2	Cancer Immunotherapy
3	Tommaso Morelli ^{1,2} , Kohei Fujita ³ , Gil Redelman-Sidi ⁴ , Paul Elkington ^{1,2}
4	
5	¹ NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of
6	Medicine, University of Southampton, Southampton, United Kingdom.
7	² Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
8	³ Division of Respiratory Medicine, Centre for Respiratory Diseases, National Hospital Organization
9	Kyoto Medical Centre, Kyoto, Japan
10	⁴ Division of Infectious Diseases, Memorial Sloan Kettering Cancer Centre, New York, USA
11	
12	Address for correspondence:
13	Professor Paul Elkington
14	Clinical and Experimental Sciences
15	University of Southampton, Southampton SO16 1YD
16	Tel.: 00 44 23 8079 5928
17	E-mail: p.elkington@soton.ac.uk

1 Infections due to Dysregulated Immunity: An emerging complication of

Abstract

Immune checkpoint inhibitors (ICIs) have revolutionised cancer treatment. However, immune related adverse events (irAEs) are a common side-effect, which can mimic infection. Additionally, treatment of irAEs with corticosteroids and other immunosuppressant agents can lead to opportunistic infection, which we have classed as ImmunoTherapy Infections due to ImmunoSuppression (ITI-IS). However, emerging reports demonstrate that some infections can be precipitated by ICIs in the absence of immunosuppressive treatment, in contrast to the majority of reported cases. These infections are characterised by a dysregulated inflammatory immune response, and so we propose they are described as ImmunoTherapy Infections due to Dysregulated Immunity (ITI-DI). This review summarises the rapidly emerging evidence of these phenomena and proposes a new framework for considering infection in the context of cancer immunotherapy.

Introduction

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

In 1957 Macfarlane Burnet wrote "The failure in cancer is due not to any weakness of the organism, but to a change in the character of the cells, rendering them in one way or another insusceptible to the normal control". Subsequently, evading immune destruction was identified as a critical hallmark of cancer.² The 2018 Nobel prize was awarded to James Allison and Tasuku Honjo for the discovery that cancer cells could exploit programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) signalling to avoid immune destruction.³ PD-1 is an immune checkpoint molecule expressed on effector T cells and binds to PD-L1 and PD-L2 on antigen presenting cells (APCs). Tumour cells can also express PD-L1 as a method of evading immune destruction, whereby PD-1/L1 signalling supresses effector T cell priming and proliferation. CTLA-4 is another co-inhibitory receptor expressed on effector T cells. CTLA-4 competes with the costimulatory receptor CD28 on effector T cells for binding with activation ligands CD80/86, found on APCs. CD28 binding to CD80/86 is essential for T cell receptor (TCR) signalling and hence CTLA-4, which binds to CD80/86 with greater affinity, effectively prevents effector T cell activation. CTLA-4 and PD-1 are expressed on effector T cells following chronic, sustained antigen exposure. 4-6 PD-1 and CTLA-4 signalling thus acts as a "brake" to balance and prevent an over-exuberant damaging immune response, for example in chronic infection. PD-1/PD-L1 signalling can be inhibited using monoclonal antibodies against PD-1 (e.g. pembrolizumab, nivolumab) and PD-L1 (e.g. durvalumab, atezolizumab, avelumab). CTLA-4 signalling can similarly be blocked using monoclonal antibodies such as ipilimumab and tremelimumab. Immune checkpoint inhibitors (ICIs) have revolutionised cancer treatment, with improved survival demonstrated in many forms of cancer, including lung cancer, melanoma, colorectal cancer, hepatocellular carcinoma, renal cell carcinoma, bladder cancer, Merkel cell carcinoma and Hodgkin's lymphoma.⁴ ICIs require close monitoring as they are associated with autoimmune phenomena known as immune related adverse events (irAEs).4

Immune Related Adverse Events (irAEs)

IrAEs are a common side effect of ICIs, with an incidence between 54%-76% according to a metanalysis of trial data.⁷ IrAEs can affect any body system and management often involves treatment with glucocorticoids such as prednisolone and other immunosuppression such as anti-TNF therapy for steroid refractory cases. From the pulmonary perspective, immune related pneumonitis occurs more commonly with PD-1 blockade and has several radiological presentations including cryptogenic organising pneumonia, nonspecific interstitial pneumonia, hypersensitivity pneumonitis, acute interstitial pneumonia and pulmonary sarcoid reactions.⁵ Combination ICI therapy appears to increase the risk of irAEs.⁸ The pathogenesis of irAEs may be mediated by T cell autoimmunity, impaired regulatory T Cell (Treg) function, TH17 helper T cells and T cell mediated autoantibodies.⁴ Notably, irAEs can mimic infection.⁹ Recently it has been hypothesised that immune checkpoint blockade may cause increased immune recognition of commensal bacteria, such as gut microbiota, perhaps via attenuated Treg function, and this immune recognition of commensal bacteria can cause expansion of TH17 cells that have the potential to migrate and potentially cause irAEs.¹⁰

Consequences of Natural Immune Checkpoint Loss of Function

72 Immune checkpoints help prevent activity against self. Consequently, polymorphisms in CTLA-4 and

PD-1 are associated with autoimmune sequalae such as Addison's disease, coeliac disease, Graves'

disease, type 1 diabetes mellitus, myasthenia gravis, rheumatoid arthritis, and systemic lupus

erythematosus.46

In addition, genetic mutations in these receptors predict that pharmacological targeting of immune

checkpoints may have infectious complications. CHAI (CTLA-4 haploinsufficiency with autoimmune

sequelae) and LATAIE (LRBA deficiency with autoantibodies, regulatory T cell defects, autoimmune

infiltration and enteropathy) are human genetic disorders associated with deficient CTLA-4

expression and function. CHAI and LATAIE manifest with multiorgan lymphocytic infiltration, T_{reg} defects and autoantibody production and are also associated with recurrent infections, particularly respiratory infections.¹¹ A review of the phenotype of LATAIE patients revealed 71% suffered from recurrent infections (upper respiratory tract, lower respiratory tract and urinary). Reported bacterial infections included a range of pathogens, such as *Escherichia coli, Klebsiella pneumoniae, Haemophilus influenzae, Pseudomonas aeruginosa, Campylobacter,* and *Staphylococcus aureus*. Reported viral infections include *cytomegalovirus, adenovirus, norovirus,* and *varicella zoster,* and candida infections are also described.¹² Although these genetically determined phenotypes have more severe manifestations than CTLA-4 associated irAEs, they provide some insight into the natural consequences of loss of CTLA-4 function. Interestingly CTLA-4 mutations have also been associated with more severe tuberculosis infection in an African population study.¹³ With Respect to PD-1/PD-L1, although there are no human congenital diseases associated with deficiency, PD-1 deficient mice are highly susceptible to tuberculosis infection.^{14 15}

Given the emerging evidence of increased infection in patients treated with ICIs, and evidence that immune checkpoint deficiency can be associated with recurrent infections, we were interested in evaluating the infectious sequelae of ICI therapy. Furthermore, we aimed to characterise the pattern of these infectious complications to inform future clinical management strategies and the associated research agenda.

Literature Search

We performed a literature search to identify reports of adult cancer patients who were found to have developed infections after ICI initiation. The search protocol was registered on PROSPERO (CRD 4202141634, see Appendices 1-3). We searched Medline (Ovid 1996- February week 4 2021) using advanced search, for the following keywords: ("Infection" or "Infectious Disease") and ("Immune checkpoint inhibitor" or "PD-1" or "PD-L1" or "CTLA-4"). Additional limits were placed to include articles relevant to humans and those published in the English language. This search yielded 1294

results. Thirty-four additional relevant studies were identified through co-author suggestion, references and citations. After screening for suitability by viewing the title, abstract, introduction and conclusion, and removing duplicates, 95 full text articles were assessed. Seventy-nine studies were included for analysis (Figure 1). Information on cancer type, ICI used, concurrent immunosuppression and available descriptive statistics were collected. Table S1 summarises the studies of immunotherapy associated infection.

Prospective Randomised Clinical Trial Data

Trial data has not demonstrated a significantly increased rate or risk of infection following ICI treatment.¹⁶ A review of Phase I trial data revealed infection-related adverse events in 18% of patients and the odds ratio of infection was not statistically different from molecular targeted agents for cancer.¹⁷ One study of patients with non-small cell lung cancer (NSCLC) treated with pembrolizumab reported complications of pneumonia (1.5%), lung infection (0.3%), oral candidiasis (0.3%) and urinary tract infection (0.3%).¹⁸ Another RCT reported a case of pneumonia and severe *Varicella zoster* infection following nivolumab for NSCLC.¹⁹ Eight cases of drug related infection, including one severe *Varicella zoster* infection, were reported in a nivolumab trial for melanoma.²⁰ Sepsis following atezolizumab for bladder cancer has also been reported.²¹ However, while RCTs are the gold standard for determining treatment efficacy by minimising bias, they do not adequately assess all potential treatment harms, especially if infrequent.²² Typically these only come to light in post-marketing surveillance when greater numbers of patients are treated.²³ Additionally whilst the total reported infections is small, there may be underreporting in trials as causality to ICIs is not clearly established. Thus, analysis of other forms of data such as clinical observational data is required.

