimates (Table 27). Nineteen
surveys performed an area-microcensus of households, 12 used a random-walk or spin-the-pen
method to sample households in the field, and three subnational surveys performed a full

household listing and sampling activity (Table 27).

A fundamental difference between census and gridded population data is that census EAs are
each comprised of approximately the same number of people within varying sized areas, while
grid cells are essentially uniform in area but vary widely in population. Household survey sampling
methodologies have developed around the concept of small areal units each containing
approximately the same number of people. Thus, a key challenge in gridded population sampling
is forming areas of approximately equal population from grid cells. A number of approaches have
been taken, often depending on whether the survey planner started with LandScan 1 kilometre by
1 kilometre grid cells or WorldPop 100 metre by 100 metre grid cells. Figure 35 summarises the

tools used and approaches taken in gridded population surveys to derive sample frame units.

Ad-hoc GIS Approaches. Many gridded population survey teams developed their own ad-hoc

approaches to sampling using GIS software, such as ArcGIS.

e Galway et al. (2012) sampled 1 kilometre by 1 kilometre cells directly with PPS, then
randomly selected one household in one building and performed a random walk. The
building was selected by overlaying a mini 10 metre by 10 metre grid (estimated to be the
average building footprint size), and randomly selecting mini grid cells until the team
observed a building with satellite imagery (Galway et al., 2012; Hagopian et al., 2013).

e Asimilar approach was used by Gallup; the team aggregated 100 metre by 100 metre
gridded population estimates to larger cells (depending on population density), then
sampled the aggregated grid cells will PPS, before randomly selecting a building to start a

random walk in the field (Gallup, 2017b).
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e Thomson et al. (2012) converted 1 kilometre by 1 kilometre population estimates to
corresponding numbers of random points per cell, selected points at random, manually
delineated clusters (within cells) around each selected point over satellite imagery, and
then performed an area-microcensus in the field.

e Mufoz and Langeraar (2013) proposed an approach, though it is unclear if a survey
followed. In this approach, 1 kilometre by 1 kilometre cells were aggregated to 3
kilometre by 3 kilometre grid cells and sampled with PPS. Next, 1 kilometre by 1 kilometre
grid cells were combined within selected 3 kilometre cells to achieve a minimum
population, and then sampled with PPS. The sampled 1 kilometre (or larger) areas were
manually delineated into segments of approximately 100 households each over satellite
imagery, and one segment was randomly selected. Finally, households were listed via a
field mapping-listing activity, and a sample of households was selected.

e Sollom et al. (2011) joined 1 kilometre by 1 kilometre gridded population estimates to
rural village point locations and sampled those points with PPS, and then used spin-the-
pen to sample households in the field.

e Qader et al. (2019) used gridded population estimates to update census EA counts in
urban areas where EA boundaries were available, and used a quadtree method to create
different sized grid cells with similar population totals in rural areas. The combined frame
was sampled with PPS before manually segmenting over satellite imagery and randomly

selecting one household per segment.

The tools created for gridded population sampling included the GridSample R package (Thomson
et al., 2016, 2017), Geo-sampling Tool (Cajka et al., 2018; Chew et al., 2018), and GridSample.org
(Flowminder Foundation, 2019a), which is based on the GridSample2.0 python algorithm
(Flowminder Foundation, 2019b) (Table 28).
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Table 27. Summary of gridded population survey coverage and sample designs identified in the literature review

Country & Year
(if reported)

Design: Coverage, Strata, Stages

Cluster & Household
Sample Size

Gridded population
dataset

Target Population,
Main topic(s)

DR Congo 2010

Idjwi Island, none, one-stage area-microcensus

50 clusters, 2078 HHs

2001 LandScan-
Global

All women age 18-50,
Maternal and child
health

Myanmar 2010 @

Chin state, urban/rural, two-stage (spin-the-pen)

90 clusters, 720 HHs

2005 LandScan-
Global (rural only)

Household head age 18+,

Health, human rights

Iraq 2011 ©®

National, governorates, two-stage (random-walk)

100 clusters, 1960 HHs

2008 LandScan-
Global

Household head age 18+,

Mortality

Bangladesh ™

National, division x urbanicity, two-stage area-microcensus

148 clusters, 3296 HHs

Brazil @ National, region x poverty, two-stage area-microcensus 149 clusters, 3652 HHs
Colombia National, region x poverty, two-stage area-microcensus 152 clusters, 2706 HHs
Colombia National, region x poverty, two-stage area-microcensus 152 clusters, 3037 HHs
Ghana ¥ National, region x poverty x urbanicity, two-stage area- 151 clusters, 3113 HHs

microcensus

Guatemala @

National, department x urbanicity, two-stage area-microcensus

211 clusters, 3057 HHs

India ¥

Three states, district x urbanicity, two-stage area-microcensus

467 clusters, 10,824 HHs

2012-2016 LandScan-
Global

Adult age 18+,
topics not reported

Kenya ¥ National, province x poverty, two-stage area-microcensus 143 clusters, 3364 HHs
Nigeria ) National, region x poverty, two-stage area-microcensus 147 clusters, 3042 HHs
Rwanda ¥ National, province x poverty, two-stage area-microcensus 150 clusters, 3096 HHs
Thailand ¥ National, region x poverty, two-stage area-microcensus 150 clusters, 3136 HHs
Thailand ¥ National, region x poverty, two-stage area-microcensus 150 clusters, 3275 HHs
Uganda ) National, region, two-stage area-microcensus 146 clusters, 3075 HHs
Nepal 2015 ¢ Kathmandu, none, two-stage 90 clusters, 1,310 HHs 2014 WorldPop-RF Woman age 18+,

(planned)

Maternal and child
health

123

Chapter 5



Chapter 5

Mozambique 2017
(6)

Six districts, district, one-stage area-microcensus

234 clusters, 4998 HHs

2017 WorldPop-RF

Caregiver of child age 12-
18, Child health

DR Congo 2017 ©

Kinshasa, communes, one-stage two-stage area-microcensus

210 clusters, 1,850 HHs

Bespoke

Household head,
Food insecurity

Somalia 2017 78

National, region x urbanicity, two-stage

405 clusters, 6,284 HHs

Modified 2015
WorldPop-LC

Household head,
Economic

Nepal 2017 (6210

Kathmandu, none, one-stage area-microcensus

30 clusters, 600 HHs

Nepal 2017 (6:10)

Kathmandu, none, two-stage

30 clusters, 600 HHs

2017 WorldPop-RF

Bangladesh 2018
(9,10)

Two communities, community, one-stage area-microcensus

20 clusters, 400 HHs

Vietnam 2018 (910

Long Bien District, none, one-stage area-microcensus

20 clusters, 400 HHs

2020 WorldPop-RF

Adult age 18+,
Economic, non-
communicable disease

Colombia 2017 (%)

National, region x urbanicity, two-stage (random walk)

125 clusters, 1000 HHs

2015 WorldPop-RF

Tanzania 2017 (11 *

National, region x urbanicity, three-stage (random walk)

400 clusters, 4000 HHs

2015 WorldPop-RF

Uganda 2018 9

National, region x urbanicity, two-stage (random walk)

200 clusters, 2000 HHs

2020 WorldPop-RF

Nigeria 2018 1V

National, region x urbanicity, two-stage (random walk)

300 clusters, 3000 HHs

2020 WorldPop-RF

Indonesia 2018 (11

National, region x urbanicity, two-stage (random walk)

400 clusters, 4000 HHs

2015 WorldPop-RF

Colombia 2018 (1%

National, region x urbanicity, two-stage (random walk)

400 clusters, 4000 HHs

2020 WorldPop-RF

Kenya 2018 (11

National, region x urbanicity, two-stage (random walk)

200 clusters, 2000 HHs

2015 WorldPop-RF

Ghana 2019 ¥

National, region x urbanicity, two-stage (random walk)

100 clusters, 1000 HHs

2020 WorldPop-RF

Togo 2019 1V

National, region x urbanicity, two-stage (random walk)

100 clusters, 1000 HHs

2020 WorldPop-RF

Ivory Coast 2019 11

National, region x urbanicity, two-stage (random walk)

100 clusters, 1000 HHs

2020 WorldPop-RF

Adult age 15+, Topics not
reported

1. (Thomson et al., 2012)

2. (Sollom et al., 2011)

3. (Galway et al., 2012; Hagopian et al., 2013)

4. (Cajka et al., 2018)
5. (Elsey et al., 2016)

6. (WFP-VAM, 2018; GridSample, 2019)

7. (Pape and Wollburg, 2019)

8. (Qader et al., 2019)
9. (Elsey et al., 2018)

10. (Dana R. Thomson et al., 2020)

11. (Gallup, 2017b)

* Gridded population sample frame used in second stage of sampling
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Figure 35. Summary of methods used to create gridded population survey sample frame units

Adapted with permission from (Thomson et al., 2017)

