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1. Introduction

The color-dressed string disk amplitude gives rise to an interesting harmony between color

and the kinematics of the α′2ζ2 correction to the string disk amplitude [1]. The analysis

relies on the decomposition of color traces into a basis involving symmetrized traces and

structure constants following the decomposition algorithm of [2]. The color-trace decompo-

sition problem was recently solved in closed form [3] involving the Solomon (or Eulerian)

idempotents, and it became apparent that a beautiful mathematical framework governs

the brute-force expressions used in the arguments of [1]. Together with some interest-

ing observations shared by Oliver Schlotterer [4] about color-dressed permutations (to be

defined in section 3), understanding the combinatorics of the harmony first seen in [1]

became the motivation for this paper. As we will see, these matters are tightly knit with

the mathematical framework of the Solomon descent algebra [5,6,7,8,9,10,11].

To isolate the combinatorics within the color-dressed amplitudes we will define the

color-dressed permutations

Pn =
∑

σ∈Sn,σ(1)=1

Tr(Tσ) σ , Tσ := Tσ(1)Tσ(2) · · ·Tσ(n) (1.1)

where each permutation σ ∈ Sn is weighted by the trace of some Lie algebra generators, the

color trace. When the closed formula for the color-trace decomposition from [3] is plugged

into (1.1), the permutations appearing as coefficients with respect to a basis of color factors

define what we call BRST invariant permutations γ1|P1,...,Pk
with k = 1, . . . , n−1. We will

then show that γ1|... belong to the inverse Solomon algebra1 and we will find a closed

formula for them, namely

γ1|P1,...,Pk
= 1.E(P1)�E(P2)� . . .�E(Pk) (1.2)

where E(P ) is the Berends-Giele idempotent and it is the result of mapping the permuta-

tions of the Solomon idempotent [12] into its inverse. We demonstrate that E(R�S) = 0

for R, S 6= ∅ in section 3.1 while the justification for the terminology appears later in

section 4.4.3.

We then turn back to the color-dressed string disk amplitude in section 4 where we

obtain, following the results of [1], a correspondence between the above permutations and

1 After stripping off the leading label 1 and relabeling i → i− 1, see section 3.0.1.
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kinematics from the string disk amplitudes. More precisely, in addition to the natural

C1|X,Y,Z ↔
1
6γ1|X,Y,Z the duality from [1] is refined to

ASYM(1, 2, . . . , n) ←→ γ
(1)
123...n , (1.3)

AF 4

(1, 2, . . . , n) ←→ γ
(3)
123...n ,

where γ(1) and γ(3) are orthogonal idempotents of the (inverse) descent algebra constructed

from linear combinations of γ1|P1,...,Pk
with k = 1 and k = 3 respectively. This interpreta-

tion is important because we can borrow a theorem from the work of Garsia and Reutenauer

[6] for the right action of Eµ ◦ Ip with various combinations of partitions µ and composi-

tions p. Here Eµ are the building blocks of the Reutenauer orthogonal idempotents and Ip

are the idempotent basis of Solomon’s descent algebra, see the review in section 2.

Using a proof from section 3.2 in which we find that the inverse Ip of the idempotent

basis Ip satisfies

Ip1p2...pk
(P1, P2, . . . , Pk) = E(P1)�E(P2)� . . .�E(Pk) , |Pi| = pi (1.4)

we are able to relate the (inverse of the) idempotent basis Ip of the theorem from [6] with

the BRST-invariant permutations (1.2). This relationship allow us to obtain the Kleiss-

Kuijf (KK) [13] and KK-like [14,15] symmetries of the field-theory ASYM amplitudes and

its α′2ζ2 correction AF 4

formulated as statements in the descent algebra. As we will see,

these symmetries are decomposed according to the number of parts in the composition

p |= n−1, giving rise to the descent algebra decomposition of their symmetries.

The decomposition of the symmetries of field-theory ASYM and α′2ζ2 correction AF 4

can be justified by the dualities (1.3), but we also investigate the symmetries of the higher

α′ corrections to the disk amplitudes (refined by their MZV content [16,17,18]) from this

point of view. Using general arguments from their descent algebra decomposition and the

formula (1.2), we find that the symmetries of the different corrections according to their

MZV content is closely related to the discussion of the abelian Z-theory derivation of

NLSM amplitudes [19]. In particular, we discover that the leading MZV contribution from

abelian Z integrals governs the non-vanishing of Astring(γ1|P1,...,Pk
)|ζm

2 ζM for the maximal

partition k = n−1, where ζM denotes all MZVs that do not contain factors of ζ2 in the

basis used in [20].
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The descent algebra decomposition of the symmetries leads naturally to the counting

of their dimensions in terms of Stirling cycle numbers due to the shuffle symmetries of

E(P ) and the formula (1.2) for the BRST invariant permutations. Indeed one gets

#
(

Astring(1, 2, . . . , n)
∣
∣
FT

)

=

[
n− 1

1

]

= (n− 2)! (1.5)

#
(

Astring(1, 2, . . . , n)
∣
∣
ζ2ζM

)

=

[
n− 1

3

]

#
(

Astring(1, 2, . . . , n)
∣
∣
ζm
2 ζM

)

=

[
n− 1

1

]

+

[
n− 1

3

]

+ · · ·+

[
n− 1

2m+ 1

]

, m ≥ 2 ,

where the first two lines correspond to the well-known dimensions of the KK [13] and

KK-like [14,15] relations, while the third line is new.

Of course, the string theory version [21,22] of the Bern-Carrasco-Johansson (BCJ) tree-

level relations [23], reduce all these dimensions to (n − 3)! but they involve Mandelstam

invariants sij and are (naively) outside the scope of the descent algebra relations. So in

this paper we will not be concerned about BCJ identities. For the explicit string-theory

basis reduction involving α′ corrections, see [24].

In this paper an important role is played by the so-called BRST invariants C1|P,Q,R

of the pure spinor formalism [25]. They were firstly derived at low multiplicities in [1] and

were subsequently studied in different contexts and given general recursive algorithms, see

[26,27,28] and references therein.

These studies induce one to suspect that the BRST invariants not only simplify the

α′2 corrections of the string color-dressed amplitude as in the original motivation in [1],

but that they might also have a deeper combinatorial significance. For instance, under

the cohomology of pure spinor superspace they satisfy various change of basis identities

[27] systematized in an intriguing algorithm in the appendix A of [28]. In addition, they

can be expanded in terms of SYM tree amplitudes as in the algorithm described in the

appendix B of [26], which uses a new Lie bracket in the dual space of Lie polynomials

[29]. Their superfield composition in terms of Berends-Giele currents admits a recursive

construction [27] whose particulars suggest a combinatorial origin; especially given the

relation between Berends-Giele currents and planar binary trees [30]. This paper will add

to the growing pile of evidence that the BRST invariants are, in essence, combinatorial

objects which found an explicit representation in the computation of string scattering

amplitudes. For more on this, see section 4.4.2.
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2. The Solomon descent algebra

We review the salient features of the Solomon descent algebra [5,6,7,8,9,10,11]. In partic-

ular, we discuss different bases and highlight the orthogonal idempotents discovered by

Reutenauer, as they will be related to α′ corrections to string amplitudes in later sections.

2.0.1. Conventions

Words from the alphabet N = {1, 2, . . .} will be denoted interchangeably either by capital

Latin letters or, especially when viewed as elements of the permutation group, by lower

case Greek letters. Words P of length n are acted upon by elements σ of the symmetric

group Sn via a right-action multiplication defined by [11]

P ◦ σ = pσ(1)pσ(2) . . . pσ(n) , (2.1)

where pi denotes the ith letter of P . For example abcd ◦ 3124 = cabd. The inverse σ−1 of a

permutation σ of length n is such that σ◦σ−1 = σ−1◦σ = 12 . . . n. For example, (2314)−1 =

3124. For typographical convenience, we will write a generic explicit permutation σ as Wσ,

for instance 4213 becomes W4213.

2.1. Descent classes and the Solomon descent algebra

The descent set D(σ) and the and the descent number dσ of a permutation σ = σ1σ2 . . . σn

in Sn are defined by

D(σ) = {i ∈ {1, 2, . . . , n− 1} | σi > σi+1} , dσ = #
(
D(σ)

)
. (2.2)

For example, the permutation σ = 546132 has descent set D(σ) = {1, 3, 5} and descent

number dσ = 3. The collection of permutations with a given descent set S is called a

descent class,

DS =
∑

D(σ)=S

σ . (2.3)

For example, the permutations in S3 are distributed into four descent classes,

D∅ = W123, D{1} = W213 +W312, D{2} = W132 +W231, D{1,2} = W321 . (2.4)

In general, the permutations of Sn decompose into 2n−1 distinct descent classes; all the

subsets in the powerset of {1, 2, . . . , n− 1} since the last n-th position is never a descent.
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Solomon showed the remarkable property that descent classes are closed under the right

action (2.1)

DS ◦DT =
∑

U⊆{1,2,...,n−1}

cS,T,UDU (2.5)

where the coefficients cS,T,U are non-negative integers [5]. The descent classes therefore

form a 2n−1 dimensional algebra, the so-called Solomon’s descent algebra Dn [5,6,8,9,10,11].

As an example of (2.5), consider the permutations in S4. Its 24 elements are organized

into 8 descent classes as follows

D{∅} = W1234 ,

D{1} = W2134 +W3124 +W4123 ,

D{2} = W1324 +W1423 +W2314 +W2413 +W3412 ,

D{1,3} = W2143 +W3142 +W3241 +W4132 +W4231 ,

D{1,2} = W3214 +W4213 +W4312 ,

D{3} = W1243 +W1342 +W2341 ,

D{2,3} = W1432 +W2431 +W3421 ,

D{1,2,3} = W4321 .

(2.6)

It is straightforward to multiply the permutations among these descent classes using the

right-action of the symmetric group (2.1). For example,

D{1} ◦D{2} = W1234 +W1243 +W1324 +W1342 +W1423 +W1432 +W2314 (2.7)

+W2341 +W2413 +W2431 +W3214 +W3412 +W3421 +W4213 +W4312

= D{∅} +D{1,2} +D{2} +D{2,3} +D{3} ,

where the last line follows from the remarkable property (2.5) which ensures that the

permutations in (2.7) are themselves a sum of descent classes.

