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Abstract. In this paper, we study the magnitude and the duration of deep drawdowns
for the Lévy insurance risk model through the characterization of the Laplace transform
of a related stopping time. Relying on a temporal approximation approach (e.g., Li et al.
[17]), the proposed methodology allows for a uni�ed treatment of processes with bounded
and unbounded variation paths whereas these two cases used to be treated separately (e.g.,
Yin and Yuen [30]). In particular, we extend the results of Landriault et al. [14] and Surya
[28]. We later analyze certain limiting cases of our main results where consistency with some
known drawdown results in the literature will be shown.

1. Introduction

In insurance mathematics, drawdowns have drawn accrued interest in recent years. Draw-
downs are well known to quantify negative �uctuations in an index value relative to its running
maximum, a fact of utmost importance for risk management purposes. This is particularly
true in insurance contexts, where the insurer is concerned with extreme downward movements
in surplus levels. Over the past few decades, several risk measures involving drawdowns have
been studied. For example, in the fund management industry, drawdown-based performance
measures such as the Calmar, Burke and Martin ratios, are frequently used (e.g., Schuhmacher
and Elin [26] and Bacon [5]). In �nance and risk management, a great deal of research has
been carried on reducing drawdown risks including but not limited to Grossman and Zhou
[12] on portfolio optimization with drawdown constraints in a Black-Scholes framework, Cvi-
tanic and Karatzas [9] on its generalization with several risky assets, and Chen et al. [8] on
minimizing the probability that a drawdown occurs over a lifetime investment. Also, new
portfolio sensitivities with respect to the running maximum and drawdowns of the underlying
asset are de�ned by Pospisil and Vecer [24]. Shepp and Shiryaev [27] studied the pricing of
the perpetual American options, also known as Russian options, where strong ties are shown
to drawdown.

From a more theoretical standpoint, Taylor [29] studied the joint Laplace transform of the
time to a given drawdown and its related running maximum for the class of Brownian motions.
The generalization to a time-homogeneous di�usion process can be found in Lehoczky [16]. A
more general treatment of drawdown quantities the Lévy insurance risk model has been studied
by Mijatovic et al. [22] and Baurdoux et al. [6]. Building on the aforementioned papers,
Palmowski and Tumilewicz [23] studied fair valuation of insurance contracts against drawdown
(and drawup) of log-returns of stock price modelled by a spectrally negative geometric Lévy
process. Also, Avram et al. [3] studied the pricing of Russian options for the same model.
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Another risk which aims to capture drops in capital levels is the so-called time under water,
i.e. the duration from a previous running maximum to a new one. This duration, also known
as the "Time to Recover" in the fund management industry, has been studied via an analysis
of its Laplace transform by Landriault et al. [14] for general Lévy processes. The duration of
drawdowns is also related to the idea of Parisian ruin with deterministic delays. The latter
was �rst studied by Dassios and Wu [10, 11] for the Brownian motion process and Cramér-
Lundberg process with exponential claims, respectively. In a more general setup, Loe�en et
al. [20] generalized these results to the general class of spectrally negative Lévy processes.
Also, for this type of ruin, an expression for the probability of Parisian ruin for the refracted
process was studied by Lkabous et al. [18].

Recently, under the spectrally negative Lévy framework, Surya [28] used the spatial ap-
proximation approach (e.g., Loe�en et al. [20] and Landriault et al. [15]) to study the Laplace
transform of the duration of drawdowns when the underlying process is monitored continu-
ously, and the clock rings the �rst time the duration of a drawdown of a given magnitude
exceeds a pre-speci�ed time threshold r > 0. It is worth pointing out that, in [14] and [28],
the analysis of the Laplace transform of the duration of a drawdown is splitted into two cases,
depending on whether the process is of bounded or unbounded variation.

From a risk management standpoint, large drawdowns should be considered as extreme
events of which both the severity and duration need to be given special consideration. In this
paper, we consider a particular stopping time related to the underlying drawdown process
which aims to capture both the severity and duration aspects. We make use of the Poisson
observation scheme to conduct the technical analysis (e.g., [1], [2] and [17]). We consider the
following observation scheme for monitoring the risk process:

• in shallow-water drawdown-zone (when the drawdown process Y does not exceed a
pre-speci�ed level a), the drawdown process is observed at the arrival times of an
independent Poisson process;
• in deep-water drawdown-zone (when the drawdown process Y exceeds level a), the
drawdown process is observed continuously until either the drawdown process goes
above level b or a pre-speci�ed time threshold r is reached before the process returns
in the shallow-water drawdown-zone.

Note that the barrier b can be interpreted as a critical depth level above which the process
is unlikely to recover from its running maximum whereas the level a could be seen as a recovery
barrier. The time threshold r can also be interpreted as a grace period given to the drawdown
process to return into the shallow-water drawdown zone.

An important contribution of this paper is that the Poissonian observation scheme pro-
vides a uni�ed methodology to carry the analysis for processes with bounded or unbounded
variation paths, whereas these two cases are treated separately using the traditional spatial
approximation approach (see, e.g., Albrecher et al. [2] and Li et al. [17]). We later consider
limiting cases of our main results in order to recover known results pertaining to the draw-
down process in the literature. Our model can also be applied in modelling the ruin of a
dividend-paying company as in Avram et al. [4], Pérez and Yamazaki [25] among others.

