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Abstract4

Full waveform inversion (FWI) or adjoint tomography has routinely been performed5

to image the internal structure of the Earth at high resolution. This is typically done6

using the Fréchet kernels and the approximate Hessian or the approximate inverse Hes-7

sian because of the high computational cost of computing and storing the full Hessian.8

Alternatively, the full Hessian kernels can be used to improve inversion resolutions, con-9

vergence rates, and possibly mitigate inter-parameter tradeoffs. The storage require-10

ments of the full Hessian kernel calculations can be reduced by compression methods,11

but often at a price of accuracy depending on the compression factor. Here we present12
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open-source codes to compute both Fréchet and full Hessian kernels on the fly (in the13

computer RAM) through simultaneously solving four wave equations, which we call14

QuadSEM. By recomputing two forward fields at the same time that two adjoint fields15

are calculated during the adjoint simulation, QuadSEM constructs the full Hessian16

kernels using the exact forward and adjoint fields. In addition, we also implement17

an alternative approach based on the wavefield storage method (WSM), which stores18

forward wavefields every kth (k ≥ 1) time step during the forward simulation and19

reads them back into memory during the adjoint simulation for kernel construction.20

Both Fréchet and full Hessian kernels can be computed simultaneously through the21

QuadSEM or the WSM code, only doubling the computational cost compared with the22

computation of Fréchet kernels alone. Compared with WSM, QuadSEM can reduce23

the disk space and I/O cost by three orders of magnitude in the presented examples24

while using 15,000 time steps. Numerical examples are presented to demonstrate the25

functionality of the methods, and the computer codes are provided with this contribu-26

tion.27

Introduction28

In the past thirty years, full waveform inversion (FWI), or sometimes interchangeably known29

as adjoint tomography in regional or global seismology, has become popular and widely30

used for imaging the Earth’s internal structures at multiple scales (e.g., Bamberger et al.,31

1982; Lailly, 1983; Tarantola, 1984, 1988; Gauthier et al., 1986; Igel et al., 1996; Pratt et al.,32

1998; Tape et al., 2009; Fichtner et al., 2009; Virieux and Operto, 2009; Liu and Gu, 2012;33

Zhu et al., 2012; French and Romanowicz, 2015; Bozdağ et al., 2016; Tromp, 2020). Sensi-34

tivity kernels which indicate the sensitivity of seismograms to model parameters are a key35
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component of full-waveform inversion or more generally the adjoint tomography. Typically,36

two types of sensitivity kernels are discussed in exploration, regional and global seismol-37

ogy context, the first-order derivatives of the seismological data functionals, Fréchet kernels38

(e.g., Dahlen et al., 2000; Tromp et al., 2005), and the second-order partial derivatives of39

functionals applied to an arbitrary model update, known as Hessian vector products or Hes-40

sian kernels (e.g., Pratt et al., 1998; Epanomeritakis et al., 2008; Fichtner and Trampert,41

2011; Métivier et al., 2013).42

Fréchet kernels are widely used for waveform inversions or adjoint tomography via the43

scattering-integral methods (e.g., Chen et al., 2007a,b) or the adjoint methods (e.g., Lions,44

1968; Lailly, 1983; Tarantola, 1984, 1988; Tromp et al., 2005; Fichtner et al., 2006; Plessix,45

2006). The kernels can be computed via the correlations of incident forward wavefields46

with adjoint fields (e.g., Bamberger et al., 1982; Tromp et al., 2005). There are mainly two47

strategies to obtain the forward fields during the adjoint simulation for correlation. One is to48

write the forward fields onto a disk often with compression during the forward simulation and49

then during the adjoint simulation for the adjoint field, read the required forward fields back50

into the temporary memory. Compression schemes include the temporal-spatial compression51

(e.g., Fichtner et al., 2009) and the lossless or lossy compression (e.g., Hanzich et al., 2013;52

Lindstrom et al., 2016; Boehm et al., 2016), for instance, based on lossless or lossy compres-53

sion techniques (e.g., Unat et al., 2009; Weiser and Götschel, 2012; Götschel and Weiser,54

2015). The other approach is to only store the forward wavefield at selected time steps,55

called checkpoints, and during the adjoint simulation, re-solve the forward problem based56

on these selected time steps (e.g., Symes, 2007; Anderson et al., 2012; Komatitsch et al.,57

2016), for instance, based on the checkpointing algorithms (e.g., Griewank and Walther,58

2000; Charpentier, 2001; Walther and Griewank, 2004). For the elastic cases or the anelastic59

cases with the consideration of physical dispersion only, the forward fields can be completely60

reconstructed via the boundary values and the last snapshot of the forward fields during61

adjoint simulation (e.g., Gauthier et al., 1986; Tromp et al., 2005; Liu and Tromp, 2006).62
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The use of Hessian in FWI may increase convergence rates, improve model resolutions,63

and possibly mitigate inter-parameter tradeoffs. However, the exact computation of the64

full Hessian matrix is computationally prohibitive. Instead, the approximate Hessian or65

the approximate inverse Hessian has been computed based on the Gauss-Newton or the66

quasi-Newton approaches (e.g., Pratt et al., 1998; Virieux and Operto, 2009, and among67

others). In contrast to the computation of Fréchet kernels, which uses two fields, the forward68

and the adjoint fields, the computation of full Hessian kernels involves four fields (e.g.,69

