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Recent interest in the physics of non-perturbative light-matter coupling led to the development of
solid-state cavity quantum electrodynamics setups in which the interaction energies are comparable
with the bare ones. In such a regime the ground state of the coupled system becomes interaction-
dependent and is predicted to contain a population of virtual excitations which, notwithstanding
having been object of many investigations, remain still unobserved. In this paper we investigate
how virtual electronic excitations in quantum wells modify the ground-state charge distribution,
and propose two methods to measure such a cavity-induced perturbation. The first approach we
consider is based on spectroscopic mapping of the electronic population at a specific location in
the quantum well using localised defect states. The second approach exploits instead the photonic
equivalent of a Kelvin probe to measure the average change distribution across the quantum well.
We find both effects observable with present-day or near-future technology. Our results thus provide
a route toward a demonstration of cavity-induced modulation of ground-state electronic properties.

I. INTRODUCTION

The many advances in the fabrication of nanopho-
tonic resonators and nanostructured materials have made
solid-state cavity quantum electrodynamics (CQED)
an interdisciplinary research domain, with applications
ranging from chemistry [1] to machine learning [2]. One
of the figures of merit of CQED setups which has seen
sustained improvements is the coupling strength between
light and matter. When their mutual interaction energy
becomes comparable with the excitation energy, higher
order effects become observable, a regime called ultra-
strong coupling [3-5]. In 2009 the impact of these higher-
order perturbative effects was observed for the first time
in the anomalous shift of intersubband polariton res-
onances: transitions between conduction subbands in
doped semiconductor quantum wells (QWs) strongly cou-
pled to photonic resonators [6]. Large couplings with the
photonic vacuum is expected to modify not only the sys-
tem’s optical response, but also the underlying matter
degrees of freedom. Interest in the impact of CQED ef-
fects on electronic and molecular degrees of freedom dates
back to Khurgin’s idea of very strong coupling [7—10], but
only in more recent years a broader interest followed [11-
22].

Crucially for this work, the ground state of an ultra-
strongly coupled CQED system is predicted to host a
cloud of virtual excitations, both photonic and matter
ones [23]. These excitations are predicted to be sta-
ble also in realistic dissipative environments [24] but,
notwithstanding many theoretical works proposing dif-
ferent approaches to observe them, a direct measurement
is still missing. Except a proposal to observe the vir-
tual excitations via electro-optical sampling [25], whose
efficacy has been questioned [26], and one to use the
Lamb shift of an ancilla qubit [27], all the other pro-
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posals we are aware of deal with variants of one basic
idea: to non-adiabatically modulate the system in or-
der to make some of these excitations real [28-34]. One
problem with this idea is that we need to consider a mod-
ulated, time-dependent system, in analogy with the dy-
namical Casimir effect [35-37], and similarly sensitive to
the density of dressed states, not to the presence of vac-
uum excitations. A second problem is that, in order to
achieve non-vanishing emission, perturbation frequencies
of the order of the bare optical frequency are necessary
[38, 39], a requirement which has until now thwarted any
attempt to observe vacuum excitations.

This paper explores a novel approach to these prob-
lems, by noticing that cavity-induced virtual electronic
excitations do modify the ground-state charge distri-
bution, and they can thus be measured exploiting al-
ready well-tested methods used to map charge distribu-
tions in nanoscopic systems without requiring any non-
adiabatic modulation. Our results thus provide both a
route to a first direct observation of virtual excitations
in the ultrastrong-coupling vacuum, and a test bench for
theoretical and numerical approaches studying CQED-
induced modifications of the electronic ground state.

II. SYSTEM DESCRIPTION

We consider a stack of now QWs, doped with a two-
dimensional electron gas of density o.. The electrons
in each QW occupy parallel parabolic subbands with
dispersion wj, function of the subband j and in-plane
wavevector k. The Fermi wave vector kr is chosen such
that the Fermi energy Er lies between the first and the
second subbands. Electronic wavefunctions, dispersions,
and other quantities introduced in this Section are shown
in Fig. 1.