2.2. Bases of the descent algebra

Apart from the descent classes DS indexed by descent sets S, there are other convenient

bases of the descent algebra [6].

2.2.1. Composition basis Bp

The composition p of n, denoted p |= n, is a k-tuple of positive integers with sum n,

p = (p1, p2, . . . , pk), p1 + p2 + · · ·+ pk = n. (2.8)

There is a bijection between compositions p |= n and subsets S of {1, 2, . . . , n− 1}

p = (p1, p2, . . . , pk) 7→ {p1, p1 + p2, . . . , p1 + p2 + · · ·+ pk−1} := S(p) , (2.9)

S = {i1, i2, . . . , ik} 7→ (i1, i2 − i1, . . . , ik − ik−1, n− ik) := Cn(S) . (2.10)
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Thus the total number of compositions of n is 2n−1, the cardinality of the powerset of

{1, 2, . . . , n−1}. Note that the map Cn(S) = p depends on the order n of the permutation

group Sn for C3

(
{1, 2}

)
= (1, 1, 1) but C4

(
{1, 2}

)
= (1, 1, 2). In particular, Cn(∅) = (n).

The basis Bp is indexed by compositions p rather than subsets and is defined by [6]

Bp = D⊆S(p) , (2.11)

with S(p) given by (2.9). For example, the DS basis elements (2.6) become

B1111 = D∅ +D{1} +D{2} +D{3} +D{1,2}

+D{1,3} +D{2,3} +D{1,2,3} ,

B112 = D∅ +D{1} +D{2} +D{1,2} ,

B121 = D∅ +D{1} +D{3} +D{1,3} ,

B211 = D∅ +D{2} +D{3} +D{2,3} ,

B13 = D∅ +D{1} ,

B22 = D∅ +D{2} ,

B31 = D∅ +D{3} ,

B4 = D∅ .

(2.12)

The inverse of (2.11) is given by Lemma 8.18 in [11]

DS =
∑

T⊆S

(−1)|S|−|T|D⊆T . (2.13)

For example (in S4), D{1,2} = B112−B13−B22 +B4, D{1} = B13−B4, D{2} = B22−B4,

and D∅ = B4, from which we verify that D∅ +D{1} +D{2} +D{1,2} = B112.

The permutations within a basis element Bp can be found via [31,6]

Bp1p2...pk
= θ(X1�X2� . . .�Xk) , 12 . . . n = X1 . . .Xk, |Xi| = pi . (2.14)

where the inverse map θ is given by

θ(σ) 7→ σ−1 . (2.15)

For example, if p = (1, 1, 2) then X1 = 1, X2 = 2 and X3 = 34 and we get

B112 = θ(1�2�34) = W1234 +W1324 +W1423 +W2134 +W2314 +W2413 (2.16)

+W3124 +W3214 +W3412 +W4123 +W4213 +W4312 .

2.2.2. Multiplication table for Bp ◦Bq

There is a closed formula for the multiplication of Bp ◦Bq [9,6,32]. Let M be a matrix with

non-negative integer entries mij whose row sum r(M) and column sum c(M) are vectors

defined by

r(M)i :=
∑

j

mij , c(M)j :=
∑

i

mij . (2.17)
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Then

Bp ◦Bq =
∑

c(M)=p

r(M)=q

Bco(M) (2.18)

where co(M) denotes the composition obtained by reading the matrix M row by row from

top to bottom while excluding the zero entries mij = 0. This product is associative and

Bn is a multiplicative identity for compositions of n [32].

For example, let us recover the result (2.7) for D{1} ◦D{2} using the above multipli-

cation table (2.18) in S4. Given that D{1} = B13 − B4 and D{2} = B22 − B4, the only

non-trivial product we need is B13 ◦B22 since B4 is the identity for compositions of n = 4.

The set of integer matrices M with c(M) = (1, 3) and r(M) = (2, 2) is given by
(
1 1
0 2

)

,

(
0 2
1 1

)

. (2.19)

Thus B13 ◦B22 = B112 +B211 and D{1} ◦D{2} = (B13 −B4) ◦ (B22 −B4) implies

D{1} ◦D{2} = B112+B211−B13−B22+B4 = D∅+D{1,2}+D{2}+D{2,3}+D{3} (2.20)

where we used the conversions (2.12).

2.2.3. The Eulerian idempotent

The Eulerian (or Solomon) idempotent is defined by [12,7,31,33] (see also [34])

En =
∑

σ∈Sn

κσσ, κσ =
(−1)dσ

|σ|
(
|σ|−1
dσ

) (2.21)

where dσ denotes the descent number (2.2) of the permutation σ. For example,

E2 =
1

2

(
W12−W21

)
, E3 =

1

3
W123−

1

6
W132−

1

6
W213−

1

6
W231−

1

6
W312+

1

3
W321 . (2.22)

Apart from being an idempotent satisfying En ◦ En = En, the definition (2.21) is also a

Lie polynomial [7]. Therefore its coefficients κσ must satisfy the shuffle symmetry [35]

κR�S = 0, R, S 6= ∅ . (2.23)

As usual, the definition (2.21) in terms of the fixed alphabet N in Sn can be turned into a

function of an arbitrary word P by the right action (2.1) of the symmetric group [11,36],

E(P ) = EP := P ◦ En, |P | = n . (2.24)

For example, E(i, j, k) = ijk ◦E3 = 1
3Wijk −

1
6Wikj −

1
6Wjik −

1
6Wjki −

1
6Wkij +

1
3Wkji.
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2.2.4. The idempotent basis Ip

The idempotent basis Ip of the descent algebra Dn satisfying Ip ◦ Ip = Ip was introduced

in [6] and it is indexed by the compositions of n

Ip1p2...pk
(P ) =

∑

X1,...,Xk

|Xi|=pi

〈P,X1�X2� . . .�Xk〉E
X1EX2 . . . EXk , (2.25)

where the sum is constrained by the length of Xi being equal to the corresponding pi in

the composition p and EXi denote the Eulerian idempotent function (2.24). For example,

with canonical P = 12 . . . n we have

I11 = W12 +W21 , I2 =
1

2
(W12 −W21) , (2.26)

I111 = W123 +W132 +W213 +W231 +W312 +W321 ,

I21 =
1

2
W123 +

1

2
W132 −

1

2
W213 +

1

2
W231 −

1

2
W312 −

1

2
W321 ,

I12 =
1

2
W123 −

1

2
W132 +

1

2
W213 −

1

2
W231 +

1

2
W312 −

1

2
W321 ,

I3 =
1

3
W123 −

1

6
W132 −

1

6
W213 −

1

6
W231 −

1

6
W312 +

1

3
W321 .

2.2.5. Ip to Bp

The idempotent basis elements Ip for p = p1p2 . . . pk can be expanded in terms of composi-

tions Bq using an algorithm discussed in [6]. First one defines moments em as a polynomial

in non-commuting variables ti for i = 1, 2, . . . from the generating series

∑

xnen = log(1 +
∑

tix
i) (2.27)

where x is a commuting parameter. For example, from (2.27) it follows that

e1 = t1, e2 = t2 −
1

2
t21, e3 = t3 −

1

2
(t1t2 + t2t1) +

1

3
t31 (2.28)

e4 = −
1

4
t41 +

1

3
t21t2 +

1

3
t1t2t1 −

1

2
t1t3 +

1

3
t2t

2
1 −

1

2
t22 −

1

2
t3t1 + t4

Then to convert the Ip basis elements to the composition basis Bq one uses [6]

Ip = δ(ep1
ep2

. . . epk
), with δ(ti1ti2 . . . tik) := Bi1i2...ik . (2.29)

For example,

I4 = −
1

4
B1111 +

1

3
B112 +

1

3
B121 −

1

2
B13 +

1

3
B211 −

1

2
B22 −

1

2
B31 +B4 . (2.30)
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2.3. Reutenauer orthogonal idempotents

A partition λ of n, denoted λ ⊢ n, is a k-tuple of positive integers with sum n satisfying

λ1 ≥ λ2 ≥ . . . ≥ λk. If p |= n is a composition of n, the shape λ(p) of p is the partition of

n obtained by rearranging the parts of p in decreasing order. Also, k(p) is the number of

parts of the composition p. For example, p = (2, 3, 1, 2) implies λ(p) = 3221 and k(p) = 4.

Given a partition λ = (λ1, λ2, . . . , λk) into k parts, theorem 3.1 of [6] shows that

Eλ :=
1

k!

∑

λ(p)=λ

Ip ,
∑

λ⊢n

Eλ = W12...n . (2.31)

Note that when the partition λ of n has only one part, Eλ = In coincides with the Eulerian

idempotent En (2.21), so this notation is not ambiguous. For example, E1 = I1 and

E2 = I2 ,

E11 =
1

2
I11 ,

E3 = I3 ,

E21 =
1

2

(
I12 + I21

)
,

E111 =
1

3!
I111 ,

E211 =
1

3!

(
I112 + I121 + I211

)
.

(2.32)

one can readily verify E3+E21+E111 = W123 using the expansions listed in the appendix A.

The Reutenauer idempotents E(m) are defined in the alphabet {1, 2, . . .} as the sum

over all permutations of Eλ from (2.31) such that λ is a partition of n with m parts, i.e.,

E(m) =
∑

λ⊢n

k(λ)=m

Eλ (2.33)

For example,

n = 2

n = 3

n = 4

E(1) = E2, E(2) = E11

E(1) = E3, E(2) = E21, E(3) = E111

E(1) = E4, E(2) = E31 + E22, E(3) = E211, E(4) = E1111

(2.34)

It was shown in [6,7] that (2.33) are orthogonal idempotents which sum to the identity

permutation
n∑

i=1

E(i) = W123...n , E(i)E(j) =

{

E(i) if i = j;
0 otherwise.

(2.35)

An alternative definition of the Reutenauer idempotents in terms of a generating function

can be found in [11].
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3. The combinatorics of color-dressed permutations

In this section we will investigate the combinatorics of the color-dressed permutations Pn

Pn =
∑

σ∈Sn,σ(1)=1

Tr(Tσ)Wσ , Tσ := Tσ(1)Tσ(2) · · ·Tσ(n) , (3.1)

which, as we will see, represents the replacement Astring(σ) → σ in the color-dressed

amplitude (4.1). This investigation will be done by decomposing [2] the traces of color

factors into symmetrized traces and structure constants fabc of the gauge group, where

d12...k :=
1

k!

