¹ Long COVID and post-infective fatigue syndrome – a review.

- ² Carolina X. Sandler PhD¹, Vegard B.B. Wyller PhD², Rona Moss-Morris PhD³, Dedra Buchwald PhD⁴,
- ³ Esther Crawley PhD⁵, Jeannine Hautvast PhD⁶, Ben Z Katz⁷, Hans Knoop⁸ PhD, Paul Little⁹, Renee
- ⁴ Taylor PhD¹⁰, Knut-Arne Wensaas PhD¹¹, and Andrew R. Lloyd PhD¹.
- 5

⁶ Affiliations and full address

- 7 1. The Kirby Institute, UNSW Sydney, Level 5 Wallace Wurth Building, NSW, Australia 2052.
- Dept. of Pediatrics and Adolescent Medicine, Akershus University Hospital, P.O Box 1078 1000,
 N-1478 Lørenskog, Norway. Institute of Clinical Medicine, University of Oslo, P.O.Box 1078
 Blindern, N-0316 Oslo, Norway.
- Health Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London
 5th floor Bermondsey Wing, Guy's Hospital, SE1 9RT, London,
- Institute for Research and Education to Advance Community Health, Washington State
 University, 1100 Olive Way, Ste 1200 Seattle, WA 98101, USA.
- Bristol Medical School, University of Bristol. Bristol. Centre for Academic Child Health, 1-5
 Whiteladies Road, Bristol BS8 3BN, United Kingdom.
- Department of Primary and Community Care, Radboud university medical centre, Nijmegen, PO
 box 9101 6500 HB, Nijmegen, the Netherlands
- Northwestern University Feinberg School of Medicine, Chicago, 420 E. Superior St. Chicago, IL
 60611 USA
- Department of Medical Psychology, Amsterdam University Medical Centers, Amsterdam Public
 Health Research Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The
 Netherlands
- Primary Care Research Centre, Primary Care Public Health and Medical Education Unit, Faculty of
 Medicine, University of Southampton
- College of Applied Health Sciences, University of Illinois at Chicago 808 S. Wood St., 167 CMET
 Chicago, IL 60612, USA.
- 28 11. Research Unit for General Practice, NORCE Norwegian Research Centre, Bergen, Norway.
- 29 Nygaardsgaten 112, 5008 Bergen, Norway
- 30

31 Corresponding author

- 32 Professor Andrew Lloyd
- 33 Program Head, Viral Immunology Systems Program (VISP)
- 34 Kirby Institute, UNSW Sydney
- 35 NSW 2052
- 36 Australia
- 37 <u>a.lloyd@unsw.edu.au</u>
- 38 <u>https://www.coffi-collaborative.com/</u>
- 39 +61 2 9385 2534
- 40
- 41 Manuscript: 3145 words
- 42

43 Key points (40 words)

• Fatigue after COVID-19 is common, but generally resolves over months, like other post-

45 infective fatigue states

• Post-COVID fatigue results from end-organ injury, mental health conditions, or idiopathic

47 post-COVID fatigue

- 48 Post-COVID fatigue should be assessed with validated questionnaires, interviews, and
- 49 protocolized investigations

50 Abstract (175 words)

51 Fatigue is a dominant feature of both acute and convalescent COVID-19 (sometimes termed 'long-52 COVID'), with up to 46% of patients reporting fatigue lasting weeks to months. The investigators of 53 the international Collaborative on Fatigue Following Infection (COFFI) conducted a systematic review 54 of post-COVID fatigue, a narrative review on fatigue after other infections and made 55 recommendations for clinical and research approaches to assessment of fatigue following COVID-19. 56 In the majority of COVID-19 cohort studies, persistent fatigue was reported by a significant minority 57 of patients, ranging from 13-33% at 16-20 weeks post symptom onset. Data from the prospective 58 cohort studies in COFFI and others, indicate that fatigue is also a prevalent outcome from many acute 59 systemic infections notably infectious mononucleosis, with a case rate for clinically-significant post-60 infective fatigue after exclusion of recognized medical and psychiatric causes, of 10-35% at 6 months. 61 To better characterize post-COVID fatigue, the COFFI investigators recommend: application of 62 validated screening questionnaires for case detection, standardized interviews encompassing fatigue, 63 mood, and other symptoms, and investigative approaches to identify end-organ damage and mental 64 health conditions.

