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Abstract

Progress in electrochemical technologies such as automotive batteries, supercapaci-

tors and fuel cells depends greatly on developing improved charged interfaces between

electrodes and electrolytes. The rational development of such interfaces can benefit

from the atomistic understanding of the materials involved by first principles quan-

tum mechanical simulations with Density Functional Theory (DFT). However, such
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simulations are typically performed on the electrode surface in the absence of its elec-

trolyte environment and at constant charge. We have developed a new hybrid compu-

tational method combining DFT and the Poisson-Boltzmann equation (P-BE) capable

of simulating experimental electrochemistry under potential control, in the presence of

solvent and electrolyte. The charged electrode is represented quantum-mechanically

via linear-scaling DFT which can model nanoscale systems with thousands of atoms

and is neutralized by a counter electrolyte charge via the solution of a modified P-BE.

Our approach works with the total free energy of the combined multiscale system in a

grand canonical ensemble of electrons subject to a constant electrochemical potential.

It is calibrated with respect to the reduction potential of common reference electrodes

such as the standard hydrogen electrode and the Li-metal electrode, which is used

as a reference electrode in Li-ion batteries. Our new method can be used to predict

electrochemical properties under constant potential and we demonstrate this in exem-

plar simulations of the differential capacitance of few-layer graphene electrodes and the

charging of a graphene electrode coupled to a Li metal electrode at different voltages.

1 Introduction

Progress in energy storage and conversion critically depends upon the understanding of elec-

trochemical phenomena at the atomic level, particularly the charged nature of the electrode-

electrolyte interface (EEI).1–3 While the atomistic modelling of material systems from first

principles has taken a leap with the development of density functional theory (DFT) which

describes the nature of solid electrodes quite well,4,5 an atomistic description of the charged

EEI is still a big challenge because of the uncertainty in description of the electrolyte.6

One of the approaches for dealing with an electrolyte solution is via explicit solvation,7–12

where there is an atomistic description of the solvent and electrolyte molecules on an equal

footing as the main electrode. These methods require averaging over all degrees of freedom of

solvent and electrolyte molecules, which is often computationally intractable. On the other
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hand, hybrid quantum-continuum models are computationally efficient as they average out all

the degrees of the surrounding electrolyte solution, while retaining an atomistic description

of the explicit electrode system.13,14 One can have the best of both methods by including

adsorbed ions explicitly on the electrode surface treating these as a part of the quantum

system, while treating the rest of the solution as implicit.

Several hybrid models of the EEI have been developed with a quantum-mechanical de-

scription for electrode and a continuum description of the solvent and electrolyte ions.14–16

These models are generally controlled by the amount of charge on the solid electrode which

imposes a constraint on the number of electrons and electrolyte ions in a canonical ensemble.

However, charge transfer (both ions and electrons) between subsystems is a key process in

electrochemical phenomena which is usually controlled by the applied voltage. This requires

an open system of electrons and electrolyte ions under the influence of an applied voltage. It

follows that the description of the electronic structure and electrolyte ions for a subsystem

of an electrochemical model requires a formulation in the grand canonical ensemble. Such a

subsystem of an electrochemical setup is shown in Fig. 1 schematically.

There are several important features of this subsystem: (1) it is periodic; (2) The elec-

trolyte charge in the subsystem is not fixed as it varies to neutralize the surface charge on

the electrode; (3) the number of electrons in the system are not fixed as they change under

the constraint of a fixed electrochemical potential µ̃e. In our previous papers, we have de-

veloped a hybrid quantum-continuum model with features (1),16 and (2).17 Now, we extend

this model to include the third feature, which involves development of a method for DFT for

electrons in a grand canonical ensemble at fixed electrochemical potential. This new devel-

opment gives a complete computational framework for simulating electrochemical systems

from first principles.

Kohn-Sham DFT18 in the grand canonical ensemble is described in the book by Parr

and Young.19 Recent implementations in electrochemistry applications include that by Sun-

dararaman et al. in the context of joint density functional theory,20 by Melander et al. in
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Figure 1: Subsystem of an electrochemical setup with a grand canonical ensemble for elec-
trons and electrolyte ions under the control of an applied voltage U with respect to a reference
electrode. Here, µ̃e and µ̃ref

e are the electrochemical potentials of electrons in the working
and reference electrodes respectively.

the GPAW code,21 by Hormann et al. in Quantum-ESPRESSO,22 by Dufils et al. in the

context of the finite field method.11 Here, we develop a model for DFT for electrons in

a grand canonical ensemble at a constant electrochemical potential in the onetep linear-

scaling DFT code23 whose computational cost scales linearly with the number of atoms as

compared to the cubic-scaling in conventional DFT. This allows for quantum mechanical

simulations with thousands of atoms therefore enabling computational exploration of com-

plex atomistic models of electrode-electrolyte interfaces. Along with the implicit solvent and

electrolyte model in onetep,16,17,24,25 the newly-developed grand canonical method is a step

towards a computational platform for large-scale ab initio electrochemistry controlled via an

applied potential in an electrolyte environment as in experiments.

The application of the model is demonstrated on few-layer graphene based electrodes.

Graphene based electrodes have been widely used in energy storage applications such as

charge storage in supercapacitors, conductive additives in Li-ion batteries, etc.26,27 Graphene

4



based supercapacitors can store charge in the electrode-electrolyte interface where the differ-

ential capacitance has been found to be promising experimentally.28–33 Theoretical models

have also tried to predict the differential capacitance of graphene based electrodes from first

principles.34–39 These theoretical simulations of the differential capacitance are based on the

canonical ensemble approach, in which the charge on the electrode is fixed and the potential

is calculated a posteriori from the difference in the electrostatic potential far away and the

Fermi level of the electrons in the system. In this study, we apply our newly-developed

grand canonical approach to simulations at controlled electrode potentials, and determine

the differential capacitance self-consistently. This resembles the situation in experiments,

where the voltage is controlled rather than the charge on the electrode.

To enable simulations of a general electrode system at fixed voltages with respect to any

reference electrode, we calibrate the model parameters according to the absolute reduction

potential of the standard hydrogen electrode (SHE),40–42 and also that of the Li metal

(Li+/Li) electrode which is commonly used as the reference electrode in Li-ion batteries.43

During ultra short current spikes in a Li-ion battery, the charge storage at the interface

also becomes important in addition to the Li-ion intercalation. We finally use our method

to study this process by coupling a few-layer graphene electrode to the Li metal electrode at

different voltages and examining the charge storage at the interface.