Opportunistic Infections associated with irAE treatment

The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) provided a consensus statement which suggested that ICIs do not intrinsically increase the risk of infection, but rather immunosuppressive therapy to treat irAEs can predispose to opportunistic infection. This followed a retrospective cohort review from Del Castillo et al who analysed records 740 melanoma patients who received ICIs over a four year period and recorded the number of infections requiring hospitalisation or anti-microbial treatment. Seven percent of patients developed infection and 17% of these patients died. The vast majority (73.2%) of patients received CTLA-4 blockade with ipilimumab, 14.9% had PD-1 blockade, while 11.7% had combination ICI therapy. Eighty-five percent of infections were bacterial with 13/23 being pneumonia. Two cases of invasive pulmonary aspergillosis, three *Pneumocystis jirovecii* pneumonia, one candidemia and one strongyloidiasis case were reported. Risk factors for infection included corticosteroid administration (OR 7.71 p <0.0001), infliximab (OR 4.74 p<0.0001) and combined PD-1/CTLA-4 blockade (OR 3.26 p 0.0017).

There are multiple case reports which have also highlighted multiple instances of opportunistic infection following irAE immunosuppression with a variety of causative pathogens including Aspergillus fumigatus, 25-28 Pneumocystis jirovecii, 29-31 JC virus, 32, Cytomegalovirus 33 and Campylobacter 34 (Summarised in Table 1). These reports highlight the need to have a low threshold of investigation for opportunistic infection following irAE treatment and consideration of Pneumocystis jirovecii prophylaxis. In addition to prior immunosuppressive cancer treatments, comorbidities such as COPD in lung cancer patients and the immunosuppressive tumour microenvironment are risk factors for infections 35 36.

ICI-associated infection independent of immunosuppression

Whilst the predominant infection risk post ICI treatment is likely to be due to immunosuppression, there is mounting evidence of a second mechanism that leads to increased incidence of infection. For example, Fujita et al reviewed 167 records of patients who received nivolumab for non-small cell

lung cancer and 19.2% (32 patients) were treated for infection.³⁷ There were 33 infections, 78.1% were bacterial and included *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Klebsiella pneumoniae*, methicillin resistant *Staphylococcus aureus* (*MRSA*), methicillin sensitive *Staphylococcus aureus* (*MSSA*), *Staphylococcus schleiferi*, *Mycobacterium tuberculosis* and other unknown presumed bacterial infection. 6.3% were fungal and included *Aspergillus fumigatus* and *Candida albicans* infection, while 18.8% were viral and included *Varicella* and *Influenza*. Diabetes significantly increased the risk of infection (OR 3.61 p =0.028).³⁷ Of note, this study exclusively analysed PD-1 blockade in the form of nivolumab. Unlike the Del Castillo study, there was no significant difference in the number of infections with use of corticosteroids or other immunosuppressive agents, suggesting an alternative mechanism.

Kanjanapan and Yip recently published a cohort study of 327 patients with primarily NSCLC (36%) and melanoma (47%).³⁸ The majority (77%) of patients received PD-1/PD-L1 therapy, 9% received CTLA-4 therapy, and 14% received combination therapy. The rate of infection up to 12 months post immunotherapy was 27%, age was the only identified risk factor for infections post ICI initiation (HR 1.73 p= 0.04), while corticosteroid use and diabetes mellitus were not risk factors for post ICI infection. The rate of infection in the pre-ICI period was 34%, but notably infectious episodes were defined through positive culture or polymerase chain reaction potentially allowing inclusion of commensal colonisation such as *Staphylococcus aureus* on the skin (55 identified in the pre-ICI period and defined as infection). Furthermore, given the long study period of 7 years it is not possible to directly compare the rates of infection pre and post ICI. However, there was still a significant number of infections in the post ICI period and corticosteroids were not a statistically significant risk factor.³⁸

Furthermore, a recent study retrospectively evaluated infectious sequelae in 200 patients in a French registry, treated with PD-1 (98.5%), and PD-L1 inhibitors (1.5%). 60% of patients had melanoma, 35.5% had NSCLC.³⁹ Infection occurred in 18% between 19 and 132 days after ICI

initiation, of which 58.3% were suspected pulmonary infection which improved with antibiotics, 19.4% were skin infections, 19.4% urinary tract infections and 2.9% GI infection. There were no cases of *Pneumocystis jirovecii* or other typical opportunistic infections. No association with corticosteroids, or other immunosuppressant medication, was reported in this study, again suggesting that immunosuppression was not the primary driver.³⁹

These more recent studies together suggest that other factors other than corticosteroids and immunosuppression may play a role in post ICI infection. There are diverse reports of infection, in which it appears the hyper-inflammatory dysregulated immunity associated with ICIs drives pathogenesis. We propose these can be characterised as ImmunoTherapy Infections due to Dysregulated Immunity (ITI-DI), to distinguish them from ImmunoTherapy Infections due to ImmunoSuppression (ITI-IS). ITI-DI may be considered an entirely different pathological mechanism, whereby the excessive host immune response due to inhibition of immune checkpoints counter-intuitively favours the pathogen (Figure 2).

Emerging examples of ImmunoTherapy Infections due to Dysregulated Immunity (ITI-DI)

Mycobacterium tuberculosis and atypical mycobacterial infection

Tuberculosis reactivation was one of the first ICI-associated infections to be described. Currently there are at least nineteen case reports of *Mycobacterium tuberculosis* (Mtb) reactivation following PD-1/PD-L1 blockade⁴⁰⁻⁵⁵ (Figure 3 and Table S1). A review of the US Food and Drug Administration Adverse Events Reporting (FAERS) system for the incidence of Mtb revealed 72 cases of Mtb following PD-1/PD-L1 blockade. The reporting odds ratio for Mtb infection with PD-1/PD-L1 inhibitors was 1.79 (95% CI, 1.42 to 2.26) (p<0.0001),⁵⁶ demonstrating increased risk of active TB. In addition, due to the clinical similarity in features of cancer progression and mycobacterial infection, it seems likely that cases are underreported through underdiagnosis.⁵⁵ Similarly, analysis of a single centre cohort of 297 patients in Japan with lung cancer receiving treatment with pembrolizumab, nivolumab, atezolizumab or durvalumab revealed an incidence of Mtb reactivation of 1.7%

developing 22-398 days after initiation of ICI treatment.⁵⁷ This is higher than the incidence of Mtb reactivation in lung cancer reported in the 1980s, when generally higher doses of cytotoxic chemotherapy were used.⁵⁸ Also, a single centre cohort in South Korea identified 3 cases of Mtb, and calculated an incidence rate of 394.4 per 100, 000 person years, higher than the rate in the South Korean population in 2018 and previous studies that included patients with lung cancer.⁵⁹ Finally, a single centre cohort in Singapore showed that 4/191 (2.09%) of patients developed Mtb reactivation following PD-1/PD-L1 blockade.⁶⁰ Atypical mycobacterial infection (AMI) has also been associated with immunotherapy. We found four cases of atypical mycobacterium infection following PD-1/PD-L1 immunotherapy in the absence of immunosuppression. 61 62 Analysis of the FAERS database revealed thirteen cases of AMI following PD-1/L1 blockade, similarly suggesting elevated risk of infection. The reporting odds ratio for AMI was 5.49 (CI, 3.15 to 9.55 p<0.0001).⁵⁶ In terms of the underlying mechanism, transgenic murine studies have demonstrated that PD-1 knockout mice had increased susceptibility to Mtb infection, succumbing even more rapidly than IFN-y deficient mice 14 15 . In a human 3D cell culture system, PD-1 blockade leads to excessive cytokine secretion, and TNF- α may play a central role ⁶³. Similarly, TB infected macaques given anti-PD-1 antibodies develop worse disease, have higher bacterial loads as well as elevation of multiple inflammatory cytokines, compared to non-PD-1 treated macaques. ⁶⁴ Notably these studies suggest PD-1 blockade negatively affects host-Mtb interaction even in the absence of any immunosuppression, favouring pathogen proliferation over host control due to a dysregulated immune response. These emerging clinical observations, animal modelling and advanced cell culture modelling studies all suggest that disruption of the PD-1/PD-L1 axis results in hyper-inflammatory conditions that favour mycobacterial growth. Consequently, diverse groups have suggested all patients should have

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

interferon y release assay (IGRA) testing prior to ICI initiation and there may be merit in serial IGRA

testing before starting immunosuppressive therapies for irAEs.⁴³ ⁶⁵ The evidence presented here further supports screening of patients for latent Mtb before starting anti-PD-1 treatment and investigation for mycobacterial infection when clinical features are suggestive, especially in high incidence settings. Notably to date, reports of TB primarily centre on the PD-1/PD-L1 axis and there are no cases of CTLA-4 inhibitor monotherapy causing Mtb reactivation.