Table 28. Comparison of sampling tools used in gridded population surveys

Feature GridSample R Geo-sampling  Ad-hoc GIS GridSample2.0  GridSample.org
Public Yes No Yes Yes Yes
Free Yes No Some Yes Yes
Skl I.evel Advanced Advanced Advanced Advanced Basic
required
User selects Yes No Yes Yes Yes
the sample

. LandScan- WorldPop-
Gridded pop Any Global Any Any Global
Prelgaded/ No Yes Some No Yes
provided data
Pre-forms No Yes Some Yes Yes
clusters

125



Chapter 5

GridSample R package. | released the GridSample R package with colleagues in 2016 (Thomson et
al., 2016, 2017) which has been used in at least six sub-national surveys (Elsey et al., 2016, 2018;
GridSample, 2019). The algorithm treats the gridded population dataset as the sample frame and
selects grid cells with PPS allowing for stratification, oversampling in urban/rural domains, and
spatial oversampling (Thomson et al., 2017). The GridSample R package runs on a personal
computer and is limited by the computer’s memory. All datasets must be pre-processed and
specified by the user, allowing use of any gridded population dataset but also requiring GIS and/or
R programming skills. The algorithm enables optional “growth” of clusters to a minimum
population size or maximum area by randomly adding neighbouring cells after selection of “seed”
cells with PPS. While this process results in clusters with roughly consistent population sizes for
improved fieldwork, the population counts in the “grown” clusters do not reflect the population
counts used for sample selection, and thus may skew sample weights (Thomson et al., 2017). The
output is a shapefile of cluster boundaries, with attributes of estimated population counts.
Thomson, et al. (2019) used this tool to sample grid cells directly in city-level surveys in
Bangladesh, Nepal, and Vietnam, whereas Elsey, et al. (2016), World Food Programme VAM unit
(2018), World Vision International (GridSample, 2019), and Thomson, et al. (2019) "grew" clusters
to contain 100 to 200 households each for sub-national surveys in Nepal, DR Congo and

Mozambique.

Geo-sampling Tool. The Geo-sampling survey tool was created by RTI and used in 13 national and
sub-national surveys (Cajka et al., 2018). It is designed for use with 1 kilometre by 1 kilometre grid
cells, and supports a multi-stage stratified sampling approach. After administrative units are
sampled with PPS, grid cells are sampled with PPS. To improve fieldwork, the team excludes 1
kilometre cells with fewer than 250 estimated people, potentially biasing the sample toward
higher-density populations. The sampled grid cells are then partitioned into 150 metre, 100
metre, or 50 metre grid cells depending on population density. Next, a deep-learning residential
scene classification model is used with satellite imagery layers to exclude smaller cells without
settlement, and disaggregate the 1 kilometre by 1 kilometre grid cell population estimates to the
remaining smaller cells. Finally, three of the smaller cells are selected at random and an area-
microcensus of households is conducted in the field (Chew et al., 2018). The Geo-sampling Tool is
an in-house RTI product, and clients are provided with a shapefile of the final cluster boundaries

and population estimates.

GridSample.org and GridSample2.0. GridSample.org is a free web-based tool released in late
2019 that runs the open-source GridSample2.0 algorithm that | developed at Flowminder
Foundation (Flowminder Foundation, 2019a, 2019b). GridSample.org provides a point-and-click

interface, preloaded datasets, and guidance to enter parameters and select clusters for a gridded
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population survey. The website leverages gridEZ, a publicly-available algorithm developed by Dr.
Claire Dooley, to group cells into gridded EA-like clusters with similar population totals before
sampling (Dooley, 2019). Preloaded datasets include WorldPop-Global 100 metre by 100 metre
gridded population estimates (WorldPop, 2019), GADM administrative boundaries (GADM, 2015),

and GHS-SMOD urban/rural boundaries (European Commission, 2017).

GHS-SMOD is a global model of human settlement types produced by the European Commission
Global Human Settlement Layer Project based on the project’s gridded population dataset (GHS-
POP) and its model of built areas (GHS-BUILT). GHS-SMOD is formatted as 1 kilometre by 1
kilometre cells classified as either high-dense urban, low-dense urban, rural, or unsettled/remote
(European Commission, 2017). In GridSample.org, all surveys are implicitly stratified by level of
urbanicity based on these four GHS-SMOD classes. GridSample.org also supports stratification and
spatial oversampling; and custom coverage, strata, or sample frame boundaries can be uploaded
by users as a shapefile. The website is designed for low-bandwidth settings, running sample
selection remotely on a super-computer. The user is emailed a shapefile of cluster boundaries,
excel table with population estimates to calculate sample weights, and a PDF report of survey

parameters.

Field tools. A range of simple-to-advanced tools have been used to implement gridded population
surveys. Lower-tech field tools included use of paper maps displaying cluster boundaries over
satellite imagery produced in Google Earth, and paper listing forms and questionnaires (Galway et
al., 2012; Thomson et al., 2012; GridSample, 2019). Higher-tech field tools included tablet-based
applications for navigation (Cajka et al., 2018; Thomson, Bhattarai, et al., 2020), paper field maps
designed in GIS (Galway et al., 2012; Elsey et al., 2016; GridSample, 2019; Qader et al., 2019; Dana
R. Thomson et al., 2020), and tablet-based household listing and/or questionnaires (Elsey et al.,

2016; Gallup, 2017b; Cajka et al., 2018; GridSample, 2019; Dana R. Thomson et al., 2020).

Satellite imagery was essential to all gridded populations surveys to manually segment along
roads, rivers, and other features (Thomson et al., 2012; Mufioz and Langeraar, 2013; Elsey et al.,
2018), and as a field map base layer for navigation and to ensure that all eligible dwellings were
included (Galway et al., 2012; Thomson et al., 2012; Cajka et al., 2018; GridSample, 2019; Qader
et al., 2019). In some surveys, satellite imagery was used to digitize building footprints and roads
in OpenStreetMap which were then displayed as a field map base layer (Elsey et al., 2016, 2018).
The RTI surveys used satellite imagery and machine learning to exclude unsettled areas from the

sample and further disaggregate population estimates (Chew et al., 2018).
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5.4 Accuracy of typical versus gridded population sampling

Based on findings in Chapter 4 which identified sharp difference in cell-level accuracy by
urban/rural location, this analysis of gridded population sampling accuracy is constrained to urban
Khomas. A further reason for this decision is that relatively few households in Khomas are rural
(5% of the simulated “true” population), which means an enormous oversample would be needed
in rural areas to make estimates for the rural population within Khomas. The 2013 Namibia DHS,
for instance, drew just 3 rural clusters and 50 urban clusters within Khomas (MoHSS and ICF

International, 2014).

| chose to sample 60 PSUs, and then sample 20 households per PSU, for a target sample of 1,200
households overall. This is consistent with sample designs used in recent demographic surveys in
Namibia including the 2013 Demographic and Health Survey (53 PSUs, 20 households per PSU)
and 2016 Intercensal Demographic Survey (69 PSUs, 20 households per PSU) (Table 29). Recent
economic surveys tended to have more PSUs and fewer households per PSU, with approximately

1,100 households sampled from Khomas overall (Table 29).

Table 29. Sample sizes in Khomas, Namibia in recent household surveys

Recent surveys in Namibia PSUsin Households = Khomas
Khomas per PSU sample size

Demographic and Health Survey — 2013 ! 53 20 1,060
Household and Income Expenditure Survey — 2015/16 2 96 12 1,152
Intercensal Demographic Survey — 2016 3 69 20 1,380
Labour Force Survey — 2018 ® 63 18 1,134

1. (MoHSS and ICF International, 2014) 3. (NSA, 2016)

2. (NSA-NPC, 2016) 4. (NSA, 2018)

5.4.1 Methods

The methods used in this analysis are summarised in Figure 36 and Figure 37. In the first step, |
constrained all datasets to urban Khomas (Chapter 3). In this analysis, “urban” covered all EAs
classified as urban in the 2011 Namibia census plus areas of expansion around settlements, as |
observed in satellite imagery. The analysis was conducted in R 3.5.2 using the EA shapefiles that |

modified during the simulation in Chapter 3.
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To create PSUs with approximately equal populations from the gridded population estimates
generated in Chapter 4, | used the gridEZ R algorithm version 1 released in 2019 (Dooley, 2019).
The gridEZ algorithm produces gridded enumeration zones from a gridded population dataset
such that each unit has a target population or a maximum area. | provided input to Dr. Claire
Dooley, the algorithm creator, during its development; specifically, to define three pre-set gridEZ
unit sizes (small, medium, and large) that can support several common household survey designs.
From GitHub where the gridEZ algorithm was released, here are the general steps that the gridEZ

algorithm follows (Dooley, 2019):

e Within strata (constituency boundaries intersected with GHS-SMOD “high dense urban”
boundaries), create rectangular “clumps” defined by the gridEZ maximum area, or 5
kilometres by 5 kilometres, whichever is smaller

e Divide each clump into “blocks” based on the clump population vs. the target population

e Any block that has fewer than the target population is combined with the contiguous
neighbouring block with the lowest population

e Any block with twice the target population is halved
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Step 1: Constrain to urban Khomas

