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Abstract. We consider a second order dynamical system for solving variational inequalities in
Hilbert spaces. Under standard conditions, we prove the existence and uniqueness of strong global
solution of the proposed dynamical system. The exponential convergence of trajectories is established
under strong pseudo-monotonicity and Lipschitz continuity assumptions. A discrete version of the
proposed dynamical system leads to a relaxed inertial projection algorithm whose linear convergence
is proved under suitable conditions on parameters. We discuss the possibility of extension to general
monotone inclusion problems. Finally some numerical experiments are reported demonstrating the
theoretical results.
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1. Introduction. Let H be a real Hilbert space endowed with an inner product
and its induced norm denoted 〈·, ·〉 and ‖·‖, respectively. Let C be a nonempty closed
convex subset of H and let A : H → H be a continuous operator. The variational
inequality V I(A,C) consists in finding a point x∗ ∈ C such that

(1.1) 〈Ax∗, y − x∗〉 ≥ 0 for every y ∈ C.

Variational inequality (VI) is a general mathematical framework arising naturally
in many theoretical and applied fields, such as economics, engineering mechanics,
transportation, and many more; see for example, [2, 9, 17]. The VIs theoretical,
algorithmic foundations and applications have been extensively studied in the lit-
erature. For the current state-of-the-art results, see, for instance [17, 28] and the
references quoted therein. For solving VIs, numerous projection methods such as
basic projection, extragradient projection, and hyperplane projection methods, have
been designed to solve different classes of VIs [2, 17, 28, 34]. In principle, each method
is confined to a certain class of VIs so that the convergence of the algorithm can be
guaranteed.

In recent years, dynamical systems have been widely investigated for solving opti-
mization problems, fixed point problems, variational inequalities and monotone inclu-
sions [4, 11, 13, 14, 15, 16, 20, 30, 32, 37, 38]. For solving strongly pseudo-monotone
VIs, some first order projected dynamical systems were proposed and investigated
[16, 20, 24, 37]. In this paper, we continue this research direction by considering
second order dynamical systems. The work is motivated by Antipin [4], who studied
the following second order dynamical system{

ẍ(t) + αẋ(t) + x(t)− PC(x(t)− λ∇g(x(t))) = 0,

x(0) = x0, ẋ(0) = v0,
(1.2)

for minimizing a smooth and convex function g : H → R over the closed convex
set C ⊂ H, where x0, v0 ∈ H, α, λ > 0 and PC is the projection operator onto C.
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Antipin proved in [4, Theorem 5] that if g is smooth and strongly convex then (1.2)
has a unique equilibrium point, and this point is exponentially stable. An iterative
analogue of the dynamical system (1.2) leads to a projection method with momentum

(1.3) xk+1 = PC(xk − λ∇g(xk) + θ(xk − xk−1)),

where θ > 0, which was studied by Antipin in [3], see also [33]. A generalization of
(1.3) for solving a composite optimization problem was investigated in [31], where
linear convergence was obtained under a strong convexity condition.

It is well known that the (generalized) convexity of a smooth function g is charac-
terized by the (generalized) monotonicity of its gradient ∇g (see e.g., [25]). Replacing
∇g in (1.2) by the general operator A, we consider the following dynamical system
for solving V I(A,C){

ẍ(t) + α(t)ẋ(t) + β(t) [x(t)− PC(x(t)− λAx(t))] = 0,

x(0) = x0, ẋ(0) = v0,
(1.4)

where α, β : [0,+∞) → [0,+∞) be Lebesgue measurable functions. Under Lipschitz
continuity of A, we prove that dynamical system (1.4) has a unique global solution. In
addition, when A is strongly pseudo-monotone, we show that the trajectories gener-
ated by this dynamical system converge globally exponentially to the unique solution
of the VI problem.

The second order dynamical systems (1.2) and (1.4) have a close connection with
the heavy-ball method [3, 4, 8, 33] and numerical methods with inertial effect for
solving convex optimization problems [1, 7] and monotone inclusions [5, 6, 12, 13, 29].
Motivated by the recent works of Attouch and Cabot [5, 6], we propose a discrete ver-
sion of dynamical system (1.4), which leads to a relaxed inertial projection algorithm{

yk = xk + θk(xk − xk−1)

xk+1 = (1− ρk)yk + ρkPC(yk − λAyk).
(1.5)

We prove the linear convergence of the iterations to the unique solution when A is
strongly pseudo-monotone and Lipschitz continuous. As far as we know, this result
is new even in strongly monotone settings.

We also extend the obtained results to general monotone inclusion problems: Find
x∗ ∈ H such that

0 ∈ Ax∗ +Bx∗,

where A is monotone and B : H ⇒ H is a set-valued maximal monotone operator. In
this case, we rediscover the relaxed inertial forward-backward (RIFB) [6], where the
weak convergence was obtained provided that A is co-coercive. We investigate the
linear convergence of (RIFB) when one of the involved operators A or B is strongly
monotone, which is also new, to the best of our knowledge. Some other convergence
results without inertial effect θk can be found in the literature. For example, in [19],
the author obtained the linear convergence when A is co-coercive and B is strongly
monotone.

It is worth emphasizing that the convergence analysis of algorithm (1.5) is carried
out independently with the results of dynamical system (1.4). In this paper, we
consider both continuous and discrete systems to provide a comprehensive study.

The remaining part of the paper is organized as follows. Section 2 describes
the global exponential convergence of the trajectories of dynamical system (1.4). A
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discrete version of the dynamical system and its linear convergence are investigated
in Section 3. Section 4 discusses the possibility of extension to general monotone
inclusions. Finally, some numerical experiments are reported in Section 5 to illustrate
the theoretical results.

2. Global exponential convergence. In this section we will approach the
solution set of V I(A,C) from a continuous perspective by means of the trajectories
generated by the dynamical system (1.4). We will recall some basic definitions and
properties before proving the existence and uniqueness of the trajectories of (1.4).
For each x ∈ H, there exists a unique point in C,(see, e.g.,[28]), denoted by PC(x),
such that

‖x− PC(x)‖ ≤ ‖x− y‖ ∀y ∈ C.

Some well-known properties of the metric projection PC : H → C are given in the
following lemma [18, 28].

Lemma 2.1. Assume that the set C is a closed convex subset of H. Then we have
the following:
(a) PC(.) is a nonexpansive operator, i.e., for all x, y ∈ H, it holds that

‖PC(x)− PC(y)‖ ≤ ‖x− y‖.

