Waves in the cochlea and in acoustic rainbow sensors

Riccardo Marrocchio®*, Angelis Karlos®, Stephen Elliott?

®Institute of Sound and Vibration Research, University of Southampton, Highfield
Campus, Southampton, SO17 1BJ, UK
b Department of Robotics and Mechatronics, AGH University of Science and
Technology, Al. A. Mickiewicza 30, Krakow, 30-059, Poland

Abstract

A WKB solution to the cochlear wave equation is derived, which results from
the interaction between the passive dynamics of the basilar membrane and
the 1D fluid coupling in the scalae, including both fluid viscosity and com-
pressibility. The effect of various nondimensional parameters on the form
of this solution is discussed. A nondimensional damping parameter and a
nondimensional phase-shift parameter are shown to have the greatest influ-
ence on the response under normal conditions in the cochlea, with the fluid
viscosity and compressibility only playing a minor role. It is then shown
that in the case of an acoustic rainbow sensor, comprised of a discrete se-
ries of Helmholtz resonators in a duct, the governing wave equation in the
continuous limit has the same form as the cochlear wave equation. The
nondimensional compressibility parameter in this case is governed by the ra-
tio of the Helmholtz resonator volume to that of the connecting duct and
this parameter can be much larger than in the cochlea, and so plays a more
dominant role in determining the response.
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1. Introduction

The cochlea is the part of the mammalian hearing mechanism which in-
volves the transduction of acoustic waves to neural signals [1]. One of the
main functions of the cochlea is to tonotopically separate different acoustic
frequencies into different spatial positions along its length. This separation is
achieved via a dispersive wave that propagates along the length of the cochlea,
whose velocity drops to close to zero at different positions for different fre-
quencies. As the wave slows down, its amplitude is inevitably increased,
providing resolution of different frequency components. This cochlear wave
involves the interaction of the fluid inertia in the two main fluid chambers of
the cochlea, or scalae, and the dynamics of the partition that separates these
two scalae, which incorporates the basilar membrane, BM, as illustrated in
Fig. 1.

Although in principle it is possible for several forms of wave to propa-
gate in the cochlea [2], the wave described above dominates the response
in the passive cochlea, in which no cochlear amplifier is present [1]. The
properties of propagation of the dispersive wave can be characterized by a
complex wavenumber, whose real part determines the wave speed and whose
imaginary part determines the attenuation of the wave.

The wave equation can be derived by combining the conservation of mass
and momentum to an elemental volume of the fluid in the chambers. An
approximate solution can then be obtained using the WKB method. The
form of the WKB solution is derived here, and it is shown how the solution
depends on a small number of nondimensional parameters, which is one of
the main contributions of the paper. For the values relevant to the mam-
malian cochlea, the nondimensional viscosity and compressibility parameters
are small and play little role in determining the form of the WKB solution,
which depends much more strongly on the damping and phase-shift param-
eters.

The idea of rainbow trapping within the field of graded-index metama-
terials was first proposed in photonics [3], and then was also introduced to
disciplines of different wave types, such as plasmonics [4], seismic waves [5]
and other types of elastic waves [6, 7, 8, 9]. In the acoustics regime in particu-
lar, acoustic rainbow sensors [10, 11, 12, 13, 14] consist of arrays of elements,
whose properties vary with position, which have strong wave dispersion and
can enhance and spatially separate different frequency components of an in-
cident acoustic wave. The sub-wavelength dimensions of the unit elements



of acoustic rainbow sensors and their strongly dispersive acoustic behavior,
not found in naturally occurring materials, means that they can be classified
as acoustic metamaterials [15]. A common design of such sensors consists of
an array of Helmholtz resonators, with spatially varying resonance frequen-
cies, coupled via a duct. It is shown that when the size of these elements is
small compared with the local wavelength, the resulting wave equation can
be put in exactly the same form as that for the cochlear wave above. For
a practical design of acoustic rainbow sensor, however, the nondimensional
compressibility parameter in the WKB solution to the wave equation plays
a much more important role than in the cochlea, and determines the width
of a stop band within which the wave is evanescent, but beyond which the
wave can again propagate.
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Figure 1: Schematic diagram of the box model of the uncoiled cochlea, showing the
two fluid chambers, divided by the flexible basilar membrane, BM, in an otherwise rigid
cochlear partition. The upper chamber is driven by the middle ear via the oval window,
OW, and the lower chamber is terminated at the basal end, z = 0, by the flexible round
window, RW, which provides pressure release. The complex pressure difference p = p; —po
drives the locally reacting BM so that its velocity is vgps, which produces equal and op-
posite longitudinal flow velocity u in the two fluid chambers, which are connected at the
apical end, x = L, at the helicotrema. The divisions along the BM are illustrative of the
individual elements in the numerical model used to compare with the WKB solution in
Section 3.



2. Wavenumber in the cochlea including fluid compressibility and
viscosity

The cochlea is represented by the one-dimensional box model of Fig. 1,
which is based on some simplified assumptions with respect to the real ge-
ometry. First, it is assumed that the wave in the uncoiled cochlea only
propagates in one dimension, the longitudinal coordinate x. Secondly, it is
assumed that from the point of view of the dynamics there are only two fluid
chambers [1, 16, 17, 18, 19]. The boundaries of the cochlea are considered
to be rigid and the two fluid chambers communicate with the external en-
vironment only through the membranes at the round and oval windows, at
the base of the cochlea. Finally, the dynamics of the complex tissue and cell
structure of the cochlear partition is simplified as a single, elastic structure,
the basilar membrane, which moves in response to the difference in pressure
between the two fluid chambers.