Fichtner and Trampert, 2011), two forward fields and two adjoint fields. The utility the70

full or approximate Hessian kernels have been demonstrated in truncated-Newton FWI for71

exploration seismology (e.g., Métivier et al., 2013, 2014; Pan et al., 2017; Yang et al., 2018;72

Matharu and Sacchi, 2019), for instance, based on classical wavefield storage, checkpointing,73

and/or the finite-difference wave simulations. For large models, calculating the full Hessian74

kernels in the classical storage approach is challenging given the large space required to75

store the multiple wavefields and the associated I/O expense during simulations. Therefore,76

approximate Hessian kernels are used instead. For instance, for resolution analysis, they are77

estimated by a finite-difference approximation using the gradients from two nearby iterations78

(e.g., Zhu et al., 2012; Bozdağ et al., 2016). Luo et al. (2014) also derived the Hessian kernel79

formulas and then used the diagonal terms of the Hessian to construct four preconditioners80

for FWI and resolution analysis. Similar to those for Fréchet kernels, the formulas for these81

preconditioner operators involve the correlations of forward and adjoint fields and therefore82

can be computed based on the adjoint method (Tromp et al., 2005).83

Compression methods have also been applied to the forward and adjoint wavefield stor-84

age for the computation of the Hessian kernels (Boehm and Ulbrich, 2015). In this case,85

as the decompressed wavefields also appear as a distributed source term in the two auxil-86

iary wave equations and errors are propagated to the two perturbed wavefields resulting in87

less accurate Hessian kernel construction (Boehm et al., 2016). For instance, using decom-88

pressed fields and the trust-region Newton PCG method only resulted in a small improve-89
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ment compared with LBFGS updates for FWI (Boehm and Ulbrich, 2015). This is mainly90

due to the trade-off between high compression factors and low storage requirements with91

the accuracy of conjugate-gradient (CG) update. For this reason, resolving small and/or92

weakly perturbed scatterers may still be challenging since the perturbed wavefields and the93

compressed/decompressed errors may be of the same order of magnitude for a high com-94

pression factor. Alternative Hessian kernels, for instance, the reduced Hessian kernels (e.g.,95

Epanomeritakis et al., 2008) have also computed and used in FWI for efficiency purposes.96

In this paper, we present a computationally efficient method to construct the full Hessian97

kernels on the fly based on the second-order adjoint state methods (e.g., Fichtner and Trampert,98

2011) and the spectral element method (SEM, e.g., Seriani and Priolo, 1994; Faccioli et al.,99

1996, 1997; Komatitsch and Vilotte, 1998). We first review the theory on Fréchet and Hes-100

sian kernels. We then implement both the classical wavefield storage method (the full or101

adaptive time iteration) and the on-the-fly approach for the full Hessian kernel calculations.102

The latter approach, namely QuadSEM, is conducted by simultaneously solving four wave103

equations based on spectral-element simulations (utilizing open-source SPECFEM commu-104

nity codes). The on-the-fly approach is possible because only the last-state forward fields and105

the absorbing boundary fields need to be stored in the forward simulation for reconstructing106

the forward fields during the adjoint simulation for kernel reconstruction. We then present107

and discuss the results of the Fréchet and Hessian kernels for 2-D synthetic models. The108

related codes are published in the public domain for dissemination.109

Theory110

Fréchet kernels111

Fréchet kernels, gradients or first-order derivatives of the seismic data functional, χ, can112

be used to update the structural model from a chosen initial model via local optimization113
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rather than a costly global search. When the initial model is chosen sufficiently close to114

the global minimum and when the source term is relatively accurate, the final model from115

the local optimizations may be used to explain the observed data. By perturbing the data116

functional as δχ with respect to an isotropic model m, we have (also see Tromp et al., 2005;117

Fichtner and Trampert, 2011)118

δχ =

∫

V

Kmδm d3x, (1)119

where Km denotes the Fréchet kernels and V denotes the model volume. Here we omit the120

spatial and temporal dependencies of the kernels for simplicity unless stated otherwise. In121

principle, the generic Km can be expressed by different components depending on the choice122

of model parameterization. For simplicity, we only show the case for a model parameteriza-123

tion given by m = (ρ, α, β), where ρ denotes the density and α and β denote the P- and124

S-wave speed, respectively. The kernels applied to the model perturbation in eq. (1) can be125

further expressed as126

Kmδm =

(

Kρ Kα Kβ

)

















δρ

δα

δβ

















, (2)127

where δm = (δρ, δα, δβ)T. As the computation of Fréchet kernels relies on the forward and128

the adjoint fields computed from a given model, we rewrite the Fréchet kernels as a function129

of the forward and adjoint fields130

















Kρ

Kα

Kβ

















=

















Kρ(s
†, s̈, s)

Kα(s
†, s)

Kβ(s
†, s)

















, (3)131

where s denotes the forward displacement field and s† denotes the adjoint field in this given132

model. The s̈ is the second-order time derivative of s, i.e., the forward acceleration field.133
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Hessian kernels134