The outline of the paper is as follows: in the next sections, we describe the theory of

our new method followed by an exemplar application on differential capacitance of few-

layer graphene electrodes in supercapacitors. Thereafter, we describe the calibration of

model parameters. Finally, we demonstrate a simulation of interfacial charge stored while

connecting a graphene based electrode to Li metal electrode in a battery.
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2 Theory

2.1 System

Our system includes an electrode embedded within a solvent and electrolyte ions. Out of

the many possible ways of describing an electrochemical electrode in multi-scale modelling

approaches,44 in our model the electrode is treated quantum-mechanically via DFT, while

the solvent is described as a dielectric continuum and the electrolyte is described as a diffuse

layer of point-like mobile ions. This implicit treatment of the solvent and electrolyte ions

is captured by the Poisson-Boltzmann equation.45,46 The charge densities due to the two

subsystems overlap in an interfacial region and interact not only via mean-field electrostatics

but also have cavitation, dispersion and repulsion interactions. The total charge density

ρt(r) can be written as the sum of that due to the quantum subsystem ρq(r) and the diffuse

layer of electrolyte ions ρd(r). The quantum charge density consists of the charge density

of electrons ρe(r) and the nuclear cores ρnuc(r), while the diffuse layer of electrolyte ions

consists of charges {zi} with space-dependent concentrations {ci(r)}, i = 1 . . . p:

ρt(r) = ρq(r) + ρd(r) , (1)

ρq(r) = ρe(r) + ρnuc(r) , (2)

ρd(r) =

p∑
i=1

zici(r) . (3)

2.2 Free energy functional

Typical implementations of DFT are in systems with a constant number of electrons, also

called a canonical ensemble of electrons. In such cases, the thermodynamic potential, the

Helmholtz free energy is minimized, subject to a constraint on the number of electrons.

while in electrochemistry applications, the number of electrons can change subject to a

fixed electrochemical potential. This situation is described by a grand canonical ensemble
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of electrons. In a grand canonical ensemble, the thermodynamic potential is a Legendre

transform of the Helmholtz free energy, called the grand potential or the grand free energy.

In such a situation the grand potential is minimized, subject to a constant electrochemical

potential of electrons. In our model, the total free energy functional includes the grand

potential of electrons Ωe, the mean-field electrostatic functional Ωmf and non-mean-field

interactions Ωnmf .

Ω [ρe, ci, ν] = Ωe [ρe] + Ωmf [ρe, ci, ν] + Ωnmf [ρe] . (4)

The mean-field electrostatic functional Ωmf is described in detail in our previous papers on

the electrolyte model (Refs. 16,17). For the sake of completeness, we concisely summarize

all the terms included in Ωmf here:

Ωmf =
1

2

ˆ

V

[ρe(r) + ρnuc(r) + ρd(r)] ν(r) dr total electrostatic energy (5)

− 1

β

p∑
i=1

ˆ

V

ci(r) dr electrolyte osmotic pressure (6)

− 1

β

p∑
i=1

ˆ

V

ci(r) lnλ(r)dr electrolyte accessibility repulsion energy (7)

+
1

β

p∑
i=1

ˆ

V

ci(r) ln

(
ci(r)

c◦

)
dr electrolyte entropy term (8)

−
p∑
i=1

µi

ˆ

V

ci(r) dr electrolyte chemical potential term, (9)

where β = 1
kBθ

, kB is the Boltzmann constant, θ is the temperature, λ(r) is the electrolyte

accessibility function, c◦ is the standard thermodynamic reference of 1 mol/L (or 1 M) and

µi are the chemical potentials of the electrolyte ions. Ωnmf incorporates the non-mean-field

interactions of cavitation, dispersion and repulsion with the continuum solvent, and is taken

to be proportional to the solvent accessible surface area, where the proportionality constant
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is a scaled surface tension of the solvent.24,25 Minimization of the free energy functional with

respect to the electrolyte concentrations ci(r) and the total electrostatic potential ν(r) gives

the Poisson-Boltzmann equation:

∇ · (ε(r)∇ν(r)) = −4π

[
ρe(r) + ρnuc(r) +

p∑
i=1

zici(r)

]
(10)

ci(r) = c∞i λ(r) exp{−βziν(r) + βµex
i }, i = 1 . . . p

The solvent permittivity function ε(r) is described as a smooth function: ε(r) = 1 + (ε∞ − 1) γ(r),

which varies from that in the bulk solvent ε∞ to 1 near the quantum region. We have im-

plemented two choices for the interface function γ(r): one following the Fattebert and Gygi

function,24,47 and the other one following the soft-sphere model of Fisicaro et al.48,49 The elec-

trolyte accessibility function λ(r) is a smooth function varying from 1 in the bulk solution to 0

near the quantum system, which is represented as a similar product of overlapping spheres.16

The concentration of electrolyte species ‘i’ far away in the bulk of the solution is c∞i . The

Poisson-Boltzmann equation is solved using dl mg,50,51 a bespoke highly-parallel, multi-

grid, Poisson-Boltzmann solver library. The excess chemical potentials of the electrolyte

ions µex
i are determined to ensure electroneutrality of the total charge in periodic bound-

ary conditions (PBCs) using the neutralization by electrolyte concentration shift (NECS)

model described in our previous paper.17 To handle the representation of point charges on

a Cartesian grid, the nuclear cores are represented by smeared Gaussians (sg):

ρnuc(r) = ρsg(r) =
N∑
i

Zi

(αi
√
π)

3 e
−
(
|r−Ri|
αi

)2

, (11)

where N is the total number of atoms in the system. A smearing width (αi) of 0.8a0 is used

based on a previous parameter study.25 The effect of this modification is corrected out in

the energy expression (cf. eq. 14).