∑

σ∈Sk

Tr(Tσ), d12 :=
1

2
δ12, [T a, T b] = ifabcT c. (3.2)

More explicitly, we use the basis of color factors from the general trace decomposition

found in [3] (for technical reasons the alphabet {0, 1, 2, . . .} is used momentarily)

Tr(T 0T 1 · · ·Tn−1) =
∑

Sn−1∋σ=σ1···σk

in−1−kκσ1
· · ·κσk

d0a1···akF σ1
a1
· · ·F σk

ak
. (3.3)

where σ = σ1 · σ2 · . . . · σk denotes the decreasing Lyndon factorization of the word σ to

be defined below and the coefficients κσ were defined in (2.21). The basis of color factors

from (3.3) is given by in−kd0a1···akF σ1
a1
· · ·F σk

ak
where the factors F σ

a for a word σ and a

letter a are defined recursively by

FPj
a = FP

b f bja, F i
a = δia . (3.4)

The decreasing Lyndon factorization (dLf) of a word σ is defined as [37,6]

σ = σ1.σ2 . . . σk (3.5)

representing the unique deconcatenation of σ into subwords σ1, . . . , σk such that σ1 >

· · · > σk in the lexicographical order of the alphabet N = {1, 2, . . . , }. In addition, each σj

for 1 ≤ j ≤ k is a Lyndon word, which for a permutation with no repeated letters means

that first letter in σj is the minimum among its letters. Representing the concatenation by

a dot to distinguish the subwords σi in the dLF factorization of σ, we have

1432 = 1432 , 2134 = 2.134 , 54132 = 5.4.132 , 42671835 = 4.267.1835 . (3.6)
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Definition (BRST-invariant permutation). Written in the basis of color factors

in−kd1a1...akF σ1
a1

. . . F σk
ak

, the color-dressed permutation (3.1) is given by

Pn =
∑

σ∈Sn−1

in−1−kd1a1...akF σ1
a1
· · ·F σk

ak
γ1|σ1,...,σk

, (3.7)

where the coefficients γ1|σ1,...,σk
are denoted BRST-invariant permutations.

The reason for this terminology will become clear in section 4.1 when γ1|σ1,σ2,σ3
will be

related to the BRST-invariant superfields C1|σ1,σ2,σ3
of the pure spinor formalism. We will

see later in (3.30) that γ1|σ1,...,σk
is totally symmetric under exchanges of σi ↔ σj and that

it satisfies shuffle symmetries in each σi.

For example, plugging Tr(T 1T 2T 3) = d1a1a2F 2
a1
F 3
a2

+ i
2
d1aF 23

a into (3.1) yields

P3 = Tr(T 1T 2T 3) W123 +Tr(T 1T 3T 2) W132 (3.8)

= d1abF 2
aF

3
b γ1|2,3 + id1aF 23

a γ1|23 ,

with

γ1|2,3 = W123 +W132 , γ1|23 =
1

2
W123 −

1

2
W132 . (3.9)

Repeating the same exercise for n = 4 using (3.3)

Tr(T 1T 2T 3T 4) = d1abcF 2
aF

3
b F

4
c (3.10)

+
i

2
d1abF 2

aF
34
b +

i

2
d1abF 23

a F 4
b +

i

2
d1abF 24

a F 3
b

−
1

3
d1aF 234

a +
1

6
d1aF 243

a

we obtain

P4 = d1abcF 2
aF

3
b F

4
c γ1|2,3,4 (3.11)

+ id1abF 23
a F 4

b γ1|23,4 + id1abF 24
a F 3

b γ1|24,3 + id1abF 2
aF

34
b γ1|2,34

+ i2d1aF 234
a γ1|234 + i2d1aF 243

a γ1|243

where the BRST-invariant permutations are given by

γ1|2,3,4 = W1234 +W1243 +W1324 +W1342 +W1423 +W1432 (3.12)

γ1|23,4 =
1

2
W1234 +

1

2
W1243 −

1

2
W1324 −

1

2
W1342 +

1

2
W1423 −

1

2
W1432

γ1|2,34 =
1

2
W1234 −

1

2
W1243 +

1

2
W1324 +

1

2
W1342 −

1

2
W1423 −

1

2
W1432

γ1|24,3 =
1

2
W1234 +

1

2
W1243 +

1

2
W1324 −

1

2
W1342 −

1

2
W1423 −

1

2
W1432

γ1|234 =
1

3
W1234 −

1

6
W1243 −

1

6
W1324 −

1

6
W1342 −

1

6
W1423 +

1

3
W1432

γ1|243 = −
1

6
W1234 +

1

3
W1243 −

1

6
W1324 +

1

3
W1342 −

1

6
W1423 −

1

6
W1432
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For n = 5 we obtain

P5 = d1abcdF 2
aF

3
b F

4
c F

5
d γ1|2,3,4,5 (3.13)

+ id1abcF 23
a F 4

b F
5
c γ1|23,4,5 + id1abcF 24

a F 3
b F

5
c γ1|24,3,5 + id1abcF 25

a F 3
b F

4
c γ1|25,3,4

+ id1abcF 2
aF

34
b F 5

c γ1|2,34,5 + id1abcF 2
aF

35
b F 4

c γ1|2,35,4 + id1abcF 2
aF

3
b F

45
c γ1|2,3,45

+ i2d1abF 234
a F 5

b γ1|234,5 + i2d1abF 243
a F 5

b γ1|243,5 + i2d1abF 235
a F 4

b γ1|235,4

+ i2d1abF 245
a F 3

b γ1|245,3 + i2d1abF 253
a F 4

b γ1|253,4 + i2d1abF 254
a F 3

b γ1|254,3

+ i2d1abF 345
a F 2

b γ1|345,2 + i2d1abF 354
a F 2

b γ1|354,2

+ i2d1abF 23
a F 45

b γ1|23,45 + i2d1abF 24
a F 35

b γ1|24,35 + i2d1abF 25
a F 34

b γ1|25,34

+ i3d1aF 2345
a γ1|2345 + i3d1aF 2354

a γ1|2354 + i3d1aF 2435
a γ1|2435

+ i3d1aF 2453
a γ1|2453 + i3d1aF 2534

a γ1|2534 + i3d1aF 2543
a γ1|2543

where the various γ1|A1,A2,...,Ak
are listed in the appendix A.

Note that the label 1 plays an special role due to the choice of the color basis where

it always appear inside the symmetrized trace; d1... [1]. The total number of γ1|A1,A2,...,Ak

with k parts are given by the Stirling cycle number
[
n−1
k

]
while the total number of terms

in the expansion of Pn is given by
∑n−1

k=1

[
n−1
k

]
= (n− 1)!.

3.0.1. Relating the BRST-invariant permutations with the descent algebra

We wish to understand the systematics of the permutations in each γ1|A1,A2,...,Ak
and

find an algorithm to generate them directly. In the next sections we will see that these

permutations are related to the descent algebra reviewed in section 2. To see the relation

consider γ1|23,4 from (3.12), relabel i→ i− 1 and strip off the leading “0” to obtain

γ×|12,3 =
1

2
W123
︸ ︷︷ ︸

∈D∅

+
1

2
W132
︸ ︷︷ ︸

∈D{2}

−
1

2
W213
︸ ︷︷ ︸

∈D{1}

−
1

2
W231
︸ ︷︷ ︸

∈D{2}

+
1

2
W312
︸ ︷︷ ︸

∈D{1}

−
1

2
W321
︸ ︷︷ ︸

∈D{1,2}

, (3.14)

where × indicates the entry “0”. Note that the resulting permutations are not in the

descent algebra D3 since permutations in the same descent class (as indicated below each

permutation) have different coefficients – alternatively one can use proposition 2.1 from

[38]. However, the inverse permutations in θ(γ×|12,3) do belong to the same descent classes:

θ
(
γ×|12,3

)
=

1

2
W123
︸ ︷︷ ︸

∈D∅

+
1

2
W132
︸ ︷︷ ︸

∈D{2}

−
1

2
W213
︸ ︷︷ ︸

∈D{1}

−
1

2
W312
︸ ︷︷ ︸

∈D{1}

+
1

2
W231
︸ ︷︷ ︸

∈D{2}

−
1

2
W321
︸ ︷︷ ︸

∈D{1,2}

(3.15)

=
1

2
D∅ −

1

2
D{1} +

1

2
D{2} −

1

2
D{1,2} .
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as can be verified using the explicit permutations in DS from (2.4).

So we see that after relabeling i → i − 1, stripping off the leading letter from the

permutation words and considering the inverse permutations, the result can be described in

terms of the Solomon descent algebra. This means that the BRST-invariant permutations

belong to the inverse descent algebra D′
n := θ(Dn). This motivates us to consider the

inverse permutations of the Eulerian idempotent (2.21).

3.1. The Berends-Giele idempotent

Let us consider the inverse θ(En) of the Eulerian idempotent (2.21) and, because the

inverse of an idempotent is also idempotent, call it the Berends-Giele idempotent:

En =
∑

σ∈Sn

κσ−1σ , E(P ) = EP := P ◦ En , |P | = n . (3.16)

The reason for the Berends-Giele terminology is the correspondence in (4.36) with the stan-

dard Berends-Giele current of Yang-Mills theory [39]. The first few examples of (3.16)are

E(1) = W1, E(12) =
1

2
(W12 −W21) , (3.17)

E(123) =
1

3
W123 −

1

6
W132 −

1

6
W213 −

1

6
W231 −

1

6
W312 +

1

3
W321 ,

while the expansion of E1234 can be found in the appendix A.0.1.

Proposition (Shuffle Symmetry). The Berends-Giele idempotent (3.16) satisfies

E(R�S) = 0 . (3.18)

Proof. Since the sum in (3.16) is over all permutations we rename P ◦ σ = τ and sum over

τ . Notice that σ−1 = τ−1 ◦ P , so E(P ) =
∑

σ κσ−1P ◦ σ =
∑

τ κ(τ−1◦P )τ and therefore

E(R�S) =
∑

τ

κ(τ−1◦(R�S))τ =
∑

τ

κ(τ−1(R)�τ−1(S))τ = 0 (3.19)

where the last equality follows from (2.23) and the crucial observation in (1.5) of [6] that2

σ−1 ◦ (R�S) = σ−1(R)�σ−1(S), where σ−1(R) denotes the word obtained by replacing

each letter in R by its image under σ−1.