Components of Hessian kernels135

Similar to the first-order form of the Fréchet kernels as shown in eq. (1), the second-order136

form or the Hessian operator can be written as (see Fichtner and Trampert, 2011)137

H(δm1, δm2) =

∫

V

K1

mδm2 d3x =

∫

V

(Ha +Hb +Hc) δm2 d3x, (4)138

where K1

m = Ha + Hb + Hc denotes the full Hessian kernels. Based upon the work of139

Fichtner and Trampert (2011), we rewrite each part of the product as140

Ha(ρ, α, β) =

















Kρ(s
†, δs̈, δs)

Kα(s
†, δs)

Kβ(s
†, δs)

















, (5)141

142

Hb(ρ, α, β) =

















Kρ(δs
†, s̈, s)

Kα(δs
†, s)

Kβ(δs
†, s)

















, (6)143

144

Hc(ρ, α, β) =

















ρ−1Kα(s
†, s)δα + ρ−1Kβ(s

†, s)δβ

ρ−1Kα(s
†, s)δρ+ α−1Kα(s

†, s)δα

ρ−1Kβ(s
†, s)δρ+ β−1Kβ(s

†, s)δβ

















, (7)145

where δs, δs̈, and δs† denote the perturbed wavefields based upon the model perturbation146

δm1=δm = (δρ, δα, δβ)T. For simplicity, we use δm as the model perturbation from this147

point on wards. Eqs. (5)-(7) show a link between the Hessian kernels (e.g., Fichtner and Trampert,148

2011) and the Fréchet kernels (e.g., Tromp et al., 2005). It implies that the implementation149

framework for computing the Fréchet kernels can be used to compute the Hessian kernels by150

replacing the regular field with its associated perturbed field. The Ha can be computed with151
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the implementation of eq. (3) by replacing the forward fields with the perturbed forward152

fields. Hb includes two contributions, i.e.,153

Hb = H
〈m〉
b +H

〈s〉
b , (8)154

where155

H
〈m〉
b

(ρ, α, β) =

















Kρ(δs
†
m, s̈, s)

Kα(δs
†
m, s)

Kβ(δs
†
m, s)

















, (9)156

157

H
〈s〉
b (ρ, α, β) =

















Kρ(δs
†
s, s̈, s)

Kα(δs
†
s, s)

Kβ(δs
†
s, s)

















. (10)158

The former is due to the perturbation of the model, and the latter is due to the per-159

turbation of the adjoint source which is defined as the approximate Hessian kernels in160

Fichtner and Trampert (2011). Both the H
〈m〉
b and H

〈s〉
b can be computed with the implemen-161

tation of eq. (3) by replacing the adjoint fields with the associated perturbed adjoint fields.162

The H
〈m〉
b and H

〈s〉
b are computed to determine the Hb component for the full Hessian kernel163

calculations, i.e., considering the model perturbation and the adjoint source perturbation164

as well in one or two adjoint simulations. The H
〈s〉
b can be computed separately to obtain165

the approximate Hessian kernels, i.e., only accounting for the adjoint source perturbation.166

The construction of Hc is straightforward based upon the Fréchet kernels Km and the model167

perturbation δm.168

Perturbed wavefields169

Eqs. (5)-(10) show that the Hessian kernels can be computed with the same implementation170

framework as that for the Fréchet kernel calculations, e.g., by eq. (3) using the adjoint171

methods. Any other packages for wave simulations and Fréchet kernel computation can be172
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redesigned and adapted to compute the Hessian kernels with additional effort to compute173

the perturbed forward fields δs and δs̈, and the perturbed adjoint field δs† due to the model174

perturbation δm and the perturbation of the adjoint source.175

The Ha component accounts for the perturbation of the forward fields (Fichtner and Trampert,176

2011), e.g.,177

δs = lim
v→0

1

v
[s(mr + vδm;x, t)− s(mr;x, t)], (11)178

where mr denotes the reference model, and r = 0, 1, 2, ..., N represents the iteration number.179

The initial model is set to m0. The same consideration applies to the perturbed acceleration180

field δs̈ for density kernel calculations.181

The Hb component consists of two contributions: H
〈s〉
b and H

〈m〉
b , where the former H

〈s〉
b182

relies on the approximate perturbed adjoint field183

δs†s = s†s(mr;x, T − t)− s†(mr;x, T − t). (12)184

In the equation, the s†s(mr;x, T − t) field is generated by the adjoint source f †(mr +185

vδm;x, T − t), and s†(mr;x, T − t) is generated by the adjoint source f †(mr;x, T − t).186

The adjoint sources could be the traveltime adjoint source, the waveform adjoint source, or187

any other adjoint source based on the choices of seismic data functional χ as discussed in188

Tromp et al. (2005). The H
〈s〉
b and H

〈m〉
b need to be computed for the Hb determination in189

order to compute the full Hessian kernels: Ha + H
〈s〉
b + H

〈m〉
b + Hc. The perturbed adjoint190

field for the H
〈m〉
b may be given by191

δs†m = lim
v→0

1

v
[s†m(mr + vδm;x, T − t)− s†(mr;x, T − t)], (13)192

where the two adjoint fields s†m(mr + vδm,x, T − t) and s†(mr,x, T − t) are generated193

through the perturbed and unperturbed model from the same adjoint source f †(mr;x, T−t).194