65

67 Introduction

Emerging data suggest that some patients fail to fully recover following acute COVID-19 infection. Patients who report symptoms persisting for weeks or months after the acute illness have been termed "long haulers", or as having "long-COVID"[1]. Although a case definition of "long-COVID" has not been established, fatigue is a dominant feature, along with other symptoms reminiscent of the acute infection. The condition has gained attention from the media, the public, as well as the scientific and medical communities[2].

74 The term 'fatigue' has diverse meanings, including that experienced by people as part of daily living 75 ('physiological' or 'everyday' fatigue), or in disease (e.g., anemia) ('pathological fatigue'). The fatigue 76 state may be objectively measurable as a reduction in the efficiency of force generation recorded on 77 physical examination as weakness (as in myopathy), or it may be a purely subjective sensation (i.e., 78 fatigue as a symptom). Importantly also, when patients complain of fatigue, they may actually be 79 referring to weakness, dyspnea, difficulties in concentration, somnolence, or low mood. Hence, 80 careful delineation of the nature of the symptom complaint(s) is key in both clinical and research 81 settings. The subjective experience of fatigue (as with pain) is automatically interpreted in light of 82 other concomitant brain processes, such as perceptions, emotions, and cognitions[3].

83 Evolutionarily, fatigue might be considered as a homeostatic alarm directed towards energy 84 preservation[3], which is well exemplified in the acute sickness response to a wide range of pathogens. 85 This response features a stereotyped collection of physiological, behavioral, and psychological 86 manifestations including fever, fatigue, hypersomnia, musculoskeletal pain, anorexia, mood 87 disturbance, and cognitive impairment[4]. Persistence of one or more of these symptoms for weeks 88 or months beyond the acute phase of infection is common[5]. In this context, patients describe the 89 persistent fatigue as having both 'physical' components (loss of energy, and a feeling of heaviness), 90 and 'mental' components (a feeling of brain fog). Another characteristic feature is that relatively minor 91 physical or cognitive activity triggers a prolonged exacerbation of the fatigue and other symptoms[6].

⁹²When fatigue persists for six months or more, it is termed 'chronic'[7]. When thorough clinical ⁹³assessments and investigations do not reveal alternative explanations for chronic fatigue, and if other ⁹⁴typical symptoms such as musculoskeletal pain and cognitive difficulties are present, a diagnosis of ⁹⁵chronic fatigue syndrome (CFS), or more specifically, post-infective fatigue syndrome (PIFS), may be ⁹⁶considered[5, 7].

97 The investigators of the international Collaborative on Fatigue Following Infection (COFFI) [5], have 98 sought to provide guidance on these complexities of fatigue following COVID-19 infection by: 99 conducting a systematic review on the emerging data on the epidemiology of fatigue following COVID-100 19 infection; and comparing the literature regarding fatigue after other infections through a narrative 101 review. Recommendations for clinical and research approaches to assessment of fatigue following 102 COVID-19 are provided.

103 Fatigue after COVID-19 - a systematic review

A meta-analysis of studies in acute COVID-19 infection revealed an overall prevalence of fatigue of 23% (95% CI 15–33%)[8]. The current review focused on persistent fatigue following acute COVID-19 infection, defined here as 21 days or greater post symptom onset. The review aimed to describe the incidence, natural history, and predictors of such post-COVID fatigue.

108 Methods

109 References were identified through searches of PubMed for articles published from January 2020 to 110 January 2021, using terms "fatigue", "malaise" or "tired", and "COVID-19" or "COVID19" or "SARS-111 CoV-2". Additional articles were identified by searching reference lists and citations of included 112 articles. In addition, MedRxiv (a preprint server for health sciences) was also searched using terms "fatigue", "tired", "persistent symptoms" and "COVID-19" to identify relevant pre-publication 113 manuscripts. Prospective cohort studies and cross-sectional studies were included, provided that 114 115 they: specifically reported the rates of fatigue in the convalescent phase after confirmed acute COVID-116 19 infection, included a minimum of 10 participants, and were written in English. Almost all studies used those who had completed follow-up as the denominator for symptom prevalence rates.
Accordingly, data were extracted from each study to re-calculate the proportion of patients reporting
fatigue using all eligible COVID-19 confirmed subjects as the modified denominator (including those
who refused, were lost to follow-up, or died).

