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ABSTRACT

Audio source separation is essential for many applications such as
hearing aids, telecommunications, and robot audition. Subspace
decomposition approaches using polynomial matrix eigenvalue de-
composition (PEVD) algorithms applied to the microphone signals,
or lower-dimension eigenbeams for spherical microphone arrays,
are effective for speech enhancement. In this work, we extend
the work from speech enhancement and propose a PEVD subspace
algorithm that uses eigenbeams for source separation. The pro-
posed PEVD-based source separation approach performs compa-
rably with state-of-the-art algorithms, such as those based on inde-
pendent component analysis (ICA) and multi-channel non-negative
matrix factorization (MNMF). Informal listening examples also in-
dicate that our method does not introduce any audible artifacts.

Index Terms— Polynomial matrix eigenvalue decomposition,
informed array processing, source separation, microphone arrays.

1. INTRODUCTION

The separation of audio sources is essential for many applications
such as speech enhancement in hearing aids and telecommunica-
tions, three-dimensional (3D) sound rendering, and robot audition
[1]. In real-life scenarios, the received signals often contain a mix-
ture of multiple sources, reverberation, and ambient noise. These
degradations severely limit the performance of these applications,
motivating the need for source separation algorithms [2–4].

Multi-channel audio source separation algorithms include
microphone array processing, independent component analysis
(ICA)-based and multi-channel non-negative matrix factorization
(MNMF) methods. Through filtering in space, array processing
can potentially isolate the spatially separated target and interfering
sources [5]. Among many array geometries, spherical microphone
arrays have gained much interest due to their compact representa-
tion and efficient processing of the 3D sound field in the spherical
harmonic (SH) domain [6,7]. This approach, however, cannot com-
pletely remove spatially isotropic noise and reverberation [8].

In [9,10], the microphone signals are first broken up into frames
via the short-time Fourier transform (STFT) before being separated
into sources by ICA in the frequency-domain (FDICA). However,
inherent to ICA, the generated separating matrix incurs permuta-
tion and scaling ambiguities at every frequency. Methods based
on the direction-of-arrival (DoA) and inter-frequency signal en-
velopes [11], and independent vector analysis (IVA) using auxiliary
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function (AuxIVA) [12,13] have been proposed to solve the permu-
tation and scaling problem by grouping components from the same
source over different frequencies. The processed frames are then
synthesized to form the separated signals using the inverse STFT.

The MNMF approaches [14,15] jointly estimate the mixing ma-
trix and power spectrograms, which are further decomposed into
two non-negative matrices representing the spectral patterns and
temporal activations. The spectral and temporal matrices, together
with the demixing matrix derived from the mixing matrix, are then
used to generate the separated sources. The methods are, however,
sensitive to parameter initialization [14]. The benefits of both IVA
and non-negative matrix factorization (NMF) are unified under the
independent low-rank matrix analysis (ILRMA) algorithm [3, 16].

Polynomial matrix eigenvalue decomposition (PEVD)-based
algorithms [17–19] are effective for single-speaker speech enhance-
ment but are computationally expensive for a large number of sig-
nals. Instead of directly applying the PEVD to the microphone sig-
nals on the spherical array, PEVD can be applied to the lower di-
mension eigenbeams and still provides good speech enhancement
performance without introducing audible artifacts [20].

In this work, we extend the idea of [20] from speech en-
hancement to source separation. Informed of the source direc-
tions, we develop a source separation PEVD approach using only
selected eigenbeams and beamformer outputs, to achieve low com-
plexity. The novel contributions are as follows: (i) we incorpo-
rate a novel maximum directivity modal beamformer; (ii) we use
PEVD to combine eigenbeams and beamformer outputs; and (iii)
we develop a PEVD-based approach to source separation. The pro-
posed approach is tested and compared against against benchmark
approaches. Listening examples are available [21].

2. PROBLEM FORMULATION

The received signal, xq(n, rq), at the q-th microphone on the spher-
ical array of radius r with Q microphones, is

xq(n, rq) =

P∑
p=1

hTp,qsp(n), q = 1, . . . , Q, (1)

where hp,q = [hp,q(0), . . . , hp,q(J)]T represents the room im-
pulse response (RIR) from the p-th source to the q-th microphone,
modelled as a J-th order finite impulse response filter, sp(n) =

[sp(n), . . . , sp(n− J)]T is the p-th localized source signal, n is
the sample index and [·]T is the transpose operator. The spheri-
cal coordinate of the q-th microphone relative to the array center is
rq = (r, θq, φq), where θq and φq , respectively, are the elevation
and azimuth angles measured downwards from the z-axis and from
the x-axis towards the y-axis. The received signals at the array are
x(n, r) = [x1(n, r1), . . . , xQ(n, rQ)]T .
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3. MULTI-CHANNEL ARRAY PROCESSING

3.1. Spherical Array Processing

The real-valued spherical harmonic transform (SHT) of the spatially
sampled sound field is approximated by [22]

χm` (n) ≈
Q∑
q=1

αqxq(n, rq)R
m
` (rq), (2)

where αq is the quadrature weight, χm` (n) is the `-th order, m-th
degree time-domain eigenbeam signal associated with the real-
valued SH basis function, Rm` (rq), defined as [7]

Rm` (rq) =


√

2(−1)m={Y |m|` (rq)} m < 0

Y 0
` (rq) m = 0 ,√
2(−1)m<{Y m` (rq)} m > 0

(3)

where Y m` (rq) =
√

(2`+1)
4π

(`−m)!
(`+m)!