The rest of the paper is organized as follows. In Section 2 , we give the necessary background
material on spectrally negative Lévy processes and scale functions. In Section 3, we present
our model in more details together with some �uctuation identities for the drawdown process.
The main result as well as a (new) technical lemma are presented in Section 4. In Section 5,
we analyze limiting cases in order to recover previous drawdown-related results. Many proofs
are postponed to the Appendices A and B.
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2. Preliminaries

In this section, we present the necessary background material on spectrally negative Lévy
processes.

A Lévy insurance risk process X = {Xt}t≥0 is a process with stationary and independent
increments and no positive jumps. To avoid trivialities, we exclude the case where X has
monotone paths. As the Lévy process X has no positive jumps, its Laplace transform exists,
namely

E
[
eλXt

]
= etψ(λ),

for all λ, t ≥ 0, where

ψ(λ) = γλ+
1

2
σ2λ2 +

∫ 0

−∞

(
eλz − 1− λz1{z>−1}

)
Π(dz),

for γ ∈ R and σ ≥ 0, and where Π is a σ-�nite measure on (−∞, 0) called the Lévy measure
of X which is assumed to satisfy ∫ 0

−∞
(1 ∧ z2)Π(dz) <∞.

Throughout, we will use the standard Markovian notation: the law of X when starting from
X0 = x is denoted by Px and the corresponding expectation by Ex. For simplicity, we write
P and E when x = 0. We also use the following notation: the law of X when starting from
X0 = x and with current maximum y(≥ x) is denoted by Pyx and the corresponding expectation
by Eyx. We write Py and Ey when x = 0. We also denote the �rst passage time above b of X
by

τ+
b = inf {t ≥ 0 : Xt ≥ b} .

We now present the de�nition of the scale functions Wq and Zq of X. First, recall that there
exists a function Φ: [0,∞)→ [0,∞) de�ned by Φq = sup{λ ≥ 0 | ψ(λ) = q} (the right-inverse
of ψ) such that

ψ(Φq) = q, q ≥ 0.

Now, for q ≥ 0, the q-scale function for the process X, namely Wq(x) (x ≥ 0), is de�ned as
the continuous function on [0,∞) with Laplace transform∫ ∞

0
e−λyWq(y)dy =

1

ψq(λ)
, λ > Φq, (1)

where ψq(λ) = ψ(λ) − q. This function is unique, positive and strictly increasing for x ≥ 0
and is further continuous for q ≥ 0. For convenience, we extend Wq to the whole real line by
setting Wq(x) = 0 for x < 0. We write W = W0 when q = 0.

It is well known that the scale function Wq belongs to C
1(0,∞) if the process X has paths

of unbounded variation or if the process X has paths of bounded variation and the Lévy
measure has no atom.

The initial value of Wq is given by

Wq(0+) =

{
1/c when X has bounded variation,

0 when X has unbounded variation,
(2)
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where c = γ +
∫

(−1,0) |z|Π(dz).

We also de�ne another scale function Zq(x, θ) by

Zq(x, θ) = eθx
(

1− ψq(θ)
∫ x

0
e−θyWq(y)dy

)
, x ≥ 0, (3)

and Zq(x, θ) = eθx for x < 0. For θ = 0, we get

Zq(x, 0) = Zq(x) = 1 + q

∫ x

0
Wq(y)dy, x ∈ R. (4)

Using (1), whenever θ > Φq, an alternative representation for Zq(x, θ) is given by

Zq(x, θ) = ψq(θ)

∫ ∞
0

e−θyWq(x+ y)dy, x ≥ 0, (5)

We denote the derivative of Zq(x, θ) with respect to x by

Z ′q (x, θ) = θZq (x, θ)− ψq (θ)Wq (x) . (6)

A second generation scale function was introduced by Loe�en et al. [21], that is, for
p, p+ q ≥ 0 and x ∈ R,

W(p,q)
a (x) = Wp (x) + q

∫ x

a
Wp+q (x− y)Wp (y) dy

= Wp+q (x)− q
∫ a

0
Wp+q (x− y)Wp (y) dy, (7)

whose Laplace transform is of the form∫ ∞
0

e−θzW(p,q)
a (a+ z) dz =

Zp (a, θ)

ψp+q(θ)
, θ > Φp+q. (8)

Note that the two expressions on the right-hand side of (7) can be shown to be equivalent
using the following identity from Loe�en et al. [21]: for p, q ≥ 0 and x ∈ R,

(p− q)
∫ x

0
Wq(x− y)Wp(y)dy = Wp(x)−Wq(x). (9)

The derivative of W(p,q)
a with respect to x is given by

W(p,q)′
a (x) = W ′p+q (x)− q

∫ a

0
W ′p+q (x− y)Wp (y) dy. (10)

Also, �uctuation identities involving delays for spectrally negative Lévy processes are ex-
pressed in terms of new scale functions. In Loe�en et al. [19], the so-called delayed q-scale
function of X is introduced, that is, for q ≥ 0, r > 0 and x ∈ R,