(b) For any x ∈ H and y ∈ C, it holds that

〈x− PC(x), y − PC(x)〉 ≤ 0.

Remark 2.1. For any λ > 0, x is a solution of V I(A,C) if and only if x =
PC(x− λAx); see, e.g. [17, 28].

One often considers V I(A,C) with some additional properties imposed on the op-
erator A such as Lipschitz continuity, (strong) monotonicity and (strong) pseudo-
monotonicity of A. Let us recall some well-known definitions (see, e.g.[25]).

Definition 2.2. The operator A : H → H is
(a) strongly monotone with modulus γ > 0 on C if

〈Ax−Ay, x− y〉 ≥ γ‖x− y‖2 ∀x, y ∈ C;

(b) strongly pseudo-monotone with modulus γ > 0 on C if

〈Ax, y − x〉 ≥ 0⇒ 〈Ay, y − x〉 ≥ γ‖x− y‖2

for all x, y ∈ C;
(c) Lipschitz continuous with modulus L > 0 on C if

‖Ax−Ay‖ ≤ L‖x− y‖ ∀x, y ∈ C.

Remark 2.2. If A is strongly pseudo-monotone and continuous then V I(A,C)
has a unique solution [27].

Definition 2.3. A function x : [0, b]→ H (where b > 0) is said to be absolutely
continuous if one of the following equivalent properties holds:

(i) There exists an integrable function y : [0, b]→ H such that

x(t) = x(0) +

∫ t

0

y(s)ds ∀t ∈ [0, b].
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(ii) x is continuous and its distributional derivative ẋ is Lebesgue integrable on
[0, b].

Before proving the existence and uniqueness of the trajectory of (1.4), we need to
recall the definition of its strong global solution.

Definition 2.4. We say that x : [0,+∞) → H is a strong global solution of
dynamical system (1.4) if the following properties are satisfied:

(i) x, ẋ : [0,+∞)→ H are locally absolutely continuous, in other word, absolutely
continuous on each interval [0, b] for 0 < b < +∞.

(ii) ẍ(t) + α(t)ẋ(t) + β(t) [x(t)− PC(x(t)− λAx(t))] = 0 for almost every t ∈
[0,+∞).

(iii) x(0) = x0 and ẋ(0) = v0.

The existence and uniqueness of the trajectory of (1.4) are stated in the following
result, where the proof is adapted from [12, Theorem 4].

Theorem 2.5. Let α, β : [0,+∞) → [0,+∞) be Lebesgue measurable functions
such that α, β ∈ L1

loc([0,+∞)) (that is α, β ∈ L1
loc([0, b]) for every 0 < b < +∞). Let

A be an L-Lipschitz continuous operator. Then for each x0, v0 ∈ H, there exists a
unique strong global solution of the dynamical system (1.4).

Proof. For all x ∈ H, if we define T : H → H by

Tx := x− PC(x− λAx),

then dynamical system (1.4) can be rewritten equivalently as{
ẍ(t) + α(t)ẋ(t) + β(t)Tx(t) = 0,

x(0) = x0, ẋ(0) = v0.
(2.1)

From Remark 2.1, we know that the solution set of V I(A,C) coincides with the
zeros set of T . By Lemma 2.1(a), the Cauchy-Schwarz inequality and the Lipschitz
continuity of A, we obtain for all x, x̄ ∈ H and λ > 0

‖Tx− T x̄‖ = ‖x− PC(x− λAx)− x̄+ PC(x̄− λAx̄)‖
≤ ‖x− x̄‖+ ‖PC(x− λAx)− PC(x̄− λAx̄)‖
≤ ‖x− x̄‖+ ‖x− λAx− x̄+ λAx̄‖
≤ 2‖x− x̄‖+ λ‖Ax−Ax̄‖
≤ (2 + λL)‖x− x̄‖.

i.e., T is Lipschitz continuous with modulus l = 2 + λL > 0. The dynamical system
(2.1) can be equivalently written as the following first order dynamical system in the
product space H ×H {

Ẏ (t) = F (t, Y (t)),

Y (0) = (u0, v0),
(2.2)

where
Y : [0,+∞)→ H ×H, Y (t) = (x(t), ẋ(t))

and

F : [0,+∞)×H ×H → H ×H, F (t, u, v) = (v,−α(t)v − β(t)Tu).
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We endow H ×H with scalar product 〈(u, v), (ū, v̄)〉H×H = 〈u, ū〉+ 〈v, v̄〉 and corre-

sponding norm ‖(u, v)‖H×H =
√
‖u‖2 + ‖v‖2.

For arbitrary u, ū, v, v̄ ∈ H, by using the Lipschitz continuity of T , we obtain for
all t ≥ 0 that

‖F (t, u, v)− F (t, ū, v̄)‖H×H =
√
‖v − v̄‖2 + ‖α(t)(v̄ − v) + β(t)(T ū− Tu)‖2

≤
√

(1 + 2α2(t))‖v − v̄‖2 + 2l2β2(t)‖ū− u‖2

≤
√

(1 + 2α2(t)) + 2l2β2(t)‖(u, ū)− (v, v̄)‖H×H
≤ (1 +

√
2α(t)) + l

√
2β(t)‖(u, ū)− (v, v̄)‖H×H

As α, β ∈ L1
loc([0,+∞)), the Lipschitz constant of F (t, ·, ·) is locally integrable.

We show that

(2.3) ∀u, v ∈ H,∀b > 0, F (·, u, v) ∈ L1([0, b], H ×H).

Indeed, given arbitrary u, v ∈ H and b > 0, it holds that∫ b

0

‖F (t, u, v)‖H×Hdt =

∫ b

0

√
‖v‖2 + ‖α(t)v + β(t)Tu‖2dt

≤
∫ b

0

√
(1 + 2α2(t))‖v‖2 + 2β2(t)‖Tu‖2dt

≤
∫ b

0

(
(1 +

√
2α(t))‖v‖+

√
2β(t)‖Tu‖

)
dt

and from here, by using the assumptions made on α, β, (2.3) follows.

Therefore, the existence and uniqueness of a strong global solution for (2.2) follow
from the Cauchy-Lipschitz-Picard Theorem for first order dynamical systems (see, for
example, [23, Proposition 6.2.1]). The conclusion is a consequence of the equivalence
of (1.4), (2.1) and (2.2).

We investigate the exponential convergence of the trajectories x(t) generated by
dynamical system (1.4). The following result will play an important role in our con-
vergence analysis.

