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1. Introduction

The color-dressed string disk amplitude gives rise to an interesting harmony between color
and the kinematics of the o/?Cy correction to the string disk amplitude [1]. The analysis
relies on the decomposition of color traces into a basis involving symmetrized traces and
structure constants following the decomposition algorithm of [2]. The color-trace decompo-
sition problem was recently solved in closed form [3] involving the Solomon (or Eulerian)
idempotents, and it became apparent that a beautiful mathematical framework governs
the brute-force expressions used in the arguments of [1]. Together with some interest-
ing observations shared by Oliver Schlotterer [4] about color-dressed permutations (to be
defined in section 3), understanding the combinatorics of the harmony first seen in [1]
became the motivation for this paper. As we will see, these matters are tightly knit with
the mathematical framework of the Solomon descent algebra [5,6,7,8,9,10,11].

To isolate the combinatorics within the color-dressed amplitudes we will define the

color-dressed permutations

P,= Y T1%0, T°=T7W1°@.. 17" (1.1)
c€S,,0(1)=1

where each permutation o € S,, is weighted by the trace of some Lie algebra generators, the
color trace. When the closed formula for the color-trace decomposition from [3] is plugged
into (1.1), the permutations appearing as coefficients with respect to a basis of color factors
define what we call BRST invariant permutations yyp,,... p, With k=1,... , n—1. We will
then show that ~,| . belong to the inverse Solomon algebra! and we will find a closed

formula for them, namely
TPy, P, = LE(P)WE(Pp) W . .. LLIE(Py) (1.2)

where £(P) is the Berends-Giele idempotent and it is the result of mapping the permuta-
tions of the Solomon idempotent [12] into its inverse. We demonstrate that E(RLUS) = 0
for R, S # () in section 3.1 while the justification for the terminology appears later in
section 4.4.3.

We then turn back to the color-dressed string disk amplitude in section 4 where we

obtain, following the results of [1], a correspondence between the above permutations and

L After stripping off the leading label 1 and relabeling ¢ — i — 1, see section 3.0.1.
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kinematics from the string disk amplitudes. More precisely, in addition to the natural

Cix,y,z < %71|X7Y,Z the duality from [1] is refined to

ASYM(1 2 ) o AL (1.3)

AF4(1,2,...,7'L) < Y123..

where (1) and ) are orthogonal idempotents of the (inverse) descent algebra constructed
from linear combinations of vyp, .. p, with k =1 and k = 3 respectively. This interpreta-
tion is important because we can borrow a theorem from the work of Garsia and Reutenauer
6] for the right action of E,, o I, with various combinations of partitions y and composi-
tions p. Here E, are the building blocks of the Reutenauer orthogonal idempotents and I,
are the idempotent basis of Solomon’s descent algebra, see the review in section 2.

Using a proof from section 3.2 in which we find that the inverse Z,, of the idempotent

basis I, satisfies
Iplpz___pk(Pl,Pg,...,Pk>:g(Pl)l_l_lg(Pg)l_l_l...l_l_lg(Pk>, |P1| =D; (14)

we are able to relate the (inverse of the) idempotent basis I, of the theorem from [6] with
the BRST-invariant permutations (1.2). This relationship allow us to obtain the Kleiss-
Kuijf (KK) [13] and KK-like [14,15] symmetries of the field-theory ASYM amplitudes and
its o/ 2C2 correction AF" formulated as statements in the descent algebra. As we will see,
these symmetries are decomposed according to the number of parts in the composition
p = n—1, giving rise to the descent algebra decomposition of their symmetries.

The decomposition of the symmetries of field-theory ASYM and o’ 2C2 correction AF”
can be justified by the dualities (1.3), but we also investigate the symmetries of the higher
o' corrections to the disk amplitudes (refined by their MZV content [16,17,18]) from this
point of view. Using general arguments from their descent algebra decomposition and the
formula (1.2), we find that the symmetries of the different corrections according to their
MZV content is closely related to the discussion of the abelian Z-theory derivation of
NLSM amplitudes [19]. In particular, we discover that the leading MZV contribution from
abelian Z integrals governs the non-vanishing of Asmng('m Pr,...Py)|¢rey, for the maximal
partition k = n—1, where (3; denotes all MZVs that do not contain factors of (5 in the
basis used in [20].



The descent algebra decomposition of the symmetries leads naturally to the counting
of their dimensions in terms of Stirling cycle numbers due to the shuffle symmetries of

E(P) and the formula (1.2) for the BRST invariant permutations. Indeed one gets

| ' — 1]
#(atoe(12 . n)f) = |7 ] = (0 —2)! (1.5)
| ' — 1]
#(amesz ) = |
string :n_l: n—1 n—1
A2, ) = |+ Ty ) M2

where the first two lines correspond to the well-known dimensions of the KK [13] and
KK-like [14,15] relations, while the third line is new.

Of course, the string theory version [21,22] of the Bern-Carrasco-Johansson (BCJ) tree-
level relations [23], reduce all these dimensions to (n — 3)! but they involve Mandelstam
invariants s;; and are (naively) outside the scope of the descent algebra relations. So in
this paper we will not be concerned about BCJ identities. For the explicit string-theory
basis reduction involving o’ corrections, see [24].

In this paper an important role is played by the so-called BRST invariants Cy)p g r
of the pure spinor formalism [25]. They were firstly derived at low multiplicities in [1] and
were subsequently studied in different contexts and given general recursive algorithms, see
[26,27,28] and references therein.

These studies induce one to suspect that the BRST invariants not only simplify the
o/ corrections of the string color-dressed amplitude as in the original motivation in [1],
but that they might also have a deeper combinatorial significance. For instance, under
the cohomology of pure spinor superspace they satisfy various change of basis identities
[27] systematized in an intriguing algorithm in the appendix A of [28]. In addition, they
can be expanded in terms of SYM tree amplitudes as in the algorithm described in the
appendix B of [26], which uses a new Lie bracket in the dual space of Lie polynomials
[29]. Their superfield composition in terms of Berends-Giele currents admits a recursive
construction [27] whose particulars suggest a combinatorial origin; especially given the
relation between Berends-Giele currents and planar binary trees [30]. This paper will add
to the growing pile of evidence that the BRST invariants are, in essence, combinatorial
objects which found an explicit representation in the computation of string scattering

amplitudes. For more on this, see section 4.4.2.
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2. The Solomon descent algebra

We review the salient features of the Solomon descent algebra [5,6,7,8,9,10,11]. In partic-
ular, we discuss different bases and highlight the orthogonal idempotents discovered by

Reutenauer, as they will be related to o’ corrections to string amplitudes in later sections.

2.0.1. Conventions

Words from the alphabet N = {1,2,...} will be denoted interchangeably either by capital
Latin letters or, especially when viewed as elements of the permutation group, by lower
case Greek letters. Words P of length n are acted upon by elements o of the symmetric

group S,, via a right-action multiplication defined by [11]

Poo =ps1)Ps) - Po(n) s (2.1)

1

where p; denotes the ith letter of P. For example abcd o 3124 = cabd. The inverse o=+ of a

1

permutation o of length n is such that coo=! = 07 too = 12...n. For example, (2314)~! =

3124. For typographical convenience, we will write a generic explicit permutation o as W,

for instance 4213 becomes Wj213.

2.1. Descent classes and the Solomon descent algebra

The descent set D(o) and the and the descent number d, of a permutation 0 = o103 ...0,
in .S, are defined by

D(o)={ic{1,2,....n—1} | 0y > 041}, de = #(D(0)) . (2.2)

For example, the permutation o = 546132 has descent set D(o) = {1,3,5} and descent
number d, = 3. The collection of permutations with a given descent set S is called a

descent class,

Ds= Y o. (2.3)

D(o)=58

For example, the permutations in S3 are distributed into four descent classes,
Dy = Wias, D1y = Waiz + Waia, Dygy = Wiga + Waz1, Doy = Waar.  (2.4)

In general, the permutations of S, decompose into 2"~ ! distinct descent classes; all the

subsets in the powerset of {1,2,...,n — 1} since the last n-th position is never a descent.
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Solomon showed the remarkable property that descent classes are closed under the right
action (2.1)

DgoDr = Z cs,r,u Dy (2.5)
UC{1,2,...n—1}

where the coefficients cg r are non-negative integers [5]. The descent classes therefore
form a 2"~! dimensional algebra, the so-called Solomon’s descent algebra D,, [5,6,8,9,10,11].
As an example of (2.5), consider the permutations in Sy. Its 24 elements are organized

into 8 descent classes as follows
Dygy = Wiasa, Dy 0y = Wa214 + Wyo13 + Wysi2,
D1y = Waiza + Wiioa + Waios, Dy3y = Wigas + Wigao + Wazas
Doy = Wigaq + Wiaas + Wasia + Wasrs + Waai2,  Dya 3y = Wiage + Waggr + Wago1,

Dy13y = Warag + Waia2 + Waoar + Warge + Wags1r,  Dy1233y = Wasar .
(2.6)

It is straightforward to multiply the permutations among these descent classes using the

right-action of the symmetric group (2.1). For example,

Dy1y 0 Dyoy = Wiasa + Wioag + Wisos + Wigaa + Wiaos + Wiaza + Wasia (2.7)
+ Wasa1 + Waais + Waasz1 + Wisa14 + Wag12 + Wigo1 + Wao1s + Wasio
= Doy + Daoy + Dygy + Do sy + Dysy

where the last line follows from the remarkable property (2.5) which ensures that the

permutations in (2.7) are themselves a sum of descent classes.