Λ(q) (x, r) =

∫ ∞
0

Wq (x+ z)
z

r
P (Xr ∈ dz) . (11)

We write Λ = Λ(0) when q = 0. For later use, it can be shown that∫ ∞
0

e−θr
(

e−qrΛ(q)(x, r)
)

dr =
Zq (x,Φθ+q)

θ
, θ > 0, x ∈ R, (12)

and consequently,

Λ(q) (0, r) = eqr. (13)
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We also note that the partial derivative of Λ(q) with respect to x is given by

Λ(q)′(x, r) =

∫ ∞
0

W ′q (x+ z)
z

r
P (Xr ∈ dz) .

The well-known expression for the Laplace transform of the �rst passage time above a is given
by

Ex
[
e−qτ

+
a

]
= eΦq(x−a). (14)

Finally, we recall Kendall's identity that provides the distribution of the �rst upward crossing
of a speci�c level (see [7, Corollary VII.3]): on (0,∞)× (0,∞), we have

rP(τ+
z ∈ dr)dz = zP(Xr ∈ dz)dr. (15)

For more details on spectrally negative Lévy processes and �uctuation identities, we refer
the reader to Kyprianou [13].

3. Our model and problem formulation

The drawdown process of a Lévy insurance risk process X is de�ned as

Yt = X̄t ∨ y −Xt, t ≥ 0, (16)

where X̄t = sups≤tXs is the running maximum of X up to time t and y is a past maximum
achieved by X. The �rst passage times of Y are given by

ρ−a = inf {t ≥ 0 : Yt ≤ a} and ρ+
b = inf {t ≥ 0 : Yt ≥ b} ,

with the convention inf ∅ = ∞. We de�ne the following discrete observation time nodes
{ξn}n∈N+

where ξ0 = 0 and, for n ∈ N+,

ξn = ξn−1 + ρ−a ◦ θξn−1 + eλn, for n ∈ N+,

where θ is the Markov shift operator (Ys◦θt = Ys+t) and
{

eλn
}
n∈N+

is a sequence of independent

and identically distributed (iid) exponential rv's with mean 1/λ > 0 (also independent of X).
The duration of deep drawdowns with ultimate barrier b, a recovery barrier a(< b) and a

pre-speci�ed time threshold r > 0 is de�ned as

κλ,ra,b = inf
{
t ∈
(
ξn, (ρ

−
a ◦ θξn)

)
: Yt > b or t− ξn ≥ r, n ∈ N

}
. (17)

More speci�cally, when the drawdown process Y is below a pre-speci�ed level a, it is monitored
discretely according to the arrival times of an independent Poisson process with rate λ. As
soon as the drawdown process is observed above level a, the observation scheme reverts to the
continuous scheme at which time a �xed period r is granted for the drawdown process Y to
return to level a contingent on the drawdown level never reaches the ultimate barrier level b
in the process (see Figure 1 for a simple path illustration). We point out that the following
two stopping times can be viewed as limiting cases of (17)

κλ,ra = inf
{
t ∈
(
ξn, (ρ

−
a ◦ θξn)

)
: t− ξn ≥ r, n ∈ N

}
, (18)

and

κra = inf {t > 0 : t− gat ≥ r} , (19)

where gat = sup {s ≤ t : Yt ≤ a} is the last time before time t that the process Y is below
level a > 0. When a = 0, we write κr0 = κr. We point out that the stopping times κra and κ

r

were studied in [14] and [28], respectively.
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Next, we recall some �uctuation identities for the drawdown process Y which will be useful
in the sequel. For a ≤ y ≤ b, we know from e.g. Proposition 2.5 of Surya [28], that

Ey
[
e−qρ

−
a 1{ρ−a <ρ+b }

]
=
Wq (b− y)

Wq (b− a)
, (20)

and

Ey
[
e−qρ

+
b 1{ρ+b <ρ−a }

]
= Zq (b− y)− Wq (b− y)

Wq (b− a)
Zq (b− a) . (21)

For convenience, we recall a result from Albrecher et al. [2] concerning the joint Laplace

transform of
(
T+
a , YT+

a

)
, where

T+
a = min{ξi : Yξi > a, i ∈ N}.

Lemma 1. For s = y − x (where y ≥ x), a, λ > 0 and p, q ≥ 0,

Eyx
[
e
−qT+

a −p
(
Y
T+
a
−a
)]

=
λ

λ− ψq (p)

(
Zq (a− s, p)−

Zq (a− s,Φλ+q)

Z ′q (a,Φλ+q)
Z ′q (a, p)

)
. (22)

Letting λ → ∞, (22) converges to the following expression of the joint Laplace transform
of ρ+

a and the overshoot Yρ+a given in Theorem 1 of Avram et al. [3].