Proposition 2.6. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A be γ-strongly pseudo-monotone and L-Lipschitz continuous on C.
Let x∗ be the unique solution of V I(A,C). For all λ > 0 and x ∈ H, denote z :=
PC(x− λAx). Then

(2.4) 〈x− z, x− x∗〉 ≥
(

1− λL2

4γ

)
‖x− z‖2

and

(2.5) ‖x− x∗‖ ≤ 1 + λγ + λL

λγ
‖x− z‖.

Proof. Since z = PC(x− λAx), from Lemma 2.1(b) we have

〈x− λAx− z, y − z〉 ≤ 0 ∀y ∈ C.
5



Substituting y = x∗ ∈ C into the last inequality and combining the result with the
Lipschitz continuity of A we obtain

〈x− z, z − x∗〉 ≥ λ 〈Ax, z − x∗〉
= λ 〈Ax−Az, z − x∗〉+ λ 〈Az, z − x∗〉
≥ −λL‖x− z‖‖z − x∗‖+ λ 〈Az, z − x∗〉 .(2.6)

Since x∗ is the unique solution of V I(A,C) and z ∈ C, it holds that 〈Ax∗, z − x∗〉 ≥ 0.
Then by the γ-strong pseudo-monoticity of A we have 〈Az, z − x∗〉 ≥ γ‖z − x∗‖2. It
follows from (2.6) that

(2.7) 〈x− z, z − x∗〉 ≥ λγ‖z − x∗‖2 − λL‖x− z‖‖z − x∗‖.

Hence

〈x− z, x− x∗〉 = 〈x− z, x− z + z − x∗〉
= ‖x− z‖2 + 〈x− z, z − x∗〉
≥ ‖x− z‖2 + λγ‖z − x∗‖2 − λL‖x− z‖‖z − x∗‖

=

(
1− λL2

4γ

)
‖x− z‖2

+
λL2

4γ
‖x− z‖2 + λγ‖z − x∗‖2 − λL‖x− z‖‖z − x∗‖

≥
(

1− λL2

4γ

)
‖x− z‖2,

where we have used the Cauchy-Schwarz inequality in the last estimation. From (2.7)
and the Cauchy-Schwarz inequality we have

λγ‖z − x∗‖2 ≤ ‖x− z‖‖z − x∗‖+ λL‖x− z‖‖z − x∗‖,

which implies

‖z − x∗‖ ≤ 1 + λL

λγ
‖x− z‖.

Hence

‖x− x∗‖ ≤ ‖x− z‖+ ‖z − x∗‖ ≤ 1 + λγ + λL

λγ
‖x− z‖.

Remark 2.3. It is clear from (2.5) that the quantity ‖x − z‖ provides an upper
error bound for the distance from any arbitrary vector x ∈ H to the unique solution
x∗ of V I(F,C). As a direct corollary of (2.4), using the Cauchy-Schwarz inequality,
we can see that if λ ∈

(
0, 4γ

L2

)
, then ‖x − z‖ also provides an lower error bound for

the distance from any vector x ∈ H to the unique solution x∗ of V I(F,C). These
error bounds are particularly useful for stopping criteria when designing algorithms
for solving VIs.

Since any strongly monotone operator is strongly pseudo-monotone, we have imme-
diately the following corollary.

Corollary 2.7. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A be γ-strongly (pseudo)-monotone and L-Lipschitz continuous on C. Let
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x∗ be the unique solution of V I(A,C). For all λ ∈
(
0, 4γ

L2

)
and x ∈ H, denote

z := PC(x− λAx). Then the following error bounds hold

(2.8)

(
1− λL2

4γ

)
‖x− z‖ ≤ ‖x− x∗‖ ≤ 1 + λγ + λL

λγ
‖x− z‖.

We are now in the position to establish the main result of this section.

Theorem 2.8. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A be γ-strongly pseudo-monotone and L-Lipschitz continuous on C. Let

x∗ be the unique solution of V I(A,C), 0 < λ < 4γ
L2 and κ = 1 − λL2

4γ > 0. Let

α, β : [0,+∞)→ [0,+∞) be locally absolutely continuous functions fulfilling for every
t ∈ [0,+∞)

(i) 1 < α ≤ α(t) ≤ κλ2γ2

(1+λγ+λL)2 β(t) + 1;

(ii) α̇(t) ≤ 0 and d
dt

(
α(t)
β(t)

)
≤ 0;

(iii) α2(t)− α(t)− 2β(t)
κ ≥ 0.

Then the trajectories x(t) generated by dynamical system (1.4) converge exponentially
to x∗ as t→∞, i.e., there exist positive numbers µ, η such that

‖x(t)− x∗‖ ≤ µ ‖x(0)− x∗‖ e−ηt ∀t ≥ 0.

Proof. Consider for every t ∈ [0,+∞) the function h(t) = 1
2‖x(t)− x∗‖2. Then

ḣ(t) = 〈x(t)− x∗, ẋ(t)〉 , ḧ(t) = ‖ẋ(t)‖2 + 〈x(t)− x∗, ẍ(t)〉 .

Setting z(t) := PC(x(t)−λAx(t)) and taking into account of (1.4) we obtain for every
t ∈ [0,+∞) that

ḧ(t) + α(t)ḣ(t) + β(t) 〈x(t)− x∗, x(t)− z(t)〉 = ‖ẋ(t)‖2,

which, together with Proposition 2.6 implies

ḧ(t) + α(t)ḣ(t) + κβ(t)‖x(t)− z(t)‖2 ≤ ‖ẋ(t)‖2,

where κ = 1− λL2

4γ > 0. Again it follows from (1.4) that

(2.9) ḧ(t) + α(t)ḣ(t) +
κ

2
β(t)‖x(t)− z(t)‖2 +

κ

2β(t)
‖ẍ(t) + α(t)ẋ(t)‖2 ≤ ‖ẋ(t)‖2.