The grand potential of electrons Ωe in eq. (4) is the Legendre transform of the Helmholtz
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free energy A which converts the finite temperature canonical ensemble to the finite temper-

ature grand canonical ensemble.19

Ωe [ρe] = A [ρe]− µe ·Ne, (12)

where µe is the chemical potential of electrons andNe is the number of electrons. A Helmholtz

free energy functional can be defined as:

A [ρe] = Ts [ρe]− θSs [ρe] + Exc [ρe] + Vps,nl [ρe] (13)

+ Vps,l [ρe]− Vsg−e [ρe] + Vps−ps − Vsg−sg (14)

where Ts is the kinetic energy of non-interacting electrons, θ is the temperature, Ss is the

entropy of non-interacting electrons, Exc is the exchange-correlation energy functional, which

is approximated in DFT, Vps is the interaction energy with the pseudo-potential cores where

the subscripts ‘l’ and ‘nl’ represent the local pseudopotential and the non-local part of the

pseudopotential. In eq. (14), we replace the interaction energy of smeared Gaussians with

electrons by that due to the local component of the pseudopotential, and also replace the

interaction between smeared Gaussians with that between pseudopotential cores. These

corrections in open and periodic boundary conditions are summarized in Table 1 of Ref. 16.

The electronic density ρe in Kohn-Sham DFT is constructed from the non-interacting

orthonormal orbitals {ψi} and their fractional occupancies {fi} :

ρe(r) =
∑
i

fiψ
∗
i (r)ψi(r) (15)

The method thus becomes variational in terms of the orbitals {ψi} and their occupancies

{fi}. The total number of electrons can be obtained from integrating the electronic density
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over the entire volume of the simulation cell.

Ne =

ˆ

V

ρe(r) dr =
∑
i

fi. (16)

The kinetic energy of non-interacting electrons in eq. (13) is:

Ts [ρe] ≡ Ts [{ψi}, {fi}] =
∑
i

fi

ˆ

V

ψ∗i (r)

(
−1

2
∇2

)
ψi(r) dr, (17)

and their entropy is:

Ss [ρe] ≡ Ss [{fi}] = −kB

∑
i

[fi ln fi + (1− fi) ln (1− fi)] , (18)

where kB is the Boltzmann constant. Similarly, the contribution due to the pseudopotentials

can be written as:

Vps [ρe] = Vps,nl [ρe] + Vps,l [ρe] ≡ Vps,nl [{ψi}, {fi}] + Vps,l [{ψi}, {fi}] (19)

=
∑
i

fi

ˆ

V

|ψi(r)|2 [νps,nl(r) + νps,l(r)] dr

Minimizing the total grand functional with respect to the orbitals {ψi} gives the Kohn-

Sham equations in the grand canonical ensemble:

[
−1

2
∇2 + νeff

]
ψi = εiψi (20)

where νeff = ν + (νps,nl + νps,l − νsg) + δExc/δρe. Here we have corrected the potential due

to smeared Gaussians (sg) by the local component of the potential due to pseudopotential

cores (ps). Minimizing the total grand free energy functional with respect to the orbital

occupancies fi gives:

kBθ [ln fi − ln (1− fi)] + εi − µe = 0, (21)
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which on rearranging, gives the Fermi-Dirac statistics:

fi =
1

1 + exp{β (εi − µe)}
. (22)

Solving the Kohn-Sham eigenvlaue problem in eq. (20) subject to orthonormality of or-

bitals {ψi} is an O(N3) procedure. The cubic-scaling computational cost puts a restriction

on the size of systems that can be studied with DFT, typically up to a few hundred atoms.

While However, modelling of complex problems requires large-scale systems with sizes ex-

tending to thousands of atoms. This has motivated development of O(N) approaches,52 such

as onetep.

2.3 ONETEP

onetep is a linear-scaling DFT program, where the conventional DFT has been reformulated

in terms of the single-particle density matrix so that the computational cost scales linearly

with the number of atoms.23,53 In onetep, we use non-orthogonal generalized Wannier func-

tions (NGWFs),54 expanded in a basis set of periodic sinc functions,55 which are equivalent

to a plane wave basis set. The NGWFs {φα} are notionally related to the orthonormal

Kohn-Sham orbitals via a linear transformation φα(r) =
∑

i ψi(r)Miα, or ψi(r) = φα(r)Mα
i .

Here and henceforth, we use implicit summation over repeated Greek indices. Within this

representation the electronic density can be written as ρe(r) = φα(r)Kαβφ∗β(r), where {Kαβ}

are the elements of the density kernel matrix Kαβ =
∑

iM
α
i fiM

†β
i . Using this formalism

in eq. (13), the kinetic energy can be written as Ts [ρe] ≡ Ts [{ψi}, {fi}] ≡ Ts [{φα},K] =

Kαβ
〈
φβ
∣∣−1

2
∇2
∣∣φα〉, and the contribution due to the pseudopotentials can be written as:

Vps [ρe] ≡ Vps [{φα},K] = Kαβ 〈φβ |νps|φα〉 = Kαβ 〈φβ |νps,l|φα〉 + Kαβ 〈φβ |νps,nl|φα〉, where

the subscripts ‘l’ and ‘nl’ represent the local pseudopotential and the non-local part of the

pseudopotential in the Kleinman and Bylander representation. Similarly, the first term in

eq. (5) can be written as: 1/2 ·
´
ρe(r) ν(r) dr = 1/2 · Kαβ 〈φβ |ν|φα〉. Instead of solving
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the Kohn-Sham eigenvalue problem in eq.(20) directly, in onetep the ground state is calcu-

lated using direct minimization of total free energy and a linear-scaling computational cost

is achieved due to the localization of NGWFs and the truncation of the density kernel. The

algorithm for minimization of the total grand potential in the grand canonical ensemble for

electrons is implemented within the finite temperature ensemble DFT (EDFT) functionality

of onetep.56

2.4 Finite temperature ensemble DFT in ONETEP

Here, we briefly review the finite temperature ensemble DFT approach in onetep which

was originally developed in a canonical ensemble of electrons.56 In the canonical ensemble,

the Helmholtz free energy A is minimized directly in nested loops. The outer loop optimizes

the NGWFs {φα} by minimizing a projected Helmholtz free energy functional:

A′ [{φα}] ≡ min
{Hαβ}

Ω [{Hαβ}, {φα}] (23)

with respect to the NGWFs, where {Hαβ} are the elements of the Hamiltonian matrix,