121 Results

122

Study and patient characteristics

123 The search until January 2021 yielded 914 articles from PubMed, an additional 208 records identified 124 through MedRxiv, and six additional papers through reference lists and citations. A total of 1117 125 records were screened by title and abstract, and 154 articles were subjected to full text review. The 126 reasons for exclusion of these full-text articles (n=133) are outlined in the PRISMA flowchart 127 (Supplementary Figure 1). The final list of included articles (n=21) described three prospective 128 studies[9-11], and 18 cross-sectional studies[12-29]. The sample sizes ranged from 33-4,182 129 participants (median n=131, total n=7,639), with an age range between 32-71 years (median 50 130 years), of whom 52% were male (median 52%; range: 28-70%). Most studies (15 of 21) only included 131 patients who had been admitted to hospital [11-18, 20, 21, 23, 25, 26, 28, 29], with the remaining six 132 studies including a mixture of hospitalized and non-hospitalized patients[9, 10, 19, 22, 24, 27]. Ten 133 studies included patients who were admitted to ICU[12-15, 19, 22, 24-26, 28], and three specifically 134 excluded ICU patients[17, 20, 21]. To ensure consistent reporting of observation periods, 'time since 135 symptom onset' was used as the anchor point. If the authors only provided the time since 136 hospitalization or the time since discharge, it was assumed that subjects were symptomatic for seven 137 days before hospitalization, and the duration of hospitalization was taken as the median reported for each study. 138

139

Prevalence of fatigue

The average period of observation across all studies was 82 days since symptom onset (range: 27-199
days). To date, only a single study has conducted follow up beyond 129 days [29]. Three prospective

142 cohort studies assessed rates of fatigue from symptom onset[11], through to 60 days post symptom 143 onset[9, 10]. In the acute phase, the peak fatigue rates in these studies ranged from 8%[11]-29%[10] 144 (Figure 1). At 4 weeks post-symptom onset, rates of fatigue ranged from 9%[10]-49%[9]. A trend of 145 resolution was evident within the individual cohorts with falling rates of fatigue reported at 8 weeks 146 (4%[10]-35%[9]) after symptom onset. When the modified denominator was considered including all 147 eligible subjects with confirmed COVID-19 infection, the recalculated rates of fatigue were lower, 148 ranging from 7%[11]-29%[10] in the acute phase; 9%[10]–25%[9] at week 4; and 4%[10]-18%[9] at week 8. None of these prospective cohort studies collected data beyond 8 weeks. 149

150 The 18 cross-sectional studies [12-20] assessed fatigue at various time windows ranging from 4 weeks 151 to 28 weeks post symptom onset. The median proportion of patients reporting fatigue were: 50% at 152 4-7 weeks[17, 23, 24, 28]; 53% at 8-11 weeks[13, 15, 21, 22, 26], 40% at 12-15 weeks[12, 18, 19]; 28% 153 at 16-20 weeks[14, 16, 20, 25, 27], and 34% at 28 weeks from symptom onset[29]. When the rates of 154 fatigue were recalculated using the more inclusive denominator, the median rates were: 23% at 4-7 155 weeks[17, 23, 24, 28], 42% at 8-11 weeks[13, 15, 21, 22, 26], 26% at 12-15 weeks [12, 18, 19], 23% 156 between weeks 16–20 weeks[14, 16, 20, 25, 27], and 32% at 28-weeks from symptom onset . The 157 ranges of fatigue prevalence from each time window are reported in Figure 2[29]. In several studies, 158 patients reported additional symptoms such as dyspnea[12-16, 24-26, 28], and/or cognitive 159 difficulties[14, 15, 18, 29] at similar, but somewhat lower rates than fatigue.

160

Functional impact and predictors of long COVID

In three studies which measured the functional impact of persistent symptoms, there was evidence of associated disability with 40%[15], 31%[19], and 9-15%[14, 25] of patients unable to return to work, at 2-,3- and 4-months post-symptom onset respectively. Although no studies were sufficiently powered to run multivariable-regression analysis, exploratory analyses found that severity of illness as measured by hospitalization[9], ICU[24], duration of stay in hospital[20], duration of viral shedding[20], and dyspnea during hospitalization[9, 20] were associated with fatigue at follow-up.