2.2. Bases of the descent algebra

Apart from the descent classes Dg indexed by descent sets S, there are other convenient

bases of the descent algebra [6].

2.2.1. Composition basis B,

The composition p of n, denoted p = n, is a k-tuple of positive integers with sum n,

p=(p1,p2;--sPK)y, P1+Dp2t-c-FpE =0, (2.8)

There is a bijection between compositions p = n and subsets S of {1,2,...,n— 1}
p=(p1,p2,--,Pk) = {P1, P1 + D2, s PL P2+ F P} = S(p), (2.9)
S = {il,ig, .. .,ik} — (il,ig —11,.. .,ik — ik_l,n - Zk) = Cn(S) . (2.10)
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Thus the total number of compositions of n is 2"~!, the cardinality of the powerset of
{1,2,...,n—1}. Note that the map C,(S) = p depends on the order n of the permutation
group S,, for C5({1,2}) = (1,1,1) but C4({1,2}) = (1,1,2). In particular, Cy,(0) = (n).
The basis B, is indexed by compositions p rather than subsets and is defined by [6]
By = Dcsp) (2.11)
with S(p) given by (2.9). For example, the Dg basis elements (2.6) become
Bi111 = Dy + D1y + Doy + D3y + Dy1,23
B3z =Dy + D1y,

+ D13y + D23y + D123}
Bas =Dy + Dyay,

Bi12 = Dy + D1y + D2y + Dy1.2y, (2.12)
B31 = Dy + Dysy,
Bi21 = Dy + D1y + D3y + Dy1.3y,
Bi=Dy.
Bo11 = Dy + Dy2y + Dy3y + Dy2.31,
The inverse of (2.11) is given by Lemma 8.18 in [11]
Ds =Y (-1)¥MDcy. (2.13)

TCS

For example (in Sy), D1 9y = Biio — B13 — Bag + By, D1y = B13 — By, D2y = Boa — By,
and Dy = By, from which we verify that Dy + D1y + Dyay + Dy1,2y = Biia-

The permutations within a basis element B, can be found via [31,6]
Bpips.on = 0(X1WXol0 . 0XE), 12..n=X1... X, |Xi| =pi. (2.14)
where the inverse map 6 is given by
0(c) — o t. (2.15)
For example, if p = (1,1,2) then X; =1, X5 =2 and X3 = 34 and we get
Biig = 0(1w2ww34) = Wiasa + Wigaa + Wiaas + Waisa + Wagig + Waaiz (2.16)
+ Wii24 + Wi214 + Was12 + Warog + Wazis + Wasia .

2.2.2. Multiplication table for By, o B,

There is a closed formula for the multiplication of B, o0 B, [9,6,32]. Let M be a matrix with

non-negative integer entries m;; whose row sum r(M) and column sum c(M) are vectors
defined by

T’(M)Z = me 5 C(M)j = Zmu . (217)



Then
ByoBy= Y Buou) (2.18)

c(M)=p
r(M)=q

where co(M) denotes the composition obtained by reading the matrix M row by row from
top to bottom while excluding the zero entries m;; = 0. This product is associative and
B,, is a multiplicative identity for compositions of n [32].

For example, let us recover the result (2.7) for Dy o Dygy using the above multipli-
cation table (2.18) in Sy. Given that Dy;y = Biz — By and Dygy = By — By, the only
non-trivial product we need is B13 o0 Bys since By is the identity for compositions of n = 4.
The set of integer matrices M with ¢(M) = (1,3) and (M) = (2,2) is given by

((1) ;) ((1) f) (2.19)
Thus By3 0 Bay = B2 + Ba1r and Dyqy 0 Dygy = (Biz — By) o (B2 — By) implies
Dy1yo D9y = Biia+ Ba11 — Biz3 — Bao + By = Dy + Dy 2y + Doy + D2 3y + D3y (2.20)
where we used the conversions (2.12).

2.2.3. The FEulerian idempotent

The Eulerian (or Solomon) idempotent is defined by [12,7,31,33] (see also [34])

(-1
E, = Ko O, Ko = ———— (2.21)
= i

where d, denotes the descent number (2.2) of the permutation o. For example,
1 1 1 1 1 1 1
Ey = 5 (Wia—Wa1), Es= §W123 - 8W132 - 6W213 - 8W231 - 8W312 + §W321 . (2.22)

Apart from being an idempotent satisfying E,, o E,, = E,,, the definition (2.21) is also a
Lie polynomial [7]. Therefore its coefficients k, must satisfy the shuffle symmetry [35]

K‘RLUS - O, R, S % @ . (2.23)

As usual, the definition (2.21) in terms of the fixed alphabet N in \S,, can be turned into a
function of an arbitrary word P by the right action (2.1) of the symmetric group [11,36],

E(P)=EY:=PoE,, |P|=n. (2.24)
For example, E(i,j, k) = ijk o F5 = %Wijk — %Wikj — %Wjik — %iji — %Wkij + %Wkﬂ
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2.2.4. The idempotent basis I,

The idempotent basis I, of the descent algebra D,, satisfying I, o I, = I,, was introduced

in [6] and it is indexed by the compositions of n

Lypop(P) = Y (P, XiwXow. WX BN EX L EX (2.25)

where the sum is constrained by the length of X; being equal to the corresponding p; in
the composition p and EX¢ denote the Eulerian idempotent function (2.24). For example,

with canonical P = 12...n we have

1
Iy = Wia + Way, Iy = §(W12 — Wa), (2.26)
Ii11 = Wiaz + Wisa + Waiz + Waszy + Wsa1a + Waay
1 1 1 1 1 1
Ioy = =Wias + =Wizs — = Wais + = Wagp — = Waio — =W
21 = 5 W23 + 5 V132 = 5 Wars + = 5 V231 — 5 Wai2 — 5 Waat,
1 1 1 1 1 1
Iy = - Wiog — s Wiso + 5 Warz — =W Wiz — 5 W
12 = 5 Wiz = 5Wis2 + = 5 V213 = 5 Was + = 5 V312 = 5 Wa2t,
1 1 1 1 1 1
[ = — _ _
373 Wias 6 ~Wi3g — 6 ~Woi3 6 ~Was1 — 6 ~Ws12 + = 3 W31 .
2.2.5. I, to B,

The idempotent basis elements I, for p = p1ps . .. px can be expanded in terms of composi-
tions B, using an algorithm discussed in [6]. First one defines moments e,, as a polynomial

in non-commuting variables ¢; for ¢ = 1,2, ... from the generating series

Z z"e, = log(l+ Z tix") (2.27)

where z is a commuting parameter. For example, from (2.27) it follows that

1 1 1
e1 =11, e9=ty— 575%, e3 = t3 — §(t1t2 + toty) + gti’ (2.28)
1, 1, 1 1 1, 1, 1
ey = —Ztl + gtth + gtltgtl — §t1t3 + §t2t1 — §t2 — §t3t1 + 1y

Then to convert the I, basis elements to the composition basis B, one uses [6]

Ip = 5(€p16p2 e epk), Wlth 5(752'1752'2 .. tzk) = Bnlzlk (229)
For example,
1 1 1 1 1 1 1
I,=—-B —-B —Bisy — =B —Byi1 — =By — =B B,. 2.30
4 7P + 3 P12 + 3 P121 = 5513 + g 211~ 5 P22 — 5 b3 + Dy ( )



2.3. Reutenauer orthogonal idempotents

A partition A of n, denoted A - n, is a k-tuple of positive integers with sum n satisfying
A1 > A2 > ... > A If p = n is a composition of n, the shape A(p) of p is the partition of
n obtained by rearranging the parts of p in decreasing order. Also, k(p) is the number of
parts of the composition p. For example, p = (2, 3,1,2) implies A(p) = 3221 and k(p) = 4.
Given a partition A = (A1, Aa,..., A\g) into k parts, theorem 3.1 of [6] shows that

1
E) = o Z I, ZE)\ =Wia. n. (2.31)
A(p)=A AFn

Note that when the partition A\ of n has only one part, £y = I,, coincides with the Eulerian

idempotent F,, (2.21), so this notation is not ambiguous. For example, 1 = I; and

1
Ey =1y, Es =13, Ein = 51111,
1 1 ! (2.32)
Ey = 5111 : Eoy = 5(112 + 1), Eon = 5(1112 + I1io1 + Io11) -

one can readily verify E3+ Fo1+E111 = Wia3 using the expansions listed in the appendix A.
The Reutenauer idempotents E(™) are defined in the alphabet {1,2,...} as the sum

over all permutations of E) from (2.31) such that A is a partition of n with m parts, i.e.,

E™ = Y B, (2.33)

AFn
kE(X)=m

For example,
n=2 EM=F, E® =E,
n=3 EM =g, E® =F,, E®=F, (2.34)
n=4 EW =E;, E® =Ey + By, E® =Ey,, EW=E,

It was shown in [6,7] that (2.33) are orthogonal idempotents which sum to the identity

permutation

SO Wiy, BB = { B =) (2.35)
— 0 otherwise.