Hαβ =
〈
φα

∣∣∣Ĥ∣∣∣φβ〉. The derivative of the projected Helmholtz free energy with respect to

the NGWFs can be written as:

∣∣Γβ〉 =
δA′

δ 〈φβ|
= Ĥ |φγ〉Kγβ. (24)

Applying orthonormality by projecting out the component of the derivative parallel to the

NGWFs, we get the following expression for the NGWF gradient in the cannical ensemble:

˜|Γβ〉 =
∣∣Γβ〉− |φη〉Sησ 〈φσ∣∣Γβ〉

= Ĥ |φγ〉Kγβ − |φη〉SησHσγK
γβ, (25)
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where {Sαβ} are the elements of the overlap matrix Sαβ = 〈φα|φβ〉. The total Helmholtz free

energy is minimized until the NGWF gradient is below a threshold. The inner loop involves

a diagonalization of the Hamiltonian matrix as

HαβM
β
i = SαβM

β
i εi. (26)

Although, the diagonalization procedure is cubic-scaling, the use of localized minimal basis

set of NGWFs ensures that the size of Hamiltonian matrix and the prefactor due to diagonal-

ization is minimal, thereby reducing the computational cost. From the obtained eigenvalues

εi the chemical potential of electrons (Fermi level) µe is calculated subject to the constraint

on the number of electrons:

∑
i

fi =
∑
i

1

1 + exp{β (εi − µe)}
= Ne. (27)

At every inner loop iteration the Hamiltonian matrix is updated and the Helmholtz free

energy A [{Hαβ}, {φα}] is minimized subject to constant NGWFs {φα}. The minimization

converges when the commutator [Hαβ, Kαβ] and the change in Fermi level µe is below a

threshold. All throughout, a self-consistent direct minimization approach is used, which

ensures convergence towards the Kohn-Sham ground-state at every step and completely re-

moves charge sloshing effects.57 Now, we describe the newly-developed approach for electrons

in a grand canonical ensemble.

2.5 The new grand canonical algorithm

In the grand canonical ensemble of electrons, instead of the Helmholtz free energy A, the

grand potential Ω (and Ωe) in eq. 4 (and 12) is directly minimized in nested loops subject

to a constant Fermi level and no constraint on the number of electrons. The outer loop
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optimizes the NGWFs {φα} by minimizing a projected grand functional:

Ω′ [{φα}] ≡ min
{Hαβ}

Ω [{Hαβ}, {φα}] (28)

with respect to the NGWFs The derivative of the projected grand free energy with respect

to the NGWFs can be written as:

∣∣Γβ〉 =
δΩ′

δ 〈φβ|
=

δA′

δ 〈φβ|
− µe

δtr(KS)

δ 〈φβ|

= Ĥ |φγ〉Kγβ − µe |φγ〉Kγβ (29)

Applying orthonormality by projecting out the component of the derivative parallel to the

NGWF, we get:

˜|Γβ〉 =
∣∣Γβ〉− |φη〉Sησ 〈φσ∣∣Γβ〉

= Ĥ |φγ〉Kγβ − µe |φγ〉Kγβ − |φη〉SησHσγK
γβ + µe |φη〉Kηβ

= Ĥ |φγ〉Kγβ − |φη〉SησHσγK
γβ, (30)

which is the same as the NGWF gradient for the canonical ensemble (cf. eq. (25)). The

term containing the chemical potential µe cancels out in eq. (30), therefore the gradient of

the grand functional with respect to the NGWFs is independent of the chemical potential

of electrons µe. The total grand potential is minimized until the NGWF gradient is below

a threshold. The inner loop also follows a similar procedure to the canonical ensemble

involving the diagonalization of the Hamiltonian matrix. In the canonical ensemble, the

chemical potential of electrons µe is determined from the eigenvalues to satisfy the constraint

on the number of electrons as in eq. (27), whereas in grand canonical ensemble the chemical

potential of electrons µe is constant, rather the number of electrons and the charge on the
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system is determined as:

Ne =
∑
i

fi =
∑
i

1

1 + exp{β (εi − µe)}
, (31)

q = Zion − e ·Ne, (32)

where Zion is the charge on the nuclear cores. At every inner loop iteration the Hamilto-

nian matrix is updated and the grand free energy Ω [{Hαβ}, {φα}] is minimized subject to

constant NGWFs {φα}. The minimization converges when the commutator [Hαβ, Kαβ] and

the change in the number of electrons Ne is below a threshold. Thus the algorithms for the

canonical and grand canonical EDFT approaches are very similar with the difference being

in the constraints on the system (constant number of electrons in the canonical ensemble

versus constant chemical potential in the grand canonical ensemble) and the relevant ther-

modynamic potential (free energy) being minimized (Helmholtz free energy in the canonical

ensemble versus grand free energy in the grand canonical ensemble). The control over chem-

ical potential in the grand canonical ensemble allows for simulations at controlled voltages

as in electrochemical applications.

2.6 Connection with electrochemistry

In typical situations in electrochemistry, the electrochemical potential of electrons in an

electrode is controlled with respect to a reference electrode. The electrochemical potential

is defined as:1,2

µ̃e = µe − e · Φ, (33)

where µe is the chemical potential of electrons, e is the elementary charge (1.602176634× 10−19

coulombs or 1.0 in atomic units) and Φ is the macroscopic electrostatic potential or the elec-

trostatic potential far away in the electrolyte solution, Φ = ν(r → ∞).40 The electrostatic

potential far away is zero in any solution of the Poisson-Boltzmann equation,16,17,42 which is
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also discussed in Sec. 3.1.1. Hence, in our model the electrochemical potential is the same

as the chemical potential of electrons (µ̃e = µe) and by controlling the chemical potential of

electrons one can simulate the situation in electrochemistry experiments. This is similar to

the formulation in Ref. 40. The chemical potential of electrons (or the Fermi level) can be

set with respect to a reference electrode:

µe = µref
e − e · U, (34)

where µref
e is the chemical potential of electrons in the reference electrode and U is the

potential of the working electrode with respect to the reference electrode. On controlling the

potential U to the set point, electronic current passes through the external circuit from the

working electrode to the reference electrode or vice-versa adjusting µe until the condition

of eq. (34) is satisfied. A rapid electronic equilibration, due to a high electron mobility, is

useful in supercapacitors and also in a battery cell over very short times.