167

Critique

168 It should be noted that almost all studies (20 of the 21) were likely to be influenced by ascertainment 169 bias (as not all of those with confirmed COVID-19 and eligible were included in the reported 170 denominators)[30]. As expected, the rates of fatigue reported from cross-sectional studies were 171 higher than those from prospective studies, which is likely to reflect the greater selection bias in those 172 who remain unwell electing to respond to cross-sectional surveys. Further bias was introduced by 173 studies which excluded those who were severely unwell [9, 14, 17, 21]. By contrast, the largest study 174 was an observational cohort of a subset of individuals (n=4182) utilizing the COVID Symptom Study 175 online app, which has been taken up by several million individuals in the UK and USA [10]. Although a 176 convenient method of assessment, computer literacy may have restricted the participating 177 population, and this cohort had unusually high number of female participants (72%), whereas 178 epidemiological studies show no gender difference in the prevalence of acute COVID-19 infection[31]. 179 The measurement of fatigue was generally poorly described, with most studies providing little detail 180 on the instrumentation used. Most studies used either only a "customized questionnaire" [9, 11, 13, 181 21, 24-26, 28, 29], "telephone interview" [12, 15, 16, 20], "medical records" [14], or a mobile phone 182 application[10], with no further details provided. Only five studies administered validated multi-item 183 fatigue questionnaires, using the Chalder Fatigue scale [17, 19], the Fatigue Severity Scale [18], the 184 Somatic and Psychological HEalth Report (SPHERE)[22], the Fatigue Impact Scale[27], or the PROMIS

185 Scale-Global Health[23].

Multiple studies have identified significant long term complications of severe acute COVID-19 infection and the associated hospitalization, including pulmonary, cardiac, neurological, and psychiatric conditions - many of which may manifest with the complaint of persistent fatigue.[32, 33] In the follow-up studies reviewed here which identified persistent fatigue, very few conducted systematic clinical or laboratory assessments to consider these possibilities, with those doing so including a full blood count[11, 12, 21], chest x-ray[12, 26], chest CT[11, 17, 25], or lung function

tests[21, 25]. Only one study described cardiac investigations (e.g., electrocardiography or
echocardiography) to screen for cardiac pathology[21]. Mental health status and social supports were
only assessed in one study[28].

195 Summary

From this review, it is clear that fatigue is a dominant complaint in "long COVID" and that larger prospective studies with longer follow-up, using more comprehensive and well validated methods for the assessment of fatigue and related conditions, are needed. Previous studies of fatigue after other infections may help guide the choice of measures.

200 Post-infective fatigue states after other infections – a narrative review

Fatigue is a very common symptom in primary care where it is generally short-lived and attributable to infective illnesses or minor psychiatric disorders[34]. Several acute infections are also a wellestablished trigger for the onset of chronic fatigue.

204 Methods

In addition to consideration of data from the COFFI cohorts, a narrative review was conducted
 searching PubMed for prospective cohort, observational, or case-control studies which followed
 individuals from acute infection for chronic fatigue.

208 Results

Fifteen studies were identified following from several different viral, bacterial or protozoal pathogens, including *Epstein-Barr virus* (EBV), *Dengue virus, Chikungunya virus, Ebola virus, Coxiella burnetii* (the causative agent of Q fever), and *Giardia lamblia*. These studies documented a prevalent complaint of post-infective fatigue persisting in disabling degree for six months or more in 10-35% of adolescents or adults (see Supplementary Table 1 for cohort summaries and references). In all of these studies multi-item validated questionnaires were used to characterize the fatigue state. In six studies, a case definition for chronic fatigue syndrome was applied at six months which necessitated a clinical assessment including a medical history, physical examination, mental health assessment, and laboratory investigations leading to a designation of PIFS, after exclusion of other medical or psychiatric conditions (Supplementary Table 1)[7]. By contrast, a prospective case-control cohort study in general practice found that patients presenting with minor symptomatic infections, such as common colds, did not experience an increased likelihood of developing chronic fatigue[35].