Lemma 2. For s = y − x (where y ≥ x), a > 0 and p, q ≥ 0,

Eyx
[
e
−qρ+a −p

(
Y
ρ+a
−a
)]

= Zq (a− s, p)− Wq (a− s)
W ′q (a)

Z ′q (a, p) . (23)

t

a

b

Yt

ξ0 ξ1 ξ2 ξ3 ξ4 = T+
a

κλ,ra,b

r

Figure 1. Illustration of the duration of drawdowns κλ,ra,b . The red and green
regions correspond to the continuous and discrete observation regions respec-
tively.

4. Main results

In this section, we state in Theorem 6 our main result pertaining to the Laplace transform

of κλ,ra,b . The proof relies on a temporal argument approach similar to e.g., Li et al. [17]. Before
presenting our main result, we �rst give the following new results for the drawdown process
Y .
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Lemma 3. For s = y − x (where y ≥ x), a, z, λ > 0 and p, q ≥ 0,

Eyx
[
e−qT

+
a 1{

Y
T+
a
−a∈dz,T+

a <∞
}]

= λ

(
Zq (a− s,Φλ+q)

Z ′q (a,Φλ+q)

(
W(q,λ)′
a (a+ z)− λWq (a)Wq+λ (z)

)
−W(q,λ)

a−s (a− s+ z)

)
dz. (24)

Consequently,

Eyx
[
e−qT

+
a Wp

(
b− YT+

a

)
1{T+

a <∞}
]

= λ
Zq (a− s,Φλ+q)

Z ′q (a,Φλ+q)

∫ b−a

0
Wp (b− a− z)

(
W(q,λ)′
a (a+ z)− λWq (a)Wq+λ (z)

)
dz

−λ
∫ b−a

0
Wp (b− a− z)W(q,λ)

a−s (a− s+ z) dz, (25)

and

Eyx
[
e−qT

+
a Zp

(
b− YT+

a

)
1{T+

a <∞}
]

= λ
Zq (a− s,Φλ+q)

Z ′q (a,Φλ+q)

(∫ ∞
0

Zp (b− a− z)W(q,λ)′
a (a+ z)− λWq (a)Wq+λ (a)

)
dz

− λ
∫ ∞

0
Zp (b− a− z)W(q,λ)

a−s (a− s+ z) dz. (26)

Proof. See the proof in Appendix A �

Remark 4. As shown in [14], there exists a relationship between the potential measure
Pyx
(
Yeq − a ∈ dz, T+

a > eq
)
and the Gerber-Shiu function on the left-hand side of (24). This

is the case as

Eyx
[
e−qT

+
a 1{

Y
T+
a
−a∈dz,T+

a <∞
}] =

∫ ∞
0

e−qtPyx
(
Yt − a ∈ dz, T+

a ∈ dt
)

= λ

∫ ∞
0

e−qtPyx
(
Yt − a ∈ dz, T+

a > t
)

dt

=
λ

q
Pyx
(
Yeq − a ∈ dz, T+

a > eq
)
.

Remark 5. An interesting and simple proof to obtain the continuous analogue of (25) is
presented next. From (23), we have

Eyx
[
e
−qρ+a −p

(
Y
ρ+a
−a
)]

ψq (p)
=
Zq (a− s, p)

ψq (p)
− Wq (a− s)

W ′q (a)

Z ′q (a, p)

ψq (p)
, (27)

and using (1), it follows that

Eyx
[
e
−qρ+a −p

(
Y
ρ+a
−a
)]

ψq (p)
=

∫ ∞
0

e−pz
(∫ z

0
Wq (z − y)Eyx

[
e−qρ

+
a 1{

Y
ρ+a
−a∈dy,ρ+a <∞

}]) dz

=

∫ ∞
0

e−pzEyx
[
e−qρ

+
aWq

(
z + a− Yρ+a

)
1{ρ+a <∞}

]
dz.
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Thus, by making use of (1), (37) and (39) and by uniqueness of Laplace transforms, we obtain

Eyx
[
e−qρ

+
aWq

(
z − a− Yρ+a

)
1{ρ+a <∞}

]
= Wq (a− s+ z)− Wq (a− s)

W ′q (a)
W ′q (a+ z) .

For notational convenience, we �rst introduce two auxiliary functions, namely g
(q)
λ (a, b, r, y)

and h
(q)
λ (a, b, r, y), de�ned as

g
(q)
λ (a, b, r, y) = Ey

[
e−qT

+
a EYT+

a

[
e−qρ

−
a 1{ρ−a ≤r∧ρ+b }

]
1{T+

a <∞}
]
,

h
(q)
λ (a, b, r, y) = Ey

[
e−qT

+
a EYT+

a

[
e−q(r∧ρ

+
b )1{ρ−a >r∧ρ+b }

]
1{T+

a <∞}
]
,

for a, y ∈ R, q, θ ≥ 0, a, r, λ > 0, and b > a. The functions g
(q)
λ and h

(q)
λ are closely related

to Lemma 3 and they are de�ned trough their LT with respect to r. Thus, for a given scale
function, it could be possible to compute the LT and take inverse analytically (or numerically)
with respect to r. This can be seen by the Laplace transforms of these two functions in (45)
and (46), respectively.

In the next theorem, we provide a semi-explicit expression for the Laplace transform of

κλ,ra,b .