Hepatitis B Virus

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

Hepatitis B infected patients were excluded from the initial immunotherapy RCTs. Subsequently, there are multiple reports of hepatitis B reactivation, including cases where immunosuppression has been absent.⁶⁷⁻⁷¹ Furthermore, Burns et al analysed the FAERS database for reported cases of hepatitis B and determined the reporting odds ratio for reactivation with pembrolizumab to be 2.32 (95% CI 1.11-4.28 p=0.013)⁷², thus highlighting elevated risk of viral reactivation with pembrolizumab. Consistent with this, in a retrospective cohort study of 114 cancer patients with a history of hepatitis B who received ICIs, 5.3% developed reactivation of hepatitis B virus.⁷¹ All six patients had undetectable viral DNA at baseline and received PD-1/PD-L1 blockade. Absence of antiviral prophylaxis was the only significant risk factor (OR 17.50 1.95-157.07 p= 0.004). Notably, 12.7% were on concurrent corticosteroids, which were not a significant risk factor, suggesting ICI treatment may have been causative.⁷¹ Additionally, a systematic review of patients with hepatitis B or C revealed that, although ICIs were generally safe, 2.8% showed an increase viral load among 106 patients not on antiviral treatment.⁷³ Furthermore, Lee et al retrospectively reviewed records of 62 patients with hepatitis B related hepatocellular carcinoma. Of the six patients who did not receive antiviral treatment, one developed reactivation of hepatitis B after being treated with nivolumab, while none of the patients who received antiviral therapy developed reactivation of hepatitis B suggesting this may prevent reactivation with ICI.74 Notably, viral titres do not appear to be monitored routinely in all centres. One review identified that only six out of 35 patients with hepatitis B/C infection had pre and post treatment viral titres available and did not identify any

reactivation, though it is unclear if these patients were on antiviral therapy.⁷⁵ Another retrospective analysis of nineteen patients with a history of hepatitis B/C revealed only seven patients had viral titre measurement after starting ICI treatment.⁷⁶

Whilst Hepatitis B after ICI treatment can be associated with immunosuppression states,⁶⁹ there is emerging evidence that excess inflammation can also promote viral replication. Immunological assays of chronic hepatitis B virus infected patients have associated high concentrations of PD-1 expressing cytotoxic T lymphocytes with a reduction in acute flares of hepatitis B, while lower number of PD-1 expressing lymphocytes had a higher number of acute flares.⁷⁷ Furthermore, PD-1 expressing lymphocytes were also shown to be functional and secrete interferon- γ , challenging an assumption that these cells are "exhausted".⁷⁷ Excess cytokine release by blocking PD-1/PD-L1 may result in destruction of hepatocytes, allowing escape of infectious, previously latent virus.⁷⁸

Thus, PD-1 expressing lymphocytes appear to assist with viral control, while blockade of PD-1/PD-L1 signalling and the resulting hyper-inflammatory state may disrupt balanced immune control established in latent hepatitis B infection and promote viral growth. Whilst immunotherapy may be used safely in chronic hepatitis B infection, there is a subset of patients who may develop viral reactivation. Hence appropriate screening and monitoring of hepatitis virus status is vital.

Human Herpesviridae: cytomegalovirus, varicella zoster virus, Epstein-Barr virus

Cytomegalovirus (CMV), Epstein-Barr virus (EBV) and Varicella-zoster virus (VZV) are herpesviruses that establish a state of chronic latent infection in most humans by adulthood.⁷⁹ Whilst there are a number of reports of CMV following immunosuppression^{33 80 81}, reactivation of CMV^{82 83}, EBV⁸⁴ and VZV^{85 86} in the absence of immunosuppression has also been reported, with features mimicking irAEs.⁸⁷ In fact, some evidence suggests CMV may actually be an underlying trigger for severe irAEs, as CMV is found disproportionately among severe ICI-associated pneumonitis and colitis.^{88 89} A retrospective cohort study analysing checkpoint inhibitor pneumonitis (CIP) revealed that CMV pp65 positivity rate in severe CIP patients was much higher than that in patients without or with mild ICI-

pneumonitis (91.7 vs 20%).⁸⁸ A cohort study by Franklin et al revealed that CMV reactivation was present in all treatment refractory cases through detection of CMV-DNA in biopsy or plasma, or CMV IgM. ⁸⁹

Whilst immunosuppression could be the causative factor in some reported cases, the hyper-inflammatory state can promote viral pathology. For example in inflammatory bowel disease, colonic inflammation can impair natural killer cell function, and this along with a damaged mucosa from immunopathology can promote viral reactivation. This suggests a potential role for dysregulated inflammation in a subset of ICI-associated CMV infection. ICIs may boost virus-specific T cell specific activity, and then inflammation driven by IL-6 and IL-17 may enhance viral persistence by protecting virus-infected cells from apoptosis through expression of BcI-2 and BcI-xL⁹² 3. Additionally, in macaques CTLA-4/PD-1 blockade can cause reactivation of SIV. Overall, these reports argue for a low threshold for investigating for herpesvirus infection before starting immunosuppression for potential irAEs.

Fungal infections

Whilst fungal infection can be a direct consequence of immunosuppression, an emerging number of cases of progressive fungal infection exacerbated by immunotherapy in the absence of immunosuppression are being reported, such as aspergillosis (Figure 4). ⁹⁵ Dysregulated immunity appears to play a role, indicated by dramatic worsening of chronic progressive pulmonary aspergillosis and fulminant deterioration of nasal fungal sinusitis post immunotherapy. Again, clinical presentation can mimic cancer progression, with pulmonary cavitation ⁹⁵ ⁹⁶, erosive skull base lesions with bilateral cavernous sinus involvement ⁹⁷ and new pulmonary nodules with pleural effusion, ⁹⁸ ⁹⁸ and so cases may well be under-reported. In these situations, immune checkpoint blockade may cause an exaggerated immune response to fungal colonisation, which could promote fungal growth similar to recent studies in Mtb infection. ⁶⁴

Clostridium difficile

Babacan et al reported 5 cases of *Clostridium difficile* infection (CDI) and irAE colitis, and interestingly 4 of the cases did not have prior exposure to antibiotics and the other case did not have any immunosuppressive treatment.⁹⁹ Additionally, CDI preceding irAE colitis has been reported.^{100 101} Inflammatory bowel disease can present with CDI, even in the absence of immunosuppression, ¹⁰² suggesting that excessive inflammation can favour CDI. Given similar pathophysiology in IBD and irAE colitis,¹⁰³ there may be a subset of patients that develop CDI because of the acquired hyper-inflammatory state. Evolving evidence demonstrates that ICIs can alter the gut microbiota, and CDI may be a manifestation of this.¹⁰⁴

Severe acute respiratory syndrome coronavirus 2 (SARS-Co-V-2)

In addition to reactivating chronic infections, ICI therapy may worsen acute infections associated with immune asynchrony such as SARS-CoV-2. Cancer patients may have higher risks of severe complications outcomes with SARS-CoV-2 infection regardless of ICI therapy. ¹⁰⁵ Interestingly, cancer patients may also have a poor vaccine response, with reduced immunogenicity post a single dose of vaccine. ¹⁰⁶ Furthermore, patients with haematological malignancies in particular are at risk of reduced seroconversion, prolonged viral shedding, and sustained immune dysregulation following SARS-CoV-2 infection. ¹⁰⁷ These factors make analysis challenging. However, some reports describe rapidly progressive SARS-Co-V-2 following ICIs. ¹⁰⁸ ¹⁰⁹ In a retrospective analysis of 423 cases of cancer patients diagnosed with SARS-CoV-2, ICI use was an independent risk factor for hospitalisation (univariate analysis odds ratio 2.53, 1.18-5.67, p=0.017, multivariate analysis odds ratio 2.84, 1.24-6.72, p= 0.013) and requirement for high flow oxygen support or mechanical ventilation (univariate analysis hazard ratio 2.38, 1.29-4.38, p= 0.004). ¹¹⁰ The risk was different in lung cancer compared to other solid cancers. For lung cancer, 12/23 (52%) patients not on ICIs were hospitalised, 35% developed severe respiratory illness, compared to 10/12 (83%) of lung cancer patients on ICIs, of whom 58% developed severe

respiratory illness. Interestingly only one of 31 ICI-treated patients received corticosteroid therapy prior to SARS-Co-V-2 diagnosis. In contrast, systemic chemotherapy within 30 days was not a risk factor for hospitalisation or severity of illness in this study. 110 Another Italian cohort study identified that ICI as well as chemotherapy increased the risk of hospitalisation and death due to SARS-Co-V-2.111 Therefore, these series support an adverse interaction between ICIs and SARS-CoV-2 infection, although other studies have not replicated these findings. 112-115 Additionally, it has been suggested lung injury induced by SARS Co-V-2 may increase the risk of subsequent irAE pneumonitis. 116 In terms of the underlying mechanism, ICI induced immune asynchrony is a potential explanation for more severe COVID-19 infection. Patients with SARS-Co-V-2 infection who are admitted to ICU have higher plasma concentrations of IL-2, IL-6, IL-7, IL-10 and TNF-α and severe SARS-CoV-2 is associated with a cytokine storm. 117-119 Of note, high concentrations of inflammatory cytokines have predictive potential in irAEs and can also correlate with irAE severity in PD-1 immunotherapy. 120 Additionally, cytokine release syndrome is a rare complication of PD-1 immunotherapy. 121 Taken together, ICIs could promote a cytokine storm in SARS-CoV-2 via immune dysregulation, increasing the risk of a harmfully excessive response to the pathogen. Recent observations such as the potential benefits of Tocilizumab, an anti IL-6 agent¹²², supports the hypothesis that severe COVID-19 infection is exacerbated by an asynchronous, dysregulated immune state. Clinically it is important to distinguish between SARS-Co-V-2infection and irAE pneumonitis in patients on ICIs. 123