Thereafter, the total perturbed adjoint field is195

δs† = δs†s + δs†m. (14)196
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The δs†s and δs†m may be computed in one adjoint simulation with the perturbation account-197

ing for both the model and the adjoint source simultaneously, or computed separately in two198

adjoint simulations considering the two perturbations individually.199

The computation of Hc relies on the Fréchet kernels and model perturbation, see eq. (7).200

It has also been shown that Hc is non-zero when the model is parametrized as ρ, α, and β but201

zero when the model is given in terms of density and elastic moduli (see Fichtner and Trampert,202

2011).203

Implementation204

The computation of the full Hessian kernels relies on the regular and perturbed fields as men-205

tioned above. Its implementation is straightforward based on the wavefield storage method206

(WSM), which saves the forward fields at full or adaptive time steps and reads each saved207

time step of the forward fields back into temporary memory during the adjoint simulation208

for kernel constructions (See Appendix B for the WSM method based on the full or adaptive209

time integration scheme). Or only two adjoint wave equations need to be solved simulta-210

neously during the adjoint simulation. However, in light of the large storage requirement211

by the WSM, here we focus on showing how the full Hessian kernels are computed by the212

on-the-fly approach implemented in QuadSEM, which involves simultaneously solving four213

wave equations during the adjoint simulation. For the following examples, we only consider214

cases with purely elastic models.215

Forward simulation216

Figure 1 shows the comparison between the classical SEM and the QuadSEM during the217

forward simulations. In comparison to one model used by the classical SEM, QuadSEM218

carries wavefield simulations for two models simultaneously, e.g., m1 and m2, where m2 =219

m1 + vδm = m1 + ∆m. In this case, the wavefields, including displacement s, velocity v,220
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acceleration s̈, and the boundary contribution b (a general symbol used to refer to velocity221

or traction fields on the coupled boundary with an external model) are computed for the two222

models at each time step. The displacement seismograms s(xr, t) are computed by spatial223

interpolation of fields at the receiver xr at each time step. The grid-point locations and mesh224

topology database files are shared by the two models used simultaneously in the forward225

simulation with QuadSEM, and only arrays/files related to model material properties such226

as ρ, α, and β need to be defined separately for the two models. The CPU and memory227

requirements for QuadSEM are about twice the cost of the classical SEM simulation. The228

forward simulations for either the classical SEM or the QuadSEM are designed to provide229

the absorbing boundary fields, the last state of the forward field, and the seismograms at230

receivers, for subsequent simulations.231

Simultaneous backward and adjoint simulations232

The strategy of using simultaneous backward and adjoint simulations was adopted for in-233

stance in the SPECFEM2D (https://geodynamics.org/cig/software/specfem2d/) and234

the SPECFEM3D (https://geodynamics.org/cig/software/specfem3d/) packages to com-235

pute the Fréchet kernels on the fly. A workflow for computing the Fréchet kernels using the236

classical SEM method is shown in Figure A1. For purely elastic models, the backward simu-237

lation is a time-reversed reconstruction of the forward field using the last state of the forward238

field as a starting point. The absorbing boundary contributions saved in the forward simu-239

lation are re-injected into the backward simulation when the forward field is reconstructed240

backward in time. The simulations for the backward reconstruction and the adjoint wavefield241

are performed simultaneously so that the corresponding time slices of the forward and adjoint242

wavefields can be accessed both in memory to construct the Fréchet kernels. A similar idea is243

adopted in the QuadSEM, and as shown in Figure 2 and Figure A2, where both the regular244

and perturbed forward wavefields, as well as the regular and perturbed adjoint wavefields245

for the two models are simultaneously computed every time step, so that the Fréchet and246
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full Hessian kernels can be constructed on the fly as wavefield products are computed and247

integrated over time steps. As indicated by Figure 2, the calculations of Fréchet kernels (by248

Arrows 1 and 2) and the full Hessian kernels (by Arrows 1, 2, 4, and 5, or Arrows 1, 2, 3, 4,249

and 5 depending on the adjoint source of 5) are simultaneously performed on the fly since all250

required wavefields are computed for each time step. Alternatively, the approximate Hessian251

kernels can be computed by the solutions indicated by Arrows 1, 2, 3, and 4. The QuadSEM252

degenerates to classical SEM when solutions indicated by 4 and 5 or 3 are not used.253

Although the forward and adjoint wavefields for m1 and m2 are combined to compute254

kernels in the QuadSEM, the same mesher database is used except for those variables or255

matrices that define m1 and m2. The memory cost is small since only one time step of the256

various fields and the integrated kernels are kept in memory. The Fréchet kernels need 3 (1 in257

the forward and 2 in the adjoint) simulations, while the QuadSEM needs 6 (2 in the forward258

and 4 in the adjoint) simulations for the simultaneous computation of both Fréchet and259

full Hessian kernels. A simultaneous computation of both Fréchet and approximate Hessian260

kernels also requires 6 (2 in the forward and 4 in the adjoint) simulations. Therefore, roughly261