Step 2: Prepare gridEZ frames

Subset “true” Elisenheim =
simulated
household points Greater Windhoek

Subset 16 input
census EA
scenarios

Mask 16 gridded
estimates based
on EA inputs

Mask 16 gridded
estimates based

on constituency
inputs

Groot Aub Ta

3 frames + “true”
2016 householdsin urban Khomas

16 gridded
population
scenarios with
EA-level input

16 gridded
population
scenarios with
Constituency-
level input

gridEZ
algorithm

GridEZ algorithm by
Dooley, C. (2019)

“Medium” sized
units with target
pop =500 and
max area = 3x3km

32 gridEZ sample frames created

Step 3: Draw samples

Step 4: Calculate sample weight inputs

Scenario gridEZ-EA gridEZconst Census EAs
2016_True

{20151 200 samples
[2016_m for each unique

[2016 1 scenario and frame
2011 True 60 EAs/gridEZs
2011t selected with PPS
2011_M

2011 H In sampled EAs/gidEZs,
|2006 True 20 households
2006_L selected at random
2006_M

2006_H In EAs/gridEZs with
(2001 Tre <20 “true” households, all
20011 households sampled
[2001M 9,600 samples selected
2001_H

H}, -i# households/ =
population in stratum
k (urban Khomas)
according to frame

J ji - # households/
Population in EA/
gridEZ unit |

accordingtoframe ~ H_k’ " “~h_jk
(black outline) (red outline)
My, - # of “true”
households in EA/
gridEZ unit j —M_jk
(biue dots)

(as if counted
during fieldwork)

0

3 sample weight
inputs calculated
for 3 frames X

16 scenarios each

Figure 36. Steps 1 to 4 used to analyse accuracy of gridded population surveys
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| used medium pre-defined gridEZ units for this analysis, each of which had a target of 500 people
(approximately 135 households in urban Khomas) and a maximum area of 3 kilometres by 3
kilometres. In the gridEZ algorithm, | used constituency boundaries and GHS-SMOD “high dense
urban” areas, clipped to urban Khomas boundaries to define the strata in which “clumps”,
“blocks”, and gridEZ units were formed. | produced gridEZ units for each of the 16 gridded
population datasets generated from EA-level input data (hereafter called gridEZ-EA), as well as
each of the 16 gridded datasets generated from constituency-level input data (hereafter called
gridEZ-constituency). This resulted in sampling units of similar population size across the census

and both gridEZ sample frames.

The census and both gridEZ sample frames for the 2016 “true” population are summarized in
Table 30. There were 766 units in the census frame, 786 in the gridEZ-EA frame, and 552 in the
gridEZ-constituency frame (Table 30). The gridEZ-constituency frame had fewer units that met the
500 target population because the underlying urban gridded populations were underestimated
due to misallocation of population to low-dense and unsettled cells outside of urban Khomas.
GridEZ units were generated in R 3.5.2 using the code and instructions provided on Dr. Dooley’s

GitHub page (Dooley, 2019).

Table 30. Comparison of three sample frames in urban Khomas based on the “true” 2016

simulated population

Characteristic Census EAs GridEZ units GridEZ units
EA-level inputs constituency-level inputs

Nu.mt?er of sample 766 787 590

units in frame

Mean frame unit 455 444 437

population (range) (37-7270) (1-1550) (1-1259)

Mean frame unit 317x317 m 353x353 m 428 x 428 m

area (range) (110x110m - 1943x1943m) (89x89m - 2051x2051m) (89%x89m — 2051x2051m)

With the sample frames prepared, the third step was to draw samples. | drew 200 samples for
each of the sample frames (3) and outdated-inaccurate scenarios (16) resulting in 9,600 samples.
The sample design was, again, 60 PSUs, and 20 households per PSU, for a target of 1,200
households per sample. PSUs were drawn with probability proportional to size (PPS) from
EA/gridEZ sample frames, while households were drawn at random from the “true” 2016
household point locations. This represented the use of an outdated-inaccurate sample frame that

may not match the actual population identified during survey fieldwork. In cases where a PSU had
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fewer than 20 “true” households, all households were sampled. In practice, gridded population
survey practitioners often draw extra back-up clusters, randomly select the target n main clusters
from the draw, then drop and replace any main cluster with a back-up cluster if no habitable
buildings are identified upon visual inspection of satellite imagery and/or during a field visit (Dana
R Thomson, Rhoda, et al., 2020; Thomson et al., 2021). | implemented this approach by drawing
72 clusters (60 main + 20% back-up), dropped all clusters with no “true” households, and
randomly selected 60 clusters from those that remained. | used R 3.6.0 for this step, drawing PPS
samples with the samplingbook package pps . sampling function (Kauermann and Kiichenhoff,
2011). | used the spatialEco package points.in.poly function to join “true” households to

PSUs, and the base R sample function to draw simple random samples of households.

In the fourth step, | generated three of the inputs needed to calculate household probability
weights: H,,, the number of households in urban Khomas according to the sample frame (or Py,
the gridded population estimate); hjx, the number of households in the respective PSU according
to the sample frame (or pj, the number of households in the gridEZ PSU); and M;, the “true”
number of households in the respective PSU from the simulated 2016 point file (Figure 36). R

3.6.0 was used for this step.

In step five, | calculated “true” household indicator values from the 92,844 simulated households
in urban Khomas (Figure 37). | selected four socioeconomic household-level indicators for this
analysis, three of which were described, evaluated and deemed to have realistic distributions in
Chapter 3. These were percent of households with unimproved toilet, percent of households with
crowding, and percent of households with a non-durable floor. Percent of households with
unimproved water, which was also evaluated in Chapter 3, was excluded because none of the
simulated households in urban Khomas had unimproved water. To replace this indicator, |
selected an additional socioeconomic indicator that was simulated, but not evaluated: percent of

households cooking with solid fuel such as charcoal or wood. This step was performed in R 3.6.0.

Step six is where | calculated sample probability weights and estimated indicators in each of the
9,600 samples. To do this, | calculated the last element of the sample probability weight: my, the
number of households sampled in the respective PSU. Sample weights for the i* household in
PSU j and stratum k followed the formula detailed in section 5.2.3 in census samples. Household
sample weights in gridEZ units used Py and pj;, population in place of Hy and hj; households as
shown below. Population estimates (P and pj;) approximately equals households (Hy and h) if
we divide the population estimates by the average household size. Because average household

size is in the numerator and the denominator of the household probability weights equation, it
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cancels out, allowing estimated population values to be used directly. | assumed no segmentation

in sample frame units, and 100% household response:

Py Mjy,

= —
N Xpjk  Mjg

Where:
Py is the estimated gridded population in stratum k
Pjk s the estimated gridded population in gridEZ unit j in stratum k
ny is the number of gridEZ units sampled in stratum k
Mj;  is the number of household point locations in gridEZ unit j in stratum k
mjy,  is the number of sampled households in gridEZ unit j in stratum k

Following common survey practice, | normalised the household weights around one (ICF
International, 2012a; UNICEF, 2013). Normalising weights reduces the effect of extremely small or
large weights, which can occur in gridded population sampling because we find that a PSU derived
from gridded data (and which has local spatial inaccuracy) has only a few households in the field,
so we sample all or most of them. While raw sample probability weights sum to the total
population in the sample frame, normalised sample weights sum to the total sample size. |

normalised each weight for household i as follows:

X (mjk)

w; =W; Xg————
Lnorm L Z(Wl X mjk)

Where:

mj is the number of (responded) households in EA/gridEZ j in stratum k

w;  is the raw household probability weight

Given the focus of this thesis on representation of the urban poorest in household surveys, and
the greater rates of missingness among simulated slum households, | calculated indicators by
slum and non-slum in step seven (Figure 37). This represents a typical household survey in which
slum locations are is not known in the sample frame, and thus can only be measured and analysed
after sample selection. However, unlike a typical survey, | was able to calculate “true” slum and
non-slum indicator values from the simulated population (n slum = 35,001; n non-slum = 57,843).
For this analysis, | used slum household status of “true” 2016 household point locations created

manually for each household in Chapter 3.
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Maps are presented of select census EA and gridEZ sample frames to compare differences across
scenarios of outdated and inaccuracy censuses. Comparisons are also made of the percent of
slum/non-slum households in each sample versus the “true” percent of slum households,
disaggregated by sample frame and outdated-inaccurate scenario in order to understand how the
lack of within-urban stratification impacts disaggregated indicator estimates for slum and non-

slum populations.
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Step 5: Calculate “true” indicators Step 6: Calculate weights & indicators
i Join Hy, Ry, and
My, toeach
Calculate indicators sampled household

for 2016 “true”
populationin
urban Khomas

in 9,600 samples

Calculate my;, for
each EA/gridEZ unit
N = 92,844

Assume no
segmentation and m_jk

Household indicators: ; .
100% response rate foutlined points)

+ Unimproved toilet

* Non-durable
structure

+ QOvercrowding

Calculate household sampling weights:

Hy (or Py) M;

« Solid fuel for Wk T80 x by (0r D) M
cooking
Calculate weighted indicators, and 95%
confidence interval accounting for clustering
%0 in each of the 9,600 samples

Step 7: Calculate slum/non-slum indicators Step 8: Summary statistics

Household slum / non-slum status from Box plots for 9,600 samples:

“true” population used to classify sampled * By 3 frames

households * By 16 outdated-inaccurate scenarios
* By slum / non-slum status

Census EAs

e [ P

R e
Il as ]

Summary statistics for each set of 200
samples in the 48 frame X scenario
combinations, comparing estimated and
“true” values

Slum household Non-slum household

’

Sub-analysis on slum/non-slum households

Summary statistics:
* RMSE

Medium grid€Z units .
+ Bias

Figure 37. Steps 5 to 8 used to analyse accuracy of gridded population surveys

In a final step (step eight), | created boxplots and calculated summary statistics for each of the
three sample frame and 16 outdated-inaccurate scenarios, as well as in slum and non-slum
households (Figure 37). All indicators were summarized as weighted percentages, with 95%
confidence intervals that accounted for clustering of households in PSUs. Indicator estimates were
calculated in R 5.3.2 on the University of Southampton Iridis 5 high performance computing

cluster using the survey package svyciprop function (Lumley, 2004). Slum and non-slum
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estimates were generated with the same package by adding a sub-population (subset) argument

to the survey design specifications.

Given that many non-slum households had zero values for certain indictors, a likelihood-based
approach to confidence interval estimation (e.g., Rao and Scott, 1987) was not ideal because it
assumes an approximately normal distribution of the estimated proportion, and this assumption
breaks down when the estimated proportion is close to zero (Korn and Graubard, 1998). Instead, |
used the Korn and Graubard approach to estimate confidence intervals for proportions with small
counts in complex survey data, specified in svyciprop as “beta.” This approach uses a logit
transformation and Poisson distribution, substituting n sampled observations for the effective
sample size and its degrees-of-freedom when the estimated proportion is zero (Korn and

Graubard, 1998).

Boxplots are presented to show the distribution of weighted indicators across the 100 samples for
each of the 48 frame-scenario combinations, as well as in slum/non-slum sub-populations. Each
plot displays these distributions in reference to the “true” indicator value marked with a

horizontal line.

Two accuracy statistics were also calculated for each of the 48 frame-scenario combinations and
slum/non-slum sub-populations to understand errors in gridded population samples, and to
compare accuracy in census and gridEZ frames under realistic scenarios of outdated-inaccurate
censuses. In accuracy statistics, each of the 200 sample indicator estimates were compared to the
“true” indicator value, and then summarized. Root mean square error (RMSE), detailed in section
4.2.1.5, reflects the degree of accuracy (over- or under-estimation error) in the estimated
indicators for a particular sample frame. Bias, detailed in section 4.4.1, indicates the direction and
average error in a particular sample frame; whether it consistently leads to an over- or under-

estimate.

5.4.2 Results and discussion

Visual inspection of the sample frames against the “true” 2016 household point locations
revealed key differences between census-based sampling and gridded population sampling
(Figure 38). The 2011 census EAs were drawn along locally meaningful neighbourhood boundaries
which generally divided slum and non-slum areas. The simulated population thus largely
segregated slum/non-slum households along EA boundaries. As expected, the distribution of
slum/non-slum households in gridEZ units were more heterogeneous than in census EAs in urban
Khomas (first column of Figure 38). GridEZ units were less spatially sensitive to missing

populations than census EAs, even when highly outdated-inaccurate census counts were used as
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input to the gridded population model (second and third column of Figure 38). This is because the
gridEZ algorithm groups cells across EA boundaries into units which are constrained only by

higher-level administrative and GHS-SMOD “high-dense urban” boundaries (section 5.4.1).

When constituency-level inputs were used in the gridded population model, the most densely
populated cells in Windhoek were substantially underestimated because population was
misallocated to low-density or unsettled cells (see section 4.5.1). In scenarios of high census
outdatedness-inaccuracy, this inadvertently gave excluded populations a greater probability of
selection than they would have had if the census data are sampled directly, though it also

increased the likelihood of sampling cells with no or few actual households.

GridEZ units derived from outdated, inaccurate census data had larger areas than gridEZ units
derived from recent, accurate census data. The larger units were created by the gridEZ algorithm
to maintain the target of 500 people per unit based on lower estimated population totals (second
and third columns of Figure 38). With larger areas, these gridEZ units were more heterogeneous
in terms of slum/non-slum households than gridEZ units derived from more accurate census data,

or the census data itself.
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Figure 38. Visual comparison of the "true" 2016 household point distribution and three sample

frames, by simulated census scenario in a section of Windhoek, Namibia

Figure 39 shows the distribution of slum/non-slum households across all samples, by sample
frame and census scenario. In the best-case-scenario, samples drawn from 2016 frames with no

population missingness (top-left plot in Figure 39), all estimated the true percent slum population
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on average, though gridEZ-constituency samples did so with more variability due to inaccuracies
in the sample frame. Underestimation of the slum population increased in the census EA frame,
and to a lesser extent the gridEZ-EA frames, as the census was increasingly outdated or
inaccurate, with gridEZ-constituency frames consistently estimating the true slum population
regardless the age or inaccuracy of the input population data (Figure 39). This strongly
underscores an issue raised by urban health experts who argue that census-based household
surveys (which overwhelmingly are based on several-year-old sample frames) and stratified by
only urban/rural areas tend to produce overly cheery estimates of health and social outcomes in

urban population (Lilford et al., 2017).
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Figure 39. Percent of each sample comprised of slum households in the three sample frames,

across all 16 scenarios of outdated-inaccurate census

139



Chapter 5

Furthermore, according to Groves and Lyberg’s (2010) description of the Total Survey Quality
framework, lack of within-urban stratification on slum/non-slum areas is a “relevance” problem
because without the means to disaggregate survey results by meaningful sub-groups, decision-

makers do not gain the insights they need to address urban inequalities and risks.

5.4.2.1 Estimated indicator means

Box-plots of indicators for a selection of outdated-inaccurate sample frames are presented in
Figure 40, and box-plots for all indicators and scenarios are presented in Appendix F. In census EA
samples drawn from outdated or inaccurate data, indicators were underestimated in the overall
urban population (first column of Figure 40). This was because slum household locations closely
align with census EA boundaries, and slum households were more likely to be missing from the
frame than non-slum households. Together, this reduced the probability of selection of majority-

slum EAs under scenarios of high census outdatedness or inaccuracy.

This pattern, however, was mitigated in gridEZ sample frames, and resulted in household
indicator estimates closer to the true prevalence (first column of Figure 40). While EA-level census
inaccuracies were maintained in the underlying gridded population estimates, the gridEZ
algorithm increased the probability that slum households were selected by grouping cells into
PSUs across EA boundaries. In the most outdated and inaccurate scenario (2001_H), so much of
the gridEZ-constituency input population was misallocated to areas comprised of (missing) slum
households, that the outdated-inaccurate samples produced indicator estimates that were as
accurate as samples drawn from more accurate sample frames. This was not necessarily a

strength of the Random Forest model, but rather could be viewed as a fortunate coincidence.

Note that overcrowding (sufficient living and sleeping space inside the dwelling) was slightly more
prevalent among non-slum households in the urban Khomas simulated data (scenario 1 in first
column of Figure 40). This figure is likely representative of reality. In cities worldwide that face
housing crises, overcrowding is an issue that effects households across economic classes (Bashir,
2002; Brown, 2003). Windhoek, unlike other fast-growing cities such as Dhaka, Bangladesh or
Lagos, Nigeria, is not constrained by natural geographic boundaries. In satellite imagery, |
observed that between 2001 and 2016 nearly all slum households were added to the urban
periphery, and so they likely did not face the types of building constraints that are present in

other fast-growing LMIC cities bound by the sea other natural barriers.

Estimates generated for slum and non-slum households separately after sampling (second and

third columns of Figure 40) tended to be unbiased except in census EA and gridEZ-EA samples for
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indicators that differed substantially between slum and non-slum households (i.e., percent of
households with an unimproved toilet or non-durable floor). The variability in indicator estimates
across the 200 draws was not substantially different for non-slum households, even when the
sample frame was outdated or inaccurate (second column of Figure 40). However, slum
household indicator estimates varied substantially more across the 200 draws, and indicator
estimates became more varied under scenarios of increased outdatedness or inaccuracy do to
relatively smaller sample sizes of slum households (third column of Figure 40). In cases where the
true indicator value differed substantially between slum and non-slum households, census
samples — and to a lesser extent gridEZ-EA samples — tended to overestimate slum indicators. A
possible reason for this is that the census or gridEZ-EA sample frames gave an inaccurately low
probability of selection, but those census EAs or gridEZ-EA units that were selected tended to
have higher concentrations of slum households, among which outcomes tended to be “worse”

than in slum households near or interspersed among non-slum households.
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142



Chapter 5

5.4.2.2 Estimated indicator error

Table 31 summarises sampling error as measured with RMSE in select census scenarios, and
average RMSE error across all census scenarios for the four household indicators. RMSE for the

three sample frames and all census scenarios are presented in Appendix G.

