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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

In low- and middle-income countries (LMICs), household survey data are a main source of 
information for planning, evaluation, and decision-making. LMIC survey methods have not 
changed substantially in forty years, while population trends and technologies have. This 
mismatch is likely excluding an increasing number of vulnerable and mobile populations and 
leading to erosion in LMIC household survey data accuracy. When populations are under-
represented in surveys, they are less likely to benefit from funds allocated by governments and 
international agencies to promote health and social equity. This thesis evaluates the accuracy of 
using gridded population sample frames as an alternative to census sample frames, and the 
feasibility of implementing gridded population surveys in a real-world setting. 

To compare accuracy of census and gridded population sample frames, a realistic “true” 
population was simulated in Khomas, Namibia for 2016. The simulated population was derived 
from Namibia’s 2011 census and 2013 Demographic and Health Survey comprising several 
household outcome indicators and latitude-longitude coordinates digitised from actual building 
locations in satellite imagery. Sixteen versions of realistic outdated-inaccurate censuses were 
simulated by (a) removing households in buildings not present in satellite imagery in 2011, 2006, 
and 2001, and (b) randomly removing a percentage of rural, urban slum, and urban non-slum 
households based on a literature review of LMIC census undercounts. For each realistic census, a 
gridded population sample frame was modelled using WorldPop methodologies. Accuracy was 
then assessed by drawing repeated samples from the simulated censuses and gridded population 
datasets, and comparing them to the “true” population. To evaluate feasibility, a gridded 
population survey was conducted in Kathmandu, Nepal and focus group discussions and 
observation were made with survey implementers. 

In the accuracy assessment, I found that the main source of error in gridded population datasets 
was not outdated, inaccurate census inputs, but rather, the WorldPop practice of using average 
population density from aggregated census units to predict population density in finer grid cells. 
Despite inaccuracies, I found that WorldPop methods disaggregated population in or around 
settlements, and that the distribution of population estimates in grid cells within urban areas 
were +/-20% the “true” population distribution. Gridded population sample frames derived from 
outdated or inaccurate census data produced more accurate survey estimates than the original 
outdated, inaccurate census EAs frames. In the Kathmandu feasibility assessment, gridded 
population sampling proved to be cost-effective and feasible, and use of an area-microcensus 
design identified more vulnerable and mobile households than a comparable two-stage sample. 
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Chapter 1: Introduction 

In low- and middle-income countries (LMICs), household health and economic survey methods 

and tools have not changed substantially in forty years. However, in the same time period, 

population trends, as well as the methods and tools to measure populations, have changed 

significantly. Innovations in survey methods and tools have been widely adopted in high-income 

countries, for example, collection of survey responses via phone and the internet. However, in 

LMICs, the continued use of outdated survey methods and tools in rapidly changing societies has 

excluded important sub-populations and led to an erosion in survey data accuracy.  

Household health and economic surveys are essential in this era of the Sustainable Development 

Goals (SDGs) where all countries aim to achieve 17 goals by 2030, including zero extreme poverty 

and zero hunger whilst leaving no one behind (UN-DESA, 2018). In LMICs, household surveys are 

often the only source of information about dozens of the 232 indicators used to track progress 

toward the SDGs (IAEG-SDGs, 2017). In countries where other population data exist, surveys may 

still be used because survey results are easily disaggregated by income, sex, age, race, and other 

characteristics which are required for SDG reporting (Diaz et al., 2017). SDGs are measured for all 

countries, but are especially important in LMICs where poverty and poor health are highly 

prevalent, and often unequally distributed (Diaz et al., 2017). 

SDG and other development indicators are important for planning at all scales – city/district, 

national, and international (UN-DESA, 2014; UN-Habitat, 2016). Decision-makers involved with 

city planning or district development require representative, timely data about multiple 

population characteristics, disaggregated by sub-group and local area to design appropriate 

policies, programmes, and infrastructure (UN-Habitat, 2016). Regional and national policy-makers 

depend on the same data to prioritize agendas and budgets, and to make decisions. International 

decision-makers, namely funders, also use these data, and need them to be comparable across 

countries to prioritize global agendas and to target funding (IAEG-SDGs, 2017). Household surveys 

are thus, additionally, attractive to collect standardized indicators across countries and over time.  

A large number of household surveys are performed on an ad-hoc basis, and often focus on a 

single topic. However, with the financial support of routine survey programmes, multi-topic 

nationally-representative surveys implemented by national statistical agencies have become 

common place. Routine survey programmes such as the Demographic and Health Surveys (DHS) 

(ICF International, 2017), Multiple Indicator Cluster Surveys (MICS) (UNICEF, 2019), and Living 

Standard Measurement Surveys (LSMS) (Grosh and Munoz, 1996) were each established in the 

1980s to collect hundreds of standardized health, demographic, social, and economic indicators 
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about populations in LMICs. These surveys use essentially the same methods and tools, which are 

considered the gold-standard among development practitioners.  

Together the DHS, MICS, and LSMS comprise a large portion of the data being used to monitor the 

SDGs and to make development decisions. It is standard practice to report SDG indicators 

disaggregated by gender, wealth, geographic area, and other sub-groups. Not only does 

disaggregation reveal socioeconomic disparities in health and economic outcomes, it can suggest 

issues of under-representation in the underlying household survey data. For example, fewer 

urban poor households are sampled in many routine household surveys than would be expected 

(Elsey et al., 2016). 

In this thesis, I review evidence that millions of people are unintentionally excluded from the DHS, 

MICS, LSMS, and other similar surveys worldwide. Exclusion happens first, in census sample 

frames, second, during survey design, and third, during survey implementation. Additional 

populations, including homeless, nomads, prisoners and people living in care-homes, are 

intentionally excluded from surveys by design because they are not considered to be part of the 

general, residential target population. Intentionally and unintentionally excluded populations in 

household surveys are overwhelmingly poor, vulnerable, and/or mobile. 

When populations are excluded or under-represented in surveys, they are much less likely to 

benefit from the billions of pounds in funding allocated each year by governments and 

international aid agencies to promote health and social equity in LMICs (Development Initiatives, 

2018). If survey coverage of the general residential population improves, we can expect a larger 

portion of respondents to be poor, vulnerable, and/or mobile. Quantifying the size of intentionally 

excluded populations could further contextualize our measurements of the general residential 

population for decision-makers. With this more accurate information, governments and donors 

stand to make greater, and more equitable, impacts on the health and livelihoods of people in 

LMICs. 

1.1 Outline of thesis 

In Chapter 2, I present evidence that populations in LMICs have undergone massive change over 

the last four decades, particularly in urban areas, and that household survey methods have not 

changed since the 1980s. I argue that outdated survey methods and tools, likely under-represents 

the most vulnerable populations in standard household survey data, leading to bias, 

misclassification and poorly informed decisions about the populations which are often of greatest 

interest in survey data.  
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In Chapter 3, I outline requirements for a simulated, realistic population. Here I summarize the 

methods and parameters developed in collaboration with colleagues to generate a realistic, 

synthetic population from a census sample, household survey, spatial covariates, and digitized 

building locations. The second part of this chapter includes a systematic literature review and 

summary of types of populations that are under-counted in LMIC censuses, including ranges of 

under-counts in rural, urban slum, and urban non-slum populations. I also estimate change in 

population over time (2001-2016) based on satellite imagery. I use these findings to generate 16 

realistic census scenarios in which population are missing at low, middle, and high rates, and the 

data are five, ten, and 15 years out of date. 

Chapter 4 is a study of survey sample frame accuracy. This chapter reviews the methods and 

parameters that I used to model each of the simulated census scenarios as a gridded population 

dataset using WorldPop’s Random Forest model and publicly available spatial covariate datasets. 

This chapter ends with an analysis of gridded population dataset accuracy at the scale of grid cells, 

and evaluates whether accuracy of gridded population estimates can be improved by aggregating 

cells. 

Chapter 5 is a study of gridded population survey accuracy in a typical LMIC urban context. I open 

this chapter with a review of standard survey methods and a review of existing gridded 

population surveys, comparing the ways in which gridded population sampling and census-based 

sampling are similar or different. The focus of this chapter is an assessment of gridded population 

survey accuracy, which I evaluate with repeated samples from a census sample frame and two 

gridded population sample frames under various scenarios of outdated, inaccurate input data.  

Chapter 6 is a study of survey implementation methods and tools, specifically the feasibility of 

implementing gridded population surveys in complex urban environments. This chapter describes 

a real-world implementation of a gridded population survey in Kathmandu, Nepal, a highly 

complex city where standard surveys are thought to omit the urban poorest (Elsey et al., 2016). In 

this gridded population survey, I randomize sampling areas to either an area-microcensus or two-

stage sample design, allowing me to compare types of households that are sampled in an area-

microcensus survey but are missed using a typical two-stage survey design. Next I describe 

qualitative data collection methods and results from the implementation, including the 

experience of survey planners and survey implementers. 
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1.2 Contributions 

1.2.1 Contribution to state of knowledge 

 Quantification of populations who are unintentionally excluded or misclassified in 

census-based household surveys. 

 Understanding of the specific methods and protocols that lead to unintentional 

exclusion and misclassification of vulnerable and mobile populations in census-based 

household surveys. 

1.2.2 Methodological contribution 

 Requirements for simulation of a realistic population geo-located to realistic building 

locations in a LMIC context. 

 A method to assess cell-level accuracy of gridded population datasets. 

 A method to quantify the impact of outdated, inaccurate census data on the accuracy of 

top-down gridded population datasets. 

 A method to compare the accuracy of gridded population surveys and typical census-

based surveys with regard to estimated population indicators. 

1.2.3 Contribution to practice 

 Perform the first cell-level accuracy assessment of gridded population data 

 Influence the types of accuracy assessments performed by gridded population data 

modellers, moving the field from accuracy assessments as the scale of the input data (e.g., 

administrative units) to accuracy assessments at the scale of the output data (i.e., grid 

cells). 

 Feasible methods to implement gridded population surveys and improve representation 

of households and individuals who might otherwise be excluded from standard household 

surveys. 

 Influence more equitable targeting of development resources to vulnerable and mobile 

populations in LMICs. 

1.3 Publications 

During the course of this thesis, the following publications stemmed directly from this work: 
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Chapter 2: Motivation 

2.1 Personal motivation 

I planned and implemented my first household survey as a graduate student at Harvard School of 

Public Health in 2010. One of the two mwamis (traditional kings and administrators) on Idjwi 

Island, DR Congo, sought to influence the dozens of international organizations located in eastern 

DR Congo to invest in the island’s health system. Idjwi is located in the middle of Lake Kivu, which 

separates DR Congo from Rwanda. By 2010, Idjwi had long been a destination for hundreds of 

thousands of people escaping violence in Rwanda, Burundi, Uganda, and DR Congo (IRIN, 1996). 

Further, population growth had been essentially unconstrained for decades due to lack of 

availability of family planning services, along with personal preferences for large families to 

ensure security in a context of high child mortality (Romanuik, 2011).  

The mwami sought to build new facilities, supply basic medicines, and improve staff training so 

that the sick no longer had to choose between no meaningful care, or use of prohibitively 

expensive and infrequent motorboats to Goma or Bukavo in mainland DR Congo for care. The 

mwami contacted Jacques Sebisaho, a clinician and former resident of Idjwi living in the US, to 

organize data collection about the health situation on Idjwi. The aim was to both provide the 

mwami with evidence to present to potential donors, and to brandish this evidence as reputable 

by inviting researchers from an international recognized institution to collect it. Dr. Sebisaho 

reached out to the Harvard Humanitarian Initiative, and organized a multi-disciplinary team of 

Harvard graduate students from public health, medicine, policy, and design to conduct several 

studies on Idjwi during the summer of 2010. I developed the methods and design for a multi-topic 

household survey, and Michael Hadley oversaw the survey fieldwork and data cleaning. Together 

we analysed and reported results of the survey to the mwami, Idjwi officials, and organizations 

located in eastern DR Congo. 

I was initially flummoxed about how to select a representative sample of households on Idjwi. 

Then, and now, DR Congo’s last census was collected in 1984. Not only were population estimates 

for Idjwi grossly outdated, they were not sufficiently disaggregated to serve as a household survey 

sample frame. I had trained and worked as a geographer for the Demographic and Health Survey 

programme, and was aware of the LandScan gridded population estimates produced in 1 

kilometre by 1 kilometre grid cells for the globe. Out of desperation, I decided to use LandScan as 

a sample frame, though at the time, no other survey team teams had reported use of a gridded 

population sample frame. Instead, other household surveys in DR Congo had either performed 

time-consuming and expensive enumeration activities to update the census sample frame (MdP 
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and Macro International, 2008), or listed villages with population estimates from local leaders 

(Coghlan et al., 2006). As students with limited funding, we did not have the capacity or time to 

use either of these approaches.  

With support of my supervisor, Dr. Marcia Castro, and faculty members Dr. Bethany Hedt-

Gauthier and Dr. Gunther Fink, I developed a new approach to select survey clusters of 

approximately 40 households each with probability proportionate to population size, and derived 

sample probability weights (Thomson et al., 2012). All survey preparations, including selection of 

50 sampling units and production of field maps, were performed in the US before we first visited 

Idjwi. I was nervous whether navigation with GPS devices and maps of printed satellite imagery 

from Google Earth would be feasible and sensible for the field teams. I was also nervous that the 

gridded population estimates might be wrong. 

However, to our relief and to the benefit of the survey results, the field teams found the maps of 

printed satellite imagery and overlaid cluster boundaries intuitive to use. Many had never seen a 

laptop computer before, let alone satellite imagery, but these “pictures from the sky” showed 

familiar paths, landmarks (e.g., large trees) and buildings clearly. Further, where LandScan 

estimated higher population density, we observed greater density of buildings in satellite imagery, 

and successfully located and interviewed those structures on the ground. I have since been 

involved with a number of typical census-based household surveys, and appreciate, now, that the 

Idjwi survey fieldwork ran as smoothly as any survey team could wish for.  

During preparations for the Idjwi survey, I received an email announcing the release of a new 

open-source gridded population dataset called AfriPop, which had more disaggregated estimates 

than LandScan. Following the Idjwi survey, I contacted the AfriPop team lead, Dr. Andrew Tatem, 

and described the potential high-impact use of gridded population data as a survey sample frame 

in settings with outdated, inaccurate censuses. He agreed to volunteer the time of a researcher 

and programmer on his team, Dr. Forest Stevens, to create an algorithm to automate gridded 

population sampling methods. Over the next couple of years, Dr. Stevens and I worked remotely 

to develop and release the GridSample R package, and presented this work at an international 

Health Systems Research conference in 2014. 

Through this conference, I met Dr. Helen Elsey, an urban health researcher at University of Leeds, 

and Dr. Sushil Baral, director of a public health research organization in Kathmandu, Nepal. Dr. 

Elsey, Dr. Baral, and their research teams were struggling at the time to explain why the urban 

poorest in Kathmandu appeared to be grossly underrepresented in typical household survey data, 

even when the surveys were implemented by highly experienced teams using gold-standard 

protocols. They wondered if the typical household survey methodology itself might 
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unintentionally exclude the urban poorest, and whether a new sample frame, and/or new survey 

protocols could more accurately represent the urban poorest in surveys. In 2014 and 2015, I 

worked with Dr. Elsey, Dr. Baral and others to outline possible ways in which poor urban 

households might be unintentionally excluded in typical census-based LMIC household surveys.  

We set out to test our hypotheses with our own gridded population survey in Kathmandu in 2015, 

though it was interrupted by devastating earthquakes in Nepal that year. We had completed the 

mapping and listing of households in nearly all of our 90 survey clusters by the time the first 

earthquake struck, which provided some evidence about household and dwelling configurations 

in the city. This experience and our limited data helped us to further flesh out our hypotheses 

about how and why urban poor households are underrepresented in standard surveys (Elsey et 

al., 2016).  

Following surveys in both Idjwi and Kathmandu, I became deeply concerned that huge numbers of 

the most vulnerable people in the poorest countries on this planet, including rural-to-urban 

migrants and urban slum dwellers, remain invisible in global health statistics. I was further 

concerned that the best efforts by governments and donors to meet the needs of the poorest, 

and growing urban inequities, are doomed to fail without accurate survey data. I pursued this 

thesis with Dr. Tatem and colleagues to evaluate tools and methods that might improve the 

accuracy of household survey data such that the decisions and resources allocated to 

development in LMICs stand a chance of improving the lives of the most vulnerable. 

2.2 Routinely collected population data 

In this section, I review available sources of routinely collected population demographic, health 

and economic data, and consider the extent to which these data sources are timely, 

representative, and disaggregated for use by planning and development decision-makers at 

city/district, national, and international levels. The main sources of routinely collected population 

data are decennial censuses, administrative records, and household surveys. The focus of this 

section is on population counts, which are useful for decision-making and for selecting 

representative household surveys, as well as population characteristics such as health or wealth 

status. 

2.2.1 Decennial censuses 

Censuses are a complete count of the population at a point in time conducted by a national 

government. A typical census requires billions of pounds and several years of preparation, is 

conducted over the course of a few weeks, and includes age, sex, education, and occupation 
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information for each person, as well as their household membership, and household physical 

structure information. A count of people in the general residential population who do not 

respond should be imputed by the responsible national government agency (UNSD, 2010). 

Institutional populations, such as those living in army barracks or care-homes, as well as nomadic 

populations and homeless street-sleeping populations, are counted separately, and should be 

adjusted for under-counts using post-enumeration techniques and imputation (UNSD, 2010; 

Skinner, 2018). Depending on the country, informally settled populations, such as people living in 

unregistered slums and non-citizens, are sometimes intentionally excluded (UNSD, 2010). 

Censuses are customarily conducted decennially (every 10 years), though many LMICs do not 

perform censuses on schedule due to funding shortfalls, civil conflict, or political crisis.  

The quality and frequency of decennial censuses have steadily improved in LMICs over time. 

However, in Africa, Asia, and Latin America during the 2010 round, census accuracy was 

questionable in 13 countries that failed to correct for missing, invalid or inconsistent responses in 

their censuses (UNSD, 2010). Without corrections, some of the poorest and most vulnerable 

people in these countries would have been excluded from the census, and a majority of those 

excluded (e.g., street sleepers, informally settled populations, institutional populations, and non-

citizens) would have been from cities (Carr-Hill, 2013). Seventeen additional countries in these 

regions failed to administer a census on schedule (UNSD, 2019). Given the speed and magnitude 

of urbanization in African and Asian countries, even high-quality census data can become 

outdated within a few years of collection. These issues are explored in greater depth in Chapter 3. 

While well-conducted censuses are representative of the population and can be disaggregated to 

local area and by socio-demographic characteristics, the data are extremely expensive, collected 

infrequently, and cover few indicators used in planning and development initiatives such as the 

Sustainable Development Goals (SDGs). In a LMIC national statistical agency (NSA), paying for a 

well-conducted census comes at the expense of other quality data. The 2010 Ghana Population 

and Housing census, for example, cost 72 million US dollars and accounted for 90% of the NSA 

total budget between 2010 and 2013 (Chen et al., 2013). Censuses serve as an ideal survey 

sample frame, if they are corrected for missing responses and are not too outdated, though both 

of these conditions are rarely met in LMICs. 

2.2.2 Administrative records 

Administrative records include birth and death registries, health and crime databases, and tax and 

land records, which together can provide near-real-time information about population counts and 

their demographic, health, and economic conditions. While administrative records can be timely 
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and often disaggregated to a local level, they are considered to be egregiously biased in LMICs 

due to incomplete coverage and/or poor quality of administrative record-keeping (Mahapatra et 

al., 2007; Setel et al., 2007). Part of the problem is that administrative data are extremely 

expensive to collect and maintain, as they depend on the entire government apparatus working at 

full capacity, continuously. 

Only a few LMICs have been able to improve their most basic vital registration systems over the 

last 50 years. For example, an estimated 50 million new born children still go unregistered each 

year worldwide (Mahapatra et al., 2007). Of the 75 countries in Africa and Asia that reported vital 

registration data to the UN for the 2015 Demographic Yearbook, only 9 (28%) African countries 

and 26 (60%) Asian countries were thought to have registered more than 90% of their national 

births (UNSD, 2016). Administrative records are thus not considered a population-representative 

data source on their own; they are used cautiously, or not at all, in decision-making, and never 

serve directly as a survey sample frame. 

2.2.3 Representative household surveys 

In the absence of representative administrative data and infrequent censuses in LMICs, 

governments tend to turn to nationally-representative household surveys for data. Household 

surveys cover far more indicators, and are substantially more affordable than either censuses or 

administrative records. The use of nationally-representative probability survey samples originated 

in wealthy countries. In the United States (US), for example, the first representative probability 

surveys were used to assess the labour force during The Depression and World War II (Groves et 

al., 2009). These methods evolved in the 1940s and 1950s with consumer surveys, the 1960s with 

crime and victimisation surveys, and the 1970s with the first population-level health surveys 

(Groves et al., 2009). By 1980, the US government and international agencies began funding large-

scale routine health surveys, both domestically and internationally. 

The Global Health Database Exchange (GHDx) registered 1,585 nationally-representative multi-

topic household probability surveys in 177 countries between 1980 and 20141. These surveys 

focus on reproductive and child health – 39 Reproductive Health Surveys (RHS), 297 Demographic 

and Health Surveys (DHS), and 236 Multiple Indicator Cluster Surveys (MICS); chronic illness – 159 

STEPwise Approach to Surveillance Surveys (STEPS); malaria or HIV/AIDS – 22 Malaria Indicator 

Surveys (MIS) and 10 AIDS Indicator Surveys (AIS); livelihoods – 119 Living Standard Measurement 

                                                           

1 I use January 1, 2015 as a cut off because the database was not complete for recent surveys which were 
being cleaned and published at the time of this writing in 2017. 
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Surveys (LSMS); and at least 703 other national household surveys on similar topics (IHME, 2020). 

Over 100 countries have had five such surveys since 1980, and 62 countries have had ten or more 

such surveys in the same time frame (IHME, 2020). 

As statistical methods and computer-based databases have advanced, governments and 

international donors have increased the capacity to administer and use survey data in LMICs, 

resulting in a steady increase in the number of national household surveys implemented by 

government over time (Figure 1). Although some argue that these investments have come at the 

expense of strengthening administrative data collection systems (Setel et al., 2007), the reality is 

that survey data are the main source of information used for planning and development decision-

making in LMICs today. Survey data are often preferred to census and administrative data 

because they are (intended to be) representative of national and sub-national populations, can be 

disaggregated by sub-group, collected more frequently than census data, use standardized 

questionnaires across countries, cover hundreds of indicators each, and cost much less to 

implement (Murray, 2007).  

The private sector collects dozens of additional nationally-representative surveys globally to 

monitor consumer trends (Neilsen, 2017) and public opinions (Gallup, 2017a). Rapid surveys are 

also conducted after natural disasters and during conflicts to assess and respond to urgent needs 

(HDX, 2017; WFP, 2020). 

 

 

Figure 1. Number of national health and economic household surveys in LMICs, 1980-2014 

 Data from GHDx database (IHME, 2020) 
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The focus of this thesis will be on routine national household probability surveys implemented by 

national governments as part of the DHS, MICS, and LSMS programmes because the results of 

these surveys are often adapted as official national statistics and widely used for development 

decision-making. However, given the similarity of methods and tools, implementers of rapid 

assessment, such as the Vulnerable Analysis and Mapping (VAM) surveys by World Food 

Programme (WFP, 2020), and private sector surveys, for example, the World Poll by Gallup 

(Gallup, 2017a), will find the issues, methods, and results in this thesis relevant to their surveys. 

2.3 Standard census sampling 

In this section, I review standard census-based sampling practices used by DHS, MICS, LSMS, and 

other routine surveys. These are the currently accepted gold-standard survey methods to which I 

will compare gridded population sampling in this thesis. Key manuals describing standard survey 

design and implementation include: DHS Survey Sampling and Household Listing Manual (ICF 

International, 2012a), MICS 5 Manual for Mapping and Household Listing (UNICEF, 2013), and the 

LSMS Manual for Planning and Implementing the Living Standards Measurement Study Survey 

(Grosh and Munoz, 1996). 

Routine nationally-representative health and economic household surveys are generally 

comprised of 10,000 or more households, cost approximately half a million US dollars each, and 

take roughly two years to plan, implement and publish (UNSD, 2005b). As part of trends toward 

decentralized government and increased disaggregation of health and economic statistics to 

address local disparities, several surveys have been much larger and more expensive including the 

2014 Kenya DHS which included over 36,000 households and was representative of 46 separate 

counties (KNBS et al., 2015), and the 2015-16 India National Family Health Survey (DHS 

equivalent) with over 600,000 households (IIPS and ICF International, 2017).  

Small areas and then households are sampled at random from a complete dataset of the 

population, usually a census. I reviewed the survey designs of all 157 Standard and Interim DHSs 

conducted between 2000 and 2016 to get a sense of contemporary survey design practices (Table 

1) (ICF International, 2020). Of the reviewed surveys, 94.3% used the last census as a sample 

frame, and the remaining 5.7% used some other official government listing of areas or 

households. Further, 51.0% used a sample frame more than five years old, and 12.7% used a 

sample frame more than 10 years old, with the average sample frame age being 6.6 years. Given 

that DHS methods are widely replicated; I consider these results to be reflective of broader survey 

practice. 
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Table 1. Sample frame source and age, Demographic and Health Surveys 2000-2016  

 Data from Demographic and Health Surveys (ICF International, 2020) 

Region 

Number of 
surveys  

2000-2016 

Census 
sample 
frame 

Percent 

Other 
government 

sample frame 

Percent 

Age of sample 
frame in years 
Mean [Range] 

Sample 
frame >5 
years old 
Percent 

Sample 
frame >10 
years old 
Percent 

Africa 90 95.6 4.4 6.8  [0-30] 52.2 12.2 

Asia, Oceania 39 87.2 12.8 5.5  [1-15] 41.0 5.1 

Central & South 
America 

19 100.0 0.0 8.2  [0-18] 63.2 36.8 

Europe, Middle 
East 

9 100.0 0.0 5.7  [1-9] 55.6 0.0 

All 157 94.3 5.7 6.6  [0-30] 51.0 12.7 

 

Complex sampling techniques are used to achieve the greatest amount of statistical power while 

minimizing costs. These techniques include stratification and multistage cluster sampling. 

Stratification means that independent samples are drawn from each sub-region of the country 

(Figure 2). Two-stage cluster design means that census enumeration areas (EAs) with non-zero 

populations are sampled first with probability proportionate to population size (PPS), and then 

households are listed in selected EAs and sampled (UNSD, 2005b). Three-stage designs are 

sometime used where census EAs are not available or when the EA listing is extremely long 

(UNSD, 2005a). In a three-stage design, larger administrative areas are sampled first with PPS, 

smaller administrative areas are sampled second at random or with PPS, and households are 

listed and sampled third. Example three-stage cluster surveys include the 2005 Egypt DHS (El-

Zanaty and Way, 2006) and 2015 Colombia DHS (MINSALUD and Profamilia, 2015). 

 

 

Figure 2. Overview of the standard household survey sampling workflow 
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Routine national household surveys use the same field implementation methods today as were 

developed in the 1980s for a, then, majority-rural context. Generally, the buildings in each 

sampled EA (also called cluster or primary sampling unit – PSU) are manually mapped, and all 

households are listed by a mapper-lister team several months before an interview team returns 

and interview 20-30 sampled households per PSU (Figure 2). A team of one mapper and one lister 

visits each PSU and performs the following. The mapper hand-draws all structures, streets, paths, 

and landmarks on a blank piece of paper (Grosh and Munoz, 1996; ICF International, 2012a; 

UNICEF, 2013). Generally, available detailed satellite imagery (e.g., Google Earth) or digital maps 

(e.g., based on OpenStreetMap) are not used. In routine surveys, if the population identified on 

the ground is much larger than the target PSU size, the mapper segments the PSU into two or 

more approximately equal-sized segments in the field, randomly selects one segment using a 

segmentation form, and then maps the selected segment.  

The lister records all dwelling units and households within each mapped structure. According to 

the DHS and MICS mapping-listing guidelines, all dwellings should be listed in all structures, 

including mixed residential-commercial and non-residential structures, for example, a guard living 

inside a factory or in a church (ICF International, 2012a; UNICEF, 2013). Presumably, dwelling and 

household information is obtained when the lister speaks to residents or their neighbours about 

the living arrangements in each structure, including questioning guards of commercial and 

institutional buildings about staff who live on site. However, no explicit guidance or training is 

provided by the DHS, MICS, or LSMS manuals to operationalize these listing activities (Grosh and 

Munoz, 1996; ICF International, 2012a; UNICEF, 2013). 

The household listing is then used by the survey planning team as the final sample frame to select 

households to be interviewed. The final step of survey implementation is to send trained 

interviewers to the field to locate the selected households and administer the survey 

questionnaire. A great deal of training and guidance is provided to the interview teams to ensure 

that respondents are well-informed, that confidentiality is achieved during the interview, and that 

questions are administered and recorded in a standardized way (ICF International, 2012b; UNICEF, 

2017). In recent years, the interview process was modernized; interviewers now administer 

lengthy questionnaires on tablets rather than paper forms in most surveys. After interviews, a 

number of important steps take place by the survey organizing team to clean, analyse, and 

distribute the data. 
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2.4 The unintentionally excluded and masked poor 

There are at least five places in this standard household survey workflow where people are 

unintentionally excluded from the listing (Figure 3). Each of these points is described below and 

revisited in later chapters. Additionally, there are at least two ways in which urban people, 

particularly the urban poorest, are misclassified and thus masked in current survey designs (Figure 

3). I group these issues by their place in the survey workflow starting with sample frame (Chapter 

4), then sample design (Chapter 5), and finally sample implementation (Chapter 6).  

The exclusion of homeless, nomadic, and institutional populations from surveys is intentional. This 

is partly because censuses have well-documented challenges to accurately count these 

populations (UNSD, 2008, 2017). In addition, survey practitioners often consider homeless, 

nomadic, and institutional populations as having special needs beyond those of the general 

residential population, and thus separate surveys with different indicators employing different 

methods and tools are used, including capture-recapture (Wright and Devine, 1992; Gurgel et al., 

2004; Stark et al., 2017), sampling from aggregation points (Peressini, Mcdonald and David, 2010; 

Troisi et al., 2015), sampling from institutional registrars, and snowball sampling (Mckenzie and 

Mistiaen, 2009). 

However, unintentional exclusion of members of the target population threatens the accuracy of 

survey results (Biemer, 2010). Furthermore, misclassification of populations and/or failing to 

disaggregate population figures into meaningful sub-groups masks key survey findings and 

renders the data unfit for use by decision-makers (Groves and Lyberg, 2010). The Total Survey 

Error Framework outlines multiple, compounding sources of error in surveys, including errors in 

sample frame coverage, respondent non-response, sampling, indicator measurement, and data 

processing (Biemer, 2010). A broader Total Survey Quality Framework encompasses all issues of 

survey error, but also considers issues of data relevance, usability, accessibility, timeliness, 

completeness, credibility and comparability (Groves and Lyberg, 2010). 
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Figure 3. Five ways that poor people may be excluded, and two ways they may be masked, in 

standard household surveys resulting in bias and/or misclassification 

 Adapted with permission from (Thomson, Bhattarai, et al., 2020) 

 

2.4.1 Unintentional sample frame exclusion 

Exclusion 1: Outdated or inaccurate census sample frame. In outdated or inaccurate sample 

frames, newly settled communities especially in and around cities, are missing, or communities 

are over/under-represented due to population shifts driven by births, deaths, and migration 

resulting in sample frame coverage error. This problem is widespread in LMICs. Weak 

government, lack of funding, technological limitations, and instability mean that censuses have 

not been conducted in dozens of LMICs for more than ten years, for example, the D.R. Congo, 

Somalia, Afghanistan, and Yemen (UNSD, 2019).  

On the other end of the spectrum, most LMICs that are stable and developing rapidly have had a 

recent census; however these datasets become quickly out-of-date due to high levels of migration 

and urbanization (UNSD, 2005a). For example, the urban population grew by 10 percentage 

points or more between 2005 and 2015 in Namibia (36.6% to 46.7%), Laos (27.4% to 38.6%), and 

Thailand (37.5% to 50.4%) (UN-Habitat, 2016). While globalisation drives migration among all 

socio-economic groups, poor households likely go missing from census sample frames at greater 

rates than other households in countries where policies lead to mass eviction and displacement of 

the poor (Carr-Hill, 2013).  

In other LMICs, quality of census data is not trusted due to corruption or poor oversight. All of the 

modern censuses in Nigeria, including the 1962-3, 1973, 1991, and 2006 censuses, have been 

contentious with accusations of under-counts of rural populations and women, and over-counts 

in the north of the country (Ahonsi, 1988; Okolo, 1999; Yin, 2007). In these contexts, it is often the 

poor and marginalized who lack socio-political power who are not accurately recognized and 

counted (Cobham, 2014), posing problems of under-coverage in the sample frame (Biemer, 2010).  
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2.4.2 Unintentional sample design exclusion 

Exclusion 2: Census EA sample frames require two- or three-stage sampling. Nearly every major 

household survey conducted since the early 1980s has used census EAs or an equivalent 

government administrative area dataset as the first-stage sample frame (Table 1). By using census 

EAs for the initial sample frame, survey designers are forced to use multi-stage cluster sampling 

techniques because each sample frame unit has a relatively large population. Multi-stage cluster 

sampling introduces a time lag of several months between the mapping-listing and interview 

phases (Lê and Verma, 1997), and in practice the lag time can be as long as two years, particularly 

if the national statistical agency maintains a predefined national sample frame of households for 

use in multiple surveys (UNSD, 2005a). 

Standard household surveys seek to interview 20 to 30 households in each PSU (UNSD, 2005a; ICF 

International, 2012a). In practice, the number of households per PSU ranges from five (MoH, BoS 

and ICF Macro, 2010) to 45 (NPC and ICF International, 2014). Typical EAs, on the other hand, are 

comprised of 100 to 300 households each, and it would not be statistically beneficial or logistically 

feasible to interview them all (UNSD, 2005a; ICF International, 2012a; UNICEF, 2013). To choose a 

small sample of households in each PSU, all households must be thoroughly mapped and listed, 

which is a time-consuming, expensive, and – as I will outline in the following paragraphs – an 

under-interrogated process. Seasonal or temporary migrants may be systematically under-listed 

when the migrant household (or neighbour) is not present during the household listing resulting 

in non-response error. In cases where seasonal and temporary migrant households are mapped 

and listed, non-response error can be higher in this sub-group if interviews take place during a 

different season. 

While sampling experts expect that the specific households in EAs move or change between 

decennial censuses, they expect that the total number and type of households in each EA to 

remain relatively stable over a multi-year period (UNICEF, 2013). Stability of EA population totals 

might have been a reasonable assumption in 1985, but it is unlikely to hold true in many LMICs 

undergoing urban transitions today.  

2.4.3 Unintentional sample implementation exclusion 

Exclusion 3: In practice, households are excluded from surveys resulting in sampling error when 

non-permanent structures are excluded (Table 2). Manuals by DHS, MICS, and LSMS assume that 

structures are distinct and have a single use; the manuals provide no specific guidance to map and 

list non-permanent tent or shack structures in neighbourhoods with permanent buildings, or non-

permanent structures occupied by seasonal migrants or construction workers (ICF International, 
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2012a). If the structures of low-wage workers, including migrants, are not mapped, then their 

households will be excluded from the household listing. 

Exclusion 4: In practice, households are routinely not listed in hostels, shops, and guesthouses 

resulting in further sampling error. Definitions of a household differ widely by survey and reflect 

characteristics such as head of household type, sleeping arrangements, shared housekeeping, 

and/or shared food (Randall et al., 2015) (Table 2). A dwelling is a single living space in a structure 

which is shared by one or more households (Table 2). Long-term occupants of hostels, shops, and 

guesthouses are likely excluded from many surveys because their dwellings are not perceived by 

the mapping-listing team to be residential and thus not approached. Instead, these households 

might be perceived as settled elsewhere, or otherwise external to the target residential 

population (UNSD, 2005b).  

However, given the high cost of housing in modern cities, a growing number of the working poor 

take-up permanent residence in non-traditional and shared spaces. People who live in hostels and 

guest-houses for months at a time are no more homeless or visitors than a young professional 

who rents a converted garage or shipping container in San Francisco, or who lives on a canal boat 

in London (Miles, 2016; Parry, 2018). Although these households may move often, they 

participate in local economies and use local public services and should be considered as part of 

the general residential population for the purpose of household surveys.  

Exclusion 5: In practice, dwellings and households are conflated by the mapper-lister or 

residents. There are no standard protocols for listers to interact with residents to identify the 

correct number of dwellings and households per structure (Elsey et al., 2016). The DHS provides 

the most guidance about mapping-listing, yet still does not provide specific guidance to 

operationalize definitions and protocols in practice. The LSMS provides the least guidance and 

only requires a dwelling listing rather than a household listing (Grosh and Munoz, 1996). I 

summarize the content, and the lack thereof, of DHS, MICS, and LSMS mapping-listing manuals in 

Table 3.  

Questions should be asked of the mapping-listing protocol. In practice, do mappers-listers assume 

that commercial and institutional buildings are unoccupied? If so, this would lead to an under-

listing of cleaning staff, guards, and professionals such as teachers or nurses who live part-time or 

full-time at their place of work. Also, in practice, do mappers-listers assume the number of 

dwellings per structure (e.g., one dwelling per structure)? If so, this would result in an under- 

listing of households in poorer dwellings in many rapidly urbanizing contexts. This is because 
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Table 2. Definitions of "dwelling" and "household" used in DHS, MICS, and LSMS 

Survey Structure Dwelling Household 

DHS 
(ICF 
International, 
2012a) 

A free-standing 
building or other 
construction that can 
have one or more 
dwelling units for 
residential or 
commercial use. 
Residential structures 
can have one or more 
dwelling units (for 
example: single house, 
apartment structure). 

A room or a group of 
rooms normally intended 
as a residence for one 
household (for example: 
a single house, an 
apartment, a group of 
rooms in a house); a 
dwelling unit can also 
have more than one 
household. 

A person or a group of related or 
unrelated persons, who live 
together in the same dwelling unit, 
who acknowledge one adult male 
or female 15 years old or older as 
the head of the household, who 
share the same housekeeping 
arrangements, and are considered 
as one unit. In some cases, one 
may find a group of people living 
together in the same house, but 
each person has separate eating 
arrangements; they should be 
counted as separate one-person 
households. Collective living 
arrangements such as army camps, 
boarding schools, or prisons will 
not be considered as households. 
Examples of households are: 

 a man with his wife or his 
wives with or without children 

 a man with his wife or his 
wives, his children and his 
parents 

 a man with his wife or his 
wives, his married children 
living together for some social 
or economic reasons (the 
group recognize one person as 
household head) 

 a widowed or divorced man or 
woman with or without 
children 

MICS 
(UNICEF, 
2013) 

A free-standing 
building that can have 
one or more dwellings 
for residential or 
commercial use. 
Residential structures 
can have one or more 
dwelling units (e.g., a 
single house or an 
apartment building). 

A room or a group of 
rooms normally intended 
as a place of residence 
for one household (e.g., a 
single house, an 
apartment, or a group of 
rooms in a house). 
However, a dwelling unit 
can also be shared by 
more than one 
household. 

A person or a group of related or 
unrelated persons, who live 
together in the same dwelling unit, 
who share common living 
arrangements, who acknowledge 
the same person as the household 
head, who eat together and are 
considered as one unit. 

LSMS 
(Grosh and 
Munoz, 
1996) 

Not clear. “Dwelling” 
and “building” often 
used interchangeably. 

A group of rooms or a 
single room occupied or 
intended for occupancy 
as separate living 
quarters by a family or 
some other group of 
persons living together, 
or by a person living 
alone. 

A group of people who share a 
roof and a cooking pot. 
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developers add new levels to the tops of structures and landlords carve dwellings into smaller 

units to meet demands for affordable housing. These scenarios were encountered routinely 

during a household survey in Kathmandu, which will be discussed in Chapter 6.   

As a result of limited guidance, mappers-listers are very unlikely to have standardized, detailed 

interactions with residents. Instead, mappers-listers may make assumptions about the types of 

structures that are occupied, number of dwellings per structure, and the number of households 

per dwelling. When mapper-listers hold brief conversations with residents, residents may not fully 

understand the distinction between households and dwellings, and thus a multi-household 

dwelling may be listed as one household. All of these issues would result in sampling error. 

Multi-household dwellings are increasingly common in LMIC cities among the poor. While the 

LSMS manual reports, “the average number of households per dwelling ranges from 0.9 to 1.1 in 

most countries” (Grosh and Munoz, 1996), this text is more than 20 years old, and misleading if it 

averages across rural and urban settings. The average number of households per dwelling today is 

likely to vary widely between urban and rural settings, and by country. A 2015 urban health 

survey in Kathmandu, Nepal, for example, reported a median of 2 households per dwelling, with a 

range of 1 to 4 household per dwelling across 72 randomly selected PSUs (Elsey et al., 2016). 

The lack of materials to train mappers and listers stands in stark contrast to the training of 

interviewers. The Training Field Staff for DHS Surveys manual includes a template interviewer job 

description, a candidate assessment screening tool, a template training schedule, content and 

exercises for the training, sample tests, and field evaluation criteria (ICF Macro, 2009). 

Additionally, template training manuals for the interviewers are provided by DHS and MICS 

covering methods to build rapport with respondents, with detailed procedures to locate a 

dwelling, approach a household, identify an eligible respondent, handle refusals, and complete 

each question of the questionnaire on a tablet versus back-up paper form (ICF International, 

2012b; UNICEF, 2017). Table 3 includes similar materials that mappers-listers and their trainers 

would need to operationalize their work, but which are largely absent in routine survey 

programmes. 
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Table 3. Summary of DHS, MICS, and LSMS protocols for the survey mapping-listing process  

 Three green blocks indicate that the manual has an operational protocol, two blocks 

indicates a partially operational protocol, and one block indicates a summary 

description of a protocol that is not operational. 

Criteria DHS  MICS  LSMS 

GENERAL            

Overview of survey aims and design            

Overview of the mapping-listing process            

Definitions of key terms            

Two-person mapping-listing team specified            

Recommend # of mapping-listing teams            

General responsibilities given, by role            

TRAINING MATERIALS FOR TRAINERS            

Candidate profile            

Candidate assessment tools            

Template training schedule            

Template training content            

Template location (of cluster) form            

Template structure mapping form            

Template dwelling/household listing form            

Template segmentation form            

Materials checklist for fieldwork            

Training evaluation criteria / tool            

TRAINING MATERIALS FOR MAPPERS-LISTERS            

How to build rapport with local authorities            

How to build rapport with residents            

Protocol to prepare location map            

Example (cluster) location map            

Protocol to locate a cluster            

Protocol to record cluster GPS coordinate            

Protocol to segment large cluster            

Example completed cluster segmentation            

Protocol to locate structure            

Protocol to record structure            

Example completed structure map            

Protocol to locate dwelling            

Protocol to record dwelling            

Protocol to locate household            

Protocol to record household            

Example completed listing            

Protocol to split mapping & listing activities            

Protocol for supervisor quality control            

GUIDANCE FOR PLANNING TEAM            

Protocol to securely store listing            

Protocol to select household/dwelling sample            
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2.4.4 Masking the urban poor by design 

Masking the poorest 1: Slum area boundaries are not available to stratify urban populations. 

Slums are a growing reality in LMIC cities, and are associated with disparities in individual health 

due to lack of basic water and sanitation systems, security of tenure, and/or access to 

government services (Ezeh et al., 2017). While surveys and censuses have long reported 

disaggregated statistics for urban and rural populations due to major differences in their health 

and wellbeing, such disaggregation is extremely rare for urban slum and urban non-slum 

populations, masking stark disparities between these groups. The 2005-06 and 2015-16 India 

DHSs are among the few surveys to stratify urban slum and non-slum areas and report 

disaggregated results (IIPS and Macro International, 2007; IIPS and ICF International, 2017). A 

number of studies in LMICs have found that urban slum dwellers have similar, or even poorer, 

child health outcomes than the poorest rural populations (Agarwal, 2011; Ezeh et al., 2017). Given 

the importance of slum/non-slum disaggregated statistics for monitoring SDGs and making city-

level investment and development decisions (Lilford et al., 2017; UN-DESA, 2018; Thomson, 

Linard, et al., 2019), the Total Survey Quality framework indicates that absence of slum/non-slum 

disaggregation in survey statistics threatens the relevance of survey results (Biemer, 2010; Groves 

and Lyberg, 2010). The main reason that urban estimates are not disaggregated, is that national 

statistical offices lack a common slum area definition, and the capacity to map all slum areas in all 

urban areas in LMICs is limited (Lilford et al., 2017).  

Computer generated boundaries from high resolution satellite imagery around areas of 

concentrated, disorganized, small buildings has yielded several slum area maps in LMICs; 

however, these maps are limited in their coverage by the cost of high-resolution satellite imagery 

and need for extensive computing power (Kuffer, Pfeffer and Sliuzas, 2016). Satellite imagery-

based slum area maps often lack field validation, and only reflect one characteristic of a slum: 

unplanned, densely arranged structures. In select countries such as Bangladesh (Angeles et al., 

2009) and Brazil (Snyder et al., 2014), the government has been involved with lengthy and costly 

field-based slum mapping efforts. Given the growing recognition that urban slum populations 

comprise an increasing and substantial portion of urban populations in LMICs, the international 

community is beginning to push for scalable efforts to map slum area boundaries to disaggregate 

urban data in future censuses and surveys (Lilford et al., 2017). 

Masking the poorest 2: Outdated urban boundaries misclassify peri-urban populations as rural. 

It is common for the urban poorest to reside in peri-urban areas in order to access the city’s 

economy and services whilst maintaining affordable housing. Around rapidly expanding cities, 

basic water and sanitation infrastructure and government facilities are not installed at the same 
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pace as new housing, resulting in concentrated slums (UN-Habitat, 2016). Depending on the last 

time that official urban and rural area boundaries were updated, households located in these 

peri-urban regions may function as part of the city but be misclassified as rural during a survey 

threatening relevance of survey results for decision-making (Groves and Lyberg, 2010). Counting 

urban slum dwellers as rural masks their unique urban poverty which results from living in high 

density conditions and being more dependent on a cash economy than rural households.   

2.5 Gridded population sampling 

This section provides a brief explanation of gridded population data sources and sampling 

approaches for context, though gridded population data and gridded population sampling are 

detailed in Chapters 4 and 5, respectively. Gridded population sampling refers to any survey 

sample selected from a gridded population dataset. Gridded population sampling is an emerging 

field that began around 2010 after gridded population datasets had been freely and publically 

available for LMICs for several years. 

2.5.1 Gridded population data 

Gridded population data are estimates of the total population in small grid cells derived from a 

geo-statistical model using a number of spatial datasets (see Figure 4). The grid cells generally 

range in size from 100 metres by 100 metres to 1 kilometre by 1 kilometre, and many of these 

disaggregated population estimates are free and publicly available.  

 

 

Figure 4. Example 100 metre by 100 metre gridded population dataset, Kathmandu, Nepal  

Data from WorldPop (WorldPop, 2019) 
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Gridded population data provide analysts the flexibility to model population phenomena at a local 

level across a surface (Alegana et al., 2016; Perkins et al., 2016), and to re-aggregate population 

estimates to new geographic units that are more relevant to the study (Tatem et al., 2014; Tatem, 

2017). For example, in countries where population micro data (individual- or household-level 

data) are available, including most European countries, aggregation of point-level population data 

to grid cells maintains a high level of detail whilst preserving confidentiality of individuals 

(European Commission, 2012). Decoupling population counts from administrative boundaries – 

which may vary in shape and size, and may not follow environmental, cultural, or political 

features – means that population counts can used in a wide range of health (Perkins et al., 2016; 

Tatem et al., 2016), environmental (Early et al., 2016), and economic (Buhaug and Urdal, 2013) 

applications. 

Data sources used to model gridded populations vary and include: total population counts (e.g. 

census data) or population counts in select small areas (e.g. microcensuses or survey household 

listings); geographic vector data such as roads, water bodies, and building locations; satellite 

raster data such as temperature, elevation, and night-time lights; and other modelled spatial data 

layers such as urban extent boundaries. A number of gridded population datasets now 

incorporate “big data” such as geo-tweets or Facebook account locations (Facebook Connectivity 

Lab and CIESIN, 2016; Patel et al., 2017) and aggregated mobile phone call detail records (Deville 

et al., 2014; Lu et al., 2016; Wilson et al., 2016) as ancillary data. 

Geo-statistical techniques used to model gridded population data range in complexity from 

uniform disaggregation of total population counts (UNEP, 2006; Doxsey-Whitfield et al., 2015); to 

informed-disaggregation of total population counts using areal weighting with ancillary data (Balk 

et al., 2005; Facebook Connectivity Lab and CIESIN, 2016; Pesaresi, Ehrlich, et al., 2016); to 

advanced disaggregation using complex models (Dobson et al., 2000; Azar et al., 2010, 2013; 

Stevens et al., 2015). All of the aforementioned modelling techniques are considered “top-down” 

approaches, as they involve disaggregating total population counts to small grid cells.  

The benefit of top-down gridded population models is the possibility of improving the relative 

distribution and/or detail of population dataset within smaller areas, though this is constrained to 

circumstances when population totals are reasonably accurate. Thus, “top-down” gridded 

population models derived from 15-year-old census data may result in an improved population 

distribution, but population totals would be incorrect. This hypothesis will be evaluated in 

Chapter 4. There may be ways to improve the accuracy of these gridded population distributions 

before sampling, for example, by aggregating to 500 metre by 500 metre grid cells, also addressed 

in Chapter 4. 
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Additional “bottom-up” modelling techniques are being developed to model population totals 

from population counts in small areas, and are thus attractive when census data are not available. 

Bottom-up gridded population models use the relationship between population density in a 

selection of small areas (e.g., microcensus) and a number of spatial covariates to predict 

population counts in unmeasured areas of the country (Weber et al., 2018).  

2.5.2 New inclusive survey methods 

New survey methods and tools might improve the accuracy of household surveys (Figure 5). 

When census data are outdated or inaccurate, gridded population datasets might instead be used 

as a sample frame (Alkire and Samman, 2014). Even “top-down” gridded population datasets 

derived from outdated or inaccurate census data, might result in more accurate samples of PSUs 

if the relative distribution of population density is more detailed and accurate compared to the 

census data.  

Area-microcensus sampling (also called one-stage sampling or modified cluster design) means 

that all households in a small area are sampled. Gridded population sample frames with 100 

metre by 100 metre grid cells enable area-microcensus sampling, and eliminate the time gap 

between the household listing and interviewers, potentially improving representation of mobile 

populations. Interviewing PSUs across different seasons could additionally improve response rates 

of seasonal migrants. Chapter 6 compares the number and types of households that were 

sampled in an area-microcensus versus two-stage survey conducted concurrently in Kathmandu, 

Nepal in 2017. 

Finally, robust mapper-lister protocols to interact with residents in a standardized, detailed way 

are needed in household surveys of any design. These protocols should include clear definitions of 

structures, dwellings, and households which are present in complex urban settings, and guidance 

about how to approach residents of all structures to ensure that informal and atypical households 

are not omitted from the listing.  
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Figure 5. Potential tools and methods to improve accuracy of household surveys  

 Adapted with permission from (Dana R. Thomson et al., 2020)  

 

2.5.3 Gridded population surveys 

Selecting survey samples from “top-down” or “bottom-up” gridded population data is worth 

considering in LMICs with outdated or inaccurate census data. More than two dozen national 

gridded population surveys have been conducted across diverse settings including Iraq (Galway et 

al., 2012; Hagopian et al., 2013), Somalia (Pape and Wollburg, 2019), Colombia (Cajka et al., 

2018), and Thailand (Cajka et al., 2018). Multiple sub-national surveys have also been conducted 

in settings that include eastern DR Congo (Thomson et al., 2012), Kathmandu Valley Nepal (Elsey 

et al., 2016), and Chin State Myanmar (Sollom et al., 2011). A review of gridded population 

surveys is provided in Chapter 5. 

All of the aforementioned gridded population surveys were motivated for one of two reasons. The 

first reason, and by far the most common reason, was that the census sample frame was 

unavailable, outdated, or had known inaccuracies. The second reason was that the survey was 

based in a complex urban environment where an area-microcensus sampling design was 

preferred to ensure representation of vulnerable and mobile populations.  