QuadSEM doubles the memory and CPU time required for the simultaneous computation262

for both Fréchet and full Hessian kernels compared to the requirement for Fréchet kernels263

alone.264

Numerical examples265

Models266

To test the numerical implementation of QuadSEM, three models are considered in this study.267

First, a homogeneous 2D model (Model 1 ) that is 800 km in the horizontal direction and 360268

km in the vertical direction and with density ρ=2900 kg/m3, P-wave speed α=8000 m/s,269

and S-wave speed β=4800 m/s, is used as a starting background model to generate initial270
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wavefields and waveforms. The second and the third models are perturbed versions of the271

homogeneous model. The second model (Model 2 ) has an additional +10% perturbation in272

α and β over a 10 km× 10 km area centered at the horizontal location of 335 km and depth273

of 135 km. The third model (Model 3 ) includes three anomalies that are 8 km × 10 km,274

centered at a depth of 115 km at horizontal locations of 120 km, 180 km, and 240 km,275

respectively, with +10% perturbations in α and β. No density perturbation is considered for276

the second and third model.277

For all three models, we use 400 elements in the horizontal direction and 360 elements278

in the depth direction with 5 × 5 Gauss-Lobatto-Legendre (GLL) points for each element,279

which leads to about 500 m and 250 m grid point spacing in the horizontal and vertical280

direction, respectively. The mesher and related databases for these models are built by the281

internal mesher tool of the SPECFEM2D package with slightly changing for the two models.282

Figure 3 shows the locations of these model perturbations (Part II, blue boxes in the last283

column) and the source-receiver geometry, together with the kernel images discussed in the284

section of Single source-receiver combination. These models are chosen to illustrate the285

differences in the calculation of Hessian kernels between the single source-receiver pair and286

single-source multiple-receiver case.287

Single source-receiver combination288

We first examine the kernel calculation for a single source-receiver combination based on289

Model 1 and Model 2. We place a point source at (x, z)=(100 km,−260 km), and a standard290

Ricker wavelet with the dominant frequency of 0.5 Hz is used. A single receiver is placed291

on the top surface of the model at (x, z)=(600 km, 0 km). The simulations use dt = 0.01 s292

and run for a total of 7, 000 time steps. Adjoint sources for cross-correlation traveltime293

(Tromp et al., 2005) are first calculated based on the first P-wave arrival recorded by the294

two-component seismograms. The P-wave is primarily sensitive to P-wave speed, α, so only295

α kernels are shown in the examples below. As discussed in the section of Simultaneous296
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backward and adjoint simulations, QuadSEM computes the Fréchet kernels using the same297

solutions of the forward and adjoint equations as the classical SEM (see Figure 2).298

First, we examine the Fréchet kernel for Model 2 (i.e., m1 + vδm), and the full Hessian299

kernel for the model perturbation from Model 1 (i.e., m1) to Model 2. The approximate300

Hessian kernels are computed for Model 1 but using the adjoint source computed from301

the seismograms/measurements of Model 2. We show the Fréchet kernel, the approximate302

Hessian kernel, and the full Hessian kernel for P wavespeed α in the first row of Figure 3303

(Part I) with a zoomed-in version around the perturbations given in the first row of Figure 3304

(Part II). The Hc is restricted to the perturbation indicated by the black box (see Figure 3c305

and its expression of eq. (7)). Note that the black box here is the Hc Hessian kernel with306

a negative value of 10−9, not the model perturbation although they are located in the same307

position. The H
〈s〉
b kernel is mostly invisible in Figure 3c except those around the black box308

due to its relatively small amplitude. The Ha and H
〈m〉
b are separated by the black box.309

Substantial differences are observed between the approximate and full Hessian kernels.310

It takes the QuadSEM about a total of 37.57 mins with a maximum memory usage of311

∼2.48 GB to simultaneously compute both the Fréchet and full Hessian kernels using 4312

cores on a standard laptop (with 2.3 GHz Dual-Core Intel Core i5 processor and 8GB 2133313

MHz LPDDR3 memory). The computation of Fréchet kernels alone by the classical adjoint314

method takes about 18.76 mins with a maximum memory usage of 1.5 GB using the same315

computer. Therefore, in this case, a simultaneous computation of both the Fréchet and full316

Hessian kernels via QuadSEM roughly takes about 2 times the CPU time and ∼ 1.53 times317

the memory when compared to the computation of Fréchet kernels alone. The memory318

cost is slightly less than 2 because we use the same variables and matrices and these are319

independent of the wavefields generated from the two input models. The storage required320

for the QuadSEM is small due to the on-the-fly nature of the calculations, which takes 751321

MB disk space to store the absorbing boundary fields, the last-state forward fields as well322

as the seismograms. The wavefield storage method (WSM) stores the fields at all time steps323
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and requires about 513 GB disk space to store these fields.324

One source and three receivers325

We also show an example with one source and three receivers for the calculation of Hessian326

kernels, where Model 1 is used as the background model (i.e., m1) and Hessian kernels are327

computed with respect to the perturbation in Model 3 (i.e., m1 + vδm, and the vδm here328

indicates a new perturbation for the three scatterers). The source is placed at (x, z) =329