The wavefunctions in th nth QW can be written in the
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FIG. 1. Example of an asymmetric QW potential V' (z) with
its envelope wavefunctions (a) and in-plane dispersions (b)
of the first two conduction subbands. The vertical dotted
lines represent the average charge position in each subband.
The green arrow shows the localised defect wavefunction and
the horizontal dotted lines the envelope wavefunction at the
defect position in the two subbands. The definition of all the
marked quantities can be found in the main text.

envelope function approximation
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where r = (z, p) is the position vector decomposed in
cylindrical coordinates, S is the sample surface, and z,
the nth QW position with the origin fixed at z; = 0. We
introduce the corresponding annihilation operators ¢;nxk,
obeying Fermionic anticommutation rules

{ejnk, e},n,k,} = 0,08k — K. 2)

Here and in the following the electron spin is not ex-
plicitly marked and the spin multiplicity is implicitly
summed over. The ground state of the uncoupled sys-
tem, describing the electron gas in the electromagnetic
vacuum is then

nQw

|F) = H H Clnk 10), (3)
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where |0) is the vacuum state é;,k |0) = 0. The unper-
turbed charge distribution corresponding to the uncou-
pled state |F') can be written as

pr(z) =Y |¥n(z = za) 0. (4)

We use the formalism initially developed for the multi-
subband case [40], in order to be able to treat the most
general cases, but for the sake of clarity in this paper we
will specialise it to consider only the first two electronic
subbands, an approximation which, in the proper gauge,
can be justified when higher-lying subbands are either
detuned or weakly coupled [41].

We consider the intersubband transitions to be almost
vertical in momentum space. This implies that the fre-
quency of the resonant transition with in-plane momen-
tum q is given by

Wok+q — Wik =~ W12, (5)

thus neglecting terms of the order of qup, with v the
Fermi velocity. The QWs are embedded in a double metal
nanopatch resonator of length L of which we retain only
transverse-magnetic (TM) modes due to selection rules
of intersubband transitions. The normalised TM,,, mode
profile can be written as

2 ™z

fmq(r) =

with in-plane wavevector q, out-of-plane one *, and
m € Nyg. The d,,, is the Kronecker symbol. Photons
in these modes will be described by the boson annihila-
tion operators a,,q, whose bare frequencies w4 obey the
dispersion relation
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with €, the background dielectric constant and c¢ the
speed of light.

We are interested to determine the modification in the
charge distribution along the z-axis induced in the elec-
tron gas by the coupling to the photonic resonator. As
such we can employ a theory whose degrees of freedom
are not the electron themselves, but their transitions and
in particular those coupled with the photonic field. We
thus introduce the collective, bright intersubband transi-
tion in QW n, with in-plane wave vector q

- 1
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These excitations obey quasi-bosonic commutation rela-
tions

On
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and they can thus be approximated as bosons in the sec-
tor of the Hilbert space where the excitation density in
the nth QW o, is much smaller than the electron density
[42]

on K O (10)

The coupling of intersubband transitions to the electro-
magnetic field can be described using the Power-Zienau-
Woolley (PZW) Hamiltonian including self-interaction
terms leading to the depolarization shift [43]. As shown
in Appendix A, such an Hamiltonian can be diagonalised
in the bosonic regime using a Hopfield-Bogoliubov ro-
tation. The coupled theory is then described by free



bosonic polaritonic operators, linear superpositions of the
bare ones

ﬁsq = Z (Zl?squmq + Zsqujn—q> (11>

m

+ Z (yanbnq + wanb};fq) .

The linear transformation in Eq. (11) can then be in-

verted to yield

bnq = Z (ganﬁsq - wanﬁl—q) . (12)

S

From Eq. (12) we can calculate the total density of mat-
ter excitations in the nth QW in the coupled ground state
defined by psq |G) =0

On -3 Z (G| bnqbnq G) = Z|wwq|2 (13)

Intersubband transitions modify the electronic density
because, as clearly shown in the example in Fig. 1, the
electronic charge density in each subband is different. In
Appendix B we extend the approach from Ref. [44] to
express the the ground state electronic wavefunction in
term of bosonised excitations. We are then able to put
the ground state electronic distribution in the form

—I—Z Z— Zn)On, (14)

pc(z) = pr(z

with

2(2) = [l2(2) = [ (2)?] - (15)

In the following we will discuss two different experimental
procedures to measure the quantity in Eq. (13), exploit-
ing two different observables linked to the modifications
it induces on the charge distribution. On the one hand,
electronic excitations modify the charge distribution at a
specific position z, as shown in Eq. (14). On the other
hand, if the QW potential is asymmetric, electrons in dif-
ferent subbands have a different average positions along
the sample growth axis z, leading to an average charge
displacement when an electron jumps between the first
two subbands. In the two-subband approximation we
are employing the level of asymmetry can be quantified
by a single parameter: the average electron displacement
induced by an intersubband transition

Az = (o] 2 |th2) — (V1| 2 |91) - (16)

A graphical illustration of both Z(z) and Az can be found
in Fig. 1.