2.6 Change in survey accuracy as a result of population trends 

It is likely that household survey samples were more accurate at the time that DHS, MICS, and 

LSMS were established compared to today. It is not that standard survey methods are inherently 

biased, but rather than population characteristics and behaviour have changed substantially over 

the last four decades resulting in an increasing proportion of people who fall through the cracks of 

dated survey methods and tools. 
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Most LMICs are in the midst of urban transitions, or will be soon (UN-DESA, 2014). Urban 

transitions are comprised of both a demographic transition – in terms of increased population 

density, change in household structure and  

size, and change of population composition resulting from reduced mortality and fertility – as well 

as a mobility transition (Woud, Jan and Hayami, 1990). Urbanization has been associated with 

some of the greatest achievements in human history, including reductions in mortality, extended 

life spans, production of material wealth and wellbeing, and harnessing of diverse minds to create 

social and economic movements (UN-DESA, 2014; UN-Habitat, 2016). However, urbanization is 

also closely linked with socioeconomic inequalities that trap generations of families in cycles of 

crushing poverty and insecurity (Diaz et al., 2017). Socioeconomic inequalities within countries are 

more pronounced today than at any other time in the last 30 years, particularly in LMICs (UN-

Habitat, 2016).  

Future population growth is expected to be concentrated in LMICs. The global population doubled 

between 1970 and 2015 from 3.7 to 7.4 billion, and it is projected to reach 9.8 billion by 2050 

(UN-DESA, 2017). Asia has been, and will remain, the most populous region (Figure 6), with five 

countries - Bangladesh, China, India, Indonesia, and Pakistan - accounting for 45% of the global 

population (Roser, Ritchie and Ortiz-Ospina, 2016). However, more than half of the projected 

global population growth between now and 2050 is expected to occur in Africa where 33 the 

world’s 47 least developed countries (LDC) are located (UN-DESA, 2017). The United Nations (UN) 

designates LDCs as low-income countries which face major structural obstacles to sustainable 

development. 

 

 

Figure 6. World population by world region, 1820-2010  

 Data from Our World in Data (Roser, Ritchie and Ortiz-Ospina, 2016) 
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Future population growth in LMICs will be concentrated in urban areas. In 2007, the world’s 

population became majority urban with most of the urban population living in Asia, followed by 

Europe, and the Americas (UN-DESA, 2014). Despite high rates of urbanization, most LMICs are 

still majority rural today, but this is changing rapidly as LMICs enter urban transitions. By 2030, a 

majority of the population in LMICs will live in urban rather than rural areas, and by 2050, two-

thirds of the population in LMICs is expected to be urban (UN-DESA, 2014). An estimated 2.5 

billion people will be added to the planet by 2050, with 90% of that population increase 

concentrated in Asian and African cities alone (UN-DESA, 2014).  

While rates of urban growth in LMICs are currently on par with, or lower than, urban growth rates 

previously observed in high-income countries (Satterthwaite, 2010), the absolute number of 

people being added to urban areas today creates entirely new scenarios of urbanization. In 2014, 

the world had 28 cities with 10 million or more residents each, and by 2030, the number of these 

so called “megacities” is expected to double with most new megacities being added in LMICs (UN-

DESA, 2014). While some of this rapid urban growth can be explained by changes in the 

definitions of city boundaries and the use of old projected population data (Satterthwaite, 2010), 

undeniably, the absolute number of people moving to urban centres in LMICs over the last two 

decades is unprecedented. Since the early 1990s, a majority of megacities in Asia were thought to 

have added more than 400,000 people per year on average (Figure 7) (UN-DESA, 2019). The UN 

projects that Lagos (Nigeria), Delhi (India), and Dhaka (Bangladesh) will each add more than 

700,000 people per year on average through 2030 (Figure 7) (UN-DESA, 2019).  

Megacities, however, are not the fastest growing cities, nor do they represent a majority of the 

world’s urban population. Most of the urban growth over the next 15 years will be in medium and 

small cities of less than 1 million people in Africa and Asia (UN-DESA, 2014). Even if population 

projections are high, measurements of urban extents and informal housing settlements via 

satellite imagery have recorded rapid sprawl of city boundaries and concentrations of informal 

housing in LMIC cities (Pesaresi, Melchiorri, et al., 2016), both of which place excessive demands 

on city officials to extend city infrastructure and services (UN-Habitat, 2016). It is in this context of 

rapid urbanisation that updated survey methods and tools are needed to accurately measure 

modern LMIC populations. 
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Figure 7. Absolute average population increase in 28 megacities for periods 1970-1990, 1990-

2014 and 2014-2030  

 Data from World Urbanization Prospects: 2014 Revision (UN-DESA, 2014) 

2.7 Aims and Objectives 

This thesis aims to evaluate the accuracy and feasibility of gridded population sampling when 

census sample frames are outdated or inaccurate.  

Chapter 3: Simulation. Objectives: 

 Simulate a geo-located synthetic “true” population with demographic and health 

characteristics for a LMIC 

 From the synthetic population, simulate several censuses with realistic patterns of 

outdatedness and inaccuracy due to under-counts 

Chapter 4: Frames. Objectives: 

 For each simulated census, generate a top-down gridded population dataset  
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 Evaluate cell-level accuracy of gridded population datasets derived from outdated-

inaccurate census data at multiple geographic scales by comparing to the “true” synthetic 

population 

Chapter 5: Sampling. Objective: 

 Evaluate the accuracy of survey results that are sampled from equivalent outdated-

inaccurate censuses and gridded population datasets, using characteristics in the “true” 

synthetic population for comparison 

Chapter 6: Implementation. Objectives: 

 Describe the implementation of a real-world gridded population survey in a LMIC 

 Assess the feasibility of the implementation methods based on qualitative data from the 

survey planning team and field teams  

 Compare the types of households listed and interviewed in an area-microcensus versus 

two-stage sample design 
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Chapter 3: Simulation 

3.1 Overview 

There are two ways in which census sample frame coverage errors directly bias surveys. First, by 

being grossly outdated, and second by being poorly conducted, both of which result in 

inaccuracies that overwhelmingly omit the poorest populations in low- and middle-income 

countries (LMICs) (Cobham, 2014). Census inaccuracies can be deliberate or unintentional. 

Deliberate inaccuracies may be introduced to gain or maintain socio-political power; for example, 

manipulating population totals to influence where district boundaries are drawn, the number of 

seats in parliament, or national budget allocation (Yin, 2007). Likewise, census inaccuracies may 

be introduced to prevent the allocation of resources to new political parties or groups. For 

example, the refusal to recognize slum areas prevents governments from being obliged to spend 

limited public funds on infrastructure and services in communities who generate limited tax 

revenue, and ensures that those communities do not gain the political power to demand 

otherwise (Agarwal and Taneja, 2005; Subbaraman et al., 2012).  

Recent examples of deliberate census manipulation come from Nigeria, India, and Ethiopia where 

censuses were criticized for inflating population counts in sub-regions, widespread omission of 

“illegal” slum residents, or wilful negligence during data collection (Yin, 2007; Carr-Hill, 2013; 

Bekele, 2017). Falsification of population counts has long been a problem in Nigerian censuses 

(Ahonsi, 1988; Okolo, 1999), and the 2006 census was no exception with accusations that 

numbers in the north of the country were vastly inflated for political and economic gains (Yin, 

2007). A comparison of the 2006 Nigeria census with a parallel census of Lagos city conducted by 

the city government revealed an under-count of 8.5 million inhabitants in the national census, 

though political motives may have been involved in the city census as well (Yin, 2007). In Ethiopia, 

independent analyses of the 1994 and 2007 censuses identified major anomalies in reported age-

sex demographics, suggesting substantial problems with the quality of data collection (Randall 

and Coast, 2016; Bekele, 2017). In India, the 2001 census was widely criticized for excluding 

unrecognized informal settlements and people living in poor-quality inner city housing who 

account for up to half of poor urban households (Agarwal, 2011; Carr-Hill, 2013). 

While deliberate inaccuracies may make headlines, unintentional census under-counts are 

perhaps more common in LMICs, especially among informally-housed and mobile populations due 

to the complexity of classifying their dwellings and households (Lavely, 2001). A well-conducted 

census is expected to have under-counts up to 5% due to logistical difficulties, and should be 

adjusted based on post-enumeration surveys (PES) in randomly selected enumeration areas (EAs), 
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especially if the under-counts are concentrated in certain sub-groups (UNSD, 2017). 

Unfortunately, relatively few LMICs conduct PESs (UNSD, 2010). 

Censuses generally count institutional, homeless, and nomadic populations separately from the 

main census. Institutional populations are enumerated from institutional registrars, and special 

enumeration activities are conducted to count homeless and nomadic populations because they 

move often, and generally do not live in permanent structures. In some countries, certain 

refugees or internal displaced people (IDPs) may be omitted by design as well (Cobham, 2014). 

However, many censuses in LMICs are not resourced to carry out additional enumeration 

activities, so homeless and nomadic populations either go uncounted or are estimated with crude 

methods (UNSD, 2010). Due to difficulties in counting institutional, homeless and nomadic 

populations in censuses, large-scale surveys in LMICs are designed to only represent permanent 

and semi-permanent conventional households. Technically, survey results are not biased if 

populations missing from the sample frame are excluded by design; however, these exclusions 

have important policy implications.  

I chose to simulate a “true” population rather than use an existing census for two reasons. The 

primary reason is that no LMIC census publicly releases the type of data that I need. I need the 

geographic point location for each household, as well as the 100% census for a region to be able 

to measure the reference (true) population for accuracy assessments in Chapters 4 and 5. 

Furthermore, censuses, particularly in LMICs, inevitably exclude some vulnerable and mobile 

populations, and few LMIC censuses have performed a PES to appropriately adjust population 

counts.  

In this chapter, I simulate a realistic “true” 2016 population in Khomas, the capital city region of 

Namibia, and spatially allocate simulated households to actual 2016 building locations according 

to satellite imagery. From these “true” households, I simulate 16 realistic census datasets with 

varying degrees of outdatedness and inaccuracies. Outdatedness is simulated by removing 

households assigned to buildings that were not present in satellite imagery in 2011, 2006, and 

2001. Census inaccuracy is simulated by removing households based on rates of census under-

counts identified in a literature review. In the following chapters I use the simulated census 

datasets and the “true” reference population to assess cell-level accuracy of gridded population 

datasets derived from censuses, and the accuracy of subsequent gridded population survey 

samples.  
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3.1.1 Aims 

Aim 1: Simulate realistic household locations and characteristics based on the geography of 

Khomas, Namibia, utilising 2011 Namibia census and 2013 Demographic and Health Survey (DHS) 

data. 

Aim 2: Conduct a literature review to determine rates of under-counting in LMIC censuses among 

different sub-populations. 

Aim 3: Simulate several census datasets from the realistic population by applying rates of 

outdatedness and inaccuracy, and aggregating to enumeration (EA) boundaries. 

3.2 Requirements  

To achieve the research aims of this PhD, I outline four requirements for the simulated realistic 

population.  

First, the simulated “real” population should be geo-located to an actual place where covariate 

datasets exist with all of their own imperfections to be able to generate gridded population 

datasets in later analyses. While I could have chosen to simulate a population in a theoretical 

place, and simulate dozens of spatial covariates typically used in gridded population models, I 

want to ensure that the covariate datasets are not unrealistically perfect. Like census data, 

covariate datasets such as road networks and building footprints are subject to inaccuracies and 

outdatedness, and these imperfections need to be reflected in the analysis if the results of this 

thesis are to be relevant to researchers, practitioners, and decision-makers.   

The second requirement is that the simulated “real” population needs to include sizable numbers 

of vulnerable and mobile populations to reflect the different components of missingness and 

outdatedness described above. This will enable the evaluation of census population missingness 

and outdatedness on gridded population estimates, and ultimately on gridded population surveys.  

A third requirement is that the setting should have highly concentrated populations as well as vast 

unsettled areas. A key difference among gridded population modelling approaches is that some 

models estimate population everywhere including in deserts and forests (Doxsey-Whitfield et al., 

2015; Stevens et al., 2015), while other models constrain population estimates to areas classified 

as settled, and are thus subject to inaccuracies in the settlement layer (Dobson et al., 2000; 

Pesaresi, Ehrlich, et al., 2016). The former approach is likely to estimate population where none 

exists and underestimate population in settled areas, while the latter approach is likely to 

estimate zero population in small rural settlements and overestimate counts in urban areas. Thus, 
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to evaluate accuracy of gridded population datasets in settled and unsettled areas, settings that 

contain both major cities and large deserts or forests are considered.   

Lastly, for the simulated population to be realistic, it needs to be based on high quality and very 

detailed census and survey data, thus countries with a record for high data quality are considered.  

3.3 Setting 

I selected Namibia for this simulation because the government has produced numerous high-

quality population datasets and the geography is defined by vast unsettled areas. I focus 

specifically on Khomas, one of Namibia’s 13 regions, located in the centre-south of the country 

(Figure 8). Khomas covers an area of 37,007 square kilometres and is home to roughly 342,000 

people according to the 2011 census (NSA, 2011b). Simulating a population for the whole country 

was not feasible, as building locations had to be manually digitized to locate simulated 

households.  

Windhoek, Namibia’s capital, and its suburbs are where essentially all of the population in 

Khomas are located; the surrounding areas are mainly unpopulated desert with a few small 

hamlets. Namibia, like many other countries that inherited colonial boundaries, placed 

restrictions on freedom of movement until independence in 1990 (Newaya, 2010). After 

independence, vast numbers of the population migrated to Windhoek, exaggerating rural-to-

urban migration patterns observed globally during this time period (IOM, 2015; Lai et al., 2019). 

Windhoek is also a destination for immigrants from neighbouring countries including financially 

unstable Zimbabwe (IOM, 2015; WorldPop, 2016). The population of the Windhoek metropolitan 

area grew by a staggering 37% between the 2001 and 2011 censuses (NSA, 2011b), with much of 

that growth in informal settlements (Newaya, 2010). 
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Figure 8. Location of Khomas region in Namibia, and of constituencies in Windhoek area 

 

Although a PES was not conducted, the 2011 Namibia census meets the UN recommendations for 

a high quality census (UNSD, 2019), including checks and editing during paper-based data 

collection, checks and editing during electronic data entry, imputation of missing and implausible 

values for select variables such as person’s age, and collection of homeless and institutional 

population counts (NSA, 2013). The Namibia National Statistics Agency (NSA) makes its census EA 

boundaries available (NSA, 2011a), and distributes census microdata samples in the IPUMS 

database with detailed documentation (Minnesota Population Center, 2018). Furthermore, the 

NSA publishes routine household survey data including DHSs (MoHSS and ICF International, 2014). 

3.4 Simulating a “real” population by household location 

This section describes the methods I used to simulate a “real” population of every person and 

household in Khomas in 2016, and the methods I used to link synthetic households to actual 

building point locations digitized from 2016 satellite imagery. Results are presented and discussed 

for each phase of the process. 

3.4.1.1 Approaches to population simulation 

Several simulation approaches are available to construct a synthetic population and its spatial 

distribution. The most common approach is to expand or reweight observations from a survey of 

individuals to meet totals and marginal distributions in more aggregated areal units reported in a 

census. These approaches include iterative proportional fitting (IPF) (Birkin and Clarke, 1988, 
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1989), and combinatorial optimization procedures such as simulated annealing (SA) (Ballas et al., 

2007) or quota sampling (Farrell, Morrissey and O’Donoghue, 2012). IPF models incrementally 

improve the fit of a joint probability distribution of person- or household-level attributes (e.g., 

from a household survey) subject to known joint probabilities of these attributes (e.g., from an 

aggregated census). Combinatorial optimization procedures follow a similar approach but prevent 

sub-optimal combinations of attributes in the simulated dataset. These models can be 

implemented with open-source software such as the simPop R package (Templ et al., 2017). Other 

approaches to population simulation include agent-based models of agents (i.e., individual 

people) with key attributes and relationships (Macal, 2016; Chapuis et al., 2018), including models 

that incorporate agent interactions in space (Heppenstall, Malleson and Crooks, 2016). The vast 

majority of simulation models produce synthetic population counts in small output areas, such as 

census EAs. 

Some have gone further to assign synthetic households to spatial point locations. To create the 

RTI U.S. Synthetic Household Population, RTI assigns households from US census tracts or block to 

random point locations alongside roads for the entire country (RTI International, 2016). In the 

U.S., this can result in a reasonably accurate simulation of households by point location because 

nearly every household is located along a road, and road datasets are very complete. However, in 

most LMICs, road datasets are not complete and many households are located far from roads 

with only foot access. To simulate spatial locations of households globally, the Synthetic 

Populations and Ecosystems of the World (SPEW) project creates a random point for each 

household within in the smallest administrative unit available (Richardson et al., 2017). While this 

simplistic assumption about spatial location is sensible for their global models of infectious 

disease, it is not sufficiently detailed or realistic to simulate household locations for this analysis.  

To evaluate the accuracy of gridded population sample frames in the next chapter (Chapter 4), I 

model 100 metre by 100 metre gridded population estimates from each of the simulated census 

datasets created in this chapter. Gridded population models use dozens of fine scale spatial 

covariates that together identify areas of likely human activity on the Earth’s surface. For this 

reason, it is important that simulated household locations are as realistic as possible so I can 

calculate a realistic reference population in every 100 metre by 100 meter grid cell to assess 

gridded population model accuracy. I decided that the best way to approach this was to digitize 

actual building locations. 

3.4.1.2 Approach used 

To simulate a realistic population in Khomas, Namibia, I simulated a synthetic population by 

second-level administrative boundaries (i.e., constituencies), then distributed synthetic 
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households to actual building point locations that I digitized over satellite imagery. The allocation 

of simulated households to point locations was based on socio-demographic household types and 

environmental covariates. I worked closely with Dr. Lieke Kools and Dr. Warren C. Jochem to 

develop this methodology. Our methods are described in detail in the literature, and 

demonstrated for Oshikoto, Namibia (Thomson, Kools and Jochem, 2018). In this chapter, I repeat 

the simulation for Khomas in three phases, and provide interim outputs, a summary of the final 

simulation, and quality assessments of the final simulation. These simulation methods should not 

be considered a unique contribution of this thesis as they were conceived and developed jointly 

with Dr. Kools and Dr. Jochem. 

3.4.1.3 Data 

All input datasets used in the simulation are publicly available. These include the 2011 Namibia 

census 20% microdata sample (NSA, 2013) and 2011 Namibia census enumeration area 

boundaries (NSA, 2011a) available by request from the Namibia NSA, as well as the 2013 Namibia 

DHS recode files and geo-displaced cluster coordinates available by request from the DHS Project 

(ICF International, 2020). The simulation also used 2014-2016 Quickbird (30cm) satellite imagery 

available in ArcGIS10.5 (Maxar, 2019); 2004-2016 Maxar and SPOT (40cm) satellite imagery 

available in Google Earth Pro (Google LLC, 2019), and spatial covariates from the WorldPop-Global 

project including land cover type, night-time lights intensity, and health facility locations (Lloyd, 

Sorichetta and Tatem, 2017). All datasets used in this simulation are summarized in Table 4. 

I expected environmental covariates to have a relationship with both population density and 

population characteristics across space, and thus used them to allocate simulated household 

records to digitized building locations. To prevent overtraining of models, I used different 

microdata sources to simulate the population (20% microdata census sample) and to train 

household-to-point allocation models (DHS sample).  
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Table 4. Data sources for simulated population in Khomas, Namibia  

 Adopted with permission from (Thomson, Kools and Jochem, 2018) 

Short name Long name Source, original unit Output unit 

Population 

dhs_hh Individual recode file summarized by 
household 

2013 Demographic and Health 
Survey (1) 

region 

dhs_geo Geo-displaced cluster coordinates 2013 Demographic and Health 
Survey (1) 

coordinate (cluster) 

census_housing, 
census_person 

20% microdata census sample 2011 Namibia Statistics Agency (2) constituency 

census_report Final census report 2011 Namibia Statistics Agency (3) constituency 

Used to generate new spatial data 

Imagery_2014 High resolution satellite imagery 2014-2016 Maxar (DigitalGlobe) 
Quickbird imagery, 30cm (4) 

Coordinate  

(2016 household) 

Imagery_2004 High resolution satellite imagery 2004-2016 Maxar (DigitialGlobe) 
SPOT imagery, 40cm (4)  

Coordinate  

(2001, 2006, 2011 
household) 

census_ea 2011 Census EA boundaries 2011 Namibia Statistics Agency (5) EA 

Spatial covariates 

ccilc_dst011_2012 Dist to land-cover: Cultivated 
terrestrial lands 

2008-2012 GlobCover, 300m (6) 100m 

ccilc_dst040_2012 Dist to land-cover: Woody / Trees 2008-2012 GlobCover, 300m (6) 100m 

ccilc_dst130_2012 Dist to land-cover: Shrubs 2008-2012 GlobCover, 300m (6) 100m 

ccilc_dst140_2012 Dist to land-cover: Herbaceous 2008-2012 GlobCover, 300m (6) 100m 

ccilc_dst150_2012 Dist to land-cover: Other vegetation 2008-2012 GlobCover, 300m (6) 100m 

ccilc_dst190_2012 Dist to land-cover: Urban 2008-2012 GlobCover, 300m (6) 100m 

ccilc_dst200_2012 Dist to land-cover: Bare  2008-2012 GlobCover, 300m (6) 100m 

cciwat_dst Dist to water bodies 2000 OSM (7) 100m 

dmsp_2011 Night-time lights intensity 2012 Suomi VIIRS, 500m (8) 100m 

gpw4coast_dst Dist to coastline GPWv4, 1km (9) 100m 

osmint_dst Dist to road intersections 2000 OSM (7) 100m 

osmriv_dst Dist to major water ways 2000 OSM (7) 100m 

slope Slope 2000 HydroSHEDS, 100m (10) 100m 

topo Elevation 2000 HydroSHEDS, 100m (10) 100m 

tt50k_2000 Travel time to populated places 2000 JRC-EC (11) 100m 

urbpx_prp_1_2012 Proportion of urban pixels with 1 cell 
radius 

2009 Modis (12); Global Human 
Settlement City Model, 1km (13) 

100m 

hfacilities_dst Dist to health centre or hospital 2001 UN-OCHA (14) 100m 

schools_dst Dist to primary/secondary school 2001 UN-OCHA (15) 100m 

npp_2012 Annual net primary productivity  2010 MODIS, 1km (16) 100m 

1. (ICF International, 2020) 
2. (NSA, 2013) 
3. (NSA, 2011b) 
4. (Maxar, 2019) 
5. (NSA, 2011a) 
6. (European Space Agency, 2012) 
7. (OpenStreetMap contributors, 2000) 
8. (NOAA, 2012) 
9. (CIESIN, 2018) 

10. (Lehner, Verdin and Jarvis, 2006) 
11. (Nelson, 2008) 
12. (Schneider, Friedl and Potere, 2009, 2010) 
13. (European Commission, 2017) 
14. (UN-OCHA-ROSA, 2001b) 
15. (UN-OCHA-ROSA, 2001a) 
16. (Steven W. et al., 2004) 
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3.4.1.4 Phase A: Methods and results 

In phase A, I predicted the spatial distribution of various household types in Khomas using DHS 

data, spatial covariates, and visual inspection of satellite imagery. The output was a probability 

surface for each household type. Four steps were taken in phase A as follows, and are outlined in 

Figure 9. 

(1) In step A1, I used all variables common between the 2013 DHS and 2011 census to define 

household types. These included urban/rural location, toilet type, water source, number of 

sleeping rooms, floor material, cooking fuel type, education level of each household member, and 

age and sex of each household member. Using the 2013 DHS data of 931 households in Khomas, I 

calculated eight demographic and social characteristics summarized to 53 PSU locations (i.e., 

clusters). Characteristics were coded at the household-level as binary, and at the PSU-level as 

percentages: urban, improved toilet, improved water source, sufficient sleeping space, durable 

structure, non-solid fuel for cooking, whether the head of household had any formal education, 

and whether there were any children under age five. “Improved” toilet and water source were 

defined according to the 2013 DHS which follows World Health Organization guidelines (WHO, 

2012). 
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Figure 9. Phase A simulation steps to create household types and probability surfaces for each 

household type location in Khomas, Namibia 

 Adopted with permission from (Thomson, Kools and Jochem, 2018). Orange text is an 

original dataset, green text is a created dataset 
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I used k-means multivariate statistical methods (Groves et al., 2009) to generate an arbitrary large 

number of clusters (20 potential household types) from the eight demographic and social 

variables common to the 2011 Census and 2013 DHS (Hartigan and Wong, 1979). Use of a 

dendrogram allowed me to display the Euclidean distance between each two child clusters and 

their combined parent cluster (Figure 10). I chose to use the first four clusters (cut off = 1.0) to 

define household types because the distinctions were easy to interpret as urban poor, urban non-

poor, rural poor, and rural non-poor (Table 5). I considered use of the first six clusters (cut off = 

0.75), but the interpretation of household type was unclear, and the statistical distinction 

between six and seven clusters (observed in the dendrogram) were minor (Appendix A). 

 

 

Figure 10. Dendrogram of 2013 DHS household types in Khomas, Namibia 

 

 

Table 5. Average prevalence of variables for each k-means household type in Khomas, Namibia 

Red indicates that value is 0.05+ above the Khomas average (less desirable), and green 

indicates that value is 0.05+ below the Khomas average (desirable)  
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Household type label 

Type 1 0.00 0.02 0.30 0.30 0.01 0.08 0.10 0.01 Urban non-poor 

Type 2 0.00 0.10 0.35 0.96 0.01 0.54 0.09 0.24 Urban poor 

Type 3 1.00 0.33 0.40 1.00 0.13 0.53 0.14 1.00 Rural poor 

Type 4 1.00 0.04 0.21 0.43 0.00 0.08 0.00 0.00 Rural non-poor 

Khomas 0.06 0.05 0.31 0.50 0.01 0.21 0.09 0.09  
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(2)  In step A2, I converted the 19 spatial covariates (from Table 4) to 100 meter by 100 meter 

grid cells, the scale at which I would later aggregate the simulated “real” population as a 

reference for gridded population data accuracy assessments. For each cell, I calculated two 

kilometre average, minimum, and maximum values for each covariate. I used a two kilometre 

moving window average because the DHS displaces urban PSUs up to this distance (Burgert, 

Zachary and Colston, 2013; Perez-Heydrich et al., 2016), and the vast majority of households in 

Khomas are urban. These urban probability surfaces were further improved manually in step A4. 

(3) In step A3, I calculated the most common household type (as defined in step A1) in each of 

the 550 PSUs in the Namibia 2013 DHS, and extracted the two kilometre average covariate values 

(from step A2) for each PSU. The distribution of average household type in DHS clusters was: 185 

(34%) Type1 - urban non-poor, 82 (15%) Type 2 - urban poor, 249 (45%) Type 3 - rural poor, and 

34 (6%) Type 4 - rural non-poor. I used the 550 cluster household types as training data, and the 

average covariate values across Namibia in a Random Forest machine classification model to 

predict a probability surface for each household type in each 100 meter by 100 meter cell in 

Namibia (Breiman, 2001).  

The model performed well for Type 1 - urban non-poor and Type 3 - rural poor household 

types, but poorly for the other two household types as indicated by model 

classification error in  

Table 6. Covariate performance in Random Forest models is measured with importance scores, 

summarising average variance explained over all regression trees. Table 7 reveals low importance 

scores across all covariates for Type 2 - urban poor and Type 4 - rural non-poor areas, but high 

importance scores for multiple covariates associated with Type 1 - urban non-poor areas (i.e. 

mean distance to intersections and schools, and mean and maximum proportion of urban pixels in 

a two kilometre buffer) and Type 3 - rural poor areas (i.e. mean distance to intersections, 

minimum distance to cultivated land, minimum elevation, and mean proportion of urban pixels in 

a two kilometre buffer). While it was not a surprise that covariate values generalized to two 

kilometre buffers did a poor job distinguishing household types within urban and rural areas, I 

was particularly concerned about the spatial allocation of poor and non-poor households within 

Windhoek. Households are highly segregated by socioeconomic class in cities around the world 

(UN-Habitat, 2016), and visual inspection of satellite imagery indicated that there was substantial 

socioeconomic segregation in Windhoek as well. 
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Table 6. Random Forest confusion matrix for average household type in 550 DHS clusters 

in the Khomas, Namibia simulation 

 Type 1 Type 2 Type 3 Type 4 Classification Error 

Type 1 158 23 3 1 0.14594595 

Type 2 40 34 7 1 0.58536585 

Type 3 8 3 230 8 0.07630522 

Type 4 4 0 22 8 0.76470588 

 

 

Table 7. Random Forest importance scores for average household type in 550 DHS 

clusters in the Khomas, Namibia simulation 

Covariate Type 1 Type 2 Type 3 Type 4 

osmint_dst_mean 25.161662 8.89861202 20.091511 2.4142762 

urbpx_prp_1_2012_mean 23.69525 15.415276 21.666851 2.6154466 

schools_dst_mean 20.53483 3.86763197 12.046593 2.6770044 

urbpx_prp_1_2012_max 14.714099 8.58676466 14.164805 1.5658259 

NPP_2012_mean 13.973209 5.20754873 12.809764 1.9270368 

ccilc_dst011_2012_min 12.940781 4.2685531 19.327524 3.9007588 

NPP_2012_max 10.395984 5.25913327 16.285916 2.2096814 

topo_min 9.72906 8.36047528 18.804455 0.9571754 

hfacilities_dst_min 9.64691 15.37554307 12.211315 1.6536184 

ccilc_dst190_2012_min 8.977913 11.49792198 8.052405 6.8093129 

ccilc_dst200_2012_min 7.488454 7.1721323 8.971329 -2.7270707 

ccilc_dst130_2012_max 6.986184 10.44480083 -1.504759 -0.8511626 

osmriv_dst_mean 5.028809 9.27800633 8.447977 1.5117583 

osmroa_dst_min 4.725465 -0.06461723 1.951167 1.7723995 

 

(4)  In step A4, I manually assigned urban poor and urban non-poor probability weights 

to census EAs to reduce the classification error of Type 2 (i.e., urban poor) households. 

Before beginning this process, I split several large census EAs located around the periphery 

of Windhoek to create new EAs for areas that had undergone urban expansion since the 

2011 census boundaries were drawn (Figure 11). This increased the number of EAs in 

Khomas from 920 in the 2011 census to 922 for this 2016 simulation. I used the 922 EAs for 

this simulation, but in later analyses, I dissolved the boundaries of two small, narrow EAs in 

Windhoek city centre (Figure 11). 
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Figure 11. Modifications to 2011 census EA boundaries in and around Windhoek, Namibia to 

reflect 2016 urban expansion for population simulation 

 

I manually created urban poor/non-poor probability weights for each of the 922 EAs based on 

visual inspection of satellite imagery, such that the probabilities summed to one within each EA. I 

considered areas comprised of organized larger buildings surrounded by green space to be non-

poor, and areas characterised by disorganized smaller buildings located among earthen paths to 

be poor. Probability weights reflected my judgement of the proportion of buildings (and 

households) located in poor/non-poor areas within a given EA. Rural EAs had a null probability in 

this step. I multiplied the predicted household type probability surfaces created in step A3 by 
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these manually created EA-level poor/non-poor household probability weights to create final 100 

meter by 100 meter household type probability surfaces (Figure 12).  

 

 

Figure 12. Household type probability surfaces from step A4 in Khomas, Namibia population 

simulation  

 

3.4.1.5 Phase B: Methods and results 

Phase B was comprised of steps 5 through 7 to geo-locate the synthetic population to realistic 

building locations (Figure 13). 
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Figure 13. Phase B simulation steps to generate a synthetic population and assign simulated 

households to realistic geo-locations locations in Khomas, Namibia 

 Adopted with permission from (Thomson, Kools and Jochem, 2018). Orange text is an 

original dataset, green text is a created dataset. 

 

(5)  In step B5, I manually digitized realistic household locations across Khomas using 2014-2016 

high-resolution (30cm) Quickbird imagery in ArcGIS 10.5. Subjective judgement was required for 

this process, for example, deciding not to digitize buildings on main streets in densely populated 

areas where non-residential shops and offices seemed likely. I also chose not to digitize main 

buildings in industrial compounds because I assumed they were unoccupied factories or 

warehouses; however, in larger compounds I digitized buildings that appeared to be residential 

barracks. In areas of dense settlement, I duplicated some points to represent more than one 

household in the same building. A total of 97,667 points (i.e., households) were digitized in 2016 

in Khomas. As a benchmark, I exported points to Google Earth and used 2011 Maxar and SPOT 

(40cm) imagery to identify buildings that were missing in 2011, and ensured that the reduced 

number of points matched constituency household counts in the 2011 census (NSA, 2011b). 
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(6)  In step B6, I simulated a population of realistic households in Khomas using iterative 

proportional fitting (IPF) with combinatorial optimisation in the R simPop package (Alfons et al., 

2011; Templ et al., 2017) (Table 8). IPF starts by defining a basic household structure to ensure 

the synthetic population is realistic. I defined household structure with household size, 

urban/rural residence, age of household head, and sex of household head at the household-level, 

and age, sex, and relationship (to household head) at the individual-level. Inputs to the model 

were the 2011 Population and Housing Census 20% microdata sample, as well as urban and rural 

household sizes, and constituency population by age, sex, and relationship based on the 2011 

census report (NSA, 2011b). The IPF model selects random samples of records from the microdata 

with replacement until each of the household structure targets per constituency are met.  

 

Table 8. Iterative proportional fitting of household structure in Khomas, Namibia simulation by 

constituency 

 
Tobias 

Hainyeko 
Katutura 

Central 
Katutura 

East 
Khomasdal 

North Soweto 
Samora 
Machel 

Windhoek 
East 

Windhoek 
Rural 

Windhoek 
West 

Moses 
Garoëb 

N  60553 30868 24078 60465 19570 80036 27309 30028 62588 62807 

HH Size           

Average 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 

Residence           

Urban 100% 100% 100% 100% 100% 100% 100% 26% 100% 100% 

Rural 0% 0% 0% 0% 0% 0% 0% 74% 0% 0% 

Relationship           

Head 27% 21% 20% 24% 22% 26% 34% 30% 28% 30% 

Spouse 10% 6% 5% 9% 6% 8% 18% 13% 13% 9% 

Child 26% 27% 27% 31% 25% 27% 28% 28% 29% 23% 

Grandchild 4% 8% 12% 4% 10% 6% 1% 7% 2% 5% 

Extended 29% 31% 29% 26% 31% 28% 12% 14% 20% 29% 

Other 5% 8% 7% 6% 5% 5% 8% 7% 8% 5% 

Sex           

Female 45% 55% 56% 53% 53% 52% 51% 46% 53% 47% 

Male 55% 45% 44% 47% 47% 48% 49% 54% 47% 53% 

Age           

<1 4% 2% 3% 3% 2% 3% 2% 3% 2% 4% 

1 - 4 9% 8% 9% 8% 7% 9% 7% 9% 7% 9% 

5 - 9 9% 10% 10% 9% 9% 8% 6% 10% 7% 8% 

10 - 14 8% 10% 10% 10% 9% 9% 6% 10% 8% 6% 

15 - 19 8% 11% 11% 11% 11% 10% 8% 9% 11% 7% 

20 - 24 15% 12% 13% 14% 17% 15% 8% 9% 15% 14% 

25 - 29 14% 12% 10% 10% 12% 14% 9% 8% 10% 15% 

30 - 34 11% 10% 8% 9% 9% 11% 9% 7% 9% 13% 

35 - 39 9% 7% 7% 8% 6% 7% 9% 7% 7% 11% 

40 - 44 6% 5% 5% 6% 4% 5% 9% 7% 6% 6% 

45 - 49 4% 4% 4% 5% 3% 4% 6% 5% 5% 4% 

50 - 54 2% 3% 3% 3% 4% 2% 6% 5% 4% 2% 

55 - 59 1% 2% 2% 2% 3% 2% 5% 3% 3% 1% 

60 - 64 1% 1% 2% 1% 1% 1% 3% 3% 2% 1% 

65 - 74 0% 1% 2% 1% 1% 1% 5% 4% 2% 0% 

75+ 0% 1% 1% 1% 0% 0% 2% 2% 1% 0% 



Chapter 3  

48 

Next, in the R simPop package, I added household and individual characteristics present in the 

20% microdata census dataset (toilet, water, structure, space, fuel, education) to the simulated 

dataset using a multinomial logistic regression technique and conditional annealing (Table 9) 

(Alfons et al., 2011; Templ et al., 2017). This treated age, sex, relationship, household size, and 

urban/rural residence as predictors, and each of the household characteristic as a conditional 

outcome.  

 

Table 9. Multinomial logistic regression output of household characteristics in Khomas, Namibia 

simulation by constituency 

 
Tobias 

Hainyeko 
Katutura 

Central 
Katutura 

East 
Khomasdal 

North Soweto 
Samora 
Machel 

Windhoek 
East 

Windhoek 
Rural 

Windhoek 
West 

Moses 
Garoëb 

N (individuals) 60553 30868 24078 60465 19570 80036 27309 30028 62588 62807 

Water           

Improved 100% 100% 100% 100% 100% 100% 100% 96% 100% 100% 

Unimproved 0% 0% 0% 0% 0% 0% 0% 4% 0% 0% 

Toilet           

Improved 25% 58% 67% 76% 69% 44% 97% 52% 94% 24% 

Unimproved 75% 42% 33% 24% 31% 56% 3% 48% 6% 76% 

Floor           

Durable 44% 97% 99% 88% 96% 72% 96% 80% 98% 44% 

Non-durable 56% 3% 1% 12% 4% 28% 4% 20% 2% 56% 

Space           

Adequate 81% 64% 64% 78% 74% 74% 96% 75% 93% 81% 

Inadequate 19% 36% 36% 22% 26% 26% 4% 25% 7% 19% 

Fuel           

Non-solid 87% 99% 97% 93% 99% 94% 100% 50% 100% 92% 

Solid 13% 1% 3% 7% 1% 6% 0% 50% 0% 8% 

HH Head 
Education           

No formal 24% 20% 21% 18% 16% 21% 14% 30% 14% 24% 

Some primary 22% 20% 19% 19% 17% 18% 10% 24% 12% 20% 

Primary 37% 38% 35% 32% 32% 36% 14% 28% 18% 38% 

Secondary 15% 19% 20% 22% 26% 21% 33% 12% 32% 18% 

Tertiary 2% 3% 5% 9% 8% 4% 29% 6% 24% 1% 

 

I confirmed that there were not major differences between the distributions of characteristics in 

the 20% microdata and simulated dataset (Table 10). Confident that the simulated household and 

individual characteristics were realistic, I calculated the most likely household type for each 

household based on variable factor weights created in the k-means analysis in step A1. 
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Table 10. Differences in percent distribution between (weighted) Khomas census 20% microdata 

sample and simulated dataset in Khomas, Namibia 

Constituency Diff  Household size Diff  Relationship Diff 

Tobias Hainyeko -0.002  1 0.000  Head 0.000 

Katutura Central 0.001  2 0.000  Spouse 0.000 

Katutura East -0.001  3 0.000  Child -0.001 

Khomasdal North 0.000  4 0.000  Grandchild 0.000 

Soweto -0.001  5 0.000  Extended 0.001 

Samora Machel -0.002  6 0.000  other 0.000 

Windhoek East 0.000  7 0.000  Age Diff 

Windhoek Rural -0.001  8 0.000  <1 0.000 

Windhoek West 0.002  9 0.000  1 - 4 0.000 

Moses Garoëb 0.001  10 0.000  5 - 9 -0.001 

Residence Diff  11 0.000  10 - 14 0.000 

Urban 0.000  12 0.000  15 - 19 0.000 

Rural 0.000  13 0.000  20 - 24 0.000 

Water Diff  14 0.000  25 - 29 0.000 

Improved -0.002  15 0.000  30 - 34 0.000 

Unimproved 0.002  16 0.000  35 - 39 0.000 

Toilet Diff  17 0.000  40 - 44 0.000 

Improved 0.000  18 0.000  45 - 49 0.000 

Unimproved 0.000  19 0.000  50 - 54 0.000 

Floor Diff  20 0.000  55 - 59 0.000 

Durable -0.001  21 0.000  60 - 64 0.000 

Non-durable 0.001  24 0.000  65 - 74 0.000 

Space Diff  29 0.000  75+ 0.000 

Adequate 0.002  30 0.000  Education Diff 

Inadequate -0.002  31 0.000  No formal 0.000 

Fuel Diff  32 0.000  Some primary -0.001 

Non-solid -0.001  33 0.000  Primary -0.001 

Solid 0.001  Sex Diff  Secondary 0.000 

   Female 0.002  Tertiary 0.002 

   Male -0.002    

 

Finally, I scaled up the number of simulated observations to ensure there were enough simulated 

households to assign to the digitized 2016 coordinates created in step B5. The 2011 microdata 

sample was provided with a weight of approximately five for each observation to scale the 20% 

microdata sample to the total population in 2011. I calibrated the simulation to create an extra 

20% of households to ensure there were enough simulated households to assign to 2016 point 

locations; left over simulated households were discarded in step B7. This resulted in 122,079 

simulated households in Khomas before assignment to point locations.  
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 (7)  In step B7, I joined the re-weighted household type probabilities created in step A4 to the 

household latitude-longitude coordinates created in step B5. For each latitude-longitude 

coordinate created for 2016 household point locations, I randomly sampled a simulated 

household created in step B6 from the corresponding constituency and urban/rural strata based 

on the probabilities of household types at each coordinate. I repeated assignment of simulated 

households to coordinate point locations until all coordinates were assigned a simulated 

household, and then discarded the extra unassigned simulated households for a total of 97,667 

simulated households located at realistic coordinate locations in Khomas for 2016. 

3.4.1.6 Phase C: Methods and results 

Phase C consisted of just one step, to predict population outcomes in the synthetic population 

based on information in the 2013 DHS (Figure 14). 

 

 

Figure 14. Phase C simulation steps to generate outcome characteristics in the synthetic 

population in Khomas, Namibia 

 Adopted with permission from (Thomson, Kools and Jochem, 2018). Orange text is an 

original dataset, green text is a created dataset. 

 

(8)  In step C8, I used the 2013 DHS records in Khomas (n=931 households) to develop 

multinomial models in R to simulate individual and household outcomes that are typically 

collected in a household survey. Based on the recommendations of survey experts Dr. Felicity 

Cutts and Mr. Dale Rhoda, three outcomes were chosen to represent different prevalence levels 

and patterns of dispersion in the population, as well as clustering of children, in women, in 

households: household wealth quintile (five ordinal categories), woman’s use of modern 

contraception (binary in women age 15 to 49), and child’s receipt of 3rd DPT vaccination (binary in 

children under five). Dr. Kools leveraged these outcomes in the Oshikoto simulation to compare 
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survey sample designs (Kools, 2018). I simulated the same outcomes in step C8 in Khomas to test 

sampling accuracy later in the thesis. As in the Oshikoto simulation (Thomson, Kools and Jochem, 

2018), I used a multinomial model to calculate associations between each outcome and 

household-level covariates in the 2013 DHS dataset (Table 11). I stored the coefficients from the 

2013 DHS models and applied them to the simulated dataset to predict wealth quintile, modern 

contraceptive use, and receipt of 3rd DTP vaccine for each household, woman 15 to 49, and child 

under five, respectively.  

 

Table 11. Multinomial model coefficients and fit statistics for three outcomes in the 2013 DHS for 

Khomas, Namibia 

Predictor Household wealth quintile (ref=poorest) Women 15-49  
use of modern 
contraception 

Child <5  
DPT3 vaccination 
coverage  poorer middle richer richest 

Rural 0.479 0.773* 2.299*** 2.061*** -0.227** 2.334*** 

HH Head       

    15-29 (ref.) (ref.) (ref.) (ref.)   

    30-49 -11.595*** -11.222*** -11.581*** -10.890***   

    50+ -9.957*** -9.171*** -8.901*** -7.715***   

HH Head Female 1.003*** 0.778** 0.929** 0.333   

Age       

    15 – 19     -1.290***  

    20 – 24     -0.111**  

    25 - 29     0.208***  

    30 – 34     (ref.)  

    35 – 39     0.030  

    40 - 44     0.123**  

    45 - 49     -0.023  

Child age 1 – 4      0.795*** 

Female      -0.188*** 

HH Head       

     No education (ref.) (ref.) (ref.) (ref.) (ref.) (ref.) 

     Some primary 0.133 -0.133 0.121 0.166 0.562*** 0.680*** 

     Primary 1.459*** 2.243*** 2.401*** 3.216*** -0.038 0.447*** 

     Secondary 0.466 1.651*** 2.675*** 4.092*** 0.023 0.258 

     Tertiary 4.844*** 6.455*** 7.491*** 9.515*** -0.259*** 0.667*** 

Water Unimproved -1.262* 0.429 -106.655 -0.169 -0.023 11.129 

Toilet Unimproved -23.935*** -26.157*** -28.908*** -30.603*** -0.018 0.021 

Space Inadequate -0.771** -1.652*** -0.292 -1.216*** 0.028 0.293*** 

Floor Non-durable -21.756*** -22.962*** -24.338*** -26.003*** 0.297*** 0.748*** 

Fuel Solid -19.316*** -20.937*** -23.301*** -105.303*** -0.197** -0.621*** 

Constant 77.205*** 80.003*** 82.729*** 82.498*** 0.446*** -0.250 

AIC 30,400 27,470 6,344 

Note: *p<0.1; **p<0.05; ***p<0.01   
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To evaluate the realism of the simulated outcomes, I aggregated DHS records to PSU, and 

aggregated simulated records to EA, then compared the inter-cluster correlation (ICC) and 

distributions of household and individual characteristics and outcomes. The household 

characteristics and outcomes – average household size, average wealth quintile, percent with 

improved toilet, percent with improved water source, percent with sufficient sleeping space, and 

percent with durable floors – appeared to be consistent between the DHS and the simulated 

population in terms of both distribution and ICC (Figure 15). Individual characteristics and 

outcomes – average age, percent female, prevalence of modern contraceptive use among 

women, and DPT3 vaccine coverage among children under five - were less consistent, and more 

heaped around the mean in the simulated dataset, likely due to more observations in the 

simulated dataset (892 EAs) compared to the 2013 DHS dataset (53 clusters) (Figure 16). For this 

reason, I only analyse household-level covariates in later analyses. 

 

  

  

  

Figure 15. Comparison of household outcomes by 2013 Namibia DHS cluster (Khomas region only) 

and simulated population EA in Khomas, Namibia 

ICC dhs: 0.093 
ICC sim: 0.048 
 

ICC dhs: 0.735 
ICC sim: 0.328 
 

ICC dhs: 0.031 
ICC sim: 0.061 
 

ICC dhs: 0.548 
ICC sim: 0.362 
 

ICC dhs: 0.016 
ICC sim: 0.037 
 

ICC dhs: 0.316 
ICC sim: 0.464 
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Figure 16. Comparison of individual outcomes by 2013 Namibia DHS cluster (Khomas region only) 

and simulated population EA in Khomas, Namibia 

 

3.5 Simulating 16 censuses with realistic outdatedness and inaccuracies 

Satisfied that I had simulated a realistic “true” population in Khomas in 2016, I set out to simulate 

several realistic census datasets with varying degrees of outdatedness and inaccuracy. The 

simulation of realistically imperfect census datasets from the “true” population are important to 

generate realistic gridded population datasets for later analyses in chapters 4 and 5. This is 

particularly relevant because survey practitioners often turn to gridded population sampling when 

they feel that the standard census frame is too outdated or inaccurate to sample directly, with an 

implied assumption that samples selected from gridded population datasets derived from 

outdated or inaccurate surveys will be more accurate.  

One in four countries located in Africa, Asia, Oceania and Latin America has not had a census in 15 

or more years (UNSD, 2019) or is a recipient of long-term humanitarian aid due to protracted or 

recurring crises and population displacement (Development Initiatives, 2018) (Figure 17). Given 

increasing levels of mobility and urbanization described in Chapter 2, censuses become outdated 

faster now than in the past, especially in urban populations (UN-Habitat, 2016). Even in LMICs 

with well-conducted, routine national censuses, population distributions change substantially 

over a decade. Population redistribution becomes a greater problem as censuses age, and is 

especially likely in countries where conflict, natural disasters, or economic distress have placed 

strong pressures on the population to relocate. Often, major political crisis or weak government 

are reasons for both census delays and large-scale population movements, resulting in the least 

amount of data in countries with the greatest data need. These countries include Afghanistan (last 

ICC dhs: 0.030 
ICC-HH dhs: 0.035 
ICC sim: 0.019 
ICC-HH sim: -0.012 
 

ICC dhs: 0.012 
ICC-HH dhs: -0.024 
ICC sim: 0.004 
ICC-HH sim: 0.006 
 

ICC dhs: 0.005 
ICC-HH dhs: 0.053 
ICC sim: 0.003 
ICC-HH sim: -0.046 
 

ICC dhs: 0.049 
ICC-HH dhs: 0.185 
ICC sim: 0.021 
ICC-HH sim: 0.166 
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census 1979), DR Congo (last census 1984), Yemen (last census 1986), Somalia (last census 1987), 

and Iraq (last census 1997) (UNSD, 2019).  

 

 

Figure 17. Map of last census year in Africa, Asia, Latin America, and Oceania 

 Data from 2020 World Population and Housing Census Programme (UNSD, 2019) 

 

As described above (section 3.3), very high rates of population redistribution have occurred in 

Namibia in the three decades since independence, with most of the population shift occurring 

from rural to urban areas. As Khomas is dominated by the Windhoek metropolitan area, the bulk 

of the population redistribution is characterized by in-migration from other regions in Namibia or 

nearby countries. Based on this, I decided to simulate 5-, 10-, and 15-year-old census datasets 

from the “real” 2016 simulated population. For simplicity, I assumed that households present in 

2001 still existed in 2016 and maintained the same household and individual characteristics. This 

means, that households were only added to Khomas between 2001 and 2016, and I did not apply 

any method to change household composition or outcomes over time.  

3.5.1 Simulating census outdatedness in Khomas 

To simulate population outdatedness in Khomas, I imported the 2016 simulated population 

household point locations into Google Earth, and used the software’s historical Maxar and SPOT 

imagery (40cm) to identify buildings that were not present in 2011, 2006, and 2001 (Figure 18). 

The oldest imagery available at 40cm resolution in Google Earth for Khomas was from 2004, so I 

used some judgement to flag buildings that looked recently built in 2004 (e.g., bare fresh soil or 



Chapter 3 

55 

rooftops that look incomplete without nearby foliage) and assumed they were not present in 

2001. During this exercise, I ensured that the number of household coordinates in each 

constituency matched the number of households reported in the 2001 and 2011 Population and 

Housing Census final reports to ensure that both patterns and degree of outdatedness were 

realistic (NSA, 2011b). 

 

 

Figure 18. Household point locations in Khomas, Namibia classified by presence in years 2016, 

2011, 2006, and 2001 

 

3.5.2 Quantifying census inaccuracies in LMICs  

Without a post-enumeration survey (PES) for the 2011 Namibia census, I was not able to derive 

realistic census inaccuracies from my data directly. Furthermore, I expected the Namibia 2011 

census to be of high quality with few under-counts, which is why I chose to use Namibia’s 2011 

census as the foundation of this simulation. In order to quantify realistic ranges of census 

inaccuracies in LMICs, I turned to the scientific literature and PESs in other LMICs to (a) develop a 

household typology of sub-populations that are often under-counted in a LMIC census, and (b) 

perform a systematic literature review of LMIC census inaccuracy due to sub-population under-
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counts. Later in this chapter, I simulate several versions of an outdated-inaccurate census in 

Khomas with realistic low, medium, and high rates of inaccuracy. 

3.5.2.1 Household typology 

To identify meaningful sub-populations for the literature review of LMIC census under-counts, I 

started with UN census guidelines. The updated guidelines for the 2020 census round provide a 

typology and definitions of the following dwelling/household types: conventional dwellings, other 

housing units, guesthouses, institutions, and camps (UNSD, 2017). Outside of normal census 

activities, the guidelines recommend special enumerations of nomads, persons living in remote 

locations, and civilians/military personnel located outside of the country or traveling during the 

census (UNSD, 2017). For these special enumerations, the guidelines recommend that official 

registration data be used to count expatriates/travellers, and that one of the following methods 

be used to enumerate nomads and remote populations: meeting with tribal leaders, walking 

systematically across whole areas, or posting enumerators at known water points or camps 

(UNSD, 2017).  