Conclusion

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

ICIs are transformative drugs that improve survival in many forms of cancer, but a common side effect of immunotherapy is immune related adverse events. These irAEs are treated with immunosuppression, which can cause opportunistic infection. However, an emerging paradigm is that ICIs can also lead to a new pattern of infections resulting from dysregulated immunity, which we term Immunotherapy Infections due to Dysregulated Immunity (ITI-DI). Immune checkpoint activity may be necessary for the establishment of latent infection and a stable symbiosis between

pathogen and host, and so neutralising these with ICIs may in fact increase infection-related immunopathology (Figure 5). 124 Screening for chronic infection such as latent TB and hepatitis should be considered before starting ICI therapy, and infection reactivation should be considered within the differential diagnosis even in the absence of immunosuppression.

References

358	1. Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV.
359	Practical applications. Br Med J 1957;1(5023):841-7. doi: 10.1136/bmj.1.5023.841 [published
360	Online First: 1957/04/13]
361	2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. <i>Cell</i> 2011;144(5):646-74. doi:
362	10.1016/j.cell.2011.02.013 [published Online First: 2011/03/08]
363	3. Huang P-W, Chang JW-C. Immune checkpoint inhibitors win the 2018 Nobel Prize. Biomedical
364	Journal 2019;42(5):299-306. doi: https://doi.org/10.1016/j.bj.2019.09.002
365	4. Ramos-Casals M, Brahmer JR, Callahan MK, et al. Immune-related adverse events of checkpoint
366	inhibitors. Nature Reviews Disease Primers 2020;6(1):38. doi: 10.1038/s41572-020-0160-6
367	5. Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors:
368	epidemiology, management and surveillance. Nat Rev Clin Oncol 2019;16(9):563-80. doi:
369	10.1038/s41571-019-0218-0 [published Online First: 2019/05/17]
370	6. Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune
371	checkpoint blockade: a comprehensive review. European Journal of Cancer 2016;54:139-48.
372	doi: https://doi.org/10.1016/j.ejca.2015.11.016
373	7. Xu C, Chen Y-P, Du X-J, et al. Comparative safety of immune checkpoint inhibitors in cancer:
374	systematic review and network meta-analysis. BMJ 2018;363:k4226. doi: 10.1136/bmj.k4226
375	8. Kanjanapan Y, Day D, Butler MO, et al. Delayed immune-related adverse events in assessment for
376	dose-limiting toxicity in early phase immunotherapy trials. Eur J Cancer 2019;107:1-7. doi:
377	10.1016/j.ejca.2018.10.017 [published Online First: 2018/12/12]
378	9. Chang HL, Wei PJ, Wu KL, et al. Checkpoint inhibitor pneumonitis mimicking COVID-19 infection
379	during the COVID-19 pandemic. Lung Cancer 2020;146:376-77.
380	10. Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and
381	anti-cancer immunity. <i>Nature</i> 2019;565(7741):600-05. doi: 10.1038/s41586-019-0878-z

382	11. Lo B, Fritz JM, Su HC, et al. CHAI and LATAIE: new genetic diseases of CTLA-4 checkpoint
383	insufficiency. Blood 2016;128(8):1037-42. doi: 10.1182/blood-2016-04-712612 [published
384	Online First: 2016/07/14]
385	12. Gámez-Díaz L, August D, Stepensky P, et al. The extended phenotype of LPS-responsive beige-like
386	anchor protein (LRBA) deficiency. Journal of Allergy and Clinical Immunology
387	2016;137(1):223-30. doi: https://doi.org/10.1016/j.jaci.2015.09.025
388	13. Thye T, Scarisbrick G, Browne EN, et al. CTLA4 autoimmunity-associated genotype contributes to
389	severe pulmonary tuberculosis in an African population. PLoS One 2009;4(7):e6307. doi:
390	10.1371/journal.pone.0006307 [published Online First: 2009/07/18]
391	14. Barber DL, Mayer-Barber KD, Feng CG, et al. CD4 T cells promote rather than control tuberculosis
392	in the absence of PD-1-mediated inhibition. J Immunol 2011;186(3):1598-607. doi:
393	10.4049/jimmunol.1003304
394	15. Lazar-Molnar E, Chen B, Sweeney KA, et al. Programmed death-1 (PD-1)-deficient mice are
395	extraordinarily sensitive to tuberculosis. Proc Natl Acad Sci U S A 2010;107(30):13402-7. doi:
396	10.1073/pnas.1007394107
397	16. Redelman-Sidi G, Michielin O, Cervera C, et al. ESCMID Study Group for Infections in
398	Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological
399	therapies: an infectious diseases perspective (Immune checkpoint inhibitors, cell adhesion
400	inhibitors, sphingosine-1-phosphate receptor modulators and proteasome inhibitors). Clin
401	Microbiol Infect 2018;24 Suppl 2(Suppl 2):S95-S107. doi: 10.1016/j.cmi.2018.01.030
402	[published Online First: 2018/02/07]
403	17. Fujiwara Y, Kuchiba A, Koyama T, et al. Infection risk with PI3K-AKT-mTOR pathway inhibitors and
404	immune checkpoint inhibitors in patients with advanced solid tumours in phase i clinical
405	trials. <i>ESMO Open</i> 2020;5(2)
406	18. Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-
407	positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial.

408	Lancet 2016;387(10027):1540-50. doi: 10.1016/s0140-6736(15)01281-7 [published Online
409	First: 2015/12/30]
410	19. Rizvi NA, Mazières J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune
411	checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung
412	cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 2015;16(3):257-65. doi:
413	10.1016/s1470-2045(15)70054-9 [published Online First: 2015/02/24]
414	20. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF
415	mutation. N Engl J Med 2015;372(4):320-30. doi: 10.1056/NEJMoa1412082 [published
416	Online First: 2014/11/18]
417	21. Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced
418	and metastatic urothelial carcinoma who have progressed following treatment with
419	platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet
420	2016;387(10031):1909-20. doi: 10.1016/s0140-6736(16)00561-4 [published Online First:
421	2016/03/10]
422	22. Chou R, Helfand M. Challenges in Systematic Reviews That Assess Treatment Harms. <i>Annals of</i>
423	Internal Medicine 2005;142(12_Part_2):1090-99. doi: 10.7326/0003-4819-142-12_Part_2-
424	200506211-00009
425	23. Anand K, Ensor J, Trachtenberg B, et al. Osimertinib-Induced Cardiotoxicity. <i>JACC:</i>
426	CardioOncology 2019;1(2):172-78. doi: doi:10.1016/j.jaccao.2019.10.006
427	24. Del Castillo M, Romero FA, Argüello E, et al. The Spectrum of Serious Infections Among Patients
428	Receiving Immune Checkpoint Blockade for the Treatment of Melanoma. Clin Infect Dis
429	2016;63(11):1490-93. doi: 10.1093/cid/ciw539 [published Online First: 2016/08/07]
430	25. Malek AE, Taremi M, Spallone A, et al. Necrotizing soft tissue invasive aspergillosis in a cancer
431	patient treated with immunosupressants due to checkpoint inhibitor-induced hepatitis. J
432	Infect 2020;80(2):232-54. doi: 10.1016/j.jinf.2019.10.022 [published Online First:
433	2019/11/11]