The dynamics of the system is described by a linear wave equation that
is obtained using the conservation of mass and momentum applied to an
elemental volume of the fluid. Assuming a time dependence of the form
exp(iwt), the continuity equation is given by:
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where u(z) is the longitudinal fluid velocity averaged across the cross-sectional
area (A) of the chamber; p(x) is the pressure difference between the two
scalae, averaged across the width (W) of the chamber; pc? is the bulk mod-
ulus of the fluid, where p is its density and ¢y the velocity of the sound in
the fluid; vpp(x) is the transverse velocity of the BM, averaged across the
width of the cochlea and h is the effective height of the chamber, given by
h = 72A/(8B), where B is the width of the basilar membrane [20]. The ef-
fective height accounts for the difference in the volumetric contribution from
the assumed velocity distribution across the BM and the volume velocity as-
sociated with an entirely two-dimensional fluid model in which the whole of
the cochlear partition moves with the same velocity [20]. A, W and hence h
are assumed to be constant with x, giving a uniform cross section, as shown
in Fig. 1.
The momentum equation is given by:

82553) = —2iwpu(zr) — 4—yu(x), (2)




where v is the dynamic viscosity of the fluid. The prefactor 4 is used to
be consistent with the analysis in [16], in which this term is derived by
comparison with the solution of plane Poiseuille flow. Combining Egs. (1)
and (2) we obtain:

?*p(r)  w? 2iv 2iwp 2iv
07 @ (1 - hQWP) P == (1 - hQWP) e @)

which describes the relation between the velocity of the BM and the pressure
distribution of the fluid. The BM is assumed to be locally reacting, so that
the velocity of a point on the BM is equal to the pressure difference p(x) times
the opposite of the admittance Y (x) of the BM, due to the sign convention:

vy = —Y (2, w)p(x), (4)
so that Eq. (3) becomes:
0 ;:E(;E ) 4 k(o w)p(z) = 0, (5)

which is the wave equation of the cochlear model and &, the complex wavenum-
ber, is given by:

k(2 w) = \/(—Zi}‘jpy + i—g) (1 _ hzi:p). (6)

A single-degree-of-freedom model is used for the dynamics of the passive BM,
whose admittance, Y (x), is given by:
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where R(z), S(z) and M(x) are, respectively, the resistance, stiffness and
mass per unit area of the BM. The term M (z) includes a contribution from
the entrained mass of the fluid [19], and is assumed to be constant (mg). The
longitudinal variation of the remaining variables is given by:

R(l’) = %7 (8&)
S(z) = w;, (x)my, (8b)



where @) is the quality factor of the BM local resonance, also assumed to be
independent of z, and wy,(x) is its natural angular frequency at position z,
and this is assumed to vary exponentially along the cochlea [1], so that:

wn(x) = wyexp(—z /1), 9)

where wy, is the natural angular frequency at the base of the cochlea and [ is
a characteristic length. The expression of the wavenumber in Eq. (6) then
becomes:
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By moving the factor of (1 ) outside the square root and simplifying

the remaining term, the wavenumber can be expressed in the more insightful
form:
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where ky. is the complex wavenumber in the fluid, which takes into account
the effect of viscosity, and is given by:

ko = —+/1— 2112, (12)

Co

and G is the bandgap ratio given by:

16N?
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(13)

which is the ratio of the limiting frequencies of the corresponding stop band,
as shown in Fig. 2. In Egs. (12) and (13) we have introduced the following
nondimensional variables:

C= w_l’ (14a)
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N=—— (14c)
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where C' is the nondimensional compressibility, equal to 27 times the charac-
teristic length [ divided by the acoustic wavelength; since C' depends on the
excitation frequency the parameter C,,, which is w,l/c, is also used and is
called nondimensional compressibility at resonance; V' is the nondimensional
viscosity which is the ratio of the viscous boundary layer thickness, 9, given
by /v /wp, to the effective height of the fluid chambers, h; N is a constant
introduced in [17], called the phase-shift parameter and p is the ratio of the
mass per unit area of the BM and of the fluid in the chambers. The geomet-
rical and physical values assumed for the cochlear model are listed in Table 1,
and the corresponding nominal values of the nondimensional parameters (Q,
No, Cp and Vp), for an excitation frequency of 1 kHz, are listed in Table 2.

Table 1: Assumed geometrical and physical values of the one-dimensional cochlear box
model [20].

Parameter Symbol Value
Length of the cochlea L 3.5 x 102 m
Characteristic length [ 7.0 x 103 m
Base natural frequency wy/2m 2.0 x 10* Hz
Effective height of a fluid chamber h 4.1 x 103 m
Density of the fluid p 1 x 10® kg/m?
Mass per unit area of the BM mo 3 x 107! kg/m?
Coefficient of viscosity v 8.9 x 10° Pa s
Speed of sound Co 1.5 x 10 m/s

The real and imaginary parts of the wavenumber are plotted in Fig. 2a,
as a function of normalized excitation frequency, for different values of the
nondimensional compressibility parameter at resonance, C,,. For a nominal
value of C,, equal to Cj, a pass band is seen up to the natural frequency,
for which w/w, = 1, where the real part of the wavenumber is rising and
the imaginary part is for the most part very small. The rising value of the
real part of the wavenumber, with an increasing slope, also means that the



Table 2: Nominal values of nondimensional parameters in the cochlear model correspond-
ing to an excitation frequency of 1 kHz.