When the best-case scenario 2016 “true” sample frames were used, samples drawn from gridEZ-
EA units were roughly as accurate as samples drawn from census EAs directly, and samples drawn
from gridEZ-constituency units were less accurate, as would be expected (Table 31). However, this
pattern inverted as sample frames were increasingly outdated or inaccurate, especially for
indicators with large disparities between slum and non-slum households. For example, under the
least accurate 2001_H scenario (2001 census with high level of missing population), RMSE for
percent of all urban household with an unimproved toilet were 8.3 in census EA samples, 7.3 in
gridEZ-EA samples, and 5.3 in gridEZ-constituency samples, with a similar pattern when slum and
non-slum households were disaggregated (Table 31). When these errors are averaged across all
16 scenarios, one or both of the gridEZ sample frames produced more accurate indicator
estimates than the census frames (except overcrowding for which all frames averaged the same
RMSE) (Table 31). Average RMSE for disaggregated slum/non-slum indicator estimates were
mixed with census and/or gridEZ-EA samples tending to be more accurate when the sample
frames were recent and more accurate, and gridEZ-EA and gridEZ-constituency tending to be

more accurate when the sample frames were outdated or inaccurate (Table 31).
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Table 31. RMSE in samples drawn from census EAs and two gridEZ sample frames, by indicator,

select outdated-inaccurate census scenario, and slum/non-slum households

Select gridEZ 1 gridEzZ 2
scenarios & Census EA (EA input) (Constituency input)
16 scenario All Urban  Urban All Urban  Urban All Urban  Urban
average urban non-slum slum urban non-slum slum urban non-slum slum

% unimproved toilet

2016_True 3.9 3.8 34 4.4 3.6 4.2 4.9 3.8 6.4
2011 L 4.6 3.3 4.8 4.2 34 4.7 5.2 3.9 6.1
2006_M 7.2 3.1 8.8 6.7 3.3 8.4 53 3.6 7.3
2001_H 8.3 3.7 9.0 7.3 33 9.0 53 3.3 6.8
Average 6.0 3.5 6.5 5.7 34 6.6 5.2 3.7 6.7
% overcrowding
2016_True 13 1.8 1.5 1.2 1.7 1.6 13 1.8 2
2011_L 13 1.6 1.8 1.3 1.6 2.1 1.4 1.7 2.2
2006_M 1.5 1.4 2.9 1.5 1.7 2.6 1.4 1.7 24
2001_H 1.6 1.6 3.0 1.6 1.6 3.6 1.5 1.8 2.7
Average 14 1.6 2.3 14 1.7 2.5 14 1.8 2.3
% non-durable floor
2016_True 4.0 1.4 4.3 4.0 1.2 4.9 4.9 1.4 6.9
2011 L 4.6 1.2 5.8 4.0 13 6.0 4.9 1.5 7.1
2006_M 7.9 13 10.0 6.9 1.2 8.8 53 1.4 7.5
2001_H 10.1 1.5 11.1 8.3 13 10.4 53 1.4 7.7
Average 6.7 14 7.8 5.8 1.3 7.5 5.1 14 7.3
% solid fuel
2016_True 1.1 0.4 1.9 1.1 04 1.9 2.1 0.4 3.3
2011_L 1.2 04 2.4 1.2 04 2.6 2.3 0.5 3.6
2006_M 2.2 04 3.5 2.0 0.3 4.0 1.8 0.4 3.1
2001_H 2.6 0.4 5.1 2.1 0.4 4.2 2.6 0.5 4.2
Average 1.8 0.4 3.2 1.6 0.4 3.2 2.2 0.5 3.6

5.4.2.3 Estimated indicator bias

As indicated in the boxplots in section 5.4.2.1, three of the four indicators (unimproved toilet,
non-durable floors, and solid fuel) were underestimated in urban Khomas by outdated or
inaccurate census EAs frames. In the 2001_H scenario, census sample frames underestimated the
percent of households with an unimproved toilet by 5.9%, percent of households with a non-
durable floor by 7.9%, and percent of household using solid fuel by 1.9% (Table 32). While gridEZ-
EA and gridEZ-constituency also underestimated these indicators, the degree of underestimation
was less severe: households with an unimproved toilet was underestimated by 1.3% by gridEZ-EA
samples and 0.4% by gridEZ-constituency samples; households with non-durable floors was
underestimated by 1.7% in gridEZ-EA samples and by 0.7% in gridEZ-constituency samples; and

household using solid fuel was underestimated by 0.7% in gridEZ-EA samples and 0.1% in gridEZ-
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constituency samples (Table 32).For reasons discussed above (section 5.4.2.1), there was little

bias in the overcrowding estimates across sample frames.

Table 32. Bias in samples drawn from census EAs and two gridEZ sample frames, by indicator,

select outdated-inaccurate census scenario, and slum/non-slum households

Select gridEzZ 1 gridez 2
scenarios & Census EA (EA input) (Constituency input)
16 scenario All Urban Urban All Urban Urban All Urban Urban
average urban non-slum slum urban non-slum slum urban non-slum slum

% unimproved toilet

2016_True 0.0 -0.1 0.4 0.0 0.0 -0.1 04 04 0.9
2011 _L -0.2 0.1 0.3 -0.7 -0.2 0.3 0.1 0.5 0.8
2006_M -4.8 0.2 3.0 -2.3 0.2 2.2 -0.5 0.1 0.5
2001_H -5.9 0.9 4.9 -1.3 0.7 2.1 -0.4 0.1 0.7
Average -2.7 0.3 2.2 -1.1 0.2 1.1 -0.1 0.3 0.7
% overcrowding
2016_True 0.0 -0.1 -0.1 0.0 -0.1 0.2 0.1 0.1 0.1
2011 L 0.1 0.1 -0.2 0.2 0.2 0.0 0.3 0.4 0.0
2006_M 0.2 0.1 -0.7 0.0 0.1 -0.6 0.1 0.1 0.0
2001_H 0.5 0.4 -0.6 0.2 0.3 -0.4 0.1 0.1 0.0
Average 0.2 0.1 -04 0.1 0.1 -0.2 0.2 0.2 0.0
% non-durable floor
2016_True 0.0 -0.2 0.5 0.0 0.1 -0.2 0.3 0.1 1.0
2011_L 0.0 -0.1 1.2 -0.4 0.0 0.8 -0.3 0.0 0.5
2006_M -5.6 0.0 4.4 -2.8 0.1 2.6 -0.5 0.1 0.5
2001_H -7.9 -0.1 5.3 -1.7 0.1 3.0 -0.7 -0.1 0.5
Average -3.4 -0.1 2.9 -1.2 0.1 1.6 -0.3 0.0 0.6
% solid fuel
2016_True -0.1 0.0 -0.1 -0.1 0.0 -0.1 -0.1 0.0 -0.5
2011 L 0.1 0.0 0.5 -0.1 0.0 0.1 -0.1 0.0 -04
2006_M -1.3 0.0 0.3 -0.8 0.0 0.0 -0.4 0.0 -0.7
2001_H -1.9 0.0 0.2 -0.7 0.0 -0.3 -0.1 0.0 0.0
Average -0.8 0.0 0.2 -04 0.0 -0.1 -0.2 0.0 -04
5.4.3 Recommendations

In this analysis of a typical LMIC urban setting, gridded population sampling from a gridEZ-EA or
gridEZ-constituency frame generally produced more accurate estimates for the overall urban
population than a census EA sample frame when the sample frame was more than ten years old
and/or inaccurate. Like most LMIC household surveys, the surveys evaluated here were not

stratified within urban areas by deprived (e.g., slum) and not deprived (e.g., non-slum) areas. In
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this common design, gridded population sampling from gridEZ, or similar, units produce slightly
more accurate indicator estimates within slum and non-slum sub-populations because each
grideZ PSU is likely to contain a greater diversity of household types than census EAs, which tend
to follow homogenous neighbourhood boundaries. A key finding from this chapter is that urban
household survey results based on a sample frame that is a decade or more old are biased toward
“better” outcomes, especially when there are sharp disparities in outcomes between deprived
and not deprived households, and when deprived households comprise a smaller portion of the
overall urban population. This bias toward “better” outcomes in urban indicator estimates has

major implications for LMIC household survey accuracy and decision-making.

In LMICs, urban socioeconomic disparities are stark and increasing (UN-Habitat, 2003, 2016).
Worldwide, health and social indicators are strongly correlated with poverty/wealthy, and these
correlations tend to be stronger in settings of greater socioeconomic disparity (Ezeh et al., 2017).
Despite the fast growing number of poor populations in LMIC cities, the proportion of the
population that is poor versus non-poor is not well understood, and likely varies by city. The UN-
Habitat “slum household” definition is widely used to classify households that lack basic assets
from survey or census data (UN-Habitat PSUP, 2016); however, these data cannot be used to
draw maps that would help to stratify a future survey. Furthermore, “slum households” as
defined by UN-Habitat include most or all of some city populations, and do not necessarily
correlate with slum/deprived areas as defined by local residents (Dana R Thomson, Kuffer, et al.,

2020).