(150 km,−260 km) with the same source time function as in the section of Single source-330

receiver combination. Three receivers are placed on the top surface of the model located at331

horizontal locations of 100 km, 200 km, and 300 km, respectively. The total number of time332

steps and time intervals are the same as the example in the section of Single source-receiver333

combination.334

The second row of Figure 3 (Part I) shows the Fréchet kernel, the approximate Hessian335

kernel, and the full Hessian kernel computed for α, again for a traveltime adjoint source336

measured from the first-arrival of the P-wave. A zoomed-in version around the perturbations337

is given in the second row of Figure 3 (Part II). More detailed descriptions about the Fréchet338

and Hessian kernels are given in the figure caption. The computational cost for this example339

is almost the same as for that in the section of Single source-receiver combination since the340

forward and adjoint simulation time is almost independent of the number of receivers. There341

is one additional step in the window picking and computation of the adjoint source, which342

the cost is negligible compared to the field calculations. A few selected time steps of the343

regular wavefields and their perturbations computed by the QuadSEM are shown in Figure 4344

and Figure 5. For the on-the-fly implementation, QuadSEM, the key output files used in the345

forward simulation and in the simultaneous backward and adjoint simulation are presented346

in Figure 6.347
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Kernel comparisions348

For both the one- and multi-receiver cases shown in Figure 3, we found substantial differences349

between the approximate Hessian kernels and the full Hessian kernels, in agreement with350

previous work (Fichtner and Trampert, 2011). Most notably, the amplitudes of the full351

Hessian kernels can be up to 100% stronger than those of the approximate Hessian kernels352

within the first and second Fresnel zones. These areas are covered by Ha, H
〈m〉
b , and Hc in353

the full Hessian kernels and usually omitted in the calculation of the approximate Hessian354

kernels. The greater positive values of the Hessian kernels in the vicinity of the perturbation355

suggest that the inversion using the full Hessian kernels will result in better illumination in356

the region of the model perturbation. In comparison, when only the approximate Hessian357

kernel is used, the model updates tend to be distributed along the entire kernel.358

In the multi-receiver case, we observe similarly higher amplitude in the Hessian kernels359

near the three model perturbations (Figure 3f) (Part I and II); whereas, for the approximate360

Hessian kernels, the sensitivity has high amplitudes around the middle anomaly only. This361

again suggests that using the full Hessian kernels in the inversion will focus model perturba-362

tions closer to the actual anomalies and hence provide better resolution for small anomalies363

within the model.364

Discussions365

The Hessian kernels are typically used with the Fréchet kernels for computing the model366

update or search direction based upon truncated Newton optimization (e.g., Nash, 1985;367

Grippo et al., 1989; Nash, 2000). This may potentially generate more accurate results and368

quicker convergence compared with L-BFGS based optimization for multi-parameter full-369

waveform inversion (FWI) (e.g., Métivier et al., 2013, 2014; Pan et al., 2017; Yang et al.,370

2018; Matharu and Sacchi, 2019).371

The QuadSEM implementation can compute both the Fréchet and full Hessian kernels372
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simultaneously, requiring only double the computational cost of Fréchet kernels alone. To fur-373

ther reduce the computational costs, the source encoding techniques (e.g., Tromp and Bachmann,374

2019) or a reverse propagation of a superposition of forward and residual wavefields (e.g.,375

Robertsson et al., 2021) may be considered as well.376

An important question remains as to whether the additional costs of the simultaneous377

computation of the Fréchet and full Hessian kernels at twice the computational cost can378

be offset by the more rapid convergence of the non-linear inversion. As high-performance379

computing becomes more accessible and efficient, this may become much less of a concern.380

In addition to the model expressed in terms of density, P-wave and S-wave velocities,381

the approximate Hessian kernels and the full Hessian kernels can be expressed by different382

model components with similar derivations. In this study, we only show kernel examples for383

elastic models to demonstrate the on-the-fly approach. For anelastic models, a checkpointing384

method (e.g., Komatitsch et al., 2016) may be needed, and we are in the process of devel-385

oping such method to compute the anelastic full Hessian kernels by applying similar idea386

as QuadSEM but storing the two forward fields at some checkpoints in order to reconstruct387

them accurately during the adjoint simulation. The idea of QuadSEM is not limited to the388

SEM, and other numerical solvers that simulate seismic wave propagation can be adapted389

to compute the Frécket kernels as well the full Hessian kernels.390

Conclusions391

We present QuadSEM, a package for on-the-fly full Hessian kernel calculation through si-392

multaneously solving four wave equations, which is designed to simultaneously compute the393

Fréchet and full Hessian kernels on the fly with only about double of the computational394

cost for the calculation of Fréchet kernels alone. In the QuadSEM, the WSM is also imple-395

mented as it is complementary to the on-the-fly approach. While the examples presented396

in this paper are rather specific to three elastic models, the underlying idea is very gen-397
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eral. The QuadSEM trades off the computational cost with storage and I/O, and improves398

the accuracy of full Hessian kernel calculations by combining the exact forward and adjoint399

wavefields on the fly in temporary memory. This makes it possible to use the accurate full400

Hessian information for multi-parameter FWI based upon the spectral-element and adjoint401

methods. It potentially provides a step forward in improving FWI to better image and un-402

derstand Earth structure, particularly in regions characterized by weak and/or small scale403

heterogeneities.404
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Data and Resources405