Applying (2.5), we obtain from the last inequality

ḧ(t) + α(t)ḣ(t) + κ1β(t)h(t) +
κ

2β(t)
‖ẍ(t)‖2

+

(
κα2(t)

2β(t)
− 1

)
‖ẋ(t)‖2 +

κα(t)

β(t)
〈ẍ(t), ẋ(t)〉 ≤ 0,(2.10)

where κ1 = κλ2γ2

(1+λγ+λL)2 . Since d
dt‖ẋ(t)‖2 = 2 〈ẍ(t), ẋ(t)〉, setting for every t ∈ [0,+∞)

a(t) := κ1β(t), b(t) :=
κα(t)

2β(t)
, c(t) :=

κα2(t)

2β(t)
− 1, u(t) := ‖ẋ(t)‖2

and eliminating a nonnegative term κ
2β(t)‖ẍ(t)‖2 in (2.10) we obtain

(2.11) ḧ(t) + α(t)ḣ(t) + a(t)h(t) + b(t)u̇(t) + c(t)u(t) ≤ 0.
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Multiplying both sides of (2.11) with et > 0, and using the identities

etḧ(t) =
d

dt

(
etḣ(t)

)
− etḣ(t)

etḣ(t) =
d

dt

(
eth(t)

)
− eth(t)

etu̇(t) =
d

dt

(
etu(t)

)
− etu(t)

we obtain

d

dt

(
etḣ(t)

)
+ (α(t)− 1)

d

dt

(
eth(t)

)
+ (a(t) + 1− α(t)) eth(t)

+b(t)
d

dt

(
etu(t)

)
+ (c(t)− b(t))etu(t) ≤ 0.(2.12)

From assumptions (i) and (iii) we have

a(t) + 1− α(t) ≥ 0, c(t)− b(t) ≥ 0 ∀t ∈ [0,+∞).

Hence from (2.12) we can write

(2.13)
d

dt

(
etḣ(t)

)
+ (α(t)− 1)

d

dt

(
eth(t)

)
+ b(t)

d

dt

(
etu(t)

)
≤ 0.

Since

(α(t)− 1)
d

dt

(
eth(t)

)
=

d

dt

[
(α(t)− 1) eth(t)

]
− α̇(t)eth(t)

b(t)
d

dt

(
etu(t)

)
=

d

dt

(
b(t)etu(t)

)
− ḃ(t)etu(t),

we have from (2.13)
(2.14)
d

dt

(
etḣ(t)

)
+
d

dt

[
(α(t)− 1) eth(t)

]
− α̇(t)eth(t) +

d

dt

(
b(t)etu(t)

)
− ḃ(t)etu(t) ≤ 0.

By assumption (ii), α̇(t) ≤ 0 and ḃ(t) ≤ 0 for all t ∈ [0,+∞). Therefore, we have
from the last inequality

d

dt

[
etḣ(t) + (α(t)− 1) eth(t) + b(t)etu(t)

]
≤ 0.

This implies that the function

t→ etḣ(t) + (α(t)− 1) eth(t) + b(t)etu(t)

is monotonically decreasing, hence there exists M > 0 such that

etḣ(t) + (α(t)− 1) eth(t) + b(t)etu(t) ≤M.

Since b(t), u(t) ≥ 0, we get

ḣ(t) + (α(t)− 1)h(t) ≤Me−t,

hence
ḣ(t) + (α− 1)h(t) ≤Me−t
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for every t ∈ [0,∞). This implies that

d

dt

[
e(α−1)th(t)

]
≤Me(α−2)t

for every t ∈ [0,∞). By integration, we have
(i) if 1 < α < 2 then

0 ≤ h(t) ≤
(
h(0) +

M

α− 2

)
e−(α−1)t;

(ii) if 2 < α then

0 ≤ h(t) ≤ h(0)e−(α−1)t +
M

2− α
e−t ≤

(
h(0) +

M

2− α

)
e−t;

(ii) if α = 2 then
0 ≤ h(t) ≤ (h(0) +Mt) e−t.

This implies that x(t) converges exponentially to x∗.

Remark 2.4. We notice that it is easy to find functions α, β satisfying assump-
tions (i)-(iii) in Theorem 2.8. For example, if we choose α(t) = α + 1

t+1 and

β(t) = β − 1
t+1 for all t ∈ [0,+∞) and α > 1, then (ii) is fulfilled. Assumption

(iii) is equivalent to

α2 − α− 2

κ
β +

1

(t+ 1)2
+

1

t+ 1
+

2

κ(t+ 1)
≥ 0,

which can be guaranteed if

α2 − α− 2

κ
β ≥ 0,

or

α ≥ 1 +

√
1 +

8β

κ
.

Assumption (i) reads as

α+
1

t+ 1
≤ κ1

(
β − 1

t+ 1

)
+ 1,

i.e.,

α ≤ κ1β −
κ1 + 1

t+ 1
+ 1,

which is guaranteed whenever

α ≤ κ1β − (κ1 + 1) + 1 = (β − 1)κ1.

Therefore, to fulfill assumptions (i)-(iii), it is sufficient to choose β (large enough)
and α satisfying

(2.15) 1 +

√
1 +

8β

κ
≤ α ≤ (β − 1)κ1.

Also any constant functions α(t) = α and β(t) = β for all t ∈ [0,+∞) with α and β
satisfying √

1 +
8β

κ
≤ α ≤ βκ1,

fulfill assumptions (i)-(iii).
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3. Linear convergence of a discrete system. A finite-difference scheme for
(1.4) with respect to the time variable t, with stepsize hk > 0, relaxation variable
βk > 0, damping variable αk > 0, and initial points x0 and x1 yields the following
iterative scheme:

(3.1)
1

h2k
(xk+1 − 2xk + xk−1) +

αk
hk

(xk − xk−1) + βk(yk − PC(yk − λAyk)) = 0,

where yk is an extrapolated point from xk and xk−1 that will be chosen later. We
note that since T := I−PC(I−λA(·)) is Lipschitz continuous, there is some flexibility
in this choice. We can write (3.1) as

xk+1 = xk + (1− αkhk)(xk − xk−1)− h2kβk(yk − PC(yk − λAyk)).

Setting θk = 1−αkhk, ρk = h2kτk and choosing yk := xk + θk(xk−xk−1) we can write
the above scheme as{

yk = xk + θk(xk − xk−1)

xk+1 = (1− ρk)yk + ρkPC(yk − λAyk),
(3.2)

which is a relaxed inertial projection algorithm (RIPA). In this section, we will inves-
tigate the convergence properties of (3.2). For the sake of simplicity, we only consider
the case where all parameters are constants, i.e., θk = θ and ρk = ρ for all k.

(RIPA)

{
yk = xk + θ(xk − xk−1)

xk+1 = (1− ρ)yk + ρPC(yk − λAyk).
(3.3)

We also make the following assumptions on the parameters:

(A1): η > 0 and 0 < λ < 2γ
ηL2 ;

(A2):

(3.4) 0 < ρ < min

{
1

1− q
, 1 + q

(
1− 1

η

)}
where q := 1

1+λ(2γ−ληL2) .