An estimate of the expected excitation density, to the
leading order in the coupling, can be obtained by per-
forming a lowest order expansion of o, as a function

of the plasma frequency of the electron gas in the QW

wp, which quantifies the strength of the collective light-
matter coupling. To the first perturbative order the cou-
pled ground state can be written as

wpKimng .
G~ |F) = gl

w12 + Wimgq

abhalF),  (17)
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where the dimensionless coefficient K4, defined in Ap-
pendix A, embeds all the other microscopic details of the
CQED setup. From Eq. (13), to the lowest non-trivial
order, we thus obtain the following expression for the
electronic excitation density in the nth QW

On x = Z Konng o T o (18)

W12 + wmq

The sum in Eq. (18) is mathematically divergent, also
due to the dipolar approximation used in our theory
which breaks down for photonic wavelengths of the or-
der of the QW width. Still, for w,,, larger than a much
smaller cut-off of the order of the plasma frequency of
the metallic mirrors we, the mirrors become transparent
and their position can not efficiently affect the electro-
magnetic confinement. As we will see in the following
Sections, the two measurement schemes we will propose
aim to measure the impact of the cavity length on the ex-
citation density, while filtering out the potentially much
larger signal independent from the cavity length. It will
thus be useful to partition the sum in Eq. (18) into two
components

on ROy + o0, (19)

The first component of Eq. (19) takes into account the
sum of the modes well confined by the photonic cavity
and it thus depends upon the cavity length L

O(we —wmq);,  (20)

mnq
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where © is the Heaviside function. The second compo-
nent of Eq. (19) includes instead all unconfined modes,
and it can be considered independent of L

8Lo,? =0. (21)

We will develop all our theory assuming zero tempera-
ture, which is a good approximation even at room tem-
perature for intersubband energies fwis > 25meV. Spu-
rious thermal excitations will be present at any non-zero
temperature, but their density will be independent of L
and we will thus operationally consider them as included
in the o, component.

For the sake of simplicity and generality in the follow-
ing we will retain only the contribution of the first cavity
mode m = 0 to o>. We can see from Eq. (18) that the
total population of virtual excitations is a sum of posi-
tive terms corresponding to each value of m. Considering
only the m = 0 mode provides thus a lower bound on the
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FIG. 2. Sketch of the setup (a) and measurement scheme (b)
described in Sec. III. The pump laser induces absorption from
the two subbands into the excited defect state at position z4.
When the position of the top mirror is modulated in time with
amplitude aLo the relative population of the two subbands,
and thus the electronic density at z4, is also modified, leading
to a time-dependet absorption I'(¢).

intensity of the signal to be measured, allowing us to
fix the minimal experimental requirements to observe it
while avoiding complications due to time-variation in the
number of involved photonic modes and other secondary
details as the exact position of each QW in the cavity. In-
serting the coefficient K,y defined in Appendix A into
Eq. (18) we thus obtain, to the leading order in w¢

2 2
<(L) ~ LC2126 Te 29
o=(L) 4dmegc?hL’ (22)
where we marked explicitly the L-dependence. Given

that in such an approximation the electronic excitation
density is the same in each QW, in Eq. (22) and in the
following we will not mark the QW index n explicitly,
but it remains intended that all the electronic densities
are expressed per QW.

III. SPECTROSCOPIC MEASUREMENT

In this Section we discuss how to spectroscopically
measure 0< by using defect modes grown in each QW
to map the perturbation of the electronic density. A
conceptually similar procedure has already been used to
measure the real-space charge density in GaAs QWs us-
ing indium and aluminum defects [45]. The apparatus
and measurement scheme we will consider are schema-
tised in Fig. 2. The top mirror of the photonic resonator
is mechanically connected to the tip of an atomic force
microscope (AFM). As the tip is driven at its resonant
mechanical frequency w,, the cavity length L is modu-
lated around its equilibrium value Ly with the normalised
amplitude a < 1

L =Ly [1+ acos(wnt)]. (23)

The oscillation changes the photonic cavity length, thus
modifying the number of ground-state virtual excitations
0<. The mechanical resonance of the cantilever w,, is
normally in the kHz range, much smaller than all the
other relevant frequency scales of the system. We can
thus consider the driven evolution adiabatic, and the sys-
tem at equilibrium in its ground state.

We consider that a planar layer of defect electronic
states with energy wy above the first subband wiy, and
Lorentzian lineshape with linewidth 4 is introduced in
each QW. The defect layer is placed at the position z4
corresponding to a non-vanishing value of Z(z) in Eq.
(15) as shown in Fig. 1(a). Note that in such a Figure
we represent an explicitly asymmetric QW potential, al-
though asymmetry does not play a role in this scheme.
The asymmetry of the two subbands’ wavefunctions will
instead be crucial to the scheme described in the next
Section, relying on a non-vanishing value of Az.