An alternative definition of the Reutenauer idempotents in terms of a generating function

can be found in [11].
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3. The combinatorics of color-dressed permutations

In this section we will investigate the combinatorics of the color-dressed permutations P,

Po= >  TI)W,, T°:=17"Wr7®.. 77" (3.1)
oc€S,,0(1)=1

which, as we will see, represents the replacement AS™&(g) — ¢ in the color-dressed
amplitude (4.1). This investigation will be done by decomposing [2] the traces of color

factors into symmetrized traces and structure constants ¢ of the gauge group, where
12...k 1 o 12 1 12 a b - pabcrpc
d ::HZTr(T), di? =26, [T T =if T, (3.2)
) ocESy
More explicitly, we use the basis of color factors from the general trace decomposition

found in [3] (for technical reasons the alphabet {0, 1,2,...} is used momentarily)

Te(TOT! .. T" 1) = > T R gy Ry PR FTY L F T (3.3)

Sn_120=01"0k

where 0 = 01 - 02 - ... - 0 denotes the decreasing Lyndon factorization of the word o to
be defined below and the coefficients x, were defined in (2.21). The basis of color factors
from (3.3) is given by ¢"~*d0® ek o1 ... Fok where the factors FY for a word o and a

letter a are defined recursively by
FPi = pPybia  Fpi =gt (3.4)
The decreasing Lyndon factorization (dLf) of a word o is defined as [37,6]
0O =01.09...0% (3.5)

representing the unique deconcatenation of ¢ into subwords oq,...,0x such that o; >
-+ > 0y, in the lexicographical order of the alphabet N = {1,2,...,}. In addition, each o,
for 1 < 57 <k is a Lyndon word, which for a permutation with no repeated letters means
that first letter in o; is the minimum among its letters. Representing the concatenation by

a dot to distinguish the subwords o; in the dLF factorization of o, we have

1432 = 1432, 2134 =2.134, 54132 =5.4.132, 42671835 = 4.267.1835. (3.6)
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Definition (BRST-invariant permutation). Written in the basis of color factors
i"‘kdlal'“”kFgll ... FJk, the color-dressed permutation (3.1) is given by
Py= Y Tk gla B Ry (3.7)
cESH_1

where the coefficients v,|4, ... 5, are denoted BRST-invariant permutations.

The reason for this terminology will become clear in section 4.1 when 71|, o,,,, Will be
related to the BRST-invariant superfields C|,, o, o, 0f the pure spinor formalism. We will
see later in (3.30) that vy,
it satisfies shuffle symmetries in each o;.
For example, plugging Tr(T*T2T3) = d'®*2 F2 F3 + Ld'"*F23 into (3.1) yields
Py = Tr(T'T?T?) Wiag + Te(T'T3T?) Wiss (3.8)
= A" F Fymje,s + id  F a3,

o, 1s totally symmetric under exchanges of o; <+ 0; and that

.....

with . )
T1)2,3 = Wi2zs + Wize, 7123 = §W123 - §W132- (3.9)
Repeating the same exercise for n = 4 using (3.3)
Te(T'T?*T3T*) = d*** F2FRF? (3.10)
i %dlabF5F54 n %dlabFC?SFgl i %dlabF54Fl§
_ ldlaF234 n 1d1aF243
3 ¢ 6 “
we obtain
Py =d""F2FF y12.3.4 (3.11)

+id" P FP Y v+ id P F2F 104, + id U FLFP Y1034
L RAF g+ 2dF 0,

where the BRST-invariant permutations are given by

Y1)2,3,4 = W1234 + Wizaz + Wizaa + Wizao + Wigez + Wiaze (3.12)
1 1 1 1 1 1
— S Wissa + ~Wisas — =Wigas — ~Wisas + = Wiaeg — =W
23,4 = 5Wizss + 5Wizas — 5 Wisaa — 5 Wisao + 5 Wiaas — 5 Wiase
_ ! 1% L —W + - L —W- + L —W- L 7% L —W-
MNi234 = 5Wizsa — 5Wizas + 5Wisaa + 5 Wisaz — 5 Wiazs — 5Wiass
_ ! W- + L 7% + = ! —W- L —W- L —W: L —W-
Mj243 = 5Wizsa + 5Wizas + 5Wisaq — 5 Wisaz — 5 Wiazs — 5 Wiass
L W iat = S Wisas — Wit — ~Wiseo — ~Wiasg + W
231 = 3 Wizss — o Wizas — cWisza — cWisaz — cWiaas + 3 Wase
1 1 1
V1|243 = _6W1234 + §W1243 - 6W1324 + §W1342 - 6W1423 - 6W1432
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For n = 5 we obtain

Ps = d" " F.FJFIF; 2345 (3.13)
+id Y EBEAFD 4y 93 4 5 + id CFAFPFD yy 194 5.5 + id C FP FEF2 71195.3.4
+id " F2FPAFD V1)2,34,5 id 2R3 Y 71)2,35,4 + id P FEFRER V1/2,3,45
+ P O FF) yasa s + P P F) yj0as 5 + 2d P FLP By 110354
AN FHO D oy s s b A EPES sy AN FPUED s
b a2dM EHMS R o AN FIER oy
bR EBES Ao 2dL EPES s 4 RS M g
+ P AN EPY 935 + AT UF 0 Y9350 + 0 d U F2 4110435

3 sla 122453 3 sla 122534 3 sla 122543
+ A F 12453 + 0d U F T 12534 + AT FTT 112543

where the various v1|4, a,,...,4, are listed in the appendix A.

k

Note that the label 1 plays an special role due to the choice of the color basis where
it always appear inside the symmetrized trace; d*- [1]. The total number of V1)A1, As,..., Ay,
with k parts are given by the Stirling cycle number [”;1} while the total number of terms

in the expansion of P, is given by 22;11 [”;1] =(n—-1)L

3.0.1. Relating the BRST-invariant permutations with the descent algebra

We wish to understand the systematics of the permutations in each 7|4, a,,.. 4, and
find an algorithm to generate them directly. In the next sections we will see that these
permutations are related to the descent algebra reviewed in section 2. To see the relation

consider 7234 from (3.12), relabel i — i — 1 and strip off the leading “0” to obtain

1 1 1 1 1 1
Yx|12,3 = 5 Wiaz +5 Wisa —5 Waiz —2 Wazy +- Wiaio —— Wiaop (3.14)
2~ 2=~ 2=~ 2=~ 2=~ 2 =~
€Dy €D (2 €Dy €Dy2y €Dy €Dy1,2}

where x indicates the entry “0”. Note that the resulting permutations are not in the
descent algebra Ds since permutations in the same descent class (as indicated below each
permutation) have different coefficients — alternatively one can use proposition 2.1 from

[38]. However, the inverse permutations in (7y|12,3) do belong to the same descent classes:

1 1 1 1 1 1
0(vx|12,3) = = Wias += Wisa —= Warz —= Waip += Wagy —= Win (3.15)
2~ 2~ 2=~ 2=~ 2=~ 2 <=~
€Dy GD{Q} GD{l} ED{l} GD{2} GD{LQ}
1 1 1 1
=—-Dy— =D —Dioyv — =D
a0 — 5Py T 5Py — 5 P02



as can be verified using the explicit permutations in Dg from (2.4).

So we see that after relabeling ¢ — ¢ — 1, stripping off the leading letter from the
permutation words and considering the inverse permutations, the result can be described in
terms of the Solomon descent algebra. This means that the BRST-invariant permutations
belong to the inverse descent algebra D), := 6(D,,). This motivates us to consider the

inverse permutations of the Eulerian idempotent (2.21).

3.1. The Berends-Giele idempotent

Let us consider the inverse 0(FE,) of the Eulerian idempotent (2.21) and, because the

inverse of an idempotent is also idempotent, call it the Berends-Giele idempotent:
En= ) kg0, EP)=Ep=Po&,, |Pl=n. (3.16)
oES,

The reason for the Berends-Giele terminology is the correspondence in (4.36) with the stan-
dard Berends-Giele current of Yang-Mills theory [39]. The first few examples of (3.16)are

W) =W, £(12) = (Wi — Way), (317)

1 1 1 1 1 1
£(123) = §W123 - 6W132 - 6W213 - 6W231 - 6W312 + §W321 :

while the expansion of £1234 can be found in the appendix A.0.1.

Proposition (Shuffle Symmetry). The Berends-Giele idempotent (3.16) satisfies
E(RWS) =0. (3.18)

Proof. Since the sum in (3.16) is over all permutations we rename P oo = 7 and sum over
7. Notice that ™' =771 o P, 50 £(P) =Y ky-1P oo = K(-1op)7 and therefore

E(RWS) = K(r—1o(Rws)T = > K(r—1 (Rywr-1(s)T =0 (3.19)

where the last equality follows from (2.23) and the crucial observation in (1.5) of [6] that?
oo (RWS) = o7 (R)wo~1(S), where 071 (R) denotes the word obtained by replacing
each letter in R by its image under o~ 1. ]

In a tangencial point for this paper, we note that since the proof above only depends on
the shuffle symmetries of the coefficients xp and we know from [35] that any Lie polynomial

can be expanded as > M,o with Mp,,s = 0 for nonempty R, S, we conclude:

2 The order of multiplications is crucial since (RLUS) o o is not itself a proper shuffle.
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Corollary. IfT is a Lie polynomial then the word function F(P) := P o 0(I") satisfies the
shuffle symmetry F(RWS) =0 for R, S # 0.