434	26. Gupta A, Tun A, Ticona K, et al. Invasive aspergillosis in a patient with stage III (or 3a or 3b) non-
435	small-cell lung cancer treated with durvalumab. Case Reports in Oncological Medicine
436	2019;2019 (no pagination)
437	27. Kyi C, Hellmann MD, Wolchok JD, et al. Opportunistic infections in patients treated with
438	immunotherapy for cancer. Journal for immunotherapy of cancer 2014;2:19-19. doi:
439	10.1186/2051-1426-2-19
440	28. Taima K, Tanaka H, Itoga M, et al. Destroyed lung due to sustained inflammation after
441	chemoradiotherapy followed by durvalumab. Respirol Case Rep 2020;8(5):e00580-e80. doi:
442	10.1002/rcr2.580
443	29. Arriola E, Wheater M, Krishnan R, et al. Immunosuppression for ipilimumab-related toxicity can
444	cause pneumocystis pneumonia but spare antitumor immune control. Oncolmmunology
445	2015;4(10):e1040218. doi: 10.1080/2162402X.2015.1040218
446	30. Schwarz M, Kocher F, Niedersuess-Beke D, et al. Immunosuppression for Immune Checkpoint-
447	related Toxicity Can Cause Pneumocystis Jirovecii Pneumonia (PJP) in Non-small-cell Lung
448	Cancer (NSCLC): A Report of 2 Cases. Clinical Lung Cancer 2019;20(3):e247-e50.
449	31. Liu Z, Liu T, Zhang X, et al. Opportunistic infections complicating immunotherapy for non-small
450	cell lung cancer. Thoracic Cancer 2020;11(6):1689-94.
451	32. Martinot M, Ahle G, Petrosyan I, et al. Progressive Multifocal Leukoencephalopathy after
452	Treatment with Nivolumab. Emerg Infect Dis 2018;24(8):1594-96. doi:
453	10.3201/eid2408.180460
454	33. Furuta Y, Miyamoto H, Naoe H, et al. Cytomegalovirus enterocolitis in a patient with refractory
455	immune-related colitis. Case Reports in Gastroenterology 2020;14(1):103-09.
456	34. Lee KA, Shaw H, Bataille V, et al. Campylobacteriosis following immunosuppression for immune
457	checkpoint inhibitor-related toxicity. Journal for immunotherapy of cancer
458	2020;8(2):e000577. doi: 10.1136/jitc-2020-000577

459	35. Yang L, Li A, Lei Q, et al. Tumor-intrinsic signaling pathways: key roles in the regulation of the
460	immunosuppressive tumor microenvironment. Journal of hematology & oncology
461	2019;12(1):125-25. doi: 10.1186/s13045-019-0804-8
462	36. Leung JM, Tiew PY, Mac Aogáin M, et al. The role of acute and chronic respiratory colonization
463	and infections in the pathogenesis of COPD. Respirology (Carlton, Vic) 2017;22(4):634-50.
464	doi: 10.1111/resp.13032 [published Online First: 2017/03/25]
465	37. Fujita K, Kim YH, Kanai O, et al. Emerging concerns of infectious diseases in lung cancer patients
466	receiving immune checkpoint inhibitor therapy. Respir Med 2019;146:66-70. doi:
467	10.1016/j.rmed.2018.11.021 [published Online First: 2019/01/23]
468	38. Kanjanapan Y, Yip D. Characteristics and risk factors for microbial infections during cancer
469	immune checkpoint therapy. Cancer Med 2020 doi: 10.1002/cam4.3532 [published Online
470	First: 2020/11/08]
471	39. Karam JD, Noel N, Voisin AL, et al. Infectious complications in patients treated with immune
472	checkpoint inhibitors. Eur J Cancer 2020;141:137-42. doi: 10.1016/j.ejca.2020.09.025
473	[published Online First: 2020/11/03]
474	40. Lee JJX, Chan A, Tang T. Tuberculosis reactivation in a patient receiving anti-programmed death-1
475	(PD-1) inhibitor for relapsed Hodgkin's lymphoma. Acta Oncologica 2016;55(4):519-20. doi:
476	10.3109/0284186X.2015.1125017
477	41. Fujita K, Terashima T, Mio T. Anti-PD1 Antibody Treatment and the Development of Acute
478	Pulmonary Tuberculosis. J Thorac Oncol 2016;11(12):2238-40. doi:
479	https://dx.doi.org/10.1016/j.jtho.2016.07.006
480	42. Chu YC, Fang KC, Chen HC, et al. Pericardial Tamponade Caused by a Hypersensitivity Response
481	to Tuberculosis Reactivation after Anti-PD-1 Treatment in a Patient with Advanced
482	Pulmonary Adenocarcinoma. J Thorac Oncol 2017;12(8):e111-e14. doi:
483	10.1016/j.jtho.2017.03.012

484	43. Picchi H, Mateus C, Chouaid C, et al. Infectious complications associated with the use of immune
485	checkpoint inhibitors in oncology: reactivation of tuberculosis after anti PD-1 treatment.
486	Clinical Microbiology and Infection 2018;24(3):216-18. doi:
487	https://doi.org/10.1016/j.cmi.2017.12.003
488	44. He W, Zhang X, Li W, et al. Activated pulmonary tuberculosis in a patient with melanoma during
489	PD-1 inhibition: a case report. Onco Targets Ther 2018;11:7423-27. doi:
490	10.2147/OTT.S178246 [published Online First: 2018/11/15]
491	45. Jensen KH, Persson G, Bondgaard AL, et al. Development of pulmonary tuberculosis following
492	treatment with anti-PD-1 for non-small cell lung cancer. Acta Oncol 2018;57(8):1127-28. doi:
493	10.1080/0284186x.2018.1433877 [published Online First: 2018/02/01]
494	46. Elkington PT, Bateman AC, Thomas GJ, et al. Implications of Tuberculosis Reactivation after
495	Immune Checkpoint Inhibition. American Journal of Respiratory and Critical Care Medicine
496	2018;198(11):1451-53. doi: 10.1164/rccm.201807-1250LE
497	47. Tetikkurt S, Taş F, Emre F, et al. Significant Neutrophilic Emperipolesis in Squamous Cell
498	Carcinoma. Case Reports in Oncological Medicine 2018;2018:1301562. doi:
499	10.1155/2018/1301562
500	48. van Eeden R, Rapoport BL, Smit T, et al. Tuberculosis Infection in a Patient Treated With
501	Nivolumab for Non-small Cell Lung Cancer: Case Report and Literature Review. Frontiers in
502	Oncology 2019;9 (no pagination)
503	49. Barber DL, Sakai S, Kudchadkar RR, et al. Tuberculosis following PD-1 blockade for cancer
504	immunotherapy. Sci Transl Med 2019;11(475) doi: 10.1126/scitranslmed.aat2702 [published
505	Online First: 2019/01/18]
506	50. Takata S, Koh G, Han Y, et al. Paradoxical response in a patient with non-small cell lung cancer
507	who received nivolumab followed by anti-Mycobacterium tuberculosis agents. J Infect
508	Chemother 2019;25(1):54-58. doi: 10.1016/j.jiac.2018.06.016 [published Online First:
509	2018/07/30]

510	51. Crawley D, Breen RA, Elkington PT, et al. Tuberculosis associated with Triplet therapy for lung
511	cancer. Thorax 2020;75(7):609-10. doi: 10.1136/thoraxjnl-2019-213913 [published Online
512	First: 2020/05/16]
513	52. Murakami S, Usui R, Nakahara Y, et al. Readministration of Pembrolizumab after Treatment of
514	Tuberculosis Activated by Initial Pembrolizumab Therapy. Intern Med 2020 doi:
515	10.2169/internalmedicine.6002-20 [published Online First: 2021/01/05]
516	53. Suliman AM, Bek SA, Elkhatim MS, et al. Tuberculosis following programmed cell death receptor-
517	1 (PD-1) inhibitor in a patient with non-small cell lung cancer. Case report and literature
518	review. Cancer Immunol Immunother 2020 doi: 10.1007/s00262-020-02726-1 [published
519	Online First: 2020/10/19]
520	54. Sirgiovanni M, Hinterleitner C, Horger M, et al. Long-term remission of small cell lung cancer
521	after reactivation of tuberculosis following immune-checkpoint blockade: A case report.
522	Thorac Cancer 2021;12(5):699-702. doi: 10.1111/1759-7714.13821 [published Online First:
523	2021/01/19]
524	55. Reungwetwattana T, Adjei AA. Anti-PD-1 Antibody Treatment and the Development of Acute
525	Pulmonary Tuberculosis. J Thorac Oncol 2016;11(12):2048-50. doi:
526	10.1016/j.jtho.2016.10.008 [published Online First: 2016/11/22]
527	56. Anand K, Sahu G, Burns E, et al. Mycobacterial infections due to PD-1 and PD-L1 checkpoint
528	inhibitors. ESMO Open 2020;5(4) doi: 10.1136/esmoopen-2020-000866 [published Online
529	First: 2020/08/21]
530	57. Fujita K, Yamamoto Y, Kanai O, et al. Incidence of Active Tuberculosis in Lung Cancer Patients
531	Receiving Immune Checkpoint Inhibitors. Open Forum Infect Dis 2020;7(5):ofaa126. doi:
532	10.1093/ofid/ofaa126 [published Online First: 2020/05/12]
533	58. Alhashimi MM, Citron ML, Fossieck BE, Jr., et al. Lung cancer, tuberculin reactivity, and isoniazid.
534	South Med J 1988;81(3):337-40. doi: 10.1097/00007611-198803000-00013 [published
535	Online First: 1988/03/01]