Parameter Symbol Value
Quality factor Qo 5
Nondimensional viscosity Vo 2.9 x 103
Nondimensional compressibility Cy 2.1 x 102
Phase-shift parameter Ny 2.23
phase and group velocities, given by ¢,, = w/k and ¢, = g—‘,;’, decrease

along this band, leading to the wave being slowed so that its amplitude
is concentrated near the natural frequency. There is little loss well below
the natural frequency since the imaginary part of the wavenumber is small
over most of this pass band. The imaginary part of the wavenumber starts to
increase in magnitude at a frequency slightly before the peak of the real part.
This then leads to a stop band, where the imaginary part of the wavenumber
remains high in absolute terms and the wave is greatly attenuated. Only for
values of C,, much larger than the nominal one, is the value of Gw,,, defined
in Eq. (11), within the range of audible frequencies. In this case, as can be
seen in Fig. 2a, beyond the stop band, a second pass band occurs, in which
the wave again begins to propagate. The very high value of (), = 304C) is
chosen to compare with the rainbow sensor example below.

In Fig. 2b the real and imaginary parts of the wavenumber are plotted
for different values of the nondimensional viscosity parameter V. Only for
values of V' that are very much larger than the nominal value do the real
and imaginary part of the wavenumber change significantly. In particular,
the imaginary part increases and is nonzero even at the lowest frequencies,
indicating a greater attenuation as V' is increased.

In Fig. 2c the real and imaginary parts of the wavenumber are plotted
for different values of the quality factor (). The main effect is near the peaks
of the real and imaginary parts, around the natural frequency. In particular,
the peaks become sharper and shift slightly to higher frequencies for higher
values of (). The peak of the real part of the wavenumber occurs slightly
before w/w, = 1, whereas the imaginary part of k£ becomes very large in
magnitude right after w/w, = 1. The increase of R{k} just before w/w, =1
corresponds to a decrease of the phase velocity c,,, whereas the increase
slope of R{k} corresponds to a decrease of the group velocity ¢,. Beyond



w/wy, = 1, the higher value of I{k} corresponds to a more abrupt dissipation
of the response.

In Fig. 2d the real and imaginary parts of the wavenumber are plotted
for different values of the nondimensional phase-shift parameter N. As this
parameter increases, the magnitude of the real part increases, and thus the
phase speed at a given frequency decreases, up to w/w, = 1. The magnitude
of the imaginary part and thus the attenuation of the wave, also increases
beyond w/w,, = 1.
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Figure 2: Variation of the amplitude (top) and of the phase (bottom) of the wavenumber
as a function of normalized frequency, for (a) different values of the nondimensional com-
pressibility parameter at resonance C,, (b) normalized viscosity V, (¢) quality factor Q
and (d) normalized phase-shift parameter N.



3. Analytic WKB solutions including compressibility and viscosity

We now use the WKB method to derive an approximation to the exact so-
lution of the wave equation [Eq. (5)] in terms of the nondimensional variables
defined in Eqgs. (14). The WKB method has been previously used to obtain
closed-form solutions for 1D [17], 2D [18] and 3D [21, 22| cochlear models.
These solutions have been obtained in the case of an incompressible and in-
viscid fluid, by assuming light damping in the BM. In [16] a semi-analytic
solution is derived for the 1D case, including fluid compressibility and vis-
cosity and with no approximation to the BM’s damping. In this paper, we
derive a WKB solution in terms of a number of nondimensional parameters
and then discuss their contribution to the amplitude and phase response of
the BM.

The ideal condition for validity of the WKB approximation is that [23,
Ch.1.4]:

K ()]
K2 ()]

< 1. (15)

where k'(z) is the derivative of k& with respect to x. The left hand side of
this condition is plotted as a function of normalized frequency in Fig. 3 for
the nominal parameters listed in Table 1, which shows that the condition
is not always satisfied, particularly at low frequencies. Figure 4 shows a
comparison of the WKB solution in this case with a numerical solution to
a model with 512 elements, which uses finite difference approximations for
the spatial derivative in Eq. (3) [20]. The approximate WKB solution differs
from this numerical solution to the governing equations only for very low
frequencies, as previously noted in [19]. Differences have also been noted for
frequencies just above the natural frequency, where the WKB response drops
off more quickly than the exact solution [24, 22, 18]. Although an assumption
made in the WKB method is that only a single wave is propagating, the
effects just above the natural frequency may be due to low amplitudes of an
additional evanescent fluid wave [2, 25]. Apart from these small differences,
the WKB solution and the finite difference solutions are very similar around
the characteristic frequency, which is the main region of interest in the study.
The form of this response, with an increasing magnitude and falling phase up
to the characteristic frequency, after which there is a rapid drop in amplitude
with little additional phase shift, is consistent with that measured in the

10



mammalian cochlea using laser methods (for example in [26]) and more recent
optical coherence tomography techniques, as in [27].
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Figure 3: WKB condition as a function of normalized frequency for the nominal parameters
listed in Table 1.
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Figure 4: Comparison between the amplitude (top) and the phase (bottom) of the nor-
malized BM displacement, obtained using the WKB method (solid line) and the elemental
model (dashed line) in [20].
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The general WKB solution to Eq. (5), with the boundary condition p(x =
L) =0, is given by:

p(0)y/k(0) exp(—i [ k(2') da’) + exp(—2i fo "y da! +1f0 da:)

ple) = k(x) 1 — exp(—2i fo

(16)