For example consider the Lie polynomial I' = [[1,2],3] = 123 — 213 — 312 + 321. We get
O(T") = 123 — 213 — 231 4 321 which means F'(a, b, c) = abco§(I') = abc — bac — bea + cba =
p’(a,b,c), and it is well known that p’(RLUS) = 0 [35,40].

3.2. Inverse idempotent basis and shuffle symmetries

Following the motivation in section 3.0.1 in which we learned that the BRST-invariant
permutations are related to the inverse of the descent algebra, it will be convenient to

define the inverse of the idempotent basis I, as
Iplpz«««pk(P17P27"'7Pk> = Q(Iplpz---pk)(P)v |PZ| =pi, PiP...Py=P (320)
where the map 6 is defined in (2.15). For example

Z51(12,3) = = (Wias + Wize — Waiz — Wasy + Wiz — Waar) . (3.21)

N —

See (A.5) for the explicit permutations in Z33(12, 34).
The reason for separating the arguments into words of length |P;| = p; corresponding

to the parts p; of the composition will become clear after we prove the following:

Proposition. The inverse of the idempotent basis (3.20) satisfies
Iplpz...pk(P17P27"'7Pk> :g(Pl)l_l_lg(Pg)l_l_ll_l_lg(Pk>, |P1| =D; (322)

where P = P, ... Py is the factorization of P with P; of length p;.

Proof. The proof will be based on the following observations collected from [11], which
should be consulted for more details as the equation numbers below refer to it. First, the
adjoint of an arbitrary function F'(P) = PoF of a word P is given by 0(F)(P) = Pof(F),
see (3.3.5). Second, the adjoint of F),, x F),, ... x Fp, is 0(Fp, ) *" 0(F),) .. .x" 0(F), ) where x
and +" are the convolution operators defined in (1.5.7) and (1.5.8) and 0(Fj) is the adjoint
of F; when viewed as a function by the right-action (2.1), see proof of Lemma 3.13. Third,
for permutations F),, of length p; one can show (by adapting the proof of Lemma 3.13)

(Fp, ' ...+ Fp ((P) = Epy(P)W. .. WWEF,,(Py) (3.23)
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where the functions are defined via a right action as F),(P;) := P; o F},,. The proof of
(3.22) then follows from the observation by (1.5.4) and (1.5.7) that the idempotent basis
I, (2.25) can be rewritten as a convolution I, . ,, (P) = (Ep, *...x Ep, ) (P) where E, is
the Eulerian idempotent (2.21). Therefore its adjoint 6(1,, . ,,)(P) is given by

Q(Ipl---pk)(P):Q(Em)(Pl)*/"'*/6<Epk)(P’€)7 P=P...F, |Pl=p
=&(P)W...wE(Py) (3.24)
where we used (3.23) and £(F;) = 0(E,,)(P). [

If Q =q...q, then its reversal is the word Q := q,, ...q. If a function satisfies the
shuffle symmetry or, in other words, belongs to the dual space of Lie polynomials [29],
then F(P) = (—1)PI='F(P) and we conclude from (3.22):

Corollary. The reversal of words in Z,,, ., (P1, ..., Py) is given by

Ty pn(Pry. .. P = (=1)#ven® o (Py,..., P) (3.25)

where #even(p) denotes the number of even parts in the composition p.

We now see the reason for splitting the word P into & slots in the function Z,, (P, ..., Px)

as it satisfies the shuffle symmetry and it is symmetric under any ¢ < j:

T pi.(..,RWUS,..)=0, R S#0, |R+|S|=pi, (3.26)
Topps oy Poye o Py ) =T o (oo Py Py

These symmetries will provide a major consistency check when we propose a duality be-

tween the descent algebra and kinematics of the string scattering amplitudes, see (4.7).

3.3. A closed formula for the BRST-invariant permutations
A closed formula for the BRST-invariant permutations is obtained by using a modification
of the formula (3.3) for general permutations as [41]

Te(TT%) = > " Fhp ok AP ETFE, o] = (3.27)

ap ?
T=T1"""Tk
Here p; for i = 1,...,k is defined by 0= o 7 := p;...p; with the constraint |p;| = |7
given by the decreasing Lyndon factorization (3.5) of 7 = 7y ... 7. For example, to find the

coefficient of the term d%*192%s F} F2 F!3 in the expansion of Tr(T%73%!4) corresponding
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to 0 = 3214 in (3.27) we first determine the dLf of 7 = 4213 as 4.2.13 to obtain |ry| =
1,|me| =1 and |73] = 2. From 0~ ! o7 = 4231 := pypap3 we get p; = 4, p2 = 2 and p3 = 31.
Therefore the formula (3.27) gives —£d%19293 F F2 13 since ka = ko = 1 and k31 = —3.

Plugging in (3.27) into the color-dressed permutation P, yields

Py = Z TI“(TOTU)W(O,J) _ Z in—kdoal...ak,Fgll .. 'ngk'70|al,...,ak (3.28)
oES, ocES,
where 0 = 07 - 09 - ... - 0} is the dLf (3.5) of o and [41]
Yolor,.on = Z Kpy - kp, W(0,7), (3.29)

T=T1...Tk

1

where 07" o7 := p;y...p such that |p;| = || from the dLf of 7. Conjecturally, a more

convenient representation for the BRST-invariant permutations is given by
’71|p17___’pk = 1'Ip1...pk (Pl, RN Pk) = 15(P1)LL|5<P2)LL| Ce UJE(Pk) (330)

The shuffle symmetry (3.18) of £(P;) can be used to fix the first letter of P; and the
commutativity of the shuffle product implies total symmetry in word exchanges, so the
number of components of vy p, ... p, With n—1 letters distributed in the k words is given

by the Stirling® cycle numbers [42]

k

#(71|P1,P2,...,Pk) = [n ; 1} ) Z |P)|=n—1. (3.31)

i=1
3.4. BRST-invariant permutations and orthogonal idempotents

Since the BRST-invariant permutations have been related to the idempotent basis of the
(inverse) descent algebra in (3.30) we may construct orthogonal idempotents as in sec-

tion 2.3. To this effect we define the inverse of the Reutenauer idempotents (2.33)
Y. = 1O(ED) (3.32)

where the labels in Q(E(i)) must be shifted as ¢ — ¢ + 1 prior to the left concatenation
with the letter 1. Equivalently, from (2.31), (2.33), and (3.30) we obtain

k 1
752.)..1@ = Z H'YllPl,...,Pk . (3.33)
12..n=Py...P,

3 We also note the appearance of Stirling cycle numbers in [7].
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From the discussion of section 2.3 it follows that (3.32) are orthogonal idempotents in the

inverse descent algebra D!, satisfying (6% is the Kronecker delta)

n—1
k=1

For example, from the BRST-invariant permutations in (3.9) we get

1 1 1 1 1
’Y%ga =123 = §W123 - §W1327 ’Ygga = gMi23 = §W123 + §W132, (3.35)
which satisfy
1 2 SONC i (i
7&22& + ’Y§22’, = Wias, 7&2)3’7?2)3 =0 ]’7£2)3 . (3.36)

Similarly, at multiplicity four the definition (3.33) leads to

1 2 1 3 1
7%2234 = 71234 7%22),4 =3 (71|23,4 + 71|2,34) 5 7&22;4 = 571|2,3,4, (3.37)
yielding
O = Wit — S Wisss — S Wisos — ~Wisss — 2 W w 3.38
Y1234 5 V1234 — £ Wi2a3 — e Wisaa = 2 Wizaz — 2 Wiaos + 3 V1432, (3.38)
1 1
7%2),4 = §W1234 - §W1432,
1 1 1 1 1 1
782&4 = 6W1234 + 6W1243 + 6W1324 + 6W1342 + 6W1423 + 6W1432 .

It is straightforward but tedious to check that the above are orthogonal idempotents
1 2 3 i j i (i
7%22;4 + 7%22),4 + ’7%22;4 = W24, 7%2)34792)34 = 5”’7%2)34 : (3.39)

At multiplicity five the orthogonal idempotents are given by

7%%2345 = 712345 ’7&32},45 = %(71|23,4,5 + 7112,34,5 + 71|2,3,45) ;
7%32),45 = %(’71|234,5 + Y1)23,45 + ’Y1|2,345) ) 7&3%45 = %71|2’3’4’5,
(3.40)
whose expansions can be found in the appendix A and [43]
4
Z Yishas = Wizaas Va5V Soas = 01 D45 - (3.41)
k=1

In the next section we will argue that the idempotents v(!) and v(3) defined in (3.33) cor-
respond to SYM amplitudes ASYM and the o/ ? correction A" of the string disk amplitude

and we will exploit the consequences of their generalizations to higher o/ corrections.
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4. Duality between kinematics and idempotents of the descent algebra

We find a duality between the permutations in the inverse descent algebra and kinematics
from different o’ sectors of the string disk amplitudes. Two orthogonal idempotents are
directly related to the field-theory and o’ % corrections and we rederive their dimensions
from a theorem in the descent algebra literature. This duality suggests a new decomposition
of the symmetries of the higher o/ components of the disk amplitude, which we explicitly
check to high orders. This decomposition yields their dimensions as a sum of Stirling cycle
numbers, generalizing the field-theory and o’ ? formulas. In addition, we show that the
superfield expansion of the BRST invariants C|x,y,z from the pure spinor formalism is
encoded in the permutations of the descent algebra, hinting of a new direction to explain

their rich combinatorial properties.