While some city authorities and academic groups have produced city-level maps of slum areas,
these maps are based on varying definitions, and they are rarely available across all urban areas in
a country (Kuffer, Pfeffer and Sliuzas, 2016; Mahabir et al., 2018; Thomson, Kuffer, et al., 2020).
Furthermore, slum maps become outdated quickly due to the particularly dynamic nature of
slums. Given that there are few, if any, countries with harmonized, national, routine slum
mapping initiatives, virtually no DHS, MICS, LSMS, and other routine national household survey
stratifies samples within urban populations. The 2005-06 and 2015-16 India National Family
Health Surveys were rare exceptions, and they only stratified slum/non-slum areas in eight cities
(IIPS and Macro International, 2007; 1IPS and ICF International, 2017). Given that the average DHS
sample frame was seven years old (section 2.3), | suspect that a large portion of LMIC household
surveys collected in recent decades have produced bias, likely overly cheery, estimates for urban

indicators. If this suspicion is true, the implications are massive.

Biased household survey results which underestimate “bad” social and health outcomes mask the

basic needs of the urban poorest, limit the ability of advocacy groups to raise awareness of the
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needs among the urban poorest, and undermine monitoring and evaluation efforts that target the
urban poorest. The lack of maps identifying urban deprived areas is, in itself, an act of masking —
even marginalizing - the needs of the urban poor. Until slums/deprived areas can be mapped
routinely across all or most LMIC cities with reasonable accuracy, household survey planners will
be unable to stratify surveys by this important sub-population, reinforcing the pattern of ignoring
the urban poorest. The evidence presented in this chapter indicates that gridded population
sampling could improve the representation of slum dwellers in household surveys in the absence

of slum/deprived area maps.

| am hopeful that the increasing quantity and resolution of Earth Observation and Big data will
enable routine, accurate mapping of slums and informal settlements across cities in the next five
to ten years (Thomson, Kuffer, et al., 2020; Kuffer et al., 2020). When such maps become
available, survey programme implementers will be faced with decisions about if, and how, to
modify survey sample designs to produce separate estimates for rural, urban-slum, and urban-
non-slum populations. Currently in many LMICs, urban areas are oversampled because either the
urban population comprises a smaller portion of the national population, characteristics vary
more within urban populations than within rural populations, or both. With an additional stratum
(or strata) defined by slums, additional households may need to be sampled; though sample sizes
within urban-slum and urban-non-slum areas might simultaneously decrease due to reduced
variance within strata. The overall impact on sample size, cost, and effort would likely be
moderate, but worthwhile to produce more accurate and disaggregated estimates that are
appropriate for the essential monitoring, planning, evaluation, and research activities routinely

performed with household survey data (Corsi et al., 2012).
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Chapter 6: Implementation

6.1 Overview

Survey implementation occurs after the sample frame has been developed (Chapter 4), the
sample has been designed, and the primary sampling units (PSUs) have been selected (Chapter 5).
Nearly all large-scale health and economic surveys in low- and middle-income countries (LMICs)
use census enumeration areas (EAs) as the initial sample frame, and thus implementation
necessarily requires two phases of fieldwork. The first phase of fieldwork is to list and map
households (the mapping-listing phase), and the second phase is to interview sampled

households, which usually occurs several months later (the interview phase).

Since the establishment of survey methods four decades ago, the mapping-listing phase has
remained largely paper-based. This is in spite of the availability of satellite imagery, global
positioning systems (GPS) and geographic information systems (GIS) for mapping, and availability
of tablets and the internet for listing. Conversely, LMIC societies have been undergoing profound
change related to globalization and rapid urbanization for at least two decades. The continued use
of outdated survey tools and methods in contemporary LMIC contexts likely contributes to decay
in survey accuracy, with vulnerable and mobile populations excluded in greater numbers than
fixed, family households. Using the right tools for mapping and listing has multiple benefits
including decreased costs, decreased field work time, and improved quality of the final sample

frame due to improved experience for field staff and routine quality checks by supervisors.

This chapter builds on findings in previous chapters and evaluates the use of innovative gridded
population surveys methods and tools in a complex, real-world context. In this chapter, | describe
a feasibility analysis conducted under the Surveys for Urban Equity (SUE) study in Kathmandu,
Nepal; Dhaka, Bangladesh; and Hanoi, Vietnam. The full SUE study protocol is published
elsewhere (Elsey et al., 2018). The focus in this chapter is on the largest of the three SUE surveys
in Kathmandu. | describe the Kathmandu SUE study in section 6.2 including the methods and tools
used to overcome threats to population exclusion. Section 6.3 describes the qualitative and
guantitative methods | used to evaluate coverage and feasibility of gridded population sampling
in Kathmandu. Finally, section 6.4 includes the results and discussion of the following three

research questions.
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6.1.1 Research questions

Research Question E: Is a gridded population sample feasible to implement in a complex,
urban setting in a LMIC? Specifically, how does total cost, time, and staff skill mixin a

gridded population survey compare a census-based survey?

Research Question F: What is the experience of mappers-listers implementing a gridded

population survey using SUE field tools and methods?

Research Question G: What, if any, evidence is there that SUE tools and methods overcome

unintentional population exclusion of vulnerable and mobile populations?

6.2 Surveys for Urban Equity (SUE) study

The SUE study was coordinated by University of Leeds (UK) in collaboration with HERD
International (Nepal), ARK Foundation (Bangladesh), CIPRB (Bangladesh), and Hanoi University of
Public Health (Vietnam) between 2016 and 2018. | coordinated one work package (activity) to
implement and evaluate gridded population sampling field tools and methods. Not only did the
SUE study evaluate tools and methods to improve the representation of the urban poor in
household surveys, it also piloted questions on mental health and injuries for use in routine
surveys in LMICs, and investigated techniques to improve the use of survey data by local
authorities. The project was funded under a Research and Innovation grant by the British Medical

Research Council with the following main activities:

i) identify and test questions on mental health and injuries

ii) test affordable and efficient novel methods to reduce bias in urban surveys

iii) explore alternative approaches to defining households, and measuring wealth
iv) develop data visualisation tools to support decision-makers' use of survey data

The SUE study piloted questionnaire modules about accidents and injuries, and depression and
anxiety because these issues account for a large portion of the global burden of disease,
particularly among the urban poorest, however these topics are rarely included in large-scale
household surveys (Campbell and Campbell, 2007). Mental health and substance use are the fifth
largest disorder in the global index of disability adjusted life years (DALYs), and the leading cause
of years lived with disability, particularly among women (Whiteford et al., 2013). Among mental
health and substance use disorders, depression is the leading cause of disability globally, followed
by anxiety (Whiteford et al., 2013). Traffic accidents and other unintentional injuries such as falls,
drowning, and fires are among the top ten burdens of disease globally, particularly among men

(Haagsma et al., 2016). Additionally, the SUE surveys collected and compared several measures of
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household wealth including the DHS assets-based wealth index and LSMS earnings and
expenditures indicators to understand how these measures compare with SUE’s qualitative

findings in poor urban communities (Elsey et al., 2018).

The study was approved by University of Southampton Ethics Review Committee (ref:26819), as
well as University of Leeds Medical Ethical Review Committee (ref:MREC16-137), Bangladesh
Medical Research Council (ref:BMRC/NREC/RP/2016-2019/317), Nepal Health Research Council
(ref:1761), and Vietnam Medical Research and Ethics Committee (ref:324/2017/YTCC-HD3).

6.2.1 Roles in the SUE-Kathmandu study

| led activity (ii) to develop gridded population survey implementation methods and tools, and
conduct a mixed methods study to evaluate the above research questions. | also provided input
on activity (iii) to modify the household questionnaire member roster, allowing for classification
and comparison of household membership according to DHS, MICS, and LSMS household

definitions.

| provided survey implementation training in Kathmandu to HERD International survey team
members Mr. Radheshyam Bhattarai, Mr. Rajeev Dhungel, and Mr. Subash Gajurel. Additionally, |
observed and supported the HERD International survey team during their fieldwork. | also
coordinated with qualitative researchers at HERD International, Ms. Sudeepa Khanal and Ms.
Shraddha Manandhar, and the SUE Project Principal Investigator, Dr. Helen Elsey, to design a
focus group with the mapping-listing staff after survey mapping and listing fieldwork was
complete. This work was monitored and supported by HERD International Director, Dr. Sushil

Baral.

| was not present for the survey implementations in Dhaka and Hanoi, and thus do not report
results here. The Dhaka and Hanoi surveys were much smaller than in Kathmandu, and designed
only to evaluate how the methods and tools designed in Kathmandu translated to other complex
urban settings. Those two surveys were implemented by CIPRB and Hanoi University of Public
Health, respectively, with training from the HERD International survey team following the

Kathmandu survey.