536	59. Im Y, Lee J, Kim SJ, et al. Development of tuberculosis in cancer patients receiving immune
537	checkpoint inhibitors. Respir Med 2020;161:105853. doi: 10.1016/j.rmed.2019.105853
538	[published Online First: 2020/02/15]
539	60. Chan GH, Gwee YX, Low JL, et al. Immune checkpoint inhibition for non-small cell lung cancer in
540	patients with pulmonary tuberculosis or Hepatitis B: Experience from a single Asian centre.
541	Lung Cancer 2020;146:145-53.
542	61. Fuentes F, Al-ahwel Y. Emerging Side Effects of Programmed Cell Death 1 Ligand Inhibitors: MAC
543	Infection and Nivolumab. Chest 2017;152(4, Supplement):A678. doi:
544	https://doi.org/10.1016/j.chest.2017.08.708
545	62. Fujita K, Yamamoto Y, Kanai O, et al. Development of mycobacterium avium complex lung
546	disease in patients with lung cancer on immune checkpoint inhibitors. Open Forum
547	Infectious Diseases 2020;7(3)
548	63. Tezera LB, Bielecka MK, Ogongo P, et al. Anti-PD-1 immunotherapy leads to tuberculosis
549	reactivation via dysregulation of TNF- α . Elife 2020;9:e52668. doi: 10.7554/eLife.52668
550	64. Kauffman KD, Sakai S, Lora NE, et al. PD-1 blockade exacerbates Mycobacterium tuberculosis
551	infection in rhesus macaques. Sci Immunol 2021;6(55) doi: 10.1126/sciimmunol.abf3861
552	[published Online First: 2021/01/17]
553	65. Champiat S, Lambotte O, Barreau E, et al. Management of immune checkpoint blockade
554	dysimmune toxicities: a collaborative position paper. Ann Oncol 2016;27(4):559-74. doi:
555	10.1093/annonc/mdv623 [published Online First: 2015/12/31]
556	66. Langan EA, Graetz V, Allerheiligen J, et al. Immune checkpoint inhibitors and tuberculosis: an old
557	disease in a new context. The Lancet Oncology 2020;21(1):e55-e65.
558	67. Koksal AS, Toka B, Eminler AT, et al. HBV-related acute hepatitis due to immune checkpoint
559	inhibitors in a patient with malignant melanoma. Ann Oncol 2017;28(12):3103-04. doi:
560	10.1093/annonc/mdx502 [published Online First: 2017/09/26]

561	68. Ragunathan K, Dadana S, Huang C-H. Hepatitis B Reactivation After Administration of
562	Pembrolizumab (KEYTRUDA): A Unique Case Report: 2145. Official journal of the American
563	College of Gastroenterology ACG 2017;112
564	69. Lake AC. Hepatitis B reactivation in a long-term nonprogressor due to nivolumab therapy. Aids
565	2017;31(15):2115-18. doi: 10.1097/qad.00000000001599 [published Online First:
566	2017/09/15]
567	70. Pandey A, Ezemenari S, Liaukovich M, et al. A Rare Case of Pembrolizumab-Induced Reactivation
568	of Hepatitis B. Case reports in oncological medicine 2018;2018:5985131-31. doi:
569	10.1155/2018/5985131
570	71. Zhang X, Zhou Y, Chen C, et al. Hepatitis B virus reactivation in cancer patients with positive
571	Hepatitis B surface antigen undergoing PD-1 inhibition. Journal for immunotherapy of cance
572	2019;7(1):322-22. doi: 10.1186/s40425-019-0808-5
573	72. Burns EA, Muhsen IN, Anand K, et al. Hepatitis B Virus Reactivation in Cancer Patients Treated
574	With Immune Checkpoint Inhibitors. J Immunother 2021 doi:
575	10.1097/cji.00000000000358 [published Online First: 2021/01/23]
576	73. Pu D, Yin L, Zhou Y, et al. Safety and efficacy of immune checkpoint inhibitors in patients with
577	HBV/HCV infection and advanced-stage cancer: A systematic review. Medicine (Baltimore)
578	2020;99(5):e19013-e13. doi: 10.1097/MD.00000000019013
579	74. Lee P-C, Chao Y, Chen M-H, et al. Risk of HBV reactivation in patients with immune checkpoint
580	inhibitor-treated unresectable hepatocellular carcinoma. Journal for immunotherapy of
581	cancer 2020;8(2):e001072. doi: 10.1136/jitc-2020-001072
582	75. Shah NJ, Al-Shbool G, Blackburn M, et al. Safety and efficacy of immune checkpoint inhibitors
583	(ICIs) in cancer patients with HIV, hepatitis B, or hepatitis C viral infection. J Immunother
584	Cancer 2019;7(1)

585	76. Pertejo-Fernandez A, Ricciuti B, Hammond SP, et al. Safety and efficacy of immune checkpoint
586	inhibitors in patients with non-small cell lung cancer and hepatitis B or hepatitis C infection.
587	Lung Cancer 2020;145:181-85.
588	77. Rivino L, Le Bert N, Gill US, et al. Hepatitis B virus-specific T cells associate with viral control upon
589	nucleos(t)ide-analogue therapy discontinuation. J Clin Invest 2018;128(2):668-81. doi:
590	10.1172/jci92812 [published Online First: 2018/01/09]
591	78. Knolle PA, Thimme R. Hepatic immune regulation and its involvement in viral hepatitis infection.
592	Gastroenterology 2014;146(5):1193-207. doi: 10.1053/j.gastro.2013.12.036 [published
593	Online First: 2014/01/15]
594	79. Pembrey L, Waiblinger D, Griffiths P, et al. Cytomegalovirus, Epstein-Barr virus and varicella
595	zoster virus infection in the first two years of life: a cohort study in Bradford, UK. BMC Infect
596	Dis 2017;17(1):220. doi: 10.1186/s12879-017-2319-7 [published Online First: 2017/03/23]
597	80. Gueguen J, Bailly E, Machet L, et al. CMV disease and colitis in a kidney transplanted patient
598	under pembrolizumab. European Journal of Cancer 2019;109:172-74. doi:
599	https://doi.org/10.1016/j.ejca.2018.12.027
600	81. Uslu U, Agaimy A, Hundorfean G, et al. Autoimmune colitis and subsequent CMV-induced
601	hepatitis after treatment with ipilimumab. Journal of Immunotherapy 2015;38(5):212-15.
602	82. Kim H, Ha SY, Kim J, et al. Severe cytomegalovirus gastritis after pembrolizumab in a patient with
603	melanoma. Curr Oncol 2020;27(4):e436-e39. doi: 10.3747/co.27.6163 [published Online
604	First: 2020/09/10]
605	83. Lu J, Firpi-Morell RJ, Dang LH, et al. An Unusual Case of Gastritis in One Patient Receiving PD-1
606	Blocking Therapy: Coexisting Immune-Related Gastritis and Cytomegaloviral Infection.
607	Gastroenterology Res 2018;11(5):383-87. doi: 10.14740/gr1068w [published Online First:
608	2018/10/01]

609	84. Saikawa H, Nagashima H, Maeda T, et al. Acute cerebellar ataxia due to Epstein-Barr virus under
610	administration of an immune checkpoint inhibitor. BMJ Case Reports 2019;12(12):30. doi:
611	https://dx.doi.org/10.1136/bcr-2019-231520
612	85. Sakoh T, Kanzaki M, Miyamoto A, et al. Ramsay-Hunt syndrome and subsequent sensory
613	neuropathy as potential immune-related adverse events of nivolumab: a case report. BMC
614	Cancer 2019;19(1):1220-20. doi: 10.1186/s12885-019-6444-0
615	86. Assi T, Danu A, Mateus C, et al. Post-shingles granulomatous dermatosis related to anti-
616	programmed cell death 1. <i>Immunotherapy</i> 2019;11(7):591-98. doi: 10.2217/imt-2018-0169
617	[published Online First: 2019/04/05]
618	87. Lankes K, Hundorfean G, Harrer T, et al. Anti-TNF-refractory colitis after checkpoint inhibitor
619	therapy: Possible role of CMV-mediated immunopathogenesis. Oncolmmunology 2016;5(6)
620	88. Lin X, Lu T, Li S, et al. Cytomegalovirus infection as an underestimated trigger for checkpoint
621	inhibitor-related pneumonitis in lung cancer: a retrospective study. Clinical and Translationa
622	Oncology 2020
623	89. Franklin C, Rooms I, Fiedler M, et al. Cytomegalovirus reactivation in patients with refractory
624	checkpoint inhibitor-induced colitis. European Journal of Cancer 2017;86:248-56.
625	90. Lawlor G, Moss AC. Cytomegalovirus in inflammatory bowel disease: pathogen or innocent
626	bystander? Inflammatory bowel diseases 2010;16(9):1620-27.
627	91. Johnson DB, McDonnell WJ, Gonzalez-Ericsson PI, et al. A case report of clonal EBV-like memory
628	CD4 ⁺ T cell activation in fatal checkpoint inhibitor-induced encephalitis. Nature
629	Medicine 2019;25(8):1243-50.
630	92. Davis BK, Wen H, Ting JPY. The inflammasome NLRs in immunity, inflammation, and associated
631	diseases. Annual review of immunology 2011;29:707-35. doi: 10.1146/annurev-immunol-
632	031210-101405