The first term in the numerator represents a forward-traveling wave, which
propagates from base to apex, while the second term describes a wave that
originates by reflection of the first wave at the helicotrema (z = L) and then
propagates towards the base. This last term is significant only for frequencies
so low that the pressure p(x) at the apex retains an appreciable value. It has
been shown, by numerical integration of the WKB solution [16], that this
reflected wave is much smaller than the forward-traveling wave and that it
is important only in a region very near the apex. The WKB approximation
in Eq. (15) also breaks down close to the characteristic frequency when the
damping in the BM is very small, so that the peak in the coupled response is
very large. It might be expected that the rapid change in the BM admittance
in this case would generate a reflected wave, but it has been shown that this
does not occur [28]. In practice, however, the mechanical parameters of
the BM are not as smoothly varying as is represented in Eq. (8), and this
roughness can generate low amplitude reflected waves, which can give rise to
otoacoustic emissions [29], although these are not considered here.
We can thus simplify the solution in Eq. (16) as

= ————=—exp(¢), (17)

o= —i/ow k(z") da’. (18)

The integral above can be solved as outlined in the Appendix. A simplified
expression can then be obtained by making the approximation w < wy, since
we are interested in the form of the solution for excitation frequencies that
are much lower that the natural frequency at the base. In this case, ¢ can

12



be written as:
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where F and II are, respectively, an elliptic integral of the first and third
kind. It is interesting to note that although the wavenumber in Eq. (11)
depends on C,, = wyl/co, via the term G in Eq. (13), the phase term ¢ only
depends on the nondimensional compressibility term C' = wl/cy defined in
Eq. (14a) where w is the excitation frequency, since the term w,, cancels out
in the integration in Eq. (A.3).

From the pressure distribution [Eq. (17)] we can derive the velocity of a
point of the BM using Eq. (4) and, from this, the corresponding displacement
A by dividing by iw, obtaining;:

16 N2
¢ 1+ 2 wp | iwp
¢ (?—'—Qow_l)

Alz,w) =~ , ; p(0) exp(¢). (20)
ot (821 1 S
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It is customary to normalize the displacement of the BM with respect to the
displacement of the stapes, A, which can be derived from the fluid volume
velocity u at = = 0, given by Eq. (2), as:

16N2
1+ o dwn
U|z=0 @o “

A, = —He=0 _ 0), 21
it syt o 0 (21)
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so that, using 2pcy/wmgy = 4N/C/j1, we obtain the BM displacement ratio
D = A/A,, as a function of only the nondimensional parameters defined
above:

4Niy/1 — 2iV exp(9)
1) 14 1677 14 16N2
i‘/ ()| (i)

4. Parametric variation with nondimensional parameters

D= (22)

Vi (g + 4 -

In this section we show how the amplitude and the phase of the normalized
BM motion D, as calculated from Eq. (22), depends on the nondimensional
parameters introduced in Section 2 (Q,N,C and V), so that we can clarify
their physical significance. In Fig. 5 the amplitude and the phase of D are
plotted, as a function of the normalized angular frequency w/w,,, for different
values of the nondimensional compressibility parameter, C, calculated at
w/w, = 1, at which frequency C' is equal to C,.
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Figure 5: Variation of the amplitude (top) and of the phase (bottom) of the normalized
BM displacement, for different values of the nondimensional compressibility parameter C,
calculated at w/w, = 1, as a function of normalized excitation frequency.
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As C' is increased above the nominal value Cj, but less than 30C), the
amplitude of the displacement ratio increases in the lower pass band. For
values of C' greater than 100C), which will be seen to be relevant to the
case of the rainbow sensor, the value of D decreases at the characteristic
frequency. In the stop band, the response decays rapidly, due to the high
losses attributed to the imaginary part of the wavenumber there, as seen in
Fig. 2a. For larger values of C', a second peak appears in the second pass
band, as the wave again starts to propagate. In the phase plot of Fig. 5, it
can be seen that the phase decreases gradually up to the peak frequency. In
the stop band the phase shift is lower. In the second pass band, the phase
again decreases due to forward wave propagation.

In Fig. 6, the amplitude and the phase of D are plotted for different
values of the nondimensional viscosity parameter, V', calculated at w/w, = 1.
The nondimensional viscosity term has an effect only for very high values
(V > 10%V}), for which the magnitude of D is reduced, resulting in a lower
peak around w/wy,.
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Figure 6: Variation of the amplitude (top) and of the phase (bottom) of the normalized BM
displacement, for different values of the nondimensional viscosity parameter V', calculated
at w/wy, = 1, as a function of normalized excitation frequency.
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This is related to the increase of the real and imaginary part of the
wavenumber, for high values of V', as seen in Fig. 2b. In particular, the
high value of the imaginary part at lower frequencies greatly attenuates the
wave, thus decreasing the value of D and flattening the curve. This sup-
ports a previous study [30], in which it is shown that the effect of viscosity
is important only at the apex of the cochlea, where the viscous boundary
layer thickness becomes comparable to the height of the cochlea. It is also
in agreement with experimental results in which it has been shown that an
increase in fluid viscosity led to a decrease in the BM amplitude [31] and in
the flattening of the response curve [32].