4.1. Color-dressed string amplitude and permutations: a duality

The color-dressed string disk amplitude

M,(o/) =) Te(T'T°®) ... 77 A70E(1,6(2),...,0(n)), (4.1)

UGSn—l
is a sum over the different disk orderings of the open string amplitude weighted by traces of

color factors. The explicit form of the disk amplitudes is a linear combination of field-theory

amplitudes ASYM of ten-dimensional super-Yang-Mills [44] given by [45,46]

Ae(py = N~ Z(P|1,R,n,n-1)S[R|Q1 ASYM(1,Q,n—1,n) (4.2)
Q,R€S,_3
where S(P|Q); is the field-theory KLT kernel [47,48,49] conveniently computed recursively
by S[A,j|B,j,Cli = (kig - k;)S[A|B, C];, with base case S[@|@]; := 1 [19,29]. In addition,
Z(P|Q) are the non-abelian Z-theory amplitudes of [50,46]

e derdzs - -dzn [l 2|50
Z(P|Q) — Oé/ 3 / Z1dz2 z H <j ‘ ]‘ : (43)
VOI(SL(Qv R)) 2919279293 """ Fqnqa
D(P)
where D(P) = {(21,%2,-.-,2n) € R" | —00 < 2p, < 2p, < ... < 2, < 00} is the domain
of the iterated integrals. The first terms in the o’ expansion of (4.3) yield
Astring (1 9 n) = ASYM(1,2, . n) + Ga/PAF (1,2, ... n) + O, (4.4)
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where the notation AF" is a reminder of the interaction of four field-strengths in the
effective action [51]. Using arguments of locality and BRST invariance in pure spinor
superspace, it was argued in [1] (see also the appendix B of [52]) that the o/® correction

AF" could be written in terms of BRST-closed combinations of superfields Cy|x,y,z as:

AF4(1,2,...,TL) = Z Cl|X,Y,Z' (45)

12..n=XYZ

The BRST invariants satisfy shuffle symmetries Cy|rusy,z = 0 for R, S # () and are
totally symmetric under exchanges of any pairs X <+ Y etc. So there are [”gl} independent
BRST invariants at n points. It is not a coincidence that this coincides with the number of
components (3.31) in the BRST-invariant permutation 7|y y,z. Example decompositions
of (4.5) at four and five points are given by AF4(1, 2,3,4) = Cyj2,3,4 and AF4(1, 2,3,4,5) =
Chi23,45 T Crj2,345 + C1j2,3,45-

Plugging in the color-trace decomposition (3.10) into the color-dressed amplitude (4.1)

for n = 4,5 and using the decomposition (4.5) in terms of BRST invariants leads to
My(o) = _%(fl2afa34 ASYM(1 9 3 4) 4 f13a fb24 4SYM(] 3 9 1)) (4.6)
+ 6(20/2 a2 Cij2,3,4 + 0(0/3) ;
Mi(a/) = —%ASYM(L 2,3,4,5) f12 1930 {515 | guin(234)
+ 6iCaa” <C1|23,4,5 fPagelds | Clizass f24aga1ss | Cliassa 250 ja134
+ Chpans P92 4+ Oy a0 [37°d % 4 Oy 5.5 f45ada123>
with similar expansions at higher points [1].

Comparing the color-dressed permutations Py and Ps in (3.11) and (3.13) with the
above color-dressed amplitudes suggests the following dualities (y(*) is defined in (3.33))*:

1

Cixyz < 6'71|X,Y,Z: (4.7)
ASYM(1,2, 0 0) A (4.8)
AP 1,2, n) — A8 (4.9)

where the deconcatenations (4.5) and (3.33) have been used to obtain the duality between

the o/ correction AF4(1, 2,...,n) and the orthogonal idempotent ’yg)n

4 Rewriting the F" factors of P, in the DDM basis [53] and using the shuffle symmetries of

71|p leads to the same permutations on both sides of the vy > ASYM(I, o,n) correspondence.
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4.2. Descent algebra decomposition of o' -correction symmetries

The duality between the descent algebra and kinematics suggested above is exploited to
show that the symmetries of the o’ corrections to disk amplitudes satisfy surprising new

KK-like symmetries dictated by a theorem of the descent algebra.

4.2.1. Field theory and o/? corrections

For a partition p and a composition p, theorem 4.2 of [6] states that
E,ol,=0, ifAp)#p. (4.10)
Under the dualities (4.8) and (4.9) this relation implies the symmetries

ASM(yyp ) =0, k#1 (4.11)
A (nipy,p) =0, k#3

To see this we use that P-(co7) = ((P-0)o(P-7)) if P has no common letters with ¢ and
7 and 0(0 o 7) = 0(7) 0 B(c) to show that the theorem (4.10) implies (1-Z,) o (1- E%) =0
for A\(p) # p leading to (4.11) since A¥ * corresponds to a sum of Ez with partitions with
three parts k(i) = 3 and ASYM to Ef with k(u) = 1.

The number of independent n-point ASYM(1,0) and A* 4(1, o) follows from (4.11) by
elementary properties of the Stirling cycle numbers,

n—1 r

#(ASM(1,2,...,n)) = (n—1)! - _ | | = (n —2)! (4.12)

#(AF4(1,2,...,n)):(n—l)!—z- _ | _,

since the number of components of vyp, ... p, is [”;1] by (3.31) and 22;11 [”;1} = (n—1),
so they correspond to the non-vanishing & in (4.11). These are the well-known dimensions of
ASYM 5nd AP under the KK [13] and KK-like relations [14,15]. Therefore the symmetries
(4.11) constitute a descent algebra decomposition of the KK and KK-like identities.

The dualities (4.8) and (4.9) together with the properties of the Reutenauer idempo-
tents (2.35) suggest “idempotent” identities for the ASYM and AF ! amplitudes viewed as

symmetry relations of their respective functions:
4.13
AF4(7§?2))7’L) = AF4<1727"'7n) b

which can be explicitly checked to hold true for various values of n.
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4.2.2. Higher o corrections to string disk amplitudes

In this section we investigate the symmetries of higher o corrections of the string disk am-
plitude and show that the descent algebra also decomposes them and provides new insight
into their structure. The explicit data in Table 1 was collected using the o’ corrections to
disk amplitudes obtained in [45,54,55,46], see also [56,57,14,58] and references therein.
We begin by labelling the higher o’ corrections of string disk amplitudes by their
conjectural MZV basis content written in the form (5 for n = 0,1,2,.... This is the

same organization found in the motivic decomposition of the disk amplitudes [18]

F=(14GPR+GP+GP+GPs+-) (4.14)
1 1
X (14 (sMs + (5 M5 + §C§M§ + (M7 + C3Cs M5 M3 + 5C3,5[M5, Ms]+---).

The descent algebra decomposition organizes the search for symmetries of string disk
amplitudes (4.2) by the BRST invariant permutations (3.7). More precisely, denoting by

|<§CM the restriction to a particular element of the set of MZVs, one checks whether

Astring(,yllpl’m’Pk)}CSCM’ p= (pl"”,pk> ):TL— ]., |Pz| = DP; (415)

vanishes or not. The number of checks at n points would appear to grow exponentially, but
luckily a vanishing outcome of (4.15) seems to depend only on the number of parts k(p)
of the composition, independently of n. These have been observed experimentally with
data up to n = 8 and will be assumed in general. Thus each time n increases by one it
suffices to test (4.15) for a single case of maximum k = n—1, if k is odd (see (4.21)) or, in
other words, if n is even. That is v1j2,3,... » = 1.(2W3LW. .. Wn) by (3.30). Therefore (4.15)

becomes a sum over all cyclic orderings of the n-point string disk amplitude (4.2),

AString(71|273,.--,n) = Z Z><<17R7n7n_l)S[R|Q]1ASYM(17Q?n_Ln) (416)
Q,RESn73

where Zx (Q) := >, cq. , Z(1,0|Q) are the abelian Z-theory amplitudes of [19]. As alluded

to above, the proof (4.21) implies that when n is odd (4.15) always vanishes. This agrees

with the statement that NLSM amplitudes vanish for n odd. Therefore the o’ expansion

of the maximal case k = n—1 can be obtained from the methods of [19,59]°.