633	93. Hou W, Jin Y-H, Kang HS, et al. Interleukin-6 (IL-6) and IL-17 synergistically promote viral
634	persistence by inhibiting cellular apoptosis and cytotoxic T cell function. Journal of virology
635	2014;88(15):8479-89. doi: 10.1128/JVI.00724-14 [published Online First: 2014/05/14]
636	94. Harper J, Gordon S, Chan CN, et al. CTLA-4 and PD-1 dual blockade induces SIV reactivation
637	without control of rebound after antiretroviral therapy interruption. Nat Med
638	2020;26(4):519-28. doi: 10.1038/s41591-020-0782-y [published Online First: 2020/04/15]
639	95. Inthasot V, Bruyneel M, Muylle I, et al. Severe pulmonary infections complicating nivolumab
640	treatment for lung cancer: a report of two cases. Acta Clin Belg 2020;75(4):308-10. doi:
641	10.1080/17843286.2019.1629078 [published Online First: 2019/06/11]
642	96. Uchida N, Fujita K, Nakatani K, et al. Acute progression of aspergillosis in a patient with lung
643	cancer receiving nivolumab. Respirol Case Rep 2017;6(2):e00289-e89. doi: 10.1002/rcr2.289
644	97. Krane NA, Beswick DM, Sauer D, et al. Allergic Fungal Sinusitis Imitating an Aggressive Skull Base
645	Lesion in the Setting of Pembrolizumab Immunotherapy. Ann Otol Rhinol Laryngol
646	2020:3489420937728. doi: 10.1177/0003489420937728 [published Online First:
647	2020/07/01]
648	98. Ferguson I, Heberton M, Compton L, et al. Disseminated blastomycosis in a patient on
649	pembrolizumab for metastatic melanoma. JAAD Case Rep 2019;5(7):580-81. doi:
650	10.1016/j.jdcr.2019.05.001
651	99. Babacan NA, Tanvetyanon T. Superimposed Clostridium difficile Infection during Checkpoint
652	Inhibitor Immunotherapy-induced Colitis. Journal of Immunotherapy 2019;42(9):350-53.
653	100. Zhou C, Klionsky Y, Treasure ME, et al. Pembrolizumab-Induced Immune-Mediated Colitis in a
654	Patient with Concurrent Clostridium Difficile Infection. Case Reports in Oncology
655	2019;12(1):164-70.
656	101. Gupta A, Khanna S. Ipilimumab-associated colitis or refractory Clostridium difficile infection?
657	BMJ Case Rep 2015;2015 doi: 10.1136/bcr-2015-211160 [published Online First:
658	2015/07/15]

659	102. Singh H, Nugent Z, Yu BN, et al. Higher Incidence of Clostridium difficile Infection Among				
660	Individuals With Inflammatory Bowel Disease. Gastroenterology 2017;153(2):430-38.e2. doi:				
661	10.1053/j.gastro.2017.04.044 [published Online First: 2017/05/10]				
662	103. Lo YC, Price C, Blenman K, et al. Checkpoint Inhibitor Colitis Shows Drug-Specific Differences in				
663	Immune Cell Reaction That Overlap With Inflammatory Bowel Disease and Predict Response				
664	to Colitis Therapy. Am J Clin Pathol 2021 doi: 10.1093/ajcp/aqaa217 [published Online First:				
665	2021/02/09]				
666	104. Abu-Sbeih H, Wang Y. Gut Microbiome and Immune Checkpoint Inhibitor-Induced Enterocolitis.				
667	Dig Dis Sci 2020;65(3):797-99. doi: 10.1007/s10620-020-06103-x [published Online First:				
668	2020/02/11]				
669	105. Dai M, Liu D, Liu M, et al. Patients with Cancer Appear More Vulnerable to SARS-CoV-2: A				
670	Multicenter Study during the COVID-19 Outbreak. Cancer Discov 2020;10(6):783-91. doi:				
671	10.1158/2159-8290.Cd-20-0422 [published Online First: 2020/04/30]				
672	106. Palich R, Veyri M, Marot S, et al. Weak immunogenicity after a single dose of SARS-CoV-2 mRNA				
673	vaccine in treated cancer patients. Annals of oncology: official journal of the European				
674	Society for Medical Oncology 2021:S0923-7534(21)01184-4. doi:				
675	10.1016/j.annonc.2021.04.020				
676	107. Abdul-Jawad S, Baù L, Alaguthurai T, et al. Acute Immune Signatures and Their Legacies in				
677	Severe Acute Respiratory Syndrome Coronavirus-2 Infected Cancer Patients. Cancer Cell				
678	2021;39(2):257-75.e6. doi: 10.1016/j.ccell.2021.01.001 [published Online First: 2021/01/05]				
679	108. Bonomi L, Ghilardi L, Arnoldi E, et al. A Rapid Fatal Evolution of Coronavirus Disease-19 in a				
680	Patient With Advanced Lung Cancer With a Long-Time Response to Nivolumab. Journal of				
681	thoracic oncology : official publication of the International Association for the Study of Lung				
682	Cancer 2020;15(6):e83-e85. doi: 10.1016/j.jtho.2020.03.021 [published Online First:				
683	2020/03/31]				

684	109. Zhai M, Zhang S. A Nasopharyngeal Carcinoma Patient With COVID-19 Infection After					
685	Immunotherapy: A Case Report and Literature Review. In Vivo 2020;34(6):3753-56. doi:					
686	10.21873/invivo.12225 [published Online First: 2020/11/05]					
687	110. Robilotti EV, Babady NE, Mead PA, et al. Determinants of COVID-19 disease severity in patients					
688	with cancer. Nature Medicine 2020;26(8):1218-23. doi: 10.1038/s41591-020-0979-0					
689	111. Mandala M, Lorigan P, De Luca M, et al. SARS-CoV-2 infection and adverse events in patients					
690	with cancer receiving immune checkpoint inhibitors: an observational prospective study.					
691	Journal for immunotherapy of cancer 2021;9(2):e001694. doi: 10.1136/jitc-2020-001694					
692	2 112. Luo J, Rizvi H, Egger JV, et al. Impact of PD-1 Blockade on Severity of COVID-19 in Patients wit					
693	Lung Cancers. Cancer Discovery 2020;10(8):1121. doi: 10.1158/2159-8290.CD-20-0596					
694	113. Yekedüz E, Utkan G, Ürün Y. A systematic review and meta-analysis: the effect of active cance					
695	treatment on severity of COVID-19. Eur J Cancer 2020;141:92-104. doi:					
696	10.1016/j.ejca.2020.09.028 [published Online First: 2020/11/02]					
697	114. Pala L, Conforti F, Cocorocchio E, et al. Course of Sars-CoV2 Infection in Patients with Cancer					
698	Treated with anti-PD-1: A Case Presentation and Review of the Literature. Cancer Invest					
699	2021;39(1):9-14. doi: 10.1080/07357907.2020.1844893 [published Online First: 2020/10/31]					
700	115. Szabados B, Abu-Ghanem Y, Grant M, et al. Clinical Characteristics and Outcome for Four SARS-					
701	CoV-2-infected Cancer Patients Treated with Immune Checkpoint Inhibitors. European					
702	Urology 2020;78(2):276-80.					
703	116. Dipasquale A, Persico P, Lorenzi E, et al. COVID-19 lung injury as a primer for immune					
704	checkpoint inhibitors (ICIs)-related pneumonia in a patient affected by squamous head and					
705	neck carcinoma treated with PD-L1 blockade: a case report. J Immunother Cancer 2021;9(2)					
706	doi: 10.1136/jitc-2020-001870 [published Online First: 2021/02/13]					
707	117. Zhao D, Yao F, Wang L, et al. A Comparative Study on the Clinical Features of Coronavirus 2019					
708	(COVID-19) Pneumonia With Other Pneumonias. Clin Infect Dis 2020;71(15):756-61. doi:					
709	10.1093/cid/ciaa247 [published Online First: 2020/03/13]					