In Fig. 7 the amplitude and the phase of D are plotted for different values
of the quality factor, (). The amplitude response becomes sharper around
the natural frequency and shifts to higher frequencies with increasing Q).
For w/w, > 1 the response decay becomes steeper as @) is increased, while
for w/w, < 1 the amplitude is relatively unaffected. The phase response
becomes steeper around the characteristic frequency with increasing (). This
corresponds to the increase of the real part of the wavenumber around w/w,, =
1.
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Figure 7: Variation of the amplitude (top) and of the phase (bottom) of the normalized
BM displacement, for different values of the nondimensional quality factor @, as a function
of normalized excitation frequency.
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In Fig. 8 the amplitude and the phase of D are plotted for different
values of the nondimensional phase-shift parameter N. For low values of
N, the response of the BM is almost symmetric on a log frequency axis,
indicating weak fluid coupling and a phase shift of about half a cycle only
occurs close to the characteristic frequency, implying a local resonance and
no wave propagation. With increasing values of N, the phase change is larger
and the amplitude response becomes asymmetrical, with a characteristic peak
at sightly less than w/w, = 1, with a steep decrease after this, indicating
strong fluid coupling. This is related to the dependence of the wavenumber
on N, as shown in Fig. 2d. For small values of N, the real part of the
wavenumber is small so that the wave speed is high and the pressure becomes
almost uniform along the cochlea, driving the BM as a resonant second order
system. The phase shift of D is then only 7/2 at the BM resonance, as
associated with a isolated resonator. These results are in accordance with
[33], where the relationship between the BM mass and the coupled response
is discussed. The more complete analysis here illustrates the dependence of
the form of the coupled response not just on the BM mass via u, but on the
more complicated nondimensional parameter, N.

In all the cases discussed above, the phase shift of the BM displacement
ratio, given by Eq. (22), increases somewhat for frequencies much higher than
the characteristic frequency. This is in contrast to what has been observed
experimentally, as in [34]. However, this phase increase only occurs when
the normalized magnitude response is lower than -60 dB, so that it does not
affect the overall response in practice.
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4.1. Incompressible and inviscid case

The contributions of compressibility and viscosity of the fluid to the dis-
placement ratio can be neglected if V and C' are much smaller than unity.
This is valid for nominal physiological values of these parameters, as seen in
Table 2. In this case, the wavenumber in Eq. (11) simplifies so that:

kl = 4N\/ W (23)

w2 + iwpw/Q — w?

i.e. the wavenumber is directly proportional to N as seen in Figure 2d.
Equation (22) for the displacement ratio then reduces to:

_ ANi exp{—i4N (arcsin (w/w, — i/(2Q)) — arcsin (w/wy, —i/(2Q))}
C % M—:) + 5—7221 —1)2 4 72 1 4 2 1
e E ) fma @

which becomes, taking into account the relation N = [/(4hu) and making
the approximation w < w:

D

, (24)

iw4/wp exp{—i4 N (arcsin (w/w,, — l/(QQ))}

z <wn Wi 17)

D incomp —

Apart from an additional factor of h and the absence of a factor of wd/ 2,
which give the correct nondimensionality, this expression is equivalent to
that derived in [17] for the case of an incompressible and inviscid fluid.

The only direct effect of the mass ratio, u, on D is to scale the overall
response, whose shape is determined by N and (). Although the nondimen-
sional parameter IV is seen to be a function of y in the definition in Eq. 14c,
its additional dependence on [ and h means that in numerical simulations it
can be varied while keeping p constant, as in Fig. 4.13 of [35].
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5. Cochlea-inspired acoustic rainbow sensor

Designs of acoustic rainbow sensor whose characteristics are inspired by
the cochlea have been presented by several authors [11, 12, 36]. In particular,
[36] investigated a design that aimed to achieve a smooth frequency response,
as well as a similar spatial spectral analysis to that observed in the cochlea.
Fig. 9a shows a schematic of this rainbow sensor, consisting of a main duct
of constant cross section with an array of Helmholtz resonator side branches
of varying dimensions. An element of the system consists of a segment of the
main duct and a Helmholtz resonator side branch, whose lumped parameter
approximation is shown in Fig. 9b. The series impedance, Z;, is determined
by the inertance of the fluid in the duct, Lp, which is assumed to be air
in this case, and the shunt impedance, Z,, is the parallel combination of
the compliance of the air in the duct, Cy, and the input impedance of the
Helmholtz resonator, consisting of the compliance of the volume, C'y, the
inertance of the neck, Ly, and the resistance of the neck, Ry. It was shown
in [36] that a sufficient number of at least six elements per wavelength has to
be used to achieve a smooth frequency response. Under these conditions, the
size of the elements is small compared with the wavelength, justifying the
use of the lumped parameter approximation, and the behavior of the array
of elements can also be reasonably approximated by a continuous system,
having smoothly varying properties, which can be analyzed using transmis-
sion line theory. The response of an example rainbow sensor taken from [36]
is presented here, and is compared with the response of the cochlear model
above. Results from these simulations illustrate the similarities of the two
models.