A laser pump at frequency wy and power P is then
shone on the system, leading to electrons being excited
from the ground state |G) to the defect state. The under-
lying idea is that the absorption from each QW will be
proportional to the charge density pg(zq4). The spectral
component of the absorption at the cantilever frequency
wy, will then be proportional to Z(z4) and thus to o<,
providing a measure of the CQED-induced ground-state
excitation density. Note that the light-matter coupling
in the QW is a collective phenomenon depending on the
total plasma frequency of the QW wp. This implies that
while Eq. (10) is verified we can safely neglect the change
in the ground state energy due to transitions of o< elec-
trons to defect states [46].

Using a simple Fermi golden rule approach we can
write the total absorption rate as

4PldTLQWIU,2
= Wac/ereo ¢
YdCr/€r€o

where [y < Lqow is the defect layer thickness, p the
defect dipole moment, and we explicitly marked the time-
dependency of pg through the cavity length. Using Eq.
(10), Eq. (22), and Eq. (23), and assuming that the
cantilever oscillations are small a < 1, Eq. (25) takes
the form

I(t) (2, 1), (24)

pc(za,t) = |1 (24)P0e — E(2a)0~(Lo)acos(wmt). (25)

The mirror oscillation thus translates in an oscillation of
the charge coupled to the defect mode and, through Eq.
(24), in an harmonic modulation of the laser absorption.
Defining 8 to be the quantum efficiency of the detector,
the total photocurrent can be written as

Belt) = e [0~ T(0)] (26)

and the variation in the photocurrent due to the QWs

1,(t) = Bel'(). (27)
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FIG. 3. Sketch of the setup described in Sec. IV (a) and
its schematic circuit representation (b). Each of the QWs,
by creating a built-in potential due to the photon-induced
charge displacement, generates a potential difference. When
the position of the top mirror is modulated in time a current
flows through the circuit. The definition of all the marked
quantities can be found in the main text. In (c¢) we plot the
discernability from Eq. (41) (solid red) and them norm of the
signal component from Eq. (38) (dashed blue) as a function
of the normalised oscillation amplitude a.

This leads to the time-independent shot-noise current

ish = \/2elpAv, (28)

where Av is the detection bandwidth. Assuming the
shot-noise to be the dominant noise term, that only
a small fraction of the light is absorbed by the QW
I < I, and after having applied a pass-band filter
around the frequency w,, to remove the time-independent
part of the signal, we can use Eq. (24) to Eq. (28) to
write the signal-to-noise ratio [47]

SNR — £ _ [2hwq P lanWuQE(zd)aa<(Lo).
ish Av h2y4c\/€ren
(29)

It is worth to notice that the scheme presented above
is solid against both fluctuations in the doping density
0e, which gives only a continuum signal easily filtered
out, and against spurious mirror-induced forces. This
last point is quantitatively discussed in Appendix C, but
it can be otherwise inferred by the fact that apprecia-
ble modifications of the electronic QW wavefunctions by
metallic mirrors in close proximity would have otherwise
became apparent in precise measurements of intersub-
band polariton systems with and without a metallic mir-
ror [6].

IV. ELECTROSTATIC MEASUREMENT

In the previous Section we investigated the ground-
state excited electronic population through a spectro-
scopic measurement of different charge distribution be-

tween the two subbands at a specific position z4, quanti-
fied by the quantity =(z4). Here instead we will discuss
how to electrostatically measure the average charge dis-
placement Az from Eq. (16). While the former proce-
dure is arguably simpler to implement, being more robust
against spurious effects, the latter one has the conceptual
advantage to measure a macroscopic real-space charge
displacement, thus providing a more direct proof of the
CQED-induced ground-state modification.

The scheme here proposed is based on the fact that
resonator-induced charge perturbation described by the
second term in Eq. (14) creates a built-in electrostatic
potential in each QW. Considering a sample surface S >
L? large enough to neglect border effects, such a potential
can be determined solving the Poisson equation

P2V (2) = — edZ(z)

(30)

€0€r

Writing a formal solution of Eq. (30)

z 2 =
V(z) = —/ dz’/ R I e

€0€r

integrating by part the derivative of V'(z), and exploiting
the charge conservation in each QW

/ 2(2)dz = 0, (32)
R

we can calculate the potential drop across the QW

AV = / d222(2). (33)

€o€r

Using Eq. (14) and Eq. (16) we can put Eq. (33) in the
form

eo Az

AV =

(34)

€0Er

From Eq. (34) we see that the voltage induced across
each QW by the coupling with the transverse field of the
resonator is the same created by two planes of electron
density o at a distance Az. Given that Az can be calcu-
lated or independently measured, a measure of AV will
thus constitute a direct measure of the virtual excitation
density in the ground state.