In a tangencial point for this paper, we note that since the proof above only depends on

the shuffle symmetries of the coefficients κP and we know from [35] that any Lie polynomial

can be expanded as
∑

σ Mσσ with MR�S = 0 for nonempty R, S, we conclude:

2 The order of multiplications is crucial since (R�S) ◦ σ is not itself a proper shuffle.
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Corollary. If Γ is a Lie polynomial then the word function F(P ) := P ◦ θ(Γ) satisfies the

shuffle symmetry F(R�S) = 0 for R, S 6= ∅.

For example consider the Lie polynomial Γ = [[1, 2], 3] = 123 − 213 − 312 + 321. We get

θ(Γ) = 123−213−231+321 which means F (a, b, c) = abc ◦ θ(Γ) = abc− bac− bca+ cba =

ρℓ(a, b, c), and it is well known that ρℓ(R�S) = 0 [35,40].

3.2. Inverse idempotent basis and shuffle symmetries

Following the motivation in section 3.0.1 in which we learned that the BRST-invariant

permutations are related to the inverse of the descent algebra, it will be convenient to

define the inverse of the idempotent basis Ip as

Ip1p2...pk
(P1, P2, . . . , Pk) := θ(Ip1p2...pk

)(P ) , |Pi| = pi , P1P2 . . . Pk = P (3.20)

where the map θ is defined in (2.15). For example

I21(12, 3) =
1

2

(
W123 +W132 −W213 −W231 +W312 −W321

)
. (3.21)

See (A.5) for the explicit permutations in I22(12, 34).

The reason for separating the arguments into words of length |Pi| = pi corresponding

to the parts pi of the composition will become clear after we prove the following:

Proposition. The inverse of the idempotent basis (3.20) satisfies

Ip1p2...pk
(P1, P2, . . . , Pk) = E(P1)�E(P2)� . . .�E(Pk) , |Pi| = pi (3.22)

where P = P1 . . . Pk is the factorization of P with Pi of length pi.

Proof. The proof will be based on the following observations collected from [11], which

should be consulted for more details as the equation numbers below refer to it. First, the

adjoint of an arbitrary function F (P ) = P ◦F of a word P is given by θ(F )(P ) = P ◦θ(F ),

see (3.3.5). Second, the adjoint of Fp1
⋆Fp2

. . . ⋆ Fpk
is θ(Fp1

) ⋆′ θ(Fp2
) . . . ⋆′ θ(Fpk

) where ⋆

and ⋆′ are the convolution operators defined in (1.5.7) and (1.5.8) and θ(Fj) is the adjoint

of Fj when viewed as a function by the right-action (2.1), see proof of Lemma 3.13. Third,

for permutations Fpi
of length pi one can show (by adapting the proof of Lemma 3.13)

(
Fp1

⋆′ . . . ⋆′ Fpk

)
(P ) = Fp1

(P1)� . . .�Fpk
(Pk) (3.23)
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where the functions are defined via a right action as Fpi
(Pi) := Pi ◦ Fpi

. The proof of

(3.22) then follows from the observation by (1.5.4) and (1.5.7) that the idempotent basis

Ip (2.25) can be rewritten as a convolution Ip1...pk
(P ) =

(
Ep1

⋆ . . . ⋆ Epk

)(
P
)
where Ep is

the Eulerian idempotent (2.21). Therefore its adjoint θ(Ip1...pk
)(P ) is given by

θ(Ip1...pk
)(P ) = θ(Ep1

)(P1) ⋆
′ . . . ⋆′ θ(Epk

)(Pk), P = P1 . . . Pk, |Pi| = pi

= E(P1)� . . .�E(Pk) (3.24)

where we used (3.23) and E(Pi) = θ(Epi
)(Pi).

If Q = q1 . . . qn then its reversal is the word Q̃ := qn . . . q1. If a function satisfies the

shuffle symmetry or, in other words, belongs to the dual space of Lie polynomials [29],

then F̃ (P ) = (−1)|P|−1F (P ) and we conclude from (3.22):

Corollary. The reversal of words in Ip1...pk
(P1, . . . , Pk) is given by

Ĩp1...pk
(P1, . . . , Pk) = (−1)#even(p)Ip1...pk

(P1, . . . , Pk) (3.25)

where #even(p) denotes the number of even parts in the composition p.

We now see the reason for splitting the word P into k slots in the function Ip1...pk
(P1, . . . , Pk)

as it satisfies the shuffle symmetry and it is symmetric under any i↔ j:

I...pi...(. . . , R�S, . . .) = 0, R, S 6= ∅, |R|+ |S| = pi , (3.26)

I...pi...pj ...(. . . , Pi, . . . , Pj, . . .) = I...pj ...pi...(. . . , Pj, . . . , Pi, . . .) .

These symmetries will provide a major consistency check when we propose a duality be-

tween the descent algebra and kinematics of the string scattering amplitudes, see (4.7).

3.3. A closed formula for the BRST-invariant permutations

A closed formula for the BRST-invariant permutations is obtained by using a modification

of the formula (3.3) for general permutations as [41]

Tr(T 0Tσ) =
∑

τ=τ1···τk

in−kκρ1
. . . κρk

d0a1...akF τ1
a1

. . . F τk
ak
, |σ| = n. (3.27)

Here ρi for i = 1, . . . , k is defined by σ−1 ◦ τ := ρ1 . . . ρk with the constraint |ρi| = |τi|

given by the decreasing Lyndon factorization (3.5) of τ = τ1 . . . τk. For example, to find the

coefficient of the term d0a1a2a3F 4
a1
F 2
a2
F 13
a3

in the expansion of Tr(T 0T 3214) corresponding
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to σ = 3214 in (3.27) we first determine the dLf of τ = 4213 as 4.2.13 to obtain |τ1| =

1, |τ2| = 1 and |τ3| = 2. From σ−1 ◦ τ = 4231 := ρ1ρ2ρ3 we get ρ1 = 4, ρ2 = 2 and ρ3 = 31.

Therefore the formula (3.27) gives − i
2d

0a1a2a3F 4
a1
F 2
a2
F 13
a3

since κ4 = κ2 = 1 and κ31 = −1
2 .

Plugging in (3.27) into the color-dressed permutation Pn+1 yields

Pn+1 =
∑

σ∈Sn

Tr(T 0Tσ)W (0, σ) =
∑

σ∈Sn

in−kd0a1...akF σ1
a1
· · ·F σk

ak
γ0|σ1,...,σk

(3.28)

where σ = σ1 · σ2 · . . . · σk is the dLf (3.5) of σ and [41]

γ0|σ1,...,σk
=

∑

τ=τ1...τk

κρ1
. . . κρk

W (0, τ) , (3.29)

where σ−1 ◦ τ := ρ1 . . . ρk such that |ρi| = |τi| from the dLf of τ . Conjecturally, a more

convenient representation for the BRST-invariant permutations is given by

γ1|P1,...,Pk
= 1.Ip1...pk

(P1, . . . , Pk) = 1.E(P1)�E(P2)� . . .�E(Pk) (3.30)

The shuffle symmetry (3.18) of E(Pi) can be used to fix the first letter of Pi and the

commutativity of the shuffle product implies total symmetry in word exchanges, so the

number of components of γ1|P1,...,Pk
with n−1 letters distributed in the k words is given

by the Stirling3 cycle numbers [42]

#
(
γ1|P1,P2,...,Pk

)
=

[
n− 1

k

]

,
k∑

i=1

|Pi| = n− 1 . (3.31)

3.4. BRST-invariant permutations and orthogonal idempotents

Since the BRST-invariant permutations have been related to the idempotent basis of the

(inverse) descent algebra in (3.30) we may construct orthogonal idempotents as in sec-

tion 2.3. To this effect we define the inverse of the Reutenauer idempotents (2.33)

γ
(i)
12...n := 1.θ

(
E(i)

)
(3.32)

where the labels in θ
(
E(i)

)
must be shifted as i → i + 1 prior to the left concatenation

with the letter 1. Equivalently, from (2.31), (2.33), and (3.30) we obtain

γ
(k)
12...n =

∑

12...n=P1...Pk

1

k!
γ1|P1,...,Pk

. (3.33)

3 We also note the appearance of Stirling cycle numbers in [7].
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From the discussion of section 2.3 it follows that (3.32) are orthogonal idempotents in the

inverse descent algebra D′
n satisfying (δij is the Kronecker delta)

n−1∑

k=1

γ
(k)
12...n = W12...n , γ

(i)
12...nγ

(j)
12...n = δijγ

(i)
12...n (3.34)

For example, from the BRST-invariant permutations in (3.9) we get

γ
(1)
123 ≡ γ1|23 =

1

2
W123 −

1

2
W132, γ

(2)
123 ≡

1

2
γ1|2,3 =

1

2
W123 +

1

2
W132 , (3.35)

which satisfy

γ
(1)
123 + γ

(2)
123 = W123 , γ

(i)
123γ

(j)
123 = δijγ

(i)
123 . (3.36)

Similarly, at multiplicity four the definition (3.33) leads to

γ
(1)
1234 = γ1|234 , γ

(2)
1234 =

1

2

(
γ1|23,4 + γ1|2,34

)
, γ

(3)
1234 =

1

3!
γ1|2,3,4 , (3.37)

yielding

γ
(1)
1234 =

1

3
W1234 −

1

6
W1243 −

1

6
W1324 −

1

6
W1342 −

1

6
W1423 +

1

3
W1432 , (3.38)

γ
(2)
1234 =

1

2
W1234 −

1

2
W1432 ,

γ
(3)
1234 =

1

6
W1234 +

1

6
W1243 +

1

6
W1324 +

1

6
W1342 +

1

6
W1423 +

1

6
W1432 .

It is straightforward but tedious to check that the above are orthogonal idempotents

γ
(1)
1234 + γ

(2)
1234 + γ

(3)
1234 = W1234 , γ

(i)
1234γ

(j)
1234 = δijγ

(i)
1234 . (3.39)

At multiplicity five the orthogonal idempotents are given by

γ
(1)
12345 = γ1|2345 ,

γ
(2)
12345 =

1

2

(
γ1|234,5 + γ1|23,45 + γ1|2,345

)
,

γ
(3)
12345 =

1

3!