In Sec. 3.2, we calibrate our model parameters to set the chemical potential of the

reference electrode to that of the standard hydrogen electrode on the absolute scale µSHE
e ≡

µ
H+/H2
e = −4.44 eV.58 We also calibrate model parameters according to the absolute potential

of Li metal electrode, µ
Li+/Li
e = −1.39 eV (3.05 eV with respect to SHE)58 which is useful for

applications in simulations of Li-ion battery electrodes.43 The values of electronic energies

(µref
e ) as well as reduction potentials (E) on the absolute scale and relative to SHE, from Ref.

58 are given in Table 1. We note here that the convention of electronic energies (µref
e ) which

is used inside typical electronic structure packages is opposite in sign to the electrostatic

scale (Φ, U and E) due to the negative charge on the electron.

Table 1: The electrochemical potentials in different scales (Ref. 58)

System E , relative to SHE (V) E , absolute scale (V) µref
e , physical scale (eV)

Electron in vac. -4.44 0.0 0.0
Li+/Li -3.05 1.39 -1.39

H+/H2 (SHE) 0.0 4.44 -4.44
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2.7 Differential capacitance

The charge storage at an electrode-electrolyte interface can be quantified in terms of the

differential capacitance. In a canonical approach, the charge q is fixed as an input and then

the electrode potential U is computed, while in the grand canonical ensemble, the electrode

potential U is fixed and the charge q is determined. The differential capacitance is defined

as the slope of the charge versus potential curve:

C =
dσ

dU
, (35)

where σ = q/A is the charge per unit surface area of the electrode. The total capacitance of

the electrode and electrolyte can be considered as two capacitances in series:

1

Ct

=
1

Celectrolyte

+
1

Celectrode

(36)

For metallic electrodes, the capacitance due to the electrode side is so high so that the total

capacitance, is limited by the electrolyte side alone. While for semi-conductor or semi-metal

electrodes, both the capacitances are of the same order of magnitude. As the electrode charge

develops in the electronic density of states and in our model, the electrolyte is a diffuse layer

of electrolyte ions, so we simplify the notation as:

1

Ct

=
1

Cd

+
1

Ce

, (37)

Now we describe some results from our model which include an exemplar application

on calculating the differential capacitance of graphene based electrodes in supercapacitors,

calibration of model parameters according to the reduction potential of standard hydrogen

electrode (SHE) and Li metal electrode, followed by a demonstration of the model on the

interfacial charge storage during ultra fast charging in Li-ion batteries.
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3 Results and Discussion

3.1 Exemplar application on differential capacitace of graphene

based electrodes

In the following subsections, we discuss the electrolyte diffuse layer capacitance, the electronic

capacitance and the total capacitance of few-layer graphene based electrodes respectively.

3.1.1 Electrolyte diffuse layer capacitance (Cd)

The electrolyte in our model is represented as a diffuse layer of Poisson-Boltzmann elec-

trolyte. The charge developed in the diffuse layer of the electrolyte is equal and opposite (in

sign) to the charge developed on the graphene electrode in order to achieve electroneutrality

resembling a situation in a supercapacitor. The charge versus potential curves can be com-

puted naturally with a grand canonical DFT approach as the one developed in this paper.

We also compare and validate our results with those from a canonical ensemble approach.

We perform simulations of 1-5 layer AB-stacked graphene electrodes with 96 C atoms in each

layer placed in the middle of a simulation cell of dimensions 17.08Å× 14.80Å× 90.42Å. The

aqueous solution is represented as a Poisson-Boltzmann electrolyte of bulk concentration

c∞i = 6 M in an implicit solvent with a bulk permittivity of 78.54 and surface tension of

0.07415 N/m, same as that of water at 298.15 K. While the surface tension can itself change

with the electrolyte concentration,59 it is taken to be same as that for the pure water. We use

the density based model for the solvent permittivity function with previously benchmarked

parameters.24 For the electrolyte accessibility function we use a density isovalue of 0.001

e/a3
0 and a solvent radius of 3.0 a0 based on previous calibration tests.16 The psinc kinetic

energy cutoff for periodic sinc functions is 1000.0 eV and the NGWF radius is 8.0 a0 (4.23

Å) for C atoms.

In the canonical ensemble we fix the charge on the system q and obtain the electrode

potential a posteriori. We take the neutral system (q = 0) as the reference. The change in
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the planar average electrostatic potential (∆ν) with respect to a neutral system (q = 0) for

different values of charge q in the canonical ensemble (∆ν(q) = ν(q) − ν(q = 0)) is plotted

in Fig. 2(a) for two sample values of q for single layer graphene. The electrostatic potential

away from the graphene layer is zero and does not change with the state of charge of the

system. As a result, the electrode potential U with respect to the potential of zero charge

(pzc) can be determined as simply the change in the chemical potential of electrons:

−e · U(q) = µe(q)− µe(q = 0). (38)

In the grand canonical ensemble, we do the reverse, we fix the electrode potential a priori

and thereby the chemical potential of electrons:

µe(U) = µref
e − e · U. (39)

Here, the Fermi level of the neutral system has been taken as the reference (µref
e = µq=0

e ). The

change in the planar average electrostatic potential (∆ν) with respect to the pzc (U = 0) is

plotted for two different values of the electrode potential U in the grand canonical ensemble

(∆ν(U) = ν(U)−ν(U = 0)) in Fig. 2(b). The electrostatic potential away from the graphene

layer is zero and does not change with the state of charge of the system. The charge on the

system is obtained a posteriori from eq. (32).

Now we show the convergence behaviour for the calculations of single layer graphene in

electrolyte solution. In onetep, these calculations in electrolyte solution are started from

a calculation which has converged first in vacuum. The convergence of chemical potential

(Fermi level) of electrons µe with the number of EDFT inner loop iterations in the canonical

ensemble is shown in Fig. 3(a) for different values of charge on the system q. The convergence

threshold on the change in Fermi level ∆µe is 10−6 eV. The convergence of the charge q with

the number of EDFT inner loop iterations in the grand canonical ensemble is shown in Fig.