The induced potential difference can not be measured
with a standard voltmeter because it is not a difference
in the Fermi level but an in-built equilibrium potential.
In can nevertheless be measured using a modified Kelvin
probe [48; 49]. Kelvin probes are usually employed to
measure the difference in work function between a known
reference material and a sample, by using an AFM tip as
the top plate of a capacitor whose lower plate is the sam-
ple. When the distance between the two is modulated by
the tip oscillation, the capacitance also varies. Being the
potential difference fixed by the work functions, a change
in the capacitance leads to a change in the charge on the



capacitor’s plates, and thus to a measurable current. The
apparatus we will consider, schematised in Fig. 3(a), is
thus similar to the one considered in the previous Section,
with the top mirror now doubling as capacitor top plate.
Moreover, the top and bottom mirrors are now electri-
cally connected and the time-dependent current flowing
between them is measured as the tip oscillates.

Applying the Kirchoft’s law to the circuit equivalent of
the apparatus shown in Fig. 3(b) and exploiting Eq. (34)
we can find the relation between the photon-induced elec-
tron density o and the electronic density on the mirrors’
surfaces oy

Azngwo + D = Loy, (35)

where we added a fixed dipole density D, modelling the
in-built potentials independent of the mirror position
which would be measured by a standard Kelvin probe.
Deriving over time the electron density on the mirror and
using Eq. (19) and Eq. (21) we can then calculate the
electric current generated in the Kelvin probe by the tip
oscillation

. A D
IK = GSdM = eSL@L% (36)
. o< D
=eSL |A oL— — =
€ [ ZnQworL I L2
The first term in the square bracket in Eq. (36) rep-

resents the current induced by the virtual excitations
caused by photonic modes confined by the cavity, and
it is thus dependent on its length L, while in the second
term we have grouped all the L-independent background
polarizations by defining D = Azngwo” + D.

Note that in Eq. (25) only the term proportional to o<
is time-dependent, allowing for a simple suppression of
the potentially much larger time-independent term pro-
portional to o.. In Eq. (36) instead, both ¢< and the
background polarization D lead to time-dependent sig-
nals. This is to be expected given that a standard Kelvin
probe is meant to measure the static in-built potentials
D, but it also implies extra care has to be paid in order
to extract o< from the measured signal. To this aim we
can notice, plugging Eq. (22) into Eq. (36) that the term
due to CQED-induced charge modulation proportional to
o< scales as L3, while the background polarization as
L2, Given that we know the time evolution of the cav-
ity length L(¢t) from Eq. (23), it is a priori possible to
distinguish the two contributions, but only if the tip ex-
plores a non-vanishing range of L, substantially changing
the cavity length. This time we will thus not be able to
limit ourselves to the perturbative regime a < 1.

In order to filter out the background polarization we
can introduce the two functions g, with p = {2, 3}, peri-
odic on the interval [0, 27]

o(a) = sinfo) (37)

1+ acos(z))”

their {2-norm

27
b= aara. (38)

and their normalised versions §,(z) = gp(x)/l,. Substi-
tuting Eq. (22) and Eq. (23) into Eq. (36) we can write
the current as

eSawm Dl _

Iy (t) = I<§3 (wmt) + Lo [ (wmt), (39)

with

Sawcwm 23y Aze?’nQWUelg
= 2
2megc?hLg

I< (40)

By projecting Eq. (39) on the non-orthogonal normalised
basis fp using the {? inner product we can then obtain a
system of two equations in two unknowns which can be
solved determining the coefficients, assuming their dis-
cernability

27
n=1-| / dgo(2)3s () 2, (41)

is not vanishing. In Fig. 3(c) we plot n showing that
for large oscillations (¢ =~ 0.9) we can reach a distin-
guishability of order 10%, while having a norm I3 of or-
der 100. This procedure should allow us to measure the
intensity of the current due to the cavity-induced ground-
state modifications I< while filtering out static in-built
potentials and all the other contributions not dependent
on the position of the metallic mirror. The discrimina-
tion procedure could be further improved by performing
control experiments either removing the bottom metallic
mirror, or using doped semiconductors with lower plasma
frequencies as oscillating mirrors, in order to obtain inde-
pendent measurements of D. Moreover, methods to anal-
yse time-resolved data using non-orthogonal decomposi-
tions as the one we just discussed but integrating both
known and unknown components also exist and could be
exploited in this context although their analysis is beyond
the scope of this paper [50].

Note that, beyond the doped QW system considered in
this work, other asymmetric CQED platforms have been
considered in the literature, both dielectric [51, 52] and
superconducting [53]. It remains to be seen whether the
electrostatic measurement scheme we introduced could
be extended to these systems, further broadening our ca-
pability to measure and interact with the light-matter
coupled ground state.