(
γ1|23,4,5 + γ1|2,34,5 + γ1|2,3,45

)
,

γ
(4)
12345 =

1

4!
γ1|2,3,4,5 ,

(3.40)

whose expansions can be found in the appendix A and [43]

4∑

k=1

γ
(k)
12345 = W12345 , γ

(i)
12345γ

(j)
12345 = δijγ

(i)
12345 . (3.41)

In the next section we will argue that the idempotents γ(1) and γ(3) defined in (3.33) cor-

respond to SYM amplitudes ASYM and the α′2 correction AF 4

of the string disk amplitude

and we will exploit the consequences of their generalizations to higher α′ corrections.
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4. Duality between kinematics and idempotents of the descent algebra

We find a duality between the permutations in the inverse descent algebra and kinematics

from different α′ sectors of the string disk amplitudes. Two orthogonal idempotents are

directly related to the field-theory and α′2 corrections and we rederive their dimensions

from a theorem in the descent algebra literature. This duality suggests a new decomposition

of the symmetries of the higher α′ components of the disk amplitude, which we explicitly

check to high orders. This decomposition yields their dimensions as a sum of Stirling cycle

numbers, generalizing the field-theory and α′2 formulas. In addition, we show that the

superfield expansion of the BRST invariants C1|X,Y,Z from the pure spinor formalism is

encoded in the permutations of the descent algebra, hinting of a new direction to explain

their rich combinatorial properties.

4.1. Color-dressed string amplitude and permutations: a duality

The color-dressed string disk amplitude

Mn(α
′) =

∑

σ∈Sn−1

Tr
(
T 1Tσ(2) · · ·Tσ(n)

)
Astring(1, σ(2), . . . , σ(n)) , (4.1)

is a sum over the different disk orderings of the open string amplitude weighted by traces of

color factors. The explicit form of the disk amplitudes is a linear combination of field-theory

amplitudes ASYM of ten-dimensional super-Yang-Mills [44] given by [45,46]

Astring(P ) =
∑

Q,R∈Sn−3

Z(P |1, R, n, n−1)S[R|Q]1A
SYM(1, Q, n−1, n) (4.2)

where S(P |Q)1 is the field-theory KLT kernel [47,48,49] conveniently computed recursively

by S[A, j|B, j, C]i = (kiB · kj)S[A|B,C]i, with base case S[∅|∅]i := 1 [19,29]. In addition,

Z(P |Q) are the non-abelian Z-theory amplitudes of [50,46]

Z(P |Q) := α′n−3
∫

D(P )

dz1dz2 · · ·dzn
vol(SL(2,R))

∏n
i<j |zij |

α′sij

zq1q2zq2q3 · · · zqnq1
, (4.3)

where D(P ) ≡ {(z1, z2, . . . , zn) ∈ R
n | −∞ < zp1

< zp2
< . . . < zpn

< ∞} is the domain

of the iterated integrals. The first terms in the α′ expansion of (4.3) yield

Astring(1, 2, . . . , n) = ASYM(1, 2, . . . , n) + ζ2α
′2AF 4

(1, 2, . . . , n) +O(α′3) , (4.4)

19



where the notation AF 4

is a reminder of the interaction of four field-strengths in the

effective action [51]. Using arguments of locality and BRST invariance in pure spinor

superspace, it was argued in [1] (see also the appendix B of [52]) that the α′2 correction

AF 4

could be written in terms of BRST-closed combinations of superfields C1|X,Y,Z as:

AF 4

(1, 2, . . . , n) =
∑

12...n=XY Z

C1|X,Y,Z . (4.5)

The BRST invariants satisfy shuffle symmetries C1|R�S,Y,Z = 0 for R, S 6= ∅ and are

totally symmetric under exchanges of any pairsX ↔ Y etc. So there are
[
n−1
3

]
independent

BRST invariants at n points. It is not a coincidence that this coincides with the number of

components (3.31) in the BRST-invariant permutation γ1|X,Y,Z . Example decompositions

of (4.5) at four and five points are given by AF 4

(1, 2, 3, 4) = C1|2,3,4 and AF 4

(1, 2, 3, 4, 5) =

C1|23,4,5 + C1|2,34,5 + C1|2,3,45.

Plugging in the color-trace decomposition (3.10) into the color-dressed amplitude (4.1)

for n = 4, 5 and using the decomposition (4.5) in terms of BRST invariants leads to

M4(α
′) = −

1

2

(
f12afa34ASYM(1, 2, 3, 4) + f13af b24 ASYM(1, 3, 2, 4)

)
(4.6)

+ 6ζ2α
′2 d1234C1|2,3,4 +O(α

′3) ,

M5(α
′) = −

i

2
ASYM(1, 2, 3, 4, 5)f12afa3bf b45 + sym(234)

+ 6iζ2α
′2
(

C1|23,4,5 f
23ada145 + C1|24,3,5 f

24ada135 + C1|25,3,4 f
25ada134

+ C1|34,2,5 f
34ada125 + C1|35,2,4 f

35ada124 + C1|45,2,3 f
45ada123

)

with similar expansions at higher points [1].

Comparing the color-dressed permutations P4 and P5 in (3.11) and (3.13) with the

above color-dressed amplitudes suggests the following dualities (γ(i) is defined in (3.33))4:

C1|X,Y,Z ←→
1

6
γ1|X,Y,Z , (4.7)

ASYM(1, 2, . . . , n) ←→ γ
(1)
123...n , (4.8)

AF 4

(1, 2, . . . , n) ←→ γ
(3)
123...n . (4.9)

where the deconcatenations (4.5) and (3.33) have been used to obtain the duality between

the α′2 correction AF 4

(1, 2, . . . , n) and the orthogonal idempotent γ
(3)
12...n.

4 Rewriting the F ... factors of Pn in the DDM basis [53] and using the shuffle symmetries of

γ1|P leads to the same permutations on both sides of the γ1|σn ↔ ASYM(1, σ, n) correspondence.
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4.2. Descent algebra decomposition of α′-correction symmetries

The duality between the descent algebra and kinematics suggested above is exploited to

show that the symmetries of the α′ corrections to disk amplitudes satisfy surprising new

KK-like symmetries dictated by a theorem of the descent algebra.

4.2.1. Field theory and α′2 corrections

For a partition µ and a composition p, theorem 4.2 of [6] states that

Eµ ◦ Ip = 0 , if λ(p) 6= µ . (4.10)

Under the dualities (4.8) and (4.9) this relation implies the symmetries

ASYM
(
γ1|P1,...,Pk

)
= 0 , k 6= 1 (4.11)

AF 4(
γ1|P1,...,Pk

)
= 0 , k 6= 3

To see this we use that P ·(σ◦τ) =
(
(P ·σ)◦(P ·τ)

)
if P has no common letters with σ and

τ and θ(σ ◦ τ) = θ(τ) ◦ θ(σ) to show that the theorem (4.10) implies (1 · Ip) ◦ (1 ·E
θ
µ) = 0

for λ(p) 6= µ leading to (4.11) since AF 4

corresponds to a sum of Eθ
µ with partitions with

three parts k(µ) = 3 and ASYM to Eθ
µ with k(µ) = 1.

The number of independent n-point ASYM(1, σ) and AF 4

(1, σ) follows from (4.11) by

elementary properties of the Stirling cycle numbers,

#
(
ASYM(1, 2, . . . , n)

)
= (n− 1)!−

n−1∑

k=1
k 6=1

[
n− 1

k

]

=

[
n− 1

1

]

= (n− 2)! (4.12)

#
(
AF 4

(1, 2, . . . , n)
)
= (n− 1)!−

n−1∑

k=1
k 6=3

[
n− 1

k

]

=

[
n− 1

3

]

,

since the number of components of γ1|P1,...,Pk
is
[
n−1
k

]
by (3.31) and

∑n−1
k=1

[
n−1
k

]
= (n−1)!,

so they correspond to the non-vanishing k in (4.11). These are the well-known dimensions of

ASYM and AF 4

under the KK [13] and KK-like relations [14,15]. Therefore the symmetries

(4.11) constitute a descent algebra decomposition of the KK and KK-like identities.

The dualities (4.8) and (4.9) together with the properties of the Reutenauer idempo-

tents (2.35) suggest “idempotent” identities for the ASYM and AF 4

amplitudes viewed as

symmetry relations of their respective functions:

ASYM(γ
(1)
12...n) = ASYM(1, 2, . . . , n) ,

AF 4

(γ
(3)
12...n) = AF 4

(1, 2, . . . , n) ,
(4.13)

which can be explicitly checked to hold true for various values of n.

21



4.2.2. Higher α′ corrections to string disk amplitudes

In this section we investigate the symmetries of higher α′ corrections of the string disk am-

plitude and show that the descent algebra also decomposes them and provides new insight

into their structure. The explicit data in Table 1 was collected using the α′ corrections to

disk amplitudes obtained in [45,54,55,46], see also [56,57,14,58] and references therein.

We begin by labelling the higher α′ corrections of string disk amplitudes by their

conjectural MZV basis content written in the form ζn2 ζM for n = 0, 1, 2, . . .. This is the

same organization found in the motivic decomposition of the disk amplitudes [18]

F =
(
1 + ζ2P2 + ζ22P4 + ζ32P6 + ζ42P8 + · · ·

)
(4.14)

×
(
1 + ζ3M3 + ζ5M5 +

1

2
ζ23M

2
3 + ζ7M7 + ζ3ζ5M5M3 +

1

5
ζ3,5[M5,M3] + · · ·

)
.