The guidelines, however, are unclear about the definitions of “roofless” and “secondary” 

homeless populations living in “other housing units”, and how these populations should be 

counted (UNSD, 2017). One might infer that “other housing units” include non-durable structures 

and mobile structures such as tents, and are likely located in slum-areas (Ezeh et al., 2017; Lilford 

et al., 2017; UN-Habitat, 2017). Furthermore, the guidelines do not mention methods to perform 

special enumerations of roofless homeless (street-sleepers) such as capture-recapture (Wright 

and Devine, 1992; Gurgel et al., 2004; Stark et al., 2017) or point-in-time counts (Peressini, 

Mcdonald and David, 2010; Troisi et al., 2015) which have been used successfully in LMICs. For a 

clearer typology of the households and dwellings that comprise the urban poorest, I turned to 

Tipple and Speak (2005) who provide criteria for understanding and measuring homelessness in 

LMICs (Tipple and Speak, 2005). Combining the Tipple and Speak (2005) and UN 2020 census 

guidelines, I used the following categories to quantify LMIC census under-counts in the literature 

review: 

Urban slum households 

 Households in permanent/semi-permanent dwellings (e.g., shack or tent) 

 Homeless, non-permanent households (e.g., couch surfer) 

 Homeless, roofless households (e.g., street sleeper) 

 Homeless, guest house dwellers (e.g., staying in temporary, paid accommodation) 
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Urban non-slum households 

 Households in permanent dwellings 

Rural households 

 Households in permanent/semi-permanent dwellings (e.g., brick walls, traditional hut) 

 Remote households (e.g., located in an area far from road access) 

 Nomad households (e.g., move seasonally, non-permanent or semi-permanent dwelling) 

3.5.2.2 Methods: Census inaccuracies in LMICs (Systematic Review) 

To determine prevalence of census under-counts in LMICs, I reviewed census PESs and performed 

a systematic literature search of studies in LMICs. Only references reporting under-counts in sub-

population in censuses conducted since 1990 were used.  

I performed the review of PESs in Google Chrome in English using the search phrase “census post 

enumeration survey [country name]”, which means that PESs published in other languages might 

have been omitted. This search was conducted for the 108 LMICs listed on the UN Statistical 

Division Census Programme website and where a census had been conducted in the last 15 years 

(UNSD, 2019). Ten PESs from LMICs reported separate under-counts in urban and rural 

conventional households (Figure 19). 

I then conducted a literature review in two waves. First, I searched PubMed and Scopus for peer-

reviewed public health, economic, and related articles published from January 1, 1990 through 

February 28, 2017. The search was restricted to English-language articles about human population 

censuses that have taken place since 1990. The articles met all of the following criteria: 

 The word “census” in the title or abstract 

 One of the following terms in the title or abstract describing a problem of census 

coverage: listing, enumerat*, count, coverage, miss* 

 One of the following terms in the title or abstract describing a census sub-population: 

nomad*, pastoral*, refugee, displaced, migrant, slum, poorest, unregistered, homeless, 

[street] sleeper, pavement [dweller], floating 

The first wave of the literature search resulted in 459 unique articles, of which I screened all titles 

and abstracts. Of 72 potentially eligible articles from LMICs, I reviewed the full-text, and kept five 

which reported a census under-count (Figure 19).  

In a second wave, I used Google Scholar to identify the top 20 “cited by” and top 20 suggested 

“related” articles for each of the five articles identified in the first wave of the review. I also 
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searched all references of these articles, and then repeated the screening and full-text review. 

The second wave resulted in 334 unique articles, of which 49 had potentially relevant titles or 

abstracts. After a full-text review of these articles, I found eight reported census under-counts 

(Figure 19). Together, census under-counts in LMICs were estimated from 10 PESs, and 13 articles. 

 

 

Figure 19. Search terms and process used in the census under-count literature review 
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3.5.2.3 Results: Census inaccuracies in LMICs (Systematic Review) 

Results of the review are summarized in Table 12, and detailed in Appendix B. Census omissions 

are presented separately for rural, urban slum, and urban non-slum households, following the 

typology developed in Section 3.5.2.1. The literature search, however, resulted in several articles 

separately reporting census under-counts in settled versus mobile populations, or institutional 

populations specifically, thus it became important to track these population types across 

household types (rural, urban slum, urban non-slum).  

Mobile populations in LMICs represent migrants, IDPs, refugees, homeless, and nomads or 

migratory pastoralists who may live in urban slum or rural areas. Institutional populations in 

LMICs refer to a wide range of populations with different living circumstances including refugee 

and IDP camps, workers’ camps, homeless shelters, prisons, military barracks, religious orders, 

care homes, hospitals, schools, or university dormitories. While institutional populations can, 

technically, be located in any area type, I categorise them by the type of area in which they are 

most likely to be located. For example, urban IDP and refugee camps are most likely located in 

slum areas, and hospitals and care homes in cities are most likely to be located in non-slum areas. 

Some household-population type groupings do not exist (in any meaningful numbers), for 

example, mobile urban non-slum households living in permeant structures, and thus no estimates 

of under-counts are reported. Using this approach, I created 14 unique population-household 

groups and assigned each a range of census under-counts in LMICs (Table 12). 

 The greatest percentage of under-counts were among urban slum households; urban slum 

residents were roughly four times more likely to be excluded from a census than urban non-slum 

residents (Table 12). In urban slum areas, between 33% and 61% of the mobile population (not 

living in camps) were under-counted in recent LMIC censuses, and 5% to 59% of the non-mobile 

population living in permanent or semi-permanent dwellings were under-counted, compared to 

just 2% to 15% in non-slum urban areas (Table 12). The range of under-counts in urban non-slum 

areas was probably less than reported in Table 12, as these figures are from PES surveys which 

combined urban slum and non-slum populations.  

According to several PESs, census under-counts in rural areas for residents of permanent and 

semi-permanent dwellings were as low as 2% and high as 13% among non-mobile populations 

(Table 12). Evidence suggests that mobile populations in rural areas may, in fact, be over-counted 

in censuses due to misclassification of rural-to-urban migrants (Table 12). Only one measure of 

remote or nomad census under-counts were found. The combined figure of 12% under-count was 

likely low based on a review of census and survey coverage of nomadic populations (Randall, 
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2015), though measurement of nomad under-counts are particularly difficult to estimate because 

nomad under-counts are not measured with PESs. 

 

Table 12. Range of measured census under-counts in LMICs since 1990 by household type 

Household type 

Population type 

Non-mobile 
Population  
(% under-count) 

Mobile  
Population 
(% under-count) 

Institutional 
(% under-count) 

Urban slum    

Permanent/semi-permanent 5-59 % (1-5) 33-61 % (6-8)  
Refugee / IDP: 10-15 % (3) 

Worker: Unknown 

Homeless – Non-permanent --- 33-100 % (3,6,8) --- 

Homeless – Roofless --- 64-100 % (3,9,10)  Homeless shelter: Unknown 

Homeless – Guesthouse --- Unknown --- 

Urban non-slum     

Permanent  2-15 % (11-20) --- 

Prison: 9 % (3) 

Military: Unknown 
Religious: Unknown 
Care home / Hospital: <1 % (3)  
Education: Unknown 

Rural    

Permanent/semi-permanent 2-13 % (11-20) -6 % (8)  

Refugee / IDP: 10-15 % (3) 

Worker: Unknown 
Prison: Unknown 
Military: Unknown 
Religious: Unknown 
Education: Unknown 

Remote 12 % (21) --- --- 

Nomad --- 12 % (21) --- 

1. (Sabry, 2010)  
2. (Karanja, 2010)  
3. (Carr-Hill, 2013) 
4. (Carr-hill, 2017) 
5. (Lucci, Bhatkal and Khan, 2018) 
6. (Treiman et al., 2005)  
7. (Kronenfeld, 2008)  
8. (Ebenstein and Zhao, 2015) 
9. (Gurgel et al., 2004)  
10. (Stark et al., 2017) 
11. (Korale, 2002)  

12. (UBS, 2005)  
13. (Maro, 2009)  
14. (NISR, 2010)  
15. (BIDS, 2012)  
16. (GSS, 2012)  
17. (CSO, 2013)  
18. (NSC, 2014) 
19. (Oliveira et al., 2003) 
20. (SSA, 2012) 
21. (Gidado et al., 2013) 
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3.5.3 Simulating census inaccuracy in Khomas 

To model inaccuracies due to census under-counts, I classified each of the simulated households 

in 2016, 2011, 2006, and 2001 as urban slum, urban non-slum, or rural.  My household-level 

slum/non-slum classification was based on visual inspection of building morphology and 

community characteristics in Google Earth’s Maxar and SPOT (40cm) imagery of every building in 

all four years, paying attention to features described in the household typology section (3.5.2.1). 

While classifying the presence and types of buildings across years, I observed that building 

morphologies remained virtually unchanged, with only new structures being added in and around 

Windhoek. 

All images were mostly free of cloud cover in the study area for all years; in case of cloud cover, I 

used imagery collected slightly before and after the target date which was cloud free. I made the 

assumption that household occupancy and characteristics remained constant over time, except 

for a small numbers of households changing from rural to urban slum in peri-urban areas. The 

change from rural to urban slum type was observed in 3 simulated households between 2001 and 

2006, 68 simulated households between 2006 and 2011, and 838 simulated households between 

2011 and 2016.  

Note that urban slum/non-slum classification of households for each year was different, though 

aligned with, the probability of “poor” household type assigned to urban EAs earlier in this 

chapter during simulation of the “true” 2016 population (Table 13). Most areas of Khomas did not 

change over time in terms of occupation by slum/non-slum households; however, a small number 

of EAs (probability weights 0.25-0.74) had few slum households in 2016, but were majority slum 

households in 2001 (Table 13). The manual classification of slum/non-slum households is reused 

later in Chapter 5 to assess household survey outcomes in urban slum versus non-slum 

households. 
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Table 13. Comparison of manually created EA-level urban "poor" probability weights in the 2016 

simulated “true” population, and manually created household-level classification of 

“slum” households for the 2016, 2011, 2006, and 2001 census simulations 

EA prob. 
weights for 
“poor” 
urban HH 
type 2016 

Manual classification of slum/non-slum 

households for census simulations 

2016 slum 
households 

2011 slum 
households 

2006 slum 
households 

2001 slum 
households 

n % n % n % n % 

0.00 – 0.24 60,097 0.3% 58,506 1.0% 54,669 2.6% 46,665 3.4% 

0.25 – 0.74 2,838 8.0% 2,777 22.9% 2,317 75.2% 1,842 82.4% 

0.75 – 1.00 34,732 99.7% 28,155 97.2% 14,920 99.4% 10,073 99.5% 

 

Using ranges of actual census under-counts from the literature review (section 3.5.2.2), I 

simulated three levels of census inaccuracy – low, middle, and high – across rural, urban slum, 

and urban non-slum households (Table 14). I classified low inaccuracy as 2% missing among rural 

and urban non-slum households, and 10% missing among urban slum households. Middle 

inaccuracy was considered to be 5% missing among rural and urban non-slum households, and 

30% missing among urban slum households. Finally, high inaccuracy was classified as 10% missing 

among rural and urban non-slum households, and 60% missing among urban slum households. I 

applied the inaccuracy rates to all households within household type such that there was no 

spatial pattern inherent to the simulated household under-counts. 

 

Table 14. Realistic levels of LMIC census inaccuracy applied to the 2016, 2011, 2006, and 2001 

simulated populations to simulate census under-counts (missingness) 

Household type Low 

inaccuracy 

Middle 

inaccuracy 

High 

inaccuracy 

Urban slum 10% 30% 60% 

Urban non-slum 2% 5% 10% 

Rural 2% 5% 10% 

 

This exercise resulted in one “true” and 15 simulated outdated-inaccurate populations to be used 

for analysis in the following chapters. The characteristics of these datasets are summarized in 

Table 15 with total number of urban slum, urban non-slum, and rural residents, reflecting the 



Chapter 3 

63 

varying degrees of outdatedness (five, ten, 15 years old) and inaccuracy (low, middle, high under-

count) identified in actual LMIC censuses in the literature review. In the next chapter, I use these 

simulated censuses to generate realistic gridded population datasets that reflect the types of 

estimates currently available across LMICs, and evaluate the accuracy of each gridded population 

dataset against the “true” reference population. 

 

Table 15. Number of households simulated in the "true" population and 15 realistic scenarios of 

census outdatedness-inaccuracy, by year and household type 

Year No              
inaccuracy 

Low 
inaccuracy 

Middle 
inaccuracy 

High              
inaccuracy 

2016 (current) 

Urban slum 

Urban non-slum 

Rural 

 

35,001 

57,843 

4,823 

 

31,500 

56,677 

4,735 

 

24,500 

54,942 

4,590 

 

14,000 

52,073 

4,326 

2011 (5 years old) 

Urban slum 

Urban non-slum 

Rural 

 

28,583 

55,680 

5,175 

 

25,724 

54,566 

5,071 

 

20,008 

52,895 

4,917 

 

11,433 

50,122 

4,647 

2006 (10 years old) 

Urban slum 

Urban non-slum 

Rural 

 

18,018 

49,742 

4,146 

 

16,216 

48,747 

4,063 

 

12,612 

47,258 

3,935 

 

7,207 

44,769 

3,730 

2001 (15 years old) 

Urban slum 

Urban non-slum 

Rural 

 

13,149 

41,700 

3,731 

 

11,834 

40,866 

3,656 

 

9,204 

39,612 

3,547 

 

5,259 

37,514 

3,373 
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Chapter 4: Frames 

4.1 Overview 

Selection of a representative household survey sample depends on having a complete sample 

frame of the current population. While census data may seem like an ideal sample frame, some 

populations may be missing, and other populations may be under-represented in LMIC censuses. 

As detail in Chapter 3, the most vulnerable populations, including urban poor and mobile 

populations, are the most likely to be under-counted and omitted in a LMIC census, and 

consequently, the most likely to be under-sampled in household surveys (Ezeh et al., 2017; Lilford 

et al., 2017).  

Gridded population datasets are viewed as an alternative sample frame for household surveys 

when census data are outdated, inaccurate, or too coarsely aggregated. However, the majority of 

available gridded population datasets for LMICs are derived from the very outdated-inaccurate 

census data that survey practitioners wish to avoid. The use of a gridded population dataset as a 

sample frame is often done as a last resort with the approach that it is better than nothing 

(Galway et al., 2012; Thomson et al., 2012). While gridded population estimates will reflect 

outdated, inaccurate census counts, a gridded population model may improve the distribution of 

the population and provide omitted populations with some probability of sample selection; for 

example, in areas where new housing developments were added after the census, or if 

unregistered slums were omitted from the census.  

This chapter evaluates the accuracy of gridded population sample frames derived from census 

data. I input 16 simulated EA-level and constituency-level census datasets into a Random Forest 

model, producing multiple 100 metre by 100 metre population estimates across Khomas. In 

section 4.4, I compare the accuracy of these gridded population datasets derived from outdated-

inaccurate censuses against the “true” population. I also consider whether the accuracy of 

gridded population data can be improved through aggregation of grid cells. Section 4.5 reports 

the results of these analyses, and provides guidance to optimise accuracy of gridded population 

data derived from Random Forest models via aggregation of grid cells. 

4.1.1 Research questions 

I hypothesize that accuracy of gridded population datasets can be improved by aggregating small 

grid cells into larger grid cells. This is because, depending on the detail, accuracy, or completeness 

of the spatial covariates used in the Random Forest model, populations might be allocated to the 
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correct vicinity, but not to the exact location, and thus combining neighbouring cells may smooth 

out local spatial errors. By the end of the chapter, I will have answered the following questions.  

Research Question A: How accurate are gridded population estimates derived from outdated, 

inaccurate censuses in 100 metre by 100 metre grid cells as measured with RMSE and MAE? 

Research Question B: How much do 100 metre by 100 metre gridded population datasets derived 

from outdated, inaccurate censuses data need to be aggregated in order to achieve the true 

population distribution (+/-20% percent) or count (+/- 10 people per hectare)? 

4.2 Gridded population sample frames 

Given the prevalence of inaccuracies in LMIC census sample frames, we now turn to gridded 

population sample frames. This section describes top-down and bottom-up gridded population 

datasets derived from geo-statistical models, which may serve as alternative survey sample 

frames. I only consider cross-sectional gridded population datasets; gridded population datasets 

showing population flows derived from mobile phone data, social media, or other novel sources 

are not considered because sampling from dynamic population counts would require different 

survey methods and statistics than are typically used in household surveys (Singh and Mangat, 

1996; Randall, 2015). Gridded population datasets in HICs are also excluded, including HIC “top-

down” models (discussed below) (e.g., (Martin, Cockings and Leung, 2010; Martin, Lloyd and 

Shuttleworth, 2011)) and HIC datasets derived from aggregated administrative datasets (e.g., 

(European Commission, 2011, 2012)). 

4.2.1 Top-down (census-based) gridded population sample frames 

Top-down gridded population datasets are generated by models that disaggregate census (or 

other administrative) population counts from administrative areas to smaller grid cells (Figure 20). 

The simplest models assume a uniform distribution of population within administrative areas, 

while the most advanced models use spatial data to inform the spatial disaggregation. Some of 

these advanced models aim to reflect the average night-time residential population distribution 

(e.g., WorldPop-Random Forest and WorldPop-Global), while other models aim to reflect a daily 

“ambient” population (e.g., LandScan-Global), which can be conceived as the average between 

night-time residential and daytime commuter populations. To estimate population numbers 

beyond the last census year, population birth, migration, and death rates are used to project new 

population totals by administrative region (Long and McMillen, 1987). 
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Gridded population datasets are published as total population estimates per grid cell, where cells 

are generally measured in decimal degrees and are thus slightly smaller and less square-shaped 

toward the Earth’s poles compared to the equator. I describe grid cell size in terms of metres or 

kilometres to facilitate understanding for a general scientific audience, though bear in mind that 

these are area approximations at the equator. Furthermore, when I refer to hectares, I mean grid 

cells that are approximately 100 metres by 100 metres at the equator. Within countries, 

differences in cell size are generally negligible; exceptions include Brazil and Russia with large 

north-south coverage. Multi-country gridded population datasets for LMICs are listed in Table 16 

along with their geographic coverage, resolution, time coverage, and modelling approach. 

Gridded population datasets that do not have estimates after the year 2000 are excluded.  

 

Figure 20. General workflow to create top-down, census-based gridded population data 

 

 

4.2.1.1 Terms 

This section introduces several technical terms in italics associated with gridded population data 

modelling. First, dasymetric mapping refers to the partitioning of an aerial unit into smaller units 

to introduce greater resolution than originally captured. Dasymetric partitions can directly reflect 

the ancillary data sources, for example, partitioning along land cover type boundaries. However, 

in the case of gridded population datasets, partitions are made along predefined grid cell 

boundaries, and each grid cell is assigned values from one or more ancillary data sources.  

Pycnophylactic describes any disaggregation technique which ensures that the disaggregated 

values sum to the aggregated total; this is also called “volume preserving.” All top-down gridded 

population datasets are pycnophylactic so that population totals in grid cells sum to the 

population total of the original input census data unit. This means that top-down gridded 

population datasets inherit outdated or inaccurate population totals at the scale of the input 

census data. 
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Table 16. Summary and comparison of top-down census-based gridded population datasets 

Name Coverage Resolution Years Method Pros Cons 

GPW (1)  Global ~1 km2 2000-
2020 

Direct 
disaggregation 
(uniform 
distribution) 

Easy, no 
ancillary 
spatial data 
needed 
 

Maintain 
fidelity of 
input data 

Accuracy and 
precision of a 
given pixel is 
directly related 
to size of input 
census areal 
unit 

GRUMP (2) Global ~1 km2 1990- 
2000 

Informed 
disaggregation 
(basic 
dasymetric 
such as with 
areal 
weighting 
using auxiliary 
variables) 

Maintain 
fidelity of 
input data 
 

Estimates in a 
given pixel are 
more accurate 
than simple 
disaggregation 
(5-7) 

Few ancillary 
variables do 
not well reflect 
human activity 
across multiple 
physical and 
social 
environments 

GHS-POP 
(3) 

Global ~250 m2 1975- 
2015 

HRSL (4) 18 countries ~30 m2 2015 

LandScan 
(8) 

Global ~1 km2 2000-
2017 

Complex 
models 
(intelligent 
dasymetric 
such as with 
Random Forest 
model) 

Maintain 
fidelity of 
input data 
 

Estimates in a 
given pixel are 
more accurate 
than both 
simple 
disaggregation 
or informed 
disaggregation 
(12,13) 

Can feel like a 
“black box” 
because 
population 
densities do 
not relate 
directly to 
predictor 
variable 

Demobase 
(9,10) 

3 countries ~100 m2 2002-
2010 

WorldPop-
LC (11-13) 

57 countries ~100 m2 2010-
2015 

WorldPop-
RF (14)  

69 countries ~100 m2 2010-
2020 

WorldPop-
Global (15) 

Global ~100 m2  

1. (Doxsey-Whitfield et al., 2015) 
2. (Balk et al., 2005) 
3. (Pesaresi, Ehrlich, et al., 2016) 
4. (Facebook Connectivity Lab and CIESIN, 2016) 
5. (Tatem et al., 2007) 
6. (Linard et al., 2010)  
7. (Hay et al., 2005) 
8. (Dobson et al., 2000) 

9. (Azar et al., 2010) 
10. (Azar et al., 2013) 
11. (Tatem et al., 2007) 
12. (Linard et al., 2012) 
13. (Gaughan et al., 2013) 
14. (Stevens et al., 2015) 
15. (WorldPop, 2019) 

  

4.2.1.2 Basic dasymetric methods  

The earliest gridded population datasets were based on direct disaggregation approaches 

including simple areal weighting where each cell was assigned the same population count within a 

census administrative unit (e.g., GPW: (Doxsey-Whitfield et al., 2015)). More accurate basic 

dasymetric methods soon followed using one or two ancillary datasets, such as urban settlement 

area boundaries or land cover type, to inform the location and density of the disaggregated 

population (e.g., GRUMP (Balk et al., 2005), GHS-POP (Pesaresi, Ehrlich, et al., 2016), HRSL 

(Facebook Connectivity Lab and CIESIN, 2016)). 
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For gridded population datasets that rely on areal weighting or basic dasymetric approaches, 

model errors are difficult to estimate, and to even conceptualize, as these datasets are essentially 

gridded representations of the input census data (Doxsey-Whitfield et al., 2015). Areal weighting 

and basic dasymetric methods remain in use today, in part, due to the large computing power 

required to perform more advanced population disaggregation techniques, which become 

particularly demanding at a regional or global scale. Simpler modelling techniques and limited 

covariates are also used to isolate and study relationships between population density and other 

factors. However, when visually compared to actual population counts, areal weighting and basic 

dasymetric methods consistently produce less accurate cell-level population estimates than 

advanced dasymetric modelling techniques, which exploit multiple ancillary variables related to 

human activity (Azar et al., 2013; Stevens et al., 2015).   

4.2.1.3 Sources of error 

In addition to the modelling algorithm itself, errors in gridded population estimates are 

introduced by: (i) inaccuracy of the input population data, (ii) the geographic scale of the input 

population data (e.g., census tract versus district), (iii) the age, accuracy, completeness, and type 

of ancillary data, (iv) the nature of the relationship between ancillary data and population density, 

and (v) the geographic scale of the output grid (e.g., estimates for 1 kilometre by 1 kilometre cells 

will almost always be more accurate than estimates for 100 metre by 100 metre cells). Of these, 

the strongest predictor of accuracy in top-down gridded population models is the resolution of 

the input population data, with population age also playing a big role (Hay et al., 2005).  

Generally, the input population data are third, fourth, or fifth-level administrative units from the 

most recent census. The finest scale administrative data available in LMICs are georeferenced 

household locations or census EAs, though these are rarely available. The differences in accuracy 

between basic dasymetric methods and advanced dasymetric modelling techniques diminish with 

more detailed input population data (Hay et al., 2005). Some LMICs do not have digitized census 

EAs, and survey fieldwork in these contexts involves asking local leaders from communities where 

EA boundaries fall, which can result in over- and under-counting near EA boundaries. 

Furthermore, differences in administrative boundaries used to collect and report the data versus 

boundaries used in the modelling process can lead to population misallocation. The lack of detail 

in population data is the motivation for developing gridded population models to begin with, and 

thus I focus on more accurate advanced dasymetric methods: WorldPop-Land Cover, WorldPop-

Random Forest, WorldPop-Global, LandScan-Global, and Demobase.  
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4.2.1.4 Advanced dasymetric methods  

WorldPop-Land Cover (hereafter called WorldPop-LC) has been supplanted by WorldPop-Random 

Forest and WorldPop-Global datasets, however much of the initial evaluation of gridded 

population datasets was performed on WorldPop-LC. WorldPop-LC datasets were produced for 

100 metre by 100 metre cells in 57 African, Asian, and Latin American countries for 2010 and 

2015. This modelling technique used boundaries of settled areas and several land cover type 

datasets to develop detailed land cover classes (Linard, Gilbert and Tatem, 2011; Gaughan et al., 

2013). A subset of the census input population data were used to calculate the average 

population density in each land cover class, then land cover class population densities were used 

as weights to distribute census population totals across the whole country. Finally, accuracy was 

assessed at the scale of the input census data by comparing the modelled population counts with 

the reserved non-subset census counts (Linard, Gilbert and Tatem, 2011).  

WorldPop-Random Forest (hereafter called WorldPop-RF), supplanted by WorldPop-Global, 

produced 100 metre by 100 metre population estimates by country in five-year periods between 

2000 and 2015 for 69 countries in Africa, Asia, and Latin America. In WorldPop-RF models, input 

census data and all available covariate data were aggregated at two scales to test and tailor the 

model to local areas, producing a population probability weight for each grid cell which was then 

used to dasymetrically disaggregate census population counts (Stevens et al., 2015). The 

WorldPop-RF datasets superseded the earlier WorldPop-LC datasets because the Random Forest 

model was found to be more accurate than land cover weights (Stevens et al., 2015). WorldPop-

RF methods are well documented in the public domain, and include source code to recreate 

datasets (Stevens et al., 2015). 

WorldPop-Global is a free, open-source 100 metre by 100 metre dataset of population for 

individual countries covering the entire global based on the same modelling techniques as 

WorldPop-RF. WorldPop-Global supplanted WorldPop-RF because it includes annual population 

estimates between 2000 and 2020 for all countries, with harmonized gridded boundaries across 

the globe (Lloyd et al., 2019). In a few countries, WorldPop-Global has fewer covariate datasets 

than the WorldPop-RF models which, in theory, would produce slightly less accurate results if the 

models were run for the same country at the same time. However, WorldPop-Global has been 

updated much more recently (2019) than WorldPop-RF models (2013-2016), so the accuracy and 

completeness of dynamic covariate datasets, such as roads and points of interest from 

OpenStreetMap, are more accurate in the WorldPop-Global datasets (WorldPop, 2019).  

LandScan-Global is a 1 kilometre by 1 kilometre daily ambient population estimate for the globe 

from 2000 to the current year. The probability weights matrix used for dasymetric disaggregation 
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is generated with co-kriging, a multivariate spatial interpolation method, and four ancillary 

datasets with global coverage: roads, slope, land cover, and night-time lights (Dobson et al., 

2000). To account for economic, physical, and cultural differences that might affect the 

relationship between covariate datasets and population density in local areas, a LandScan analyst 

assigns relative weights by location to each of the ancillary datasets to adjust the model. While 

these weights are made available, LandScan’s process for generating them is opaque. LandScan-

Global does not publish model errors related to the co-kriging model, nor does it include 

metadata for the ancillary data used. LandScan-Global is a commercial dataset and made free to 

US Federal Government agencies and to some humanitarian, education and commercial 

organizations, upon request (ORNL, 2017).  

Demobase 100 metre by 100 metre datasets have been created by the US Census Bureau for 

Haiti, Pakistan, Rwanda, and South Sudan for 2003, 2010, 2000-2013, and 2017, respectively. The 

probability weights matrix used for dasymetric disaggregation is based on ancillary variables 

derived entirely from satellite imagery. This modelling approach is considerably more complex 

than basic dasymetric datasets modelled from built area types; in Demobase the population 

weights matrix is modelled from dozens of ancillary variables generated through semi-automated 

classification of high resolution satellite imagery and supervised classification of medium 

resolution satellite imagery (Azar et al., 2013). Model errors are derived during the classification 

process based on pixels that were classified by Demobase analysts and withheld from the model. 

Demobase data are free and publicly available (USCB, 2013), and the methods are clearly 

documented in the public domain (Azar et al., 2010, 2013). 

4.2.1.5 Accuracy of advanced dasymetric methods  

Accuracy of gridded population datasets derived with advanced dasymetric methods are often 

measured with mean absolute error (MAE), a measure of precision, and root mean square error 

(RMSE), a measure of error magnitude that penalises large errors. In MAE, the absolute difference 

between the predicted population and actual population in each census unit is calculated and 

averaged.  

𝑀𝐴𝐸 =
∑ |𝑦̂𝑖 − 𝑦𝑖|𝑛

𝑖=1

𝑛
 

In RMSE, the difference in each census unit is taken and squared. Next, the squared differences 

are averaged and the square root is taken to calculate a mean difference across census units, 

which makes this measure sensitive to outliers and large differences. 
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𝑅𝑀𝑆𝐸 =  √
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 

There are no studies comparing model accuracy of all WorldPop-LC, WorldPop-RF, WorldPop-

Global, LandScan-Global, and Demobase for reasons I will describe in the next paragraph. 

However, there are a few studies comparing output accuracy from these models, though the 

benefits of each modelling approach are difficult to discern because both the models and the 

input population datasets vary in most comparisons. For example, the producers of Demobase 

compared population estimates in Pakistan derived from tehsils (a low-level administrative unit 

approximately the size of townships in the United States) to LandScan-Global population 

estimates, and found lower RMSE in Demobase when both datasets were aggregated to census 

EA boundaries and compared to 1998 Pakistan census EA counts (Azar et al., 2013). Without 

running the LandScan model with the same tehsil population input data, it is not clear whether 

the greater accuracy of Demobase was due to the modelling technique, or due to greater 

resolution of the input population data. Similarly, WorldPop-LC compared population estimates 

for Somalia with LandScan-Global and found much lower RMSE in the WorldPop-LC dataset. 

However, this was likely because the validation data were the population data used as an input to 

the WorldPop-LC model (Linard et al., 2010).  

A key challenge of comparing these data sources is that LandScan-Global methods and datasets 

are not publically available. LandScan-Global’s producer, Oakridge National Laboratories with 

support from the United States Department of Defence, does not provide sufficient information 

about their modelling methods and input data to enable replication (Stevens et al., 2015), thus it 

is not possible for researchers to generate LandScan datasets for the purpose of accuracy 

comparison.  

LandScan-Global’s internal accuracy evaluations have been against earlier, much simpler methods 

developed by the US Government to model global gridded populations between 1965 and 1995 

(Dobson et al., 2000). With regard to Demobase, the high resolution imagery needed for the 

model covariates is not only cost-prohibitive to obtain, it is computationally demanding to process 

at a regional and global scale. 

WorldPop-Global was released in 2019, and no studies were yet published at the time of this 

writing that compared accuracy of WorldPop-Global with other gridded population datasets. 

However, given that WorldPop-Global uses the same modelling approach as WorldPop-RF, albeit 

with fewer covariates, similar model accuracy to WorldPop-RF is assumed. I confirmed this 

assumption by comparing EA and cell-level accuracy for all top-down gridded population datasets 
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in approximately the same year (2014/15) in Oshikoto, Namibia where I simulated a realistic 

population with colleagues (Thomson, Kools and Jochem, 2018). In Oshikoto, WorldPop-RF and 

WorldPop-Global were more accurate than other gridded population estimates, and their level of 

accuracy was similar (see Appendix C for details). 

For the purposes of selecting a top-down gridded population modelling approach to evaluate the 

accuracy of a gridded population estimates at the cell-level, the WorldPop-RF / WorldPop-Global 

Random Forest technique was a natural choice for several reasons. First, WorldPop’s Random 

Forest methods are well documented and assessed against WorldPop-LC and simpler 

disaggregation models such as GPW (Gaughan et al., 2013; Stevens et al., 2015) and GRUMP 

(Gaughan et al., 2013; Stevens et al., 2015). Second, Random Forest models allow for estimation 

of model errors. Third, the WorldPop Global project provides all model covariates pre-processed 

at the 100 metre by 100 metre scale (WorldPop, 2018a; Lloyd et al., 2019). The 100 metre by 100 

metre resolution of the WorldPop-RF and WorldPop-Global datasets are a major advantage over 1 

kilometre by 1 kilometre datasets in terms of survey feasibility, as their finer resolution means 

that cells can be combined to meet various sample design requirements. Finally, WorldPop-RF 

and WorldPop-Global both model the residential night-time population rather than ambient 

population, which is appropriate for household surveys. 

4.2.2 Bottom-up (micro-census-based) gridded sample frames 

Researchers are experimenting with gridded population modelling techniques that are census-

independent which would be especially useful where census data are unavailable, outdated, or 

inaccurate. Bottom-up gridded population modelling methods involve establishing a statistical 

relationship between population density and spatial covariates in a sample of small areas (Figure 

21). This relationship is used to predict population densities across a whole country based on 

spatial covariates alone (Tatem, 2017; Wardrop et al., 2018).  

Bottom up gridded population mapping methods are still being developed, evaluated, and scaled 

up. Examples of bottom up maps include Sierra Leone (Hillson et al., 2014), Nigeria (Weber et al., 

2018), and Afghanistan (Wardrop et al., 2018). The GRID3 project, funded by Gates Foundation 

and the UK Department for International Development, and the LandScan-HD project, funded by 

the US Oakridge National Laboratories, are both currently working on bottom-up gridded 

population estimates in 100 metre by 100 metre grid cells for multiple LMICs (CIESIN et al., 2018).  

A bottom up map in Namibia was not available at the time of this writing, and was thus not 

considered in this thesis. 
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Figure 21. General workflow to create “bottom-up,” census-independent gridded population data 

 

 

4.2.3 WorldPop – Random Forest Model 

In this section, I detail the Random Forest model used in the WorldPop-RF and WorldPop-Global 

datasets, which I use to generate gridded population datasets in this thesis. The WorldPop-RF / 

WorldPop-Global model generates per-pixel population weights which are applied to a census or 

projected census dataset to dasymetrically disaggregate population counts from administrative 

units to cells such that the population counts are pycnophylactic. The Random Forest model is a 

non-parametric ensemble machine-learning algorithm that grows a “forest” of decision trees 

through the modelling process (Breiman, 2001). Machine-learning describes a computational 

algorithm which “learns” patterns in very large datasets and uses the acquired information to 

improve predictions. Each Random Forest tree is a model of the potential relationships between 

the spatial covariates and the census population counts, and this relationship is not tied to 

linearity constraints. A non-parametric machine learning algorithm is one which is not based on 

an assumed probability distribution in the data, nor does it have a set number of parameters. The 

Random Forest model is non-parametric in the sense that the number of decisions within each 

tree is not fixed; rather, the number of decision points increases with the number of ancillary 

variables. However, users of the Random Forest model will note that it has just two modelling 

parameters, which I will describe. 

The Random Forest model is part of a family of ensemble machine learning algorithms. Ensemble 

algorithms are comprised of many sub-models, or decision trees, in this case. Boosted Regression 

Trees is a related ensemble machine learning algorithm (Breiman, 1996). Both Random Forest and 

Boosted Regression Trees build decision trees from ancillary data. Each decision point, or node, of 

a tree is associated with one ancillary variable, and each node has two branches. The node for a 

temperature variable might split, for example, at temperature >= 17°C or temperature < 17°C. 

Random Forests are essentially Boosted Regression Trees with an added layer of randomness 

introduced into the bagging process (Liaw and Wiener, 2002).  
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Bagging is the process used to create decision trees, including calculation of the split value at 

each node. Bagging stands for “bootstrap aggregating” and it means that a portion of 

observations are randomly sampled with replacement from the training dataset, and successive 

decision trees are independently built such that the nth decision tree does not depend on earlier 

decision trees. In Boosted Regression Trees, the split value at each node is based on an optimal 

split calculation using all ancillary variables in the dataset. In Random Forest models, the optimal 

split values are calculated from a subset of ancillary variables randomly selected at each node. 

This added element of randomness prevents overfitting, avoids a variable selection process, and 

addresses collinearity issues (Breiman, 2001).  

The two parameters in a Random Forest model are the number of variables in the random subset 

at each node, and the number of trees in the forest (Liaw and Wiener, 2002). The WorldPop-RF / 

WorldPop-Global algorithm builds decision trees using census unit population counts and spatial 

covariates processed at the census unit scale (Figure 22) (Stevens et al., 2015). Data are initially 

prepared by census unit such that for each census unit identifier, the population is known and 

multiple spatial ancillary data values are joined. WorldPop-Global uses a standard set of 24 

covariates from 10 sources (Lloyd et al., 2019) in which values are converted to categorical values 

(e.g., land cover type, urban-rural) or continuous values (e.g., intensity of night-time lights, 

distance to roads) for each administrative area.  

In the second step of the Random Forest model, all of the ancillary datasets are prepared in 100 

metre by 100 metre cells. The second step uses the split values of each classification tree 

developed in the first step to parameterize a corresponding regression model to predict 

population density within cells (Stevens et al., 2015). For each cell, the predicted population 

values from all regression models are averaged to make a single population estimate, though 

these population estimates are not pycnophylactic. 

Thus WorldPop-RF / WorldPop-Global perform a third step outside of the Random Forest model 

to normalize cell-level predicted population densities (Stevens et al., 2015). This is done by 

summing the predicted population densities by census unit, and calculating the proportion of 

census unit population located in each cell. Multiplication of this proportion by the census unit 

population dasymetrically disaggregates the census counts and ensures they are pycnophylactic. 
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Figure 22. WorldPop-RF and WorldPop-Global classification, regression, and weighting process 

using Random Forest models with remotely-sensed and ancillary data 

 

Benefits of the Random Forest model are: (1) it is non-parametric so it can model complex 

relationships between population density and ancillary variables without a priori assumptions, (2) 

prediction errors can be estimated at the census unit scale, (3) the model accommodates both 

continuous and categorical variables allowing many diverse covariate datasets to be used during 

the modelling process, and (4) the model is capable of dealing with collinear covariates and non-

linear associations. 

A limitation of the Random Forest model is that predictions of the outcome are bounded by the 

range of observed values in the original census training data. This has two consequences for the 

prediction of population in WorldPop-RF / WorldPop-Global datasets (Stevens et al., 2015). First, 

the number of values may be limited, resulting in cell estimates that lack “realistic” gradations 

and instead have abrupt edges within and around population centres. Second, the lower and 

upper range of average population density in census units may not represent the lower and upper 

range of population density in cells. This limitation is particularly relevant in countries with coarse 

input census data. In these circumstances, a combined model for two countries can be built – the 

country of interest with course census data, and a second country in the same region which has 

more detailed census data – to introduce a wider, and more realistic, range of population values 

which can be assigned to 100 metre cells (Gaughan et al., 2015).  
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Another limitation of the WorldPop-RF / WorldPop-Global model results from the choice to 

transform population counts to a log-scale (Stevens et al., 2015). As a result of the log 

transformation, these datasets have a non-zero population prediction for all cells, and thus a 

small fraction of the census population is allocated to uninhabited areas, for example in deserts or 

forests, where the estimated cell population might be 0.00001 persons. 

Finally, many of the covariate datasets used to model population counts in WorldPop-RF / 

WorldPop-Global 100 by 100 metre cells are only available at a coarser resolution, limiting cell-

level accuracy in the model. Land cover classes are available at approximately 300 by 300 metre 

resolution (ESA-CCI, 2017a); and night-time lights (NOAA, 2012, 2017; Zhang, Pandey and Seto, 

2016), distance to nature reserves (UNEP-WCMS and IUCN, 2016), travel time to cities (Weiss et 

al., 2018), and precipitation and temperature (Fick and Hijmans, 2017) are all published at 

approximately 900 by 900 metre resolution. The only covariates available at a similar resolution to 

the output grid cells are distance to major roads (OpenStreetMap contributors, 2000), 

intersections (OpenStreetMap contributors, 2000), waterways (OpenStreetMap contributors, 

2000), inland water bodies (ESA-CCI, 2017b), coastlines (CIESIN, 2016), urban areas (Pesaresi, et 

al., 2016), and built settlements (DLR Earth Observation Center, 2017), as well as slope and 

elevation (de Ferranti, 2017a, 2017b). None of the finer resolution datasets are particularly 

informative about the distribution of population within urban areas; and those datasets which 

might be informative (e.g., distance to roads or intersections) are likely to perform poorly in slums 

either because roads are absent or not well mapped in OpenStreetMap. Coarse datasets which 

are likely to correlate with population density and distribution, such as night-time lights, will 

result in a “halo” effect with population being disaggregated to cells in the vicinity of a true high 

dense cell, but not necessarily the correct cell itself. 

4.3 Simulated gridded population sample frames 

In Chapter 3, I simulated 16 realistic census scenarios from household points of a “true” 

population in Khomas, Namibia. The scenarios represent varying degrees of outdatedness (zero, 

five, ten, and 15 years) and inaccuracy (low, middle, and high levels of missingness among urban 

slum, urban non-slum, and rural populations). In this chapter, I aggregate each of the simulated 

household populations to EA and constituency (second-level administrative unit) boundaries, and 

simulate a total of 32 realistic gridded population datasets. It is important to evaluate the 

accuracy of gridded population datasets derived from different census aggregations because cell-

level accuracy of all top-down gridded population datasets is highly influenced by aggregation of 

the input population. The names of all 32 simulated gridded population input datasets are listed 

in Table 17. 
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Table 17. Names of all simulated census scenario datasets, reflecting different years of 

outdatedness, realistic levels of population under-counts (inaccuracy), and levels of 

model input aggregation (EA versus constituency) 

Year No inaccuracy Low inaccuracy Middle inaccuracy High inaccuracy 

2016 (current) EA_2016_true 

Const_2016_true 

EA_2016_L 

Const_2016_L 

EA_2016_M 

Const_2016_M 

EA_2016_H 

Const_2016_H 

2011 (5 years old) EA_2011_true 

Const_2011_true 

EA_2011_L 

Const_2011_L 

EA_2011_M 

Const_2011_M 

EA_2011_H 

Const_2011_H 

2006 (10 years old) EA_2006_true 

Const_2006_true 

EA_2006_L 

Const_2006_L 

EA_2006_M 

Const_2006_M 

EA_2006_H 

Const_2006_H 

2001 (15 years old) EA_2001_true 

Const_2001_true 

EA_2001_L 

Const_2001_L 

EA_2001_M 

Const_2001_M 

EA_2001_H 

Const_2001_H 

 

4.3.1 Methods 

I used the same methods and parameters as WorldPop-RF / WorldPop-Global to prepare 

covariates and population data, run Random Forest models, and to reweight population densities 

after modelling. The steps are detailed below and visualized in Figure 23 and Figure 24. 

Step 1: Population in Khomas. To prepare population counts in Khomas for Random Forest 

modelling, I aggregated the number of household members to EA and constituency boundaries 

for each of the 16 simulation scenarios, resulting in 32 shapefiles with scenario-specific 

population totals. As mentioned in section 3.4.1.4, I combined two EAs in Windhoek city centre 

with a neighbouring EA which had similar housing characteristics in satellite imagery because 

zonal statistics could not be calculated for their small narrow shapes; this reduced the number of 

EAs in Khomas from 922 to 920.  

Step 2: Population in Namibia without Khomas. The number of constituencies (n=10) inside 

Khomas did not provide a sufficient number of observations to run a Random Forest model on 

their own. To boost the number of observations in the Random Forest training dataset, I tested 

inclusion of another population dataset for the rest of Namibia on model results. Population 

totals outside of Khomas represented actual 2011 census EA and constituency population counts, 

projected to 2016. These numbers were derived by aggregating WorldPop-Global 2016 population 

estimates based on 2011 Census EA populations (WorldPop, 2019). The additional data comprised 

of 4,575 EAs, and 97 constituencies outside of Khomas, and were generated in ArcGIS 10.5 using 

zonal statistics (ESRI, 2018) (Figure 23).  
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Figure 23. First two steps in WorldPop-RF/WorldPop-Global gridded population modelling 

workflow: Preparing population data for Random Forest models 

 

Step 3: Combined Namibia population. Using the ArcGIS 10.5 merge tool, I combined 2016 EA 

and constituency population estimates outside of Khomas with each of the 32 simulated EA and 

constituency population datasets, resulting in 5,495 EA estimates, and 107 constituency estimates 

(Figure 24). I was not concerned that population totals outside of Khomas were all for 2016, and 

that they did not include population missingness per my simulated population scenarios. The sole 

purpose of including these counts was to provide the Random Forest model with a sufficient 

number of observations and sensible population densities to train the model. I only interpreted 

and analysed model outputs for Khomas. This step is in-line with the practice of combining 
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neighbouring area population data to train Random Forest models when the target area 

population data is coarse and thus has few units (Stevens et al., 2015). 

Step 4: Covariate zonal statistics. Nearly all of the covariates that I used to train Random Forest 

models were pre-processed by the WorldPop-Global project and downloaded from the WorldPop 

FTP server (WorldPop, 2018a). In total, I used the same 24 covariates as WorldPop-Global 

including distance to road, road intersection, coastline, land cover type, built area, and protected 

area, as well as topography (elevation), slope, and night-time light intensity (Table 18). The 

WorldPop-Global covariates are resampled to a common 3-arc second (approximately 100 metre 

by 100 metre) raster and projected to GCS WGS 1984 (Lloyd et al., 2019). Due to license 

redistribution restrictions, average annual temperature and average annual precipitation were 

not available via the WorldPop FTP server. To generate these covariates, I used the EA-level zonal 

statistics calculated by WorldPop-Global (WorldPop, 2018b), and then rasterized those datasets 

to the same dimension as other covariates in R 3.5.2 using the rasterize function. Finally, I 

calculated mean zonal statistics for each covariate by EAs (which included my boundary 

modifications) and constituencies for the whole of Namibia in R 3.5.2 using the zonal function. 

Note that some of the underlying datasets used in this Random Forest model of gridded 

populations are the same datasets used in Chapter 3 to simulate the “true” population; however, 

the datasets are processed differently in the two analyses resulting in different covariates. In 

Chapter 3’s simulation, covariates represented minimum, maximum, and mean values of 

covariates in 100 metre pixels summarised to a two kilometre moving window. In the gridded 

population models in this chapter, covariates are averaged by EA and later resampled to 100 

metre by 100 metre grid cells. Other important differences between the analyses are (1) the 

Random Forest model in the Chapter 3 simulated population was used to classify household types 

(but their density and distribution was predetermined by manual digitisation of building point 

locations), whereas the Random Forest model in this chapter is used to estimate population 

density and distribution; and (2) the Random Forest household type probability surfaces were 

reweighted by probabilities (proportion) of poor and non-poor households in each EA, adding 

noise to the results. If use of the same underlying datasets induced any correlation between 

household types (Chapter 3) and population density and distribution (Chapter 4), the correlations 

likely reflected actual phenomena, and not statistical artefacts (Engstrom, 2016). 

Step 5: Random Forest model and reweighting. Random Forest models were produced in R 3.5.2 

using the randomForest function (Liaw and Wiener, 2002) on the University of Southampton 

Iridis 5 high performance computing cluster. Before running the models, the area of each EA and 

constituency was calculated in hectares, and average population densities were calculated for 

each EA and constituency across the 32 population datasets by dividing total population by area. 
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These raw population densities were highly skewed to the right and many EAs in protected areas 

and deserts had zero population. To provide the Random Forest model with an even distribution 

of population densities to ensure the algorithm found optimal splits in the data, EAs with zero 

population were dropped. Next, a log function was applied to population density in each EA and 

constituency census scenario to transform them into normal distributions. During development of 

the WorldPop-RF / WorldPop-Global modelling approach, other approaches and transformations 

were tested including square root and log10, however, this combination of dropping zero values 

and log transforming densities consistently resulted in the best fitting models across settings 

(Stevens et al., 2015). 

To evaluate the effect of including areas outside of Khomas on the model results, and to test 

whether the default 500 trees was sufficient, I ran three versions of the Random Forest Model on 

EA-level datasets: (1) Khomas EAs with 500 trees (n=920), (2) Khomas EAs with 1000 trees 

(n=920), and (3) EAs for Khomas combined with rest of Namibia with 500 trees (n=4,575). After 

confirming that 500 trees were sufficient, and that the inclusion of areas outside of Khomas had 

minimal effect on the Random Forest model results (detailed in next section), I used the third 

model results based on the combined population in Khomas and the rest of Namibia. I additionally 

ran a model that combined simulated constituencies in Khomas with 2016 constituency 

populations for the rest of Namibia. 

Each model involved the following steps. First, an initial tuning model was run using the non-zero 

log population counts and mean zonal statistics of all 24 covariate datasets. The models were 

parameterized with the same values as WorldPop-RF and WorldPop-Global including number of 

variables in the random subset at each node (mtryStart = n variables ÷ 3) and number of trees in 

the forest (ntreeTry = n observations ÷ 20) (Stevens et al., 2015). By using the tuneRF function, I 

identified which covariates contributed positive increases to node purity (e.g., increase of 

variance explained), and the optimal number of covariates to randomly select at each branch of 

the model. Each model was then retuned using the reduced set of covariates which increased 

node purity (Figure 24). 

After the second model tuning, the remaining covariates and corresponding trees were used to 

predict population estimates in 100 metre by 100 metre grid cell based on the original rasterized 

covariate values (Figure 24). Note that temperature and precipitation covariates in this step may 

have lacked spatial detail compared to other covariates, as they represented EA-level means.  

In the models based on Khomas data only, cell estimates were reweighted so that cell-level 

estimates summed to the original EA population totals used to fit the models. In the model that 

combined Khomas with the rest of Namibia, areas outside of Khomas were first dropped before 
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Khomas cell estimates were reweighted, so that cell-level estimates summed to the original EA or 

constituency population totals used to fit the model in Khomas only: 

𝑐𝑒𝑙𝑙(𝑝𝑜𝑝)𝑛𝑒𝑤 =
𝑐𝑒𝑙𝑙(𝑝𝑜𝑝)𝑜𝑙𝑑  × 𝑢𝑛𝑖𝑡(𝑝𝑜𝑝)𝑠𝑖𝑚

∑ 𝑐𝑒𝑙𝑙(𝑝𝑜𝑝)𝑜𝑙𝑑𝑢𝑛𝑖𝑡
  

 

Figure 24. Last three steps in WorldPop-RF/WorldPop-Global gridded population modelling 

workflow: Preparing covariates and running Random Forest models 
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Table 18. Covariate data sources for Random Forest gridded population estimates 

Name Description (Year)  Original scale Original source 

cov_road Distance to OSM major roads (2016)  Vector, <30 m OpenStreetMap (1) 

cov_intsec Distance to OSM major road intersections (2016) Vector, <30 m OpenStreetMap (1) 

cov_waterw Distance to OSM major waterways (2016) Vector, <30 m OpenStreetMap (1) 

cov_wdpa Distance to IUCN nature reserve (2000-17) 30” (~900 m) UNEP-WCMS & IUCN (2) 

cov_viirs Resampled VIIRS night-time lights (2012-2016) 30” (~900 m) NOAA (3) 

cov_dmsp Resampled DMSP-OLS night-time lights (2011) 30” (~900 m) NOAA & Zhang, et al. (4,5) 

cov_tt50k Resampled travel time to cities of 50,000+ (2000)  30” (~900 m) Weiss, et al. (6) 

cov_001 Distance to cultivated areas (2015)  9” (~300 m) ESA CCI – LC (7) 

cov_040 Distance to woody areas (2015) 9” (~300 m) ESA CCI – LC (7) 

cov_130 Distance to cultivated areas (2015) 9” (~300 m) ESA CCI – LC (7) 

cov_140 Distance to herbaceous areas (2015) 9” (~300 m) ESA CCI – LC (7) 

cov_150 Distance to sparse vegetation areas (2015) 9” (~300 m) ESA CCI – LC (7) 

cov_160 Distance to aquatic vegetation areas (2015) 9” (~300 m) ESA CCI – LC (7) 

cov_190 Distance to urban areas (2015) 9” (~300 m) ESA CCI – LC (7) 

cov_200 Distance to bare areas (2015) 9” (~300 m) ESA CCI – LC (7) 

cov_cciwat Distance to ESA-CCI-LC inland waterbodies (2000-12) 4.5” (~150 m) ESA CCI (8) 

cov_slope SRTM-based slope (2000)  3” (~90 m) de Ferranti (9,10) 

cov_topo SRTM-based elevation (2000) 3” (~90 m) de Ferranti (9,10) 

cov_coast Distance to open-water coastline (2000-20)  3” (~90 m) CIESIN (11) 

cov_ghsl Distance to urban area (2012)  1.26” (~38 m) Pesaresi, et al. (12) 

cov_guf Distance to settlement built-up areas (2012)  2.8” (~84 m) DLR EOC (13) 

cov_bsgme Distance to built settlement expansion (2016)  3” (~90 m) Nieves, et al. (14) 

cov_prec Average total annual precipitation (1970-2000)  30” (~900 m) Fick and Hijmans (15) 

cov_temp Average annual temperature (1970-2000)  30” (~900 m) Fick and Hijmans (15) 

1. (OpenStreetMap contributors, 2000) 

2. (UNEP-WCMS and IUCN, 2016) 

3. (NOAA, 2012) 

4. (NOAA, 2017) 

5. (Zhang, Pandey and Seto, 2016) 

6. (Weiss et al., 2018) 

7. (ESA-CCI, 2017a) 

8. (ESA-CCI, 2017b) 

9.   (de Ferranti, 2017b) 

10. (de Ferranti, 2017a) 

11. (CIESIN, 2018) 

12. (European Commission, 2017) 

13. (DLR Earth Observation Center, 2017) 

14. (Nieves et al., 2020) 

15. (Fick and Hijmans, 2017) 

 

Datasets accessed via the 
WorldPop FTP server 
(WorldPop, 2018a). Data 
processed by the WorldPop 
team at 3 minute (~100x100m 
resolution) and projected to 
GCS WGS 1984 (Lloyd, 
Sorichetta and Tatem, 2017; 
Lloyd et al., 2019). 
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4.3.2 Results 

The comparison of 500 and 1000 trees in the Khomas EA-level Random Forest models showed no 

effect of increasing the number of trees, thus I decided to use 500 trees in all models (Table 19).  