V. NUMERICAL RESULTS

In this Section we will estimate the magnitude of the
SNR expected from Eq. (29) and of the current from
Eq. (40), with the objective to ascertain whether the



two schemes we proposed are realisically implementable
with present-day or near-future technology.

In order to determine a test QW structure, which for
simplicity we will consider to be the same for the two
schemes, we notice that strongly asymmetric potentials
increase the average charge separation and thus Az, but
segregating the wavefunctions they also reduce the over-
lap between 11 (2z) and 12 (2) and thus the dipole moment
z12. This same problem has been studied in the con-
text of dipolar emission in driven asymmetric quantum
wells, where the dipole eAz oscillates and causes emis-
sion at the vacuum [54] or pump [55] Rabi-frequency.
In Ref. [56] the parameter space of a simple asymmetric
GaAs-based QW geometry has been explored in order to
identify structures with both non-negligible Az and z15.
In the following we will use the parameters of a structure
highlighted in such a publication, which are the ones we
used in Fig. 1(a), to have comparatively large values of
both figures of merit while being solid against fabrication
tolerances.

We thus consider ngw = 10 GaAs-based QWs of
length Low = 11.6nm, with Awis = 1256meV, 212 =
0.18Low, Az = 0.11Lgw, and the total QW stack
height, including barriers, is taken to be 160nm. Con-
sidering a typical AFM scanning frequency w,, = 27 X
100kHz and an equilibrium cavity length Ly = 2um, this
makes it possible to choose values of the normalised os-
cillation amplitude a up to 0.9 before the tip touches the
QW stack. The QWs are each doped at a surface den-
sity 0. = 10'2cm™2, corresponding to a Fermi energy
Er ~ 35meV from the bottom of the first subband, and
we consider metallic mirrors with Awc = 10eV. The cor-
responding cut-off wave vector qc = ﬁ is smaller

than 0.5vp, assuring that Eq. (5) remains at least quali-
tatively correct even close to the cut-off.

We can thus numerically calculate the induced elec-
tronic excitation density per QW from Eq. (22), obtain-
ing 0< ~ 0.8 x 10cm™? < o, justifying a posteriori our
bosonic approach and our choice not to consider the back-
action of the photon-induced charge displacement upon
the electronic wavefunctions, which would have obliged
us to solve a Schrédinger-Poisson equation instead of Eq.
(30).

For the sample to evaluate Eq. (29) we place the defect
layer at z4 = 0.5Lgw, corresponding to Z(z4) =~ %,

QW
and use a defect layer width of the order of the GaAs
lattice parameter [; = 0.5nm, with a dipole moment

1 = 4D, and a linewidth 74 = 0.1meV [57]. We consider
a 100ps plused laser with pulse energy of 1mJ and repe-
tition rate of 100kHz, synced with the AFM tip having
a small oscillation amplitude ¢ = 0.1. With a quantum
efficiency § = 0.5 and an integration time of ten min-
utes Av = 52 Eq. (29) leads to SNR ~ 1. Given
the realistic parameters used, and the fact the virtual
electronic population in Eq. (22) represents a lower esti-
mate of the real value of o<, makes us confident that the
spectroscopic measurement scheme we proposed is within
technological reach.

In order to evaluate Eq. (40), we choose instead
a = 0.7 and consider a device surface S = 50um?, lead-
ing to a lower bound of the expected current of the order
of I'x = 0.5fA, small but still detectable with low-noise
electronics. In this scheme the larger value of a could a
priori bring the mirror close enough to the QWs for the
Casimir effect to exert a non-negligible force on the elec-
tron gas. While such a force remains very small, leading
to a shift in the electronic position much smaller than
Az, it would affect all the electrons, potentially leading
to an effect which could overshadow the larger shift of the
few virtually-excited electrons. While such contribution
scales with higher powers of L, and it could thus poten-
tially be filtered out extending the approach described in
Sec. IV, in Appendix C we perform a rough overestimate
of such an effect, showing that for the parameters chosen
it should not pose a critical hurdle to the detection of
CQED-induced effects.

Until now we completely neglected the effect of losses
in our formalism. While the coupling with the environ-
ment will modify the population of virtual excitations in
the ground state, in Ref. [24] one of us demonstrated that
such changes are limited even for over-damped systems.