221

Predictors of PIFS

222 A systematic review of biological, psychological and social predictors of chronic fatigue or PIFS six 223 months after onset in the prospective cohort studies, revealed that clinical and laboratory features 224 indicative of the severity of the acute infection were the most consistent predictors, including: the 225 presence of markers of the host immune response, including biochemical hepatitis; self-reported 226 severity of acute illness, and of fatigue in particular; and associated functional impairment such as the 227 number of days in bed or days off school. In addition, there was some evidence across studies for self-228 reported anxiety, perceived stress, neuroticism, negative beliefs about the acute illness, and pre-229 morbid distress, as risk factors[36]. A notable exception to the latter was the sole prospective cohort 230 which collected data prior to the acute illness to characterize mental health and personality 231 characteristics[37]. This study followed US college students (n=4501) for asymptomatic 232 seroconversion or symptomatic acute EBV, revealed a case rate for PIFS of 23% at six months and 233 showed that premorbid psychological factors did not predict PIFS[37]. Nested case-control studies 234 from the prospective cohorts have investigated subjects with well characterized PIFS and matched 235 control subjects who recovered uneventfully from the same acute infection, and have not found 236 evidence of ongoing replication of the pathogen beyond several weeks (although persistent detection 237 of nucleic acids is recognized); or of a consistent pattern of ongoing immune activation[38-42].

238 Summary

Taken together these findings from post-infective cohorts show that: fatigue is a common and sometimes disabling symptom after a diverse range of infections; the natural history of persistent fatigue is often of slow resolution over months or longer; the severity of the acute illness, psychological status at baseline, and the cognitive and behavioral responses to the acute illness predict PIFS; and that structured medical and psychiatric assessments of those with self-reported chronic fatigue will identify a subset with explanatory diagnoses such as residual long injury.

245 Discussion

246

Clinical and research approaches to the assessment of post-infective fatigue

247 In combination, the limitations of the studies in COVID-19 and the evidence from studies in other post-248 infective cohorts argue that a validated case definition for chronic fatigue after COVID-19 infection is 249 needed for both clinical and research purposes. In line with current definitions of post-infective 250 fatigue[5], we suggest that the label post-COVID fatigue should be applied when the fatigue is: a 251 dominant symptom; chronic; disabling to an extent that it interrupts all or a majority of normal 252 activities (such as work/school attendance, social activities, etc.); persistent for 6 months or more (3 253 months in children/adolescents); and emerged during confirmed acute COVID-19 (i.e., with a positive 254 SARS-CoV-2 test), without symptom-free interval since onset.

255 If a case of post-COVID fatigue is identified, a search for underlying diagnoses should be initiated, 256 including for: end-organ sequelae of the acute COVID-19 illness and hospitalization; mental health conditions precipitated or exacerbated by COVID-19; and other (non-COVID-related) premorbid or 257 258 intercurrent disorders of which fatigue is a feature. We recommend a structured diagnostic work-up 259 (see Supplementary Tables 2 & 3 for summaries of instruments and references). In both clinical and 260 research settings, brief screening questionnaires to characterize the fatigue state, such as the Chalder 261 Fatigue Scale or the SPHERE (Supplementary Table 2), provide a systematic approach to identify 262 'clinically-significant' fatigue, in line with the disease-specific recommendations from the National 263 Institute of Neurological Disorders and Stroke Common Data Elements. As the symptom of fatigue is often part of a multi-symptom cluster, it is appropriate to include other validated questionnaires to screen for: related physical symptoms (such as the SPHERE), and mental health (such as the Patient Health Questionnaire-9, or the Hospital Anxiety and Depression Scale (Supplementary Table 2). Screening for other relevant symptom domains may also be undertaken with validated instruments to assess pain and sleep quality. Clinically-significant fatigue is usually taken to be associated with disability, and so concurrent assessment of functional status using an instrument such as the SF-36 is strongly recommended (Supplementary Table 2).

As both medical and mental health conditions may manifest with fatigue, or co-occur with a postinfective fatigue state, for research purposes in particular, the validated, clinician-administered, semistructured diagnostic interview schedules for fatigue states (Structured Clinical Interview for Neurasthenia, SCIN)[6], and psychiatric disorders (Composite International Diagnostic Interview, CIDI), offer an ideal approach to further assessment. In addition, if screening questionnaires raise of the possibility of sleep disturbance as a contributor, the Structured Diagnostic Interview for Sleep patterns and Disorders may be utilized (Supplementary Table 3).