(A3):

(3.5) 0 ≤ θ ≤ min

1− ρ+ ρq

3
,

(
1− 1

η

)
q + 1− ρ(

1− 1
η

)
q + 1 + ρ

 .

Remark 3.1. Note that (A2) allows overrelaxation, i.e. ρ > 1, which can accel-
erate the convergence speed in certain examples. If ρ = 1 and (A1) is fulfilled, then
(A2) holds for any η > 1 and (A3) becomes

0 ≤ θ ≤ min

q

3
,

(
1− 1

η

)
q(

1− 1
η

)
q + 2

 .

In this case, (3.2) reduces to inertial projection algorithm (IPA) for solving V I(A,C)

(IPA)

{
yk = xk + θ(xk − xk−1)

xk+1 = PC(yk − λAyk).
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If the inertial term θ = 0, then we recover the projection algorithm (PA) for solving
V I(A,C) considered in [26]

xk+1 = PC(xk − λAxk).(3.6)

Remark 3.2. From (A3), we see that the upper bound for θ is

θ(ρ) = min

1− ρ+ ρq

3
,

(
1− 1

η

)
q + 1− ρ(

1− 1
η

)
q + 1 + ρ

 .

Hence, there is a trade-off between the inertial parameter θ and the relaxed parameter
ρ, i.e. θ is decreasing when ρ is increasing and vice versa. If ρ↘ 0, then θ(ρ)↗ 1/3.

If ρ↗ min
{

1
1−q , 1 + q

(
1− 1

η

)}
, then θ(ρ)↘ 0.

The linear convergence of scheme (RIPA) is established as follows.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A be γ-strongly pseudo-monotone and L-Lipschitz continuous on C. Let the
parameters λ, ρ, θ be such that assumptions (A1), (A2) and (A3) are fulfilled. Then
the sequence {xk} generated by (3.3) converges linearly to the unique solution x∗ of
V I(A,C).

Proof. Setting zk := PC(yk − λAyk) ∈ C, similarly to (2.7) we can deduce

(3.7) 〈yk − zk, zk − x∗〉 ≥ λγ‖zk − x∗‖2 − λL‖yk − zk‖‖zk − x∗‖.

Hence

−2λγ‖zk − x∗‖2 + 2λL‖yk − zk‖‖zk − x∗‖ ≥ 2 〈yk − zk, x∗ − zk〉
= ‖zk − x∗‖2 − ‖yk − x∗‖2 + ‖yk − zk‖2,

which implies

(1 + 2λγ) ‖zk − x∗‖2 ≤ ‖yk − x∗‖2 − ‖yk − zk‖2 + 2λL‖yk − zk‖‖zk − x∗‖

≤ ‖yk − x∗‖2 − ‖yk − zk‖2 +
1

η
‖yk − zk‖2 + ηλ2L2‖zk − x∗‖2

= ‖yk − x∗‖2 −
(

1− 1

η

)
‖yk − zk‖2 + ηλ2L2‖zk − x∗‖2,

or equivalently,

(3.8)
[
1 + λ(2γ − ληL2)

]
‖zk − x∗‖2 ≤ ‖yk − x∗‖2 −

(
1− 1

η

)
‖yk − zk‖2.

Therefore,

‖xk+1 − x∗‖2 = ‖(1− ρ)yk + ρzk − x∗‖2

= ‖(1− ρ)(yk − x∗) + ρ(zk − x∗)‖2

= (1− ρ)‖yk − x∗‖2 + ρ‖zk − x∗‖2 − ρ(1− ρ)‖yk − zk‖2

≤ (1− ρ)‖yk − x∗‖2 +
ρ

1 + λ(2γ − ληL2)
‖yk − x∗‖2

−
(

1− 1

η

)
ρ

(1 + λ(2γ − ληL2))
‖yk − zk‖2 − ρ(1− ρ)‖yk − zk‖2

= µ1‖yk − x∗‖2 − µ2ρ‖yk − zk‖2,(3.9)
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with
µ1 := 1− ρ+

ρ

1 + λ(2γ − ληL2)
= 1− ρ+ ρq ∈ (0, 1)

and

µ2 :=

(
1− 1

η

)
1

1 + λ(2γ − ληL2)
+ 1− ρ =

(
1− 1

η

)
q + 1− ρ > 0

by assumptions (A1) and (A2).

On the one hand

‖yk − x∗‖2 = ‖(1 + θ)(xk − x∗)− θ(xk−1 − x∗)‖2

= (1 + θ)‖xk − x∗‖2 − θ‖xk−1 − x∗‖2 + θ(1 + θ)‖xk − xk−1‖2.(3.10)

On the other hand

ρ2‖yk − zk‖2 = ‖xk+1 − yk‖2

= ‖xk+1 − xk − θ(xk − xk−1)‖2

= ‖xk+1 − xk‖2 + θ2‖xk − xk−1‖2 − 2θ 〈xk+1 − xk, xk − xk−1〉
≥ ‖xk+1 − xk‖2 + θ2‖xk − xk−1‖2 − 2θ‖xk+1 − xk‖‖xk − xk−1‖
≥ ‖xk+1 − xk‖2 + θ2‖xk − xk−1‖2 − θ‖xk+1 − xk‖2 − θ‖xk − xk−1‖2

= (1− θ)‖xk+1 − xk‖2 − θ(1− θ)‖xk − xk−1‖2.(3.11)

Combining (3.9), (3.10) and (3.11), we obtain

‖xk+1 − x∗‖2 ≤ µ1(1 + θ)‖xk − x∗‖2 − µ1θ‖xk−1 − x∗‖2 + µ1θ(1 + θ)‖xk − xk−1‖2

+
µ2θ(1− θ)

ρ
‖xk − xk−1‖2 −

µ2(1− θ)
ρ

‖xk+1 − xk‖2.