VI. CONCLUSIONS

In this paper we have explored the possibility of de-
tecting resonator-induced effects on the electronic ground
state of a CQED system. In particular we discussed two
schemes which can achieve such an objective by provid-
ing a first direct measurement of virtual electronic exci-
tations in the ground state of a CQED system. Instead
of focussing, as most proposals do, on the detection of
photonic excitations through non-adiabatic modulation,
we aim at detecting material excitations using an adia-
batic modulation. Our estimates show that detection of
electronic CQED-induced modifications of the electronic
ground state could be within technological reach. Al-
though highly not trivial, the experiments we propose
would not incur in the many hurdles linked with sub-
cycle optical modulation and detection, which have un-
til now thwarted multiple efforts to observe ground-state
virtual photons through the non-adiabatic route.

We conclude by pointing out that the two schemes we
proposed are not intended to represent an exhaustive list.
The general theory developed in Sec. II shows how the
ground-state charge distribution in doped quantum wells
is modified by the coupling with the electromagentic field.
The results of many experiments which can be performed
on QWs depend on different details of the ground-state
charge distribution and we thus expect many different ex-
periments could be used to highlight its CQED-induced
modifications. Other possible examples which are not
investigated in this paper include nonlinear emission in
asymmetric QWs [58] or lifting of selection rules is sym-
metric ones.

We hope this work will stimulate novel interest toward



the physics of virtual excitations and more broadly on the
study of CQED effects on electronic degrees of freedom.
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Appendix A: Diagonalization of the PZW
Hamiltonian

Following Ref. [40], the PZW Hamiltonian describing
the system can be written in the bosonic approximation

=31 (Woq+ Wiq+Wpq), (A1)
q
with the first part describing the bare fields
WOq = Z leBILqi)nq + Z wmqéinqqu, (A2)
the second their interaction
qu = Z wPKmnq(aIn—q + qu)(z’ILq + Bn—q)a (A3)

mn

and the third the self-interaction of the electronic polar-
ization

2
N w - > 7 7
Wpg = 40; (bl + bn-q) (B _q + bng).  (A4)

In Eq. (A3) we have the plasma frequency for a single
QW

112716206

2m:§2606rle ’

Wl = (A5)
with m} the effective mass of conduction electrons and
the dimensionless coupling coefficient

I 2iomi? 2008 Oy 5 TMZ,

mng = Cma 2 T+ Gmo) =)

(A6)

parametrising the coupling between the bright matter
mode in the nth QW and the TM,,, photonic mode, where
we defined 6,,, the angle of propagation relative to the
z-axis

cq
— A
e ome (AT)

Note that the term in Eq. (A4), quadratic in the
plasma frequency wp, is responsible for the phenomenon

€os Oppg =

of polarization shift [59, 60]. This can be seen by consid-
ering only the terms of the full Hamiltonian describing
the bare field and the electron-electron interaction

Wéq = WOq + Wan (AS)

and performing a Bogoliubov rotation over the Enq oper-
ators, leading to a new Hamiltonian describing modified
intersubband transitions operators can whose frequency
is renormalised by the interaction

Wiq =Y \Jwh +whdlgdng + D wmgilyqima. (A9)

The electronic wavefunctions in the two subbands enter
in play through the definition of the intersubband dipole

h
2m§w12

/ [01(2)0:02(2) — ¥2(2)0:41 (2)] dz,
(A10)

Z12 =

and of the normalization factor
Iy = / [01(2)0462(2) — a(2)0.01(2)] dz. (A11)

In the bosonic regime we can then use the Hopfield-
Bogoliubov approach to diagonalise H in Eq. (Al) in
terms of polaritonic modes

ﬁsq = Zm (xsqumq + Zsmqéin—q) (A12)

+ Zn (yanbnq + wanbjlfq) )

whose coupled ground state |G) is defined by psq |G) =
0. The linear transformation in Eq. (A12) can then be
inverted to obtain

Bnq = Z ganﬁsq - wanﬁiq' (Al?))

S

Appendix B: Derivation of the bosonic expression
for the electron density

Here we will provide a derivation of the equation

p(z) — pr(2) =g 3 [l0a(z — 20)I? ~ (e — 2n) ]

(B1)
% (G| bl.qbng |G} ,

describing the change of the electronic density in the
ground state created by the vacuum excitations. While
physically intuitive its derivation requires some care as
it links fermionic to bosonised quantities. We will thus
expand the approach originally developed in Ref. [44] to
calculate the electronic wavefunctions of photon-bound
excitons.



We start by introducing the electron field operator pro-
jected on the first two subbands
P(r) = Z [D1nk () E1nk + P2nk (1) o] - (B2)

nk

Using as reference the electronic distribution in the ab-
sence of the resonator, we can then write the induced
electron density as

pa(z) (G (r)E(r)|G) —

—pr(z) = (FIV ()T (r) | F) .
B3

The expression in Eq. (B3) can be simplified by notic-
ing that both the free and coupled Hamiltonians, with
ground states |F) and |G) respectively, commute with
the parity of the total excitation number operator

ZamqamﬂL Z(Cznk02nk CLchlnk) (B4)

mq

Both the coupled and free ground states have thus a
well defined excitation number parity. This implies that
all the ground states expectatlon values involving terms
which increase T by one, like 02 kCin’k, have to vanish.