5.1. Wavenumber in the acoustic rainbow sensor

Each element of the lumped parameter model of the system has a finite
length, [p, rather than having acoustic properties per unit length as in for-
mal transmission line theory [37]. Therefore, the series, Z;, and shunt, Zs,
acoustic impedances of an element, as shown in Fig. 9b, have to be normal-
ized by lp. An equivalent wavenumber for the transmission line can then be
calculated as

1 |z
k=—1=. 26
ilp V Zs (26)
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Figure 9: (a) Schematic of an acoustic rainbow sensor consisting of a square main duct of
constant cross section Sp = w% and a number of Helmholtz resonator side branches. Also
indicated are the length of an element of the system, [p, the radius, a, and the length, [,,
of the resonator neck and the height, hy, of the resonator cavity. Formulas for the area
of the neck, Sg, and the volume of the cavity, Vi, are also given. The input end of the
system is termed the ‘base’ and the other end is termed ‘the apex’, by analogy with the
cochlea. (b) Equivalent circuit drawing of a lumped parameter model of an element of
the transmission line, including the acoustic inertance, Lp, and acoustic compliance, Cp,
of the duct, and the acoustic resistance, Ry, inertance, Ly, and compliance, Cp, of the
Helmholtz resonator. The series impedance, Z;, of the transmission line element is due
to the duct inertance, and the shunt impedance is the parallel combination of the duct
compliance and the RLC branch of the Helmholtz resonator impedance. Also noted are
the acoustic pressure in the duct, pp, which is analogous to the fluid pressure difference
in the cochlea, and the pressure in the resonator cavity, p., which is analogous to the BM
displacement in the cochlea.
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Using the explicit formulas of the series and shunt impedances, the spatially
varying wavenumber of the transmission line can be written as [36]

k= ko (27)

w2 i — 2

. 1/2
G%@%—l—l% —w2] /
Q

where kg is w/cp and ¢y is the speed of sound in the fluid, which is air in this
case, w, and @) are the resonance angular frequency and the quality factor
of a given element and G is the bandgap ratio, in this case given by:

G- Vith, (28)

in which

H:%_VH

S 2
o (29)

is the ratio of compliances, and hence the volumes, of the resonator cavity
and the duct element. It can thus be seen that the limiting expression for
the wavenumber in the acoustic rainbow sensor, when the elements are small
compared with the wavelength, is of exactly the same form as that of the
cochlear model considered in Section 2, Eq. (11). In the continuous limit,
where the element length is infinitesimal, transmission line theory applies
exactly, so that the pressure in the duct of the rainbow sensor is given by
the well-known wave equation of Eq. (5), as the pressure in the cochlea.
Furthermore, the bandgap ratio of the Helmholtz resonator here, v/1 + H, is

analogous to the term , /1 + 1601\272 in Eq. (13). Hence, the effective value of the
nondimensional compressibility parameter at resonance defined in Section 2

for the acoustic rainbow sensor is equal to:

4N
VH

which is about 9 for the design of sensor described in [36]. The corresponding
normalized compressibility parameter C', which is equal to C' = Chw/w,, is
thus significantly larger for this acoustic rainbow sensor than it is in the
cochlea, and hence plays a greater role in determining the response. In fact
the nondimensional compressibility factor for this rainbow sensor is about
304 times that in the cochlear model, as given in Table 2, which is why

c, (30)
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this value was chosen in Fig. 5. Apart from this, the analogy between the
rainbow sensor and the cochlea can be further explored by considering the
lumped parameter approximation to an element in the passive cochlea, which
is exactly as in Fig. 9b, except that the inertance of the fluid in the sensor
duct is replaced by the inertance of the fluid in the cochlear chambers, and the
Helmholtz resonator is replaced by the mass-spring-damper model of the BM.
The shunt compliance term is not normally included in lumped parameter
models of the cochlea [17], since it corresponds to the compressibility of the
fluid in the cochlear chambers, which is very small, as seen above. The
pressure in the rainbow sensor duct, pp in Fig. 9b, is thus analogous to
the pressure difference across the BM in the cochlea [17] and the pressure
in the volume of the Helmholtz resonator, p., in Fig. 9b, is analogous to
the volume velocity through the RLC circuit representing the mass-spring-
damper model of the BM, multiplied by the impedance of the spring. The
resonator pressure, p., is thus analogous to the displacement of the BM in
the cochlea, scaled by a factor of Cp.

5.2. Response of an example acoustic rainbow sensor

Table 3 shows the dimensions of an example rainbow sensor taken from
[36], which has 50 elements and whose main characteristics are presented
below. The variable [ in Table 3 represents the effective length of the
Helmholtz resonator neck, which is larger than the physical length of the
resonator neck since it takes into account the end corrections due to sound
radiation from the two ends.

As in the cochlea with high values of Cj, the rainbow sensor wavenumber
is characterized by a low frequency pass band, a stop band, and a high
frequency pass band. It should be noted that the bandgap in the rainbow
sensor is constant for all the elements, since H, in Eq. (29), is designed to be
equal to 1 throughout the sensor, which is achieved by varying the length of
the duct between resonators.