5 T thank Oliver Schlotterer for discussions on this point.
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k ASTE(yp o b ) =0 ASTE(yyp o b ) # 0
[ RERCHCNE RCRCTENCIENE N 1€ G5

6 VCM X

5 C77<57C37C§7C27<2C57<2<3 C227C22<37CS

4 YV X

3 (7, Cs5,C3, G5 (2,25, C2C3, (3, (53, €5
2 VCnr X

1 <27C2<37<2C5 <77C57C37<327<227<22C37<§

Table 1. Overview of the descent algebra symmetries of higher o’ corrections to string disk
amplitudes of up to n = 8 points displayed by their MZV content of weight w < 7. The entries
depend only on the number of parts k£ of the composition of n—1. However, a partition with
k parts cannot be probed by disk amplitudes with fewer than k+1 points.

4.2.3. Even zeta value symmetry classes

The descent algebra decomposition of the symmetries of the string disk amplitudes (4.15)
will be classified by their (§' content; this is because the second line of (4.14) respects both
the KK and BCJ field-theory amplitude relations [19,16]%. Since they lead to the lower
bound of (n — 3)! degrees of freedom they are not expected to modify the dimensions of a
given (5 symmetry class, leading to all components (5"(ys sharing the same symmetries.
Indeed, Table 1 shows that the components (7, (s, (3, (3 have the same KK symmetries
of ASYM while the components (o, (2(3, (2(5 have the same KK-like symmetries of AP

This confirms the argument above and we can state:

AString(’71|P1,...,Pk)‘<M =0, k#1, (4.17)
AString(’71|P1,...,Pk)}C2<M =0, k#3.

n—1

3 } as before.

Therefore their dimensions are counted by the same ["Il} and [
The symmetries of the (3 classes for n>2 have never been studied before. The exper-

imental data collected in Table 1 indicates the non-vanishing cases as

A (e ) | ae, 00 R=1,3,5, (4.18)
AString(71|P1,m:Pk)‘QSCM 7& 0, k= 1,3,5,7.

6 The string monodromy relations give rise to deformations of the field-theory BCJ relations
by even powers of o’ accompanied by factors of (3*. These are given by the first line of (4.14) so

the second line preserves the field-theory KK and BCJ amplitude relations.
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The analysis of the NLSM amplitudes from [19,59] and the descent algebra decomposition
patterns mentioned above give rise to a conjecture for all (5*(ys components with m>2:

strin
A g(’mpl

.....

P,) 2<M7£O, k=1,3,5,....2m+1, m>2 (4.19)

Unlike (4.12), the dimensions of (4.19) are given by a sum of Stirling cycle numbers

. -1 -1 -1
#(AEL 2 m) e, ) = {nl } " {n 3 ] T {27:77,+J 20

By construction, (4.19) and the results displayed in Table 1 of the NLSM analysis of
[19] match when k = n—1 for n>4. For example, the (3 components do not vanish for
k = 1,3,5,7 corresponding to non-vanishing entries for n = 4,6, 8 in the table 1 of [19].
The vanishing of ¢§ for k = 9 and higher from (4.19) corresponds to the vanishing of ¢3
for n = 10 (and higher) in [19]. The conjectural status of (4.19) hinges on the observation
that once the symmetry of a particular (5*(ys component is established from the analysis
done at kK = n—1, it remains valid for the same k when n is increased, see the paragraph
after (4.15).

Parity of the amplitude AS™M8(1 ... n) = (—1)"A5""8(n ... 1) explains the van-
ishing of (4.15) for even k as observed in Table 1. A quick counting argument suggests

1

why this is so as ), ["2;1] = 5(n —1)! is the upper bound in the dimension of string disk

amplitudes from properties of the string worldsheet alone [22]. More precisely:

Proposition. If k is even then the n-point disk amplitude satisfies
A py p) = 0, (4.21)

where vy p, ... p, is the BRST-invariant permutation (3.7).

Proof. The parity of AS%88 at n points can be written as ASt"8(1, ¢) = (—1)"AString(1 )
by cyclicity. This means, by (3.30), that AS"™&(yqp,  p,) will vanish whenever the parity
of AS™ing at n points is opposite to the parity of Z, for p = n—1. To see why this is
true consider the example of AStri“g(71|2374) with the expression for the BRST-invariant

permutation in (3.12). The terms can be rearranged as
string 1 string string 1 string string 1 string string
A (V1)23,4) = 5(141234 —Alazo )+§(A1243 — A3z )"‘5(141423 —AT51°%) =0 (4.22)
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string

which vanishes by parity AS5s:® = ASYi58. Notice that this happens because the parity of
751(23,4) from (3.25) is the opposite of the string disk amplitude; Z51(23,4) = —Z51(23,4).
The proposition can now be proven by considering the two cases when n is even or odd.
For n even the parity of the n-point disk amplitude is + so ASt*ing (71/Py,...,P,) Vanishes
if the parity of Z,, is — for a composition p of n—1. By (3.25) this means that there must
be an odd number of even parts in the composition p (which sum to even). But since n—1
is odd, there must be an odd number of odd parts in p (which sum to odd). Therefore the
number of parts k(p) is even (= odd + odd). Similarly, when n is odd the number of parts

k(p) in the composition of p is also even (from even + even). This finishes the proof. [

4.2.4. Idempotent properties of higher o corrections

Experimentally, the idempotent properties (4.13) generalize to their (j; and (2(ps symme-

try classes at higher o':

strin, 1
A i g(ﬁéQ?..n
strin 3
A i g(WéQ?..n

— Astring(l, 2
— Astring(l, 2,

e, (4.23)
(4.24)

Y

)}CM
)‘C2CM ”"n)}CzCM’

For example, one can check using the string five-point disk amplitudes at order o’ 7C2C5
that AString(’)’Sg’AS)szs = AString(L 2,3,4,5)[¢acs, Or
1
C2Gs - 12
+ Als2a — Alsasd + AT3u08 + Al3155 — Alssof — Alssas (4.25)
FAYSSE 4 ASYInE  AYne gty Asyne  Agyine

string string string string string string
+ A15234 o A15243 o A15324 o A15342 o A15423 o 3A15432> ‘C ¢
265

string
A12345

string string string string string string
<3A12345 + A12354 + A12435 + A12453 + A12534 o A12543

The highly non-trivial nature of such an identity provides strong support for the descent

algebra decomposition of symmetries discussed above.

4.3. Descent algebra symmetries and the color-dressed amplitude

The descent algebra decomposition of the different (3'Cys symmetry classes of the string
disk amplitude controls the appearance of the (5"(ys corrections in the color-dressed string
disk amplitude M, () (4.1). If A58 (yy p, . p,)lcmc,, does not vanish for a given k then
the color-dressed amplitude contains ¢5*(prdt@t--%* F£ 1. .Fai * contributions. This follows
from linearity using AS®"&(P, ) = M, (') in the color-dressed permutation P, in (3.7). For
instance, from AString('yl‘2345)|C§ # 0 we get (3d'F2345 = ((2/2) f23¢ fa4b 551 corrections

in the five-point color-dressed amplitude Ms(a/).
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4.4. More consequences of the descent algebra duality

We show that theorem 4.2 of [6] leads to a derivation of the claim from [1] that the
representation (4.5) is invertible. In addition, inspired by the duality (4.7) we find an

algorithm to extract the superfield expansion of Cy|p, g, g from the permutations of v1p g, r-

4.4.1. BRST invariants from AF*

An immediate consequence of the duality (4.7) is that the representation of A* " in terms

of C1\p,,p,,p, given in (4.5) is invertible. To see this one uses Theorem 4.2 of [6],
E,ol,=1,, ifAp) =un (4.26)

where A(p) is the shape of the composition p and E,, is defined in (2.31). This implies
(1-Z,)o(1-6(E,)) = (1-Z,) for A\(p) = p or, using the function interpretation of the right
action o o F' := F(o) with a partition with three parts k(u) =3

4
AF (")/1|p1’p2’p3) :601|p1’p2’p3, |Pz| =D, P1P2P3 :231’L, (427)

where we used the identifications (3.30), (3.32) and duality (4.9) on the left-hand side and
the duality (4.7) on the right-hand side. For example, from 7|23 4,5 of (A.1) we get

6C1|23,4,5 = (4.28)
1 4 4 4 4 4 4 4 4
F F F F F F F F
9 <A12345 + A12354 + A12435 + A12453 + A12534 + A12543 - A13245 - A13254
F F F F F F F F
- A13425 - A13452 - A13524 - A13542 + A14235 + A14253 - A14325 - A14352

F F F F F F F F
+ Alys03 — Alasse + Alsezs + Alsouz — Alssos — Alszan + Alsaoz — Alsase ) -

Plugging in AF4(1, 2,3,4,5) = Cyj23,4,5 + C1)2,34,5 + C1)2,3,45 and using shuffle symmetries
of Cy... these terms collapse to a single term, 6C 23 45, in agreement with (4.27). The
theorem (4.26) therefore justifies the indirect arguments of [1]. In addition, in view of the
relations (3.33) and (4.27), the idempotent identity (4.13) yields the decomposition of the

72

a’” correction of the disk amplitude (4.5) found in [1]

1 4
AF (1,2, .. .,TL) = 6 Z AF (71|P1,P2,P3) = Z Cl|P1,P2,P3 . (429)