The comparison of models run with Khomas simulated EA-level populations only, and Khomas EA-

level simulated populations combined with 2016 estimates for the rest of Namibia, also resulted 

in minimal differences. Due to the greater number of observations, the models that included data 

for all of Namibia performed better in terms of mean square error (MSE) and coefficient of 

variance (CV) (square root of MSE divided by number of households), and explained roughly 1% 

more of the overall variance in population densities (Table 19). Given the minimal effect on MSE 

and percent variance explained of including population outside of Khomas to train the EA-level 

models, I chose to use 2016 population in constituencies outside of Khomas to train the 

constituency-level models for Khomas’s 10 constituencies. To maintain comparability between 

EA- and constituency-level results throughout the rest of this thesis, I used the EA-level model 

outputs trained with data for all of Namibia. Again, only the gridded population estimates inside 

Khomas were analysed. 

The Random Forest models with EA-level input population data performed slightly better 

(approximately 95% variance explained) (Table 19) than models with constituency-level input 

population data (approximately 94% variance explained) (Table 20), which is to be expected due 

to the finer resolution of EAs. The randomForest function provides MSE results for each 

model, enabling assessment of model error at the scale of the input population (Liaw and Wiener, 

2002). MSE in the EA-level models (0.47 to 0.50) (Table 19) were higher than constituency-level 

models (0.34 to 0.38) (Table 20) because population totals at the EA-level vary more than at the 

constituency-level.  

Across models, CV increased as the input population was increasingly outdated and as the level of 

population missingness increased, as was expected due to mismatches between population 

density and spatial covariates (Table 19, Table 20). Table 21 summarises covariate importance 

scores (see section 3.4.1.4) for population estimates derived from select EA- and constituency-

level models. See Appendix D for plots of covariate importance and observed versus predicted 

population in each of the 32 models that included data outside of Khomas for training, as well as 

for the 16 EA-level models (500 trees) that were trained on data from Khomas only.  

Before advancing to sample frame accuracy assessments, I confirmed that the rescaled gridded 

population estimates aggregated to the correct simulated census totals in EAs or constituencies. 
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Table 19. Comparison of Random Forest model fit statistics for EA-level input census scenarios 

 Bold indicates model outputs used in further analyses, * multiplied by 10,000,000 

Scenario model Coverage Number 
of trees 

Number 
of splits 

Mean Square 
Error (MSE) 

Coefficient of 
variation (CV)* 

Percent variance 
explained 

EA_2016_true Khomas 1000 6 0.6452042 82.24 94.85 

500 6 0.6341473 81.54 94.94 

Namibia 500 5 0.4754283 3.57 95.84 

EA_2016_L Khomas 1000 5 0.6390794 86.04 94.86 

500 6 0.6465398 86.54 94.80 

Namibia 500 8 0.4763202 3.58 95.81 

EA_2016_M Khomas 1000 6 0.6197341 93.68 94.92 

500 6 0.6212137 93.79 94.91 

Namibia 500 7 0.4739785 3.59 95.79 

EA_2016_H Khomas 1000 8 0.6040675 110.40 94.90 

500 6 0.6223167 112.06 94.75 

Namibia 500 6 0.4705776 3.60 95.75 

EA_2011_true Khomas 1000 7 0.6172502 87.84 95.11 

500 7 0.5979264 86.46 95.27 

Namibia 500 6 0.4651136 3.54 95.92 

EA_2011_L Khomas 1000 7 0.6020828 90.90 95.20 

500 6 0.6107100 91.55 95.13 

Namibia 500 7 0.4669534 3.56 95.89 

EA_2011_M Khomas 1000 8 0.6021614 99.72 95.14 

500 6 0.6264232 101.71 94.94 

Namibia 500 7 0.4688343 3.58 95.83 

EA_2011_H Khomas 1000 6 0.6018100 117.18 94.96 

500 7 0.5960483 116.62 95.01 

Namibia 500 8 0.4712438 3.61 95.73 

EA_2006_true Khomas 1000 7 0.7476114 120.25 94.39 

500 7 0.7438385 119.94 94.42 

Namibia 500 7 0.4919520 3.68 95.61 

EA_2006_L Khomas 1000 7 0.7370870 124.38 94.43 

500 8 0.7372104 124.39 94.43 

Namibia 500 7 0.4938965 3.69 95.57 

EA_2006_M Khomas 1000 6 0.6757099 128.83 94.80 

500 7 0.6671515 128.01 94.87 

Namibia 500 7 0.4841646 3.66 95.63 

EA_2006_H Khomas 1000 7 0.6889540 149.00 94.55 

500 8 0.6949817 149.65 94.51 

Namibia 500 8 0.4902797 3.70 95.50 

EA_2001_true Khomas 1000 9 0.7004286 142.87 94.87 

500 8 0.6985975 142.68 94.89 

Namibia 500 8 0.4948715 3.71 95.51 

EA_2001_L Khomas 1000 10 0.6891912 147.31 94.93 

500 8 0.6938707 147.81 94.90 

Namibia 500 8 0.4976646 3.73 95.47 

EA_2001_M Khomas 1000 6 0.7014662 159.95 94.80 

500 6 0.7094756 160.86 94.74 

Namibia 500 7 0.4948384 3.73 95.47 

EA_2001_H Khomas 1000 6 0.6953790 180.71 94.69 

500 6 0.6913627 180.19 94.72 

Namibia 500 7 0.4915084 3.73 95.44 
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Table 20. Random Forest model fit statistics for constituency-level input census scenarios 

Scenario model Coverage Number 
of trees 

Number 
of splits 

Mean Square 
Error (MSE) 

Coefficient of 
variation (CV)* 

Percent variance 
explained 

Const_2016_true Namibia 500 5 0.3647471 3.12 94.76 

Const_2016_L Namibia 500 6 0.3527696 3.08 94.91 

Const_2016_M Namibia 500 5 0.3550769 3.10 94.83 

Const_2016_H Namibia 500 6 0.3713581 3.20 94.49 

Const_2011_true Namibia 500 5 0.3647895 3.14 94.73 

Const_2011_L Namibia 500 6 0.3545479 3.10 94.85 

Const_2011_M Namibia 500 5 0.3408526 3.05 95.01 

Const_2011_H Namibia 500 5 0.3573817 3.14 94.67 

Const_2006_true Namibia 500 6 0.3594167 3.14 94.70 

Const_2006_L Namibia 500 6 0.3650124 3.17 94.59 

Const_2006_M Namibia 500 5 0.3667935 3.19 94.52 

Const_2006_H Namibia 500 6 0.3500677 3.13 94.69 

Const_2001_true Namibia 500 6 0.3750283 3.23 94.33 

Const_2001_L Namibia 500 5 0.3532104 3.14 94.64 

Const_2001_M Namibia 500 5 0.3616736 3.19 94.47 

Const_2001_H Namibia 500 7 0.3623336 3.20 94.39 

* multiplied by 10,000,000 

 

Table 21. Covariate importance scores for select final gridded population models 

Covariate 

EA 

2016 

True 

EA 

2011 

Low 

EA 

2006 

Med 

EA 

2001 

High 

Const. 

2016 

True 

Const. 

2011 

Low 

Const. 

2006 

Med 

Const. 

2001 

High 

cov_011 1,565.7 1,466.3 1,468.4 1,487.0 12.0 13.8 15.2 13.3 

cov_040 399.7 321.0 304.3 344.0 14.7 12.2 14.5 14.4 

cov_130 208.2 189.6 178.4 201.3 2.8 1.8 2.4 2.2 

cov_140 493.1 311.2 290.7 449.4 2.4 1.7 2.5 1.8 

cov_150 457.0 422.9 370.7 356.6 4.0 2.8 3.7 2.6 

cov_160 446.2 414.1 401.4 370.7 3.8 2.9 3.2 2.8 

cov_190 5,710.1 5,200.9 5,550.0 5,258.2 98.0 102.0 110.9 95.2 

cov_200 466.6 338.9 362.0 365.0 3.5 2.6 5.0 2.2 

cov_bsgme 11,929.0 13,650.1 13,433.1 13,855.7 148.4 167.9 136.6 185.6 

cov_cciwat 1,152.3 688.8 799.8 928.1 47.2 45.0 49.8 42.6 

cov_coast 685.9 532.5 500.8 571.8 6.3 4.4 5.6 3.1 

cov_guf 14,885.8 18,960.6 16,996.1 14,547.7 77.2 74.3 90.2 68.7 

cov_intsec 2,928.9 1,802.7 1,674.7 1,939.7 144.9 161.6 128.9 148.8 

cov_prec 258.2 222.7 245.1 251.9 55.7 45.6 44.6 30.0 

cov_road 5,518.9 3,094.2 4,092.4 4,484.8 1.6 1.6 1.8 1.2 

cov_slope 557.3 516.3 533.2 624.6 58.2 45.1 44.7 39.8 

cov_topo 1,535.2 1,419.0 1,437.7 1,519.2 7.3 7.3 7.7 6.2 

cov_tt50k 1,127.7 660.2 619.5 692.8 12.0 8.5 8.5 2.8 

cov_viirs 10,469.3 10,369.6 8,985.0 7,778.2 8.8 9.6 11.4 4.7 

cov_waterw 814.6 664.9 596.6 623.2 24.7 13.7 22.6 8.0 

cov_wdpa 935.1 717.4 739.7 835.5 3.5 2.0 2.0 2.2 

cov_011 1,565.7 1,466.3 1,468.4 1,487.0 12.0 13.8 15.2 13.3 

cov_040 399.7 321.0 304.3 344.0 14.7 12.2 14.5 14.4 

cov_130 208.2 189.6 178.4 201.3 2.8 1.8 2.4 2.2 
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4.4 Cell-level accuracy of simulated gridded population sample frames 

versus simulated “real” populations 

4.4.1 Methods 

No accuracy assessments have been performed on gridded population data at the cell-level; 

accuracy has always been assessed at the scale of the input population data (see section 4.2.1.5). 

Using the simulated “real” population household locations, this analysis provides a rare 

opportunity to assess Random Forest model accuracy at the scale of the output grid cell. This 

section summarizes the statistics used to make comparisons in grid cells that ranged in size from 

100 metres by 100 metres to 1 kilometre by 1 kilometre. All analyses were performed in R 3.5.2 

on the Iridis 5 high performance computing cluster. 

To evaluate cell-level accuracy, I used two error metrics, RMSE and MAE (both detailed in 4.2.1.5), 

to understand the degree of inaccuracy at the cell-level. I additionally created two usability 

measures with respect to maximum error in both the population estimate and the estimated 

population distribution. Accuracy of the estimated population distribution (percent of overall 

estimated population in each cell) is important for drawing an accurate sample and calculating 

accurate sampling probabilities. However, accuracy in the total population estimate is also 

important for field operations. A sampling unit with too few people wastes resources and 

potentially decreases sample size, while a sampling unit with too many people requires additional 

resources and time to perform segmentation (i.e., manually splitting the sampling units during 

fieldwork).  

To measure accuracy of the population distribution, I calculated the percent of cells whose 

estimated population was +/- 20% the “true” population (PerDiff20). Given that a typical EA has 

200 households and ranges from 100 to 300 households, 20% larger than 300 households would 

be 360 households, roughly the point at which an EA would need to be segmented in survey 

practice. To generate this statistic, I first calculated percent difference between the estimated and 

“true” populations in each cell 𝑖. 

𝑃𝑒𝑟𝐷𝑖𝑓𝑓𝑖 =
|𝑦̂𝑖 − 𝑦𝑖|

𝑦𝑖
 × 100 

To be able to measure percent difference, I added 0.000001 to every cell in the estimated 

population and the “true” population to have non zero values in the denominator; this amounted 

to 4 people being added to each dataset for all of Khomas. Then I classified each cell as 0 if it was 
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greater than 20%, or 1 if it was less than or equal to 20%. Finally, I calculated the percentage of 

𝑛 cells less than or equal to 20% of the “true” population distribution. 

𝑃𝑒𝑟𝐷𝑖𝑓𝑓20 =
𝑛(≤ 20)

𝑛
 × 100 

I additionally calculated the percent of cells that had an absolute difference of 10 people 

(AbsDiff10) or 25 people (AbsDiff25) per hectare from the “true” population count using a similar 

approach. In Khomas, where the average household size is 3.7 people (NSA, 2011b), this would 

amount to +/- 3 or 7 households per hectare. First I calculated the absolute difference between 

the estimated and true populations in cell 𝑖. 

𝐴𝑏𝑠𝐷𝑖𝑓𝑓𝑖 =  |𝑦̂𝑖 − 𝑦𝑖| 

Then I classified cells as 0 if the difference was greater than 10 (or 25) people per hectare, and 1 if 

the difference was 10 (or 25) people and fewer. To calculate people per hectare, this number was 

increased by the same factor 𝑓2 as cell size (e.g., factor = 2 for 200 metre by 200 metre cell). Then 

I calculated the percent of 𝑛 cells with an estimated population less than or equal to that value. 

𝐴𝑏𝑠𝐷𝑖𝑓𝑓10 =
𝑛(≤ 10 × 𝑓2)

𝑛
 

𝐴𝑏𝑠𝐷𝑖𝑓𝑓25 =
𝑛(≤ 25 × 𝑓2)

𝑛
 

Given that the WorldPop-RF / WorldPop-Global model attribute a fraction of a person to each cell 

in unsettled areas, I ran these statistics on the full estimated population for each scenario, as well 

as a version of the dataset in which 100 metre by 100 metre cells with a population estimate less 

than 1 were excluded, and another version in which cells with an estimated population less than 4 

(approximately 1 household) were excluded. I also stratified the analysis by urban and rural cells 

using my earlier classification of EAs in 2016 (see section 3.5.3) to evaluate whether the model 

performed differently by urbanicity. 

4.4.2 Results 

I first reviewed a summary of all statistics across all 16 scenarios and 10 cell sizes to evaluate 

whether stratification by urbanicity was necessary, and whether I would present results with any 

population exclusion. The statistics were highly influenced by near zero population estimates in 

cells located in Khomas’s vast unsettled areas. Whereas the “real” population covered a total of 

11,206 100 metre by 100 metre cells (not reported), the estimated population covered 4,672,293 

rural cells, and 14,403 urban cells (Table 22). Millions of near zero cell-level estimates in the 
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gridded population severely skewed MAE (3), AbsDiff10 (99.8%), and AbsDiff25 (99.9%) to appear 

highly accurate because so many cells with near zero population estimates were compared to a 

“true” population of zero (Table 22).  

After excluding cell estimates less than 1 or 4, the same statistics were far more reasonable (MAE: 

483 and 656; AbsDiff10: 69.8% and 60.0%; AbsDiff25: 84.3% and 78.2%) (Table 22). Visual 

inspection of the 100 metre by 100 metre gridded population dataset derived from 2016 “true” 

population counts aggregated to EA showed that a substantial number of “true” population would 

be omitted from the analysis if I excluded cells with a population estimate less than 4 (Figure 25), 

but only a few people in the “true” population would be omitted if I excluded cell population 

estimates less than 1 (Figure 26), thus all results are presented for areas with 1 or more estimated 

people in the original 100 metre by 100 metre model. 

The results revealed marked urban-rural differences in cell-level accuracy. For example, in cells 

with 1+ estimated persons, the average accuracy statistics across datasets and scales were: RMSE 

(U:1,506 vs. R:185), MAE (U:987 vs. R:64), AbsDiff10 (U:44.0% vs R:92.1%), AbsDiff25 (U:68.6% vs 

R:97.9%), and PerDiff20 (U:77.9% vs R:18.4%) (Table 22). Thus, all further results are stratified by 

urbanicity.  

 

 

Table 22. Summary of accuracy statistics across all simulated gridded population datasets and grid 

cell sizes, by urban/rural and exclusion of cells with small estimated population 

 Red indicates the results presented in detail in this chapter 

 
100m 

N cells 

RMSE 

Mean 

MAE 

Mean 

AbsDiff10 AbsDiff25 PerDiff20 

Mean Range Mean Range Mean Range 

No exclusion    

All 4,686,696 78 3 99.8% (99.7, 99.9) 99.9% (99.8, 99.9) 2.1% (0.0, 6.6) 

Rural 4,672,293 11 0 100.0% (99.8, 100.0) 100.0% (99.9, 100.0) 1.8% (0.0, 6.3) 

Urban 14,403 1,405 874 50.8% (45.1, 66.3) 72.3% (68.8, 85.8) 74.9% (3.1, 97.9) 

Exclude cells with estimated population < 1    

All 25,746 1,024 483 69.8% (39.8, 76.3) 84.3% (71.6, 87.8) 45.3% (2.0, 78.6) 

Rural 13,861 185 64 92.1% (24.3, 99.3) 97.9% (64.4, 100.0) 18.4% (0.1, 54.0) 

Urban 11,885 1,506 987 44.0% (35.8, 60.0) 68.6% (63.2, 83.1) 77.9% (3.5, 100.0) 

Exclude cells with estimated population < 4    

All 21,824 1,209 656 60.0% (31.1, 72.5) 78.2% (63.0, 86.2) 50.3% (2.9, 93.4) 

Rural 12,333 238 98 88.5% (17.4, 99.4) 97.2% (61.1, 100.0) 20.8% (0.0, 78.6) 

Urban 9,491 1,665 1,176 34.1% (21.7, 51.4) 61.9% (50.0, 79.2) 80.9% (4.0, 100.0) 
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Below I visualise each statistic for EA and constituency on the same scale so that relative 

differences are easier to spot across the different simulated census scenarios and aggregated grid 

cell sizes. I present results for absolute difference of +/- 10 people per hectare (AbsDiff10), rather 

than +/- 25 people (AbsDiff25), because the larger value would represent huge errors in the 

estimated population in large grid cells. In 1 kilometre by 1 kilometre cells, for example, +/- 10 

people per hectare would result in +/- 1000 people overall, while +/- 25 people per hectare would 

result in +/- 2500 people.  

A summary of RMSE is presented in Figure 27, a summary of MAE is presented in Figure 28, and 

AbsDiff10 and PerDiff20 are visualized together in Figure 29. I visualized absolute and percent 

population differences together because they are both important to survey fieldwork, and I 

wanted to make recommendations of for a minimum grid cell size to use in the next analysis of 

gridded population sampling with both in mind. All statistics are presented in full in Appendix E.  
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Figure 25. Visual of areas included in the analysis, and select EAs with "true" population, when 

cells with an estimated population <4 are excluded (EA_2016_true 100m dataset) 

Random Forest 
model sums to 24 in 

EA, but each cell is <4 
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Figure 26. Visual of areas included in the analysis, and select EAs with "true" population, when 

cells with an estimated population <1 are excluded (EA_2016_true 100m dataset) 

 

Random Forest 
model sums to 24 in 

EA, but each cell is <1 
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Figure 27. RMSE in gridded population cells, by grid cell size, simulated census scenario, and 

aggregation of input population 
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Figure 28. MAE in gridded population cells, by grid cell size, simulated census scenario, and 

aggregation of input population  
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Figure 29. Percent of cells +/- 10 people per hectare (AbsDiff10) or +/- 20% of the true population 

distribution (PerDiff20), by grid cell size, simulated census scenario, and aggregation 

of input population  
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RMSE and MAE in grid cells did not differ substantially across the simulated census scenarios 

which included varying degrees of population missingness and outdatedness (Figure 27, Figure 

28). Furthermore, errors only slightly decreased when the input data were aggregated to EA 

rather than constituency. The major driver of RMSE and MAE in cells was urban location; error in 

urban cell-level estimates was substantially higher than rural cells according to both metrics 

(Figure 27, Figure 28). The errors increased linearly with cell size, likely because large errors in 

urban areas were compounded as cell size increased; RMSE and MAE only increased slightly in 

rural areas with cell size. 

At the 100 metre by 100 metre scale, few grid cells in urban or rural areas were accurately 

estimated to have +/- 10 people when compared to the "true" population (Figure 29). However, 

this quickly increased in rural grid cells but decreased in urban grid cells when grid cells were 

aggregated. At 300 metres by 300 metres, there was a sharp increase in cells that had +/- 20% the 

true population in urban areas (PerDiff20), with smaller increases in rural areas (Figure 29). In 

both urban and rural areas, the number of cells with +/- 20% the true population (PerDiff20) 

remained fairly constant when cells were aggregated to cells larger than 300 metres by 300 

metres. As with RMSE and MAE, the cell-level statistics for AbsDiff10 and PerDiff20 were 

dominated by urban/rural differences, rather than outdatedness or inaccuracies in the input 

population, or level of input population aggregation. 

At 300 metres by 300 metres, most estimates in rural cells were +/- 10 people per hectare and 

most estimates in urban cells were +/- 20% the true population. To demonstrate that differences 

due to input population outdated and inaccuracy were subtle or negligible, Table 23 presents 

statistics for select census scenarios in 300 metre by 300 metre cells. There were only slight 

increases in RMSE and MAE as input datasets were increasingly outdated and inaccurate, and 

when the input data were aggregated. For example, RMSE was 238 for EA_2016_True (most 

accurate, fine scale input) and 286 for Const_2001_H (least accurate, coarse input). AbsDiff10 and 

AbsPer20 were negligible or decreased very slightly in scenarios of greater outdatedness or 

inaccuracy, but only when the input data were at the EA scale (Table 23). There was an 

unexpected improvement in PerDiff20 in scenarios of greater outdatedness and inaccuracy 

among input datasets aggregated to constituency (from 41.4% to 49.2%), likely because the 

incorrect low constituency population counts approached the underestimated population 

produced by the Random Forest model (Table 23). 
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Table 23. Summary of accuracy statistics in 300 metre by 300 metre grid cells for select simulated 

census scenarios, excluding areas with an original estimated population less than 1 

 RMSE  MAE  AbsDiff10  PerDiff20 

All R U  All R U  All R U  All R U 

EA                

2016_True 238 36 353  112.9 22.1 223.6  73.5 97.3 44.7  44.6 10.8 86.6 

2011_L 245 40 365  118.1 25.5 233.0  72.6 96.4 43.4  43.6 9.1 87.1 

2006_M 245 35 374  114.2 22.7 237.9  73.7 97.7 41.6  41.5 7.2 88.6 

2001_H 254 36 394  117.6 23.0 252.5  73.4 97.8 39.0  39.7 4.6 90.3 

Constituency             

2016_True 253 25 361  111.6 10.0 218.0  74.3 98.7 48.7  41.4 8.8 75.6 

2011_L 258 25 365  114.2 9.4 221.3  73.6 98.5 48.2  42.2 9.1 76.0 

2006_M 266 26 372  119.0 8.1 226.5  72.4 98.3 47.3  43.6 9.5 76.7 

2001_H 286 29 379  135.8 8.5 232.1  68.4 97.7 46.3  49.2 11.8 77.6 

 

To determine the magnitude and potential sources of the massive cell-level errors, particularly in 

urban areas, I performed two sub-analyses. I calculated cell-level bias, the average difference 

between the “true” population and the estimated population, and percent of the total population 

in Khomas that was misallocated to cells which were unsettled according to the “true” population. 

In the 100 metre by 100 metre estimates derived from “true” 2016 census data, cell-level bias 

ranged from 245 population underestimate to 525 population overestimate with EA-level input, 

and from 333 population underestimate to 96 population overestimate with constituency-level 

input (unreported). A visual comparison of bias is presented in Figure 30 for a select EA and 

constituency, demonstrating that within-urban cell-level estimates based on the most accurate 

data available differed substantially from reality.  

The average 300 metre by 300 metre urban cell underestimated the population by more than 200 

people, while the average rural cell was underestimated by 3 (constituency-level input) to 14 (EA-

level input) people (Table 24). In this analysis, where I excluded millions of cells in unsettled areas 

with a fraction of an estimated person, both urban and rural cell-level estimates suffered greater 

bias when grid cells were aggregated. The average 1 kilometre by 1 kilometre urban cell was 

missing approximately 2,400 people, while the average rural cell of the same size was missing 

approximately 140 people (Table 24). When these same statistics were performed on datasets 

without exclusions, the bias in rural areas was close to zero due to the enormous number of near 

zero estimates compared to zero “true” population, while the bias in urban areas was nearly 

identical (unreported). 
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Figure 30. Example 100 metre by 100 metre gridded population estimate bias versus "true" 

population in a select EA and constituency 
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Table 24. Bias in the 2016 gridded population estimates derived from “true” population counts, by 

grid cell size and aggregation level of the input data, excluding areas with an original 

estimated population less than 1 

Grid cell size 
(m2) 

EA_2016_true  Const_2016_true 

All Rural Urban  All Rural Urban 

100 10 20 0  0 7 -8 

200 -29 18 -85  -39 6 -86 

300 -92 14 -223  -103 3 -214 

400 -177 8 -416  -192 -1 -394 

500 -283 3 -650  -306 -8 -616 

600 -407 -22 -933  -445 -34 -891 

700 -551 -33 -1,293  -611 -51 -1,229 

800 -718 -72 -1,664  -787 -90 -1,556 

900 -891 -126 -2,026  -994 -152 -1,974 

1000 -1,073 -126 -2,476  -1,233 -167 -2,421 

 

Table 25 summarises the percent of the estimated population misallocated to “true” unsettled 

cells. The exclusion of cells with fewer than one estimated person was lifted for this analysis to 

understand error in the underlying estimates. Roughly 20% (EA-level input) or 10% (constituency-

level input) of the population was misallocated to unsettled 100 metre by 100 metre cells (Table 

25). However, as cells were aggregated, the percent of misallocated population dropped 

precipitously. For example, at 300 metres by 300 metres, less than 3% (EA-level input) or 1% 

(constituency-level input) of Khomas’s population was misallocated to unsettled cells. This 

indicated that most of the population was disaggregated within, or near to, settlements. The rates 

of misallocation were similar across grid cell sizes when cells with less than one person were 

excluded (not reported). 
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Table 25. Percent of the overall population (no exclusion) that is misallocated to unsettled cells, 

by simulated census scenario, aggregation level of the input data, and grid cell size 

Scenario 

Grid cell size (m2) 

100 200 300 400 500 600 700 800 900 1000 

% % % % % % % % % % 

EA_2001_H  20.05 4.95 2.22 1.28 0.81 0.59 0.41 0.32 0.26 0.21 

EA_2001_L  21.15 5.21 2.33 1.35 0.86 0.62 0.43 0.34 0.27 0.22 

EA_2001_M  20.63 5.08 2.27 1.31 0.83 0.60 0.42 0.33 0.26 0.21 

EA_2001_true  21.90 5.40 2.42 1.40 0.89 0.64 0.45 0.35 0.28 0.23 

EA_2006_H  20.98 5.15 2.30 1.32 0.84 0.61 0.43 0.33 0.26 0.22 

EA_2006_L  22.68 5.57 2.49 1.44 0.91 0.66 0.46 0.36 0.29 0.24 

EA_2006_M  20.47 5.00 2.23 1.29 0.82 0.59 0.41 0.32 0.26 0.21 

EA_2006_true  23.16 5.69 2.54 1.47 0.93 0.67 0.47 0.37 0.29 0.24 

EA_2011_H  20.63 5.03 2.24 1.29 0.82 0.59 0.41 0.33 0.26 0.21 

EA_2011_L  23.34 5.68 2.53 1.46 0.93 0.66 0.47 0.37 0.29 0.24 

EA_2011_M  26.50 6.50 2.90 1.67 1.06 0.76 0.54 0.42 0.33 0.27 

EA_2011_true  21.67 5.26 2.34 1.35 0.85 0.62 0.43 0.34 0.27 0.22 

EA_2016_H  20.29 4.94 2.20 1.27 0.81 0.58 0.41 0.32 0.25 0.21 

EA_2016_L  22.00 5.34 2.38 1.37 0.87 0.63 0.44 0.35 0.27 0.23 

EA_2016_M  18.69 4.50 2.00 1.15 0.73 0.52 0.37 0.29 0.23 0.19 

EA_2016_true  20.82 5.02 2.23 1.28 0.81 0.59 0.41 0.32 0.26 0.21 

const_2001_H  5.80 1.19 0.46 0.23 0.13 0.08 0.06 0.04 0.03 0.02 

const_2001_L  7.33 1.53 0.60 0.30 0.17 0.11 0.07 0.05 0.04 0.03 

const_2001_M  6.77 1.40 0.54 0.28 0.16 0.10 0.07 0.05 0.04 0.02 

const_2001_true  7.59 1.58 0.61 0.31 0.18 0.11 0.07 0.05 0.04 0.03 

const_2006_H  7.10 1.46 0.56 0.29 0.16 0.10 0.07 0.05 0.04 0.03 

const_2006_L  8.78 1.83 0.71 0.36 0.21 0.13 0.08 0.06 0.04 0.03 

const_2006_M  8.13 1.69 0.66 0.34 0.19 0.12 0.08 0.06 0.04 0.03 

const_2006_true  9.22 1.93 0.75 0.38 0.22 0.14 0.09 0.06 0.05 0.03 

const_2011_H  8.35 1.73 0.67 0.34 0.19 0.12 0.08 0.06 0.04 0.03 

const_2011_L  10.86 2.28 0.89 0.46 0.26 0.16 0.11 0.08 0.06 0.04 

const_2011_M  9.79 2.04 0.79 0.41 0.23 0.15 0.09 0.07 0.05 0.03 

const_2011_true  11.34 2.39 0.94 0.48 0.27 0.17 0.11 0.08 0.06 0.04 

const_2016_H  8.95 1.87 0.73 0.37 0.21 0.13 0.09 0.07 0.05 0.03 

const_2016_L  11.66 2.45 0.96 0.49 0.28 0.18 0.11 0.08 0.06 0.04 

const_2016_M  10.69 2.25 0.88 0.45 0.26 0.16 0.11 0.08 0.06 0.04 

const_2016_true  12.47 2.63 1.03 0.53 0.30 0.19 0.12 0.09 0.06 0.05 
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4.5 Discussion 

4.5.1 Accuracy of simulated gridded population sample frames 

Urban/rural population difference in Khomas dominated the results. While I found clear evidence 

of my hypothesis that the accuracy of gridded population estimates can be improved by 

aggregating grid cells, there was limited evidence in this context that outdated, inaccurate census 

data plays a major role in the cell-level accuracy of gridded population estimates using a 

WorldPop-RF / WorldPop-Global modelling approach. Three potential issues might explain cell-

level inaccuracies:  

(1) non-zero population estimates were attributed to millions of unsettled cells; 

(2) presence of local spatial inaccuracies due to the coarse resolution of some covariates 

and/or a weak relationship between population density and the covariates; and  

(3) the assumption that average EA- or constituency-level population densities per hectare 

provide a sufficient range of population values from which to model population density at 

the 100 metre by 100 metre (hectare) scale. 

The first issue, non-zero population estimates in millions of unsettled cells, probably played only a 

minor role in cell-level inaccuracies. Table 25 demonstrates that even in this context of vast 

unsettled areas, only a small portion of Khomas’s population was misallocated to cells far from 

actual settlements. Nearly all of the population was estimated to be in cells within 200 to 300 

metres of the “true” population. 

The second issue, related to covariate resolution and the relationship of covariates with 

population density, probably played a larger role. A number of the Random Forest model 

covariates, such a land cover type and night-time lights, had an original resolution substantially 

larger than 100 metre by 100 metres, which could have resulted in a halo effect around 

settlements, causing populations to be disaggregated to cells near a settlement, but not directly 

over it. Figure 29 and Table 25 provide evidence of this; the accuracy of the estimated population 

distribution, and correct allocation of population to settled cells, both performed well when the 

estimated population was aggregated to 300 metres by 300 metres or larger.  

Other covariates, such as road and intersection locations, and urban or built-up settlement area, 

were available at very fine spatial resolution and thus were precise at the 100 metre by 100 metre 

scale. Although they are good indicators of a settlement, they are not necessarily good indicators 

of higher or lower population density within a settlement. The lack of fine-scale covariates 

associated with population density within cities and towns likely explains a portion of the cell-
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level error observed. Other issues that might further decrease local spatial accuracy are temporal 

miss-match of covariates (Leyk et al., 2019) and covariate spatial autocorrelation (Sinha et al., 

2019). 

The third potential source of cell-level inaccuracies, using average population densities from large 

administrative units to estimate population density in much smaller grid cells, is known as the 

ecological fallacy (Thorndike, 1939; Selvin, 1958), and probably played the largest role in cell-level 

inaccuracies. Population densities are used by the random forest model to establish relationships 

between covariates and population (total population divided by total area), not population totals. 

In the simulated “true” 2016 household point locations dataset, the maximum number of people 

in a 100 metre by 100 metre cell was 386 people. However, in the same 100 metre by 100 metre 

grid, the maximum population estimated by the Random Forest model was 469 people (EA-level 

input) and 112 (constituency-level input). Even with perfect covariates and exclusion of unsettled 

areas, this means that cells with high population density might be severely underestimated, and 

that the excess population will be disaggregated to other less dense cells in the same input 

administrative unit due to dasymetric reweighting. 

The likely underestimation of cell-level high population density in existing WorldPop-RF / 

WorldPop-Global datasets gives me pause about the value of gridded population sampling to 

ensure coverage of slum dwellers in household surveys. A defining characteristics of LMIC slum 

areas is high population density (Nuissl and Heinrichs, 2013; Ezeh et al., 2017; Mahabir et al., 

2018; Lilford et al., 2019), though high-rise apartment buildings are another form of high density 

urban living. The relationship between high population density and socioeconomic status likely 

varies by city, and is an area that needs further study to understand the accuracy of gridded 

population estimates. Given that many of the highest density cells are likely located in slum areas, 

gridded population sampling from a WorldPop-RF / WorldPop-Global dataset might result in an 

under sample of slum dwellers. 

The ecological fallacy was likely the main source of 

cell-level error in the WorldPop-RF / WorldPop-Global 

model results.  

Population density per hectare in administrative areas 

did not reflect population density at the cell-level. 
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4.5.2 Recommendations 

I have three recommendations to potentially address sources of cell-level error in WorldPop-RF/ 

WorldPop-Global gridded population estimates. The first recommendation is in light of a high 

quality building footprint dataset that has only recently become available for multiple LMICs from 

Maxar, Digital Global, and Ecopia (Maxar, 2019). This group produces a building footprint layer by 

country, derived by extracting building boundary features from very high resolution satellite 

imagery. Each country dataset is reported to include 95% or more of actual buildings, including 

structures made with traditional materials (Maxar, 2019). These building footprint datasets are 

initially a commercial product, but are released freely and publicly after three years. Accurate 

building footprints are likely associated with population density within settlements and have a 

finer spatial resolution than 100 metres by 100 metres, making it a potentially powerful covariate 

to include in Random Forest models, and likely to improve within urban cell-level estimates. 

Gridded population data producers are already evaluating how to incorporate this dataset into 

gridded population models (D. Leasure, personal communication, 9 Feb 2020). 

Although there are good arguments against using a modelled settlement layer to mask gridded 

population estimates because this tends to omit small rural settlements and remote households 

(Stevens et al., 2015), use of the new Maxar, Digital Globe, Ecopia building footprints layer might 

be sufficiently accurate to do just this. If buildings made from traditional materials are reflected in 

the dataset, then building footprints could be used to create a 100 metre by 100 metre mask to 

constrain the Random Forest model, or to set Random Forest outputs to zero before 

dasymetrically reweighting with the input population counts. This would mean that only cells 

containing buildings would be attributed population, and that cell-level population estimates 

would still sum to the total population of the input unit. However, the use of building footprints as 

a covariate might not, alone, address cell-level inaccuracies within urban areas. 

A third recommendation is to create 100 metre by 100 metre population training datasets that 

could be incorporated with other training data during the Random Forest modelling phase of 

WorldPop-RF / WorldPop-Global workflow. This would help to address the third issue driving cell-

level inaccuracies, which is that Random Forest models generally do not have sensible population-

per-hectare densities to predict population densities accurately in 100 metre by 100 metre cells 

within cities. The training datasets might be simulated, like the one I created in Chapter 3, or they 

might come from existing household survey enumerations. For example, World Bank LSMS 

surveys record household size and household latitude-longitude coordinate for every household 

in every sampling unit (i.e., cluster/PSU) during the mapping-listing activity before drawing a final 

sample of households (M. Wild, personal communication, July 2019). While household 
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geolocations are quite sensitive data and are never shared, aggregation of population counts to 

100 metre by 100 metre grids cells by the data collection team, would produce an anonymised, 

non-sensitive dataset. Even if these densities are only available for a sample of locations, they 

would provide the Random Forest model with more accurate maximum population values in 100 

metre by 100 metre cells, as compared to administrative-level averages. Recent communication 

with the World Bank indicates their openness to producing and sharing this type of information 

from LSMS surveys (M. Wild, personal communication, July 2019). 

Addressing the ecological fallacy in the WorldPop-RF / WorldPop-Global workflow by 

incorporating training data from smaller areas, and adding fine scale spatial covariates to the 

Random Forest model that are correlated with variation in urban population density, would 

together likely improve the accuracy of gridded population estimates and subsequent gridded 

population surveys. Further evaluation of these recommendations ought to be a priority for teams 

using the WorldPop-RF / WorldPop-Global modelling workflow. 

4.5.3 Decision: Gridded population sample frame scale in this thesis 

The analyses in this chapter indicate that aggregating existing WorldPop-RF / WorldPop-Global 

gridded population estimates to 300 metre by 300 metre grid cells or larger in a setting similar to 

Khomas, Namibia is the best available choice for fieldwork. Results indicate that areas which are 

at least 300 metres by 300 metres contain +/- 20% the true population distribution in urban areas, 

and +/- 10 people per hectare in rural areas. However, the results also indicate large errors in 

urban cell-level estimates, which could be addressed by stratifying samples or analyses along 

urban/rural boundaries. In the next chapter, I limit the analysis to urban Khomas, and choose a 

method to aggregate gridded population estimates into units larger than 300 metres by 300 

metres for household survey sampling.  
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Chapter 5: Sampling 

5.1 Overview 

The accuracy of household survey sample data is dependent on the accuracy of the sample frame 

from which it was drawn. Biased estimates of indicators can have major economic and political 

implications if survey data are used for decision-making and resource allocation. Thus, this 

chapter explores the effect of sample frame choice on accuracy of survey results. Specifically, this 

chapter explores whether sampling from an outdated or inaccurate census sample frame is 

better, the same, or worse than sampling from a WorldPop-RF / WorldPop-Global gridded 

population dataset derived from that underlying outdated or inaccurate census. 

5.1.1 Research Questions 

Research Question C: Can a gridded population sample frame be used to select a representative 

sample of the population under realistic scenarios of outdated, inaccurate census input data? 

Research Question D: Do gridded population samples more accurately represent poor and 

vulnerable households compared to equivalent census-based samples, under realistic scenarios of 

outdated, inaccurate censuses? 

5.2 Background 

5.2.1 Typical sampling: High income countries 

The methods considered typical in household surveys today were initially established in high 

income countries (HICs) and later adopted in low- and middle-income countries (LMICs). The first 

recorded systematic collection of household-level data began at the end of the 18th century in 

England, Saxony, Prussia, Belgium, and the United States, and the earliest generalizations about 

household characteristics from these types of data began in the middle of the 19th century (Grosh 

and Glewwe, 2000). Is was not until the 1920s, however, that probability-based statistical 

theories, at the heart of modern household survey statistics, were developed.  

Groves (2011) describes “three eras of survey research” that ensued in HICs (Groves, 2011). The 

first of which was the era of invention from 1930 to 1960 during which all of the basic methods 

and tools still used in household survey sampling were established. At the start of this era, 

Neyman (1934) published a seminal article about the use of probability-based sampling to 
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generate unbiased estimates and measurable sampling errors. During this era, area-based sample 

frames (e.g., counties, census geographic units), stratification, and multistage sampling methods 

were all developed (Groves, 2011) and applied by governments in the US and Europe to monitor 

household welfare and poverty throughout the great depression and after World War II (Grosh 

and Glewwe, 2000; Groves et al., 2009). Until 1960, most household surveys were paper-based, 

with face-to-face interviews conducted mainly by women or mailed questionnaires, and response 

rates were generally over 90% (Groves, 2011). 

Groves (2011) describes the 1960s through the 1980s as the era of expansion. This is when 

computerized data processing become available to governments, academia, and the private 

sector, and when most private homes in HICs acquired a landline telephone (Groves, 2011). 

During the 1960s, mechanical punch-card readers made it possible to process paper-based survey 

responses rapidly, and Computer Assisted Telephone Interviewing (CATI) technologies along with 

random digit dialling made household surveys possible to implement at much reduced costs 

(Groves, 2011). As survey research evolved, cluster-based sampling rather than strata-based 

sampling became common place, and an improved understanding of response bias due to 

question wording and question order improved the quality of questionnaires (Groves, 2011).  

During this era, governments across HICs invested in large-scale health, economic, and opinion 

surveys at home and abroad. Eurobarometer, a public opinion survey conducted across Europe, 

was established in 1973 consisting of approximately 1000 face-to-face interviews per country, 

supplemented with telephone surveys; nine Western European countries were initially covered 

and today the survey covers 27 European Union member countries (European Commission, 2008). 

In 1982, countries from across Europe began the process of harmonizing their national Labour 

Force Surveys, many of which were established in the 1960s (Eurostat, 2018). In 1984, the 

International Social Survey Programme was founded when four existing survey programmes from 

the US, Great Britain, Germany, and Australia merged; the ISSP survey is now conducted in some 

57 countries across Europe, Asia, South America, Oceania plus South Africa using a range of 

survey modes (Skaarhoj, 2018). Also in 1984, the US Centers for Disease Control and Prevention 

launched the Behavioral Risk Factor Surveillance System survey in 15 US states to collect health 

information, and this annual phone survey continues today with coverage of all 50 US states and 

the District of Columbia (CDC, 2014). In addition to the explosion of household survey 

programmes in HICs, governments in North America and Europe began to sponsor large-scale 

household surveys in LMICs, which I will discuss next. 

However, by the 1980s, typical survey methods in HICs began to pose new challenges. Foremost, 

phone-based surveys were becoming problematic as respondents grew less tolerant of unplanned 
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calls and long questionnaires. Non-response rates and incomplete questionnaires became a new 

concern for survey researchers. The use of post-stratification weighting became common place to 

adjust for incomplete responses, and formal statistical models were proposed to adjust for 

incomplete coverage of sample frames and for large non-response rates (Rubin, 1987). Until this 

point, most surveys were cross-sectional, meaning that respondents were enrolled at one point in 

time. However, longitudinal surveys, meaning surveys that enrol respondents over a period of 

time and collect multiple survey measurements, were introduced during this period. 

According to Groves (2011), the 1990s through the present represents the third era in survey 

research described as “designed data” supplemented by “organic data.” In this era, face-to-face 

household surveys declined substantially in HICs, and are now limited mainly to the first wave of 

data collection in longitudinal surveys. Cross-sectional surveys now tend to rely on a mix of mail, 

phone, and internet-based samples, with internet surveys drawing from volunteer panels. None 

of these sample modes are particularly representative of the population. As mobile phones have 

become ubiquitous, landline phones represent an increasingly middle- and upper-class section of 

older residents, and surveys from mobile phone numbers make households difficult to track, 

because mobile phones are usually associated with an individual rather than a household (Groves, 

2011). For these reasons, survey researchers have, in recent years, turned to the use of organic 

data, generated passively by the general population and collected via internet scraping, social 

media aggregation, and other methods, to supplement imperfectly designed survey data (Groves, 

2011). 

It was during the second era, the era of expansion, that HICs began to invest in large-scale survey 

programmes in LMICs, and the trajectory of survey research methods in HIC and LMIC contexts 

diverged. Throughout the 1970s, countries around the world prioritized investments in primary 

healthcare, specifically investing in basic maternal, reproductive, and child health at local health 

centres and via community health worker programmes (Rohde et al., 2008). These efforts 

culminated in the signing of the Alma Ata declaration by 134 countries, 67 international 

organizations, and numerous non-governmental organizations in 1978. The declaration prioritized 

primary healthcare “based on practical, scientifically sound and socially acceptable methods and 

technology made universally accessible through people’s full participation and at a cost that the 

community and country can afford” so that everyone globally would have access to basic 

healthcare by the year 2000 (Rohde et al., 2008). This shaped the focus of LMIC surveys. 
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5.2.2 Typical sampling: Low- and middle-income countries 

As HICs scaled up funding for development in LMICs, they also scaled up funding of nationally-

representative household survey programmes to fill a gap in data to monitor health needs and 

progress. A timeline of all major demographic, health, and economic survey programmes in LMICs 

sponsored by HICs is presented in Figure 31. In the 1970s, few LMICs had fully functioning vital 

registration systems or data from health systems; furthermore, few LMICs had existing household 

surveys to fill this information gap. India was among the first and only LMICs to establish a 

nationally-representative household survey programme, which launched in 1950 and continues 

today (Katyal et al., 2013). In 1972, the United Nations (UN), International Statistical Institute, and 

International Union for the Scientific Study of Population joined forces to launch the five-year 

World Fertility Surveys (WFS) in several LMICs (International Statistical Institute, 1973). The WFS 

used an area-based sample frame, two stages of sampling (small areas, then households), and 

interviewed women of reproductive age about fertility, child mortality, and family planning. In 

1975, the US Centers for Disease Control and Prevention (CDC) and the US Agency for 

International Development (USAID) collaborated to launch the Contraceptive Prevalence Survey 

(CPS) programme using a similar sample design, which evolved into the Family Planning and 

Maternal Child Health Survey (FP-MCH) when additional questions about breastfeeding, 

immunizations, health, and mortality where included (Lewis, 1983).  

 

 

Figure 31. Timeline of household survey programmes in low- and middle-income countries 
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Meanwhile, the CDC and World Health Organization (WHO) each conducted household surveys 

focused on immunizations during smallpox and other vaccination campaigns starting in the 1970s 

(Morris, 2000). The vaccination coverage surveys, however, used non-probability sample designs, 

including the “30x7” quota design in which 30 small areas were sampled, and then seven 

households with young children were identified and interviewed using a random-walk or spin-the-

pen method (Henderson and Sundaresan, 1982). In these quota designs, non-responding and 

absent households were not tracked, and then they were replaced with a neighbouring household 

preventing statistical adjustments for bias using sample weights. The further use of the random-

walk or spin-the-pen methods, in which fieldworkers decided which households to sample, 

introduced potential bias from interviewers avoiding undesirable households (Grais, Rose and 

Guthmann, 2007; Cutts et al., 2016). It would take years before strong critiques of these 

household survey methods took hold. Initially, household surveys in LMICs provided 

unprecedented information to international donors and national governments alike. Though, 

despite efforts, by 1985, less than 25% of all LMICs, and only about 6% of Sub-Saharan Africa’s 

population, had reliable data about household health or wellbeing (Grosh and Glewwe, 2000). 

The mid-1980s saw a surge in new survey programmes and a large increase in the number of 

LMICs conducting household surveys. In 1982, CDC replaced the FP-MCH survey with the 

Reproductive Health Survey (RHS), and in 1985, they launched a version of the RHS tailored to 

women and men age 15 to 24 called the Young Adult Reproductive Health Survey (YARHS) 

(Morris, 2000). In 1984, USAID launched a follow-on programme to the WFS called the 

Demographic and Health Survey (DHS) which is still in operation today, expanding the WFS about 

fertility, family planning, and child mortality to also include questions on health and nutrition 

(Boerma and Sommerfelt, 1993). In 1985, the World Bank launched the Living Standards 

Measurement Survey (LSMS) also still in operation today with questions about household 

consumption, income, employment, housing conditions, and health (Grosh and Glewwe, 1995). By 

1995, nearly all countries worldwide had had at least one national demographic, health, or 

economic survey (Figure 32). 
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Figure 32. Coverage of at least one national household survey, by decade  

 Source: GHDx database (IHME, 2020). Dark green indicates coverage. 

 

Still, large data gaps about health and wellbeing existed in the 1990s. Following the 1990 World 

Summit for Children, the UN Children’s Emergency Fund (UNICEF) assessed available data on child 

health indicators across 99 countries and found that most survey data were too outdated to be 

useful (e.g., a DHS has been conducted more than five years earlier) or that existing surveys 

lacked important indicators (e.g., school enrolment, Vitamin A supplement, stunting) and/or did 

not cover children over the age of five (UNICEF, 2015). In fact, the only data widely available 

about child health in 1995 in LMICs was immunization coverage, mainly from EPI surveys (UNICEF, 

2015). Thus, in 1995, UNICEF launched the Multiple Indicator Cluster Surveys (MICS) which 

covered nutrition and education indicators in children up to age 15, fertility and reproductive 

health of women, and household living conditions (UNICEF, 2015). Given substantial overlap in 

the target populations and content of the DHS and MICS, the two programmes have coordinated 

to ensure, for the most part, that their surveys are not conducted in the same countries, and 

today two-thirds of the questions in their questionnaires are identical or can be directly compared 

(Lisowska, 2016).  
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The 1990s saw a rise in biometric data collection in LMIC national household survey programmes. 

This is because as LMICs urbanized, the double burden of infectious and chronic diseases rose 

(Marshall, 2004; Bygbjerg, 2012). The WHO introduced the STEPS Adult Risk Factor Surveillance 

surveys in 2002 with methods to administer a questionnaire and take both physical and 

biochemical measurements from a sample of adults (Riley et al., 2016). In the late 1990s, the DHS 

added several new modules to its standard questionnaire to respond to changing health needs, 

including blood sample collection to test for anaemia, malaria, HIV, and other key conditions, a 

domestic violence module, and calculation of a widely used assets-based wealth index (Fabic, Choi 

and Bird, 2012). Following the establishment of the Global Fund to Fight AIDS, Tuberculosis and 

Malaria in 2002, which has since provided billions of pounds in health funding to LMICs, shorter, 

topic-specific versions of the DHS have been implemented in select countries to monitor targeted 

indicators: the Malaria Indicator Survey (MIS) and AIDS Indicator Survey (AIS) (Fabic, Choi and 

Bird, 2012). 

Today the DHS, MICS, and LSMS are the main sources of demographic, health, and economic data 

collected in LMICs. The EPI programme is still highly active, and in 2015, it underwent a major 

transformation and adopted probability-based sampling methods like those used in DHS, MICS, 

LSMS, and others (WHO, 2018). STEPS data are also still routinely collected today, though not in 

as many countries as DHS, MICS, and LSMS, and the STEPS datasets are rarely released publicly. 

Thus, the remainder of this chapter will focus on the DHS, MICS, and LSMS programmes. 

The DHS, MICS, and LSMS programmes collectively cover more than 130 countries. Nearly 70 

countries have participated in two of the three survey programmes, and 19 countries have 

participated in all three of the survey programmes (Development Initiatives, 2017) (Table 26). 

Survey sample sizes across all programmes are driven by the number of subnational areas (e.g., 

provinces, districts) and sub-populations (e.g., urban/rural) to be represented in the final results. 

All of these survey programmes adhere to the sampling methods and designs introduced in the 

1970s and 1980s: two- or three-stage cluster sampling from small geographic areas – generally 

census enumeration areas from the last census – with household listing based on hand-drawn 

maps, and face-to-face interviews from a sample of selected households (Grosh and Munoz, 1996; 

ICF International, 2012a; UNICEF, 2013). Each of the survey programmes includes roughly a dozen 

modules with hundreds of questions, and each interview takes several hours to conduct. The 

number of households sampled in DHSs, MICSs, and LSMSs vary widely by country and year, and 

have generally increased over time with the need for further disaggregated national statistics. 