6.2.2 Study setting

The cities selected for the SUE study represented a range of modern urban complexities and
leveraged existing partnerships. All three cities face rapid, complex urbanization. Since 2010, the

population increased by more than 4.0% in Kathmandu, 3.5% in Dhaka, and 5.2% in Hanoi (UN-
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DESA, 2019). The pace of population growth in South Asia has particularly strained urban housing
markets such that increasing numbers of people live in atypical arrangements such as hostels, or
atypical locations including their place of work (UN-Habitat, 2016). Poorer households live in a
variety of settings including physically isolated slum areas, as well as in dwellings located among

brick-and-mortar buildings in economically heterogeneous neighbourhoods (UN-Habitat, 2016).

Kathmandu has a particularly complex and mobile population. Across the Himalaya mountain
region, entire villages have traditionally migrated to lower altitudes during the winter, and both
agricultural and non-agricultural seasonal migration to cities is common among residents of the
Hill and Tarai (i.e., plains) regions (Gill, 2003). Kathmandu also experiences permanent/semi-
permanent in-migration by rural and small-city residents for economic and educational
opportunities, and to escape the detrimental effects of climate change on rural livelihoods (Tacoli,

2009).

The combination of rapid urbanization and unplanned infrastructure in Kathmandu made the
2015 earthquakes particularly devastating, and resulted in extensive short-term displacement and
a rebuilding effort that continues today (Rimal et al., 2017). For all of these reasons, housing
arrangements are particularly heterogeneous in Kathmandu (Figure 41). It is common for the
owner of a building to occupy the top floor, rent the middle floor as one or two apartments, and

rent the bottom floor to multiple lower-wage borders.

Credit: Hole in the Clouds Credit: Wikimedia Credit: Wikimedia

Figure 41. Examples of dense, complex housing arrangements in Kathmandu, Nepal

151



Chapter 6

6.2.3 Innovative SUE methods and tools

| developed the following methods and tools utilizing innovative datasets with an aim to improve

LMIC survey accuracy, with extensive feedback from Mr. Bhattarai, Mr. Dhungel, and Mr. Gajurel

(Figure 42).
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Figure 42. SUE methods and tools used to overcome unintentional exclusion and masking of
vulnerable and mobile populations in household surveys

Adapted with permission from (Dana R. Thomson et al., 2020)

WorldPop-RF sample frame (data). As described in Chapter 4, we used WorldPop-RF gridded
population estimate in approximately 100 metre by 100 metre grid cells as our sample frame
(WorldPop, 2019). At the time of this work in 2017, the WorldPop-Global dataset was not yet
released. The WorldPop-RF estimates are derived with a machine learning approach that
disaggregates population counts in larger areas (e.g., last census by district) to grid cells based on
dozens of spatial covariates derived from publicly available satellite imagery and GIS data (Stevens
et al., 2015). As detailed in Chapter 5, the grid cells can be sampled directly, or combined into

larger units, for household survey sampling.

GHS-SMOD urban boundary (data). We used the European Commission’s Global Human
Settlement GHS-SMOD layer to define the boundary of the Kathmandu metropolitan area. We
considered use of municipality boundaries; however, “metropolitan” boundaries only covered the
downtown area of Kathmandu, and adding “sub-metropolitan” boundaries would have resulted in
a substantial sample of rural communities beyond the peri-urban reach. GHS-SMOD classifies 1
kilometre by 1 kilometre grid cells worldwide as “high density urban,” “low density urban,”

“rural,” or “unsettled/remote” based on a dataset of built-up areas derived from satellite imagery
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(GHS-BUILT), and the GHS-POP gridded population layer (see section 5.3.1) (European
Commission, 2017). Presented with metropolitan, sub-metropolitan, and GHS-SMOD boundaries,
the HERD International team judged the GHS-SMOD dataset to best reflected the functional city

boundaries of Kathmandu Valley.

GridSample (tool). At the time of this study, GridSample.org was not available, so we used the
GridSample R algorithm to select samples from WorldPop-RF datasets. The free GridSample R
package enables selection of primary sampling units (PSUs) with probability proportionate to size

(PPS) from any gridded population estimate (see section 5.3.1) (Thomson et al., 2016).

Area-Microcensus design (method). An area-microcensus sample was evaluated against the
standard two-stage sampling design. In area-microcensus PSUs (15-20 total households), all
households were invited to participate in an interview, while approximately one in every 10
households were sampled and invited to participate in two-stage PSUs (150-200 total households)
(see 5.2.3). Area-microcensus designs have been used in a number of other gridded population

surveys (Cajka et al., 2018).

Relaxed household definition (method). The DHS, MICS, LSMS, and other large-scale surveys
define a household as one or more people who are a usual resident, or who slept in the dwelling
the previous night, and who share living arrangements and meals (see section 2.4.3) (Grosh and
Munoz, 1996; ICF International, 2012a; UNICEF, 2013). These definitions are unclear about how,
or whether, to include members of fluid “open” households defined by an in and out flow of
individuals, often from rural areas, seasonal households and household members, and households
that face housing insecurity and relocate often, all of which are common scenarios in South Asian
cities (Oya, 2015). The SUE study relaxed the household definition to include all self-reported
usual residents, as well as hostel dwellers and long-term occupants of guesthouses (defined as 7+
consecutive days and working, looking for work, or in the city for another purpose such as
supporting someone in hospital), and street-sleepers who slept in the PSU the previous night. The
questionnaire collected information about living arrangements, meals, and length of time in the
dwelling to identify individuals who would not be counted in the household according to DHS,

MICS, and LSMS household definitions.

OpenStreetMap map (data) and iD Editor (tool). We replaced hand-drawn paper field maps with
digitally-generated paper field maps. To generate digital maps, we updated all buildings, roads,

and pathways located in sampled PSUs in the crowd-sourced OpenStreetMap platform, using the
iD Editor tool, which is integrated on the OpenStreetMap website (OpenStreetMap contributors,
2000). In the case that a building was intersected by a PSU boundary, we used the following rule:

buildings intersecting west (vertical) and south (horizontal) boundaries were included, while
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buildings intersecting east and north boundaries were excluded, ensuring that each building and
its residents could only ever belong to one PSU. We then exported all roads, buildings, and points
of interest for Kathmandu Valley to a shapefile. Using ArcGIS 10.3, we created a map for each PSU
showing the OpenStreetMap base layers, PSU boundary, and other PSU information such as
centroid latitude-longitude coordinate. We used printed maps to record any changes to buildings,
paths, and roads in the field. These paper maps were also very helpful to explain the survey to
residents. Any modifications to the map were entered into OpenStreetMap using iD Editor in the
office after fieldwork. Residential makeshift housing and tents were not entered in

OpenStreetMap to prevent potential harm to residents (e.g., eviction, fines).

GeoODK listing (tool). We replaced the paper household listing form with a digital listing form in
GeoODK (GeoMarvel, 2017), a free open-source data collection application that runs on a tablet.
Several such applications are available including OpenMapKit (American Red Cross, 2017) and
Survey Solutions (World Bank, 2020). We chose GeoODK because it allowed us to visualize
satellite imagery and OpenStreetMap offline, and to record a manually placed latitude-longitude

coordinate over each building. The same tool was used to administer interviews.

OSMANd (tool) and MAPS.ME (tool). Several other applications were preloaded onto tablets to
support field teams with navigation. MAPS.ME includes roads, buildings, and other features from
OpenStreetMap for an entire country (or sub-region) and offers offline routing services (My.com,
2020). OSMAnNd allows download of OpenStreetMap as well as satellite imagery to the tablet, plus
the visualization of boundaries (PSUs in our case) and tablet location services (displaying the
tablet location as a blue dot on the map) (OsmAnd BV, 2010). The offline satellite imagery
required substantial storage space on tablets, so only imagery for PSUs were downloaded.

MAPS.ME was used to navigate to PSUs, and OSMAnNd was used to navigate within PSUs.

Household listing script (method). Clear protocols are not published by DHS, MICS, LSMS, or
other largescale survey implementers to guide the household listing fieldwork (see section 2.4.3).
To ensure that atypical households were not excluded (e.g., people who live at their place of
work, multiple families who share an apartment), we trained listers to use a detailed script of
questions at every building, and to seek information from neighbours in a standardized way when

building residents were not home.