The descent algebra decomposition organizes the search for symmetries of string disk

amplitudes (4.2) by the BRST invariant permutations (3.7). More precisely, denoting by

|ζn
2 ζM the restriction to a particular element of the set of MZVs, one checks whether

Astring(γ1|P1,...,Pk
)
∣
∣
ζn
2 ζM

, p = (p1, . . . , pk) |= n− 1, |Pi| = pi (4.15)

vanishes or not. The number of checks at n points would appear to grow exponentially, but

luckily a vanishing outcome of (4.15) seems to depend only on the number of parts k(p)

of the composition, independently of n. These have been observed experimentally with

data up to n = 8 and will be assumed in general. Thus each time n increases by one it

suffices to test (4.15) for a single case of maximum k = n−1, if k is odd (see (4.21)) or, in

other words, if n is even. That is γ1|2,3,...,n = 1.(2�3� . . .�n) by (3.30). Therefore (4.15)

becomes a sum over all cyclic orderings of the n-point string disk amplitude (4.2),

Astring(γ1|2,3,...,n) =
∑

Q,R∈Sn−3

Z×(1, R, n, n−1)S[R|Q]1A
SYM(1, Q, n−1, n) (4.16)

where Z×(Q) :=
∑

σ∈Sn−1
Z(1, σ|Q) are the abelian Z-theory amplitudes of [19]. As alluded

to above, the proof (4.21) implies that when n is odd (4.15) always vanishes. This agrees

with the statement that NLSM amplitudes vanish for n odd. Therefore the α′ expansion

of the maximal case k = n−1 can be obtained from the methods of [19,59]5.

5 I thank Oliver Schlotterer for discussions on this point.
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k Astring(γ1|P1,...,Pk
) = 0 Astring(γ1|P1,...,Pk

) 6= 0

7 ζ7, ζ5, ζ3, ζ
2
3 , ζ2, ζ2ζ5, ζ2ζ3, ζ

2
2 , ζ

2
2ζ3 ζ32

6 ∀ζM ×

5 ζ7, ζ5, ζ3, ζ
2
3 , ζ2, ζ2ζ5, ζ2ζ3 ζ22 , ζ

2
2ζ3, ζ

3
2

4 ∀ζM ×

3 ζ7, ζ5, ζ3, ζ
2
3 ζ2, ζ2ζ5, ζ2ζ3, ζ

2
2 , ζ

2
2ζ3, ζ

3
2

2 ∀ζM ×

1 ζ2, ζ2ζ3, ζ2ζ5 ζ7, ζ5, ζ3, ζ
2
3 , ζ

2
2 , ζ

2
2ζ3, ζ

3
2

Table 1. Overview of the descent algebra symmetries of higher α′ corrections to string disk
amplitudes of up to n = 8 points displayed by their MZV content of weight w ≤ 7. The entries
depend only on the number of parts k of the composition of n−1. However, a partition with
k parts cannot be probed by disk amplitudes with fewer than k+1 points.

4.2.3. Even zeta value symmetry classes

The descent algebra decomposition of the symmetries of the string disk amplitudes (4.15)

will be classified by their ζn2 content; this is because the second line of (4.14) respects both

the KK and BCJ field-theory amplitude relations [19,16]6. Since they lead to the lower

bound of (n− 3)! degrees of freedom they are not expected to modify the dimensions of a

given ζn2 symmetry class, leading to all components ζm2 ζM sharing the same symmetries.

Indeed, Table 1 shows that the components ζ7, ζ5, ζ3, ζ
2
3 have the same KK symmetries

of ASYM, while the components ζ2, ζ2ζ3, ζ2ζ5 have the same KK-like symmetries of AF 4

.

This confirms the argument above and we can state:

Astring(γ1|P1,...,Pk
)
∣
∣
ζM

= 0, k 6= 1, (4.17)

Astring(γ1|P1,...,Pk
)
∣
∣
ζ2ζM

= 0, k 6= 3 .

Therefore their dimensions are counted by the same
[
n−1
1

]
and

[
n−1
3

]
as before.

The symmetries of the ζn2 classes for n≥2 have never been studied before. The exper-

imental data collected in Table 1 indicates the non-vanishing cases as

Astring(γ1|P1,...,Pk
)
∣
∣
ζ2
2ζM
6= 0, k = 1, 3, 5 , (4.18)

Astring(γ1|P1,...,Pk
)
∣
∣
ζ3
2ζM
6= 0, k = 1, 3, 5, 7 .

6 The string monodromy relations give rise to deformations of the field-theory BCJ relations

by even powers of α′ accompanied by factors of ζm2 . These are given by the first line of (4.14) so

the second line preserves the field-theory KK and BCJ amplitude relations.
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The analysis of the NLSM amplitudes from [19,59] and the descent algebra decomposition

patterns mentioned above give rise to a conjecture for all ζm2 ζM components with m≥2:

Astring(γ1|P1,...,Pk
)
∣
∣
ζm
2 ζM

6= 0, k = 1, 3, 5, . . . , 2m+ 1, m ≥ 2 (4.19)

Unlike (4.12), the dimensions of (4.19) are given by a sum of Stirling cycle numbers

#
(

Astring(1, 2, . . . , n)
∣
∣
ζm
2 ζM

)

=

[
n− 1

1

]

+

[
n− 1

3

]

+ · · ·+

[
n− 1

2m+ 1

]

(4.20)

By construction, (4.19) and the results displayed in Table 1 of the NLSM analysis of

[19] match when k = n−1 for n≥4. For example, the ζ32 components do not vanish for

k = 1, 3, 5, 7 corresponding to non-vanishing entries for n = 4, 6, 8 in the table 1 of [19].

The vanishing of ζ32 for k = 9 and higher from (4.19) corresponds to the vanishing of ζ32

for n = 10 (and higher) in [19]. The conjectural status of (4.19) hinges on the observation

that once the symmetry of a particular ζm2 ζM component is established from the analysis

done at k = n−1, it remains valid for the same k when n is increased, see the paragraph

after (4.15).

Parity of the amplitude Astring(1, . . . , n) = (−1)nAstring(n, . . . , 1) explains the van-

ishing of (4.15) for even k as observed in Table 1. A quick counting argument suggests

why this is so as
∑

k

[
n−1
2k

]
= 1

2
(n− 1)! is the upper bound in the dimension of string disk

amplitudes from properties of the string worldsheet alone [22]. More precisely:

Proposition. If k is even then the n-point disk amplitude satisfies

Astring(γ1|P1,...,Pk
) = 0, (4.21)

where γ1|P1,...,Pk
is the BRST-invariant permutation (3.7).

Proof. The parity of Astring at n points can be written as Astring(1, σ) = (−1)nAstring(1, σ̃)

by cyclicity. This means, by (3.30), that Astring(γ1|P1,...,Pk
) will vanish whenever the parity

of Astring at n points is opposite to the parity of Ip for p |= n−1. To see why this is

true consider the example of Astring(γ1|23,4) with the expression for the BRST-invariant

permutation in (3.12). The terms can be rearranged as

Astring(γ1|23,4) =
1

2

(
Astring

1234 −A
string
1432

)
+
1

2

(
Astring

1243 −A
string
1342

)
+
1

2

(
Astring

1423 −A
string
1324

)
= 0 (4.22)
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which vanishes by parity Astring
1234 = Astring

1432 . Notice that this happens because the parity of

I21(23, 4) from (3.25) is the opposite of the string disk amplitude; Ĩ21(23, 4) = −I21(23, 4).

The proposition can now be proven by considering the two cases when n is even or odd.

For n even the parity of the n-point disk amplitude is + so Astring(γ1|P1,...,Pk
) vanishes

if the parity of Ip is − for a composition p of n−1. By (3.25) this means that there must

be an odd number of even parts in the composition p (which sum to even). But since n−1

is odd, there must be an odd number of odd parts in p (which sum to odd). Therefore the

number of parts k(p) is even (= odd+ odd). Similarly, when n is odd the number of parts

k(p) in the composition of p is also even (from even + even). This finishes the proof.

4.2.4. Idempotent properties of higher α′ corrections

Experimentally, the idempotent properties (4.13) generalize to their ζM and ζ2ζM symme-

try classes at higher α′:

Astring(γ
(1)
12...n)

∣
∣
ζM

= Astring(1, 2, . . . , n)
∣
∣
ζM

, (4.23)

Astring(γ
(3)
12...n)

∣
∣
ζ2ζM

= Astring(1, 2, . . . , n)
∣
∣
ζ2ζM

, (4.24)

For example, one can check using the string five-point disk amplitudes at order α′7ζ2ζ5

that Astring(γ
(3)
12345)|ζ2ζ5 = Astring(1, 2, 3, 4, 5)|ζ2ζ5 , or

Astring
12345

∣
∣
∣
ζ2ζ5

=
1

12

(

3Astring
12345 +Astring

12354 + Astring
12435 +Astring

12453 + Astring
12534 − Astring

12543

+ Astring
13245 −Astring

13254 + Astring
13425 + Astring

13452 −Astring
13524 − Astring

13542 (4.25)

+ Astring
14235 +Astring

14253 − Astring
14325 − Astring

14352 +Astring
14523 − Astring

14532

+ Astring
15234 −Astring

15243 − Astring
15324 − Astring

15342 −Astring
15423 − 3Astring

15432

)∣
∣
∣
ζ2ζ5

The highly non-trivial nature of such an identity provides strong support for the descent

algebra decomposition of symmetries discussed above.

4.3. Descent algebra symmetries and the color-dressed amplitude

The descent algebra decomposition of the different ζm2 ζM symmetry classes of the string

disk amplitude controls the appearance of the ζm2 ζM corrections in the color-dressed string

disk amplitude Mn(α
′) (4.1). If Astring(γ1|P1,...,Pk

)|ζm
2 ζM does not vanish for a given k then

the color-dressed amplitude contains ζm2 ζMd1a1...akFP1
a1

. . . FPk
ak

contributions. This follows

from linearity using Astring(Pn) = Mn(α
′) in the color-dressed permutation Pn in (3.7). For

instance, from Astring(γ1|2345)|ζ2
2
6= 0 we get ζ22d

1aF 2345
a = (ζ22/2)f

23afa4bf b51 corrections

in the five-point color-dressed amplitude M5(α
′).
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4.4. More consequences of the descent algebra duality

We show that theorem 4.2 of [6] leads to a derivation of the claim from [1] that the

representation (4.5) is invertible. In addition, inspired by the duality (4.7) we find an

algorithm to extract the superfield expansion of C1|P,Q,R from the permutations of γ1|P,Q,R.