DHS surveys, for example, range from just over 2,000 households in the 1998-99 Cote D’Ivoire 

survey (INS and ORC Macro, 1999), to over 600,000 households in the 2015-16 India survey (IIPS 

and ICF International, 2017). 
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Table 26. Summary of DHS, MICS, and LSMS household survey coverage and sample designs 

Survey Programme &  

Years 

Countries & Surveys  

by Dec 2018 

Coverage & 

Strata 

Sample Frame & 
Target Population 

DHS, 

1985-present 

86 countries 

272 surveys 

(DHS Program, 2019) 

National by province 
or district 

Census,  

All women age 15-49 

LSMS, 

1985-present 

37 countries 

108 surveys 

(World Bank, 2018) 

National by province 
or district 

Census, 

Households 

MICS, 

1995-present 

 

64 countries 

293 surveys 

(UNICEF, 2019) 

National by province 
or district, or 
province only 

Census,  

One woman age 15-
49 

 

Household surveys in LMICs have not undergone the changes experienced in HICs toward mail, 

phone, or internet based surveys because a large portion of households in LMICs still lack a 

mailing address, phone, or the internet. Although access to mobile phones and the internet are 

increasing rapidly, huge disparities exist between and within LMICs. The International 

Telecommunications Union estimates that there are 75 mobile phone subscriptions per 100 

people across Africa, with a range of 12 (Angola) to 162 (Senegal) subscriptions per 100 people 

(International Telecommunications Union, 2018). Subscription counts per population cannot be 

interpreted as percent coverage, as some people own multiple phone subscriptions, and many 

others have none. Those who do not have a mobile phone subscription are overwhelmingly the 

poorest, experience the worst health outcomes, and face the most barriers to accessing services 

(Jennings et al., 2015). Thus, use of random digit dialling to mobile phones is not recommended 

for survey sampling in LMICs (Gibson et al., 2017). However, use of mobile phones to follow 

participants and collect data in longitudinal surveys when a mobile phone is provided at no cost in 

an initial face-to-face interview can be effective. This approach has been tested with success by 

the World Bank for a household living conditions surveys in select countries with reliable mobile 

phone service, though it is worth noting that a traditional area-based sample frame is still used to 

identify an initial sample of households in these surveys (Dabalen et al., 2016). Perhaps the 

greatest innovation in LMIC household surveys since they began is the use of modelled gridded 

population datasets as a sample frame in countries with outdated or inaccurate census data. This 

is the focus of the rest of this chapter. 
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5.2.3 Probability theory and survey design characteristics 

Throughout the evolution of typical household surveys, important theories and survey design 

characteristics emerged. I briefly summarize key ideas and approaches that developed in the field 

before introducing the emerging field of gridded population sampling. 

Probability sampling. A “good” sample is not biased, meaning that it represents a microcosm of 

the population, or universe, from which it was drawn. Probability sampling means that every unit 

in the population (e.g., household) has a known, non-zero probability of being sampled before the 

sample is drawn (Lohr, 2009). Random selection is a necessary condition for a probability sample 

because it prevents conscious bias. Non-randomised sampling, for example purposefully selecting 

units from the population, or sampling units that are convenient, might also have non-zero, 

known probabilities of selection, but the lack of randomisation can lead to bias.  

Simple random sampling. A simple random sample is the most basic form of a randomized 

sample. In a simple random sample we make a list of all units in the population, and select a set 

number of units at random with or without replacement. 

Stratification. Strata refer to non-overlapping groups that comprise the entire population (Lohr, 

2009). Operationally, to stratify is to select an independent sample in groups within the 

population. Stratification is used for one or more of the following reasons.  

First, to ensure representation of important groups in the sample (Lohr, 2009). For example, in 

most countries, urban and rural population have very different characteristics, risks, and 

outcomes. It is possible that, by chance, no households are sampled from one of the groups (i.e., 

urban or rural) in a given random sample of households. Stratification calibrates the sample by 

ensuring a specified number of units are sampled from each group, reducing the probability that 

any one draw will result in an unlucky, unrepresentative sample. 

Second, stratification is used to achieve a set level of precision in the estimates for each group 

(Lohr, 2009). This is useful if we want to compare group characteristics in the population. In our 

example of urban and rural households, stratification on urban/rural could ensure that an 

estimate for urban households has similar precision as estimates for rural households. 

A third reason to use stratification is feasibility of implementing the survey (Lohr, 2009). In 

national household surveys, it is often logistically more feasible and cost effective to have 

state/provincial statistical offices administer the survey, so administrative units would be used to 

stratify the national sample. 
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Finally, stratification can increase the statistical power of a sample if the units within each stratum 

are more similar to each other than to units in the rest of the population (Lohr, 2009). Statistical 

power is gained when the variance of indicators within each stratum is lower than the variance of 

indicators in the population overall. 

Household surveys often stratify on urban/rural and by first or second administrative region for all 

of these reasons: to ensure coverage, increase precision for group comparisons, facilitate 

implementation, and to increase statistical power, especially in countries with major regional 

population differences.      

Multi-stage cluster sampling. Every time that all units in a population are listed and then 

sampled, we call this a stage of sampling. Multi-stage sampling refers to surveys where more than 

one list is created and sampled, for example, a list and a sample of enumeration areas, followed 

by a list and a sample of households (see Figure 33). The first set of samples is referred to as the 

primary sampling unit (PSU), the second set of samples is called the secondary sampling unit 

(SSU), and so on. Multi-stage sampling is used for two reasons.  

First, because a list, or sample frame, of the units that the survey team wishes to sample does not 

exist (Lohr, 2009). Until recently, many census agencies did not have a complete list of households 

with geo-coordinates or unique address locations by which to locate households for interviews 

(UNFPA, 2019), and even in the upcoming 2020 census round, many LMICs will not have these 

data in a format suitable for a household survey sample frame. Thus, the smallest administrative 

unit for which population counts are recorded by census – usually enumeration area (EA) – are 

used as the first-stage sample frame. Then a second list of households is developed for each 

sampled EA (i.e., cluster, PSU), and sampled. Even in countries with a full geo-located list of 

households, survey planners would likely not use it because it would be outdated by the time of 

survey fieldwork.   

The second reason to use multi-stage cluster sampling is feasibility of implementing the survey 

(Lohr, 2009). A simple random sample of households in a province or country would simply cost 

too much money and time to justify, as interviewers would need to travel potentially long 

distances between each sampled household. Cluster sampling enables field teams to plan logistics 

in one village or neighbourhood for several days at a time. 

More than two stages of sampling can be performed; in countries with highly aggregated census 

population counts, or countries with extremely long EA sample frames, survey teams may sample 

a higher-level administrative unit, such as district, first, then sample smaller areas, before 

sampling households (e.g., (MINSALUD and Profamilia, 2015)). 
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Figure 33. Depiction of select survey sampling concepts 

 

Area-microcensus. This is not a term widely used by survey statisticians, but I use it throughout 

this thesis to refer to single-stage cluster surveys in which all households are sampled in a small 

area. The term “census” indicates that there is no further listing and sampling steps (Figure 33). I 

specify “area”-microcensus to differentiate the concept from other uses of the term 

“microcensus.” Census agencies use the term “microcensus” to both refer to a census of all 

residents in a small area (e.g., Alba, Muller and Schimpl-Neimanns, 1994), as well as a census of all 

residents in a sample of households (e.g., Meraner, Gumprecht and Kowarik, 2016). 

Segmentation. Segmentation is a step performed in the field when a sampling area (i.e., cluster, 

PSU) is found to have far more people than expected, for example, due to a new housing 

development or emergence of a slum. In surveys such as DHS, MICS, and LSMS that perform full 

household listings before sampling households, there are usually not enough resources and time 

allocated to list more than 200 to 300 households per PSU. Thus the mapping-listing team divides 

the area into two or more approximately equal-sized segments, and randomly selects one 

segment to represent the PSU (ICF International, 2012a). As long as the segments have 

approximately equal population totals, probability of household selection can be calculated by 
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recording the number of segments (because number of households in the listed segment, 

multiplied by the number of segments, equals approximately the number of households in the 

originally sampled EA). Segmentation is considered an additional stage of sampling if it is 

performed in every unit as part of the sample design (e.g., early MICS surveys (UNICEF, 2000); 

however, it is treated as a separate step when performed ad-hoc in large sampling units in the 

field (e.g., DHS (ICF International, 2012a)). 

Oversampling. Oversampling means that the sample size is boosted in part of the population. In 

countries with majority rural populations, it is routine to oversample urban areas if there are not 

enough resources to stratify by both administrative unit and urban/rural areas. The purpose of 

oversampling, in this case, is to produce a sufficient sample size in the smaller important sub-

group to generate precise estimates at the national level (ICF International, 2012a). In HICs, some 

health surveys oversample geographic regions where minority groups tend to live to boost the 

sample size of racial, ethnic, LGBT, and other sub-populations (Chen and Kalton, 2015; Anderssen 

and Malterud, 2017). 

Although rarely practiced in human population surveys, another reason to oversample is to 

ensure spatial coverage of the sample. This type of oversampling is more common in 

environmental and animal population surveys (Kermorvant et al., 2019), though could be useful in 

human population surveys to improve errors of small area estimates generated with household 

survey data (Dana R Thomson, Rhoda, et al., 2020). 

Design effect. Stratification, cluster sampling, oversampling, and other complex survey designs 

modify the precision of household survey estimates. The design effect quantifies the difference in 

precision in a given survey's estimates compared to a hypothetical simple random sample of the 

same size (Lohr, 2009). The design effect varies by indicator, depending on the variability and 

pattern of dispersion of that indicator in the population. Thus, survey implementers often report 

the design effects (DEFFs) or square root of the design effects (DEFTs) of key indicators with their 

survey results. Design effect can be interpreted as a factor by which to increase the sample size 

calculated for a simple random sample to achieve the target level of precision in a sample drawn 

with a complex design (e.g., 95% confidence level). The planners of household survey review past 

surveys which used a similar sample design in a similar context, and use reported DEFFs/DEFTs to 

calculate sample size requirements for key indicators. 

Coverage error. An ideal sample frames includes all units of the target population (e.g., census 

EAs) such that the units are exhaustive, non-overlapping, and uniquely identifiable; however, 

perfect frames are rare (Kish, 1965; UN, 1982). Known problems in population sample frames 

include under-coverage and over-coverage, and can occur at each stage of sampling. Under-
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coverage means that units which are missing from the frame (e.g., EAs in a disputed territory), but 

might be supplemented from a different sample frame and treated as a separate stratum (Kish, 

1965). In the case that two combined frames overlap (over-coverage), the overlapping units in 

one frame can be weighted by the proportion of non-overlapping area, essentially subtracting 

duplicate populations in the combined frame (Kish, 1965). Under-coverage can also occur when 

the auxiliary information (e.g., population size) associated with each sample frame units (e.g., 

census EAs) are differentially too small (or large) in some units due to an outdated sample frame 

(UN, 1982). In practice, this is sometimes addressed by conducting pre-survey field enumerations 

in units that are known to have experienced substantial population change since the sample 

frame was developed (e.g., EAs in and around cities) (UN, 1982).  

Under- and over-coverage can also occur during survey implementation if areal unit boundaries 

are not identified accurately in the field, resulting, for example, in a unit not being fully 

enumerated, or a field enumeration extending incorrectly beyond the unit boundary (UN, 1982). 

Coverage errors also occur at the household- or individual-level because a household has recently 

moved, or an individual moved between households. These coverage errors can be minimised 

with field protocols and strict definitions of the household and its members (e.g., usual residence 

(dejure) versus presence at time of survey (defacto)) to minimise the chance that any one person 

or household can be counted more than once (UN, 1982). An error increasingly common in cities 

today is under-coverage of individuals or households living in atypical dwellings (e.g., shops) 

because data collectors were not provided a protocol to identify these households (Thomson et 

al., 2021). 

Non-response error. Non-response error occurs when an individual refuses to participate in a 

survey, is unavailable or unable to participate in the survey (e.g. not at home, unwell), or stops 

responding part-way through the survey (Kish, 1965). Usually survey protocols require several 

follow-up visits to households that were unavailable to minimise this type of non-response error. 

It is important to document, as best as possible, all eligible respondents and the specific reason 

for non-response (e.g., refusal, unavailable, incomplete survey) so that the effects of different 

types of non-response on sample results can be assessed (Kish, 1965). The number of 

respondents completing a survey divided by the number of eligible respondents is called the 

“response rate.” 

There might be systematic geographic or social patterns in non-response rates (e.g., urban 

residents are less likely to be home during the day and more sceptical about answering the door 

for strangers than rural residents). Geographic patterns in non-response are easier to assess 

because we often have geographic information about the non-responding households, and can 
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compare the geographic distribution of non-responding households to those who responded. 

However, non-response that follows social patterns (e.g. household wealth status) is difficult to 

assess because we do not typically have social data about the non-responding households to 

compare with respondents.  

Sample probability weights. If the probability of selection for each unit in the population is equal 

and non-response occurred completely at random, we call this a self-weighting sample. In 

practice, surveys are rarely, if ever, self-weighting. Most surveys use a combination of 

stratification, oversampling, and segmentation which results in some households having a greater 

probability of selection than others, and essentially all surveys will face some level of non-

response. Furthermore, unequal population growth since the last census (e.g., due to different 

birth rates or migration) will mean that the number of households observed in the field at the 

time of survey differ from the counts made in the last census, and used to select PSUs. 

In this case, we calculate and apply a weight for each unit (e.g., household) in the sample to make 

unbiased estimates about the population. The sample weight for each unit (𝑖) is the reciprocal of 

the probability that the unit was selected (𝜋𝑖) (Kish, 1965): 

𝑤𝑖 =
1

𝜋𝑖
 

In household surveys, sample weights account for the selection probability of the stratum (if 

samples were not allocated proportionally to strata population totals), the selection probability of 

a PSU (usually an EA population count), the selection probability of a household within the PSU 

(based on a field listing of all households in that PSU), and PSU and household response rates. A 

household survey sample weight would thus be calculated as: 

𝑤𝑖 =
𝐻𝑘

𝑛𝑘  × ℎ𝑗𝑘
 ×

𝑀𝑗𝑘

𝑚𝑗𝑘
 ×  𝑏𝑗𝑘 ×

𝑛𝑘

𝑛𝑘∗
 ×

𝑚𝑗𝑘

𝑚𝑗𝑘∗
 

Where: 

 𝐻𝑘 is number of households in stratum 𝑘 according to the sample frame 

 ℎ𝑗𝑘 is the number of households in PSU 𝑗 according to the sample frame 

 𝑛𝑘 is the number of clusters sampled in stratum 𝑘 

 𝑛𝑘∗ is the number of sampled clusters that were found and visited in stratum 𝑘 

 𝑀𝑗𝑘 is the number of households enumerated in PSU 𝑗 in stratum 𝑘 during fieldwork 
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 𝑚𝑗𝑘 is the number of sampled households in PSU 𝑗 in stratum 𝑘 

 𝑚𝑗𝑘∗ is the number of sample households that responded in PSU 𝑗 in stratum 𝑘 

 𝑏𝑗𝑘 is the number of equal-sized segments created in PSU 𝑗 in stratum 𝑘 

 

Non-probability sampling. Non-probability sampling means that the probability of being sampled 

is unknown for each unit in the population (Lohr, 2009).  

Convenience / purposeful sampling. The most obvious non-probability sample is one in which 

randomisation is not applied. For example, by sampling the households of people that you already 

know, or households along major roads, neither would provide data that could be generalized to 

the population. 

Random-walk and spin-the-pen. Random-walk and spin-the-pen are field methods designed to 

randomly sample households in a PSU. In a random-walk, the interview team starts at a main 

street or intersection, and follows a strict pattern of left and right turns, skipping a set number of 

buildings or dwellings between interviews (UNICEF, 2000). Similarly, spin-the-pen literally means 

that the field team spins a pen to randomise the direction of their walk after each interview 

(Grais, Rose and Guthmann, 2007). If implemented strictly, random-walk and spin-the-pen can 

result in a random selection of households in a given PSU. However, these methods result in a 

non-probability sample because the probability of household selection is unknown without the 

full enumeration of all households in the PSU. In practice, survey teams that use these methods 

often apply sample probability weights to adjust for stratification and oversampling in earlier 

stages of the sample.  

Random-walk, spin-the-pen, and other types of randomized field-based household selection 

methods are harshly criticised for their susceptibility to conscious and unconscious bias by 

fieldworkers to avoid undesirable households, which can lead to systematic bias toward middle-

class or accessible households (Grais, Rose and Guthmann, 2007; WHO, 2018). 

Quota sampling. In quota sampling, the population is divided into groups and a target number of 

samples is set for each group before sampling (Lohr, 2009). In LMIC household surveys, quota 

sampling is often combined with random-walk or spin-the-pen methods; for example, in old EPI 

surveys, a quota of seven children between certain ages was set (Henderson and Sundaresan, 

1982). The field protocol was to continue the random-walk/spin-the-pen method until the set 

number of households were identified and interviewed to meet the quota. Not only was this 

problematic because the sample probabilities of sampled households could not be known, the 
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protocol also ignored eligible households that refused or were unavailable, biasing the survey 

toward the types of households who were at home at the time of interview and responded (WHO, 

2018). 

5.3 Gridded population sampling 

The rest of this chapter is focused on gridded population surveys, defined as any sample drawn 

from a gridded population sample frame. 

5.3.1 Literature review 

To identify existing gridded population surveys, I conducted a literature review in Scopus using 

the terms: (“gridded” OR “landscan” OR “worldpop” OR “gpw” OR “ghs-pop” OR “hrsl” OR “wpe” 

OR “demobase”) AND (“population” OR “household”) AND “survey.” This resulted in 65 potential 

articles as of May 2019. I screened all article abstracts and retained any that referred to sampling 

of human populations, resulting in 13 publications. I performed a full-text review of all screened 

articles and reports, and retained six that described a method, tool, or survey sampled from 

gridded population data. I additionally solicited colleagues for additional reports, websites, and 

articles describing a gridded population survey method or implementation, resulting in six 

additional resources (Figure 34). 
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Figure 34. Gridded population survey literature review workflow and results 

  
 

This literature review resulted in 13 articles and reports describing 37 gridded population surveys 

across 22 LMICs and 3 HICs. The surveys in LMICs spanned Asia (Bangladesh, India, Indonesia, 

Myanmar, Nepal, Thailand, Vietnam), the Middle East (Iraq), Africa (DR Congo, Ghana, Kenya, 

Ivory Coast, Mozambique, Nigeria, Rwanda, Somalia, Tanzania, Togo, Uganda), and Latin America 

(Brazil, Colombia, Guatemala) (Table 27). Three documents described tools or methods for 

selecting gridded population survey clusters (Muñoz and Langeraar, 2013; Thomson et al., 2017; 

Chew et al., 2018) (Table 27). Although gridded population surveys have been conducted in three 

HICs (Greece, Italy and Slovenia), they are not reported here.  

Twenty-four of the 37 surveys had national coverage with 100 to 405 clusters each (Table 27). The 

first national gridded population survey was conducted in Iraq in 2011 by an academic team 

evaluating mortality rates in collaboration with Iraqi government officials (Galway et al., 2012; 

Hagopian et al., 2013). This survey followed a two-stage design from LandScan-Global 1 kilometre 

by 1 kilometre grid cells, with a random-walk to identify households in the field to minimize risks 

for fieldworkers (Galway et al., 2012; Hagopian et al., 2013). The firm RTI supported a commercial 
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client to design and implement 12 national surveys and 1 sub-national survey across 11 countries 

in approximately 2014 and 2015 (year not reported) using a two-stage sample design based on 

LandScan-Global 1 kilometre by 1 kilometre grid cells, where an area-microcensus of eligible 

households was performed in the secondary sampling units (Cajka et al., 2018). The company 

Gallup used gridded population sample frames in 10 LMIC and 3 HIC World Polls in 2017, 2018, 

and 2019 (with additional gridded population surveys planned for 2020) using WorldPop-RF 100 

metre by 100 metre estimates for the first or second stage of sampling, and a random walk in the 

field to identify households (Gallup, 2017b). 

Most sample frames in early gridded population surveys were derived from LandScan-Global 1 

kilometre by 1 kilometre estimates, however most of the recent gridded population surveys 

derived sample frames from WorldPop 100 metre by 100 metre estimates (Table 27). Nineteen 

surveys performed an area-microcensus of households, 12 used a random-walk or spin-the-pen 

method to sample households in the field, and three subnational surveys performed a full 

household listing and sampling activity (Table 27). 

A fundamental difference between census and gridded population data is that census EAs are 

each comprised of approximately the same number of people within varying sized areas, while 

grid cells are essentially uniform in area but vary widely in population. Household survey sampling 

methodologies have developed around the concept of small areal units each containing 

approximately the same number of people. Thus, a key challenge in gridded population sampling 

is forming areas of approximately equal population from grid cells. A number of approaches have 

been taken, often depending on whether the survey planner started with LandScan 1 kilometre by 

1 kilometre grid cells or WorldPop 100 metre by 100 metre grid cells. Figure 35 summarises the 

tools used and approaches taken in gridded population surveys to derive sample frame units. 

Ad-hoc GIS Approaches. Many gridded population survey teams developed their own ad-hoc 

approaches to sampling using GIS software, such as ArcGIS.  

 Galway et al. (2012) sampled 1 kilometre by 1 kilometre cells directly with PPS, then 

randomly selected one household in one building and performed a random walk. The 

building was selected by overlaying a mini 10 metre by 10 metre grid (estimated to be the 

average building footprint size), and randomly selecting mini grid cells until the team 

observed a building with satellite imagery (Galway et al., 2012; Hagopian et al., 2013).  

 A similar approach was used by Gallup; the team aggregated 100 metre by 100 metre 

gridded population estimates to larger cells (depending on population density), then 

sampled the aggregated grid cells will PPS, before randomly selecting a building to start a 

random walk in the field (Gallup, 2017b). 
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 Thomson et al. (2012) converted 1 kilometre by 1 kilometre population estimates to 

corresponding numbers of random points per cell, selected points at random, manually 

delineated clusters (within cells) around each selected point over satellite imagery, and 

then performed an area-microcensus in the field.  

 Muñoz and Langeraar (2013) proposed an approach, though it is unclear if a survey 

followed. In this approach, 1 kilometre by 1 kilometre cells were aggregated to 3 

kilometre by 3 kilometre grid cells and sampled with PPS. Next, 1 kilometre by 1 kilometre 

grid cells were combined within selected 3 kilometre cells to achieve a minimum 

population, and then sampled with PPS. The sampled 1 kilometre (or larger) areas were 

manually delineated into segments of approximately 100 households each over satellite 

imagery, and one segment was randomly selected. Finally, households were listed via a 

field mapping-listing activity, and a sample of households was selected. 

 Sollom et al. (2011) joined 1 kilometre by 1 kilometre gridded population estimates to 

rural village point locations and sampled those points with PPS, and then used spin-the-

pen to sample households in the field.  

 Qader et al. (2019) used gridded population estimates to update census EA counts in 

urban areas where EA boundaries were available, and used a quadtree method to create 

different sized grid cells with similar population totals in rural areas. The combined frame 

was sampled with PPS before manually segmenting over satellite imagery and randomly 

selecting one household per segment. 

The tools created for gridded population sampling included the GridSample R package (Thomson 

et al., 2016, 2017), Geo-sampling Tool (Cajka et al., 2018; Chew et al., 2018), and GridSample.org 

(Flowminder Foundation, 2019a), which is based on the GridSample2.0 python algorithm 

(Flowminder Foundation, 2019b) (Table 28). 
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Table 27. Summary of gridded population survey coverage and sample designs identified in the literature review 

Country & Year  

(if reported) 

Design: Coverage, Strata, Stages Cluster & Household 
Sample Size 

Gridded population 
dataset  

Target Population,  

Main topic(s) 

DR Congo 2010 (1) Idjwi Island, none, one-stage area-microcensus 50 clusters, 2078 HHs 2001 LandScan-
Global 

All women age 18-50, 

Maternal and child 
health 

Myanmar 2010 (2) Chin state, urban/rural, two-stage (spin-the-pen) 90 clusters, 720 HHs 2005 LandScan-
Global (rural only) 

Household head age 18+, 

Health, human rights 

Iraq 2011 (3) National, governorates, two-stage (random-walk) 100 clusters, 1960 HHs 2008 LandScan-
Global 

Household head age 18+, 

Mortality 

Bangladesh (4) National, division x urbanicity, two-stage area-microcensus 148 clusters, 3296 HHs 2012-2016 LandScan-
Global 

Adult age 18+, 

topics not reported Brazil (4) National, region x poverty, two-stage area-microcensus 149 clusters, 3652 HHs 

Colombia (4) National, region x poverty, two-stage area-microcensus 152 clusters, 2706 HHs 

Colombia (4) National, region x poverty, two-stage area-microcensus 152 clusters, 3037 HHs 

Ghana (4) National, region x poverty x urbanicity, two-stage area-
microcensus 

151 clusters, 3113 HHs 

Guatemala (4) National, department x urbanicity, two-stage area-microcensus 211 clusters, 3057 HHs 

India (4) Three states, district x urbanicity, two-stage area-microcensus 467 clusters, 10,824 HHs 

Kenya (4) National, province x poverty, two-stage area-microcensus 143 clusters, 3364 HHs 

Nigeria (4) National, region x poverty, two-stage area-microcensus 147 clusters, 3042 HHs 

Rwanda (4) National, province x poverty, two-stage area-microcensus 150 clusters, 3096 HHs 

Thailand (4)  National, region x poverty, two-stage area-microcensus 150 clusters, 3136 HHs 

Thailand (4) National, region x poverty, two-stage area-microcensus 150 clusters, 3275 HHs 

Uganda (4) National, region, two-stage area-microcensus 146 clusters, 3075 HHs 

Nepal 2015 (5) Kathmandu, none, two-stage  90 clusters, 1,310 HHs 
(planned) 

2014 WorldPop-RF Woman age 18+, 

Maternal and child 
health  
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Mozambique 2017 
(6) 

Six districts, district, one-stage area-microcensus 234 clusters, 4998 HHs 2017 WorldPop-RF Caregiver of child age 12-
18, Child health 

DR Congo 2017 (6) Kinshasa, communes, one-stage two-stage area-microcensus 

 

210 clusters, 1,850 HHs Bespoke Household head, 

Food insecurity 

Somalia 2017 (7,8) National, region x urbanicity, two-stage  405 clusters, 6,284 HHs Modified 2015 
WorldPop-LC 

Household head, 

Economic 

Nepal 2017 (6,9,10)  Kathmandu, none, one-stage area-microcensus 30 clusters, 600 HHs 2017 WorldPop-RF Adult age 18+, 

Economic, non-
communicable disease 

Nepal 2017 (6,9,10) Kathmandu, none, two-stage 30 clusters, 600 HHs 

Bangladesh 2018 
(9,10) 

Two communities, community, one-stage area-microcensus 20 clusters, 400 HHs 2020 WorldPop-RF 

Vietnam 2018 (9,10) Long Bien District, none, one-stage area-microcensus 20 clusters, 400 HHs 

Colombia 2017 (11) National, region x urbanicity, two-stage (random walk) 125 clusters, 1000 HHs 2015 WorldPop-RF Adult age 15+, Topics not 
reported Tanzania 2017 (11) * National, region x urbanicity, three-stage (random walk) 400 clusters, 4000 HHs 2015 WorldPop-RF 

Uganda 2018 (11) National, region x urbanicity, two-stage (random walk) 200 clusters, 2000 HHs 2020 WorldPop-RF 

Nigeria 2018 (11) National, region x urbanicity, two-stage (random walk) 300 clusters, 3000 HHs 2020 WorldPop-RF 

Indonesia 2018 (11) National, region x urbanicity, two-stage (random walk) 400 clusters, 4000 HHs 2015 WorldPop-RF 

Colombia 2018 (11) National, region x urbanicity, two-stage (random walk) 400 clusters, 4000 HHs 2020 WorldPop-RF 

Kenya 2018 (11) National, region x urbanicity, two-stage (random walk) 200 clusters, 2000 HHs 2015 WorldPop-RF 

Ghana 2019 (11) National, region x urbanicity, two-stage (random walk) 100 clusters, 1000 HHs 2020 WorldPop-RF 

Togo 2019 (11) National, region x urbanicity, two-stage (random walk) 100 clusters, 1000 HHs 2020 WorldPop-RF 

Ivory Coast 2019 (11) National, region x urbanicity, two-stage (random walk) 100 clusters, 1000 HHs 2020 WorldPop-RF 

1. (Thomson et al., 2012) 

2. (Sollom et al., 2011) 

3. (Galway et al., 2012; Hagopian et al., 2013) 

4. (Cajka et al., 2018) 

5. (Elsey et al., 2016) 

6. (WFP-VAM, 2018; GridSample, 2019) 

7. (Pape and Wollburg, 2019)  

8. (Qader et al., 2019) 

9. (Elsey et al., 2018) 

10. (Dana R. Thomson et al., 2020) 

11. (Gallup, 2017b) 

* Gridded population sample frame used in second stage of sampling 
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Figure 35. Summary of methods used to create gridded population survey sample frame units 

 Adapted with permission from (Thomson et al., 2017) 

 

Table 28. Comparison of sampling tools used in gridded population surveys 

Feature GridSample R Geo-sampling Ad-hoc GIS GridSample2.0 GridSample.org 

Public Yes No Yes Yes Yes 

Free Yes No Some Yes Yes 

Skill level 
required Advanced Advanced Advanced Advanced Basic 

User selects 
the sample 

Yes No Yes Yes Yes 

Gridded pop Any 
LandScan-

Global 
Any Any 

WorldPop-
Global 

Preloaded/ 
provided data No Yes Some No Yes 

Pre-forms 
clusters 

No Yes Some Yes Yes 
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GridSample R package. I released the GridSample R package with colleagues in 2016 (Thomson et 

al., 2016, 2017) which has been used in at least six sub-national surveys (Elsey et al., 2016, 2018; 

GridSample, 2019). The algorithm treats the gridded population dataset as the sample frame and 

selects grid cells with PPS allowing for stratification, oversampling in urban/rural domains, and 

spatial oversampling (Thomson et al., 2017). The GridSample R package runs on a personal 

computer and is limited by the computer’s memory. All datasets must be pre-processed and 

specified by the user, allowing use of any gridded population dataset but also requiring GIS and/or 

R programming skills. The algorithm enables optional “growth” of clusters to a minimum 

population size or maximum area by randomly adding neighbouring cells after selection of “seed” 

cells with PPS. While this process results in clusters with roughly consistent population sizes for 

improved fieldwork, the population counts in the “grown” clusters do not reflect the population 

counts used for sample selection, and thus may skew sample weights (Thomson et al., 2017). The 

output is a shapefile of cluster boundaries, with attributes of estimated population counts.  

Thomson, et al. (2019) used this tool to sample grid cells directly in city-level surveys in 

Bangladesh, Nepal, and Vietnam, whereas Elsey, et al. (2016), World Food Programme VAM unit 

(2018), World Vision International (GridSample, 2019), and Thomson, et al. (2019) "grew" clusters 

to contain 100 to 200 households each for sub-national surveys in Nepal, DR Congo and 

Mozambique. 

Geo-sampling Tool. The Geo-sampling survey tool was created by RTI and used in 13 national and 

sub-national surveys (Cajka et al., 2018). It is designed for use with 1 kilometre by 1 kilometre grid 

cells, and supports a multi-stage stratified sampling approach. After administrative units are 

sampled with PPS, grid cells are sampled with PPS. To improve fieldwork, the team excludes 1 

kilometre cells with fewer than 250 estimated people, potentially biasing the sample toward 

higher-density populations. The sampled grid cells are then partitioned into 150 metre, 100 

metre, or 50 metre grid cells depending on population density. Next, a deep-learning residential 

scene classification model is used with satellite imagery layers to exclude smaller cells without 

settlement, and disaggregate the 1 kilometre by 1 kilometre grid cell population estimates to the 

remaining smaller cells. Finally, three of the smaller cells are selected at random and an area-

microcensus of households is conducted in the field (Chew et al., 2018). The Geo-sampling Tool is 

an in-house RTI product, and clients are provided with a shapefile of the final cluster boundaries 

and population estimates. 

GridSample.org and GridSample2.0. GridSample.org is a free web-based tool released in late 

2019 that runs the open-source GridSample2.0 algorithm that I developed at Flowminder 

Foundation (Flowminder Foundation, 2019a, 2019b). GridSample.org provides a point-and-click 

interface, preloaded datasets, and guidance to enter parameters and select clusters for a gridded 
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population survey. The website leverages gridEZ, a publicly-available algorithm developed by Dr. 

Claire Dooley, to group cells into gridded EA-like clusters with similar population totals before 

sampling (Dooley, 2019). Preloaded datasets include WorldPop-Global 100 metre by 100 metre 

gridded population estimates (WorldPop, 2019), GADM administrative boundaries (GADM, 2015), 

and GHS-SMOD urban/rural boundaries (European Commission, 2017).  

GHS-SMOD is a global model of human settlement types produced by the European Commission 

Global Human Settlement Layer Project based on the project’s gridded population dataset (GHS-

POP) and its model of built areas (GHS-BUILT). GHS-SMOD is formatted as 1 kilometre by 1 

kilometre cells classified as either high-dense urban, low-dense urban, rural, or unsettled/remote 

(European Commission, 2017). In GridSample.org, all surveys are implicitly stratified by level of 

urbanicity based on these four GHS-SMOD classes. GridSample.org also supports stratification and 

spatial oversampling; and custom coverage, strata, or sample frame boundaries can be uploaded 

by users as a shapefile. The website is designed for low-bandwidth settings, running sample 

selection remotely on a super-computer. The user is emailed a shapefile of cluster boundaries, 

excel table with population estimates to calculate sample weights, and a PDF report of survey 

parameters. 

 

Field tools. A range of simple-to-advanced tools have been used to implement gridded population 

surveys. Lower-tech field tools included use of paper maps displaying cluster boundaries over 

satellite imagery produced in Google Earth, and paper listing forms and questionnaires (Galway et 

al., 2012; Thomson et al., 2012; GridSample, 2019). Higher-tech field tools included tablet-based 

applications for navigation (Cajka et al., 2018; Thomson, Bhattarai, et al., 2020), paper field maps 

designed in GIS (Galway et al., 2012; Elsey et al., 2016; GridSample, 2019; Qader et al., 2019; Dana 

R. Thomson et al., 2020), and tablet-based household listing and/or questionnaires (Elsey et al., 

2016; Gallup, 2017b; Cajka et al., 2018; GridSample, 2019; Dana R. Thomson et al., 2020).  

 

Satellite imagery was essential to all gridded populations surveys to manually segment along 

roads, rivers, and other features (Thomson et al., 2012; Muñoz and Langeraar, 2013; Elsey et al., 

2018), and as a field map base layer for navigation and to ensure that all eligible dwellings were  

included (Galway et al., 2012; Thomson et al., 2012; Cajka et al., 2018; GridSample, 2019; Qader 

et al., 2019). In some surveys, satellite imagery was used to digitize building footprints and roads 

in OpenStreetMap which were then displayed as a field map base layer (Elsey et al., 2016, 2018). 

The RTI surveys used satellite imagery and machine learning to exclude unsettled areas from the 

sample and further disaggregate population estimates (Chew et al., 2018).  
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5.4 Accuracy of typical versus gridded population sampling 

Based on findings in Chapter 4 which identified sharp difference in cell-level accuracy by 

urban/rural location, this analysis of gridded population sampling accuracy is constrained to urban 

Khomas. A further reason for this decision is that relatively few households in Khomas are rural 

(5% of the simulated “true” population), which means an enormous oversample would be needed 

in rural areas to make estimates for the rural population within Khomas. The 2013 Namibia DHS, 

for instance, drew just 3 rural clusters and 50 urban clusters within Khomas (MoHSS and ICF 

International, 2014).  

I chose to sample 60 PSUs, and then sample 20 households per PSU, for a target sample of 1,200 

households overall. This is consistent with sample designs used in recent demographic surveys in 

Namibia including the 2013 Demographic and Health Survey (53 PSUs, 20 households per PSU) 

and 2016 Intercensal Demographic Survey (69 PSUs, 20 households per PSU) (Table 29). Recent 

economic surveys tended to have more PSUs and fewer households per PSU, with approximately 

1,100 households sampled from Khomas overall (Table 29).   

 

Table 29. Sample sizes in Khomas, Namibia in recent household surveys 

Recent surveys in Namibia PSUs in 
Khomas 

Households 
per PSU 

Khomas 
sample size 

Demographic and Health Survey – 2013 1 53 20 1,060 

Household and Income Expenditure Survey – 2015/16 2 96 12 1,152 

Intercensal Demographic Survey – 2016 3 69 20 1,380 

Labour Force Survey – 2018 5 63 18 1,134 

1. (MoHSS and ICF International, 2014) 
2. (NSA-NPC, 2016) 

3. (NSA, 2016) 
4. (NSA, 2018) 

 

5.4.1 Methods 

The methods used in this analysis are summarised in Figure 36 and Figure 37.  In the first step, I 

constrained all datasets to urban Khomas (Chapter 3). In this analysis, “urban” covered all EAs 

classified as urban in the 2011 Namibia census plus areas of expansion around settlements, as I 

observed in satellite imagery. The analysis was conducted in R 3.5.2 using the EA shapefiles that I 

modified during the simulation in Chapter 3. 
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To create PSUs with approximately equal populations from the gridded population estimates 

generated in Chapter 4, I used the gridEZ R algorithm version 1 released in 2019 (Dooley, 2019). 

The gridEZ algorithm produces gridded enumeration zones from a gridded population dataset 

such that each unit has a target population or a maximum area. I provided input to Dr. Claire 

Dooley, the algorithm creator, during its development; specifically, to define three pre-set gridEZ 

unit sizes (small, medium, and large) that can support several common household survey designs. 

From GitHub where the gridEZ algorithm was released, here are the general steps that the gridEZ 

algorithm follows (Dooley, 2019): 

 Within strata (constituency boundaries intersected with GHS-SMOD “high dense urban” 

boundaries), create rectangular “clumps” defined by the gridEZ maximum area, or 5 

kilometres by 5 kilometres, whichever is smaller 

 Divide each clump into “blocks” based on the clump population vs. the target population 

 Any block that has fewer than the target population is combined with the contiguous 

neighbouring block with the lowest population 

 Any block with twice the target population is halved  
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Figure 36. Steps 1 to 4 used to analyse accuracy of gridded population surveys 
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I used medium pre-defined gridEZ units for this analysis, each of which had a target of 500 people 

(approximately 135 households in urban Khomas) and a maximum area of 3 kilometres by 3 

kilometres. In the gridEZ algorithm, I used constituency boundaries and GHS-SMOD “high dense 

urban” areas, clipped to urban Khomas boundaries to define the strata in which “clumps”, 

“blocks”, and gridEZ units were formed. I produced gridEZ units for each of the 16 gridded 

population datasets generated from EA-level input data (hereafter called gridEZ-EA), as well as 

each of the 16 gridded datasets generated from constituency-level input data (hereafter called 

gridEZ-constituency). This resulted in sampling units of similar population size across the census 

and both gridEZ sample frames.  

The census and both gridEZ sample frames for the 2016 “true” population are summarized in 

Table 30. There were 766 units in the census frame, 786 in the gridEZ-EA frame, and 552 in the 

gridEZ-constituency frame (Table 30). The gridEZ-constituency frame had fewer units that met the 

500 target population because the underlying urban gridded populations were underestimated 

due to misallocation of population to low-dense and unsettled cells outside of urban Khomas. 

GridEZ units were generated in R 3.5.2 using the code and instructions provided on Dr. Dooley’s 

GitHub page (Dooley, 2019). 

 

Table 30. Comparison of three sample frames in urban Khomas based on the “true” 2016 

simulated population 

Characteristic Census EAs  GridEZ units  

EA-level inputs 

GridEZ units 

constituency-level inputs 

Number of sample 
units in frame 

766 787 590 

Mean frame unit 
population (range) 

455 

(37 - 7270) 

444 

(1 - 1550) 

437 

(1 - 1259) 

Mean frame unit             
area (range) 

317 x 317 m 

(110x110m - 1943x1943m) 

353 x 353 m 

(89x89m - 2051x2051m) 

428 x 428 m 

(89x89m – 2051x2051m) 

 

With the sample frames prepared, the third step was to draw samples. I drew 200 samples for 

each of the sample frames (3) and outdated-inaccurate scenarios (16) resulting in 9,600 samples. 

The sample design was, again, 60 PSUs, and 20 households per PSU, for a target of 1,200 

households per sample. PSUs were drawn with probability proportional to size (PPS) from 

EA/gridEZ sample frames, while households were drawn at random from the “true” 2016 

household point locations. This represented the use of an outdated-inaccurate sample frame that 

may not match the actual population identified during survey fieldwork. In cases where a PSU had 
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fewer than 20 “true” households, all households were sampled. In practice, gridded population 

survey practitioners often draw extra back-up clusters, randomly select the target n main clusters 

from the draw, then drop and replace any main cluster with a back-up cluster if no habitable 

buildings are identified upon visual inspection of satellite imagery and/or during a field visit (Dana 

R Thomson, Rhoda, et al., 2020; Thomson et al., 2021). I implemented this approach by drawing 

72 clusters (60 main + 20% back-up), dropped all clusters with no “true” households, and 

randomly selected 60 clusters from those that remained. I used R 3.6.0 for this step, drawing PPS 

samples with the samplingbook package pps.sampling function (Kauermann and Küchenhoff, 

2011). I used the spatialEco package points.in.poly function to join “true” households to 

PSUs, and the base R sample function to draw simple random samples of households. 

In the fourth step, I generated three of the inputs needed to calculate household probability 

weights: 𝐻𝑘, the number of households in urban Khomas according to the sample frame (or 𝑃𝑘, 

the gridded population estimate); ℎ𝑗𝑘, the number of households in the respective PSU according 

to the sample frame (or 𝑝𝑗𝑘, the number of households in the gridEZ PSU); and 𝑀𝑗𝑘 the “true” 

number of households in the respective PSU from the simulated 2016 point file (Figure 36). R 

3.6.0 was used for this step. 

In step five, I calculated “true” household indicator values from the 92,844 simulated households 

in urban Khomas (Figure 37). I selected four socioeconomic household-level indicators for this 

analysis, three of which were described, evaluated and deemed to have realistic distributions in 

Chapter 3. These were percent of households with unimproved toilet, percent of households with 

crowding, and percent of households with a non-durable floor. Percent of households with 

unimproved water, which was also evaluated in Chapter 3, was excluded because none of the 

simulated households in urban Khomas had unimproved water. To replace this indicator, I 

selected an additional socioeconomic indicator that was simulated, but not evaluated: percent of 

households cooking with solid fuel such as charcoal or wood. This step was performed in R 3.6.0. 

Step six is where I calculated sample probability weights and estimated indicators in each of the 

9,600 samples. To do this, I calculated the last element of the sample probability weight: 𝑚𝑗𝑘, the 

number of households sampled in the respective PSU. Sample weights for the 𝑖𝑡ℎ household in 

PSU 𝑗 and stratum 𝑘 followed the formula detailed in section 5.2.3 in census samples. Household 

sample weights in gridEZ units used 𝑃𝑘 and 𝑝𝑗𝑘  population in place of 𝐻𝑘 and ℎ𝑗𝑘 households as 

shown below. Population estimates (𝑃𝑘 and 𝑝𝑗𝑘) approximately equals households (𝐻𝑘 and ℎ𝑗𝑘) if 

we divide the population estimates by the average household size. Because average household 

size is in the numerator and the denominator of the household probability weights equation, it 
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cancels out, allowing estimated population values to be used directly. I assumed no segmentation 

in sample frame units, and 100% household response: 

𝑤𝑖 =
𝑃𝑘

𝑛𝑘  × 𝑝𝑗𝑘
 ×

𝑀𝑗𝑘

𝑚𝑗𝑘
 

Where: 

 𝑃𝑘 is the estimated gridded population in stratum 𝑘 

 𝑝𝑗𝑘  is the estimated gridded population in gridEZ unit 𝑗 in stratum 𝑘 

 𝑛𝑘 is the number of gridEZ units sampled in stratum 𝑘 

 𝑀𝑗𝑘 is the number of household point locations in gridEZ unit 𝑗 in stratum 𝑘 

 𝑚𝑗𝑘 is the number of sampled households in gridEZ unit 𝑗 in stratum 𝑘 

Following common survey practice, I normalised the household weights around one (ICF 

International, 2012a; UNICEF, 2013). Normalising weights reduces the effect of extremely small or 

large weights, which can occur in gridded population sampling because we find that a PSU derived 

from gridded data (and which has local spatial inaccuracy) has only a few households in the field, 

so we sample all or most of them. While raw sample probability weights sum to the total 

population in the sample frame, normalised sample weights sum to the total sample size. I 

normalised each weight for household 𝑖 as follows: 

𝑤𝑖.𝑛𝑜𝑟𝑚 = 𝑤𝑖  ×
∑(𝑚𝑗𝑘)

∑(𝑤𝑖  × 𝑚𝑗𝑘)
 

Where: 

𝑚𝑗𝑘  is the number of (responded) households in EA/gridEZ 𝑗 in stratum 𝑘 

𝑤𝑖 is the raw household probability weight 

Given the focus of this thesis on representation of the urban poorest in household surveys, and 

the greater rates of missingness among simulated slum households, I calculated indicators by 

slum and non-slum in step seven (Figure 37). This represents a typical household survey in which 

slum locations are is not known in the sample frame, and thus can only be measured and analysed 

after sample selection. However, unlike a typical survey, I was able to calculate “true” slum and 

non-slum indicator values from the simulated population (n slum = 35,001; n non-slum = 57,843). 

For this analysis, I used slum household status of “true” 2016 household point locations created 

manually for each household in Chapter 3.  
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Maps are presented of select census EA and gridEZ sample frames to compare differences across 

scenarios of outdated and inaccuracy censuses. Comparisons are also made of the percent of 

slum/non-slum households in each sample versus the “true” percent of slum households, 

disaggregated by sample frame and outdated-inaccurate scenario in order to understand how the 

lack of within-urban stratification impacts disaggregated indicator estimates for slum and non-

slum populations. 
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Figure 37. Steps 5 to 8 used to analyse accuracy of gridded population surveys 

In a final step (step eight), I created boxplots and calculated summary statistics for each of the 

three sample frame and 16 outdated-inaccurate scenarios, as well as in slum and non-slum 

households (Figure 37). All indicators were summarized as weighted percentages, with 95% 

confidence intervals that accounted for clustering of households in PSUs. Indicator estimates were 

calculated in R 5.3.2 on the University of Southampton Iridis 5 high performance computing 

cluster using the survey package svyciprop function (Lumley, 2004). Slum and non-slum 
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estimates were generated with the same package by adding a sub-population (subset) argument 

to the survey design specifications.  

Given that many non-slum households had zero values for certain indictors, a likelihood-based 

approach to confidence interval estimation (e.g., Rao and Scott, 1987) was not ideal because it 

assumes an approximately normal distribution of the estimated proportion, and this assumption 

breaks down when the estimated proportion is close to zero (Korn and Graubard, 1998). Instead, I 

used the Korn and Graubard approach to estimate confidence intervals for proportions with small 

counts in complex survey data, specified in svyciprop as “beta.” This approach uses a logit 

transformation and Poisson distribution, substituting n sampled observations for the effective 

sample size and its degrees-of-freedom when the estimated proportion is zero (Korn and 

Graubard, 1998). 

Boxplots are presented to show the distribution of weighted indicators across the 100 samples for 

each of the 48 frame-scenario combinations, as well as in slum/non-slum sub-populations. Each 

plot displays these distributions in reference to the “true” indicator value marked with a 

horizontal line. 

Two accuracy statistics were also calculated for each of the 48 frame-scenario combinations and 

slum/non-slum sub-populations to understand errors in gridded population samples, and to 

compare accuracy in census and gridEZ frames under realistic scenarios of outdated-inaccurate 

censuses. In accuracy statistics, each of the 200 sample indicator estimates were compared to the 

“true” indicator value, and then summarized. Root mean square error (RMSE), detailed in section 

4.2.1.5, reflects the degree of accuracy (over- or under-estimation error) in the estimated 

indicators for a particular sample frame. Bias, detailed in section 4.4.1, indicates the direction and 

average error in a particular sample frame; whether it consistently leads to an over- or under-

estimate.  

5.4.2 Results and discussion 

Visual inspection of the sample frames against the “true” 2016 household point locations 

revealed key differences between census-based sampling and gridded population sampling 

(Figure 38). The 2011 census EAs were drawn along locally meaningful neighbourhood boundaries 

which generally divided slum and non-slum areas. The simulated population thus largely 

segregated slum/non-slum households along EA boundaries. As expected, the distribution of 

slum/non-slum households in gridEZ units were more heterogeneous than in census EAs in urban 

Khomas (first column of Figure 38). GridEZ units were less spatially sensitive to missing 

populations than census EAs, even when highly outdated-inaccurate census counts were used as 
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input to the gridded population model (second and third column of Figure 38). This is because the 

gridEZ algorithm groups cells across EA boundaries into units which are constrained only by 

higher-level administrative and GHS-SMOD “high-dense urban” boundaries (section 5.4.1).  

When constituency-level inputs were used in the gridded population model, the most densely 

populated cells in Windhoek were substantially underestimated because population was 

misallocated to low-density or unsettled cells (see section 4.5.1). In scenarios of high census 

outdatedness-inaccuracy, this inadvertently gave excluded populations a greater probability of 

selection than they would have had if the census data are sampled directly, though it also 

increased the likelihood of sampling cells with no or few actual households.  

GridEZ units derived from outdated, inaccurate census data had larger areas than gridEZ units 

derived from recent, accurate census data. The larger units were created by the gridEZ algorithm 

to maintain the target of 500 people per unit based on lower estimated population totals (second 

and third columns of Figure 38). With larger areas, these gridEZ units were more heterogeneous 

in terms of slum/non-slum households than gridEZ units derived from more accurate census data, 

or the census data itself. 
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Figure 38. Visual comparison of the "true" 2016 household point distribution and three sample 

frames, by simulated census scenario in a section of Windhoek, Namibia 

 

Figure 39 shows the distribution of slum/non-slum households across all samples, by sample 

frame and census scenario. In the best-case-scenario, samples drawn from 2016 frames with no 

population missingness (top-left plot in Figure 39), all estimated the true percent slum population 
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on average, though gridEZ-constituency samples did so with more variability due to inaccuracies 

in the sample frame. Underestimation of the slum population increased in the census EA frame, 

and to a lesser extent the gridEZ-EA frames, as the census was increasingly outdated or 

inaccurate, with gridEZ-constituency frames consistently estimating the true slum population 

regardless the age or inaccuracy of the input population data (Figure 39).  This strongly 

underscores an issue raised by urban health experts who argue that census-based household 

surveys (which overwhelmingly are based on several-year-old sample frames) and stratified by 

only urban/rural areas tend to produce overly cheery estimates of health and social outcomes in 

urban population (Lilford et al., 2017).  
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across all 16 scenarios of outdated-inaccurate census 
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Furthermore, according to Groves and Lyberg’s (2010) description of the Total Survey Quality 

framework, lack of within-urban stratification on slum/non-slum areas is a “relevance” problem 

because without the means to disaggregate survey results by meaningful sub-groups, decision-

makers do not gain the insights they need to address urban inequalities and risks. 

5.4.2.1 Estimated indicator means 

Box-plots of indicators for a selection of outdated-inaccurate sample frames are presented in 

Figure 40, and box-plots for all indicators and scenarios are presented in Appendix F.  In census EA 

samples drawn from outdated or inaccurate data, indicators were underestimated in the overall 

urban population (first column of Figure 40). This was because slum household locations closely 

align with census EA boundaries, and slum households were more likely to be missing from the 

frame than non-slum households. Together, this reduced the probability of selection of majority-

slum EAs under scenarios of high census outdatedness or inaccuracy.  

This pattern, however, was mitigated in gridEZ sample frames, and resulted in household 

indicator estimates closer to the true prevalence (first column of Figure 40). While EA-level census 

inaccuracies were maintained in the underlying gridded population estimates, the gridEZ 

algorithm increased the probability that slum households were selected by grouping cells into 

PSUs across EA boundaries. In the most outdated and inaccurate scenario (2001_H), so much of 

the gridEZ-constituency input population was misallocated to areas comprised of (missing) slum 

households, that the outdated-inaccurate samples produced indicator estimates that were as 

accurate as samples drawn from more accurate sample frames. This was not necessarily a 

strength of the Random Forest model, but rather could be viewed as a fortunate coincidence.  

Note that overcrowding (sufficient living and sleeping space inside the dwelling) was slightly more 

prevalent among non-slum households in the urban Khomas simulated data (scenario 1 in first 

column of Figure 40). This figure is likely representative of reality. In cities worldwide that face 

housing crises, overcrowding is an issue that effects households across economic classes (Bashir, 

2002; Brown, 2003). Windhoek, unlike other fast-growing cities such as Dhaka, Bangladesh or 

Lagos, Nigeria, is not constrained by natural geographic boundaries. In satellite imagery, I 

observed that between 2001 and 2016 nearly all slum households were added to the urban 

periphery, and so they likely did not face the types of building constraints that are present in 

other fast-growing LMIC cities bound by the sea other natural barriers.   