278 In clinical practice, patients with persistent fatigue after COVID, should have a careful history to 279 elucidate the nature of the symptoms, the timing of onset, and their impact on functional status; as 280 well as a physical examination with particular emphasis on respiratory, cardiac, and neurological 281 findings. This clinical assessment should include review of pre-morbid and intercurrent mental health 282 with a particular emphasis on depression, anxiety, and post-traumatic stress disorder. In addition, a 283 restricted list of laboratory tests should be ordered, such as a full blood count, kidney, liver, and 284 thyroid function tests, C-reactive protein, blood glucose, ferritin, B-type natriuretic peptide, as well as 285 a chest x-ray[43]. Additional investigations or specialist referral may be considered if the history or 286 examination raises concerns. Children and adolescents with post-COVID fatigue should be referred to 287 a pediatric service for assessment.

For those cases in whom this process does not reveal an explanatory condition, we recommend making a diagnosis of *idiopathic post-COVID fatigue*. These patients may satisfy diagnostic criteria for PIFS – that is a post-infective fatigue syndrome following COVID-19[7]. In terms of clinical care, provision of such a diagnosis is a key starting point for reassurance of a generally self-limiting natural history and supportive care[44]. For research purposes, we recommend that additional symptoms and co-morbid conditions are well charted, enabling statistical analyses that control for these factors.

294 Pathophysiology

295 As the pathophysiology of PIFS remains unresolved, a biopsychosocial approach to conceptualizing 296 research approaches to idiopathic post-COVID fatigue is recommended, incorporating predisposing, 297 precipitating, and perpetuating factors. Predisposing factors in PIFS may include genetic[45], as well 298 as psychosocial vulnerabilities[46]. COVID-19 is the precipitating factor, but may well act in concert 299 with other concomitant triggers, such as distressing life events (e.g., death of a relative from COVID-300 19, loss of employment)[47]. Perpetuating factors may include the advent of sleep disturbance,[48] 301 autonomic dysfunction with sympathetic predominance[49], endocrine disturbance with 302 hypothalamus-pituitary-adrenal (HPA) axis attenuation[50], reactive mood disorder such as 303 depression or anxiety[51], as well as abnormal illness beliefs and behavioral changes such as activity 304 patterns which are boom-bust or avoidant[52], resulting in a complex set of determinants of illness 305 and disability[36]. It is likely that idiopathic post-COVID fatigue will have comparable pathophysiology 306 to PIFS. For research investigations of the predictors or associations of post-COVID fatigue, large 307 sample sizes and stratification by the multiple contributory variables are recommended, and careful 308 matching by, or controlling for, these variables in case-control designs.

309 Conclusion

Although there are many unknowns to be resolved about long COVID for both clinical and research contexts, the lessons learnt from several decades of investigation of fatigue states after other

- ³¹² infections highlight the need the careful clinical characterization, protocolized investigations and a
- 313 broad bio-psychosocial approach.

- 315 Authors' contributions: All authors contributed to the manuscript conception and design. CS, and AL
- 316 performed the literature search, data extraction and analysis. All authors have contributed to and
- 317 approved the final manuscript.
- **Potential conflicts of interest**: The authors declare no conflicts of interest.
- 319 Role of funding source: None
- 320 **Ethics committee approval**: Not applicable.
- 321 **Patient consent statement**: Not applicable.
- 322 Acknowledgements: Andrew Lloyd is supported by a National Health and Medical Research Council
- 323 Practitioner Fellowship (1041897). Carolina Sandler is supported by the Mason Foundation National
- 324 Medical Program. Rona Moss-Morris is part-funded by the National Institute for Health Research
- 325 (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's
- 326 College London. The views expressed are those of the author and not necessarily those of the NHS,
- 327 the NIHR or the Department of Health and Social Care. We are grateful for the review of the
- 328 manuscript by Professor Peter White.