4.4.1. BRST invariants from AF 4

An immediate consequence of the duality (4.7) is that the representation of AF 4

in terms

of C1|P1,P2,P3
given in (4.5) is invertible. To see this one uses Theorem 4.2 of [6],

Eµ ◦ Ip = Ip , if λ(p) = µ (4.26)

where λ(p) is the shape of the composition p and Eµ is defined in (2.31). This implies

(1 · Ip) ◦ (1 · θ(Eµ)) = (1 · Ip) for λ(p) = µ or, using the function interpretation of the right

action σ ◦ F := F (σ) with a partition with three parts k(µ) = 3

AF 4(
γ1|P1,P2,P3

)
= 6C1|P1,P2,P3

, |Pi| = pi , P1P2P3 = 23 . . . n , (4.27)

where we used the identifications (3.30), (3.32) and duality (4.9) on the left-hand side and

the duality (4.7) on the right-hand side. For example, from γ1|23,4,5 of (A.1) we get

6C1|23,4,5 = (4.28)

1

2

(

AF 4

12345 +AF 4

12354 +AF 4

12435 +AF 4

12453 +AF 4

12534 +AF 4

12543 −AF 4

13245 −AF 4

13254

− AF 4

13425 − AF 4

13452 − AF 4

13524 − AF 4

13542 + AF 4

14235 + AF 4

14253 − AF 4

14325 − AF 4

14352

+ AF 4

14523 − AF 4

14532 + AF 4

15234 + AF 4

15243 − AF 4

15324 − AF 4

15342 + AF 4

15423 − AF 4

15432

)

.

Plugging in AF 4

(1, 2, 3, 4, 5) = C1|23,4,5 +C1|2,34,5 +C1|2,3,45 and using shuffle symmetries

of C1|... these terms collapse to a single term, 6C1|23,4,5, in agreement with (4.27). The

theorem (4.26) therefore justifies the indirect arguments of [1]. In addition, in view of the

relations (3.33) and (4.27), the idempotent identity (4.13) yields the decomposition of the

α′2 correction of the disk amplitude (4.5) found in [1]

AF 4

(1, 2, . . . , n) =
1

6

∑

12...n=P1P2P3

AF 4

(γ1|P1,P2,P3
) =

∑

12...n=P1P2P3

C1|P1,P2,P3
. (4.29)
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4.4.2. The superfield expansion of C1|P,Q,R from the permutations of γ1|P,Q,R

The algorithm proposed in [27] generates the superfield expansion of the scalar BRST

invariant recursively as

Ci|P,Q,R = MiMP,Q,R +Mi ·
[
Cp1|p2...p|P|,Q,R − Cp|P||p1...p|P|−1,Q,R + (P ↔ Q,R)

]
(4.30)

starting from Ci|j,k,l = MiMj,k,l with the dot representing concatenation, Mi ·MA := MiA.

For example, the first few expansions are given by

C1|2,3,4 = M1M2,3,4 , (4.31)

C1|23,4,5 = M1M23,4,5 +M12M3,4,5 −M13M2,4,5 ,

C1|234,5,6 = M1M234,5,6 +M12M34,5,6 +M123M4,5,6 −M124M3,5,6

−M14M23,5,6 −M142M3,5,6 +M143M2,5,6 ,

C1|23,45,6 = M1M23,45,6 +M12M45,3,6 −M13M45,2,6 +M14M23,5,6 −M15M23,4,6

+M124M3,5,6 −M134M2,5,6 +M142M3,5,6 −M152M3,4,6

−M125M3,4,6 +M135M2,4,6 −M143M2,5,6 +M153M2,4,6 .

It is not difficult to suspect that such a systematic generation of terms indicate a hidden

combinatorial structure. We now propose how these terms can be extracted from the

permutations of the BRST-invariant permutations γ1|P,Q,R of the inverse descent algebra

(further justifying the terminology of γ1|...). The steps are as follows:

1. Sum over the cyclic permutations of all permutations in γ1|P,Q,R:

Wσ →Wσ + cyclic(σ) (4.32)

2. Decompose Wσ into all possible four-word deconcatenations:

Wσ =
∑

XY ZW=σ

WX .WY .WZ .WW (4.33)

3. Move label 1 to the front by repeatedly commuting WC .WA1B = WA1B.WC if neces-

sary and write the result in terms of Berends-Giele superfields:

WA1B.WC .WD.WE :=
1

4!
MA1BMC,D,E (4.34)

The resulting expressions have been explicitly checked7 for all topologies of BRST invari-

ants up to eight points. In addition, using the descent duality (4.7) one may also derive the

change of basis identities for Ci6=1|... =
∑

C1|... from [27,28] by choosing a different label

to be singled-out in the color-dressed permutation (3.1) [41].

7 The shuffle symmetry AiB = (−1)|A|iÃ�B [38] is needed to rewrite words in a Lyndon basis.
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4.4.3. The descent algebra dual to the standard Berends-Giele current

In view of the Berends-Giele formula to compute SYM tree amplitudes [39] and the shuffle

identities obeyed by the standard Berends-Giele currents [60,61], the symmetry relations

(4.11) suggest an interesting duality.

To see this we consider the descent algebra symmetry ASYM
(
γ1|234,5

)
= 0 for k = 2 in

(4.11) from a new perspective. We have the Berends-Giele formula ASYM(1, P ) = sPJ
m
1 Jm

P

on the one hand and on the other hand we have the duality ASYM(1, P ) ↔ γ1|P as in

(4.8). However, the BRST-invariant permutation with a single part is given by (3.30) as

γ1|P = 1 · EP . In summary,

sPJ
m
1 Jm

P = ASYM(1, P ) ←→ γ1|P = 1 · EP (4.35)

suggesting the duality and the origin for the terminology of EP
8:

Jm
P ←→ EP . (4.36)

And we now obtain ASYM
(
γ1|234,5

)
= s2345J

m
1 Jm

E234�E5
= 0 using γ1|234,5 = 1 · E234�E5

and the shuffle symmetry Jm
R�S = 0 of the Berends-Giele currents.

5. Conclusion

In this paper we investigated the combinatorial properties of the permutations appearing

in the color-dressed permutations (3.1) using the basis of color factors from the color trace

decomposition of [3] and we found closed formulas that generate them. This led us to the

study of descent algebras and we pointed out the relation between these permutations and

the (inverse) descent algebra. In particular, we showed how the color-dressed permutations

give rise to orthogonal idempotents in the descent algebra which sum to the identity per-

mutation. These idempotents have been extensively studied in the mathematics literature,

most notably by Reutenauer and Garsia [7,31,6].

After discovering closed formulas for various permutations appearing in the color-

dressed permutations we turned our attention to the formulation of the color-dressed string

8 When using the pure spinor representation of the SYM tree amplitude ASYM(1, P ) =

〈M1EP 〉, where EP is the ghost-number two superfield defined in [62], the correspondence (4.36)

can be stated even more suggestively as EP ↔ EP .
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disk amplitudes (4.1) including α′ corrections. We then pointed out, inspired by [1], the

correspondence between the permutations from the (inverse) descent algebra and kinemat-

ics from the string disk amplitudes. Knowing that the permutations can be related to the

descent algebra, we exploited the consequences of some theorems from the mathematics

literature on descent algebra to the α′ corrections of the string disk amplitudes. This led

to the discovery of a new descent algebra decomposition of the KK-like symmetries of the

α′ corrections organized by their MZV content and counts their dimensions in terms of

Stirling cycle numbers, leading to (4.19). Abelian Z-theory arguments together with some

observations yield lend credence to their validity in general. Besides, these claims have

been explicitly checked using various data points in string theory up to n = 8 and α′7.

Furthermore, the duality with the descent algebra also suggests non-obvious KK-like

identities among α′ corrections (4.23) and (4.24) arising from the “idempotent” property

of certain orthogonal permutations studied by Garsia and Reutenauer [7,6].

In addition, we found an algorithm to extract the superfield content of the BRST

invariants in the pure spinor formalism from the BRST-invariant permutations in the

inverse descent algebra, hinting about their combinatorial origin.

5.0.1. Outlook and future directions

The duality between kinematics and idempotents of the inverse descent algebra in (4.7),

(4.8) and (4.9) and the orthogonality property of the Reutenauer idempotents (2.35) led to

the symmetries of various α′ corrections of the string disk amplitude. But this consequence

was based purely on the functional interpretation of the right action of permutations as

σ ◦F := F (σ). A more intriguing possibility is to interpret the α′′2 correction AF 4

and the

tree amplitude ASYM as “orthogonal” and “idempotents” directly in kinematic space:

AF 4

(1, 2, . . . , n) ◦ASYM(1, 2, . . . , n) = 0 , (5.1)

ASYM(1, 2, . . . , n) ◦AF 4

(1, 2, . . . , n) = 0 ,

ASYM(1, 2, . . . , n) ◦ASYM(1, 2, . . . , n) = ASYM(1, 2, . . . , n) ,

AF 4

(1, 2, . . . , n) ◦AF 4

(1, 2, . . . , n) = AF 4

(1, 2, . . . , n) .

However, it is not clear how to define the right-action action of the kinematic variables of

polarizations and momenta among themselves.
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In trying to find the right-action on kinematics one may consider the Lie-polynomial

form of the string disk amplitudes from [29]. In this setting the field-theory and ζ2 correc-

tions at four and five points become (12 := [1, 2], 123 := [[1, 2], 3] etc)

ASYM(1, 2, 3, 4) =
[12, 3]

s12
+

[1, 23]

s23
(5.2)

AF 4

(1, 2, 3, 4) = s23[12, 3] + s12[1, 23]

ASYM(1, 2, 3, 4, 5) =
[123, 4]

s12s123
+

[321, 4]

s23s123
+

[12, 34]

s12s34
+

[1, 432]

s34s234
+

[1, 234]

s23s234
,

AF 4

(1, 2, 3, 4, 5) = −
1

s12

(
s45[12, 34] + s34[123, 4]

)
−

1

s23

(
s45[1, 234] + s15[321, 4]

)

−
1

s34

(
s12[1, 432] + s15[12, 34]

)
−

1

s45

(
s12[321, 4] + s23[123, 4]

)

−
1

s51

(
s23[1, 432] + s34[1, 234]

)

+ [1, 234] + [12, 34] + [13, 24] + [321, 4]

where we omitted the last leg n which multiplies from the right. These Lie-polynomial am-

plitudes give rise to the standard ASYM and AF 4

amplitudes upon dressing the numerators

with BCJ-satisfying polarizations [61,63], for example [12, 3]4 → Am
[12,3]A

m
4 . Indexing the

Mandelstams and Lie monomials Γ from ASYM and AF 4

with the subscripts (0) and (2)

we define the following kinematical right-action multiplications

s
(m)
ij ◦ s

(n)
kl = δikδjlsij ,

1

s
(m)
ij

◦
1

s
(n)
kl

= δikδjl
1

sij
,

1

s
(m)
ij

◦ s
(n)
ij = s

(n)
ij ◦

1

s
(m)
ij

= 1,

Γ(i) ◦ Γ(i) = Γ(i), Γ(i) ◦ Σ(j) + Σ(i) ◦ Γ(j) = 0 . (5.3)

Then preliminary analysis shows that up to the purely local terms in AF 4

we have

ASYM(1, 2, . . . , n) ◦ AF 4

(1, 2, . . . , n) = 0, tested up to n = 6. It would be interesting to

see whether these observations can be made to include the local terms, and how to trans-

fer these rules to the kinematics in terms of polarizations and momenta.