3(b). The convergence threshold for the change in the number of electrons ∆Ne is 10−4 for
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Figure 2: Change in the planar average electrostatic potential profile (∆ν) around a single
layer graphene in 6 M aqueous electrolyte solution, (a) with respect to the neutral system
(∆ν(q) = ν(q)−ν(q = 0)) for two different values of charge q in the canonical ensemble, and
(b) with respect to the potential of zero charge charge (∆ν(U) = ν(U)− ν(U = 0)) for two
different values of the electrode potential U in the grand canonical ensemble.
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the entire system (= 10−6 per atom). The convergence is reached easily in few NGWF outer

loop iterations (less than 6), comprising of several inner loop EDFT iterations (maximum

10 per outer loop).
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Figure 3: Convergence of the (a) chemical potential (Fermi level) of electrons µe at different
values of charge on the system q in the canonical ensemble and (b) charge on the system
q at different values of electrode potential U in the grand canonical ensemble; with respect
to the number of iterations in grand canonical ensemble in inner loop of ensemble DFT
(GC-EDFT) at different values of electrode potential U .

The corresponding charge density σd = q/A versus the electrode potential U curves for

the canonical and grand canonical ensembles are shown in Fig. 4 for single-layer graphene.

For the canonical ensemble we scan the charge at a step of ∆q = 0.1 e and for the grand
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canonical ensemble, we scan the potential at a step of ∆U = 0.1 V. As can be seen, the

grand canonical results are quite similar to the results from the canonical ensemble. The

variation of surface charge with electrode potential is quite linear as also observed in previous

computational studies.34,36,37

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
U(V)

−10
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0

5

10

σ d
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C/
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2 )
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grandμcanonical

Figure 4: Charge density σd versus the electrode potential U for a single layer graphene in
the canonical and grand canonical ensemble for electrons.

The planar-average electrolyte concentration profiles around positively charged single

layer graphene are shown in Fig. 5 for two example cases of a canonical ensemble at q = 2.9 e

and a grand canonical ensemble at U = 0.7 V. As the graphene layer is positively charged

in both cases, there is a build up of negatively charged electrolyte ions around the graphene

layer and a depletion of positively charged electrolyte ions to neutralize the overall charge.

The asymptotic concentration goes to the bulk value of 6 M and the double layer is created

at the interface.

After validating our grand-canonical method with the canonical ensemble for single layer

graphene, we now repeat the potential-charge experiment in the grand canonical ensemble

for 1-5 layer graphene showing the results in Fig. 6. The charge density σd is quite linear

with the potential and the electrolyte diffuse layer capacitance Cd is calculated as the slope
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Figure 5: Planar-average concentration profiles of electrolyte ions around a positively charged
single layer graphene electrode. (a) Canonical ensemble calculation at q = 2.9 e (b) Grand
canonical ensemble calculation at U = 0.7 V.
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of linear fits to the data. Our calculated values of electrolyte diffuse layer capacitance

for 1-5 layer graphene are shown in the legend which are 12.19 µF/cm2 , 10.63 µF/cm2,

11.09 µF/cm2, 10.88 µF/cm2 and 10.94 µF/cm2 respectively. The electrolyte diffuse layer

capacitance does not change much with the number of layers of graphene and is quite linear

with the potential, as also observed in previous computational studies.34,36,37 Computational

study by Zhan et al. reported a value around 13 µF/cm2 for the electrolyte diffuse layer

capacitance in 6 M implicit electrolyte.37 Experimental values of electrolyte diffuse layer

capacitance measured by Ji et al. in 6 M KOH, vary around 5-30 µF/cm2.31 Gravimetric

capacitances reported experimentally at similar electrolyte concentrations vary from 65-150

F/g,60 150-205 F/g.61 Our calculated values translate into gravimetric capacitance of 322

F/g, 140 F/g, 98 F/g, 72 F/g, 58 F/g respectively for 1-5 layer graphene. A larger variation

is seen in the values of gravimetric capacitance because of the decrease in gravimetric specific

surface area with the number of layers in graphene.

3.1.2 Electrode capacitance due to electronic density of states (Ce)

The excess electronic charge stored per unit area σe as a function of the electrode potential U

can be calculated from the electronic density of states per unit area D(ε) and the Fermi-Dirac

function as:34,36

σe(U) = −e
ˆ
D(ε)

[
fµe(U)(ε)− fµe(U=0)(ε)

]
dε, (40)

where fµe(U) is the Fermi-Dirac function (eq. 22) evaluated at the chemical potential µe(U) =

µe − e · U . Here the assumption is that the density of states (DOS) remains the same after

applying a potential U . This fixed band assumption is justified as the DOS of graphene does

not change much with electrode charging and gives a reasonable estimate of the quantum

capacitance which has also been used in several previous studies.28,34,36,62 A more recent study

by Radin et al. has computed the quantum capacitance without the fixed-band assumption.35

To calculate the electronic charge σe, the DOS should be very well converged with respect

to the surface area of graphene. We thus increase the area of graphene sheets by 4 × 4
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Figure 6: Charge density σd versus the electrode potential U for multi-layer graphene in the
grand canonical ensemble for electrons. The differential capacitance of the electrolyte diffuse
layer Cd is calculated as the slope of linear fits to the data.
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times, that is with 1536 atoms in each layer. We calculate the DOS for neutral 1-5 layer

graphene in the same electrolyte environment using the canonical approach and obtain the

electronic charge-potential curves from eq. (40) which are shown in Fig. 7(a). The derivative

of electronic charge σe with respect to the electrode potential U is the electronic capacitance

Ce, which is shown in Fig. 7(b). The predicted electronic capacitance of a single layer

graphene agrees well with the experimentally measured values.29,30 It can be seen that the

electronic capacitance increases with the number of layers of graphene due to the increase

in DOS, as also found by previous computational studies.35–39

3.1.3 Total capacitance

The total capacitance of multi-layer graphene can be calculated as electrolyte diffuse layer

capacitance in series with an electronic capacitance following eq. (37). With the electrolyte

diffuse layer capacitance calculated in Sec. 3.1.1 and the electronic capacitance calculated

in Sec. 3.1.2, the calculated total capacitance for multi-layer graphene as a function of

the electrode potential U is shown in Fig. 8. The total capacitance increases with the

number of layers of graphene and soon approaches convergence as also observed in previous

computational studies.35–39 The computed values of total capacitance at U = −0.2 V are

compared in Fig. 8(b) with the values reported by Radin et al.35 and show good agreement.