Theorem 6. For v = y − x where y ≥ x, a, b, q ≥ 0 and r, λ > 0,

Eyx
[
e
−q
(
κλ,ra,b−r

)]
= h

(q)
λ (a, b, r, v) +

g
(q)
λ (a, b, r, v)

1− g(q)
λ (a, b, r, a)

h
(q)
λ (a, b, r, a) . (28)

Proof. See proof in Appendix A. �

Now, we turn our attention to the Laplace transform of κλ,ra which can be derived as a

limiting case of κλ,ra,b when b→∞. Again, for notational convenience, we de�ne the following
auxiliary functions, for λ, r > 0, q ≥ 0 and u ∈ R,

D(q) (u, r) = Zq (u) + q

∫ r

0
Λ(q) (u, s) ds, (29)

K(q) (u, r, λ) = eλr
(
Zq (u,Φλ+q)− λ

∫ r

0
e−(λ+q)sΛ(q) (u, s) ds

)
, (30)

and we denote their respective partial derivatives with respect to u by

D(q)′(u, r) =
∂

∂u
D(q)(u, r) = qWq(u) + q

∫ r

0
Λ(q)′ (u, s) ds,

K(q)′ (u, r, λ) =
∂

∂u
K(q)(u, r, λ) = eλr

(
Z ′q (u,Φλ+q)− λ

∫ r

0
e−(λ+q)sΛ(q)′ (u, s) ds

)
.

Corollary 7. For v = y − x where y ≥ x, q ≥ 0 and a, r, λ > 0,

Eyx
[
e−q(κ

λ,r
a −r)

]
=

λ

λ+ q

(
D(q) (a− v, r)−K

(q) (a− v, r, λ)

K(q)′ (a, r, λ)
D(q)′ (a, r)

)
. (31)

Proof. See proof in Appendix A. �

Setting q = 0 in (6), the following corollary is an immediate consequence of the last
corollary.
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Corollary 8. For y ≥ x and a, r, λ > 0,

Pyx
(
κλ,ra <∞

)
= 1. (32)

5. Limiting analysis

In this section, we consider certain limiting cases of Theorem 6 and show their consistency
with known results in the literature.

We begin by examining the limiting case of Corollary 7 when λ→∞. We later show that
this result is in agreement with Theorem 1 in Surya [28].

Proposition 9. For v = y − x where y ≥ x, q ≥ 0 and a, r > 0, we have

lim
λ→∞

Eyx
[
e−q(κ

λ,r
a −r)

]
= D(q) (a− v, r)− Λ(q) (a− v, r)

Λ(q)′ (a, r)
D(q)′ (a, r) . (33)

Proof. First, we show a limiting result pertaining to the function K(q) de�ned in (30), namely

lim
λ→∞

K(q) (u, r, λ) = e−qrΛ(q) (u, r) .

Using (5) and (11), we rewrite (30) as

K(q) (u, r, λ) = λeλr
∫ ∞

0
Wq (u+ z)

(
e−Φλ+qz −

∫ r

0
e−(λ+q)sP

(
τ+
z ∈ ds

))
dz.

Later, with the help of (14) and Kendall's identity in (15), it becomes

K(q) (u, r, λ) =

∫ ∞
0

Wq (u+ z)

(
λeλr

∫ ∞
r

e−(λ+q)sP
(
τ+
z ∈ ds

))
dz

= λ

∫ ∞
r

e−λ(s−r)
(

e−qs
∫ ∞

0
Wq (u+ z)

z

s
P (Xs ∈ dz)

)
ds. (34)

By taking the limit as λ → ∞ on both sides of (34) and using the initial value theorem of
Laplace transform,

lim
λ→∞

K(q) (u, r, λ) = lim
λ→∞

λ

∫ ∞
r

e−λ(s−r)
(

e−qs
∫ ∞

0
Wq (u+ z)

z

s
P (Xs ∈ dz)

)
ds

= e−qrΛ(q) (u, r) .

Finally, using similar steps, one can easily show that

lim
λ→∞

K(q)′ (u, r, λ) = e−qrΛ(q)′ (u, r) .

This ends the proof. �

Remark 10. We point out that, by substituting the expressions of D(q), Λ(q), D(q)′ and Λ(q)′

in (33), Proposition 9 corresponds to Theorem 1 of Surya [28] which has been presented as

Eyx
[
e−q(κ

r
a−r)

]
= 1 + q

∫ a−v

0
Wq(u)du− qΛ(q) (a− v, r)

Λ(q)′ (a, r)
Wq(a)

+q

∫ r

0

(
Λ(q) (a− v, t)− Λ(q) (a− v, r)

Λ(q)′ (a, r)
Λ(q)′ (a, t)

)
dt. (35)

9



Now, in order to recover the Laplace transform of T+
a in (22) (for p = 0), we state (without

proof) the limiting case when r → 0.

Proposition 11. For s = y − x where y ≥ x, q ≥ 0 and a, r > 0,

lim
r→0

Eyx
[
e−q(κ

λ,r
a −r)

]
=

λ

λ+ q

(
Zq (a− s)− q

Zq (a− s,Φλ+q)

Z ′q (a,Φλ+q)
Wq (a)

)
.