329

331 References

- Baig AM. Chronic COVID Syndrome: Need for an appropriate medical terminology for Long COVID and COVID Long-Haulers. J Med Virol **2020**.
- 3342.Time. Have We Been Thinking About Long-Haul Coronavirus All Wrong? Available at:335https://time.com/5897992/long-haul-coronavirus-me-cfs/. Accessed 28/10/20.
- 336 3. Kuppuswamy A. The fatigue conundrum. Brain **2017**; 140(8): 2240-5.
- Vollmer-Conna U. Acute sickness behaviour: an immune system-to-brain communication?
 Psychol Med **2001**; 31(5): 761-7.
- Katz BZ, Collin SM, Murphy G, et al. The International Collaborative on Fatigue Following
 Infection (COFFI). Fatigue **2018**; 6(2): 106-21.
- 3416.Bennett BK, Goldstein D, Chen M, et al. Characterization of fatigue states in medicine and342psychiatry by structured interview. Psychosom Med **2014**; 76(5): 379-88.
- Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue
 syndrome: a comprehensive approach to its definition and study. International Chronic
 Fatigue Syndrome Study Group. Ann Intern Med **1994**; 121(12): 953-9.
- Borges do Nascimento IJ, von Groote TC, O'Mathuna DP, et al. Clinical, laboratory and
 radiological characteristics and outcomes of novel coronavirus (SARS-CoV-2) infection in
 humans: A systematic review and series of meta-analyses. PLoS One **2020**; 15(9): e0239235.
- 349 9. Carvalho-Schneider C, Laurent E, Lemaignen A, et al. Follow-up of adults with noncritical
 350 COVID-19 two months after symptom onset. Clin Microbiol Infect **2020**.
- Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of Long-COVID: analysis of
 COVID cases and their symptoms collected by the Covid Symptoms Study App. medRxiv
 2020: 2020.10.19.20214494.
- Wang X, Xu H, Jiang H, et al. Clinical features and outcomes of discharged coronavirus
 disease 2019 patients: a prospective cohort study. QJM **2020**; 113(9): 657-65.
- Arnold DT, Hamilton FW, Milne A, et al. Patient outcomes after hospitalisation with COVID and implications for follow-up: results from a prospective UK cohort. Thorax 2020:
 2020.08.12.20173526.
- 35913.Carfi A, Bernabei R, Landi F, Gemelli Against Covid-Post-Acute Care Study Group. Persistent360Symptoms in Patients After Acute COVID-19. JAMA **2020**; 324(6): 603-5.
- 36114.Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-362related quality of life after hospitalization for COVID-19. J Infect **2020**; 81(6): e4-e6.
- Halpin SJ, McIvor C, Whyatt G, et al. Postdischarge symptoms and rehabilitation needs in
 survivors of COVID-19 infection: A cross-sectional evaluation. J Med Virol 2021; 93(2): 1013 22.
- Miyazato Y, Morioka S, Tsuzuki S, et al. Prolonged and Late-Onset Symptoms of Coronavirus
 Disease 2019. Open Forum Infect Dis 2020; 7(11): ofaa507.
- Qi R, Chen W, Liu S, et al. Psychological morbidities and fatigue in patients with confirmed
 COVID-19 during disease outbreak: prevalence and associated biopsychosocial risk factors.
 medRxiv 2020.

Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following SARS-CoV-2 infection is
common and independent of severity of initial infection. PLoS One **2020**; 15(11): e0240784.

Xiong Q, Xu M, Li J, et al. Clinical sequelae of COVID-19 survivors in Wuhan, China: a singlecentre longitudinal study. Clin Microbiol Infect **2021**; 27(1): 89-95.

377 21. Daher A, Balfanz P, Cornelissen C, et al. Follow up of patients with severe coronavirus
378 disease 2019 (COVID-19): Pulmonary and extrapulmonary disease sequelae. Respir Med
379 2020; 174: 106197.

Savarraj JPJ, Burkett AB, Hinds SN, et al. Three-month outcomes in hospitalized COVID-19
 patients. medRxiv 2020: 2020.10.16.20211029.