Since µ1 ∈ (0, 1), the last inequality implies

‖xk+1 − x∗‖2 − θ‖xk − x∗‖2 +
µ2(1− θ)

ρ
‖xk+1 − xk‖2

≤ µ1

[
‖xk − x∗‖2 − θ‖xk−1 − x∗‖2 +

µ2(1− θ)
ρ

‖xk − xk−1‖2
]

−
(
µ1µ2(1− θ)

ρ
− µ2θ(1− θ)

ρ
− µ1θ(1 + θ)

)
‖xk − xk−1‖2.(3.12)

Setting

ak := ‖xk − x∗‖2 − θ‖xk−1 − x∗‖2 +
µ2(1− θ)

ρ
‖xk − xk−1‖2,

we can prove that ak ≥ 0 for all k ≥ 0. Indeed, from assumption (A3) we have

θ ≤ µ2

µ2+2ρ , hence θ ≤ µ2(1−θ)
2ρ . Therefore, using the following inequality with κ > 0

a2 + κb2 ≥ min {1, κ} (a2 + b2) ≥ min {1/2, κ/2} (a− b)2,

we obtain

ak ≥ min

{
1

2
,
µ2(1− θ)

2ρ

}
‖xk−1 − x∗‖2 − θ‖xk−1 − x∗‖2 ≥ 0.
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Moreover from (A3) we also have

0 ≤ θ ≤ min

{
µ1

3
,

µ2

µ2 + 2ρ

}
<

1

3
.

Hence

µ2θ(1− θ)
ρ

≤ µ1µ2θ(1− θ)
3ρ

µ1θ(1 + θ) < µ1
µ2(1− θ)

2ρ

4

3
=

2µ1µ2(1− θ)
3ρ

,

which implies
µ1µ2(1− θ)

ρ
− µ2θ(1− θ)

ρ
− µ1θ(1 + θ) ≥ σ > 0,

where σ := 2µ1µ2(1−θ)
3ρ − µ1θ(1 + θ) > 0. Hence it follows from (3.12) that

ak+1 ≤ µ1ak − σ‖xk − xk−1‖2 ≤ µ1ak,

for all k ≥ 0, from which we deduce

ak ≤ a0µk1 and σ‖xk − xk−1‖2 ≤ µ1ak ≤ a0µk+1
1

i.e., {ak} and {‖xk − xk−1‖} converge linearly to 0, and this immediately implies that
the sequence {xk} converges linearly to the unique solution x∗.

Remark 3.3. In the case ρ = 1, we obtain the convergence rate q ∈ (0, 1) for
(IPA), which is a generalization of the basic projection algorithm (3.6) considered in
[26].

Finally, we emphasize that the result established in Theorem 3.1 seems to be new
even in the strongly monotone case.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A be γ-strongly monotone and L-Lipschitz continuous on C . Let the pa-
rameters λ, ρ, θ be such that assumptions (A1), (A2) and (A3) are fulfilled. Then
the sequence {xk} generated by (3.3) converges linearly to the unique solution x∗ of
V I(A,C).

4. Generalize to monotone inclusions. The V I(A,C) (1.1) can be equiva-
lently rewritten as

(4.1) find x∗ ∈ H such that 0 ∈ Ax∗ +NCx
∗,

where NC is the normal cone of C at x∗, which is a maximal monotone operator
(see e.g. [10] for the definition and properties). Replacing NC in (4.1) by a general
maximal monotone set-valued operator B : H ⇒ H, we will discuss in this section
the following monotone inclusion problem:

(4.2) find x∗ ∈ H such that 0 ∈ Ax∗ +Bx∗.

In this general form, the projection PC is replaced by the resolvent JλB := (I+λB)−1

of the operator λB, where I is the identity operator and λ > 0. The dynamical system
(1.4) has the form{

ẍ(t) + α(t)ẋ(t) + β(t) [x(t)− JλB(x(t)− λAx(t))] = 0,

x(0) = x0, ẋ(0) = v0,
(4.3)
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whose the asymptotic analysis was discussed in [12, 13]. The corresponding discretiza-
tion of (4.3) leads to the following relaxed inertial forward-backward algorithm

(RIFB)

{
yk = xk + θ(xk − xk−1)

xk+1 = (1− ρ)yk + ρJλB(I − λA)yk.
(4.4)

The weak convergence of (RIFB) was studied by Attouch and Cabot in [6] when A is
co-coercive, i.e., there exists L > 0 such that

〈Ax−Ay, x− y〉 ≥ 1

L
‖Ax−Ay‖2 ∀x, y ∈ H.

In particular, co-coercivity holds when A = ∇f is L-Lipschitz continuous, where ∇f
is the gradient of a convex and differentiable function f . It is not clear whether the
linear convergence of (RIFB) is still guaranteed when A is strongly pseudo-monotone.
We conject that the answer is negative. The reason could be that while the sum
of a monotone operator and a (strongly) monotone operator is (strongly) monotone
[10], this is not the case for a (strongly) pseudo-monotone operator. For example, the
operator

A(x1, x2) := (x21 + x22)(−x2, x1)T

is pseudo-monotone but A + εI is not (pseudo)-monotone for any ε > 0 (see [35,
Counterexample 2.1]). Hence, the theory of maximal monotone operators cannot be
applied in this setting. Nevertheless, the linear convergence of (RIFB) holds when
either A or B is strongly monotone. Indeed, we have the following new convergence
result.

Theorem 4.1. Let A be monotone and L-Lipschitz continuous, B be maximal
monotone and either A or B be γ-strongly monotone. Let the parameters λ, ρ, θ be
such that assumptions (A1), (A2) and (A3) are fulfilled. Then the sequence {xk} gen-
erated by (4.4) converges linearly to the unique solution x∗ of the monotone inclusion
(4.2).

Proof. Having a careful look at the proof of Theorem 3.1, we see that it is sufficient
to prove that

(4.5) 〈yk − zk, zk − x∗〉 ≥ λγ‖zk − x∗‖2 − λL‖yk − zk‖‖zk − x∗‖,

where zk = JλB(I−λA)yk, then the rest of the proof follows. Since zk = JλB(I−λA)yk
we have

yk − λAyk ∈ (I + λB)zk,

or equivalently

1

λ
(yk − zk)−Ayk ∈ Bzk.

We consider two cases:
(i) A is γ-strongly monotone. Since −Ax∗ ∈ Bx∗ and B is monotone, we have

(4.6)

〈
1

λ
(yk − zk)−Ayk +Ax∗, zk − x∗

〉
≥ 0.
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It follows from the last inequality, and the strong monotonicity and Lipschitz conti-
nuity of A that

1

λ
〈yk − zk, zk − x∗〉 ≥ 〈Ayk −Ax∗, zk − x∗〉

= 〈Ayk −Azk, zk − x∗〉+ 〈Azk −Ax∗, zk − x∗〉
≥ −‖Ayk −Azk‖‖zk − x∗||+ γ‖zk − x∗‖2

≥ −L‖yk − zk‖‖zk − x∗||+ γ‖zk − x∗‖2,(4.7)

which implies (4.5).