Combining the last two propositions, we therefore have

lim
r→0

lim
λ→∞

Eyx
[
e−q(κ

λ,r
a −r)

]
= lim

λ→∞
lim
r→0

Eyx
[
e−q(κ

λ,r
a −r)

]
= Eyx

[
e−qρ

+
a

]
.
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Appendix A. Proofs

A.1. Proof of Lemma 3. First, we consider the Gerber-Shiu distribution of Y at the Poisson
observation T+

a , that is

Eyx
[
e−qT

+
a 1{

Y
T+
a
−a∈dz,T+

a <∞
}] .

To do so, we �rst rewrite (22) as

Eyx
[
e
−qT+

a −p
(
Y
T+
a
−a
)]

=
λ

ψq+λ (p)

(
Zq (a− s,Φλ+q)

Z ′q (a,Φλ+q)
Z ′q (a, p)− Zq (a− s, p)

)
, (36)

and aim to invert (36) with respect to p. From (8), we know that

Zq (a− s, p)
ψq+λ (p)

=

∫ ∞
0

e−pzW(q,λ)
a−s (a− s+ z) dz. (37)

Also, from (6),

Z ′q (a, p)

ψq+λ (p)
=

pZq (a, p)

ψq+λ (p)
−
(

1 +
λ

ψq+λ (p)

)
Wq (a) . (38)

Given that from (37),

p
Zq (a, p)

ψq+λ (p)
−Wq (a) =

∫ ∞
0

e−pzW(q,λ)′
a (a+ z) dz,

we obtain

Z ′q (a, p)

ψq+λ (p)
=

∫ ∞
0

e−pzW(q,λ)′
a (a+ z) dz − λWq (a)

∫ ∞
0

e−pzWq+λ (z) dz. (39)
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Substituting (37) and (39) into (36), and inverting the resulting equation with respect to p
yield (24).

Using the Gerber-Shiu distribution in (24), we obtain

Eyx
[
e−qT

+
a Wp

(
b− YT+

a

)
1{T+

a <∞}
]

=

∫ b−a

0
Wp (b− a− z)Eyx

[
e−qT

+
a 1{

Y
T+
a
−a∈dz,T+

a <∞
}]

= λ
Zq (a− s,Φλ+q)

Z ′q (a,Φλ+q)

∫ b−a

0
Wp (b− a− z)

(
W(q,λ)′
a (a+ z)− λWq (a)Wq+λ (z)

)
dz

−λ
∫ b−a

0
Wp (b− a− z)W(q,λ)

a−s (a− s+ z) dz,

which completes the proof of (25). Finally, the proof of (26) follows similarly.

A.2. Proof of Theorem 6. First, we set x = 0. For a < y < b, performing a standard
probabilistic decomposition using the strong Markov property of Y and spectral negativity of
X, we can write

Ey
[
e−qκ

λ,r
a,b

]
= Ey

[
e−q(r∧ρ

+
b )1{ρ−a >r∧ρ+b }

]
− Ey

[
e−qρ

−
a 1{ρ−a ≤r∧ρ+b }

]
Ea
[
e−qκ

λ,r
a,b

]
. (40)

For y ≤ a and using again the strong Markov property of Y , we have

Ey
[
e−qκ

λ,r
a,b

]
= Ey

[
e−qT

+
a EYT+

a

[
e−qκ

λ,r
a,b1{

κλ,ra <∞
}]1{T+

a <∞}

]
. (41)

Substituting (40) into (41), yields

Ey
[
e−qκ

λ,r
a,b

]
= Ey

[
e−qT

+
a EYT+

a

[
e−q(r∧ρ

+
b )1{ρ−a >r∧ρ+b }

]
1{T+

a <∞}
]

+ Ey
[
e−qT

+
a EYT+

a

[
e−qρ

−
a 1{ρ−a ≤r∧ρ+b }

]
1{T+

a <∞}
]
Ea
[
e−qκ

λ,r
a

]
, (42)

for all y ∈ R. From the de�nitions of g
(q)
λ and h

(q)
λ , we can now rewrite (42) as

Ey
[
e−qκ

λ,r
a,b

]
= h

(q)
λ (a, b, r, y) + g

(q)
λ (a, b, r, y)Ea

[
e−qκ

λ,r
a,b

]
. (43)

Let y = a. Solving (43) for Ea
[
e−qκ

λ,r
a,b1{

κλ,ra <τ+b

}], one obtains
Ea
[
e−qκ

λ,r
a,b1{

κλ,ra,b<τ
+
b

}] =
h

(q)
λ (a, b, r, a)

1− g(q)
λ (a, b, r, a)

. (44)

Thus, plugging (44) in (43), we obtain

Ey
[
e
−q
(
κλ,ra,b−r

)]
= h

(q)
λ (a, b, r, y) +

g
(q)
λ (a, b, r, y)

1− g(q)
λ (a, b, r, a)

h
(q)
λ (a, b, r, a) .
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Taking the Laplace transform (in r) of g
(q)
λ and h