Estimates generated for slum and non-slum households separately after sampling (second and 

third columns of Figure 40) tended to be unbiased except in census EA and gridEZ-EA samples for 
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indicators that differed substantially between slum and non-slum households (i.e., percent of 

households with an unimproved toilet or non-durable floor). The variability in indicator estimates 

across the 200 draws was not substantially different for non-slum households, even when the 

sample frame was outdated or inaccurate (second column of Figure 40). However, slum 

household indicator estimates varied substantially more across the 200 draws, and indicator 

estimates became more varied under scenarios of increased outdatedness or inaccuracy do to 

relatively smaller sample sizes of slum households (third column of Figure 40). In cases where the 

true indicator value differed substantially between slum and non-slum households, census 

samples – and to a lesser extent gridEZ-EA samples – tended to overestimate slum indicators. A 

possible reason for this is that the census or gridEZ-EA sample frames gave an inaccurately low 

probability of selection, but those census EAs or gridEZ-EA units that were selected tended to 

have higher concentrations of slum households, among which outcomes tended to be “worse” 

than in slum households near or interspersed among non-slum households.   



Chapter 5 

142 

   

   

   

   

 KEY: 

 
“True” mean 

Select Scenarios 

1     2016 True (no missing) 

6     2011 Low missing  

11   2006 Medium missing 

16   2001 High missing 

Figure 40. Box plots of household indicators estimated from 200 samples; by frame, outdated-

inaccurate census scenario, and slum/non-slum households 
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5.4.2.2 Estimated indicator error 

Table 31 summarises sampling error as measured with RMSE in select census scenarios, and 

average RMSE error across all census scenarios for the four household indicators. RMSE for the 

three sample frames and all census scenarios are presented in Appendix G.  

When the best-case scenario 2016 “true” sample frames were used, samples drawn from gridEZ-

EA units were roughly as accurate as samples drawn from census EAs directly, and samples drawn 

from gridEZ-constituency units were less accurate, as would be expected (Table 31). However, this 

pattern inverted as sample frames were increasingly outdated or inaccurate, especially for 

indicators with large disparities between slum and non-slum households. For example, under the 

least accurate 2001_H scenario (2001 census with high level of missing population), RMSE for 

percent of all urban household with an unimproved toilet were 8.3 in census EA samples, 7.3 in 

gridEZ-EA samples, and 5.3 in gridEZ-constituency samples, with a similar pattern when slum and 

non-slum households were disaggregated (Table 31). When these errors are averaged across all 

16 scenarios, one or both of the gridEZ sample frames produced more accurate indicator 

estimates than the census frames (except overcrowding for which all frames averaged the same 

RMSE) (Table 31). Average RMSE for disaggregated slum/non-slum indicator estimates were 

mixed with census and/or gridEZ-EA samples tending to be more accurate when the sample 

frames were recent and more accurate, and gridEZ-EA and gridEZ-constituency tending to be 

more accurate when the sample frames were outdated or inaccurate (Table 31). 
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Table 31. RMSE in samples drawn from census EAs and two gridEZ sample frames, by indicator, 

select outdated-inaccurate census scenario, and slum/non-slum households 

Select 
scenarios & 
16 scenario 
average 

Census EA  
gridEZ 1  

(EA input)  
gridEZ 2  

(Constituency input) 

All 
urban 

Urban 
non-slum 

Urban 
slum  

All 
urban 

Urban 
non-slum 

Urban 
slum  

All 
urban 

Urban 
non-slum 

Urban 
slum 

 % unimproved toilet 

2016_True 3.9 3.8 3.4  4.4 3.6 4.2  4.9 3.8 6.4 

2011_L 4.6 3.3 4.8  4.2 3.4 4.7  5.2 3.9 6.1 

2006_M 7.2 3.1 8.8  6.7 3.3 8.4  5.3 3.6 7.3 

2001_H 8.3 3.7 9.0  7.3 3.3 9.0  5.3 3.3 6.8 

Average 6.0 3.5 6.5  5.7 3.4 6.6  5.2 3.7 6.7 

 % overcrowding 

2016_True 1.3 1.8 1.5  1.2 1.7 1.6  1.3 1.8 2 

2011_L 1.3 1.6 1.8  1.3 1.6 2.1  1.4 1.7 2.2 

2006_M 1.5 1.4 2.9  1.5 1.7 2.6  1.4 1.7 2.4 

2001_H 1.6 1.6 3.0  1.6 1.6 3.6  1.5 1.8 2.7 

Average 1.4 1.6 2.3  1.4 1.7 2.5  1.4 1.8 2.3 

 % non-durable floor 

2016_True 4.0 1.4 4.3  4.0 1.2 4.9  4.9 1.4 6.9 

2011_L 4.6 1.2 5.8  4.0 1.3 6.0  4.9 1.5 7.1 

2006_M 7.9 1.3 10.0  6.9 1.2 8.8  5.3 1.4 7.5 

2001_H 10.1 1.5 11.1  8.3 1.3 10.4  5.3 1.4 7.7 

Average 6.7 1.4 7.8  5.8 1.3 7.5  5.1 1.4 7.3 

 % solid fuel 

2016_True 1.1 0.4 1.9  1.1 0.4 1.9  2.1 0.4 3.3 

2011_L 1.2 0.4 2.4  1.2 0.4 2.6  2.3 0.5 3.6 

2006_M 2.2 0.4 3.5  2.0 0.3 4.0  1.8 0.4 3.1 

2001_H 2.6 0.4 5.1  2.1 0.4 4.2  2.6 0.5 4.2 

Average 1.8 0.4 3.2  1.6 0.4 3.2  2.2 0.5 3.6 

 

5.4.2.3 Estimated indicator bias 

As indicated in the boxplots in section 5.4.2.1, three of the four indicators (unimproved toilet, 

non-durable floors, and solid fuel) were underestimated in urban Khomas by outdated or 

inaccurate census EAs frames. In the 2001_H scenario, census sample frames underestimated the 

percent of households with an unimproved toilet by 5.9%, percent of households with a non-

durable floor by 7.9%, and percent of household using solid fuel by 1.9% (Table 32). While gridEZ-

EA and gridEZ-constituency also underestimated these indicators, the degree of underestimation 

was less severe: households with an unimproved toilet was underestimated by 1.3% by gridEZ-EA 

samples and 0.4% by gridEZ-constituency samples; households with non-durable floors was 

underestimated by 1.7% in gridEZ-EA samples and by 0.7% in gridEZ-constituency samples; and 

household using solid fuel was underestimated by 0.7% in gridEZ-EA samples and 0.1% in gridEZ-
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constituency samples (Table 32).For reasons discussed above (section 5.4.2.1), there was little 

bias in the overcrowding estimates across sample frames. 

 

Table 32. Bias in samples drawn from census EAs and two gridEZ sample frames, by indicator, 

select outdated-inaccurate census scenario, and slum/non-slum households 

Select 
scenarios & 
16 scenario 
average 

Census EA  
gridEZ 1  

(EA input)  
gridEZ 2  

(Constituency input) 

All 
urban 

Urban 
non-slum 

Urban 
slum  

All 
urban 

Urban 
non-slum 

Urban 
slum  

All 
urban 

Urban 
non-slum 

Urban 
slum 

 % unimproved toilet 

2016_True 0.0 -0.1 0.4  0.0 0.0 -0.1  0.4 0.4 0.9 

2011_L -0.2 0.1 0.3  -0.7 -0.2 0.3  0.1 0.5 0.8 

2006_M -4.8 0.2 3.0  -2.3 0.2 2.2  -0.5 0.1 0.5 

2001_H -5.9 0.9 4.9  -1.3 0.7 2.1  -0.4 0.1 0.7 

Average -2.7 0.3 2.2  -1.1 0.2 1.1  -0.1 0.3 0.7 

 % overcrowding 

2016_True 0.0 -0.1 -0.1  0.0 -0.1 0.2  0.1 0.1 0.1 

2011_L 0.1 0.1 -0.2  0.2 0.2 0.0  0.3 0.4 0.0 

2006_M 0.2 0.1 -0.7  0.0 0.1 -0.6  0.1 0.1 0.0 

2001_H 0.5 0.4 -0.6  0.2 0.3 -0.4  0.1 0.1 0.0 

Average 0.2 0.1 -0.4  0.1 0.1 -0.2  0.2 0.2 0.0 

 % non-durable floor 

2016_True 0.0 -0.2 0.5  0.0 0.1 -0.2  0.3 0.1 1.0 

2011_L 0.0 -0.1 1.2  -0.4 0.0 0.8  -0.3 0.0 0.5 

2006_M -5.6 0.0 4.4  -2.8 0.1 2.6  -0.5 0.1 0.5 

2001_H -7.9 -0.1 5.3  -1.7 0.1 3.0  -0.7 -0.1 0.5 

Average -3.4 -0.1 2.9  -1.2 0.1 1.6  -0.3 0.0 0.6 

 % solid fuel 

2016_True -0.1 0.0 -0.1  -0.1 0.0 -0.1  -0.1 0.0 -0.5 

2011_L 0.1 0.0 0.5  -0.1 0.0 0.1  -0.1 0.0 -0.4 

2006_M -1.3 0.0 0.3  -0.8 0.0 0.0  -0.4 0.0 -0.7 

2001_H -1.9 0.0 0.2  -0.7 0.0 -0.3  -0.1 0.0 0.0 

Average -0.8 0.0 0.2  -0.4 0.0 -0.1  -0.2 0.0 -0.4 

 

5.4.3 Recommendations 

In this analysis of a typical LMIC urban setting, gridded population sampling from a gridEZ-EA or 

gridEZ-constituency frame generally produced more accurate estimates for the overall urban 

population than a census EA sample frame when the sample frame was more than ten years old 

and/or inaccurate. Like most LMIC household surveys, the surveys evaluated here were not 

stratified within urban areas by deprived (e.g., slum) and not deprived (e.g., non-slum) areas. In 
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this common design, gridded population sampling from gridEZ, or similar, units produce slightly 

more accurate indicator estimates within slum and non-slum sub-populations because each 

gridEZ PSU is likely to contain a greater diversity of household types than census EAs, which tend 

to follow homogenous neighbourhood boundaries. A key finding from this chapter is that urban 

household survey results based on a sample frame that is a decade or more old are biased toward 

“better” outcomes, especially when there are sharp disparities in outcomes between deprived 

and not deprived households, and when deprived households comprise a smaller portion of the 

overall urban population. This bias toward “better” outcomes in urban indicator estimates has 

major implications for LMIC household survey accuracy and decision-making.  

In LMICs, urban socioeconomic disparities are stark and increasing (UN-Habitat, 2003, 2016). 

Worldwide, health and social indicators are strongly correlated with poverty/wealthy, and these 

correlations tend to be stronger in settings of greater socioeconomic disparity (Ezeh et al., 2017). 

Despite the fast growing number of poor populations in LMIC cities, the proportion of the 

population that is poor versus non-poor is not well understood, and likely varies by city. The UN-

Habitat “slum household” definition is widely used to classify households that lack basic assets 

from survey or census data (UN-Habitat PSUP, 2016); however, these data cannot be used to 

draw maps that would help to stratify a future survey. Furthermore, “slum households” as 

defined by UN-Habitat include most or all of some city populations, and do not necessarily 

correlate with slum/deprived areas as defined by local residents (Dana R Thomson, Kuffer, et al., 

2020).  

While some city authorities and academic groups have produced city-level maps of slum areas, 

these maps are based on varying definitions, and they are rarely available across all urban areas in 

a country (Kuffer, Pfeffer and Sliuzas, 2016; Mahabir et al., 2018; Thomson, Kuffer, et al., 2020). 

Furthermore, slum maps become outdated quickly due to the particularly dynamic nature of 

slums. Given that there are few, if any, countries with harmonized, national, routine slum 

mapping initiatives, virtually no DHS, MICS, LSMS, and other routine national household survey 

stratifies samples within urban populations. The 2005-06 and 2015-16 India National Family 

Health Surveys were rare exceptions, and they only stratified slum/non-slum areas in eight cities 

(IIPS and Macro International, 2007; IIPS and ICF International, 2017). Given that the average DHS 

sample frame was seven years old (section 2.3), I suspect that a large portion of LMIC household 

surveys collected in recent decades have produced bias, likely overly cheery, estimates for urban 

indicators. If this suspicion is true, the implications are massive.  

Biased household survey results which underestimate “bad” social and health outcomes mask the 

basic needs of the urban poorest, limit the ability of advocacy groups to raise awareness of the 
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needs among the urban poorest, and undermine monitoring and evaluation efforts that target the 

urban poorest. The lack of maps identifying urban deprived areas is, in itself, an act of masking –

even marginalizing - the needs of the urban poor. Until slums/deprived areas can be mapped 

routinely across all or most LMIC cities with reasonable accuracy, household survey planners will 

be unable to stratify surveys by this important sub-population, reinforcing the pattern of ignoring 

the urban poorest. The evidence presented in this chapter indicates that gridded population 

sampling could improve the representation of slum dwellers in household surveys in the absence 

of slum/deprived area maps. 

I am hopeful that the increasing quantity and resolution of Earth Observation and Big data will 

enable routine, accurate mapping of slums and informal settlements across cities in the next five 

to ten years (Thomson, Kuffer, et al., 2020; Kuffer et al., 2020). When such maps become 

available, survey programme implementers will be faced with decisions about if, and how, to 

modify survey sample designs to produce separate estimates for rural, urban-slum, and urban-

non-slum populations. Currently in many LMICs, urban areas are oversampled because either the 

urban population comprises a smaller portion of the national population, characteristics vary 

more within urban populations than within rural populations, or both. With an additional stratum 

(or strata) defined by slums, additional households may need to be sampled; though sample sizes 

within urban-slum and urban-non-slum areas might simultaneously decrease due to reduced 

variance within strata. The overall impact on sample size, cost, and effort would likely be 

moderate, but worthwhile to produce more accurate and disaggregated estimates that are 

appropriate for the essential monitoring, planning, evaluation, and research activities routinely 

performed with household survey data (Corsi et al., 2012). 
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Chapter 6: Implementation 

6.1 Overview 

Survey implementation occurs after the sample frame has been developed (Chapter 4), the 

sample has been designed, and the primary sampling units (PSUs) have been selected (Chapter 5). 

Nearly all large-scale health and economic surveys in low- and middle-income countries (LMICs) 

use census enumeration areas (EAs) as the initial sample frame, and thus implementation 

necessarily requires two phases of fieldwork. The first phase of fieldwork is to list and map 

households (the mapping-listing phase), and the second phase is to interview sampled 

households, which usually occurs several months later (the interview phase).  

Since the establishment of survey methods four decades ago, the mapping-listing phase has 

remained largely paper-based. This is in spite of the availability of satellite imagery, global 

positioning systems (GPS) and geographic information systems (GIS) for mapping, and availability 

of tablets and the internet for listing. Conversely, LMIC societies have been undergoing profound 

change related to globalization and rapid urbanization for at least two decades. The continued use 

of outdated survey tools and methods in contemporary LMIC contexts likely contributes to decay 

in survey accuracy, with vulnerable and mobile populations excluded in greater numbers than 

fixed, family households. Using the right tools for mapping and listing has multiple benefits 

including decreased costs, decreased field work time, and improved quality of the final sample 

frame due to improved experience for field staff and routine quality checks by supervisors. 

This chapter builds on findings in previous chapters and evaluates the use of innovative gridded 

population surveys methods and tools in a complex, real-world context. In this chapter, I describe 

a feasibility analysis conducted under the Surveys for Urban Equity (SUE) study in Kathmandu, 

Nepal; Dhaka, Bangladesh; and Hanoi, Vietnam. The full SUE study protocol is published 

elsewhere (Elsey et al., 2018). The focus in this chapter is on the largest of the three SUE surveys 

in Kathmandu. I describe the Kathmandu SUE study in section 6.2 including the methods and tools 

used to overcome threats to population exclusion. Section 6.3 describes the qualitative and 

quantitative methods I used to evaluate coverage and feasibility of gridded population sampling 

in Kathmandu. Finally, section 6.4 includes the results and discussion of the following three 

research questions.  
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6.1.1 Research questions 

Research Question E: Is a gridded population sample feasible to implement in a complex, 

urban setting in a LMIC? Specifically, how does total cost, time, and staff skill mix in a 

gridded population survey compare a census-based survey?  

Research Question F: What is the experience of mappers-listers implementing a gridded 

population survey using SUE field tools and methods? 

Research Question G: What, if any, evidence is there that SUE tools and methods overcome 

unintentional population exclusion of vulnerable and mobile populations? 

6.2 Surveys for Urban Equity (SUE) study 

The SUE study was coordinated by University of Leeds (UK) in collaboration with HERD 

International (Nepal), ARK Foundation (Bangladesh), CIPRB (Bangladesh), and Hanoi University of 

Public Health (Vietnam) between 2016 and 2018. I coordinated one work package (activity) to 

implement and evaluate gridded population sampling field tools and methods. Not only did the 

SUE study evaluate tools and methods to improve the representation of the urban poor in 

household surveys, it also piloted questions on mental health and injuries for use in routine 

surveys in LMICs, and investigated techniques to improve the use of survey data by local 

authorities. The project was funded under a Research and Innovation grant by the British Medical 

Research Council with the following main activities: 

i) identify and test questions on mental health and injuries 

ii) test affordable and efficient novel methods to reduce bias in urban surveys 

iii) explore alternative approaches to defining households, and measuring wealth 

iv) develop data visualisation tools to support decision-makers' use of survey data 

The SUE study piloted questionnaire modules about accidents and injuries, and depression and 

anxiety because these issues account for a large portion of the global burden of disease, 

particularly among the urban poorest, however these topics are rarely included in large-scale 

household surveys (Campbell and Campbell, 2007). Mental health and substance use are the fifth 

largest disorder in the global index of disability adjusted life years (DALYs), and the leading cause 

of years lived with disability, particularly among women (Whiteford et al., 2013). Among mental 

health and substance use disorders, depression is the leading cause of disability globally, followed 

by anxiety (Whiteford et al., 2013). Traffic accidents and other unintentional injuries such as falls, 

drowning, and fires are among the top ten burdens of disease globally, particularly among men 

(Haagsma et al., 2016). Additionally, the SUE surveys collected and compared several measures of 
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household wealth including the DHS assets-based wealth index and LSMS earnings and 

expenditures indicators to understand how these measures compare with SUE’s qualitative 

findings in poor urban communities (Elsey et al., 2018). 

The study was approved by University of Southampton Ethics Review Committee (ref:26819), as 

well as University of Leeds Medical Ethical Review Committee (ref:MREC16-137), Bangladesh 

Medical Research Council (ref:BMRC/NREC/RP/2016-2019/317), Nepal Health Research Council 

(ref:1761), and Vietnam Medical Research and Ethics Committee (ref:324/2017/YTCC-HD3). 

6.2.1 Roles in the SUE-Kathmandu study 

I led activity (ii) to develop gridded population survey implementation methods and tools, and 

conduct a mixed methods study to evaluate the above research questions. I also provided input 

on activity (iii) to modify the household questionnaire member roster, allowing for classification 

and comparison of household membership according to DHS, MICS, and LSMS household 

definitions.  

I provided survey implementation training in Kathmandu to HERD International survey team 

members Mr. Radheshyam Bhattarai, Mr. Rajeev Dhungel, and Mr. Subash Gajurel. Additionally, I 

observed and supported the HERD International survey team during their fieldwork. I also 

coordinated with qualitative researchers at HERD International, Ms. Sudeepa Khanal and Ms. 

Shraddha Manandhar, and the SUE Project Principal Investigator, Dr. Helen Elsey, to design a 

focus group with the mapping-listing staff after survey mapping and listing fieldwork was 

complete. This work was monitored and supported by HERD International Director, Dr. Sushil 

Baral. 

I was not present for the survey implementations in Dhaka and Hanoi, and thus do not report 

results here. The Dhaka and Hanoi surveys were much smaller than in Kathmandu, and designed 

only to evaluate how the methods and tools designed in Kathmandu translated to other complex 

urban settings. Those two surveys were implemented by CIPRB and Hanoi University of Public 

Health, respectively, with training from the HERD International survey team following the 

Kathmandu survey. 

6.2.2 Study setting  

The cities selected for the SUE study represented a range of modern urban complexities and 

leveraged existing partnerships. All three cities face rapid, complex urbanization. Since 2010, the 

population increased by more than 4.0% in Kathmandu, 3.5% in Dhaka, and 5.2% in Hanoi (UN-
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DESA, 2019). The pace of population growth in South Asia has particularly strained urban housing 

markets such that increasing numbers of people live in atypical arrangements such as hostels, or 

atypical locations including their place of work (UN-Habitat, 2016). Poorer households live in a 

variety of settings including physically isolated slum areas, as well as in dwellings located among 

brick-and-mortar buildings in economically heterogeneous neighbourhoods (UN-Habitat, 2016).  

Kathmandu has a particularly complex and mobile population. Across the Himalaya mountain 

region, entire villages have traditionally migrated to lower altitudes during the winter, and both 

agricultural and non-agricultural seasonal migration to cities is common among residents of the 

Hill and Tarai (i.e., plains) regions (Gill, 2003). Kathmandu also experiences permanent/semi-

permanent in-migration by rural and small-city residents for economic and educational 

opportunities, and to escape the detrimental effects of climate change on rural livelihoods (Tacoli, 

2009).  

The combination of rapid urbanization and unplanned infrastructure in Kathmandu made the 

2015 earthquakes particularly devastating, and resulted in extensive short-term displacement and 

a rebuilding effort that continues today (Rimal et al., 2017). For all of these reasons, housing 

arrangements are particularly heterogeneous in Kathmandu (Figure 41). It is common for the 

owner of a building to occupy the top floor, rent the middle floor as one or two apartments, and 

rent the bottom floor to multiple lower-wage borders.  

 

   
Credit: Hole in the Clouds Credit: Wikimedia Credit: Wikimedia 

Figure 41. Examples of dense, complex housing arrangements in Kathmandu, Nepal 
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6.2.3 Innovative SUE methods and tools 

I developed the following methods and tools utilizing innovative datasets with an aim to improve 

LMIC survey accuracy, with extensive feedback from Mr. Bhattarai, Mr. Dhungel, and Mr. Gajurel 

(Figure 42). 

 

 

Figure 42. SUE methods and tools used to overcome unintentional exclusion and masking of 

vulnerable and mobile populations in household surveys 

 Adapted with permission from (Dana R. Thomson et al., 2020) 

 

WorldPop-RF sample frame (data). As described in Chapter 4, we used WorldPop-RF gridded 

population estimate in approximately 100 metre by 100 metre grid cells as our sample frame 

(WorldPop, 2019). At the time of this work in 2017, the WorldPop-Global dataset was not yet 

released. The WorldPop-RF estimates are derived with a machine learning approach that 

disaggregates population counts in larger areas (e.g., last census by district) to grid cells based on 

dozens of spatial covariates derived from publicly available satellite imagery and GIS data (Stevens 

et al., 2015). As detailed in Chapter 5, the grid cells can be sampled directly, or combined into 

larger units, for household survey sampling. 

GHS-SMOD urban boundary (data). We used the European Commission’s Global Human 

Settlement GHS-SMOD layer to define the boundary of the Kathmandu metropolitan area. We 

considered use of municipality boundaries; however, “metropolitan” boundaries only covered the 

downtown area of Kathmandu, and adding “sub-metropolitan” boundaries would have resulted in 

a substantial sample of rural communities beyond the peri-urban reach. GHS-SMOD classifies 1 

kilometre by 1 kilometre grid cells worldwide as “high density urban,” “low density urban,” 

“rural,” or “unsettled/remote” based on a dataset of built-up areas derived from satellite imagery 
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(GHS-BUILT), and the GHS-POP gridded population layer (see section 5.3.1) (European 

Commission, 2017). Presented with metropolitan, sub-metropolitan, and GHS-SMOD boundaries, 

the HERD International team judged the GHS-SMOD dataset to best reflected the functional city 

boundaries of Kathmandu Valley. 

GridSample (tool). At the time of this study, GridSample.org was not available, so we used the 

GridSample R algorithm to select samples from WorldPop-RF datasets. The free GridSample R 

package enables selection of primary sampling units (PSUs) with probability proportionate to size 

(PPS) from any gridded population estimate (see section 5.3.1) (Thomson et al., 2016). 

Area-Microcensus design (method). An area-microcensus sample was evaluated against the 

standard two-stage sampling design. In area-microcensus PSUs (15-20 total households), all 

households were invited to participate in an interview, while approximately one in every 10 

households were sampled and invited to participate in two-stage PSUs (150-200 total households) 

(see 5.2.3). Area-microcensus designs have been used in a number of other gridded population 

surveys (Cajka et al., 2018).   

Relaxed household definition (method). The DHS, MICS, LSMS, and other large-scale surveys 

define a household as one or more people who are a usual resident, or who slept in the dwelling 

the previous night, and who share living arrangements and meals (see section 2.4.3) (Grosh and 

Munoz, 1996; ICF International, 2012a; UNICEF, 2013). These definitions are unclear about how, 

or whether, to include members of fluid “open” households defined by an in and out flow of 

individuals, often from rural areas, seasonal households and household members, and households 

that face housing insecurity and relocate often, all of which are common scenarios in South Asian 

cities (Oya, 2015). The SUE study relaxed the household definition to include all self-reported 

usual residents, as well as hostel dwellers and long-term occupants of guesthouses (defined as 7+ 

consecutive days and working, looking for work, or in the city for another purpose such as 

supporting someone in hospital), and street-sleepers who slept in the PSU the previous night. The 

questionnaire collected information about living arrangements, meals, and length of time in the 

dwelling to identify individuals who would not be counted in the household according to DHS, 

MICS, and LSMS household definitions.  

OpenStreetMap map (data) and iD Editor (tool). We replaced hand-drawn paper field maps with 

digitally-generated paper field maps. To generate digital maps, we updated all buildings, roads, 

and pathways located in sampled PSUs in the crowd-sourced OpenStreetMap platform, using the 

iD Editor tool, which is integrated on the OpenStreetMap website (OpenStreetMap contributors, 

2000). In the case that a building was intersected by a PSU boundary, we used the following rule: 

buildings intersecting west (vertical) and south (horizontal) boundaries were included, while 
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buildings intersecting east and north boundaries were excluded, ensuring that each building and 

its residents could only ever belong to one PSU. We then exported all roads, buildings, and points 

of interest for Kathmandu Valley to a shapefile. Using ArcGIS 10.3, we created a map for each PSU 

showing the OpenStreetMap base layers, PSU boundary, and other PSU information such as 

centroid latitude-longitude coordinate. We used printed maps to record any changes to buildings, 

paths, and roads in the field. These paper maps were also very helpful to explain the survey to 

residents. Any modifications to the map were entered into OpenStreetMap using iD Editor in the 

office after fieldwork. Residential makeshift housing and tents were not entered in 

OpenStreetMap to prevent potential harm to residents (e.g., eviction, fines). 

GeoODK listing (tool). We replaced the paper household listing form with a digital listing form in 

GeoODK (GeoMarvel, 2017), a free open-source data collection application that runs on a tablet. 

Several such applications are available including OpenMapKit (American Red Cross, 2017) and 

Survey Solutions (World Bank, 2020). We chose GeoODK because it allowed us to visualize 

satellite imagery and OpenStreetMap offline, and to record a manually placed latitude-longitude 

coordinate over each building. The same tool was used to administer interviews. 

OSMAnd (tool) and MAPS.ME (tool). Several other applications were preloaded onto tablets to 

support field teams with navigation. MAPS.ME includes roads, buildings, and other features from 

OpenStreetMap for an entire country (or sub-region) and offers offline routing services (My.com, 

2020). OSMAnd allows download of OpenStreetMap as well as satellite imagery to the tablet, plus 

the visualization of boundaries (PSUs in our case) and tablet location services (displaying the 

tablet location as a blue dot on the map) (OsmAnd BV, 2010). The offline satellite imagery 

required substantial storage space on tablets, so only imagery for PSUs were downloaded. 

MAPS.ME was used to navigate to PSUs, and OSMAnd was used to navigate within PSUs. 

Household listing script (method). Clear protocols are not published by DHS, MICS, LSMS, or 

other largescale survey implementers to guide the household listing fieldwork (see section 2.4.3). 

To ensure that atypical households were not excluded (e.g., people who live at their place of 

work, multiple families who share an apartment), we trained listers to use a detailed script of 

questions at every building, and to seek information from neighbours in a standardized way when 

building residents were not home. 

6.2.4 Study design 

The HERD International team performed household listing and interviews in Kathmandu Valley 

between September and December 2017. The survey targeted 1200 households in 60 clusters to 
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Table 33. Summary of SUE Kathmandu survey design and methods used across two study arms, 

and household response rates by study arm 

Design Two-stage Area-Microcensus 

Coverage Kathmandu Valley, general population Kathmandu Valley, general population 

Sample size 30 clusters, 600 households 30 clusters, 600 households 

Cluster 
definition 

Multiple, contiguous 100x100m cells 
with approximately 200 households 

Single 100x100m cell with 
approximately 20 households 

# clusters 
dropped & 
replaced 

6 3 

# clusters 
segmented 

15 7 

Mapping-
listing 

Mapping-listing team maps buildings, 
and lists dwellings and households 

Mapping-listing team maps buildings, 
and lists dwellings. Interview team lists 

households on day of interview. 

Mapping-
listing staff 

Undergraduate geospatial specialists, 
mostly male 

Undergraduate geospatial specialists, 
mostly male 

Interview 
Interview team returns to sampled 

households in PSU approximately two 
months after household listing 

Interview team returns to entire PSU 
approximately two months after 
dwellings (apartments) are listed. 

Interviewers perform household listing 
and interviews in all PSU dwellings. 

Interview 
staff 

Undergraduate public health 
specialists, even mix of male/female 

Undergraduate public health 
specialists, even mix of male/female 

Household 
response 
rate 

96.8% 88.3% 

Households 
met DHS & 
MICS def. 

99% 90% 

Example 
field map 

 

 

estimate key poverty, mental health, and injury outcomes (Elsey et al., 2018). We randomized half 

of the clusters to an area-microcensus arm, and the other half to a two-stage arm, to compare the 

types of households and differences in outcomes in the different survey designs. In the area-

microcensus arm, mapping-listing teams mapped buildings and listed dwellings (not households), 
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while in the two-stage arm, the teams mapped buildings, and listed dwellings and households 

(Table 33). In the area-microcensus arm, the interview team defacto listed all households as they 

sought interviews with all households present in the PSU.  

Although we targeted 60 PSUs, we sampled 20% (18) backup PSUs. A sample of 78 PSUs were 

drawn from the 2017 WorldPop-RF dataset with PPS using the GridSample R package (Thomson et 

al., 2016). All 78 PSUs were initially designed to have approximately 200 households, or 820 

people, using GridSample R’s “growth” algorithm, which randomly adds neighbouring grid cells to 

an initial “seed” cell selected with PPS, achieving a target population or a maximum area 

parameter (Thomson et al., 2016). I, along with the HERD International team, reviewed each PSU 

in ArcGIS 10.3 (ESRI, 2018) by overlaying it on satellite imagery, and we discarded PSUs with no 

inhabitable buildings (e.g., located over a factory or airport), and replaced it with a randomly 

selected backup PSU. Then we randomly assigned the 60 main PSUs to the area-microcensus or 

two-stage arm of the study. In the area-microcensus arm, the 100 metre by 100 metre “seed” cell 

became the new PSU boundary. 

The HERD International survey team and I co-developed training materials (Thomson et al., 2018). 

I delivered a mock training in English, colleagues provided detailed feedback, and I revised the 

slides and manuals in English. The HERD International team hired and trained 12 university 

student-employees specialising in geospatial methods to perform mapping-listing activities in 

September and October 2017. The mapping-listing training was delivered by the HERD 

International team in Nepali over one week and involved a mix of lectures, role-play, and practical 

activities. Mappers-listers were required to pass a field-based exam and desk-based test to qualify 

for the position.  

As previously mentioned, the mapping-listing protocols used in area-microcensus and two-stage 

PSUs were slightly different. In both types of PSUs, mapper-listers mapped buildings; however, in 

area-microcensus PSUs they listed dwellings only, whereas in two-stage clusters, they listed all 

dwellings and households, and recorded the head of household name. The mapping-listing staff 

met at the office weekly, and on other days commuted from home directly to their assigned PSUs 

using provided stipends for transportation. At the end of each day in the field, mappers-listers 

called the HERD International survey team and submitted an electronic report. To minimize their 

commute times, we paired mapping-listing staff, in part, based on their home locations, and we 

assigned teams to nearby PSUs, though some PSUs remained far for any team.  

In November and December 2017, the HERD International team hired 24 interviewers to visit 

sampled households and conduct a two- to three-hour interview. Interviewers were student-

employees specialising in public health, and many had previous interviewing experience. The 
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interviewers received a week of practice-based training which included map navigation and use of 

GeoODK for tablet data collection. The household questionnaire collected demographic, assets, 

savings, expenditures, migration, and injury information about everyone in the household or the 

household head. One adult in each household was randomly selected using the Kish table method 

(WHO, 2002) to complete an individual questionnaire which included mental health and migration 

questions. To be eligible, respondents were 18 years of age or older, a senior household member, 

and provided written informed consent. 

6.2.5 SUE survey workflow 

The focus of the rest of the chapter will be on the sample design, sample selection, and mapping-

listing activities in the Kathmandu SUE survey in September and October 2017. This is because use 

of a gridded population sample frame and associated methods and tools effects sample selection 

and mapping-listing, but does not influence the interview tools and methods, nor the experience 

of the interview from the perspective of participants. An overview of the steps, roles, and tools 

are presented in Figure 43. At the time of this work, there were not any standards or guidance for 

implementing gridded population surveys, so I identified open-source tools from previous 

experiences and web searches, and pieced together a coherent workflow. In this workflow, the 

planning team was responsible for conducting an exercise to gauge the ideal grid cell size for the 

sample frame, sampling PSUs, assigning PSUs to one of the two study arms, and segmenting large 

PSUs (Figure 42). The mapping-listing staff were responsible for updating OpenStreetMap before 

fieldwork, conducting field-based mapping and listing activities, and updating OpenStreetMap 

periodically throughout fieldwork. 

Sample frame scale exercise. To gauge accuracy of the 2017 WorldPop-RF sample frame and to 

ensure that “seed” cells were approximately the correct geographic size to capture 20 households 

in area-microcensus units, I developed the Sample Frame Scale Exercise (Appendix H).  This 

exercise involved selection of ten 100 metre by 100 metre grid cells and ten 200 metre by 200 

metre grid cells with PPS using the GridSample R algorithm. The HERD International team and I 

completed the exercise, and systematically assessing the WorldPop-RF estimates against high-

resolution Google Earth satellite imagery (Google LLC, 2019) by counting what appeared to be 

single- and multi-family buildings. Through this exercise, we determined that the 2017 WorldPop-

RF estimates appeared to be sufficiently accurate in nine out of ten 100 metre by 100 metre grid 

cells, and that most 100 metre by 100 metre cells likely had a minimum number of households to 

make area-microcensus sampling viable. We decided against the use of 200 metre by 200 metre 

cells in Kathmandu because this would have resulted in the need to extensively segment area-

microcensus PSUs. 
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Figure 43. Overview of the workflow and tools used in both arms of the SUE Kathmandu survey 

 Adapted with permission from (Dana R. Thomson et al., 2020) 
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Select PSUs. At the time of this study, the GridSample R package was the only gridded population 

sampling tool publically available. The only alternative was to develop an ad-hoc approach in a GIS 

(Dana R Thomson, Rhoda, et al., 2020). The HERD International team members were not regular 

users of R or ArcGIS, so I drew the sample of PSUs, demonstrating and documenting my steps 

throughout the process. However, selection of gridded population PSUs can now be performed by 

non-GIS and non-R users with GridSample.org (see section 5.3.1). 

Office mapping. We used OpenStreetMap (OpenStreetMap contributors, 2000) as the base layer 

in our field maps for several reasons. The first reason was to generate geographically accurate 

maps to promote accurate and timely navigation by the mapping-listing and interview teams in 

dense, complex communities. The use of standard hand-drawn maps would have been laborious 

and likely resulted in inaccurate maps due to dense, irregular roads and buildings. Second, the 

majority of buildings and roads in Kathmandu Valley had been mapped in OpenStreetMap, thus 

we were able to save time and human resources whilst maintaining anonymity of PSU locations. 

Use of this protocol in an area not well mapped in OpenStreetMap could have revealed PSU 

locations to an attentive OpenStreetMap user.  

Assigning PSUs and pre-field segmentation. After updating OpenStreetMap but before 

generating field maps, the HERD International survey team and I reviewed each PSU over recent 

satellite imagery in ArcGIS 10.3 to decide whether to drop PSUs lacking habitable buildings. 

Dropped PSUs were replaced with a randomly selected backup PSU. After reviewing all PSUs, we 

randomly assigned 30 main PSUs to the area-microcensus arm and 30 to the two-stage arm, and 

backup PSUs were retained in the case a PSU was inaccessible or was found to lack residents 

during fieldwork. During our review, we also determined whether the PSU clearly had more than 

the target 20 (area-microcensus) or 200 (two-stage) households, and segmented those PSUs into 

two or more areas of approximately equal population size, then randomly selected one segment 

for inclusion in the survey (see Figure 44 for example segment maps). Segmentation was 

performed manually following roads and property boundaries in ArcGIS 10.3 (ESRI, 2018). The 

number of segments created in each PSU were tracked and used to calculate sample probability 

weights. 

Field mapping and listing, and updating OSM. In the field, mappers and listers worked in pairs, 

taking turns updating the paper map and entering dwelling/household listing information into 

GeoODK on the tablet. They were trained to follow a script to approach residents, introduce 

themselves, explain the purpose of the survey, and ask detailed questions to understand and 

record residents’ living arrangements (script available at Thomson et al., 2018). Upon request, 

listers distributed a written description of the SUE survey with the phone number and name of 
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the survey coordinator. Weekly, the team spent half a day in the HERD International office 

updating buildings and roads in OpenStreetMap, debriefing with the survey coordinator, and 

connecting with other teams to swap stories, strategies, and build camaraderie. 

Post-field segmentation. To ensure that area-microcensus PSUs had approximately 20 

households each, a post-field segmentation step was conducted in area-microcensus PSUs only. In 

this step, the survey coordinator reviewed and manually segmented any PSUs with more than 25 

dwellings, and tracked the number of segments per PSU so that sample probability weights could 

be appropriately adjusted later. 

 

Dropped PSU – no buildings 

 

Area-microcensus segmented PSU 

 
Dropped PSU – no habitable buildings 

 

Two-stage segmented PSU2 

 

Figure 44. Examples of dropped and segmented primary sampling units (PSUs) 

                                                           

2 Place name identifiers are masked to anonymize PSU location 
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6.3 Methods 

I used a mixed methods approach to assess the feasibility of SUE gridded population survey 

methods and tools. This included participant observation with the HERD International survey 

team, and focus groups discussions and shadowing with hired mapping-listing staff. I also 

performed a simple quantitative analysis to compare types of households and outcomes in an 

area-microcensus versus two-stage survey design, and between the SUE household definition and 

the more constrained DHS/MICS household definition. 

6.3.1 Qualitative 

I was embedded with the HERD International survey planning team from July through September 

2017, and conducted participant observation throughout that period, taking detailed notes at the 

end of most days. I also shadowed two of the six mapper-lister teams for a full day each, noting 

how they navigated with paper maps and tablet-based tools, their challenges, how they 

approached residents, how residents responded, and processes the team used to record data, 

particularly if their processes differed from protocols envisaged by me and the planning team. 

Occasionally, I provided feedback if it was requested, or asked questions to understand their 

thought processes. 

A focus group discussion (FGD) was held with the mapping-listing team following their field work. 

With feedback from Dr. Elsey, Ms. Khanal, and Ms. Manandhar, I developed an FGD guide to elicit 

discussion about the office-based OpenStreetMap enumeration, field-based mapping and listing 

tools and methods, and overall workflow (see Appendix I). Ms. Khanal and Ms. Manandhar 

facilitated the FGD in Nepali over the course of two hours at the HERD International office. Ms. 

Khanal took hand-written notes and audio recorded the discussion, while Ms. Manandhar 

facilitated. Ms. Khanal transcribed the audio recording and translated the text to English, and Ms. 

Manandhar reviewed both the transcription and translation for corrections.  

I performed a thematic Framework Analysis (Pope et al., 2000; Gale et al., 2013) on the English 

translated text in NVivo 11 (QSR International, 2018). This involved coding every line by 42 

themes and summarizing results as a matrix – or framework – separated into three categories: 

positive/neutral experiences, challenges, and recommendations. The coding framework was 

developed iteratively with feedback from Dr. Elsey and qualitative researchers at University of 

Leeds and HERD International, and available in Appendix J. 
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6.3.2 Quantitative 

To compare (a) household definitions and (b) survey designs, I calculated weighted percentages 

and means of key demographic and socioeconomic characteristics, and made comparisons with 

multinomial logistic regression at the 95% confidence level. This involved calculating sample 

weights according to the SUE household definition and the DHS/MICS household definition 

separately, following the formula presented in section 5.2.3, and normalising weights following 

the approach presented in section 5.4.1. The analysis of household definitions was constrained to 

the area-microcensus sample because, by definition, many of the atypical and vulnerable 

household members identified in the area-microcensus areas were defacto excluded in a two-

stage design. The use of the SUE household definition in area-microcensus areas was assumed to 

represent a census of the “true” population, and thus was used as a reference population in 

statistical comparisons. The area-microcensus and two-stage arms were treated as strata in the 

analysis. I performed data management and analyses in Stata 14.0 (StataCorps LLC, 2020) using 

svyset commands to adjust for unequal probabilities of selection due to segmentation and 

stratification, and Taylor-linearized variance estimates for clustering of observations within PSUs.  

Cost and time estimates were made for the area-microcensus survey and two-stage survey, 

separately. These estimates were made in collaboration with the HERD International finance team 

and survey coordinator. All expenses charged to the SUE project were considered, and the 

following assumptions were applied. I excluded the planning team salaries during the initial three 

weeks because we performed one-time activities including researching and piloting potential 

tools, fleshing out the basic workflow, and developing training materials that would not be 

repeated in future surveys. However, I included costs associated with normal survey planning 

tasks such as sample size calculation, preparing the sample frame, and selecting PSUs.  

Salary estimates were based on number of person-days required to complete tasks in the area-

microcensus and two-stage PSUs, respectively. Assuming that the planning team would perform 

the same tasks in either survey design, the only variable in costs between the two survey design 

arms was the total length of the survey period. Other costs related to ethics review, materials, 

and equipment were expected to be the same in an area-microcensus and two-stage survey. 

6.4 Results and discussion 

Multiple results are presented and discussed in this section including effect of household 

definitions and sample design on survey results; assessment of time, cost, and skill mix across 

sample designs; observations of the planning and field teams; and focus group discussions with 

the mappers-listers about their experiences using SUE tools and methods in the field. 
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6.4.1 Sample characteristics and design effects 

In the area-microcensus sample, applying the DHS/MICS household definition resulted in 

exclusion of 10% of households (unweighted) compared to the SUE definition (Table 34). The 

treatment of survey arms as strata in the analysis meant that sample probability weights were 

larger in the two-stage arm because clusters comprised larger populations (SUE household 

definition mean weight: 1.673, range 0.298 – 5.524) than in the area-microcensus arm (SUE 

household definition mean weight: 0.347, range 0.157 – 0.985) (Table 34).  

The root design effects (DEFTs) were larger in the area-microcensus PSUs than two-stage PSUs for 

demographic indicators using the SUE household definition (e.g. married: 2.13 vs. 1.23), but 

smaller for slum household (2.18 vs 2.40), migrant status (1.48 vs. 2.96), and education (2.95 vs 

3.99) indicators (Table 34). The same pattern held using the DHS/MICS household definition 

(Table 34). Although one might expect larger design effects in the area-microcensus PSUs, 

because near neighbours are thought to be more similar than distant neighbours, the smaller 

DEFTs for slum, migration, and education indicators might indicate more complete coverage of 

heterogeneous neighbourhoods than typical two-stage samples. Smaller design effects with use 

of the SUE household definition compared to the DHS/MICS household definition might further 

indicate better identification of atypical and “hidden” households (Table 34). 

6.4.2 DHS/MICS versus SUE household definition 

Focusing on household definitions in the area-microcensus sample, nearly half of single adult 

households (46.9%, p<0.001) and sizable portions of migrant-headed households (6.7%, p=0.016), 

non-married (8.5%, p=0.001), unemployed (10.5%, p=0.001), and studying (14.3%, p=0.003) adults 

would have been excluded from the area-microcensus sample by using the DHS/MICS definition 

(Table 35). Results indicated that disabled adults might have been disproportionately excluded 

from the DHS/MICS household definition, though the sample size was quite small (9.3%, 0.009, 

weighted difference of 1 person) (Table 35). 
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Table 34. SUE Kathmandu sample characteristics and design effects 

 Adopted with permission from (Dana R. Thomson et al., 2020) 

 Two-stage  Area-microcensus 

Clusters    

Dropped and replaced 6  3 

Segmented 15  7 

Households    

Sampled - SUE 581  599 

Sampled - DHS/MICS 
(% of SUE definition) 

578 (99%)  538 (90%) 

Household response rate 581/600 (96.8%)  599/678 (88.3%) 

Sample weights  Mean (range)  Mean (range) 

SUE  1.673 (0.298 - 5.524)  0.347 (0.157 - 0.985) 

DHS/MICS 1.581 (0.300 – 5.283)  0.346 (0.152-0.953) 

Design effects (SUE HH def.) Mean/prop. (SE) DEFT  Mean/prop. (SE) DEFT 

HH size 3.9 (0.111) 1.53  3.4 (0.137) 1.97 

HHs per dwelling 1.0 (0.011) 2.11  1.9 (0.433) 4.20 

HHs per PSU 19.5 (0.173) 4.42  24.9 (2.691) 5.40 

Residential building 0.734 (0.023) 1.27  0.682 (0.075) 3.95 

Nuclear family 0.517 (0.017) 0.83  0.439 (0.032) 1.56 

Slum household 0.204 (0.040) 2.40  0.146 (0.031) 2.18 

Migrant (head of HH) 0.700 (0.056) 2.96  0.780 (0.025) 1.48 

Married 0.675 (0.014) 1.23  0.663 (0.026) 2.13 

Employed full-time 0.459 (0.022) 1.82  0.486 (0.028) 2.21 

Male 18+ 0.371 (0.013) 1.34  0.416 (0.022) 2.02 

Secondary+ education 0.495 (0.042) 3.99  0.528 (0.032) 2.95 

Design effects (DHS/MICS HH def.) Mean/prop. (SE) DEFT  Mean/prop. (SE) DEFT 

HH size 3.8 (0.107) 1.47  3.4 (0.104) 1.48 

HHs per dwelling 1.0 (0.011) 1.01  1.5 (0.088) 2.50 

HHs per PSU 19.5 (0.174) 4.41  23.4 (1.533) 3.86 

Residential building 0.734 (0.023) 1.27  0.718 (0.069) 3.55 

Nuclear family 0.517 (0.018) 0.84  0.461 (0.026) 1.21 

Slum household 0.215 (0.042) 2.44  0.170 (0.033) 2.02 

Migrant (head of HH) 0.699 (0.057) 2.96  0.768 (0.024) 1.34 

Married 0.675 (0.014) 1.23  0.678 (0.026) 2.09 

Employed full-time 0.460 (0.022) 1.78  0.501 (0.028) 2.15 

Male 18+ 0.373 (0.014) 1.35  0.408 (0.023) 2.01 

Secondary+ education 0.498 (0.042) 4.03  0.529 (0.032) 2.83 
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Table 35. Percent of households or individuals in the area-microcensus arm excluded by use of the 

DHS/MICS household definition versus SUE household definition 

 Adopted with permission from (Thomson, Bhattarai, et al., 2020) 

Indicator N-wgt 
all 

N-wgt 
DHS/MICS only 

Wgt % excluded 
by DHS/ MICS 

p-value† 

Households      

Configuration     

Single adult 22 12 46.9 <0.001 

One woman with children 10 10 0.0 <0.001 

Nuclear family 91 91 0.6 Ref. 

Other family * 73 73 0.6 0.906 

Non-family 13 13 0.0 <0.001 

Slum household **     

No 171 163 5.1 Ref. 

Yes 37 35 6.4 0.835 

Migration status (head)     

Non-migrant 46 46 0.3 Ref. 

Migrant 162 151 6.7 0.016 

Adults 18+      

Marital status     

Not married  184 169 8.5 0.001 

Married 364 355 2.3 Ref. 

Employment status     

Full-time employed 267 262 1.6 Ref. 

Part-time, underemployed 10 10 0.0 <0.001 

Unemployed 27 24 10.5 0.001 

Retired 20 19 1.9 0.839 

Homemaker 123 122 1.5 0.860 

Disabled “unable to work” 17 16 9.3 0.009 

Student 82 70 14.3 0.003 

Missing 2 0 100.0 <0.001 

Individuals      

Gender and age group     

Male <12 55 54 1.4 0.139 

Female <12 48 47 1.6 0.291 

Male 12-17 31 30 4.9 0.822 

Female 12-17 32 31 3.4 0.442 

Male 18+ 297 280 5.7 Ref. 

Female 18+ 251 244 2.8 0.203 

Level of education     

Less than primary 171 163 4.7 0.733 

Primary 124 118 4.6 0.711 

Secondary+ 377 362 3.9 Ref. 

Missing 42 42 0.0 <0.001 

* includes living with servants and/or extended family, sometimes with non-family household members  
** defined as lacking improved water, improved sanitation, a durable structure, sufficient sleeping 
space (based on DHS/MICS household member definition), or insecure tenure 
† multinomial logistic regression  
N-wgt – weighted count 
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6.4.3 Area-microcensus versus area-microcensus design 

Table 36 provides insight about the combined effect of exclusion due to survey design and 

household definition. The area-microcensus and two-stage arms of the study represented 

independent random samples that may have resulted in a mix of different households by chance. 

However, statistically significant differences in number of people per dwelling, building types, and 

household configuration followed expected patterns, which suggests that two-stage sample 

designs oversample residential family households and under-sample single adults residing in 

shared dwellings and mixed commercial-residential buildings. 

Using the DHS/MICS household definition, the average number of residents per dwelling (living 

space) was 3.9 in two-stage PSUs compared to 5.0 in area-microcensus PSUs (p<0.001), suggesting 

that multi-household dwellings were easier to identify and record in area-microcensus units. 

Relatedly, non-family household configurations were less likely to be recorded in two-stage PSUs 

than area-microcensus PSUs (1.9% vs 6.3%, p=0.029). In two-stage PSUs, however, a larger 

portion of buildings were shacks/tents compared to area-microcensus PSUs (3.8% vs 0.7%, 

p=0.009) (Table 36). This is likely because the two-stage arm had much larger PSUs, and 

systematic sampling of households increased the chances of sampling informal settlements across 

the Kathmandu Valley. Despite these difference, no other statistically significant differences were 

detected among a select set of demographic and socioeconomic indicators. 

However, when outcomes in area-microcensus PSUs using the relaxed SUE household definition 

were compared with typical two-stage PSUs using the DHS/MICS household definition, additional 

differences were detected. In the area-microcensus-SUE sample, the number of individuals per 

dwelling increased (5.3, p=0.001), and the number of individuals per household decreased (3.4, 

p=0.013), compared to the two-stage-DHS/MICS scenario. This is likely because the number of 

single-adult households included in the area-microcensus sample doubled to 10.4% by using a 

relaxed SUE household definition (p=0.040). The SUE household definition included individuals 

who stay in atypical accommodations, including hostels (3.8%), guesthouses (0.1%), and street 

sleepers (1.0%) who together represented nearly 5% of the area-microcensus-SUE sample. These 

additional individuals were not necessarily all single adult men, as one might expect. The 

distribution of males and females across age groups, education levels, employment status, marital 

status, migrant status (of head of household), and slum households remained statistically similar 

to the distribution observed in the two-stage-DHS/MICS sample (all comparisons, p>0.05). 

Though, differences in the weighted percentages between the area-microcensus-SUE and two-

stage-DHS/MICS samples do suggest that many of the omitted individuals in standard household 

surveys are migrant adult men. 
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Table 36. Comparison of key demographic and socioeconomic characteristics by survey design 

(area-microcensus vs two-stage) and household definition (DHS/MICS vs SUE)  

 Adopted with permission from (Dana R. Thomson et al., 2020) 

Indicator Two-stage 
DHS/MICS (ref.) 