(ii) B is γ-strongly monotone. Then (4.6) can be rewritten as〈
1

λ
(yk − zk)−Ayk +Ax∗, zk − x∗

〉
≥ γ‖zk − x∗‖2.

Hence (4.7) is obtained without requiring the strong monotonicity of A.

Remark 4.1. In [19], the author provided the linear convergence analysis for a
relaxed version of the forward-backward method without inertial effect, i.e., θ = 0 in
(4.4). The result is obtained when A is co-coercive and B is strongly monotone. Since
co-coercivity implies monotonicity and Lipschitz continuity, the result we obtained in
case (ii) above is stronger.

From the proofs of Proposition 2.6 and Theorem 4.1, it is clear that the error
bounds stated in Corollary 2.7 are still valid for monotone inclusion (4.2).

Corollary 4.2. Let A be monotone and L-Lipschitz continuous, B be maximal
monotone and either A or B be γ-strongly monotone. Let x∗ be the unique solution
of the inclusion (4.2). For all λ ∈

(
0, 4γ

L2

)
and x ∈ H, denote z := JλB(x − λAx).

Then the following error bounds hold(
1− λL2

4γ

)
‖x− z‖ ≤ ‖x− x∗‖ ≤ 1 + λγ + λL

λγ
‖x− z‖.

We consider now the optimization problem of the form

(4.8) min
x∈H

f(x) + g(x),

where f : H → R is a strongly convex and differentiable function with L-Lipschitz
continuous gradient for L > 0 and g : H → R ∪ {+∞} is a proper, convex and lower
semicontinuous function. The set of minimizers of (4.8) coincides with the solution
set of the monotone inclusion problem

(4.9) find x∗ ∈ H such that 0 ∈ ∇f(x∗) + ∂g(x∗).

Here, ∇f is the gradient of f and ∂g : H ⇒ H, defined by

∂g(x) = {u ∈ H : g(y) ≥ g(x) + 〈u, y − x〉 ∀y ∈ H},

if g(x) ∈ R and ∂g(x) = ∅, otherwise, denotes the convex subdifferential of g, which
is a maximally monotone operator, provided that g is proper, convex and lower semi-
continuous. We notice that, for λ > 0, the resolvent of λ∂g is given by Jλ∂g = proxλg,
where proxλg : H → H,

proxλg(x) = arg min

{
g(y) +

1

2λ
‖y − x‖2, y ∈ H

}
15



denotes the proximal operator of λg. Let us also notice that f is γ- strongly convex
if and only if ∇f is γ-strongly monotone. Then the (RIFB) method for solving (4.8)
is the relaxed inertial proximal method read as

(RIPM)

{
yk = xk + θ(xk − xk−1)

xk+1 = (1− ρ)yk + ρproxλg(yk − λ∇f(yk)).
(4.10)

The following result is a direct consequence of Theorem 4.1.

Theorem 4.3. Let f be a γ-strongly convex and differentiable function with L-
Lipschitz gradient and let g be a proper, convex and lower semicontinuous function.
Let the parameters λ, ρ, θ be such that assumptions (A1), (A2) and (A3) are fulfilled.
Then the sequence {xk} generated by (4.10) converges linearly to the unique solution
x∗ of the optimization problem (4.8).

Remark 4.2. The linear convergence of another forward-backward type method
with inertial effect for solving (4.8) was studied in [31]. The algorithm was named
iPiasco and reads as

xk+1 = proxλg(xk − λ∇f(xk) + β(xk − xk−1)),

which is a generalization of the heavy-ball method studied by Polyak [33].

5. Examples and numerical illustrations. In this section, we consider some
numerical results to illustrate the global exponential convergence of dynamical sys-
tem (1.4) and the linear convergence of (RIPA). Codes are implemented in MATLAB
2019b running on a Macbook Pro laptop with an Intel core CPU i7 at 2.6 GHz and
16 GB memory.

In the first experiment, we focus on a class of strongly pseudo-monotone (but not
monotone) operators. The stopping condition is ‖x(t)−x∗‖ ≤ ε for all test problems,
where ε = 10−5 and x∗ is the unique solution of V I(A,C). Let A : H → H be defined
as

A := g(x)(Mx+ p),

where p ∈ H, M : H → H is a linear bounded operator satisfying

(5.1) 〈Mx, x〉 ≥ γ‖x‖2 ∀x ∈ H,

and g : H → (0,+∞) is a function taking positive values, i.e., g(x) > κ > 0 for all
x ∈ H. We show that A is strongly pseudo-monotone on H. Indeed, let x, y ∈ H be
such that 〈Ax, y − x〉 ≥ 0. Since g(x) > κ > 0, we have

〈Mx+ p, y − x〉 ≥ 0.

Hence

〈Ay, y − x〉 = g(y)〈My + p, y − x〉
≥ g(y)(〈My + p, y − x〉 − 〈Mx+ p, y − x〉)
= g(y)〈M(y − x), y − x〉
≥ κγ‖x− y‖2,

which leads to the desired conclusion. In general, A is not monotone, as seen in
examples below.
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Example 5.1. Let A : H → H be defined as

(5.2) Ax =
(
e−‖x‖

2

+ q
)
Mx,

where q > 0 and M : H → H satisfying (5.1), then A is strongly pseudo-monotone. A
direct computation shows that there exists L > 0 such that ‖∇Ax‖ ≤ L for every x ∈
H, hence by the mean value theorem, A is Lipschitz continuous. In our illustration,
we choose

C =
{
x ∈ [−5, 5]3 : x1 + x2 + x3 = 0

}
⊆ R3,

M =

 1 0 −1
0 1.5 0
−1 0 2


and q = 2, then A is γ-strongly pseudo-monotone on R3 with constant γ := q ·λmin ≈
0.764, where λmin is the smallest eigenvalue of M , and Lipschitz continuous with
constant L ≈ 5.0679. Since for x = (−1, 0, 0)T , y = (−2, 0, 0)T ∈ R3

〈Ax−Ay, x− y〉 = −0.1312 < 0,

A is not monotone. It is clear that x∗ = 0 is the unique solution of V I(A,C). Ac-
cording to Theorem 2.8, the trajectory of dynamical system (1.4) globally exponentially
converges to the unique solution x∗. This is numerically confirmed in Figure 5.1 with
α(t) = α, β(t) = β satisfying (2.15), η = 1.5, ρ = 1, x0 = x1 = (−3, 2, 3) and λ = γ

ηL2 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-3

-2

-1

0

1

2

3

x1
x2
x3

Fig. 5.1. Global exponential convergence for Example 5.1

We compare linear convergence of (RIPA) with some of its other special cases. We
choose η = 1.5, λ = 1.99γ

ηL2 , and x0 = x1 = (−3, 2, 3). For overrelaxed (oRPA), we

choose maximum ρ satisfying (3.4), i.e., ρ = 1.26 and this implies θ = 0. We choose
ρ = 1.1 satisfying (3.4) for overrelaxed inertial (oRIPA), ρ = 1 for nonrelaxed inertial
(IPA) and ρ = 0.5 for inner relaxed inertial (iRIPA). For these algorithms we choose

17



maximum inertial θ satisfying (3.5). Finally, for classical projection algorithm (PA),
ρ = 1 and θ = 0. It can be seen from Figure 5.2 that (oRPA) is the best choice among
different algorithms.