(q)
λ and using Fubini's theorem together with

(20) and (21), we obtain∫ ∞
0

e−θrg
(q)
λ (a, b, r, y) dr =

Ey
[
e−qT

+
a EYT+

a

[
e−qρ

−
a 1{ρ−a ≤eθ∧ρ+b }

]
1{T+

a <∞}
]

θ

=
1

θ

1

Wθ+q (b− a)
Ey
[
e−qT

+
a Wθ+q

(
b− YT+

a

)
1{T+

a <∞}
]
, (45)

and ∫ ∞
0

e−θrh
(q)
λ (a, b, r, y) dr

=
Ey
[
e−qT

+
a EYT+

a

[
e−(q+θ)ρ+b 1{ρ+b <ρ−a }

]
1{T+

a <∞}
]

θ

−
Ey
[
e−qT

+
a EYT+

a

[
e−(θ+q)(ρ−a ∧ρ+b )

]
1{T+

a <∞}
]

θ + q
+

Ey
[
e−qT

+
a

]
θ + q

=
q

(θ + q) θ
Ey
[
e−qT

+
a Zθ+q

(
b− YT+

a

)
1{T+

a <∞}
]

+
Ey
[
e−qT

+
a

]
θ + q

+
1

(θ + q) θ

(θ − qZθ+q (b− a))

Wθ+q (b− a)
Ey
[
e−qT

+
a Wθ+q

(
b− YT+

a

)
1{T+

a <∞}
]
. (46)

The above expectations can be computed using (25) and (26). The �nal result follows by the
spatial homogeneity of X.

A.3. Proof of Corollary 7. In this case, the probabilistic decomposition leads to

Ey
[
e−qκ

λ,r
a

]
= e−qrEy

[
e−qT

+
a

]
− e−qrEy

[
e−qT

+
a PYT+

a

(
ρ−a ≤ r

)]
+Ey

[
e−qT

+
a EYT+

a

[
e−qρ

−
a 1{ρ−a ≤r}

]
1{T+

a <∞}
]
Ea
[
e−qκ

λ,r
a

]
,

(47)

for all y ∈ R. The functions g(q)
λ and h

(q)
λ reduce to

g
(q)
λ (a, r, y) = Ey

[
e−qT

+
a EYT+

a

[
e−qρ

−
a 1{ρ−a ≤r}

]]
,

and

h
(q)
λ (a, r, y) = e−qrEy

[
e−qT

+
a

]
− e−qrEy

[
e−qT

+
a PYT+

a

(
ρ−a ≤ r

)]
.

Thus, from (22), we have∫ ∞
0

e−θrEy
[
e−qT

+
a PYT+

a

(
ρ−a ≤ r

)]
dr =

1

θ
Ey
[
e−qT

+
a e

Φθ

(
a−Y

T+
a

)]
=

λ

θ (θ − (q + λ))

(
Z ′q (a− y,Φθ)

Zq (a− s,Φλ+q)

Z ′q (a,Φλ+q)
− Zq (a− y,Φθ)

)
, (48)

and∫ ∞
0

e−θrg
(q)
λ (a, r, y) dr =

1

θ
Ey
[
e−qT

+
a e

Φθ+q

(
a−Y

T+
a

)]
13



=
λ

θ (λ− θ)

(
Zq (a− y,Φθ+q)− Z ′q (a− y,Φθ+q)

Zq (a− s,Φλ+q)

Z ′q (a,Φλ+q)

)
. (49)

Now, using the following identities (which can be proved using Kendall's identity and (14))

Zq (u,Φq+θ)

(θ − λ) θ
=

∫ ∞
0

e−θr
(

eλr
∫ r

0
e−(λ+q)sΛ(q) (u; s) ds

)
dr,

Zq (u,Φθ)

(θ − (λ+ q)) θ
=

∫∞
0 e−θr

(∫ r
0

(
q + λe(λ+q)(r−s))Λ(q) (u, s) ds

)
dr

λ+ q
,

Z ′q (u,Φq+θ)

(θ − λ) θ
=

∫ ∞
0

e−θr
(

eλr
∫ r

0
e−(λ+q)sΛ(q)′ (u, s) ds

)
dr,

Z ′q (u,Φθ)

(θ − λ− q) θ
=

∫∞
0 e−θr

(∫ r
0

(
q + λe(λ+q)(r−s))Λ(q)′ (u, s) ds

)
dr

λ+ q
,

leads to

g
(q)
λ (a, r, y) =

λ

λ+ q

Zq (a− y,Φλ+q)

Z ′q (a,Φλ+q)

(∫ r

0

(
q + λe(λ+q)(r−s)

)
Λ(q)′ (a, s) ds

)
− λ

λ+ q

∫ r

0

(
q + λe(λ+q)(r−s)

)
Λ(q) (a− y, s) ds,

and

h
(q)
λ (a, r, y) =

λe−qr

λ+ q

(
Zq (a− s)−

Zq (a− s,Φλ+q)

Z ′q (a,Φλ+q)
Z ′q (a)

)
+
Zq (a− y,Φλ+q)

Z ′q (a,Φλ+q)

(
λeλr

∫ r

0
e−(λ+q)sΛ(q)′ (a, s) ds

)
− λeλr

∫ r

0
e−(λ+q)sΛ(q) (a− y, s) ds.