Pm` (cos θq)e
jmφq and Pm` (·) is

the associated Legendre function, | · | denotes modulus, < and= are
the real and imaginary parts of a complex number. Any function on
the sphere can be expressed using spherical harmonics as [6, 7]

xq(n, rq) =

L∑
`=1

∑̀
m=−`

χm` (n)Rm` (rq). (4)

Alias-free spatial reconstruction of the sound field can be achieved
if Q ≥ (L + 1)2, where L is the maximum SH order of the sound
field. Dropping the sample index n for brevity, the vector of eigen-
beams is χ =

[
χ0
0, χ
−1
1 , χ0

1, . . . , χ
L
L

]T , with elements arranged in
ascending SH order and degree. The generation of eigenbeam sig-
nals in (2) is also called an eigenbeamformer [23,24]. Modal beam-
forming, or the weighted sum of the eigenbeams, produces a beam
pattern directed at a desired direction using

ψ(n) =

L∑
`=1

∑̀
m=−`

wm` χ
m
` (n), (5)

where wm` is the beamformer weight associated with
χm` (n) or in vector form, ψ(n) = wTχ, where w =[
w0

0, w
−1
1 , w0

1, w
1
1, . . . , w

L
L

]T andψ(n) =
[
ψ1(n), . . . , ψL(n)

]T ,
where L denotes the total number of modal beamformer outputs.

3.2. Polynomial Matrix Eigenvalue Decomposition

The space-time covariance matrix [25, 26], parameterized by the
time lag τ , is computed using the microphone signals in (1) to give

Rxx(τ) = E{x(n)xT (n− τ)}, (6)

where E{·} is the expectation operator over n. Each element,
rp,q(τ), calculated using the correlation between the p-th and q-
th microphone signals, produces auto- and cross-correlations on the
diagonals and off-diagonals, respectively. The concatenation of the
covariance matrices for all values of τ ∈ {−N, . . . , N} gives a
3D-tensor of dimension, Q×Q× (2N + 1).

The z-transform of (6) is a para-Hermitian polynomial matrix

Rxx(z) =

∞∑
τ=−∞

Rxx(τ)z−τ , (7)

satisfying Rxx(z) = RP
xx(z) = RH

xx(1/z∗), where [·]∗, [·]H ,
[·]P are the complex conjugate, Hermitian and para-Hermitian op-
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...
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0(n)

...
χLL(n)
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Beam-
former

ψ1(n)
...
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U(z)

y1(n)
...

yL(n)

Figure 1: Block diagram of the proposed method using a sequence
of eigen, modal and PEVD beamformers for each source.

erators respectively. The PEVD of (7) is [27]

Rxx(z) ≈ UP (z)Λ(z)U(z), (8)

where the rows of U(z) are the polynomial eigenvectors and the
elements on the diagonal matrix Λ(z) are the polynomial eigen-
values. Iterative algorithms based on the second-order sequential
best rotation (SBR2) [27–29] and the sequential matrix diagonal-
ization (SMD) [30, 31] are used to calculate (8).

At each iteration, the PEVD algorithm will first search for the
off-diagonal element with the largest magnitude. If its magnitude
exceeds a predefined threshold, a delay polynomial matrix is ap-
plied to bring the element to the z0 plane. A unitary matrix, which
is designed to zero out the element, is applied to the entire poly-
nomial matrix. A trimming procedure [27] is also used to keep
the polynomial order compact. The algorithm terminates when the
magnitudes of all off-diagonal elements are less than the threshold
or when the user-defined maximum iteration number is reached.

4. INFORMED SPHERICAL ARRAY USING PEVD

In this paper, we consider the problem of separating multiple direc-
tional sources in a reverberant environment. In contrast, our pre-
vious work in [20] addressed the enhancement of a single-speaker
in diffuse noise. Moreover, in [20], we applied PEVD to all eigen-
beams instead of microphone signals to achieve a reduction in com-
putational complexity [31]. However, using the complete set of
computed eigenbeams in the PEVD results in undesired reverberant
components and interfering signals that leak through the eigenbeam
sidelobes and, therefore, reduce separation performance.