Exploiting the fact that the number of electrons in each
QW is fixed

S (Ellink + hnclani) =S, (B5)
k

we can then put Eq. (B3) in the form

SZ IE

X (Gl ok |G). (B6)

pa(z) = pr(z W = 1 (z = 20) ]

In order to prove Eq. (B1) we have thus to demonstrate
that

that is that the total number of electrons in the second
subband of any QW

NFTL = Z é;nk@nk, (B8)
k
and the total number of matter excitations in the same
QW
NBn = Z Z)qu}nqv (BQ)
q

have the same expectation value in the coupled ground
state. Note that by construction

and they thus also trivially coincide in the uncoupled
ground state. Using the definition of the intersubband
transition operator in terms of electron operators

b’r_

1
e A
"4 /So. g Conk+qClnk; (B11)

we can verify that the fermionic commutator of Np, with
the right-hand-side of Eq. (B11)

(B12)

|:NF7L7 Elq} - bIan
generates the same algebra as the commutator of Ng,
with the left-hand-side of the same equation, when con-
sidering the b,q as perfect bosons,

[N bla| = Blq (B13)

Using the same bosonic assumption the coupled ground
state |G) can be easily written in a perturbative expan-

sion as a sum over orthogonal vectors |G) = > [(), with
h¢

XC H bqg; H dl-nghqgh |F> (B14)
j=1 h=1

Exploiting Eq. (B10) and the fact that Np, and Np,
have the same commutation relations with all the
operators appearing in the |¢) states, their expectation
value in the ground state is necessarily the same, proving
Eq. (B7) and thus concluding our proof of Eq. (B1).

Appendix C: Casimir-induced polarization

In the main body of the paper we considered two
sources of induced polarization: the virtual excitations
due to the transverse electromagnetic mode confinement,
leading to o, o< L™!, and in-built potentials independent
from L. At small scales there are nevertheless other in-
teractions between the mirror and the electron gas which
can lead to induced polarization and, should those forces
be comparable or larger than the ones due to the trans-
verse field, they would need to be taken into account
when performing data analysis. In this Appendix we will
derive the general form for the polarization induced on
the nth QW from an arbitrary mirror-induced pressure
P(d,,) depending upon the distance between the mirror
and the quantum well d,, = L — z,,. We will also provide
an upper estimate of such an effect for the Casimir force,
showing that, although potentially measurable, such a
force is not large enough to cover the electrostatic signal
whose measurement we describe in Sec. IV.

A pressure P(d,,) translates in a force per single elec-
tron F(d,) = P(d,)/o. and its impact on one electron in
the nth QW can thus be described by the Hamiltonian

H, = F(dy,), (C1)



with Z the electron coordinate. To the lowest order the
modified wavefunction in the first subband can thus be
written as

F(d,)
hwo

Y1) = [¥1) — (12| 2 11) |b2) (C2)
and the corresponding shift in electron position is thus,
to the lowest order

2F(dn)z%2

A = (W1 2101) - (] 2}~ T2 (C3)

The total dipole density induced in the QW is thus
P =0.A%, (C4)

which needs to be added to Eq. (35).

While precise calculations of Casimir force in planar
systems are possible [61] they are beyond the scope of the
present paper. We can instead obtain an upper bound
of such an effect by assuming that the electrons gas in
a single QW is dense enough to act as a perfect mirror.
Note that this would only be true for unphysical densities
leading to coupling frequencies larger than wi5 as shown
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in Ref. [62]. In the sample we are considering the effect of
a single QW is instead largely perturbative and the result
we will obtain only represents a very loose overestimate
of the actual effect. We can then consider each QW as a
perfect mirror and use the analytical expression for the
Casimir pressure between two planar metallic mirrors

herm?

Pdy) = .
(dn) 240, /e d

(C5)

Plugging Eq. (C5) into Eq. (C3) we obtain from Eq.
(C4) the induced dipole, and using the parameters from
Sec. V we conclude that even at the point of the os-
cillation in which the mirror is the closest to the QW
stack, and considering a QW on the very top of the stack,
the induced dipole is only one-half of the CQED-induced
one, dropping to 10™* times smaller for a QW on the
bottom of the stack when the mirror is at its furthest
point. These estimates, as rough as they are, demon-
strate that the Casimir effect, if not always completely
negligible, does not represent a critical obstacle to the
measurement scheme described in Sec. IV and a fortiori
for the one from Sec. III.
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