For y = a, we obtain

h
(q)
λ (a, r, a) =

λeλr

λ+ q
− λe−qr

λ+ q

∫ r
0

(
q + λe(λ+q)(r−s))Λ(q)′ (a, s) ds

Z ′q (a,Φλ+q)
− λe−qr

λ+ q

qWq (a)

Z ′q (a,Φλ+q)
,

and

1− g(q)
λ (a, r, y) = eλr −

(
λeλr

∫ r
0 e−(λ+q)sΛ(q)′ (a, s) ds

)
Z ′q (a,Φλ+q)

.

Thus, we have the following expression for Ea
[
e−qκ

λ,r
a 1{

κλ,ra <τ+b

}].
Ea
[
e−qκ

λ,r
a 1{

κλ,ra <τ+b

}] =
λ

λ+ q

1−
q
(∫ r

0 Λ(q)′ (u, s) ds+Wq (a)
)

e(λ+q)r
(
Z ′q (a,Φλ+q)− λ

∫ r
0 e−(λ+q)sΛ(q)′ (a, s) ds

)


=
λ

λ+ q

(
1− e−qrD(q)′ (a, r)

K(q)′ (a, r, λ)

)
.
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The result follows by substituting the above formula and the expressions of g
(q)
λ (a, r, y) and

h
(q)
λ (a, r, y) into (47).

Appendix B.

Landriault et al. [14] studied the Laplace transform of κr and provided two expressions
depending on whether the Lévy process has bounded or unbounded variation. We summarize
their results in the following theorem.

Theorem 12. Let q ≥ 0 and r > 0.
If X is of unbounded variation,

E0
[
e−q(κ

r−r)
]

=
e−qr

∫∞
r

1
sp
X
s (0) ds

q
∫ r

0 e−qt
∫∞
t

1
sp
X
s (0) dsdt+ e−qr

∫∞
r

1
sp
X
s (0) ds

, (50)

where pXs (z) is the density of Xs.
If X is of bounded variation,

E0
[
e−q(κ

r−r)
]

=

∫∞
0 P

(
X̄r ≤ y

)
Π(−dy)

q +
∫∞

0 P
(
X̄eq∧r ≤ y

)
Π(−dy)

. (51)

where eq is an independent exponential rv with mean 1/q.

Now, we make a connection between the results in [14] and [28]. Using (13), we have

D(q) (0, r) = 1 + q

∫ r

0
Λ(q) (0, s) ds = eqr,

D(q)′(u, r) = qWq(0) + q

∫ r

0
Λ(q)′ (0, s) ds.

Hence, we obtain

E0
[
e−qκ

r]
= e−qr

(
D(q) (0, r)− Λ(q) (0, r)

Λ(q)′ (0, r)
D(q)′ (0, r)

)

= 1− q
Wq (0) +

∫ r
0 Λ(q)′ (0, s) ds

Λ(q)′ (0, r)
. (52)

Using Kendall's identity (15), Tonelli's theorem and an integration by parts, we obtain the
following Laplace transforms∫ ∞

0
e−θrΛ(q)′ (0, r) dr = −Wq (0) +

Φθ

θ − q
, (53)

and ∫ ∞
0

e−θr
(∫ r

0
Λ(q)′ (0, s) ds

)
dr = −Wq (0)

θ
+

Φθ

θ (θ − q)
. (54)

In the case where X has paths of unbounded variation (Wq (0) = 0), and by Laplace inversion,
we obtain

Λ(q)′ (0, r) = qeqr
∫ r

0
e−qt

∫ ∞
t

1

s
pXs (0) dsdt+

∫ ∞
r

1

s
pXs (0) ds,

and ∫ r

0
Λ(q)′ (0, s) ds = eqr

∫ r

0
e−qt

∫ ∞
t

1

s
pXs (0) dsdt.
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Putting the pieces together, we obtain the result in (50)
Now, we suppose that X is of bounded variation (Wq(0) > 0). First, we notice from (53)

and (54) that

Λ′ (0, r) = Λ(q)′ (0, r)− q
∫ r

0
Λ(q)′ (0, s) ds− qWq(0).

Then, we can rewrite (52) as follows

E0
[
e−qκ

r]
= e−qr

Λ′ (0, r)

Λ(q)′ (0, r)
.

Finally, one can prove that

Λ′ (0, r) = W (0)

∫ ∞
0

P
(
X̄r ≤ y

)
Π(−dy),

and

e−qr
∫ r

0
Λ(q)′ (0, s) ds = Wq(0)

∫ ∞
0

P
(
X̄eq∧r ≤ y

)
Π(−dy),

by showing that the Laplace transforms in r of both sides are equal. Hence, we showed that

E0
[
e−q(κ

r−r)
]

=
Λ′ (0, r)

Λ(q)′ (0, r)
,

which corresponds to (35).
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