12..n=P1 P, P3 12..n=P1 P, P;
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4-4.2. The superfield expansion of Cy\p g r from the permutations of v1|p,q,r

The algorithm proposed in [27] generates the superfield expansion of the scalar BRST

invariant recursively as

Ciip.o.r = MiMp.g.r+ Mi - [Cpyips..pp, 0.8 — Copylpropp 1,08 + (P > Q, R)] (4.30)
starting from CiU,k,l = M;M; ;.; with the dot representing concatenation, M;- My := M;4.
For example, the first few expansions are given by

Ci2,34 =M1 M3 4, (4.31)
Chi23as = MiMa3 g5 + M1oM3 45 — MizMa 4 5,
Chi23a,56 = M1 Mazas 6 + M12M3za 56 + MiasMy 56 — Mi2aMs 56
— M4 Moz 56 — MiaaM3 56 + MiazMsr 56,
Chi23,45,6 = M1 M23 456 + M12Mays 36 — M13Mys 2.6 + M14Ma3 56 — MisMa3 46
+ MioaMsz 5.6 — MigaMa 56 + MiaoMs 56 — Misa M3 46
— Mias M3 4.6 + Mi3sMo a6 — M1azMo 56 + MissMa 46 -
It is not difficult to suspect that such a systematic generation of terms indicate a hidden
combinatorial structure. We now propose how these terms can be extracted from the

permutations of the BRST-invariant permutations v1|p g, r of the inverse descent algebra

(further justifying the terminology of ;. ..). The steps are as follows:
1. Sum over the cyclic permutations of all permutations in v;p g, g:
W, — W, + cyclic(o) (4.32)
2. Decompose W, into all possible four-word deconcatenations:
We= > WxWy.Wz Wy (4.33)
XY ZW=0o

3. Move label 1 to the front by repeatedly commuting We.Wa1p = Wa1p.We if neces-

sary and write the result in terms of Berends-Giele superfields:

1
WAlB-WC-WD-WE = @MAlBMC’,D,E (434)

The resulting expressions have been explicitly checked” for all topologies of BRST invari-
ants up to eight points. In addition, using the descent duality (4.7) one may also derive the
change of basis identities for C;4q)... = > Cy... from [27,28] by choosing a different label
to be singled-out in the color-dressed permutation (3.1) [41].

" The shuffle symmetry AiB = (—1)"li ALLB [38] is needed to rewrite words in a Lyndon basis.
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4.4.3. The descent algebra dual to the standard Berends-Giele current

In view of the Berends-Giele formula to compute SYM tree amplitudes [39] and the shuffle
identities obeyed by the standard Berends-Giele currents [60,61], the symmetry relations
(4.11) suggest an interesting duality.

To see this we consider the descent algebra symmetry ASYM (71‘234, 5) =0for k=2in
(4.11) from a new perspective. We have the Berends-Giele formula ASYM(1, P) = spJi" %
on the one hand and on the other hand we have the duality ASYM(1, P) « Y1 p as in
(4.8). However, the BRST-invariant permutation with a single part is given by (3.30) as

Yp = 1-Ep. In summary,
spJitp = ASYM(1,P) «— yp=1-&p (4.35)
suggesting the duality and the origin for the terminology of £p®:
JB s Ep. (4.36)

. ASYM _ _ : _
And we now obtain ASYM (y112345) = so3a5 J"JE e, = 0 using y123405 = 1 - E234Es

and the shuffle symmetry Jzi ¢ = 0 of the Berends-Giele currents.

5. Conclusion

In this paper we investigated the combinatorial properties of the permutations appearing
in the color-dressed permutations (3.1) using the basis of color factors from the color trace
decomposition of [3] and we found closed formulas that generate them. This led us to the
study of descent algebras and we pointed out the relation between these permutations and
the (inverse) descent algebra. In particular, we showed how the color-dressed permutations
give rise to orthogonal idempotents in the descent algebra which sum to the identity per-
mutation. These idempotents have been extensively studied in the mathematics literature,
most notably by Reutenauer and Garsia [7,31,6].

After discovering closed formulas for various permutations appearing in the color-

dressed permutations we turned our attention to the formulation of the color-dressed string

8  When using the pure spinor representation of the SYM tree amplitude ASYM(I,P) =

(M1Ep), where Ep is the ghost-number two superfield defined in [62], the correspondence (4.36)

can be stated even more suggestively as Ep <> Ep.
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disk amplitudes (4.1) including o’ corrections. We then pointed out, inspired by [1], the
correspondence between the permutations from the (inverse) descent algebra and kinemat-
ics from the string disk amplitudes. Knowing that the permutations can be related to the
descent algebra, we exploited the consequences of some theorems from the mathematics
literature on descent algebra to the o corrections of the string disk amplitudes. This led
to the discovery of a new descent algebra decomposition of the KK-like symmetries of the
o’ corrections organized by their MZV content and counts their dimensions in terms of
Stirling cycle numbers, leading to (4.19). Abelian Z-theory arguments together with some
observations yield lend credence to their validity in general. Besides, these claims have
been explicitly checked using various data points in string theory up to n = 8 and o/ v

Furthermore, the duality with the descent algebra also suggests non-obvious KK-like
identities among o' corrections (4.23) and (4.24) arising from the “idempotent” property
of certain orthogonal permutations studied by Garsia and Reutenauer [7,6].

In addition, we found an algorithm to extract the superfield content of the BRST
invariants in the pure spinor formalism from the BRST-invariant permutations in the

inverse descent algebra, hinting about their combinatorial origin.

5.0.1. Outlook and future directions

The duality between kinematics and idempotents of the inverse descent algebra in (4.7),
(4.8) and (4.9) and the orthogonality property of the Reutenauer idempotents (2.35) led to
the symmetries of various o’ corrections of the string disk amplitude. But this consequence
was based purely on the functional interpretation of the right action of permutations as
ooF := F(o). A more intriguing possibility is to interpret the o’ 2 correction AF" and the

tree amplitude ASYM as “orthogonal” and “idempotents” directly in kinematic space:

=0, (5.1)
0

However, it is not clear how to define the right-action action of the kinematic variables of

polarizations and momenta among themselves.
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In trying to find the right-action on kinematics one may consider the Lie-polynomial
form of the string disk amplitudes from [29]. In this setting the field-theory and (5 correc-
tions at four and five points become (12 := [1, 2], 123 := [[1, 2], 3] etc)

12,3] [1,23]
_|_
S12 S23
AF'(1,2,3,4) = 593[12, 3] + s12[1, 23]
123,4 321,4 12,34 1,432 1,234
S$125123 $235123 $12534 5345234 5235234

1 1
AF'(1,2,3,4,5) = - (s45[12,34] + 534[123,4]) — = (sas]1,234] + 515[321, 4])

ASYM(1,2,3,4) = |

(5.2)

1 1
— — (s12[1,432] + s15[12, 34]) — — (512[321, 4] + s23[123,4])
S34 S45

1
— — (5231, 432] + s34[1,234])
S51

+[1,234] + [12,34] + [13, 24] + [321, 4]

where we omitted the last leg n which multiplies from the right. These Lie-polynomial am-
plitudes give rise to the standard ASYM and AF ! amplitudes upon dressing the numerators
with BCJ-satisfying polarizations [61,63], for example [12,3]4 — A7}, 5 AJ". Indexing the
Mandelstams and Lie monomials I’ from ASYM and AF" with the subscripts (0) and (2)

we define the following kinematical right-action multiplications

(m) _ (n) _ 1 L _ 1 L om_m 1 _
Si; 08y = 0ikdj1844, o Ty T 5ik5ﬂ§j’ $(m) ©8ij =% © W =1
ij ki ij ij
'@ o7 — F(i), ' oxl@ yv@ o170 ¢, (5.3)

Then preliminary analysis shows that up to the purely local terms in A% * we have
ASYM(1.2. .. n)o AF4(1,2, ...,m) = 0, tested up to n = 6. It would be interesting to
see whether these observations can be made to include the local terms, and how to trans-
fer these rules to the kinematics in terms of polarizations and momenta.

It would be interesting to frame the Eisenstein-Kronecker series and the expansion
functions ¢(™ (2, 7) as defined by Brown and Levin [64] in terms of the Solomon descent
algebra. The scalar generalized elliptic integrands (or homology invariants) Eqpg r of
[65] satisfy the same symmetry relations obeyed by the scalar BRST invariants and their
composition in terms of the functions g™ (z,7) can be mapped to the superfields of the

BRST invariants C|p g, g- Since the expansion of () . is encoded in the descent algebra
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as in section 4.4.2, there should be a descent algebra characterization of the homology
invariants as well.

In addition, we suspect that the descent algebra decomposition of KK-like symmetries
are universal to color-dressed amplitudes, for they encode basic relations from the color
traces. As such, there should be KK-like identities for the single-trace part at genus one.
It will be interesting to see whether the possible symmetries are graded by a combination
of standard MZVs and eMZVs [66,67,68], and how double traces and higher modify the
analysis.