6.2.4 Study design

The HERD International team performed household listing and interviews in Kathmandu Valley

between September and December 2017. The survey targeted 1200 households in 60 clusters to
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Table 33. Summary of SUE Kathmandu survey design and methods used across two study arms,

and household response rates by study arm

Design Two-stage Area-Microcensus
Coverage Kathmandu Valley, general population  Kathmandu Valley, general population
Sample size 30 clusters, 600 households 30 clusters, 600 households
Cluster Multiple, contiguous 100x100m cells Single 100x100m cell with
definition with approximately 200 households approximately 20 households
# clusters
dropped & 6 3
replaced
# clusters 15 7
segmented
Maboing-listi i1di
Mapping- Mapping-listing team maps buildings, appmg |st|r1g team ma.ps bui dlngs,
- . . and lists dwellings. Interview team lists
listing and lists dwellings and households . .
households on day of interview.
Mapping- Undergraduate geospatial specialists, Undergraduate geospatial specialists,
listing staff mostly male mostly male
Interview team returns to entire PSU
Interview team returns to sampled approximately two months after
Interview households in PSU approximately two dwellings (apartments) are listed.
months after household listing Interviewers perform household listing
and interviews in all PSU dwellings.
Interview Undergraduate public health Undergraduate public health
staff specialists, even mix of male/female specialists, even mix of male/female
Household
response 96.8% 88.3%
rate
Households
met DHS & 99% 90%
MICS def.
‘SamplingArea: 76 ing Area : 65
[Latitute, Longitude] [Latitute, Longitude]
[Place name] [Place name]
Example
field map I:

&%

estimate key poverty, mental health, and injury outcomes (Elsey et al., 2018). We randomized half

of the clusters to an area-microcensus arm, and the other half to a two-stage arm, to compare the

types of households and differences in outcomes in the different survey designs. In the area-

microcensus arm, mapping-listing teams mapped buildings and listed dwellings (not households),
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while in the two-stage arm, the teams mapped buildings, and listed dwellings and households
(Table 33). In the area-microcensus arm, the interview team defacto listed all households as they

sought interviews with all households present in the PSU.

Although we targeted 60 PSUs, we sampled 20% (18) backup PSUs. A sample of 78 PSUs were
drawn from the 2017 WorldPop-RF dataset with PPS using the GridSample R package (Thomson et
al., 2016). All 78 PSUs were initially designed to have approximately 200 households, or 820
people, using GridSample R’s “growth” algorithm, which randomly adds neighbouring grid cells to
an initial “seed” cell selected with PPS, achieving a target population or a maximum area
parameter (Thomson et al., 2016). |, along with the HERD International team, reviewed each PSU
in ArcGIS 10.3 (ESRI, 2018) by overlaying it on satellite imagery, and we discarded PSUs with no
inhabitable buildings (e.g., located over a factory or airport), and replaced it with a randomly
selected backup PSU. Then we randomly assigned the 60 main PSUs to the area-microcensus or
two-stage arm of the study. In the area-microcensus arm, the 100 metre by 100 metre “seed” cell

became the new PSU boundary.

The HERD International survey team and | co-developed training materials (Thomson et al., 2018).
| delivered a mock training in English, colleagues provided detailed feedback, and | revised the
slides and manuals in English. The HERD International team hired and trained 12 university
student-employees specialising in geospatial methods to perform mapping-listing activities in
September and October 2017. The mapping-listing training was delivered by the HERD
International team in Nepali over one week and involved a mix of lectures, role-play, and practical
activities. Mappers-listers were required to pass a field-based exam and desk-based test to qualify

for the position.

As previously mentioned, the mapping-listing protocols used in area-microcensus and two-stage
PSUs were slightly different. In both types of PSUs, mapper-listers mapped buildings; however, in
area-microcensus PSUs they listed dwellings only, whereas in two-stage clusters, they listed all
dwellings and households, and recorded the head of household name. The mapping-listing staff
met at the office weekly, and on other days commuted from home directly to their assigned PSUs
using provided stipends for transportation. At the end of each day in the field, mappers-listers
called the HERD International survey team and submitted an electronic report. To minimize their
commute times, we paired mapping-listing staff, in part, based on their home locations, and we

assigned teams to nearby PSUs, though some PSUs remained far for any team.

In November and December 2017, the HERD International team hired 24 interviewers to visit
sampled households and conduct a two- to three-hour interview. Interviewers were student-

employees specialising in public health, and many had previous interviewing experience. The
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interviewers received a week of practice-based training which included map navigation and use of
GeoODK for tablet data collection. The household questionnaire collected demographic, assets,
savings, expenditures, migration, and injury information about everyone in the household or the
household head. One adult in each household was randomly selected using the Kish table method
(WHO, 2002) to complete an individual questionnaire which included mental health and migration
questions. To be eligible, respondents were 18 years of age or older, a senior household member,

and provided written informed consent.

6.2.5 SUE survey workflow

The focus of the rest of the chapter will be on the sample design, sample selection, and mapping-
listing activities in the Kathmandu SUE survey in September and October 2017. This is because use
of a gridded population sample frame and associated methods and tools effects sample selection
and mapping-listing, but does not influence the interview tools and methods, nor the experience
of the interview from the perspective of participants. An overview of the steps, roles, and tools
are presented in Figure 43. At the time of this work, there were not any standards or guidance for
implementing gridded population surveys, so | identified open-source tools from previous
experiences and web searches, and pieced together a coherent workflow. In this workflow, the
planning team was responsible for conducting an exercise to gauge the ideal grid cell size for the
sample frame, sampling PSUs, assigning PSUs to one of the two study arms, and segmenting large
PSUs (Figure 42). The mapping-listing staff were responsible for updating OpenStreetMap before
fieldwork, conducting field-based mapping and listing activities, and updating OpenStreetMap

periodically throughout fieldwork.

Sample frame scale exercise. To gauge accuracy of the 2017 WorldPop-RF sample frame and to
ensure that “seed” cells were approximately the correct geographic size to capture 20 households
in area-microcensus units, | developed the Sample Frame Scale Exercise (Appendix H). This
exercise involved selection of ten 100 metre by 100 metre grid cells and ten 200 metre by 200
metre grid cells with PPS using the GridSample R algorithm. The HERD International team and |
completed the exercise, and systematically assessing the WorldPop-RF estimates against high-
resolution Google Earth satellite imagery (Google LLC, 2019) by counting what appeared to be
single- and multi-family buildings. Through this exercise, we determined that the 2017 WorldPop-
RF estimates appeared to be sufficiently accurate in nine out of ten 100 metre by 100 metre grid
cells, and that most 100 metre by 100 metre cells likely had a minimum number of households to
make area-microcensus sampling viable. We decided against the use of 200 metre by 200 metre
cells in Kathmandu because this would have resulted in the need to extensively segment area-

microcensus PSUs.
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Figure 43. Overview of the workflow and tools used in both arms of the SUE Kathmandu survey

Adapted with permission from (Dana R. Thomson et al., 2020)
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Select PSUs. At the time of this study, the GridSample R package was the only gridded population
sampling tool publically available. The only alternative was to develop an ad-hoc approach in a GIS
(Dana R Thomson, Rhoda, et al., 2020). The HERD International team members were not regular
users of R or ArcGIS, so | drew the sample of PSUs, demonstrating and documenting my steps
throughout the process. However, selection of gridded population PSUs can now be performed by

non-GIS and non-R users with GridSample.org (see section 5.3.1).

Office mapping. We used OpenStreetMap (OpenStreetMap contributors, 2000) as the base layer
in our field maps for several reasons. The first reason was to generate geographically accurate
maps to promote accurate and timely navigation by the mapping-listing and interview teams in
dense, complex communities. The use of standard hand-drawn maps would have been laborious
and likely resulted in inaccurate maps due to dense, irregular roads and buildings. Second, the
majority of buildings and roads in Kathmandu Valley had been mapped in OpenStreetMap, thus
we were able to save time and human resources whilst maintaining anonymity of PSU locations.
Use of this protocol in an area not well mapped in OpenStreetMap could have revealed PSU

locations to an attentive OpenStreetMap user.

Assigning PSUs and pre-field segmentation. After updating OpenStreetMap but before
generating field maps, the HERD International survey team and | reviewed each PSU over recent
satellite imagery in ArcGIS 10.3 to decide whether to drop PSUs lacking habitable buildings.
Dropped PSUs were replaced with a randomly selected backup PSU. After reviewing all PSUs, we
randomly assigned 30 main PSUs to the area-microcensus arm and 30 to the two-stage arm, and
backup PSUs were retained in the case a PSU was inaccessible or was found to lack residents
during fieldwork. During our review, we also determined whether the PSU clearly had more than
the target 20 (area-microcensus) or 200 (two-stage) households, and segmented those PSUs into
two or more areas of approximately equal population size, then randomly selected one segment
for inclusion in the survey (see Figure 44 for example segment maps). Segmentation was
performed manually following roads and property boundaries in ArcGIS 10.3 (ESRI, 2018). The
number of segments created in each PSU were tracked and used to calculate sample probability

weights.

Field mapping and listing, and updating OSM. In the field, mappers and listers worked in pairs,
taking turns updating the paper map and entering dwelling/household listing information into
GeoODK on the tablet. They were trained to follow a script to approach residents, introduce
themselves, explain the purpose of the survey, and ask detailed questions to understand and
record residents’ living arrangements (script available at Thomson et al., 2018). Upon request,

listers distributed a written description of the SUE survey with the phone number and name of
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the survey coordinator. Weekly, the team spent half a day