The modulus and phase of the rainbow sensor’s frequency response are
plotted in Fig. 10, in terms of the acoustic pressure in the cavities, corre-
sponding to the BM displacement in the cochlea, for three different elements
along the rainbow sensor. The response of the rainbow sensor is calculated
with a distributed Transfer Matrix method, which accounts for wave propa-
gation in the ducts and cavities of the system and interference effects between
the discrete elements, as in [36], in contrast to the use of the WKB method
employed to give the results for the analogous plot for the cochlea in Fig. 6.
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Table 3: Design parameter values of the first, 25" and 50 element of the example acoustic
rainbow sensor. The neck radius is @ = 0.5 mm and the duct width is wp = 7.3 mm for
all the elements.

n f1 (Hz) 1 [p (mm) hy (mm) lo (mm) lg (mm)

1 3400 17.5 3.8 7.3 0.31 1
25 1035 9.7 16.9 7.3 1.7 24
20 300 5.2 79.8 7.3 5.42 6.2

The similarities between the two cases can be seen by comparing the re-
sponse of the rainbow sensor at n = 12, given in Fig. 10, and that of the
cochlea, with high fluid compressibility, given in Fig. 5, which for C' = 304,
gives a bandgap ratio of /2. As in Fig. 5, the rainbow sensor response in
Fig. 10 increases in the lower pass band up to a frequency lower than the nat-
ural frequency. In the stop band region the response decreases rapidly. In the
upper band, the response first peaks and then continues to decrease, albeit
more gradually. Internal resonances within the individual element enhance
the higher frequency peak in the discrete acoustic rainbow sensor compared
with the continuous cochlear model [36]. At higher frequencies, the response
of the rainbow sensor is dominated by interfering acoustic phenomena within
the elements, which lead to additional peaks.

The phase responses are also similar between the two figures: there is
a gradual decrease up to the peak frequency and a lower phase shift in the
stop band. The inversion of the phase observed in the basal element is due
to interfering phenomena at higher frequencies. In the second pass band, the
phase again decreases due to forward wave propagation.

25



= Do
(=) (=)
T

o
T

-30 - [—n =40
- - n=26
e, =192 !
-50 I I . Lo

0.1 0.2 0.3 0.5 1 V2 2

w/wn(n;)

|p| (dB re 1 Pa)

'
—

/p (cycles)
&

-2 i _ - -
—n =40 ) | N
25— n=26 | ! AN i
’ ey, =12 J : '
-3 I I i T S S S A | G I I R T S
0.1 0.2 0.3 0.5 1 V2 2 3 5 10
w/wn(n;)

Figure 10: Acoustic pressure in the resonator cavities plotted against normalized frequency
for three different resonators, modulus (upper), and phase (lower). The dashed vertical
lines define the limits of the stop band, which is shaded in light grey.
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6. Conclusions

An analytic WKB solution for the wave equation in the passive cochlea
has been derived, including the effects of both viscosity and compressibility
in the cochlear fluids, which reduces to an earlier result [17], if the effects
of viscosity or compressibility are ignored. This allows the response of the
cochlea to be expressed in terms of four nondimensional parameters, two
dependent on the viscosity and compressibility of the fluid, one dependent
on the damping of the basilar membrane, and finally a previously derived
nondimensional phase-shift parameter [17]. For the parameters found in the
normal cochlea, however, the effect of the fluid viscosity and compressibility
is very small. A physical interpretation can then be put on the behavior of the
wave by considering the parametric variation of the cochlear response with
each of these parameters. It is found that the nondimensional phase-shift
parameter determines not only the high frequency phase shift [17] but also the
nature of the interaction between the structural dynamics of the BM and the
fluid inertia. If this parameter is large, the fluid-structural coupling is strong
and a propagating wave is generated for frequencies up to about the natural
frequency, with strong attenuation above this, giving a very asymmetrical
frequency response. If this parameter is small, the fluid-structural coupling
is weak, and the elements of the basilar membrane respond independently,
driven by the constant pressure in the fluid, generating an almost symmetrical
frequency response function when plotted on a log scale. Although the phase-
shift parameter that determines the shape of the response is proportional to
the square root of the ratio of the mass per unit length of the fluid in the
chambers to the mass per unit length of the BM [33], it also depends on the
ratio of the characteristic length of the exponential decay in frequency along
the cochlea to the effective height of the fluid chambers. Therefore, the mass
ratio by itself only changes the amplitude and not the form of the response
if the phase-shift parameter is kept constant and the characteristic length of
the cochlea is varied accordingly.

Some features of the cochlear response with values of the compressibility
parameter above that normally encountered in the cochlea turn out to be
relevant to the behavior of acoustic rainbow sensors. It is shown that the
limiting expression for the wavenumber in the case of an acoustic rainbow
sensor with a smoothly varying frequency response takes the same form as
that in the cochlea with fluid compressibility. A second pass band, which
cuts in above the frequency of the stop band, is seen to be important in
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determining the response of the acoustic rainbow sensor and the cochlea
with high fluid compressibility. This explains the second peak observed in the
predicted cochlear response when it has high fluid compressibility. Although
in principle this peak is also present in the normal cochlea, it would occur at
a sufficiently high frequency for it to be negligible.
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Appendix. Solution of the phase integral

The integral in Eq. (18) can be written, using Eq. (10) and Eq. (9), as

— _ih CLCO /
= —ib / \/wbexp 270 + 1w Q) = —i—ld:l:, (A.1)

where we defined:

_ %
0= T (A.2a)
v
b=,/1— A.2b

and at the denominator under the square root of the integrand in Eq. (A.1)
we completed the square and assume that 1/Q? is small compared with 1, as
n [17]. We now change variable by using w,, = wy exp(—2'/l) and obtain:

lbw [* 1 ack
=i— — 1 dw,. A3
o= | wn\/<wn+iw/@>2—w2+ v (8.4
By defining the new variable ¢ = <wn + %) we have:

(iw/Q+wn) 1 2 1 42 _ 2
lbw / vacg + WP (A)
@

iw/Q+wp) (t - I(U/Q) 12 —w?
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Taking into account that:
1 B iw n t
t—iw/Q QM +w?/Q?) 2+ w?/Q¥

the integral becomes:

b Ibw { /<iw/@+wn> iwy/acd + 2 — w? dt
_
0 LSw/Qray) QU +w?/Q2)VE —w?
(iw/Q+wn) ¢ fac? + 12 — 2
+/ Ve Al o g (A.6)
(/@) 12+ 0?/Q £ —w?
Now we consider each integral in the square bracket in turn. We call them

respectively I; and [5. Starting from the last one, if we change variable using
the substitution s = t? we obtain:

(iw/Q+wn)? 1 2 2
I, :/ ___ VI TImw (A7)
(iw/Qtwp)? 25+ 2w /Q Vs —w?

The integrand can be decomposed as:

(iw/Q+wn)? 1
]2 = 1/2/ ds
(w/Q4w)? V5§ — w? \/acg + 5 — w?
(iw/Q+wn)? dac? — (4 + 4/02) w2
+1/2/ a6 — 4+ /@) ds, (A.8)
(w/Qrwy)? Vs —wiy/ack + s — w2(4s + 4w? /Q?)

which we call, respectively, Ir4 and I>g. If we define ¢ = Vs — w? then:
(iw/Q+wn)?—w? 1
faa = / Vi@ ? g+ ¢ 44 (A9)
and by using r = ¢/\/acd + ¢*:

\/(1w/Q+wn w2/\/aco w2+ (iw/Q+wn)? 1
Loy =

dr, (A.10)

@/ Q)P \fa Pt () Qran)? LT
so that:

I54 = arctanh < V(w/Q 4 wy)? — w? )

Vack —w? + (w/Q + wy)?
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Now we go back to the integral Irp in Eq. (A.8) for which we use the substi-
tution m = v/s — w?/+/act + s — w? so that:

B B 4@03 . (4 + 4/Q2)w2
Lp = /a 4w? + 4/Q2%w? — m2(4/Q%w? — 4(acd — w?)) ddm (A.12)

where o = /(iw/Q +wp)? —w?/\/acg — w? + (iw/Q +w)?  and
B = /(iw/Q + wy)? — w?/\/act — w? +iiw/Q + wy)?. The result of this in-
tegral is:

e ¢4ac%—<4+4/@2>w2[arctanh Viad— (L4 4002
T wAg T

ety (B~ AT 1@
o (I ) | i

Now going back to I; in Eq. (A.6), we can rewrite this as:

;o Q |:/(iUJ/Q+UJn) A2 /—CZC(Z) ¥ 2 iy
' dwr/act — w? [ Jw/Qiwy) Q2 —12 + w?y/—ack — 12 + w2
N /(i‘*’/QJ""") dw?\/—acd + w?(dack — (4 +4/Q%)w?)
(

iw/Qrw) Q2V—1 + wiy/—ack — 12 + w2 (482 + 4w?/Q?)

(A.14)
We call the integrals within the square brackets 14 and [;p respectively.
Starting from the first one, if we define § = — arcsin(t/w), then we obtain:
402 — arcsin(i/Q+wn /w) de
Iia = — 2 , (A.15)
Q — arcsin(i/Q+wn /w) \/1 — w;’iacQ Sin2(9)
0

which is the difference of two elliptic integrals of the first kind, indicated as:

Lia= 4@_@)22 {F (— arcsin(i/Q + wy, /w), w;i—:c%) (A.16)
-F (— arcsin(i/Q + wp/w), oﬂw—:&) ] . (A.17)
—ac
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By using the same change of variable, the integral I; 5 becomes:

— arcsin(% ot +2m)

ha = Aad-(14+Q ) [
—arcsin(5+22) (1 4 Q2 sin?( \/1 —

z sin?(0) 7
(A.18)

which is the difference of two elliptic integrals of the third kind:

L= (4(act — (1 +Q Hw ){H (—QQ; —arcsin(i/Q + wy /w), wgf—22)

act
—1II (—Q2; —arcsin(i/Q + wp/w), wzcj—ilg) } . (A.19)
0

Then, by putting together all the results above, the integral ¢ becomes:

¢:ilbw[ 1

Q-1+ 1%
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where O(w/wp) include the terms from the lower limit of integration. If
we know use the definitions of the nondimensional variables introduced in

2
F (— arcsin(i/Q + wy,/w), ﬁ)
— acy

+ arctanh (
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Eq

. (14), ¢ can be written as:
¢ =iCvV1 -2V ! F | —arcsin(i/Q + wy/w), !
Q —1+ 16 N2 1— 16N2
Cc? C2
2 2
—1—4i —1+ ﬂl’[ —Q% —arcsin(i/Q + w, /w), _
Q C? 1 — 16N2
C2
+ arctanh V/Q +wnjw) 1
VI6NZ/C? — 1+ (i/Q + wy /w)?
s 162 aretan VI6N2/C? — 1,/(i/Q + w, /w)? — 1
C VI6NZ/C? — 1+ (i/Q + w, /w)?

10 (i) , (A.21)

Wh

where again we assume that 1 — 1/Q? is small compared with 1. Finally, as
we are interested in the form of the solution for excitation frequencies such
that w < wp, we can neglect the term of order O(w/w,) and we obtain the
solution presented in Eq.(19).
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