To improve the quality of the separated signals while reducing
complexity, we propose in this paper to use for the PEVD only a
subset of eigenbeams and modal beamformer outputs rather than
the complete set of eigenbeams or microphone signals. We first ap-
ply SHT to the microphone signals to generate eigenbeams and use
the resulting eigenbeams to form modal outputs such as the hyper-
cardioid beams. The beamformed signals, including unprocessed or
steered eigenbeams, are then used as inputs to the PEVD for poly-
nomial subspace decomposition. Fig. 1 shows a block diagram of
the proposed approach.

4.1. Modified Hyper-Cardioid Beamformer (MHCARD)

The work in [23] proposes a hyper-cardioid beamformer that
achieves the maximum directivity index by using (L + 1)2 eigen-
beams. Since the zeroth-order eigenbeam χ0

0 is similar to an omni-
directional microphone placed at the center of the array [7], it cap-
tures also undesired signals arriving from non-target source direc-
tions. Each non-zero order eigenbeam, akin to a directional sensor
placed at the array center, can be steered or directed at the source
signal in a specific direction. Therefore, the beamformer coeffi-
cients, used to combine the eigenbeams, are modified to limit unde-
sired signals from non-target directions (see Section 5.3). Accord-
ingly, the modal weightw0

0 = 0 and the other coefficients are scaled
by L+1√

(L+1)2−1
for unity gain in the source direction (θp, φp).
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Figure 2: Configuration of room and MHCARD for Source 1.

4.2. PEVD of Modal Beamformer Outputs

Assuming source directions can be estimated [32], the eigenbeams,
modified hyper-cardioid beams, or any beamformer output can be
conveniently chosen or steered using Wigner-D rotation matrices
[6, 7] to generate L modal outputs, ψ(n). For each source, the
space-time covariance matrix of ψ(n) is

Rψψ(τ) = E{ψ(n)ψT (n− τ)} (9)

and its z-transform Rψψ(z) is computed using (7). The PEVD is

Rψψ(z) ≈ UP
ψ(z)Λψ(z)Uψ(z), (10)

where Λψ(z) and Uψ(z) are the eigenvalues and eigenvectors as-
sociated with the modal outputs ψ(z) and the PEVD output is

y(z) = Uψ(z)ψ(z). (11)

Consequently, the spectrally majorized outputs generated by the
PEVD enable the extraction of the target source in the first chan-
nel. This process is repeated for all P sources.

5. SIMULATION AND RESULTS

5.1. Experimental Setup

Anechoic speech signals sampled at 16 kHz are taken from the
TIMIT corpus [33]. The SMIRgen tool [34] is used to generate
RIRs from 2 sources to 32 microphones on a rigid sphere with
r = 4.2 cm. The room setup is shown in Fig. 2a, and the T60 is
varied between 0 s, 0.3 s and 0.7 s. The source signals used in the
experiments include male and female speakers as well as fan noise.

In each experiment, 50 trials are conducted. For each speech
source, short utterances from a randomly selected speaker are con-
catenated to generate signals of 8 to 10 s duration. Each source
signal is convolved with the RIR and mixed along with 30 dB sen-
sor noise to generate the microphone signals.

The parameters for the PEVD are based on [20]. For each tar-
get source, L = 4 instead of 32 microphone signals are used as
inputs to the PEVD. The modal signals for source position 1 are
χ−1
1 , χ−3

3 , χ−1
3 and the modified hyper-cardioid (MHCARD) beam

directed at (π
2
, π
2

) as shown in Fig. 2b. For source 2, the modal sig-
nals are χ1

1, χ
1
3, χ

3
3 and the MHCARD beam directed at (π

2
, 0). The

PEVD input for source position 3 is the set of signals for position 1
but steered towards (π

2
, 5π
12

) using Wigner-D matrices [6].
The proposed approach is compared against the third-order

hyper-cardioid with maximum directivity index (MaxDir) [23], aux-
iliary function-based IVA (AuxIVA) [12], independent low-rank
matrix analysis (ILRMA) [3] and fast MNMF (FastMNMF) [15],
implemented in [35]. During experimentation, we found that the
ICA and MNMF-based methods do not perform well when all 32
microphones are used, and signals from two microphones closest to
each source are chosen instead.

Table 1: A source separation example involving 2 female speakers
in anechoic environment and results for 1 female speaker.