More speculative work may define a “BRST” operator A acting on permutations in
a similar way as the pure spinor BRST operator acts on Berends-Giele supercurrents.
The permutations would then need to be distinguished by different concatenation decom-
positions. For example A(123) = 1.23 + 12.3 where the dot represents a “concatenation”
operation. With additional structure such at the deconcatenation algorithm of section 4.4.2
this BRST operator may be used in a more abstract setting to study the “cohomology” of
permutations that ultimately may give further insight into the combinatorics of the BRST

invariants and the generalized elliptic integrands.

Acknowledgements: I thank Ruggero Bandiera for discussions during an early stage of
this project. I also thank Oliver Schlotterer for sharing notes containing intriguing observa-
tions about the permutations in the color-dressed amplitude that served as the motivation
for this paper, for discussions, for collaboration on related topics, and for comments on the

draft. CRM is supported by a University Research Fellowship from the Royal Society.

Appendix A. Explicit permutations at low multiplicities

The multiplicity-five BRST-invariant permutations (defined in (3.7)) are given by

Y112,3,4,5 = W1(2|_|_|3|_|_|4|_|_|5) (A~1)
1 1 1 1 1 1
V1|23,4,5 = §W12345 + §W12354 + 2W12435 + 2I/V12453 + 2VV12534 + 2I/V12543
1 W- 1 W- 1 W- 1 W- 1 —W- 1 —W
5 Wis24s — 5 Wis2ss — 5 Wisazs — 5 Wisas2 — 5 Wissa — 5 Wissae
1 —W- + = L —W: 1 W- 1 W- + = L W 1 —W;
2 14235 + 5 Widzss — 5Wiases — 5 Wiassa + 5 Wiases — 5 Wiass
1 —W- + = L —W: 1 W- 1 W- + = L —W- 1 —W;
2 15234 + 5 Wis2as — 5 Wissaa — 5 Wissaz + 5 Wisazs — 5 Wisaso
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1 1 1 1 1 1

Y11234,5 = 5 Wi23as + 5 Wiassa — ~Wi2azs — = Wiaass + 5 Wizsza — < Wiasas

3 3 6 6 3 6
Ly Ly Ly Ly Ly Ly
6 13245 6 13254 6 13425 6 13452 6 13524 6 13542
Ly L1y s+ S Wigses + W Ly o+ LW
6 14235 6 14253 3 14325 3 14352 6 14523 3 14532
+lw Ly Ly Ly L o+ L
3 15234 6 15243 6 15324 6 15342 6 15423 3 15432
_lw W isass + ~Wisaas + W Ly L
71|23,45 - 4 12345 4 12354 4 12435 4 12453 4 12534 4 12543
005 + S L W g5 4+~ Wigsas + W
4 13245 4 13254 4 13425 4 13452 4 13524 4 13542
- Wi+ W Ly W a5+ AW L
4 14235 4 14253 4 14325 4 14352 4 14523 4 14532
Ly L5245+ ~Wisga + ~W W isaas W
4 15234 A 15243 4 15324 A 15342 4 15423 A 15432
_lw Ly Ly Ly L Wi+ W
’71|2345 - 4 12345 12 12354 12 12435 12 12453 12 12534 12 12543
L Wisous + W Ly L Wigasz + —Wissos + —W
12 13245 12 13254 12 13425 12 13452 12 13524 12 13542
Ly W iaass + —Wiges + —W Wi + =W
12 14235 12 14253 12 14325 12 14352 12 14523 12 14532
1

According

1 1 1 1 1
= - - - = _ =
19 Wis234 + 19 Wis243 + 19 Wis324 + 19 Wis342 + 19 Wis423 1 Wisa32

to the deconcatenation (3.33) these BRST-invariant permutations give rise to

the following orthogonal idempotents:

1
Y %22&45

2
7&22345

3
Y §22&45

1 1 1 1 1 1
4 12345 12 12354 12 12435 12 12453 12 12534 + 12 12543

1 1 1 1 1 1
- = - = - -
19 Wis245 + 19 Wis254 19 Wis42s 19 Wisas2 + 19 Wiss24 + 19 Wiss42

1 1 1 1 1 1
- EW14235 - EW14253 + EWM?’QS + EW14352 - EW14523 + EW14532

1 1 1 1 1 1
- EW15234 + EW15243 + EW15324 + EW15342 + EW15423 - ZW15432

11 1 1 1 1 1
Wi — — Wisssa — —Wisazs — — Wisass — —Wissse — — W
51 V12845 — 5, Wizssa — 5 Wizass — 5 Wioass — o Whassa — 57 Wizsas
1 W- 1 W- 1 W- 1 W- 1 W- 1 W-
51 Wis2as — 5 Wisasa — 5 Wisazs — o7 Wisase — 5 Wissea — 5 Wissa
1 W- 1 W- 1 W- 1 W- 1 W- 1 W-
51 V14235 — 5y Wiazss — 5 Wiases — o7 Wiasse — 57 Wiases — 5 Wiass
1 1 1 1 1 11
- ﬂW15234 - ﬂW15243 - ﬂW15324 - ﬂW15342 - ﬂW15423 + ﬂW15432
= 1I/V + L W- + L W- + L W- + 1 W- 1 7%
= 1 Wiasss + 5 Wizssa + 75 Wizass + 5 Wiaass + 5 Wizsss — 75 Wiasas
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1 1 1 1 1 1
+ EW13245 - EW13254 + EW13425 + EW13452 - EW13524 - EW13542
+ L W- + L W- 1 W 1 W- + L W 1 W,
15 Wiazss + 75 Wiass — 5 Whases — 15 Waassa + 5 Wiasas — 5 Whasse
+ 1 W- 1 W- 1 W 1 W- 1 W- 1W
15 Wis2sa — 75 Wisaas — 15 Wissza — 15 Wissaz — 15 Wisaas — 7 Wisase
1
4
7%22),45 = ﬂwl(zm:amm)
Here we list the first few expansions of E) defined in (2.31):
1 1 1 1
E —— _ E - — — A2
2 2VV12 2W21 , 11 2W12 + 2W21 (A.2)
1 1 1 1 1 1
By = - Wias — ~Wigs — ~Wars — ~Wag1 — ~Wara + ~ W
3 =3Wias = cWis2 — cWars — £ Was1 — < War + 5 W21
1 1 1
Ey = §W123 - §W321, Ei = 6W123 + perm(1, 2, 3)
FEsi1 = 1W + L W- + L W + L W- + L W- L W
211 = 3 Wiasa + 5 Wizas + 5 Wisaa + 15 Wisae + 5 Whaos — 5 Whase
+ 1 W- 1 W- + 1 W- + L W- + L W- 1 W-
15 Wa1sa — 75 Wanas + 5 Wasia + 5 Wasar + 5 Wiz — 15 Waas
+ 1 W. 1 W. 1 W- 1 W. + L W- 1 W-
15 Wa124 = 75 Waraz = 5 Wsara — 5 Waaar + 5 Waaiz — 15 Waam
+ 1 7% 1 W, 1 W. 1 W, 1 W. 1W
175 Warzs — 5 Waise — 5 Wazis — 75 Waast — 15 Wasiz —  Wasa

A.0.1. The Berends-Giele idempotents
The Berends-Giele idempotents £(P) are defined in section 3.1 as the inverse §(E(P)) of

the Eulerian idempotent (2.21). Their expansions up to multiplicity three were given in

(3.17) and now we write down the multiplicity four:

£(1234) = %W1234 - %W1243 — 1—12W1324 — %W1342 - 1—12W1423 + %W1432 (A.3)

1

12
1 1 1 1 1 1

- EW3124 - EW3142 + EW3214 + EW3241 - EW3412 + EW3421

1 1 1 1 1
- EW4123 + EW4132 + EW4213 + EW4231 + 1

As a curiosity, noting that F4 = I; one can derive these permutations using the conversion
(2.29) together with (2.14) for the permutations in 6(B,) (note #2 = 1). So (2.30) yields

the permutations in 1934 = 0(14) as

1 1 1 1 1
_ = — _ _ — —
19 Wai34 + 19 Wa143 Was14 19 Wasza1 + 9 Waq13 + D Waas1

1
Wiz12 — 1 Wago1

1 1 1 1
£(1234) = _ZILU2UJ3LU4 + §1|_|_|2|_|_|34 + §1|_|_|23|_|_|4 — 51|_|_|234 (A.4)

1 1 1
+ ngI_I_I3I_I_I4 — 512|_|_I34 — 5123|_|_I4 +1234.
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As a multiplicity-four example of the inverse idempotent basis of (3.20) we have

1 1

1 1 1
T99(12,34) = 4VV1234 — 4VV1243 + 4VV1324 + 4VV1342 — ZWM% — W1432 (A.5)
L -W: + - L —W- 1 W- L ~W- + - L -W- + - 1 —W-
= g asa T Wanas = o Wasia = o Wasar + 2 Waais 5 Waas
1 -W: + - L W 1 W L -W. + - L -W. 1 W-
4 3124+ 7 Waraz = 7 Wagia = 7 Wazar + 7 Waarz = 7 Waan
1 % 1 -W, + - 1 -W. + - L -W, 1 w. + - L -W,
g Vares — g Waisz + 7 Wazis + 7 Wazst — 7 Wagiz + 7 Wagar -
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