0 20 40 60 80 100 120 140 160 180 200
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

101

oRPA
oRIPA
IPA
iRIPA
PA

Fig. 5.2. Comparision of different versions of (RIPA) for Example 5.1

Example 5.2. Let H = `2, the real Hilbert space whose elements are the square-

summable sequences of real scalars. Let δ, ξ ∈ R be such that ξ > δ >
ξ

2
> 0. Put

C := {x ∈ H : ‖x‖ ≤ δ}, Ax := (ξ − ‖x‖)x,

where δ and ξ are parameters. It is easy to verify that x∗ = 0 is the unique solution
of VI(A,C). It was proved in [26] that A is Lipschitz continuous with L := ξ + 2δ
and strongly pseudo-monotone with modulus γ := ξ − δ > 0 on C. Note that A is
neither strongly monotone nor monotone on C. Indeed, it suffices to choose x =
( ξ2 , 0, . . . , 0, . . .), y = (δ, 0, . . . , 0, . . .) ∈ C and note that

〈Ax−Ay, x− y〉 =

(
ξ

2
− δ
)3

< 0.

According to Theorem 2.8, the trajectory of dynamical system (1.4) globally expo-
nentially converges to the unique solution x∗ = 0. In the following, we will confirm
this behavior numerically. Figure 5.3 shows an example confirming the global ex-
ponential convergence. We choose H = R5, ξ = 8, δ = 5, then γ = 3, L = 18, and
α(t) = α, β(t) = β satisfying (2.15), x(0) = (5, 4, 3,−1,−3)T , ẋ(0) = 0. It is clear
from Figure 5.3 that the trajectories x(t) converge exponentially to the unique solution
x∗ = 0.

Figure 5.4 compares linear convergence of (RIPA) with some of its others special
cases. We choose H = R5000, ξ = 8, δ = 5, then γ = 3, L = 18. x0 = x1 = (1, 1, . . . , 1)
and other parameters are chosen as in Example 5.1. Again from Figure 5.4, (oRPA)
is the best choice among different algorithms.
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Fig. 5.3. Global exponential convergence for Example 5.2
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Fig. 5.4. Comparison of different versions of (RIPA) for Example 5.2 with H = R5000

Sparse binary tomography. To illustrate the monotone inclusions, we consider
the sparse binary tomography problem. The goal is to reconstruct a sparse vectorized
binary image x ∈ {0, 1}n from a limited number of tomographic projections

Tx = b.

Each pixel of the image x, denoted by xi ∈ [0, 1], and each entry in b ∈ Rm, called
tomographic measurement or single projection, corresponds to the integrated gray
values of x along the single ray. Each matrix entry Tij ≥ 0 corresponds to the length of
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the intersection of the i-th ray with the j-th pixel. If ray i and pixel j do not intersect
then Tij = 0. Stacking all equations for all rays together leads to the linear equation
Tx = b, and the measurements are described such that T = (T tθ1 T tθ2 . . . T tθnA)

t

and each block matrix Tθi corresponds to a different projecting angle (t denotes the
transpose). Mathematically, the problem is formed as

min
x

1

2
||Tx− b||22 + λ||x||0,

with ‖ · ‖0 being the l0 norm, which counts the number of nonzero entries of x; that is

‖x‖0 = |{xi | xi 6= 0}|

where | · | denotes here the cardinality, i.e., the number of elements of a set. Since l0
minimization is NP-hard a popular approach is to replace l0 by the convex norm l1,
and hence solve the well-known LASSO problem [36]

min
x

1

2
||Tx− b||22 + λ||x||1,

or equivalently the monotone inclusion

0 ∈ Ax+Bx,

where Ax := ∇
(
1
2 ||Tx − b||2

)
= T ∗(Tx − b) and Bx := ∂‖x‖1. Recall that the

subdifferential of ∂‖ · ‖1, denoted by ∂‖ · ‖1, is defined as

(∂‖x‖1)i =

{
sign(xi) if xi 6= 0;
any element of [−1, 1] if xi = 0.

The resolvent of B at v ∈ H is computed by

[JλB(v)]i =
[
proxλ‖·‖1(v)]

]
i

= sign(vi) max{|vi − λ|, 0}.

For the experiments we use the MATLAB routine paralleltomo.m from the AIR
Tools package [21, 22] that implements such a tomographic matrix for a given vector
of angles. For the experiment we choose a peppers image of size N = 512 (this means
512 × 512 pixels) and the number of parallel beams nA = 100. We use the default
value of the number of parallel rays, that is p = round(sqrt(2) ∗N). The matrix size

depends on the parameters N,nA, p as T ∈ R(nA∗p)×(N2), i.e. a problem in 262144
dimensions. We also include unknown additive random noise ε ∈ Rm so we get

Tx = b+ ε.

We choose λ = 10−5 and ρ = 1.26, θ = 0 for oRPA, ρ = 1, θ = 0.2 for IPA and
ρ = 0.5, θ = 0.2 for iRIPA. The results after 1000 iterations are displayed in Figures
5.5 and 5.6. It can be seen again that (oRPA) outperforms the other chosen algo-
rithms.

6. Concluding remarks. We have proposed a second order dynamical system
for solving strong pseudo-monotone VIs and investigated its global exponential con-
vergence. A discretization of the proposed dynamical system leads to a new relaxed
inertial projection algorithm for which we establish the linear convergence of the it-
erations. Extension to general monotone inclusions are also discussed. Relaxing the
strong-pseudo-monotonicity assumption is an interesting topic for future research.
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Fig. 5.5. Reconstruction results of different versions of (RIPA) for the sparse binary tomogra-
phy problem
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Fig. 5.6. Comparison of different versions of (RIPA) for the sparse binary tomography problem
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