Area-microcensus 
DHS/MICS 

Area-microcensus 
SUE 

N-wgt Mean or 
Percent 

N-wgt Mean or 
percent 

p-value N-wgt Mean or 
percent 

p-value 

Survey Metrics         

HH size 928 3.9 191 3.5 0.014 208 3.4 0.013 

Dwelling size 928 3.9 191 5.0 <0.001 208 5.3 0.001 

HHs per PSU 928 19.5 191 23.4 0.016 208 24.9 0.051 

Households         

Building type         

Residential 681 73.4 % 137 71.8 % Ref. 142 68.2 % Ref. 

Mixed 206 22.2 % 50 26.4 % 0.595 52 25.0 % 0.594 

Commercial 6 0.7 % 3 1.2 % 0.447 2 1.2 % 0.450 

Shack or tent 35 3.8 % 1 0.7 % 0.009 1 0.6 % 0.009 

Hostel 0 -- 0 -- -- 8 3.8 % <0.001 

Street sleeper 0 -- 0 -- -- 2 1.0 % <0.001 

Guesthouse 0 -- 0 -- -- 0 0.1 % <0.001 

Configuration         

Single adult 42 4.5 % 11 5.8 % 0.256 22 10.4 % 0.040 

One woman with children 29 3.2 % 10 4.9 % 0.093 10 4.7 % 0.096 

Nuclear family 480 51.7 % 88 46.1 % Ref. 91 43.9 % Ref. 

Other family * 360 38.8 % 70 36.8 % 0.600 73 35.1 % 0.603 

Non-family 17 1.9 % 12 6.3% 0.029 13 6.0% 0.030 

Slum household **         

No 718 77.3 % 157 82.5 % Ref. 171 82.3 % Ref. 

Yes 210 22.7 % 34 17.5 % 0.341 37 17.7 % 0.360 

Migration status (head)         

Non-migrant 280 30.1 % 44 23.2 % Ref. 46 22.1 % Ref. 

Migrant 648 69.9 % 147 76.8 % 0.244 162 78.0 % 0.173 

Adults 18+          

Marital status         

Not married  861 32.5 % 163 32.2 % 0.924 185 33.7 % 0.107 

Married 1,786 67.5 % 344 67.8 % Ref. 363 66.3 % Ref. 

Employed full-time         

No 1,430 54.0 % 253 49.9 % 0.253 280 51.1 % 0.430 

Yes 1,217 46.0 % 254 50.1 % Ref. 267 48.7 % Ref. 

Missing 0 -- 0 -- -- 1 0.3 % <0.001 

Individuals          

Gender and age group         

Male <12 334 9.4 % 52 7.9 % 0.149 55 7.7 % 0.089 

Female <12 232 6.5 % 46 6.7 % 0.875 48 6.7 % 0.710 

Male 12-17 170 4.8 % 29 4.3 % 0.287 31 4.4 % 0.275 

Female 12-17 181 5.1 % 30 4.5 % 0.330 32 4.5 % 0.275 

Male 18+ 1,329 37.3 % 271 40.8 % Ref. 297 41.6 % Ref. 

Female 18+ 1,318 37.0 % 236 35.6 % 0.202 251 35.2 % 0.118 

Level of education         

Less than primary 957 26.9 % 157 23.8 % 0.412 171 23.9 % 0.440 

Primary 599 16.8 % 115 17.3 % 0.880 124 17.4 % 0.906 

Secondary+ 1,774 49.8 % 351 52.9 % Ref. 377 52.8 % Ref. 

Missing 234 6.6 % 41 6.1 % 0.601 42 5.9 % 0.494 

* includes living with servants and/or extended family, sometimes with non-family household members  
** defined as lacking improved water, improved sanitation, a durable structure, sufficient sleeping space 
(based on DHS/MICS household member definition), or insecure tenure 
† multinomial logistic regression  
N-wgt – weighted count 
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6.4.4 Time, cost, skill mix 

Based on the Kathmandu budget, I estimated that the area-microcensus gridded population 

survey on its own, with a target of 600 households in 30 PSUs, cost US$26,769, or US$45 per 

household. The comparable gridded population survey using a two-stage design cost US$35,284, 

or US$59 per household in Kathmandu (Table 37). The main difference was that mapping and 

listing in each two-stage PSU took approximately 2.5 times than an area-microcensus PSU. 

 

Table 37. Comparison of estimated time and budget to perform the area-microcensus arm of the 

survey versus two-stage arm of the survey, with 30 clusters and 600 households each 

Budget Item 
 

Two-stage design Area-microcensus design 

Time Cost USD Time Cost USD 

Planning & Administration 
75 days 

 
60 days 

 
Salaries 9,240 8,006 

Mapping-Listing-GIS 35 days × 
6 mapper-listers 
1 GIS specialist 

 12 days × 
6 mapper-listers 
1 GIS specialist 

 
Salaries, per diem 7,641 3,056 
Materials 291 218 

Interviews & Data Management 
19 days ×  
8 interviewers 

 
15 days ×  
8 interviewers 

 
Salaries, per diem 5,723 4,518 
Materials, including pilot 2,106 2,106 
Ethics review 1,998 1,998 

Equipment 
6 computers 
4 tablets 

 
6 computers 
4 tablets 

 
   Laptops / hard drives 1,193 1,193 
   Tablets 1,212 1,212 

Overhead (20% direct costs)  5,786  4,367 

TOTAL  35,284  26,769 

Cost per household  59  45 

 

Thirty PSUs is a small sample size for a household survey; national household surveys typically 

have more than 400 PSUs. Training and supervision costs would benefit from economy of scale in 

a larger survey, while other costs, such as transportation and accommodation, would increase due 

to distant PSUs. This means that area-microcensus sampling could result in a large cost savings 

compared to the standard two-stage design. However, there is a potential trade-off in statistical 

power.  

Area-microcensus sampling can result in a larger design effect if near neighbours are more similar 

than distant neighbours, though heterogeneity in urban residents likely varies by city and over 

time (Elsey et al., 2016). A simulation study of design effects in rural Namibia suggested that an 

area-microcensus survey with PSUs of 25 households would need to double the number of PSUs 

to achieve the same statistical power as a two-stage survey in the same population (Kools, 2018). 

An increase in sample size would increase costs. However, in a more heterogeneous setting like 
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Kathmandu, the number of additional area-microcensus clusters to achieve the same statistical 

power as a typical two-stage sample might be far less. Furthermore, if the number of households 

per PSU were reduced, it is possible that area-microcensus sampling with a gridded population 

sample frame and additional PSUs could cost the same or less than a two-stage survey with a 

census-based frame. The benefit of the area-microcensus design is potentially more accurate 

representation of vulnerable and mobile households, particularly single-adult households. 

The skill mix required to plan and implement a gridded population survey using SUE innovative 

methods and tools was not much different from a standard household survey. The main 

difference was the skillset of the mapping-listing team. In a standard survey, mapping-listing staff 

are required, at a minimum, to be map literate and have a secondary school education (ICF 

International, 2012a). It is increasingly common in household surveys that mapping-listing team 

leaders are able to use a GPS unit and have basic GIS skills to interact with maps and printed 

satellite imagery of PSUs. To use SUE methods and tools, the mapping-listing staff should be 

comfortable using mobile technologies for data collection or navigation. For larger surveys, it 

might be helpful to have a dedicated GIS staff member to produce maps. 

The skills sets of other staff in the SUE gridded population survey, including survey planners, 

trainers, and interviewers were essentially identical to a standard household survey, assuming 

that survey planners use GridSample.org for sample selection. If the GridSample R package is 

used, intermediate programming and GIS skills are required. Most standard household survey 

questionnaires are now administered on a tablet, so most planning teams have protocols to set 

up a server, set up tablets, and preload forms and reference data. We used similar protocols to 

prepare tables for a digital household listing, and install apps to aid navigation.  The roles and 

skills of the interviewing teams are identical in both survey approaches.  

6.4.5 Participant observation and shadowing 

The HERD International survey team was well versed in finding innovative solutions to massive 

survey challenges. Several colleagues, for example, were responsible for conducting a complete 

building census and needs assessment in 26 districts in and around Kathmandu following the 2015 

earthquakes, and the team routinely collects surveys in some of the remotest villages on earth in 

the mountains of the Himalayas. Dr. Sushil Baral ensured that team members had time away from 

other projects to work on this survey, and Mr. Bhattarai, Mr. Dhungel, and Mr. Gajurel regularly 

stayed late in the office with me to hash out workflows, test applications, and prepare for the SUE 

survey. I recorded over 50 photographs of our white-boarding sessions, the content of which is 

reflected in the SUE Planning Team and Mapper-Lister-GIS manuals (Thomson et al., 2018). 



Chapter 6 

170 

Although I coordinated analysis of the SUE survey, the innovations developed in this study were 

very much a group effort, as visualised in a few photos from our work together (Figure 45).  

 

 
 

 

  

Figure 45. Images from participant observation with the Kathmandu SUE survey planning team 

 

Here, I highlight just one of many personally impactful observations. During the week of mapper-

lister training, members of the planning team were assessing participants in ways that I had not 

considered. When we finished calculating exam results on the last day of training, Mr. Bhattarai 

suggested that we finalize mapper-lister hiring and team assignments over coffee at a local café. I 

had assumed that this would be a mechanical and quick process; not hiring candidates who 

performed poorly in assessments, and pairing higher-performing staff members with anybody 

who passed the assessments but needed more confidence or skills.  

Instead, the planning team members brought printed ID cards (that would later be given to each 

hired mapper-lister) to the cafe, and used them to visualise and discuss potential team pairings 

(top-right image Figure 45). They started by laying out the ID cards of five very high performing 
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candidates – these five people would be on separate teams. Then they spent more than an hour 

discussing interpersonal dynamics that they had observed throughout the training week, the 

cultural and language backgrounds of candidates, and even how residents in certain sampled 

neighbourhoods might perceive the ethnic identity of mapper-lister names. The aim of this 

exercise was to maximise team skill and enjoyment in the field. Considerable thought was put into 

pairing candidates who were most likely to provide each other with the support and focus that 

they would need to work through long, tiring days in the field. The planning team also aimed to 

put staff in situations where they were most likely to succeed by trying to minimise any 

predictable negative interactions (e.g., ethnic discrimination). The key insight for me was that 

high-quality, accurate survey data starts with happy, well-supported fieldworkers. Frustrated, 

emotionally exhausted survey field staff can undermine the cleverest survey design, tools, or 

methods.  

Shadowing two of the six mapper-lister teams was also very insightful. It provided me an 

opportunity to observe the amount of time it can take to get one’s bearings in the field, 

particularly in a setting as complex and dynamic as Kathmandu. I observed fieldwork in both an 

area-microcensus and a two-stage PSU, and the experiences were quite different. Not only was 

the two-stage PSU much larger, the interactions with residents took much longer. Gathering head 

of household name was particularly time-intensive in the two-stage PSU. Multiple times, the 

mapping-listing team was asked to wait for the landlord to be called on the phone, or to come 

downstairs from an apartment, to provide names of building residents because no one else in the 

building was willing to do so without the landlord’s permission. This sometimes took 20 to 30 

minutes, during which time one team member went ahead and continued mapping and listing 

households. 

By visiting PSUs across diverse neighbourhoods and speaking with residents, mappers-listers 

discovered many informal businesses and lifestyles. For example, we came across a glass-blowing 

factory behind someone’s home that manufactured smoking pipes and bongs. The factory staff let 

me step inside and snap a photo (Figure 46). Next to the factory floor/store room, I observed 

about a dozen bunkbeds in two small rooms where workers stayed semi-permanently. This was 

just one informal residence listed that day. 
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Figure 46. Images from shadowing mapper-lister teams during the SUE survey fieldwork 

 

Shadowing field teams also allowed me to witness the routine rejections that fieldworkers face, 

and learn how they reacted and stayed motivated through these experiences. A large portion of 

residents were away from home at work during data collection, or busy with domestic work. 

Rejections by residents were sometimes dismissive, while other residents expressed outright 

anger at the mapping-listing team. The first team that I shadowed was yelled at three times by 

residents on the same day. After one such interaction, a man shouted down the road at us after 

we respectfully walked away, and I asked what the man was shouting. The team I was with said 
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that he was complaining that household surveys are a waste of time and resources and never 

result in improvements for the neighbourhood or the city.  

6.4.6 Focus group discussions (FGD) with mapping-listing staff  

Feedback from the mapper-lister FGD was generally neutral or positive. The fieldwork, however, 

was not without limitations. The mapping-listing staff described their greatest challenge to be 

approaching residents. As geospatial specialists, they were generally adept at using technology, 

but had limited-to-no experience approaching members of the public on the street. The mappers-

listers noted that role-play and practical activities helped prepare them for fieldwork; however, 

additional training about the overall survey aims would have been helpful to more clearly explain 

the survey’s purpose to residents.  

In FGDs, mappers-listers described working in pairs as essential because it provided them with 

“mutual support,” allowing them to adapt to the moods and reactions of residents, interact in 

multiple languages, and to work faster and more accurately by supporting each other with 

navigation and recording details. Overwhelmingly, mappers-listers recommended that future 

gridded population survey teams be comprised of one geospatial expert who focuses on 

navigation and mapping, and one public health expert who is experienced at approaching 

residents to solicit household information. 

Several mapping-listing staff felt that residents routinely omitted mention of neighbours who did 

not have official mortgages or rental contracts, presumably for fear of evictions or fines. 

Additionally, in wealthy “VIP” neighbourhoods, the mapping-listing staff said that they 

encountered substantial scepticism and non-response. Mappers-listers commuted from home to 

PSUs via bus, rickshaw, motorbike, and on foot. Most staff never travelled more than one hour to 

a PSU, however a team assigned to a peri-urban PSU spent three hours commuting each way due 

to the absence of buses or taxis. Several staff recommended hired vehicles to save time, 

especially in two-stage PSUs which could be quite large in peri-urban, less dense areas. 

Mapping and listing staff reported different experiences in area-microcensus and two-stage PSUs. 

The two-stage PSUs were, by definition, at least ten times the size of area-microcensus PSUs; 

however, due to variability in the WorldPop-RF estimates, several two-stage PSUs were even 

larger resulting in extra days of work and more physical barriers to navigate, such as hills or rivers. 

In addition to being much larger, the two-stage PSUs required more information to be collected 

from residents than area-microcensus PSUs resulting in longer interactions and higher levels of 

scepticism among residents. Similar to my field observations, mappers-listers said that residents 

were generally happy to report number of dwellings per building; however, they were reluctant to 
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specify the number of households per dwelling and to give household head names. In many two-

stage PSUs, teams approached a person working in a shop on the ground level who gave number 

of dwellings in the building, but refused to give household-level information, and instead directed 

the mapping-listing staff to the building owner or landlord.  

Mapping-listing staff faced some challenges with the tablet applications. While some challenges 

could have been averted with more training, other challenges were inherent to the tools and 

methods used. First, OpenStreetMap roads and buildings data were updated to the various tablet 

applications on different schedules resulting in different versions of the same map across 

applications. Mappers-listers updated roads and buildings in OpenStreetMap at the HERD 

International office before starting fieldwork, but the changes took several hours to appear in 

ArcGIS (from which paper field maps were printed), several days to appear in GeoODK (where 

building GPS points were collected as part of the listing), and up to 30 days to appear in OSMAnd 

and MAPS.ME (both used for navigation).  

A second problem was the number of applications that the mapping-listing staff were expected to 

use. It was time-consuming and confusing to switch between MAPS.ME to navigate to a PSU, 

OSMAnd to navigate within a PSU, and finally GeoODK to manually record a GPS point over each 

building. Additionally, the location precision within OSMAnd and GeoODK were poor, often 

showing a massive blue circle in which the tablet could be located, undermining the purpose of 

this location feature. Despite these challenges, mapping-listing staff strongly preferred these tools 

and methods to the described alternative of hand-drawn maps and paper listing forms. 

6.4.7 Recommendations 

By comparing an area-microcensus sample design with relaxed SUE household definition and a 

standard two-stage sample design with DHS/MICS household definition in Kathmandu, Nepal, I 

found evidence that standard household surveys unintentionally omit vulnerable and mobile 

households, which might affect the accuracy of survey estimates. Standard household definitions, 

and the process of two-stage sampling, tend to result in listings of settled, family households, 

whereas area-microcensus-SUE surveys were able to identify more migrant single adults, hostel 

dwellers, people staying long-term in guesthouses, and street sleepers. However, without slum 

area boundaries to stratify urban area, SUE survey methods were unable to adequately measure 

shack and tent dwellers. 

A key finding from this study is that the person performing the household listing, and under which 

circumstances, matters in modern urban settings. Although the same household definition, 

protocols, and tools were used by mapper-listers and interviewers who listed households in area-
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microcensus and two-stage PSUs, respectively, different types of households were listed in the 

two types of PSUs. While this difference could have occurred by chance, the focus group 

discussion and my field observations point to an alternative explanation. When interviewers 

performed the household listing in area-microcensus clusters, they had substantially more time to 

interact with residents than the mapping-listing teams in two-stage clusters, resulting in a more 

thorough listing. Furthermore, the interviewers in this survey had more experience and skills 

interacting with the public which may have influenced the quality of information provided by 

residents. In a two- to three-hour interaction, interviewers were able to build the trust necessary 

for residents to report atypical and “hidden” neighbouring households in area-microcensus PSUs; 

while these types of vulnerable households were likely not reported to mappers-listers in brief 

five to 15 minute interactions in two-stage PSUs.  

The mappers-listers believed there was under-reporting of “hidden” lower-income households in 

shared or inconspicuous dwellings, especially in two-stage PSUs. Without any other way of 

deducing the existence of these households, they were omitted from the sample frame. While 

mappers-listers also reported that many “VIP” households refused to speak with them during the 

mapping-listing activity, “VIP” households were still partially listed and included in the sample 

frame because their dwellings were visible, and neighbours or guards could often provide missing 

information (i.e., number of households in the dwelling, and head of household name). A 

systematic exclusion of “hidden” households from the sample frame would have resulted in 

estimates biased toward middle-class and wealthier households due to coverage error among 

vulnerable or mobile households. One can also presume that both vulnerable/mobile and “VIP” 

households were less likely to respond to the survey than middle-class residents, in which case 

the sample would under-represent socio-economic extremes in the population. While sample 

weights (which include non-response rates) would duly increase variance estimates around 

indicators, an absence of the lowest and highest indicator values in the sample could still result in 

inaccurately narrow variance estimates around indicators. However, given the demographics and 

context in Kathmandu with far more vulnerable and mobile households than wealthy households, 

these errors were likely skewed toward wealthier households.   

As LMIC urban contexts are increasingly defined by complex living arrangements, mobile, and 

temporary residences, there might be a need to move the household listing responsibility to 

interviewers using an area-microcensus survey design. Others argue that our current household 

definitions developed for censuses and surveys in the 1980s when population were majority rural 

are no longer suitable in complex LMIC urban settings; rather, individuals and communities (small 

areas) are more appropriate units of measurement (Campbell, 2017).  
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Another key finding is that tent and shack dwellers comprised a small percentage of households in 

both arms of the study, particularly in the area-microcensus arm. Households living in tents and 

shacks were more prevalent in two-stage PSUs because two-stage PSUs were substantially larger 

than area-microcensus PSUs, and thus had a greater probability of covering a diversity of 

neighbourhood and building types. However, the only way to ensure representative survey 

samples of shack/tent dwellers and other vulnerable populations concentrated in slums – in both 

area-microcensus and two-stage designs – is to treat slum/non-slum urban areas as strata (Lilford 

et al., 2017).  

The Kathmandu SUE survey had some technical and practical limitations. At the time the sample 

was designed and selected, there were no ready tools or algorithms to group grid cells into 

sampling units of similar population size. The gridEZ algorithm was later developed, which now 

performs this task to support household surveys and other similar fieldwork (Dooley, 2019). 

Instead, we used the published GridSample R package which “grows” PSUs after “seed” cells are 

selected. This means that sample weights in area-microcensus PSUs were consistent with 

standard household surveys because the “seed” cell was used as the PSU boundary. However, in 

two-stage clusters, the population of the “grown” PSU used in sample weights, was different from 

the actual probability of selection. To more accurately calculate weights for the two-stage 

clusters, an adaptive sampling weight could theoretically be applied; however, with very large 

areal constraints on PSU “growth,” the number of permutations, and thus number of terms 

required in an adaptive sample weight calculation approaches infinity and is not feasible to 

calculate.    

A practical limitation of the field work was that response rates in area-microcensus PSUs were 

lower than in two-stage PSUs. This may have been due to the greater proportion of vulnerable 

and mobile households measured in area-microcensus PSUs; and those types of households may 

have been less willing to participate or were more likely to be absent during the daytime. This 

finding is contrary to a common concern about sampling methods which place interviewers in 

charge of household sample selection. Survey practitioners generally expect higher response rates 

to be recorded when interviewers decide which household to include in the survey because 

interviewers are assumed to omit difficult or undesirable households (UNSD, 2005b). I do not 

suspect this was a problem in the Kathmandu SUE survey for three reasons. First, a dwelling listing 

had been performed by a mapping-listing team before interviews which ensured that at least one 

household response was recorded for each listed dwelling. Second, the same interviewers worked 

in both area-microcensus and two-stage PSUs, likely resulting in consistency in practices across 

the PSU types. And third, the training, supervision, and support provided by the HERD 

International staff was outstanding, and likely motivated interviewers to adhere to the protocols. 
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These findings are from just one city, and may have differed in another city, or at a national scale. 

Future information about time, cost, skill mix, and experiences of staff would be needed to 

generalize about gridded population surveys, or to fairly compare area-microcensus and two-

stage designs. This study, however, does suggest that gridded population sampling is a viable 

alternative to census-based sampling using either a micro-census or two-stage sample design. The 

time, cost, and skill mix requirements for both survey arms in Kathmandu were comparable, or 

cheaper, than other standard surveys implemented by the HERD International team on other 

projects.  
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Chapter 7: Conclusions 

7.1 Key findings and implications 

This thesis evaluates the accuracy and feasibility of gridded population sampling, focusing on the 

ability of gridded population sampling to represent the poorest and most vulnerable members of 

society in household survey data. In Chapter 2, I detailed the dramatic rates of urbanisation that 

have transformed low- and middle-income countries (LMICs), particularly over the last two 

decades, and how the continued use of survey methods and tools – developed for rural 

populations four decades ago – are likely masking or omitting the urban poor from household 

survey data. I hypothesised that poor, vulnerable, and mobile populations were 

disproportionately omitted from the census sample frames, and that existing survey methods 

favour long-term, stably-housed, family households. In Chapters 4, 5, and 6, I tested these 

hypotheses. 

My research questions, however, required a highly detailed and accurate population dataset with 

information about household locations and outcomes in a typical LMIC urban setting. Unable to 

find such a dataset, I simulated a realistic population in Chapter 3 for Khomas, Namibia, a region 

that is 95% urban. I also systematically reviewed the literature to identify rates of under-counts 

among rural, urban slum, and urban non-slum households in LMIC censuses. I then used this 

information to simulate 15 realistic scenarios of outdated, inaccurate census populations from the 

“true” simulated population. 

In Chapter 4, I used the 16 simulated datasets to create and evaluate cell-level accuracy in a 

gridded population dataset. After reviewing existing approaches to modelling gridded 

populations, I chose to replicate one of the most accurate and best documented approaches by 

the WorldPop team. I found that outdated, inaccurate census data had little effect on cell-level 

accuracy in WorldPop gridded population datasets. Instead, the main source of WorldPop cell-

level inaccuracy was use of average population density at a spatially aggregated scale to make 

estimates of population density at a much finer geographic scale. This error resulted in gross 

under-estimates in the most densely populated grid cells (where slum dwellers were more likely 

located) and over-estimates in less dense cells. Although the grid cell population totals were 

underestimated across urban Khomas, I found that the distribution (percent) of the population 

across cells was reasonably accurate, within +/- 20% the “true” population distribution.  

In Chapter 5, I selected 200 household samples from each of the simulated censuses and gridded 

population datasets derived from these simulated censuses. I limited the study area to urban 
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Khomas because the population totals and distributions measured in urban versus rural Khomas 

in Chapter 4 exhibited very different results, and because 95% of the “true” simulated population 

was located in urban Khomas. I compared repeated samples from (1) census sample frames, 

defined by actual census EA boundaries with minor modifications to account for urban expansion 

between 2011 and 2016, (2) gridded population data derived from census EA-level inputs, and (3) 

gridded population data derived from constituency (second-level administrative) inputs. To 

prepare the gridded population data for sampling, I used the publicly available gridEZ algorithm to 

group cells into units with a target population and a maximum area (similar to census EAs). I 

compared estimates of four household outcomes across the three sample frames and 16 census 

scenarios with the “true” simulated population, and found that gridded population samples 

derived from either census EA- or constituency-level data resulted in more accurate indicator 

estimates when the sample frame was more than ten years old or inaccurate.  

A key feature of the simulated data in Khomas was that non-slum (non-poor) households 

comprised a majority of the population (about two-thirds), and had “better” outcomes than slum 

(poor) households. This was by design, following the distribution of actual household 

characteristics measured in Khomas in the 2011 census. This population configuration led to a key 

finding about household survey inaccuracy in the simulated urban Khomas population, and likely 

in many other similar LMIC cities: in the presence of moderately outdated or inaccurate census 

data, census-based samples produce overly cheery statistics because poor households were 

missing from the sample frame, had “worse” outcomes, and comprised a smaller portion of the 

overall urban population. 

The solution to this problem is stratification of urban surveys by deprived/non-deprived areas; 

however, these types of maps are largely absent, or inconsistent if they exist, in LMIC cities. In 

Chapter 5, I performed sub-analyses in slum and non-slum households after sampling and found 

that this disaggregation did not improve accuracy of slum estimates from census samples when 

the frame was ten or more years old or inaccurate. However, in all scenarios, including outdated 

or inaccurate underlying census, gridded population samples from gridEZ units resulted in more 

accurate overall urban estimates, as well as more accurate disaggregated estimates in slum and 

non-slum areas. These findings underscore the urgent need for methods to routinely and 

accurately map deprived urban areas across LMIC countries. Until these maps exist, household 

surveys based on moderately outdated or inaccurate census data will likely continue to produce 

biased estimates of urban outcomes, and mask the needs of the urban poorest. These findings 

also indicate that use of a gridded population sample frame, even if based on an outdated or 

inaccurate census, produces more accurate estimates than sampling directly from an outdated or 

inaccurate census.  
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In Chapter 6 I evaluated gridded population sampling in a real-world setting by partnering with 

HERD International in Kathmandu, Nepal under the Surveys for Urban Equity project. In this 

chapter I evaluated the feasibility of gridded population sampling with a standard two-stage 

sampling design, as well as an area-microcensus design in which all households were listed and 

interviewed in a small area on the same day. Findings from this survey suggested that area-

microcensus sampling is cheaper than two-stage sampling due to smaller PSUs and less time 

spent mapping and listing households. Results also suggested that when interviewers perform the 

household listing in area-microcensus PSUs, that a greater number of vulnerable and mobile 

households can be identified and thus included in the sample. This is likely because interviewers 

spend much more time with residents in their homes building rapport, while mapping-listing 

teams only ever have a few minutes at each building. As LMIC cities grow increasingly complex 

and dynamic, it might be important for survey teams to consider shifting the listing task to 

interviewers to be able to identify informal and “hidden” households. 

I assessed the experiences of field staff in the Kathmandu survey via focus group discussions and 

shadowing them during fieldwork. Mapping and listing staff generally reported neutral and 

positive experiences with gridded population survey methods and tools, and strongly preferred 

the geographically-accurate OpenStreetMap-based maps and tablet navigation applications we 

used over standard hand-drawn paper maps. However, the field staff suggested hiring non-

technical staff to be part of the mapping-listing teams to improve interactions with members of 

the public, and highlighted challenges that resulted from un-integrated field tools. 

7.2 Recommendations and directions for LMIC surveys 

The simulated “true” population that I developed in Khomas was highly realistic; the point 

locations and approximate population densities aligned with actual building locations as observed 

in satellite imagery collected in the respective year. The household sizes in “poor” and “non-poor” 

households followed a distribution measured in an actual household survey data, and the location 

of “poor” and “non-poor” households were realistic based on visual inspection of satellite 

imagery. Given that this simulated population resembles an actual population, conclusions from 

this PhD are relevant to all WorldPop-RF / WorldPop-Global data, and to all gridded population 

surveys in LMICs, particularly in countries with concentrated population surrounded by vast open 

spaces, such as Argentina, DR Congo, Libya, Pakistan, and Iraq.  

Gridded population sampling has potential to improve household survey accuracy in LMICs, 

particularly if the existing census is moderately outdated (e.g., 10 years) or inaccurate. Improving 

the accuracy of LMIC household survey data stands to improve the health and wellbeing of the 
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world’s poorest by ensuring that they are reflected in monitoring efforts such as the SDGs, and 

visible in data used by decision-makers to determine and fund local, national, and global 

development initiatives.  

This thesis makes the first attempt to assess cell-level accuracy of a gridded population dataset. I 

found evidence that WorldPop gridded population sample frames derived from outdated, 

inaccurate census input data perform better than the original outdated, inaccurate census data in 

terms of indicator accuracy, filling a critical gap in LMICs. Gridded population sample frames have 

the advantage over census sample frames of being extremely fine scale (e.g., 100 metres by 100 

metres), enabling area-microcensus sample designs. I found evidence that an area-microcensus 

design used in a complex, dynamic urban setting can better represent certain vulnerable and 

mobile populations than the standard two-stage design. 

However, two key issues need to be addressed before gridded population sampling can improve 

survey data accuracy in practice. First, gridded population accuracy needs to be evaluated at the 

cell-level by the producers of gridded population data to drive research and development of 

methods for fine-scale gridded population data. In my evaluation of WorldPop-RF / WorldPop-

Global data, I found major overestimation of rural and low-dense populations and 

underestimation of high-dense urban and populations, which is corroborated by my visits to field 

locations where gridded population estimates are made. I suggest incorporating fine-scale 

population counts into WorldPop training models to improve urban estimates, reducing 

misallocation of population to low-density areas. However, there are likely other solutions that 

could improve cell-level accuracy in gridded population models. I see measurement of cell-level 

error by the geospatial analysts who produce gridded population datasets as the first step in 

understanding these errors and innovating to address them. 

The second key issue is the inability in most countries to stratify heterogeneous urban 

populations. Producing maps of deprived areas across LMIC cities would not only vastly improve 

the accuracy and precision of all household survey estimates, it could make the urban poorest 

more visible in other data sources such as censuses. The IDEAMAPS initiative, which I have been 

involved with (Thomson, Kuffer, et al., 2020), and the Million Neighbourhoods Initiative 

(Brelsford, Martin and Bettencourt, 2017; Brelsford et al., 2018) are two of several collaborations 

aimed at developing routine maps of deprived urban areas at scale. 

Research and practice are moving toward cell-level accuracy assessments of gridded population 

data and routine mapping of LMIC deprived urban areas, which is promising for gridded 

population sampling. Gridded population sampling is thus poised to shape the next era in LMIC 

household surveys.
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Appendix A      Alternative household type clustering 

results in Khomas, Namibia population simulation 
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Type 1 0 0.02 0.28 0.17 0.00 0.03 0.08 0.01 Urban highest (richest) ?? 

Type 2 0 0.11 0.34 0.98 0.00 0.55 0.08 0.19 Urban middle-low ?? 

Type 3 1 0.33 0.40 1.00 0.13 0.53 0.14 1.00 Rural poor 

Type 4 0 0.04 0.36 0.70 0.02 0.23 0.16 0.02 Urban middle-high ?? 

Type 5 1 0.04 0.21 0.43 0.00 0.08 0.00 0.00 Rural rich 

Type 6 0 0.07 0.50 0.77 0.07 0.36 0.21 0.79 Urban lowest (poorest) 

Khomas 0.06 0.05 0.31 0.50 0.01 0.21 0.09 0.09  
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Appendix B Detailed literature review results: Percent population missing from LMIC censuses 

 

 
Agarwal 
(2011) 

Carr-Hill 
(2013) 

Carr-Hill 
(2017) 

Ebenstein 
(2015) 

Gidado 
(2013) 

Gurgel 
(2003) 

Jiang 
(2015) 

Karanja 
(2010) 

Kronefeld 
(2008) 

Lucci  
(2018) 

Sabry 
(2010) 

Location & Housing Type India LMICs 

Tanzania, 
Kenya, 
Uganda China Nigeria 

Brazil 
(kids 
only) China Kenya 

Afghan-
istan Kenya Egypt 

Urban slum                       

Permanent/semi-permanent (not mobile) 50% 5-13% 17-51%     21%  18, 21, 38, 59% 45% 

Permanent/semi-permanent (mobile)    33-61%     44%   

Homeless  100%  33-61%  64%      

Urban non-slum                        

Permanent       2%     

Rural                       

Permanent/semi-permanent       2%     

Remote     12%       

Nomad     12%       

Institutional                       

Hospital / care home  <1%          

Prison  0.09          

Refugee camp  10-15%          

Citation  (Agarwal, 
2011) 

 (Carr-Hill, 
2013) 

 (Carr-hill, 
2017) 

 (Ebenstein 
and Zhao, 
2015) 

 (Gidado 
et al., 
2013) 

 (Gurgel 
et al., 
2004) 

 (Jiang et 
al., 2015) 

 (Karanja, 
2010) 

 (Kronenfeld, 
2008)  (Lucci et al., 2018) 

 (Sabry, 
2010) 

continued… 
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Stark  
(2017) 

Treiman 
(2005) 

PES 
(2000) 

PES 
(2001) 

PES 
(2002) 

PES 
(2002) 

PES 
(2010) 

PES 
(2010) 

PES 
(2010) 

PES  
(2011) 

PES 
(2011) 

PES 
(2011) 

Location & Housing Type 
Cambodia 
(kids only) China Brazil Nepal Tanzania Uganda Ghana Zambia Rwanda Bangladesh India 

South 
Africa 

Urban slum                         

Permanent/semi-permanent (not mobile)             

Permanent/semi-permanent (mobile)  50%           

Homeless 80-96% 50%           

Urban non-slum                          

Permanent   2-4% 12% 7% 12% 3% 5% 2% 5% 3% 15% 

Rural                         

Permanent/semi-permanent   4-11% 5% 7% 5% 2% 10% 2% 4% 2% 13% 

Remote             

Nomad             

Institutional                         

Hospital / care home             

Prison             

Refugee camp              

Citation 
 (Stark et al., 
2017) 

 (Treiman 
et al., 
2005) 

 (Oliveira 
et al., 
2003) 

 (Korale, 
2002) 

 (Maro, 
2009) 

 (UBS, 
2005) 

 (GSS, 
2012) 

 (CSO, 
2013) 

 (NISR, 
2010) 

 (BIDS, 2012) 
 (NSC, 
2014) 

 (SSA, 
2012) 
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Appendix C        Comparison of existing gridded population 

datasets with a simulated population in Oshikoto, 

Namibia 

The follow comparison is of a published simulated “realistic” population in the rural region of 

Oshikoto, Namibia (Thomson, Kools and Jochem, 2018) and all available gridded population 

datasets on the POPGRID platform (POPGRID Data Collaborative, 2018) including 2016 ESRI World 

Population Estimates (WPE) (Frye et al., 2018), the 2015 Global Human Settlement Layer (GHSL) 

Population (also called GHS-POP) (European Commission JRC, 2020), 2015 Global Population of 

the World v4 (Center for International Earth Science Information Network (CIESIN) and Columbia 

University, 2016), 2015 LandScan layer (Dobson et al., 2000), and 2014 WorldPop-Random Forest 

layer (Stevens et al., 2015), plus the 2014 WorldPop-Global dataset (WorldPop, 2019) which I 

downloaded separately. These comparisons are of the total estimated population per census 

enumeration area (EA) compared to total households by EA in the simulated dataset, where EA 

boundaries were defined by the Namibia 2011 census (NSA, 2011a). 
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I observed the greatest consistency in estimates at the EA-level between the simulated population 

and GPW4, WorldPop-Random Forest, and WorldPop-Global. LandScan and ESRI-WPE performed 

particularly poorly in this rural area of Namibia. 

The following comparisons are of the simulated population and all gridded population estimates 

that are publicly available, including GHSL, GPWv4, WorldPop-Random Forest, and WorldPop-

Global. I downloaded and aggregated each dataset to approximately 1 kilometre by 1 kilometre 

units; aggregation was performed within each dataset to preserve the estimates and coverage of 

their original grid cell units. I then joined the simulated household counts to these approximately 

1 kilometre by 1 kilometre areas for each dataset to make comparisons. 

 

     Total        9.24      12.77      22.01      53.27       2.71      100.00 

                                                                              

WorldPop-G       14.92      20.27      34.52      29.62       0.67      100.00 

  WorldPop       11.14      18.49      30.73      38.53       1.11      100.00 

  Landscan        5.57       6.01       9.80      73.05       5.57      100.00 

     GPWv4       11.36      12.47      26.06      49.00       1.11      100.00 

      GHSL        8.46      12.25      23.16      54.79       1.34      100.00 

  ESRI-WPE        4.01       7.13       7.80      74.61       6.46      100.00 

                                                                              

   dataset       +/-20      +/-50     +/-100    +/-1000   >+/-1000       Total

                                     class

     Total       44.02      55.98      100.00 

                                             

WorldPop-G       69.71      30.29      100.00 

  WorldPop       60.36      39.64      100.00 

  Landscan       21.38      78.62      100.00 

     GPWv4       49.89      50.11      100.00 

      GHSL       43.88      56.12      100.00 

  ESRI-WPE       18.93      81.07      100.00 

                                             

   dataset      +/-100    >+/-100       Total

                RECODE of class
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At the 1 kilometre by 1 kilometre scale, GPWv4 and WorldPop-Global were most consistent with 

the simulated population in rural Oshikoto, Namibia, and WorldPop-Random Forest was only 

slightly less consistent. GHSL population estimates were highly inconsistent. 

These findings only demonstrate which gridded datasets perform accurately in a rural contest 

with a highly dispersed farming population. Datasets which constrain estimates to settled areas 

(LandScan, ESRI-WPE, and GHSL) are expected to perform poorly in rural areas because the 

settlement layers they use to constrain population estimates are likely to miss very small 

settlements.  

If this same analysis were performed in an area with highly concentrated urban populations, or 

vast unsettled areas such as deserts or forests, we would expect very different results. 

 

  

     Total       90.96       5.09       2.79       0.72       0.44      100.00 

                                                                              

WorldPop-G       92.46       4.90       2.22       0.30       0.13      100.00 

  WorldPop       89.39       5.25       3.60       1.25       0.50      100.00 

     GPWv4       92.21       5.09       2.28       0.28       0.15      100.00 

      GHSL        4.90       3.56      12.25      23.16      56.12      100.00 

                                                                              

   dataset       +/-10      +/-20      +/-50     +/-100    >+/-100       Total

                                     class

     Total       96.05       3.95      100.00 

                                             

WorldPop-G       97.35       2.65      100.00 

  WorldPop       94.64       5.36      100.00 

     GPWv4       97.30       2.70      100.00 

      GHSL        8.46      91.54      100.00 

                                             

   dataset       +/-20     >+/-20       Total

                RECODE of class
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Appendix D Random Forest fit plots for two sets of EA-

level models and one set of constituency-level models 

Scenario Model Variance Importance Observed vs Predicted log(pop) 
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training data 
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Scenario Model Variance Importance Observed vs Predicted log(pop) 
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Scenario Model Variance Importance Observed vs Predicted log(pop) 
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Appendix E         Simulated model estimates versus “true” simulated population in Khomas, Namibia 

RMSE, EA-level input data, excluding cells with estimated population <1 

Cell size 2016_True 2016_L 2016_M 2016_H 2011_True 2011_L 2011_M 2011_H 2006_True 2006_L 2006_M 2006_H 2001_True 2001_L 2001_M 2001_H 

(metres) All                

100 27 29 26 29 28 30 33 30 31 31 29 31 31 30 30 31 

200 99 101 103 109 102 104 108 111 102 103 105 110 105 106 108 111 

300 238 240 244 250 243 245 249 254 241 242 245 250 245 246 249 254 

400 429 431 435 443 437 439 442 450 434 436 439 447 440 442 445 451 

500 660 664 669 680 673 674 678 689 668 670 676 682 673 675 680 684 

600 936 939 942 956 951 957 959 970 945 949 952 967 958 959 967 976 

700 1258 1258 1267 1282 1282 1283 1289 1303 1272 1275 1281 1295 1297 1301 1303 1307 

800 1617 1618 1622 1647 1638 1644 1649 1666 1666 1675 1685 1687 1682 1684 1692 1699 

900 1965 1971 1984 2011 1997 2001 2008 2036 2005 2014 2025 2036 2040 2041 2052 2063 

1000 2398 2403 2433 2460 2437 2443 2454 2474 2462 2467 2470 2477 2511 2512 2513 2528 

 Rural                

100 29 33 27 30 31 34 38 30 35 34 30 31 33 32 30 31 

200 30 33 27 30 31 34 38 31 35 34 30 32 33 32 30 31 

300 36 39 34 37 38 40 43 38 39 39 35 37 37 36 35 36 

400 51 53 50 52 52 54 56 53 53 53 51 52 51 50 50 50 

500 70 72 70 72 70 72 74 71 64 63 62 61 57 57 56 55 

600 152 154 153 156 152 153 154 154 138 138 138 139 130 130 131 132 

700 179 180 180 182 175 176 178 178 163 164 164 165 147 147 147 147 

800 278 278 279 283 280 282 283 284 264 265 265 266 260 260 260 262 

900 419 421 425 428 424 423 426 431 366 368 368 370 305 305 305 305 

1000 525 527 536 542 535 537 542 544 541 541 542 542 536 536 536 539 

 Urban                

100 24 24 25 29 24 24 25 30 25 25 27 30 26 27 29 32 

200 142 145 150 158 148 150 154 162 151 153 157 164 158 159 163 169 

300 353 357 362 373 362 365 370 381 366 369 374 384 377 379 386 394 

400 644 648 653 666 658 659 665 679 666 670 675 690 684 687 695 705 

500 992 998 1005 1022 1009 1012 1020 1035 1020 1023 1036 1048 1039 1043 1060 1066 

600 1423 1428 1432 1459 1442 1452 1456 1477 1457 1464 1471 1496 1493 1494 1513 1526 

700 1946 1948 1952 1982 1981 1983 1986 2005 1987 1993 2000 2020 2041 2047 2059 2065 

800 2513 2515 2519 2558 2540 2542 2558 2578 2593 2617 2635 2657 2655 2656 2689 2721 

900 3048 3049 3063 3109 3089 3091 3094 3141 3135 3147 3173 3200 3227 3228 3255 3296 

1000 3718 3720 3738 3773 3763 3765 3773 3824 3811 3829 3844 3865 3931 3932 3934 3973 
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 RMSE, Constituency-level input data, excluding cells with estimated population <1 

Cell size 2016_True 2016_L 2016_M 2016_H 2011_True 2011_L 2011_M 2011_H 2006_True 2006_L 2006_M 2006_H 2001_True 2001_L 2001_M 2001_H 

(metres) All                

100 25 25 25 27 25 25 26 27 26 27 27 29 28 29 29 30 

200 111 112 114 117 112 113 115 119 117 118 118 124 123 123 125 129 

300 253 255 258 263 255 258 261 267 263 265 266 275 275 273 278 286 

400 449 453 456 464 453 457 461 470 464 467 468 485 483 481 487 502 

500 689 695 699 710 693 700 707 719 709 714 717 741 737 736 745 768 

600 982 991 993 1011 989 993 1002 1023 1007 1014 1015 1048 1045 1039 1052 1089 

700 1329 1341 1346 1362 1340 1352 1356 1376 1363 1368 1370 1407 1406 1402 1421 1468 

800 1701 1708 1717 1756 1702 1727 1746 1777 1752 1769 1777 1820 1817 1810 1825 1885 

900 2087 2112 2120 2164 2106 2117 2144 2186 2154 2174 2179 2249 2234 2227 2239 2310 

1000 2581 2615 2598 2648 2592 2612 2642 2685 2648 2662 2673 2761 2738 2739 2773 2846 

 Rural                

100 11 10 9 7 9 9 8 6 7 7 6 5 6 6 5 4 

200 13 13 12 11 12 12 11 11 11 11 11 11 11 11 11 11 

300 25 25 25 25 25 25 25 26 26 26 26 27 27 27 28 29 

400 44 44 44 46 44 45 45 47 46 46 46 49 49 48 50 53 

500 66 68 68 70 67 68 69 72 70 71 71 75 75 74 76 81 

600 158 161 161 166 160 161 164 170 165 167 167 177 176 174 179 192 

700 194 198 198 203 197 199 201 207 202 203 203 212 214 213 217 232 

800 297 303 302 315 300 305 311 322 313 318 319 335 333 331 337 360 

900 453 465 467 485 461 465 477 494 480 490 492 523 515 512 517 554 

1000 590 605 597 620 594 603 617 637 620 625 627 670 658 658 676 715 

 Urban                

100 33 33 35 37 34 35 35 37 36 37 37 39 38 39 39 40 

200 157 158 161 164 159 160 162 164 163 164 165 168 168 169 169 171 

300 361 361 366 369 364 365 367 370 369 370 372 376 376 377 377 379 

400 642 641 649 653 647 649 651 654 653 654 657 663 662 663 663 665 

500 982 983 992 995 986 991 994 996 994 998 1004 1009 1009 1009 1010 1012 

600 1409 1410 1418 1426 1413 1417 1421 1429 1428 1430 1431 1439 1439 1442 1440 1444 

700 1917 1914 1930 1933 1925 1930 1931 1937 1939 1944 1953 1951 1954 1955 1955 1961 

800 2447 2448 2462 2470 2460 2461 2468 2471 2469 2482 2496 2498 2497 2498 2498 2506 

900 3031 3022 3034 3045 3033 3034 3035 3046 3045 3045 3047 3058 3058 3058 3059 3061 

1000 3702 3702 3705 3708 3703 3704 3706 3708 3707 3719 3735 3737 3736 3737 3738 3739 
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 MAE, EA-level input data, excluding cells with estimated population <1 

Cell size 2016_True 2016_L 2016_M 2016_H 2011_True 2011_L 2011_M 2011_H 2006_True 2006_L 2006_M 2006_H 2001_True 2001_L 2001_M 2001_H 

(metres) All                

100 17.1 17.9 16.4 18.7 18.3 19.4 21.8 19.5 20.1 19.9 18.9 20.2 20.0 19.7 19.8 20.3 

200 50.9 52.4 51.9 55.6 53.3 54.9 58.3 57.0 53.5 53.8 53.6 55.8 53.7 53.6 54.3 55.4 

300 112.9 114.6 114.8 119.5 116.3 118.1 121.8 121.7 113.9 114.3 114.2 117.5 114.1 114.0 115.5 117.6 

400 198.1 200.4 200.9 206.8 203.8 205.6 208.9 210.5 199.8 200.7 200.8 205.9 199.7 200.4 201.4 204.6 

500 304.3 307.4 309.0 317.7 312.1 313.3 317.3 321.2 306.8 307.3 309.1 311.7 302.5 302.9 305.0 306.5 

600 428.7 431.8 431.1 442.9 440.0 444.6 447.0 450.9 429.5 431.4 432.0 442.2 429.0 428.7 434.0 438.2 

700 571.6 572.3 576.6 588.0 588.1 589.4 595.2 601.2 573.1 574.9 578.0 585.7 576.1 578.2 577.6 579.1 

800 738.1 739.9 740.5 759.1 751.4 757.5 760.0 770.9 754.9 760.7 765.5 763.8 752.1 753.2 755.3 756.5 

900 911.2 916.9 925.1 944.5 935.6 937.8 944.7 964.4 912.4 919.2 924.4 932.0 917.3 917.1 922.6 927.7 

1000 1092.9 1097.5 1119.3 1140.5 1123.0 1127.4 1133.6 1143.8 1121.4 1124.1 1120.0 1123.0 1131.1 1130.9 1131.1 1138.9 

 Rural                

100 19.8 21.1 17.8 20.1 21.4 23.4 27.1 21.0 24.0 23.6 21.3 22.2 23.3 22.6 22.1 21.8 

200 19.9 21.2 18.0 20.2 21.4 23.3 27.0 21.1 23.9 23.5 21.3 22.2 23.2 22.4 22.0 21.7 

300 22.1 23.5 20.5 22.5 23.7 25.5 29.1 23.4 25.4 24.9 22.7 23.7 24.4 23.6 23.2 23.0 

400 25.8 27.1 24.2 26.3 27.4 29.3 32.6 27.1 28.9 28.6 26.5 27.2 27.5 26.7 26.2 25.8 

500 30.6 32.4 29.1 31.3 31.6 33.3 36.6 31.1 31.4 31.1 29.0 29.1 28.6 27.8 27.4 26.0 

600 54.0 55.7 52.6 55.4 54.6 56.3 59.8 54.3 49.5 49.2 47.1 47.5 43.9 43.0 42.6 42.3 

700 63.9 65.7 63.1 65.1 63.2 64.6 68.2 63.3 60.0 59.8 58.3 59.0 50.1 49.6 48.9 47.9 

800 103.3 105.3 102.8 104.4 104.2 106.4 109.0 103.4 93.8 93.8 91.2 91.9 86.9 86.5 85.5 85.1 

900 156.1 158.3 156.9 156.7 155.9 155.3 158.2 155.9 128.2 128.8 126.1 127.3 103.4 102.7 101.5 101.2 

1000 154.7 156.3 156.1 157.5 158.1 159.5 163.8 159.1 145.5 145.2 143.3 144.0 130.1 129.4 129.0 129.2 

 Urban                

100 14.2 14.2 14.8 17.0 14.6 14.7 15.5 17.8 14.8 15.0 15.7 17.5 15.4 15.7 16.5 18.2 

200 87.2 89.1 92.0 97.7 91.5 93.0 95.8 100.9 92.5 93.8 96.2 101.1 95.6 96.8 99.6 103.0 

300 223.6 226.5 230.4 239.5 231.3 233.0 236.8 245.6 232.4 234.1 237.9 246.6 238.7 239.6 246.3 252.5 

400 416.3 419.8 423.5 434.6 427.9 428.5 432.8 446.6 432.8 435.7 440.3 453.9 444.7 446.9 454.9 463.3 

500 650.1 656.5 662.8 679.5 664.8 667.3 674.9 689.2 674.4 676.4 689.2 698.3 681.2 685.2 703.0 707.1 

600 933.4 937.4 939.6 969.3 951.1 962.5 964.0 986.5 961.9 967.9 975.5 1001.2 986.8 987.6 1008.0 1019.2 

700 1293.5 1294.8 1297.1 1330.8 1329.7 1330.8 1333.0 1351.0 1323.8 1329.5 1336.3 1353.9 1361.5 1366.4 1379.0 1382.8 

800 1663.9 1665.1 1667.5 1711.4 1687.9 1689.0 1702.6 1728.7 1717.5 1744.9 1765.0 1783.6 1767.9 1767.2 1802.5 1832.1 

900 2025.8 2027.0 2041.9 2093.5 2075.5 2076.6 2078.5 2134.7 2085.7 2099.1 2127.9 2157.5 2167.9 2168.6 2197.8 2241.5 

1000 2476.2 2477.3 2498.3 2538.5 2525.9 2526.9 2523.6 2582.2 2552.4 2572.0 2578.1 2597.2 2651.9 2652.6 2653.8 2692.6 
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 MAE, Constituency-level input data, excluding cells with estimated population <1 

Cell size 2016_True 2016_L 2016_M 2016_H 2011_True 2011_L 2011_M 2011_H 2006_True 2006_L 2006_M 2006_H 2001_True 2001_L 2001_M 2001_H 

(metres) All                

100 13.9 13.8 13.7 13.6 13.7 13.8 13.7 13.8 13.9 13.8 13.7 14.4 14.6 14.4 14.5 15.0 

200 49.4 49.9 50.2 51.5 49.7 50.5 51.0 52.8 51.9 52.4 52.3 55.9 56.0 55.5 56.7 59.8 

300 111.6 113.0 113.8 117.4 112.4 114.2 116.3 120.3 117.6 118.9 119.0 126.3 126.7 125.1 128.4 135.8 

400 200.2 203.5 204.1 210.3 202.6 205.7 208.5 215.1 210.7 212.8 213.3 227.0 226.2 224.0 229.3 242.6 

500 312.5 317.4 319.4 327.9 315.4 320.6 325.6 335.5 327.7 331.2 333.3 354.4 351.6 349.9 358.9 379.7 

600 450.9 458.8 458.7 473.3 456.0 459.3 466.4 484.9 470.8 476.1 476.4 506.3 504.1 498.4 510.5 545.9 

700 616.6 626.9 629.1 642.9 624.8 634.8 638.7 655.4 643.9 647.8 649.4 682.8 683.8 679.9 697.2 742.9 

800 791.8 799.0 804.5 838.6 792.8 814.0 829.8 857.8 834.4 851.2 856.5 897.7 895.4 888.6 903.0 961.7 