No field data were used in this work. Models and the QuadSEM codes can be freely down-406

loaded via https://github.com/yujiangxie/QuadSEM or requested from the authors.407
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Figure 1. Sketch illustrating the workflow of forward simulation for classical SEM vs.576
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Figure 3. Fréchet and Hessian kernels computed for the investigated models.580
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first-order finite-difference approximation.583
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Figure 1: Sketch illustrating the workflow of forward simulation for classical SEM vs. Quad-

SEM. (a) In classical SEM forward simulation, a single model is used and it is set either by

the internal mesher (e.g., m0) or importing from external file (m1) after the mesher is set

up. (b) In the QuadSEM forward simulation, two models (m1 and m2) are imported into

the internal mesher, where m2 = m1 + vδm = m1 + ∆m, and m0 will be omitted when

external models are loaded.
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Figure 2: Sketch illustrating the workflows for the simultaneous backward and adjoint sim-

ulations for classical SEM vs. QuadSEM. (a) In the simultaneous backward and adjoint

simulation of the classical SEM. Each arrow represents the solution for one wave equation

with Arrow 1 indicating the backward simulation (i.e. the reconstruction of the forward

field) and Arrow 2 indicating the adjoint simulation. (b) In the simultaneous backward and

adjoint simulation of the QuadSEM, Arrows 1, 2, and 3 indicate the solutions of the wave

equations for model m1, and Arrows 1 and 2 perform the same as in (a), and Arrow 3 per-

forms the same as Arrow 2 but its adjoint source is computed by using the measurements of

m2 to account for the perturbation of the adjoint source. The red Arrows 4 and 5 indicate

the computation of the backward and adjoint fields for model m2.
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Figure 3: Part I: Fréchet and Hessian kernels computed for Model 2 (top row) and Model

3 (bottom row) as discussed in section of Numerical examples. In the top row we show

(a) the Fréchet kernel Kα, (b) the approximate Hessian kernel H
〈s〉
b , and (c) the full Hessian

kernel for α for the single source single station case with a single scattering object. Similarly,

Panels (d), (e), and (f) in the bottom row show the various kernels for the case of a single

source and three stations with three scattering objects. The kernel unit for all sub-figures is

[s m−2]. A zoomed view of the perturbations within Part I is shown in Part II.
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Figure 4: Four selected time steps of the five wavefields computed by the QuadSEM using

the on-the-fly approach. (a) The forward fields recorded at times 30 s, 50 s, 70 s, and 90

s for model m1. (b) The adjoint fields for the same model but recorded at reversed times

of T-90 s, T-70 s, T-50 s, and T-30 s, where T = 100 s in this test. (c) The adjoint fields

generated by the adjoint source computed from the measurements for m2. (d) and (e) show

the similar simulation as (a) and (b) but for model m2, instead of m1. (b) and (e) look

similar due to the use of the same adjoint source, but they are different after the adjoint

fields travel through the scatterers.
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Figure 5: A few time steps of selected perturbed fields computed on the fly using the first-

order finite-difference approximation. (a) shows the perturbed forward fields. (b) shows

the perturbed adjoint fields due to the perturbation of the adjoint source. (c) shows the

perturbed adjoint fields due to the perturbation of the model. The perturbed fields, e.g.,

generated around the red arrows, are due to the perturbations either from the model or from

the adjoint source.
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D/0/base******.bin

absorb_elastic_bottom******.bin

absorb_elastic_left******.bin
absorb_elastic_right******.bin

absorb_elastic_bottom_m2_******.bin

absorb_elastic_left_m2_******.bin
absorb_elastic_right_m2******.bin

Figure 6: Key files output from the forward simulation and the simultaneous backward and

adjoint simulation in the QuadSEM. The left column shows the files output from the forward

simulation. The first row shows the meshing database which includes the internal model to

be replaced by the two external models before the main time loop in the simultaneous

backward and adjoint simulation. The second row shows the absorbing boundary fields,

where the shadow part indicates files output for model m2. The third and fourth rows show

the seismograms registered at the receivers and the last state of the forward field. These

files output in the forward simulation will be used in the simultaneous backward and adjoint

simulation. The right column shows the key files output in the simultaneous backward and

adjoint simulation, including the Fréchet kernels, the approximate Hessian kernels (’Hbs’),

and the full Hessian kernels (’Habc’), etc. In the right column, the top part shows kernels

for the ρ, κ, and µ parameter set and the bottom part shows kernels for the ρ, α, and β

parameter set.
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Simultaneous backward and adjoint simulations for the586

computation of Fréchet and Hessian kernels on the fly587

Figure A1 shows the simultaneous backward and adjoint simulations for the computation588

of Fréchet kernels on the fly, where the backward simulation is designed to reconstruct the589

forward fields backward in time during the adjoint simulation. In this way, the Fréchet590

kernels can be constructed on the fly since the forward fields for time t and the adjoint591

fields for time (T − t) or vice versa can be simultaneously accessed. The T indicates the592

total simulation time. This on-the-fly strategy can be extended to compute the Hessian593

kernels but the solutions of two forward and two adjoint equations are combined. Figure A2594

shows the simultaneous computation of several forward and adjoint fields for constructing595

the Hessian kernels on the fly.596

Computation of Hessian kernels by wavefield storage597

method598

Hessian kernels can be computed when the required wavefields are available. To get the599

required fields, we use one forward simulation and two adjoint simulations (see Figure A3).600