It would be interesting to frame the Eisenstein-Kronecker series and the expansion

functions g(n)(z, τ) as defined by Brown and Levin [64] in terms of the Solomon descent

algebra. The scalar generalized elliptic integrands (or homology invariants) E1|P,Q,R of

[65] satisfy the same symmetry relations obeyed by the scalar BRST invariants and their

composition in terms of the functions g(n)(z, τ) can be mapped to the superfields of the

BRST invariants C1|P,Q,R. Since the expansion of C1|... is encoded in the descent algebra
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as in section 4.4.2, there should be a descent algebra characterization of the homology

invariants as well.

In addition, we suspect that the descent algebra decomposition of KK-like symmetries

are universal to color-dressed amplitudes, for they encode basic relations from the color

traces. As such, there should be KK-like identities for the single-trace part at genus one.

It will be interesting to see whether the possible symmetries are graded by a combination

of standard MZVs and eMZVs [66,67,68], and how double traces and higher modify the

analysis.

More speculative work may define a “BRST” operator ∆ acting on permutations in

a similar way as the pure spinor BRST operator acts on Berends-Giele supercurrents.

The permutations would then need to be distinguished by different concatenation decom-

positions. For example ∆(123) = 1.23 + 12.3 where the dot represents a “concatenation”

operation. With additional structure such at the deconcatenation algorithm of section 4.4.2

this BRST operator may be used in a more abstract setting to study the “cohomology” of

permutations that ultimately may give further insight into the combinatorics of the BRST

invariants and the generalized elliptic integrands.
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Appendix A. Explicit permutations at low multiplicities

The multiplicity-five BRST-invariant permutations (defined in (3.7)) are given by

γ1|2,3,4,5 = W1(2�3�4�5) (A.1)

γ1|23,4,5 =
1

2
W12345 +

1

2
W12354 +

1

2
W12435 +

1

2
W12453 +

1

2
W12534 +

1

2
W12543

−
1

2
W13245 −

1

2
W13254 −

1

2
W13425 −

1

2
W13452 −

1

2
W13524 −

1

2
W13542

+
1

2
W14235 +

1

2
W14253 −

1

2
W14325 −

1

2
W14352 +

1

2
W14523 −

1

2
W14532

+
1

2
W15234 +

1

2
W15243 −

1

2
W15324 −

1

2
W15342 +

1

2
W15423 −

1

2
W15432
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γ1|234,5 =
1

3
W12345 +

1

3
W12354 −

1

6
W12435 −

1

6
W12453 +

1

3
W12534 −

1

6
W12543

−
1

6
W13245 −

1

6
W13254 −

1

6
W13425 −

1

6
W13452 −

1

6
W13524 −

1

6
W13542

−
1

6
W14235 −

1

6
W14253 +

1

3
W14325 +

1

3
W14352 −

1

6
W14523 +

1

3
W14532

+
1

3
W15234 −

1

6
W15243 −

1

6
W15324 −

1

6
W15342 −

1

6
W15423 +

1

3
W15432

γ1|23,45 =
1

4
W12345 −

1

4
W12354 +

1

4
W12435 +

1

4
W12453 −

1

4
W12534 −

1

4
W12543

−
1

4
W13245 +

1

4
W13254 −

1

4
W13425 −

1

4
W13452 +

1

4
W13524 +

1

4
W13542

+
1

4
W14235 +

1

4
W14253 −

1

4
W14325 −

1

4
W14352 +

1

4
W14523 −

1

4
W14532

−
1

4
W15234 −

1

4
W15243 +

1

4
W15324 +

1

4
W15342 −

1

4
W15423 +

1

4
W15432

γ1|2345 =
1

4
W12345 −

1

12
W12354 −

1

12
W12435 −

1

12
W12453 −

1

12
W12534 +

1

12
W12543

−
1

12
W13245 +

1

12
W13254 −

1

12
W13425 −

1

12
W13452 +

1

12
W13524 +

1

12
W13542

−
1

12
W14235 −

1

12
W14253 +

1

12
W14325 +

1

12
W14352 −

1

12
W14523 +

1

12
W14532

−
1

12
W15234 +

1

12
W15243 +

1

12
W15324 +

1

12
W15342 +

1

12
W15423 −

1

4
W15432

According to the deconcatenation (3.33) these BRST-invariant permutations give rise to

the following orthogonal idempotents:

γ
(1)
12345 =

1

4
W12345 −

1

12
W12354 −

1

12
W12435 −

1

12
W12453 −

1

12
W12534 +

1

12
W12543

−
1

12
W13245 +

1

12
W13254 −

1

12
W13425 −

1

12
W13452 +

1

12
W13524 +

1

12
W13542

−
1

12
W14235 −

1

12
W14253 +

1

12
W14325 +

1

12
W14352 −

1

12
W14523 +

1

12
W14532

−
1

12
W15234 +

1

12
W15243 +

1

12
W15324 +

1

12
W15342 +

1

12
W15423 −

1

4
W15432

γ
(2)
12345 =

11

24
W12345 −

1

24
W12354 −

1

24
W12435 −

1

24
W12453 −

1

24
W12534 −

1

24
W12543

−
1

24
W13245 −

1

24
W13254 −

1

24
W13425 −

1

24
W13452 −

1

24
W13524 −

1

24
W13542

−
1

24
W14235 −

1

24
W14253 −

1

24
W14325 −

1

24
W14352 −

1

24
W14523 −

1

24
W14532

−
1

24
W15234 −

1

24
W15243 −

1

24
W15324 −

1

24
W15342 −

1

24
W15423 +

11

24
W15432

γ
(3)
12345 =

1

4
W12345 +

1

12
W12354 +

1

12
W12435 +

1

12
W12453 +

1

12
W12534 −

1

12
W12543
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+
1

12
W13245 −

1

12
W13254 +

1

12
W13425 +

1

12
W13452 −

1

12
W13524 −

1

12
W13542

+
1

12
W14235 +

1

12
W14253 −

1

12
W14325 −

1

12
W14352 +

1

12
W14523 −

1

12
W14532

+
1

12
W15234 −

1

12
W15243 −

1

12
W15324 −

1

12
W15342 −

1

12
W15423 −

1

4
W15432

γ
(4)
12345 =

1

24
W1(2�3�4�5)

Here we list the first few expansions of Eλ defined in (2.31):

E2 =
1

2
W12 −

1

2
W21 , E11 =

1

2
W12 +

1

2
W21 (A.2)

E3 =
1

3
W123 −

1

6
W132 −

1

6
W213 −

1

6
W231 −

1

6
W312 +

1

3
W321

E21 =
1

2
W123 −

1

2
W321 , E111 =

1

6
W123 + perm(1, 2, 3)

E211 =
1

4
W1234 +

1

12
W1243 +

1

12
W1324 +

1

12
W1342 +

1

12
W1423 −

1

12
W1432

+
1

12
W2134 −

1

12
W2143 +

1

12
W2314 +

1

12
W2341 +

1

12
W2413 −

1

12
W2431

+
1

12
W3124 −

1

12
W3142 −

1

12
W3214 −

1

12
W3241 +

1

12
W3412 −

1

12
W3421

+
1

12
W4123 −

1

12
W4132 −

1

12
W4213 −

1

12
W4231 −

1

12
W4312 −

1

4
W4321

A.0.1. The Berends-Giele idempotents

The Berends-Giele idempotents E(P ) are defined in section 3.1 as the inverse θ(E(P )) of

the Eulerian idempotent (2.21). Their expansions up to multiplicity three were given in

(3.17) and now we write down the multiplicity four:

E(1234) =
1

4
W1234 −

1

12
W1243 −

1

12
W1324 −

1

12
W1342 −

1

12
W1423 +

1

12
W1432 (A.3)

−
1

12
W2134 +

1

12
W2143 −

1

12
W2314 −

1

12
W2341 +

1

12
W2413 +

1

12
W2431

−
1

12
W3124 −

1

12
W3142 +

1

12
W3214 +

1

12
W3241 −

1

12
W3412 +

1

12
W3421

−
1

12
W4123 +

1

12
W4132 +

1

12
W4213 +

1

12
W4231 +

1

12
W4312 −

1

4
W4321

As a curiosity, noting that E4 = I4 one can derive these permutations using the conversion

(2.29) together with (2.14) for the permutations in θ(Bp) (note θ2 = 1). So (2.30) yields

the permutations in E1234 = θ(I4) as

E(1234) = −
1

4
1�2�3�4 +

1

3
1�2�34 +

1

3
1�23�4−

1

2
1�234 (A.4)

+
1

3
12�3�4−

1

2
12�34−

1

2
123�4 + 1234 .
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As a multiplicity-four example of the inverse idempotent basis of (3.20) we have

I22(12, 34) =
1

4
W1234 −

1

4
W1243 +

1

4
W1324 +

1

4
W1342 −

1

4
W1423 −

1

4
W1432 (A.5)

−
1

4
W2134 +

1

4
W2143 −

1

4
W2314 −

1

4
W2341 +

1

4
W2413 +

1

4
W2431

+
1

4
W3124 +

1

4
W3142 −

1

4
W3214 −

1

4
W3241 +

1

4
W3412 −

1

4
W3421

−
1

4
W4123 −

1

4
W4132 +

1

4
W4213 +

1

4
W4231 −

1

4
W4312 +

1

4
W4321 .
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