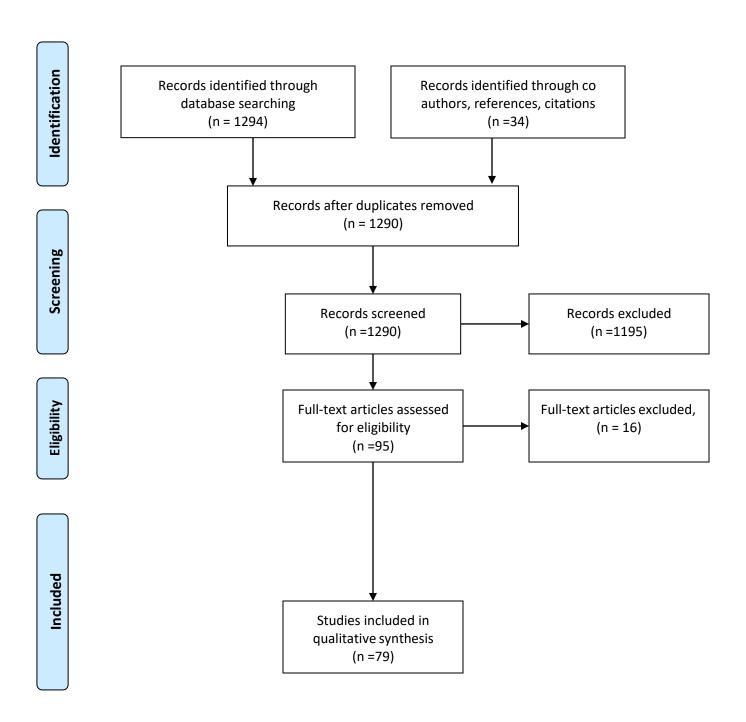
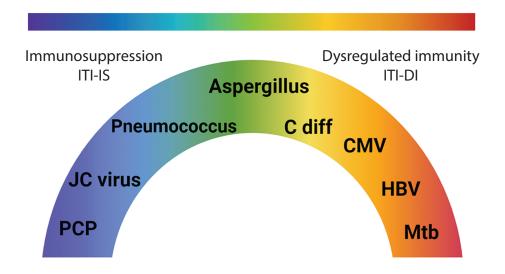
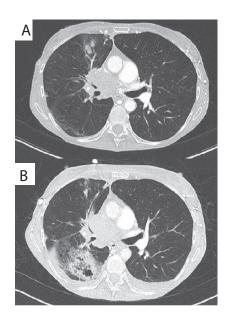
710	118. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in					
711	Wuhan, China. Lancet 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5					
712	[published Online First: 2020/01/24]					
713	119. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and					
714	immunosuppression. <i>Lancet</i> 2020;395(10229):1033-34. doi: 10.1016/s0140-6736(20)30628-					
715	0 [published Online First: 2020/03/21]					
716	120. Lim SY, Lee JH, Gide TN, et al. Circulating Cytokines Predict Immune-Related Toxicity in					
717	Melanoma Patients Receiving Anti-PD-1-Based Immunotherapy. Clin Cancer Res					
718	2019;25(5):1557-63. doi: 10.1158/1078-0432.Ccr-18-2795 [published Online First:					
719	2018/11/10]					
720	121. Rotz SJ, Leino D, Szabo S, et al. Severe cytokine release syndrome in a patient receiving PD-1-					
721	directed therapy. Pediatr Blood Cancer 2017;64(12) doi: 10.1002/pbc.26642 [published					
722	Online First: 2017/05/26]					
723	122. Antony SJ, Davis MA, Davis MG, et al. Early use of tocilizumab in the prevention of adult					
724	respiratory failure in SARS-CoV-2 infections and the utilization of interleukin-6 levels in the					
725	management. J Med Virol 2021;93(1):491-98. doi: 10.1002/jmv.26288 [published Online					
726	First: 2020/07/10]					
727	123. Dai Y, Liu S, Zhang Y, et al. A false alarm of COVID-19 pneumonia in lung cancer with anti-PD-1					
728	related pneumonitis: a case report and review of the literature. J Med Case Rep					
729	2021;15(1):41. doi: 10.1186/s13256-020-02619-y [published Online First: 2021/02/02]					
730	124. Cai H, Liu G, Zhong J, et al. Immune Checkpoints in Viral Infections. Viruses 2020;12(9):1051.					
731	doi: 10.3390/v12091051					
732						

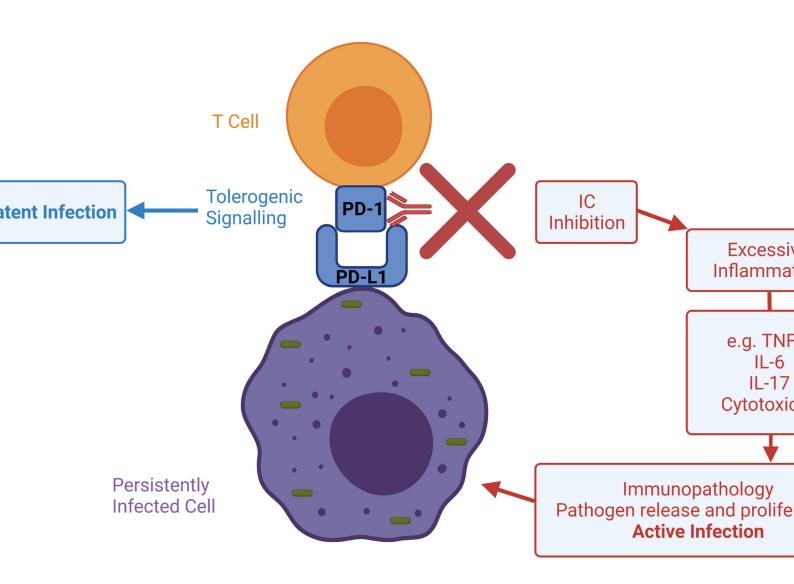
734 <u>Table 1: ImmunoTherapy Infections due to ImmunoSuppression (ITI-IS)</u>

Authors	Study Types	ICI class	Immunosuppressive Agents	Pathogen
(Arriola, Wheater et al. 2015, Del Castillo, Romero et al. 2016, Schwarz, Kocher et al. 2019, Liu, Liu et al. 2020, Si, Erickson et al. 2020)	Case report, Cohort	CTLA-4, PD-1, PD-L1	Corticosteroids, TNF-α antagonists, Mycophenolate mofetil	Pneumocystis jirovecii
(Lord, Hackman et al. 2010, Kyi, Hellmann et al. 2014, Del Castillo, Romero et al. 2016, Gupta, Tun et al. 2019, Oltolini, Ripa et al. 2019, Liu, Liu et al. 2020, Malek, Taremi et al. 2020, Taima, Tanaka et al. 2020)	Case report, cohort	CTLA-4, PD-1, PD-L1	Corticosteroids, TNF-α antagonists, Rituximab, Mycophenolate Mofetil, Tacrolimus, Rapamycin	Aspergillus fumigatus
(Del Castillo, Romero et al. 2016, Liu, Liu et al. 2020)	Case report, Cohort	CTLA-4, PD-1, PD-L1	Corticosteroids, TNF-α antagonists	Candida albicans
(Uslu, Agaimy et al. 2015, Del Castillo, Romero et al. 2016, Oltolini, Ripa et al. 2019, Schwarz, Kocher et al. 2019, Liu, Liu et al. 2020)	Case report, Cohort	CTLA-4, PD-1	Corticosteroids, TNF-α antagonists, Mycophenolate mofetil	Cytomegalovirus
(Martinot, Ahle et al. 2018)	Case report, unpublished pharmacovigilance registry data (WHO and Eudra- Vigilance)	CTLA-4 (PD-1 registry data)	Corticosteroids	JC polyoma virus
(Del Castillo, Romero et al. 2016, Oltolini, Ripa et al. 2019, Lee, Shaw et al. 2020, Liu, Liu et al. 2020)	Case report, Cohort	CTLA-4, PD-1, PD-L1	Corticosteroids, TNF-α antagonists	Other bacterial: including non specified organism, bacteraemic sepsis , Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Corynebacterium striatu, Campylobacter

Figure legends 737 738 739 Figure 1: PRISMA chart 740 741 Figure 2: Spectrum of Immunotherapy associated infections. Whilst immunosuppression alone can 742 cause infectious complications, the dysregulated immunity that results from immune checkpoint 743 inhibition can lead to different patterns of infection reactivation due to excessive inflammation, 744 thereby resulting in a spectrum of disease phenotypes. 745 746 Figure 3: Development of pulmonary TB on Triplet chemotherapy. Comparison of diagnostic CT 747 scan performed 2 weeks before treatment (A) with the CT scan at time of TB diagnosis (B) shows 748 regression of the tumour with immune checkpoint inhibition but new consolidation with cavitation. 749 750 Figure 4: Development of pulmonary aspergillus infection on nivolumab treatment. Original 751 publication: Inthasot et al (2020) Acta Clinica Belgica, 75:4, 308-310, Reproduced with permission of 752 publisher. 753 754 Figure 5: Potential Mechanisms whereby ICIs may lead to reactivation of infection and immune-755 related tissue damage. Sustained antigen exposure from persistently infected cells can cause an 756 over-exuberant immune response harmful to the host. Immune Checkpoints (IC) may regulate 757 homeostasis in latent infection, while signalling disruption with ICIs may promote excessive 758 inflammation, infection reactivation and immunopathology.

PRISMA 2009 Flow Diagram


Figure 1: PRISMA chart