The forward simulation is to compute and save four forward fields, that is s(m1), s(m2),601

s̈(m1), s̈(m2), where m2 = m1 + vδm. The first adjoint simulation (Adjoint simulation I)602

is designed to compute and save the adjoint field s†(m2). The second adjoint simulation603

(Adjoint simulation II) is a simultaneous adjoint simulation and the Hessian calculation.604

Figure A3 shows the computation of full Hessian kernels. It can be similarly changed for the605

computation of approximate Hessian kernels, where one needs to store s†s(m1) in the Adjoint606

simulation I. Figure A4 shows each component of the Hessian kernels with respect to the607

three model parameters. For this example, the Model 2 and the single source-receiver pair608
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(as the section of Single source-receiver combination) are used. Only the first P-wave arrival609

is used for the calculation of the traveltime adjoint sources.610
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List of Figure Captions for Appendix611

Figure A1. Forward simulation and the simultaneous backward and adjoint simulation for612

computing the Fréchet kernels.613

Figure A2. Simultaneous backward and adjoint simulation in the QuadSEM for the com-614

putation of Hessian kernels on the fly.615

Figure A3. A workflow illuminating the computation of full Hessian kernels by the wave-616

field storage method (WSM).617

Figure A4. Four components of the full Hessian kernels with respect to the model given in618

ρ, α, and β.619

620
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s(x,t1)

s(x46k)

s(x46n) s(x46n)

s(x46k)

s(x461)

b(x46n)

b(x46k)

b(x461)

Forward

+

+

+

Backward

s
†(x,t1)

s
†(x,tn+1-k)

s
†(x,tn)

Adjoint

k(x,tn)

k(x,tk)

k(x,t1)

Boundary Fréchet

Figure A1: Forward simulation (green rectangle) and the simultaneous backward and adjoint

simulation (two blue rectangles) for computing the Fréchet kernels. The forward simulation

is started from the first time step t1 and ended at the last time step tn. The absorbing

boundary field b(x, tk) of each time step tk and the last state field s(x, tn) are stored in the

forward simulation. The backward simulation takes the last state field as a start point and

reconstructs the forward field backward in time. In each time step, the absorbing boundary

field b(x, tk) is re-injected into the backward simulation to reconstruct the forward fields

(called backward fields here). The adjoint simulation is started from the time-reversed adjoint

source from the receivers. The Fréchet kernels at each time step or at a sub-sampled time step

are constructed on the fly based upon the backward and adjoint fields. If each time step is

used, the kernels are summed at each time step until the final step as Km =
∑n

k=1
K(x, tk)δt,

where δt is time interval in the simulation.
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Figure A2: Simultaneous backward and adjoint simulation in the QuadSEM for the com-

putation of the Hessian kernels on the fly. Group A: the solutions of forward and adjoint

equations are combined and used for model m1, where one solution is solved for the back-

ward simulation and the other is solved for the adjoint simulation. Group A is designed to

compute the backward and adjoint fields for model m1. On the right side, Group B combines

the solutions of the forward and adjoint equations for model m2. Engine C represents one

solution of the adjoint equation designed to compute the adjoint field due to the perturba-

tion of the adjoint source f †(m2). The simulation in Engine C is the same as the adjoint

simulation in Group A except the source term is different. We design the workflow to show

the computation of each required wavefield. In the full Hessian kernel calculations, we use

Group A and Group B, just changing the adjoint source of Group B from f †(m1) to f †(m2).

Since all the fields are computed on the fly for each designed time step (each time step or

adaptive time step), the perturbed fields to be used in the calculation of Hessian kernels can

be computed also on the fly.
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Figure A3: A workflow illuminating the computation of full Hessian kernels by the wavefield

storage method (WSM) using the adaptive time integration or storing the fields at all time

steps. The first step (Forward simulation) is designed to compute and save the forward fields

and the second step (Adjoint simulation I) is to compute and save one adjoint field due to

the perturbations of model and adjoint source. The last step (Adjoint simulation II) is to

compute one adjoint field s†(m1) on the fly, and read one time step of the saved five fields

into the temporary memory for the computation of the full Hessian kernels. The f†(m1) and

f†(m2) denote the two adjoint sources computed from the measurements of the two models.
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Figure A4: Four components of the full Hessian kernels with respect to the model given in

ρ, α, and β. The top first row shows the Ha component with respect to the three model

parameters. Only the Ha,α is well observed since only the first P-wave arrival is used for the

adjoint source calculation. The second row shows the H
〈s〉
b component, which is approximate

Hessian kernels due to the perturbation of the adjoint source to the adjoint field. The third

row shows the H
〈m〉
b component which is due to the perturbation of the model for the adjoint

field. The bottom row shows the Hc component. Only the kernels for Hc,r1 and Hc,r2 are

observed since the Kβ is very small due to the use of the first P-wave arrival only. The ri

(where i = 1, 2, 3) indicates the three rows in the Hc expression. The full Hessian kernels are

obtained by summing the four components together.

39