Experimental study by Ji et al. on multilayer graphene in aqueous 6 M KOH electrolyte has

reported total capacitance in range of 2-10 µF/cm2.31

3.2 Calibration of absolute electrode potentials

To make our model more useful for performing realistic simulations at constant potentials

against experimental reference electrodes, we now calculate the reference chemical potential

µref
e for the standard hydrogen electrode (SHE) µSHE

e ≡ µ
H+/H2
e and the Li metal electrode
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Figure 8: Total capacitance for multi-layer graphene (a) as a function of electrode potential
U , (b) as a function of the number of layers at U = −0.2 V (at the dashed vertical line in
(a)).

µ
Li+/Li
e . Following Trasatti,58 the reduction potential for the SHE can be written as:

H+(aq.) + e−(vac.)→ 1/2 · H2(g) (41)

ESHE = −∆G/F =
[
GH+(aq.) − 1/2 ·GH2(g)

]
/F (42)

where F is the Faraday constant. Trasatti calculated the reduction potential by breaking

eq. (42) into three reactions following a Born-Haber cycle.

ESHE =
[(
GH+(aq.) −GH+(vac.)

)
+
(
GH+(vac.) −GH(vac.)

)
+
(
GH(vac.) − 1/2 ·GH2(g)

)]
/F (43)

=
[
∆Gsolvation,H+ + ∆Gionization,H + ∆Gatomization,1/2·H2

]
/F (44)

From experimental values of the solvation free energy of H+, ionization energy of H and

atomization energy of 1/2·H2, an experimental estimate of ESHE
exp = 4.44 V has been reached.58

Now from our model we aim to calculate the reduction potential E directly from eq. (42).
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From the point of view of DFT- computations, a calculation of H+ is not possible because

it has no electrons. We thus modify the reaction as:

H+ · H2O(aq.) + e−(vac.)→ 1/2 · H2(g) + H2O(aq.) (45)

ESHE = −∆G/F =
[
GH+·H2O(aq.) − 1/2 ·GH2(g) −GH2O(aq.)

]
/F (46)

We perform three calculations: of a hydronium ion (H+ · H2O(aq.)), a hydrogen diatomic

molecule (H2(g)) and a water molecule (H2O(aq.)). We include translational, rotational and

vibrational free energy corrections for each molecule. We include the free energy correction

in the calculation of H2(g) due to a standard pressure of 1 atm. The aqueous environment is

represented as a Poisson-Boltzmann electrolyte of concentration c∞i = c◦=1 M in an implicit

solvent with bulk permittivity of 78.54 and a surface tension of 0.07415 N/m corresponding

to that of water at 298.15 K. We use the soft-sphere model for the solvent permittivity

function and compute the reduction potential from eq. (46) for several different values of

soft-sphere radii as shown in Table 2. The ratio of O radius to H radius is kept the same

as the ratio of their van der Waals radii. We see that the soft-sphere radius values of 2.644

a0 for H and 3.311 a0 for O give an electrode potential ESHE = 4.45 V, which is close to the

experimental value ESHE
exp = 4.44 V reported by Trasatti.58 These values of the soft-sphere

radii can be used along with µSHE
e = −e · ESHE = −4.45 eV to perform simulations at

constant potentials with respect to the SHE. Another relevant quantity, the proton work

function calculated as WH+·H2O(aq.) = GH2O(aq.) −GH+·H2O(aq.) is also shown in Table 2. The

experimental value is 11.36 eV, as shown in Table 1 of Cheng et al.63 We see that the

soft-sphere radius values of 2.599 a0 for H and 3.254 a0 for O give a proton work function

WH+·H2O(aq.) = 11.35 eV, which is close to the experimental value. Further, similar values of

soft-sphere radii give a reasonable prediction for both: the absolute electrode potential and

the proton work function.

Similarly, we calculate the absolute electrode potential of a Li metal electrode which is
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Table 2: The computed absolute electrode potential ESHE for a standard hydrogen elec-
trode (SHE) from eq. (46) for several values of soft-sphere radii for the solvent permittivity
function. The proton work function WH+·H2O(aq.) is also shown.

H radius (a0) O radius (a0) ESHE (V) WH+·H2O(aq.) (eV)

3.006 3.764 4.96 10.76
2.825 3.538 4.72 10.99
2.780 3.481 4.62 11.05
2.712 3.396 4.56 11.16
2.644 3.311 4.45 11.27
2.599 3.254 4.37 11.35
2.260 2.830 3.63 12.09

often used as a reference electrode in the Li-ion batteries. The reduction potential for Li

metal electrode can be written as:

Li+(solv.) + e−(vac.)→ Li(s) + p.e. (47)

ELi+/Li = −∆G/F =
[
GLi+(solv.) −Gp.e. −GLi(s)

]
/F. (48)

For GLi+(solv.), we perform a calculation of a single Li-ion in a solvated environment, Gp.e.

refers to the energy of the pure electrolyte in the same simulation cell and GLi(s) is calculated

as the energy per Li-atom of a 1024-atom bulk Li solid. We calibrate the soft-sphere radius

for Li and the computed reduction potentials are shown in Table 3. We see that a soft-

sphere radius of 3.048 a0 gives an electrode potential ELi+/Li = 1.40 V, which is close to the

experimental value ELi+/Li
exp = 1.39 V.58 We recommend using the calibrated soft-sphere radius

along with setting µ
Li+/Li
e = −e · ELi+/Li = −1.40 eV for performing simulations relevant for

the Li-ion batteries with Li metal electrode as the reference electrode.

After calibrating the soft-sphere radii which give a reasonable prediction of the reduction

potential of Li in aqueous electrolyte, we investigate the charging behaviour of graphene

on connecting to this Li metal electrode. We use an aqueous electrolyte solution for this

application and the same scaled soft-sphere radii parameters as obtained from the calibration

of reduction potential of Li. This can be seen as a preliminary application of our model
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Table 3: The computed absolute electrode potential ELi+/Li for Li metal electrode from eq.
(48) for several values of soft-sphere radii for solvent permittivity function.