Algorithm ∆SDR ∆SIR ∆SAR ∆STOI ∆PESQ
AuxIVA 17.7 dB 25.3 dB 11.4 dB 0.21 1.05

AuxIVA32 -1.1 dB 4.5 dB -6.1 dB -0.30 -0.07
FastMNMF 20.6 dB 35.2 dB 13.8 dB 0.21 1.28

ILRMA 19.5 dB 31.3 dB 12.8 dB 0.21 1.21
MaxDir 3.9 dB 3.4 dB 4.7 dB 0.07 0.22

MHCARD 16.9 dB 17.8 dB 13.4 dB 0.21 0.93
PEVD 21.8 dB 25.3 dB 16.4 dB 0.24 1.39

5.2. Evaluation Measures

For evaluation, source-to-distortion ratio (SDR), source-to-
interferences ratio (SIR), and source-to-artifacts ratio (SAR) are
used to measure the overall source separation ability, interference
rejection and processing artifacts, respectively [36]. Short-time
objective intelligibility (STOI) [37] and perceptual evaluation of
speech quality (PESQ) [38] are also used to measure speech intelli-
gibility and quality. The metrics are computed for the reference mi-
crophone and processed signals and their difference ∆ is reported.
Positive ∆ values indicate improvements in all measures.

5.3. Experiments and Discussion

Table 1 summarizes the results for a scenario involving the separa-
tion of 2 female speakers in an anechoic room. ICA-based methods
such as AuxIVA works better for 2 microphones than 32 micro-
phones (AuxIVA32) by 18.8 dB in ∆SDR, and signals from two
microphones closest to each source are chosen. Although more data
is available with 32 microphones, a greater number of permutations
needs to be considered and may have resulted in a poorer demixing
matrix, accounting for the artifacts and reduction in STOI.

Across all metrics, the larger improvement offered by the mod-
ified hyper-cardioid (MHCARD) over the original hyper-cardioid
beam (MaxDir) highlights the advantages of excluding the zeroth-
order eigenbeam χ0

0 in the modal beamformer. MHCARD provided
an overall greater reduction in sidelobe levels as shown in Fig. 2b.
FastMNMF leads ∆SIR by 35.2 dB and is closely followed by IL-
RMA, AuxIVA and PEVD. PEVD outperforms other algorithms in
∆SDR, ∆SAR, ∆STOI and ∆PESQ by 21.75 dB, 16.38 dB, 0.237
and 1.39, respectively. Listening examples in [21] also indicate
that PEVD does not introduce processing artifacts, and non-target
speech signals are attenuated but remain intelligible.

These findings are also observed in Fig. 3 for 50 trials involv-
ing two female speakers, F1 and F2 at source positions 1 and 2,
respectively. The experiment is extended to scenarios involving dif-
ferent source types, e.g., male and female speakers under M and F,
a single speaker and localized fan under S and FAN, and different
source positions using two male speakers, M1 and M2 at source po-
sitions 3 and 2, as shown in Fig. 2a. When different source types
are used in an anechoic room, the source separation of the PEVD is
comparable with FastMNMF and ILRMA and is usually better than
AuxIVA. At different source positions M1 and M2, MHCARD is
better than MaxDir by up to 10 dB in ∆SDR. PEVD, which uses the
MHCARD, achieves an average of 8 dB improvement in ∆SDR.

When the room has a reverberation time of 0.3 s, Fig. 4 shows
the source separation results. FastMNMF outperforms all algo-
rithms in ∆SDR and ∆SIR but is closely followed by ICA-based
approaches when the scenario involves only speech signals. PEVD
observe an average of 5 dB improvement in SDR and SIR, but a
more considerable increase by up to 20 dB in the single speech
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Figure 3: Box plot for source separation in anechoic room.
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Figure 4: Box plot for source separation in room with T60 = 0.3 s.
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Figure 5: Box plot for source separation in room with T60 = 0.7 s.

and fan scenario. PEVD also usually performs better in ∆SAR and
∆STOI than the ICA-based approaches in all cases.

In the room with a T60 = 0.7 s, FastMNMF performs less well
than the mildly reverberant 0.3 s case. As shown in Fig. 5, PEVD
is comparable to the ICA-based methods in ∆SDR, worse in ∆SIR
but best in ∆SAR and ∆STOI in most cases including different
source positions. For the single speaker and fan scenario, PEVD
performs better in SDR and SAR for both sources as it does not rely
on source density functions which may not model fan noise well.

We also computed results for the PEVD algorithm using the
original hyper-cardioid, MaxDir, instead of MHCARD. Results
across various scenarios indicate that using MHCARD offers an im-
provement of up to 12 dB in ∆SDR over using MaxDir for PEVD.

6. CONCLUSION

We have proposed a PEVD-based source separation method based
on informed spherical arrays. With knowledge of the source direc-
tions, standard modal beamformers, eigenbeam signals, and the pro-
posed modified hyper-cardioid beam can be combined by the PEVD
algorithm. The proposed PEVD-based approach is among the best
performing algorithm and seems more robust to reverberation than
the other algorithms, but does not always outperform them. Listen-
ing examples [21] also support the SAR and STOI scores, indicat-
ing that PEVD achieves separation without introducing any audible
artifacts. In comparison, other algorithms considerably distort the
signal as part of performing the separation.
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