900 998.0 1023.6 1028.9 1068.3 1016.3 1025.7 1051.4 1089.0 1058.4 1078.6 1082.5 1152.3 1137.1 1129.9 1141.4 1214.5 

1000 1236.8 1268.1 1250.4 1298.7 1244.5 1264.0 1292.2 1333.3 1298.5 1308.0 1317.6 1405.0 1383.1 1381.5 1417.1 1490.6 

 Rural                

100 7.5 7.0 6.2 5.0 6.8 6.5 5.7 4.7 5.4 5.1 4.5 3.9 4.7 4.4 4.0 3.4 

200 7.9 7.4 6.7 5.6 7.2 7.0 6.3 5.5 6.1 5.8 5.2 4.9 5.6 5.2 4.9 4.6 

300 10.0 9.7 9.1 8.4 9.5 9.4 8.9 8.4 8.8 8.6 8.1 8.2 8.8 8.3 8.3 8.5 

400 13.8 13.8 13.1 12.7 13.4 13.5 13.0 12.9 13.0 12.9 12.5 13.2 13.6 13.2 13.4 14.2 

500 19.1 19.1 18.6 18.6 18.8 18.9 18.8 19.1 18.8 18.9 18.6 20.2 20.3 19.9 20.6 21.8 

600 44.3 45.5 44.7 46.4 44.7 45.0 45.8 48.3 46.1 46.9 46.7 51.8 51.6 50.1 52.6 59.9 

700 60.1 62.0 61.6 63.7 61.1 62.7 63.1 66.0 63.6 64.1 63.8 68.6 70.4 69.5 71.2 80.8 

800 98.1 102.3 100.0 107.8 100.1 102.2 105.9 112.6 106.7 109.8 109.4 120.1 119.4 117.5 121.3 137.9 

900 159.0 167.0 168.0 180.3 164.4 167.1 175.1 187.2 177.2 183.8 185.0 208.1 202.8 200.1 204.2 232.6 

1000 173.6 180.4 175.5 188.6 172.5 179.1 185.3 197.1 188.4 191.3 190.9 217.7 212.3 208.4 221.5 245.3 

 Urban                

100 20.5 20.5 21.2 21.9 20.7 21.1 21.5 22.2 22.0 22.1 22.5 23.4 23.0 23.2 23.5 23.7 

200 92.3 92.5 94.3 96.0 93.3 94.1 95.0 96.7 96.3 96.7 97.6 99.9 99.8 100.3 100.6 101.2 

300 218.0 217.9 221.4 223.5 220.2 221.3 222.4 224.4 223.7 224.5 226.5 229.9 230.2 230.7 231.1 232.1 

400 396.5 395.5 402.5 405.5 401.2 402.9 404.0 406.3 405.7 407.0 409.8 414.9 414.8 415.1 415.6 417.3 

500 618.1 618.5 627.0 628.9 621.7 626.3 628.8 629.5 628.8 632.2 639.5 644.2 644.1 644.5 645.0 647.0 

600 892.4 892.8 900.5 908.6 895.8 900.3 902.3 911.7 911.0 912.6 913.5 921.9 921.8 924.8 922.7 926.1 

700 1230.2 1226.0 1242.3 1244.3 1238.2 1242.2 1243.1 1247.1 1251.2 1256.5 1267.2 1263.5 1268.3 1268.7 1269.3 1274.7 

800 1556.5 1556.9 1571.6 1576.6 1570.8 1571.4 1575.3 1577.1 1576.5 1592.6 1607.4 1608.6 1608.6 1609.0 1609.6 1618.3 

900 1974.9 1966.3 1976.9 1984.7 1976.1 1976.7 1977.6 1985.1 1984.5 1984.8 1985.7 1999.6 1999.6 2000.0 2000.6 2001.3 

1000 2421.8 2422.2 2423.7 2425.7 2422.9 2423.5 2424.4 2426.2 2425.6 2433.3 2453.0 2454.2 2454.2 2454.6 2455.1 2455.9 
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 Percent of cells with difference of +/- 10 people per hectare from "true", EA-level input data, excluding cells with estimated population <1 

Cell size 2016_True 2016_L 2016_M 2016_H 2011_True 2011_L 2011_M 2011_H 2006_True 2006_L 2006_M 2006_H 2001_True 2001_L 2001_M 2001_H 

(metres) All                

100 49.1 49.9 52.1 47.4 47.0 44.6 39.8 47.5 44.2 43.9 46.4 44.2 44.2 45.2 42.6 43.2 

200 70.7 69.2 71.5 69.4 68.4 67.8 64.5 67.3 67.6 68.2 68.7 67.8 68.5 68.3 69.8 69.7 

300 73.5 73.1 73.1 72.3 72.9 72.6 71.8 72.2 73.5 73.5 73.7 73.1 73.9 74.0 73.7 73.4 

400 73.7 73.3 73.1 72.6 73.2 73.1 72.9 72.5 73.9 73.8 73.8 73.2 74.3 74.2 74.0 73.6 

500 72.9 72.6 72.5 71.7 72.4 72.4 72.1 71.6 72.6 72.7 72.5 72.4 73.8 73.8 73.6 73.4 

600 72.7 72.6 72.6 71.9 72.2 72.0 72.0 71.6 72.8 72.6 72.5 71.8 73.3 73.3 72.9 72.6 

700 73.2 73.2 73.0 72.5 72.6 72.6 72.5 72.0 73.0 72.9 72.7 72.4 74.0 74.0 74.0 73.8 

800 72.9 72.9 72.8 72.1 72.6 72.4 72.4 71.9 73.0 72.8 72.5 72.5 73.5 73.4 73.3 73.0 

900 74.2 74.0 73.7 73.1 73.3 73.2 73.1 72.4 74.5 74.3 74.1 73.8 75.6 75.6 75.4 75.2 

1000 73.7 73.6 73.0 72.5 72.8 72.7 72.7 72.3 72.4 72.3 72.5 72.4 73.2 73.2 73.2 72.9 

 Rural                

100 39.6 41.6 45.9 39.1 36.7 32.5 24.3 40.0 32.7 32.3 37.0 34.3 33.2 35.1 31.1 32.8 

200 87.8 85.2 90.0 87.5 84.2 83.2 78.2 83.5 81.8 83.1 84.3 83.6 82.7 82.3 85.6 86.0 

300 97.3 96.7 97.4 97.0 96.8 96.4 95.6 96.9 96.6 97.0 97.7 97.4 97.3 97.7 97.8 97.8 

400 97.9 97.8 97.9 97.8 97.8 97.7 97.6 97.8 98.0 98.0 98.2 98.1 98.3 98.4 98.4 98.3 

500 98.2 98.2 98.2 98.2 98.1 98.2 98.2 98.1 98.6 98.6 98.6 98.8 99.1 99.1 99.1 99.3 

600 96.4 96.4 96.4 96.3 96.5 96.5 96.5 96.5 96.8 96.8 96.8 96.7 97.5 97.5 97.4 97.4 

700 96.2 96.2 96.2 96.1 96.4 96.4 96.3 96.3 96.5 96.5 96.5 96.4 97.7 97.6 97.7 97.6 

800 94.9 94.9 94.9 94.8 94.8 94.7 94.7 94.6 95.2 95.2 95.1 95.1 95.9 95.8 95.8 95.8 

900 94.1 94.1 94.0 93.8 93.9 93.9 93.8 93.7 95.1 95.0 95.0 94.9 96.4 96.4 96.4 96.4 

1000 96.8 96.8 96.6 96.6 96.6 96.6 96.6 96.6 96.4 96.4 96.4 96.4 96.9 96.9 96.9 96.9 

 Urban                

100 60.0 59.6 59.3 57.1 59.2 58.9 58.2 56.6 59.3 59.3 58.8 57.7 59.5 59.4 58.7 58.1 

200 51.2 50.7 49.9 48.2 49.9 49.6 48.8 47.8 49.4 49.1 48.4 46.9 49.4 49.3 48.3 47.2 

300 44.7 44.2 43.6 42.1 43.5 43.4 42.6 41.2 42.6 42.2 41.6 40.1 41.6 41.4 40.0 39.0 

400 43.0 42.4 42.0 40.8 42.0 42.1 41.6 40.0 41.2 40.8 40.2 38.7 40.3 40.1 39.0 37.7 

500 40.6 40.1 39.7 38.3 39.7 39.5 38.8 37.9 38.0 37.9 36.8 36.1 38.7 38.4 36.9 36.2 

600 40.5 40.3 40.3 38.5 39.8 39.0 39.0 37.7 38.7 38.3 37.9 36.2 38.0 38.0 36.7 35.9 

700 40.2 40.2 40.2 38.8 38.8 38.8 38.8 38.1 38.4 38.1 37.8 37.2 38.5 38.6 38.0 37.6 

800 40.6 40.6 40.6 39.0 40.4 40.4 40.0 39.1 40.6 39.5 38.8 38.0 39.1 39.1 37.8 36.4 

900 44.5 44.5 44.2 42.7 43.0 43.0 43.0 41.5 43.6 43.2 42.3 41.5 43.5 43.5 42.6 41.3 

1000 39.5 39.5 39.1 38.1 38.1 38.1 38.4 36.9 37.1 36.5 36.8 36.3 37.0 37.0 37.0 35.8 

 

 



Appendices 

209 

 Percent of cells with difference of +/- 10 people per hectare from "true" population, Constituency-level input data, excluding cells with estimated population <1 

Cell size 2016_True 2016_L 2016_M 2016_H 2011_True 2011_L 2011_M 2011_H 2006_True 2006_L 2006_M 2006_H 2001_True 2001_L 2001_M 2001_H 

(metres) All                

100 61.8 62.4 65.5 70.3 62.8 63.2 66.4 70.3 66.9 68.3 71.8 72.5 69.2 70.9 71.7 71.7 

200 76.3 76.0 76.0 75.2 76.1 75.8 75.5 74.5 75.1 74.8 74.8 73.0 73.0 73.2 72.6 70.9 

300 74.3 73.9 73.7 72.7 74.0 73.6 73.1 72.1 72.7 72.5 72.4 70.7 70.7 71.1 70.3 68.4 

400 72.8 72.3 72.3 71.4 72.4 72.0 71.7 70.8 71.4 71.1 71.0 69.2 69.2 69.5 68.8 67.0 

500 71.8 71.3 71.2 70.4 71.5 71.0 70.6 69.8 70.5 70.2 70.1 68.2 68.5 68.6 67.8 65.9 

600 70.5 70.0 70.1 69.3 70.2 70.1 69.7 68.6 69.5 69.2 69.2 67.3 67.5 67.8 67.1 64.8 

700 70.9 70.2 70.2 69.6 70.5 70.0 69.8 69.2 69.7 69.5 69.5 67.9 67.9 68.1 67.2 65.1 

800 70.5 70.1 70.0 69.0 70.3 69.7 69.3 68.3 69.1 68.5 68.3 66.8 66.8 67.1 66.6 64.4 

900 71.1 70.4 70.2 69.3 70.5 70.3 69.5 68.7 69.6 69.0 68.9 66.9 67.0 67.2 66.9 64.8 

1000 69.7 68.9 69.3 68.2 69.5 69.0 68.3 67.3 68.2 68.2 68.0 65.8 66.4 66.4 65.6 63.8 

 Rural                

100 71.0 72.6 77.7 87.8 73.2 74.5 80.5 89.0 80.6 83.7 90.7 94.7 88.0 91.0 94.1 96.6 

200 99.1 99.1 99.1 99.0 99.2 99.1 99.1 99.0 99.0 99.0 99.0 98.8 98.9 98.9 98.8 98.6 

300 98.7 98.6 98.5 98.4 98.5 98.5 98.4 98.3 98.4 98.3 98.3 98.1 98.1 98.2 98.1 97.7 

400 98.1 98.1 98.1 98.0 98.1 98.1 98.0 97.9 98.0 97.9 97.9 97.7 97.7 97.8 97.7 97.3 

500 98.4 98.3 98.3 98.2 98.3 98.3 98.3 98.1 98.2 98.2 98.2 98.0 98.0 97.8 97.7 97.4 

600 96.2 96.0 96.1 95.9 96.1 96.1 95.9 95.7 95.9 95.8 95.8 95.3 95.4 95.5 95.2 94.5 

700 95.9 95.4 95.4 95.2 95.4 95.3 95.2 95.0 95.2 95.1 95.2 94.6 94.7 94.7 94.4 93.6 

800 94.2 93.7 94.1 93.6 93.9 94.0 93.8 93.3 93.7 93.5 93.5 92.8 92.9 93.0 92.7 91.7 

900 92.9 92.6 92.5 92.0 92.7 92.6 92.2 91.7 92.1 91.8 91.8 90.7 91.0 91.1 90.9 89.6 

1000 95.9 95.7 95.8 95.5 95.8 95.7 95.5 95.2 95.5 95.4 95.4 94.7 94.9 94.9 94.6 94.0 

 Urban                

100 52.4 52.3 53.3 53.4 52.2 51.9 52.7 53.1 53.9 53.8 53.7 53.4 53.1 53.0 52.7 53.0 

200 52.6 52.9 52.4 52.0 52.4 52.4 52.3 51.9 52.0 51.8 51.6 50.8 50.5 50.3 50.3 50.2 

300 48.7 48.9 48.2 47.7 48.2 48.2 48.2 47.8 47.8 47.8 47.3 46.6 46.5 46.5 46.5 46.3 

400 46.2 46.2 45.4 45.2 45.5 45.4 45.4 45.3 45.1 44.9 44.7 44.1 44.0 44.0 44.0 43.8 

500 44.1 44.1 43.4 43.4 43.8 43.3 43.3 43.4 43.4 43.3 42.8 42.5 42.5 42.5 42.5 42.4 

600 42.7 42.7 42.5 42.3 42.5 42.5 42.6 42.1 42.1 42.2 42.2 41.7 41.7 41.5 41.7 41.5 

700 43.3 43.6 43.1 43.1 43.3 43.1 43.1 43.2 43.0 42.8 42.4 42.6 42.4 42.4 42.4 42.1 

800 44.4 44.4 43.8 44.1 43.8 43.8 44.1 44.1 44.1 43.5 42.9 42.9 42.9 42.9 42.9 42.6 

900 45.6 45.9 45.6 45.9 45.6 45.6 45.6 45.9 45.9 45.9 45.9 45.5 44.9 44.9 44.9 44.9 

1000 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.8 40.3 40.3 40.3 40.3 40.3 40.3 
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 Percent of cells with +/- 20 the "true" population, EA-level input data, excluding cells with estimated population <1 

Cell size 2016_True 2016_L 2016_M 2016_H 2011_True 2011_L 2011_M 2011_H 2006_True 2006_L 2006_M 2006_H 2001_True 2001_L 2001_M 2001_H 

(metres) All                

100 8.0 8.0 7.3 6.2 7.9 7.8 7.0 6.1 6.9 6.8 6.4 5.7 6.1 5.9 5.6 5.1 

200 25.7 24.6 21.5 18.3 24.2 22.8 20.4 17.8 21.5 20.3 18.3 16.5 18.1 17.3 16.0 14.5 

300 44.6 44.8 44.6 44.5 43.6 43.6 43.4 43.3 41.9 41.7 41.5 41.1 40.5 40.4 40.1 39.7 

400 48.5 48.5 48.2 47.6 47.2 47.1 46.9 46.5 45.4 45.1 44.8 44.3 43.6 43.6 43.1 42.3 

500 50.7 51.0 50.5 49.8 49.5 49.6 49.3 48.9 47.7 47.7 47.1 46.5 45.6 45.6 44.8 43.9 

600 52.6 52.7 52.3 52.1 51.8 51.5 51.5 50.7 48.8 48.5 48.4 47.7 46.5 46.5 45.6 45.2 

700 54.4 54.7 54.4 53.3 52.6 52.2 52.0 51.7 49.8 49.8 50.0 49.3 47.6 47.5 47.1 46.7 

800 55.3 55.5 55.4 54.5 54.6 54.3 54.1 53.8 51.9 51.6 51.2 50.7 49.6 49.8 49.0 48.1 

900 55.9 55.6 55.4 54.1 54.7 54.6 54.1 53.5 52.1 51.7 51.3 51.2 50.0 50.0 49.5 49.1 

1000 56.7 56.6 55.6 55.1 55.0 54.9 54.3 54.0 51.7 51.6 51.8 51.6 49.6 49.6 49.6 49.1 

 Rural                

100 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 

200 3.8 3.9 3.8 3.1 3.4 3.3 3.2 2.7 2.8 2.8 2.4 2.1 2.2 2.1 1.9 1.7 

300 10.8 10.8 10.3 9.7 9.3 9.1 8.7 8.3 7.7 7.4 7.2 6.5 5.8 5.7 5.4 4.6 

400 15.2 15.0 14.3 13.2 13.0 12.7 12.3 11.9 10.7 10.2 10.0 8.9 8.5 8.3 7.7 6.5 

500 16.9 17.3 16.2 14.5 14.5 14.6 14.1 12.9 11.9 11.9 11.5 10.7 9.4 9.4 9.0 7.2 

600 20.7 20.6 20.0 19.6 18.6 18.0 18.2 17.3 15.1 14.7 14.5 12.8 11.6 11.6 10.5 9.6 

700 24.6 25.1 24.1 22.6 21.2 20.6 19.9 19.3 17.1 17.1 17.3 15.7 13.4 13.1 13.0 12.2 

800 26.2 26.5 26.3 24.3 24.7 23.9 23.6 22.8 19.6 19.7 19.0 19.0 17.0 17.1 16.7 16.0 

900 28.5 27.9 27.3 25.1 25.8 25.5 24.3 23.4 21.8 21.0 20.6 20.2 18.6 18.6 18.1 18.1 

1000 28.5 28.1 25.7 24.0 25.1 24.7 23.4 23.6 19.3 19.3 19.9 19.9 16.9 16.9 16.9 16.4 

 Urban                

100 17.0 17.0 15.4 13.2 16.9 16.7 15.1 13.2 15.9 15.5 14.6 13.3 14.4 14.0 13.3 12.1 

200 51.8 49.5 42.8 36.8 49.5 46.8 41.6 36.6 46.6 43.9 39.8 36.3 40.5 38.8 36.1 32.8 

300 86.6 87.2 87.3 88.1 86.9 87.1 87.3 88.0 88.6 88.5 88.6 89.2 89.5 89.3 89.9 90.3 

400 91.5 91.9 91.7 92.0 91.6 91.5 91.7 91.9 93.7 93.8 93.4 94.2 94.3 94.5 95.0 94.9 

500 94.2 94.6 94.8 95.1 94.4 94.6 95.0 95.3 96.4 96.3 96.3 96.2 96.4 96.6 96.7 96.9 

600 96.8 97.1 96.8 97.3 97.0 97.3 97.0 96.9 97.0 97.0 97.3 98.0 97.9 97.9 97.8 98.2 

700 98.0 98.0 98.0 98.0 97.9 97.9 97.9 97.9 98.7 98.7 98.6 99.1 99.5 99.5 99.5 99.5 

800 98.4 98.4 98.4 98.9 98.4 98.4 98.9 98.9 99.4 99.4 99.4 99.4 100.0 100.0 100.0 100.0 

900 97.4 97.4 97.4 97.3 98.0 98.0 98.0 98.0 98.6 98.6 98.5 99.3 99.2 99.2 99.2 99.2 

1000 99.2 99.2 99.2 100.0 99.2 99.2 99.2 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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 Percent of cells with +/- 20 the "true" population, Constituency-level input data, excluding cells with estimated population <1 

Cell size 2016_True 2016_L 2016_M 2016_H 2011_True 2011_L 2011_M 2011_H 2006_True 2006_L 2006_M 2006_H 2001_True 2001_L 2001_M 2001_H 

(metres) All                

100 3.4 3.4 3.1 2.8 3.3 3.2 3.1 2.7 2.7 2.6 2.5 2.4 2.3 2.1 2.0 2.1 

200 12.5 12.5 11.6 10.8 11.8 11.8 11.6 11.0 10.9 10.7 10.1 10.2 9.5 9.0 9.1 9.1 

300 41.4 42.1 42.0 43.3 41.6 42.2 43.0 44.4 43.2 43.7 43.6 46.2 46.1 45.6 46.8 49.2 

400 46.1 47.0 46.9 48.1 46.7 47.2 47.8 49.1 48.2 48.4 48.4 51.1 50.9 50.6 51.5 54.3 

500 50.5 51.3 51.1 52.5 50.7 51.5 52.1 53.6 52.4 53.0 53.2 56.3 55.7 55.5 56.9 59.5 

600 54.3 55.4 55.1 56.8 54.6 55.1 56.0 58.1 56.6 57.2 57.2 60.1 60.0 59.5 60.8 63.7 

700 60.2 60.8 60.6 61.5 60.6 61.0 61.4 62.4 61.6 61.9 62.0 64.5 64.7 64.7 65.8 68.8 

800 61.7 62.6 62.3 63.8 61.7 62.8 63.7 65.0 63.7 64.8 64.5 66.8 66.8 66.6 67.4 70.9 

900 64.0 65.6 65.7 67.4 64.9 65.5 67.1 68.1 66.8 67.4 67.9 70.6 70.3 70.5 70.6 73.7 

1000 68.6 70.0 69.0 71.6 68.4 69.7 70.9 72.8 71.6 71.6 71.8 76.1 75.3 74.5 76.8 78.6 

 Rural                

100 0.2 0.1 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 

200 2.8 2.8 2.8 2.8 2.8 2.8 2.9 3.0 3.0 3.0 2.8 3.2 3.0 2.7 3.1 3.3 

300 8.8 9.3 8.9 9.4 8.9 9.1 9.4 9.9 9.4 9.6 9.5 10.6 10.4 10.3 10.8 11.8 

400 13.1 13.7 13.7 14.3 13.5 13.6 14.0 14.9 14.4 14.4 14.4 15.4 15.4 15.5 15.7 17.4 

500 17.0 17.5 17.4 18.3 17.1 17.5 18.0 18.9 18.0 18.6 18.6 20.8 20.2 20.2 21.3 22.3 

600 23.7 24.8 24.6 26.0 23.9 24.4 25.4 27.2 25.9 26.5 26.5 28.8 28.8 28.3 29.5 31.1 

700 32.4 32.9 32.7 33.3 32.7 33.0 33.3 34.2 33.3 33.6 33.5 35.5 35.8 36.2 36.9 39.7 

800 33.6 35.0 33.9 34.8 33.8 34.3 35.1 35.9 35.0 35.5 34.7 36.5 36.8 36.8 37.4 41.4 

900 39.7 41.1 41.4 43.2 40.4 41.1 43.1 43.6 42.4 42.8 43.7 45.7 45.8 46.6 46.2 49.6 

1000 43.2 44.6 43.4 46.6 42.4 44.3 45.5 47.6 46.6 46.6 46.2 51.8 50.8 49.2 52.7 54.0 

 Urban                

100 6.7 6.6 6.1 5.2 6.4 6.2 5.8 5.0 5.1 4.9 4.7 4.4 4.1 3.8 3.5 3.5 

200 22.6 22.2 20.6 18.6 21.1 20.8 20.2 18.4 18.5 18.0 17.2 16.3 15.1 14.7 14.1 13.5 

300 75.6 75.6 75.9 76.3 75.9 76.0 76.2 76.4 76.2 76.5 76.7 77.4 77.4 77.5 77.5 77.6 

400 81.0 80.8 81.4 81.5 81.5 81.5 81.5 81.5 81.5 81.5 81.8 82.4 82.4 82.4 82.4 82.5 

500 85.3 85.3 85.7 85.9 85.4 85.9 85.8 85.9 85.9 86.2 86.8 87.1 87.1 87.1 87.1 87.3 

600 87.5 87.5 87.7 88.2 87.5 87.7 87.7 88.4 88.4 88.4 88.4 88.9 88.9 89.1 88.9 89.1 

700 90.9 90.5 90.8 90.8 90.8 90.8 90.8 90.7 91.1 91.4 92.2 91.8 92.2 92.2 92.2 92.1 

800 92.7 92.7 93.1 93.1 93.1 93.1 93.1 93.1 93.1 94.0 94.4 94.4 94.4 94.4 94.4 94.4 

900 92.4 92.5 92.4 92.4 92.4 92.4 92.4 92.4 92.4 92.4 92.4 92.9 92.9 92.9 92.9 92.9 

1000 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 97.7 97.7 97.7 97.7 97.7 97.7 
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Appendix F        Box plots of all survey results from census 

EA, gridEZ-EA, and gridEZ-constituency sample frames 

1   2016_True 
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3   2016_M 
4   2016_H 
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8   2011_H 
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11  2006_M 
12  2006_H 

13  2001_True 
14  2001_L 
15  2001_M 
16  2001_H 

                  “True” mean 
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Appendix G RMSE and bias statistics for all survey results 

RMSE 
Census gridEZ-EA gridEZ-Constituency 

All 
Non-
slum Slum All 

Non-
slum Slum All 

Non-
Slum Slum 

Scenario % unimproved toilet 

2016_True 3.9 3.8 3.4 4.4 3.6 4.2 4.9 3.8 3.9 

2016_L 4.1 3.5 3.5 4.2 3.6 4.1 5.3 4.3 4.1 

2016_M 4.0 3.1 3.8 4.4 3.3 4.2 5.3 4.0 4.0 

2016_H 4.3 3.1 5.1 4.6 3.7 4.3 5.2 3.6 4.3 

2011_True 4.0 3.4 4.4 4.2 3.4 4.2 5.3 3.9 4.0 

2011_L 4.6 3.3 4.8 4.2 3.4 4.7 5.2 3.9 4.6 

2011_M 4.7 3.4 4.8 4.5 3.7 4.4 5.0 3.9 4.7 

2011_H 4.8 3.1 6.0 4.7 3.1 5.6 5.3 4.2 4.8 

2006_True 7.0 3.2 6.8 7.6 3.0 7.6 5.3 3.9 7.0 

2006_L 7.6 3.1 7.2 7.7 3.3 8.0 5.2 3.4 7.6 

2006_M 7.2 3.1 8.8 6.7 3.3 8.4 5.3 3.6 7.2 

2006_H 7.4 3.5 9.7 7.4 3.1 9.4 5.9 4.1 7.4 

2001_True 8.1 3.9 6.6 9.0 3.9 9.1 4.8 3.8 8.1 

2001_L 7.8 3.2 7.1 6.9 3.6 7.9 4.9 3.7 7.8 

2001_M 8.0 3.5 7.1 7.1 3.8 8.6 5.0 3.6 8.0 

2001_H 8.3 3.7 9.0 7.3 3.3 9.0 5.3 3.3 8.3 

Scenario % overcrowding 

2016_True 1.3 1.8 1.5 1.2 1.7 1.6 1.3 1.8 1.3 

2016_L 1.1 1.5 1.5 1.1 1.6 1.4 1.5 1.8 1.1 

2016_M 1.1 1.5 1.6 1.3 1.8 1.6 1.4 1.9 1.1 

2016_H 1.1 1.3 2.1 1.2 1.8 1.7 1.6 1.7 1.1 

2011_True 1.3 1.5 1.9 1.2 1.6 1.8 1.5 1.9 1.3 

2011_L 1.3 1.6 1.8 1.3 1.6 2.1 1.4 1.7 1.3 

2011_M 1.2 1.6 2.1 1.3 1.7 1.7 1.3 1.7 1.2 

2011_H 1.3 1.3 2.5 1.4 1.5 2.4 1.5 1.8 1.3 

2006_True 1.4 1.5 2.3 1.6 1.5 2.9 1.5 1.7 1.4 

2006_L 1.8 1.5 3.0 1.9 1.5 3.2 1.4 1.7 1.8 

2006_M 1.5 1.4 2.9 1.5 1.7 2.6 1.4 1.7 1.5 

2006_H 1.7 1.5 3.4 2.0 1.4 3.9 1.4 1.7 1.7 

2001_True 1.7 1.8 2.8 2.0 1.8 3.3 1.3 1.7 1.7 

2001_L 1.4 1.5 2.4 1.5 1.7 3.0 1.5 1.7 1.4 

2001_M 1.6 1.6 2.7 1.7 1.7 3.1 1.3 1.7 1.6 

2001_H 1.6 1.6 3.0 1.6 1.6 3.6 1.5 1.8 1.6 

Scenario % non-durable floor 

2016_True 4.0 1.4 4.3 4.0 1.2 4.9 4.9 1.4 4.0 

2016_L 4.1 1.4 4.1 4.1 1.5 5.0 5.2 1.3 4.1 

2016_M 4.0 1.3 4.5 4.1 1.3 4.5 4.9 1.3 4.0 

2016_H 4.8 1.2 6.3 4.3 1.4 5.2 5.3 1.3 4.8 

2011_True 4.2 1.4 5.4 4.1 1.2 4.8 4.9 1.4 4.2 

2011_L 4.6 1.2 5.8 4.0 1.3 6.0 4.9 1.5 4.6 

2011_M 5.0 1.3 6.3 4.3 1.2 5.5 5.0 1.3 5.0 
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2011_H 5.0 1.1 7.2 4.9 1.2 7.1 5.4 1.5 5.0 

2006_True 8.2 1.2 8.6 8.3 1.1 9.0 5.1 1.5 8.2 

2006_L 8.1 1.3 8.9 8.7 1.3 9.0 5.5 1.3 8.1 

2006_M 7.9 1.3 10.0 6.9 1.2 8.8 5.3 1.4 7.9 

2006_H 8.7 1.4 11.2 8.2 1.2 10.7 5.8 1.4 8.7 

2001_True 9.2 2.0 8.1 8.8 1.5 10.0 4.8 1.4 9.2 

2001_L 9.5 1.3 8.4 7.7 1.3 9.6 4.8 1.3 9.5 

2001_M 9.7 1.3 9.1 7.2 1.3 10.6 4.8 1.4 9.7 

2001_H 10.1 1.5 11.1 8.3 1.3 10.4 5.3 1.4 10.1 

Scenario % solid fuel 

2016_True 1.1 0.4 1.9 1.1 0.4 1.9 2.1 0.4 1.1 

2016_L 1.1 0.4 2.0 1.1 0.4 2.1 2.3 0.5 1.1 

2016_M 1.1 0.4 2.0 1.1 0.4 2.0 1.9 0.4 1.1 

2016_H 1.2 0.3 2.8 1.2 0.4 2.2 2.9 0.5 1.2 

2011_True 1.1 0.4 2.4 1.2 0.4 2.1 1.9 0.4 1.1 

2011_L 1.2 0.4 2.4 1.2 0.4 2.6 2.3 0.5 1.2 

2011_M 1.3 0.4 2.7 1.2 0.4 2.2 2.1 0.5 1.3 

2011_H 1.4 0.4 2.7 1.4 0.3 2.9 1.9 0.5 1.4 

2006_True 2.2 0.4 3.6 2.4 0.4 3.8 1.8 0.4 2.2 

2006_L 2.2 0.4 3.4 2.7 0.4 4.0 2.5 0.5 2.2 

2006_M 2.2 0.4 3.5 2.0 0.3 4.0 1.8 0.4 2.2 

2006_H 2.4 0.4 4.9 2.3 0.4 4.4 1.9 0.4 2.4 

2001_True 2.1 0.4 3.5 2.4 0.4 4.1 1.8 0.4 2.1 

2001_L 2.2 0.4 3.8 1.9 0.4 3.9 1.7 0.5 2.2 

2001_M 2.4 0.3 4.6 2.0 0.4 4.4 1.3 0.5 2.4 

2001_H 2.6 0.4 5.1 2.1 0.4 4.2 2.6 0.5 2.6 
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Bias 
Census gridEZ-EA gridEZ-Constituency 

All 
Non-
slum Slum All 

Non-
slum Slum All 

Non-
Slum Slum 

Scenario % unimproved toilet 

2016_True 0.0 -0.1 0.4 0.0 0.0 -0.1 0.4 0.4 0.9 

2016_L -0.4 0.0 0.1 0.5 0.6 -0.2 0.2 0.2 1.8 

2016_M -0.4 -0.2 0.2 -0.3 -0.1 -0.1 0.0 0.3 0.6 

2016_H -0.1 0.1 0.5 0.3 0.6 -0.5 -0.3 -0.2 0.7 

2011_True -0.5 0.0 0.5 -0.1 -0.1 0.4 0.1 -0.1 1.2 

2011_L -0.2 0.1 0.3 -0.7 -0.2 0.3 0.1 0.5 0.8 

2011_M -0.1 0.4 0.3 -0.2 0.2 -0.6 -0.6 -0.6 1.3 

2011_H -0.7 0.0 0.3 -0.1 0.1 0.1 0.3 0.8 1.1 

2006_True -5.0 0.3 2.7 -1.9 -0.1 2.5 0.0 0.7 0.4 

2006_L -4.5 0.4 3.3 -1.4 0.4 2.6 0.1 0.2 1.4 

2006_M -4.8 0.2 3.0 -2.3 0.2 2.2 -0.5 0.1 0.5 

2006_H -4.5 0.7 2.4 -3.5 -0.4 2.7 -0.8 -0.6 1.5 

2001_True -5.8 1.0 3.2 -1.5 0.2 3.4 0.6 0.7 1.4 

2001_L -6.1 0.7 3.3 -1.6 0.8 2.5 0.0 0.2 0.8 

2001_M -5.8 0.9 3.1 -2.3 0.4 2.4 -0.1 -0.1 1.3 

2001_H -5.9 0.9 4.9 -1.3 0.7 2.1 -0.4 0.1 0.7 

Scenario % overcrowding 

2016_True 0.0 -0.1 -0.1 0.0 -0.1 0.2 0.1 0.1 0.1 

2016_L 0.1 0.0 0.1 0.0 0.0 -0.1 0.1 0.0 0.2 

2016_M 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.0 

2016_H 0.1 0.0 0.0 0.3 0.4 0.0 0.0 -0.1 0.4 

2011_True -0.1 -0.2 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.2 

2011_L 0.1 0.1 -0.2 0.2 0.2 0.0 0.3 0.4 0.0 

2011_M 0.0 0.1 -0.1 0.0 0.0 -0.1 -0.1 -0.2 -0.2 

2011_H 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.2 

2006_True 0.3 0.1 -0.5 0.0 -0.1 -0.5 0.4 0.3 0.3 

2006_L 0.4 0.2 -0.6 0.0 0.0 -0.6 0.2 0.2 0.2 

2006_M 0.2 0.1 -0.7 0.0 0.1 -0.6 0.1 0.1 0.0 

2006_H 0.2 0.2 -1.0 0.2 0.0 -0.3 0.1 -0.2 0.4 

2001_True 0.4 0.3 -0.6 0.0 0.1 -0.5 0.1 0.1 -0.1 

2001_L 0.5 0.4 -0.7 0.0 0.1 -0.7 0.0 0.0 0.0 

2001_M 0.7 0.6 -0.7 0.2 0.2 -0.5 0.1 0.2 0.0 

2001_H 0.5 0.4 -0.6 0.2 0.3 -0.4 0.1 0.1 0.0 

Scenario % non-durable floor 

2016_True 0.0 -0.2 0.5 0.0 0.1 -0.2 0.3 0.1 1.0 

2016_L -0.4 0.0 0.5 0.3 0.2 -0.2 -0.1 0.0 1.3 

2016_M -0.3 -0.1 0.4 -0.2 -0.1 0.1 -0.2 0.0 0.7 

2016_H -0.5 -0.1 0.3 0.0 0.1 -0.4 -0.2 0.0 0.5 

2011_True -0.6 0.0 0.8 -0.1 0.0 0.4 0.1 0.1 0.9 

2011_L 0.0 -0.1 1.2 -0.4 0.0 0.8 -0.3 0.0 0.5 

2011_M -0.4 0.0 0.8 -0.5 -0.2 -0.7 -0.3 -0.1 1.3 

2011_H -0.9 -0.1 0.4 -0.3 0.1 -0.2 -0.2 0.1 1.1 

2006_True -5.9 0.0 4.1 -2.0 -0.1 3.6 -0.2 0.1 0.7 

2006_L -5.5 0.1 4.1 -1.7 0.0 3.8 -0.1 0.1 1.3 

2006_M -5.6 0.0 4.4 -2.8 0.1 2.6 -0.5 0.1 0.5 
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2006_H -5.6 0.0 3.4 -3.7 0.0 3.3 -0.6 -0.1 1.4 

2001_True -7.8 0.1 3.1 -2.0 -0.1 3.9 0.4 0.1 1.5 

2001_L -8.1 -0.2 3.2 -2.4 0.0 3.0 -0.2 0.1 0.4 

2001_M -7.9 -0.3 3.4 -2.9 0.1 3.1 -0.2 0.0 1.0 

2001_H -7.9 -0.1 5.3 -1.7 0.1 3.0 -0.7 -0.1 0.5 

Scenario % solid fuel 

2016_True -0.1 0.0 -0.1 -0.1 0.0 -0.1 -0.1 0.0 -0.5 

2016_L -0.1 0.0 0.1 0.0 0.0 0.0 -0.2 0.0 -0.5 

2016_M -0.1 0.0 0.2 -0.1 -0.1 0.0 -0.2 0.0 -0.3 

2016_H -0.1 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 

2011_True -0.1 0.0 0.2 0.0 0.0 0.2 -0.2 0.0 -0.5 

2011_L 0.1 0.0 0.5 -0.1 0.0 0.1 -0.1 0.0 -0.4 

2011_M -0.1 0.0 0.2 0.0 0.0 0.0 -0.3 0.0 -0.5 

2011_H -0.3 -0.1 0.0 -0.1 0.0 -0.1 -0.4 0.0 -0.7 

2006_True -1.5 0.0 0.0 -0.7 0.0 -0.2 -0.4 0.0 -0.9 

2006_L -1.4 0.0 -0.1 -0.4 0.0 0.2 -0.1 0.0 -0.5 

2006_M -1.3 0.0 0.3 -0.8 0.0 0.0 -0.4 0.0 -0.7 

2006_H -1.3 0.0 0.1 -1.2 0.0 -0.7 -0.3 0.0 -0.1 

2001_True -1.7 0.0 0.4 -0.8 0.0 -0.5 -0.2 0.0 -0.6 

2001_L -1.7 0.0 0.2 -0.8 0.0 -0.1 -0.1 0.0 -0.2 

2001_M -1.7 0.0 0.3 -0.6 0.0 0.4 -0.3 0.0 -0.4 

2001_H -1.9 0.0 0.2 -0.7 0.0 -0.3 -0.1 0.0 0.0 
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Appendix H      Sample frame scale exercise used to 

decide “seed” cell size in SUE household surveys 

 

1. Use the GridSample R package following guidance in Thomson et al., 2017 and the below 

code to generate two samples based on 100m and 200m grid cells respectively using the 

following parameters. We provide this example for Dhaka. 

library(gridsample) 

library(raster) 

library(rgdal)  

setwd("C:/User/Project") 

# Unzip and save downloaded files to subfolder called "data" 

 

clip<-function(raster,shape) { 

  a1_crop<-crop(raster,shape) 

  step1<-rasterize(shape,a1_crop) 

  a1_crop*step1} 

 

 

#### STRATA SHP ####  --  https://gadm.org/download_country_v3.html 

strata <- readOGR(dsn='data', layer='NPL_adm4', encoding='ESRI Shapefile') 

proj4string(strata) 

strata <- strata[strata@data$NAME_2=="Bagmati",] 

plot(strata) 

 

 

#### POPULATION RASTER ####  

#--From https://www.worldpop.org/project/categories?id=3 

population_raster <- raster("data/npl_ppp_2020.tif")  

proj4string(population_raster) 

population_raster <- clip(population_raster,strata) 

plot(population_raster) 

 

 

#### STRATA RASTER #### 

strata_raster <- rasterize(strata,population_raster, field="ID_4") 

plot(strata_raster) 

 

 

#### URBAN RASTER ####   

#--https://ghsl.jrc.ec.europa.eu/ghs_smod.php 

urban_raster <- raster("data/GHS_SMOD_POP2015_GLOBE_R2016A_54009_1k_v1_0.tif") 

proj4string(urban_raster) 

urban_raster <- projectRaster(urban_raster,crs="+proj=longlat +datum=WGS84 

+no_defs +ellps=WGS84 +towgs84=0,0,0") 

urban_raster <- clip(urban_raster,strata) 

plot(urban_raster) 

#Alternatively create a dummy dataset (because reprojection takes ages) 

urban_raster <- strata_raster 

urban_raster[urban_raster==10] <- 1 

plot(urban_raster) 

 

 

#### DRAW SAMPLE (from 100m cells) #### 

psu_polygons=gs_sample( 

  population_raster = population_raster, 

  strata_raster = strata_raster, 

  urban_raster = urban_raster, 

  cfg_random_number = 2017, 

  cfg_desired_cell_size = 1, # 100m grid cells 

  cfg_hh_per_stratum = 200, # 200/20 = 10 PSUs 

  cfg_hh_per_urban = 20, 

  cfg_hh_per_rural = 20, 

  cfg_min_pop_per_cell = 0, 

  cfg_max_psu_size = NA,  

  cfg_pop_per_psu = 82, # Assumes 20 HHs & ave HH size = 4.1 

  cfg_psu_growth = TRUE, 

  cfg_sample_rururb = TRUE, 

  cfg_sample_spatial = FALSE, 

  cfg_sample_spatial_scale = , 
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  output_path=" C:/User/Project",  

  sample_name="NPL_100m_sample") 

plot(psu_polygons) 

#### DRAW SAMPLE (from 200m cells) #### 

psu_polygons=gs_sample( 

  population_raster = population_raster, 

  strata_raster = strata_raster, 

  urban_raster = urban_raster, 

  cfg_random_number = 2017, 

  cfg_desired_cell_size = 2, # 200m grid cells 

  cfg_hh_per_stratum = 200, # 200/20 = 10 PSUs 

  cfg_hh_per_urban = 20, 

  cfg_hh_per_rural = 20, 

  cfg_min_pop_per_cell = 0, 

  cfg_max_psu_size = NA,  

  cfg_pop_per_psu = 82, # Assumes 20 HHs & ave HH size = 4.1 

  cfg_psu_growth = TRUE, 

  cfg_sample_rururb = TRUE, 

  cfg_sample_spatial = FALSE, 

  cfg_sample_spatial_scale = , 

  

output_path="C:/Users/drt1g15/Dropbox/Work_main/p_global_gridsample_feasibility/

bangladesh/thesis_appendix_exercise",  

  sample_name="NPL_200m_sample") 

plot(psu_polygons) 

 

2. Complete the “Sample frame scale worksheet” below with the output shapefile, following 

the 5 instructional steps below. 

Remember, we are still at the beginning of the sample workflow. This is what we know: 

 Some buildings are not residential 

 Buildings might have multiple levels 

 There may be multiple dwellings on each level 

 There may be multiple households in each dwelling 

This is what we do not know: 

 A complete picture of building locations (in OpenStreetMap) 

 How many dwellings or households are in each PSU 

So, we are going to make an educated guess based on Google Earth imagery, including 

apparent height of buildings.  

 

Step 1: Copy the WorldPop population estimate for each PSU into the form. 

After submitting your GridSample job, the user receives an email with a link to download 

the sample PSU boundaries. The download includes a shapefile (comprised of multiple 

subfiles including a dbf) which can be opened in ArcGIS or excel, and a kml file which can 

be opened in Google Earth.  

Download and unzip this file, then open the dbf in Excel. Copy the PSU population 

estimates (variable name: psu_pop) into the worksheet, and round population to whole 

numbers. 

Step 2: Use the average household size (entered in How To: Use GridSample exercise) to 

estimate the number of households per PSU. Note: 

PSU households = PSU population  ÷  average household size 
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Step 3: Open the kml files in Google Earth, and estimate the number of single family and 

multi-family buildings.  

You may need to download Google Earth, first, from: 

www.google.com/earth/download/gep/agree.html 

Once Google Earth is installed on your computer, you only need to double click on the kml 

file to open it in Google Earth. 

Step 4: Look closely at the imagery for each PSU, and answer the following question by 

circling YES or NO. Does Google Earth appear to show a similar # of HHs as WorldPop? 

You can answer NO if the imagery appears to have far more or far fewer households than 

WorldPop. 

Step 5. Looking at Google Earth imagery, answer the following question by circling YES or 

NO: Do you think there are 20+ households in this PSU? 

 

3. This guidance is subject to change as we learn more about gridded population sampling, 

but here are our initial recommendations.  

 Feasibility/accuracy: If you circled 9-10 YESs in step 4, then this sample frame scale is 

appropriate for area-microcensus sampling 

 Feasibility: If you expect to find more than 100 households in 4+ PSUs of the 200m X 

200m sample frame, then use a 100m X 100m sample frame 

 Accuracy: If you circled NO in step 4 in 4+ PSUs of the 100m X 100m sample frame, 

then use a 200m X 200m sample frame. (Although this might result in far more 

households than desired, it may be preferable to aggregate the sample frame to 

200m X 200m cells to improve accuracy and then manually segment PSUs, than to 

sample from an inaccurate sample frame.) 
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P 

S 

U 

# 

Steps 1 and 2. 

WorldPop  

Step 3: 

Google Earth and 

OpenStreetMap 

Step 4.  

Does Google Earth 

show a similar # of 

HHs as WorldPop? 

Step 5.  

Do you think there 

are 20+ 

households in this 

PSU? 

First sample with 100m X 100m grid cells 

1 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

2 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

3 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

4 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

5 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

6 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

7 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

8 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

9 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

10 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

Second sample with 200m X 200m grid cells 

1 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

2 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

3 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

4 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

5 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

6 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

7 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

8 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

9 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 

10 
Population:______ 

Households:_____ 

# singlefam blgs:___ 

# multifam blgs:____ 
YES  /   NO YES  /   NO 
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Appendix I   SUE mapper-lister focus group discussion 

guide  

 SUE Survey Focus Group Discussion Guide 
FGD Session   

Location  

Date (MM/DD/YY)  

Facilitator's name  

Note taker's name   

Start time  

End time  

 

Participant ID FGD Name Signature 

Participant #1 A 
 

 

Participant #2 A 
 

 

Participant #3 A 
 

 

Participant #4 A 
 

 

Participant #5 A 
 

 

Participant #6 A 
 

 

Participant #7 B 
 

 

Participant #8 B 
 

 

Participant #9 B 
 

 

Participant #10 B 
 

 

Participant #11 B 
 

 

Participant #12 B 
 

 

Participant #13 B 
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FGD guide 

Core Questions Probe Questions 

Theme A: Introduction 

I would like to start with your overall impressions. 

1. How was your experience on the SUE 
survey?  

Theme B: Office Enumeration 

I would like to discuss about the pre-field work. 

2. We started with office enumeration in 
OpenStreetMap. How did OpenStreetMap 
data help or hinder your work?  

 How did OSM data compare across tools 
(Paper map, GeoODK, OSMAnd)? 

Theme C: Field Work 

Now I would like to discuss about your field work experience. 

3. The training provided an idealized script 
which might have been adapted in practice. 
What was the “script” that you and your 
partner used with residents and neighbors? 

 How did you approach people? 

 How did people respond? 

4. Reflect on interacting with the residents and 
neighbors – how did your approach change 
over time and why? 

 What are some tips for talking to 
different kinds of residents? 

5. How would you describe your team’s 
process of enumerating and listing?  

 Did you need to adapt how you used 
OSMAnd, GeoODK, CamScanner, and 
MAPS.ME compared to the training? 

 How did you adapt the methods 
presented in the training in practice?  

 What roles did you and your partner 
settle on? 

6. Please tell us about the major differences 
between working in area-microcensus 
versus two-stage sampling areas. 

 Did you enjoy working in one type of 
sampling area more? 

 Was there anything particularly 
challenging about working in one/two-
stage sampling areas? 

7. Tell us about any field experiences that you 
had which you did not anticipate at the 
start. 

 What was that experience like for you? 

 Was this a regular experience? 

 In your opinion, should anything be 
incorporated into future trainings to 
prepare enumerator-listers for this 
experience? 

8. How useful were the regular office meetings 
and field visits by the Planning Team? 

 Did you change your processes after 
office meetings or field visits? What 
changed? 
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9. In other surveys, teams commonly 
commute to the field from the office or 
guesthouse, and you commuted directly 
from your home. Please tell us about your 
commutes to/from the sampling areas. 

 

 

 What modes of transport did you use? 

 How long did it take? 

 Would you have preferred a different 
commuting process? If so – what process 
would you recommend? 

Theme D: Workflow & General Reflections 

Now I would like to discuss the overall workflow and your general reflections. 

10. Think back to the training – what parts best 
prepared you for the fieldwork, and what 
was missing from the training? 

 Is there anything you would change about 
the toolkit? 

 What would you have liked to spend more 
time on during the training? 

11. In typical household surveys, buildings are 
enumerated using hand-drawn paper maps, 
and households are listing on paper forms. 
What do you think were the advantages and 
disadvantages of the SUE survey methods 
compared to these typical methods? 

 What would it have been like to draw 
enumeration maps by hand in your PSUs? 
And to list households on paper forms 
only? 

12. Please tell us about what is was like to work 
with your field partner. 

 Did you have different strengths? 
Different approaches? 

 How did any differences play out for you? 

 Did you and your partner work differently 
together over time? 

 Do you have suggestions to improve team 
work? 

13. What do you think the impacts are outside 
of this project of updating OSM?  

14. As you know we followed three steps – 
office enumeration, field listing, post-field 
update of OSM. Is there anything you would 
change about the workflow? 

 

15. Would you like to add something to our 
discussion? 

 What additional support might be 
needed? 
 

Thank you very much for your time! 
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Appendix J  SUE mapper-lister focus group discussion 

coding framework 

Training and Hiring 

 Candidate background 

 Curriculum content 

 Teaching methods 

 Contracts 

 Misunderstanding 
 

Office work 
 

Interactions 

 Partner 

 Residents 
o Things neighbours said 
o Things residents said 
o Script 

 HERD staff 
 

Field effort 

 Transportation or accommodation 

 Time of day 

 Weather 

 One stage vs two stage 

 Recording data 

 Road or building identification 

 Surprises 
 

Field-support 

 Visits from planning team 

 Office meetings 

 Calls to planning team 

 Equipment (map, tablet) or supplies [during analysis, this was split: “Paper Maps”, 
“Tablets”) 

 Software on tablet 
o CamScanner 
o Google Maps 
o OSMAnd 
o GeoODK 
o Maps.me 

 Satellite imagery sources 
o ArcGIS imagery 
o OSM 
o Paid high-res imagery 

 

General experience 

 Recommendation 
o Tip for mappers-listers 

 Challenge 

 Overall workflow
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Glossary of Terms 

ancillary variable - A variable that is possibly predictive of the outcome under study. Also called a 

covariate. 

bagging - A statistical technique of drawing multiple random samples with replacement from a 

dataset during model building to estimate the prediction error of that model. Also called 

bootstrapping. 

big data - Extremely large datasets that are often analysed with machine learning or other 

computational analysis methods. Includes mobile phone call detail records (CDRs), twitter 

messages, and satellite imagery. 

bootstrapping - A statistical technique of drawing multiple random samples with replacement 

from a dataset during model building to estimate the prediction error of that model. Also called 

bagging. 

dasymetric - A spatial disaggregation technique that generates a weights layer in smaller sub-

areas which informs an unequal disaggregation. The weights layer is generated from ancillary data 

related to unequal distribution of the original aggregated total. For example, land cover type is 

often used to dasymetrically disaggregate census population counts to smaller sub-areas. 

ensemble - A modelling approach of running two or more related but different models, and 

synthesizing results into a single value to improve accuracy. Commonly used in "big data" analysis. 

geo-statistical - A class of statistical models used to analyse and predict values associated with a 

spatial or spatiotemporal phenomena. 

inverse proportional weighting (IPW) - A modelling technique to calculate statistics standardized 

to a population different from that which the data were collected. For example, standardizing 

population characteristics measured in a household survey sample to population characteristics 

measured in a census. 

Markov Chain Monte Carlo (MCMC) - A simulation modelling technique to estimate an outcome 

by drawing many samples from a large dataset, where each sample informs the next (a Markov 

chain).  

machine learning - Describes a type of computational algorithm which "learns" patterns in very 

large datasets and use this "acquired" information to improve predictions from the data.  
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pycnophalactic - A disaggregation technique that preserves the original aggregated total. 

Random Forest - An ensemble, machine learning modelling technique that first constructs a 

multitude of classification "trees" (or models) from a random selection of data, then second runs 

regressions on each of the trees with the remaining data to estimate a multitude of means and 

errors, and finally predicts an outcome and model error by averaging.  

raster - Refers to coverage datasets whereby data are organized as rectangular, parallel cells (or 

pixels), and each cell has a single value. Examples include a photograph where each cell has a 

colour value, temperature data where each cell has an average temperature value for a place and 

time period, and land cover data where each cell is classified by the dominant land cover type. 
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