Li radius (a0) ELi+/Li (V)

3.208 1.81
3.128 1.61
3.088 1.51
3.048 1.40
3.007 1.30
2.967 1.18

similar to experiments on initial Li-ion batteries that were done in aqueous electrolyte.64,65

While modern Li-ion batteries use multiple electrolyte salts in various mixtures of organic

solvents, we defer these complicated systems for future studies.

3.3 Demonstration of model in Towards modelling of Li-ion bat-

teries

During ultra short current spikes in a Li-ion battery, while the normal intercalation process is

limited by slow ion diffusion and charge transfer resistance, the fast interfacial charge storage

at the surfaces of the electrode nanoparticles provides additional power density while sup-

pressing excessive overpotentials. We demonstrate an exemplar application on the interfacial

charge developed on a 5-layer graphene slab in a Li-ion battery. We compare the cases of a

canonical (constant charge) simulation (q = 0.0 e) with the newly-developed grand canonical

(constant voltage) method. In Fig. 9 we show the planar-average electrolyte concentration

profiles around the graphene slab. In the canonical calculation shown in Fig. 9(a), the total

charge is zero on the graphene slab which does not polarize the electrolyte, thereby producing

the same profiles for negative and positive electrolyte reaching asymptotically the bulk value

c∞i = 6 M. In Fig. 9(b) we use the grand canonical scheme and couple the graphene anode

to the Li+/Li reference electrode, thereby setting the electrochemical potential of electrons

as µ̃e = µe = µ
Li+/Li
e = −1.40 eV. This gives a total charge of −6.7 e on the graphene slab

leading to an increase in the concentration of positive electrolyte around the graphene slab
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and a depletion of the concentration of the negative electrolyte around the graphene slab,

showing the formation of electrolyte double layers. In Fig. 9(c), we further add a potential of

U = 1.0 V with respect to Li+/Li, thereby setting the electrochemical potential of electrons

as µ̃e = µe = µ
Li+/Li
e − e ·U = −2.40 eV. This gives a total charge of −3.5 e on the graphene

slab. This is in agreement with the fact that a reduction in the Fermi level would decrease

the number of electrons in the system. Correspondingly, the peaks of positive electrolyte

around the graphene slab are lowered in (c) as compared to case (b) due to the reduction

of the number of electrons and therefore, a lower number of positive electrolyte ions needed

for achieving electroneutrality.

The change in charge densities in the system at U = 1.0 V (with respect to Li+/Li) from

the system at U = 0.0 V (with respect to Li+/Li) is shown in Fig. 10. In Fig. 10(a) we show

the difference in electrolyte density in a plane cutting the 5-layer graphene orthogonally. We

see that more positive electrolyte density is accumulated near the surface for a system at

U = 0.0 V as compared to the system at U = 1.0 V. This is because of a higher number of

electrons in a system at U = 0.0 V (6.7 electrons) as compared to the system at U = 1.0 V

(3.5 electrons) thus, more positive electrolyte is needed to achieve electroneutrality.

The corresponding difference in the electronic density is shown in Fig. 10(b). Two isosur-

faces of electronic density are drawn at ρe(r) = ±2.0× 10−3 e/Å
3
. Blue color shows a gain

of electronic density, while the red color shows a depletion in electronic density. The extra

electronic charge density in a system at U = 0.0 V is predominantly localized at the surface

and decreases in the subsurface graphene layers. The difference in charges on different layers

as obtained from Mulliken population analysis is -2.8 e on the outermost surface layers, -0.3

e on subsurface layers and -0.1 e on the central layer totalling a charge difference of -3.2

e (in other words, a gain of 3.2 electrons in the system at U = 0.0 V as compared to the

system at U = 1.0 V). Thus the electrons and electrolyte mutually affect each other upon a

variation in the voltage, similar to an experimental setup.
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Figure 9: Electrolyte concentration around a 5-layer graphene slab. (a) Canonical calculation
at constant charge (q = 0.0 e), (b) grand canonical calculation with Li+/Li as the reference
electrode at U = 0.0 V (c) same as (b) but at U = 1.0 V
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Figure 10: Difference in charge densities of a system at U = 1.0 V (with respect to Li+/Li)
from a system at U = 0.0 V (with respect to Li+/Li). (a) Electrolyte density ρd in a
plane bisecting the 5-layer graphene sheet orthogonally, (b) Electronic density isosurfaces at

ρe(r) = ±2.0× 10−3 e/Å
3
.
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4 Conclusions

We have developed a powerful and elegant new hybrid computational method combining

Density Functional Theory (DFT) and the Poisson-Boltzmann equation (P-BE) which is ca-

pable of simulating experimental electrochemistry, in the presence of solvent and electrolyte.

The method has been implemented in a way that offers several major advantages: Firstly,

it allows the simulations to take place under potential control, as in experimental electro-

chemistry. Secondly, it is based on linear-scaling DFT which can model nanoscale systems

with thousands of atoms allowing all complex materials features of the charged electrode

to be represented quantum-mechanically while neutralized by a counter electrolyte charge.

Finally, our approach can be calibrated with respect to common reference electrodes such

as the standard hydrogen electrode and the Li-metal electrode, which is used as a reference

electrode in Li-ion batteries.

We have demonstrated exemplar applications on the differential capacitance of graphene

based electrodes in supercapacitors and interfacial charge developed while connecting a

graphene based electrode with a Li metal electrode in a battery. However, our newly-

developed grand canonical method for performing simulations at constant voltage in elec-

trolyte environment, within linear-scaling DFT, is a general computational method for

ab initio electrochemistry and can be applied to all kinds of situations related to charged

electrochemical interfaces.

The electrolyte model in onetep is under active development. There are several as-

sumptions of the current model, which can be improved in further developments. One of

these is a linear dielectric response of the solvent. The model can be extended to include

non-linear response of the solvent which has been found to be important in applications in

Li-ion batteries.41 Another assumption is the point-size of electrolyte ions. The model can

be extended to include finite-size steric effects of electrolyte ions66 which can have signifi-

cant effect on the differential capacitance.15 The solvated electrolyte ions in Li-ion batteries

have finite steric size. Hence, these effects can be significant in such applications. The
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model together with further developments will lead to a platform for large-scale atomistic

simulations in electrochemistry from first principles. It can be used to produce predictions

that use the same language as experimentalists, enabling a new frontier in materials science:

computational electrochemical interface design.
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