380	22.	Darley DR, Dore GJ, Cysique L, et al. High rate of persistent symptoms up to 4 months after
381		community and hospital-managed SARS-CoV-2 infection. The Medical Journal of Australia
382		2020 : 1.
383	23.	Jacobs LG, Gourna Paleoudis E, Lesky-Di Bari D, et al. Persistence of symptoms and quality of
384		life at 35 days after hospitalization for COVID-19 infection. PLoS One 2020 ; 15(12):
385		e0243882.
386	24.	Kamal M, Abo Omirah M, Hussein A, Saeed H. Assessment and characterisation of post-
387		COVID-19 manifestations. Int J Clin Pract 2020 : e13746.
388	25.	Liang L, Yang B, Jiang N, et al. Three-month Follow-up Study of Survivors of Coronavirus
389		Disease 2019 after Discharge. J Korean Med Sci 2020 ; 35(47): e418.
390	26.	Mandal S, Barnett J, Brill SE, et al. 'Long-COVID': a cross-sectional study of persisting
391		symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19.
392		Thorax 2020 .
393	27.	Petersen MS. Kristiansen MF. Hanusson KD. et al. Long COVID in the Faroe Islands - a
394		longitudinal study among non-hospitalized patients. Clin Infect Dis 2020 .
395	28.	Sami R. Soltaninejad F. Amra B. et al. A one-year hospital-based prospective COVID-19 open-
396		cohort in the Eastern Mediterranean region: The Khorshid COVID Cohort (KCC) study. PLoS
397		One 2020 : 15(11): e0241537.
398	29	Pilotto A Cristillo V Piccinelli SC et al COVID-19 severity impacts on long-term neurological
399	23.	manifestation after hospitalisation medRxiv 2021 : 2020 12 27 20248903
400	30	Delgado-Bodriguez M. Llorca I. Bias. J. Enidemiol Community Health 2004 : 58(8): 635-41
400	30.	lin IM Bai P. He W. et al. Gender Differences in Patients With COVID-19: Focus on Severity
402	51.	and Mortality Front Public Health 2020 : 8(152): 152
402	32	Taguet M. Geddes IR. Husain M. Luciano S. Harrison PJ. 6-month neurological and
403	52.	nsychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using
405		electronic health records. Lancet Psychiatry 2021 : 8(5): 416-27
406	22	Al-Alv 7. Xie V. Bowe B. High-dimensional characterization of post-acute segualae of COVID-
400	55.	10 Nature 2021
108	3/	Bates DW. Schmitt W. Buchwald D. et al. Prevalence of fatigue and chronic fatigue syndrome
100	54.	in a primary care practice. Arch Intern Med 1993 : 153(24): 2759-65
405	25	Wesselv S. Chalder T. Hirsch S. Pawlikowska T. Wallace P. Wright DI. Postinfectious fatigue:
410 //11	55.	prospective cobort study in primary care Lancet 1995 : 245(8961): 1222-8
411 //12	36	Hulma K Hudson II. Rojczyk P. Littla P. Moss-Morris R. Bionsychosocial risk factors of
412 //12	50.	name k, Huuson SE, Kojezyk I, Elitle I, Moss-Monts K. Biopsychosocial risk factors of
413		Persistent latigue after acute infection. A systematic review to inform interventions. J
414	27	Isson I.A. Cotlor I. Islam ME. Sunnquist M. Katz PZ. Picks for Developing ME/CES in College
415	57.	Students Following Infectious Mononucloosis: A Prospective Cobort Study. Clin Infect Dis
410		2020
417 110	20	2020. Honner B. Cameron B. Li H. et al. The natural history of asute O fever: a prospective
410	50.	Australian cohort. OIM 2016 : 100(10): 661.8
419	20	Australian conort. Quivi 2010 , 109(10). 001-8.
420	39.	cameron B, Bharadwaj W, Burrows J, et al. Prolonged niness after infectious mononucleosis
421		is associated with altered immunity but not with increased viral load. J Infect Dis 2006 ;
422	10	193(5): 664-71. Bradariak C. Kata DZ. Farrandas II. et al. Cutakina avarassian profiles of immuna imhalanas
423	40.	Broderick G, Katz BZ, Fernandes H, et al. Cytokine expression profiles of immune imbalance
424		in post-mononucleosis chronic fatigue. J Transi Med 2012 ; 10: 191.
425	41.	Hanevik K, Kristoffersen E, Morch K, et al. Glardia-specific cellular immune responses in post-
426	40	giardiasis chronic fatigue syndrome. BMC Immunol 2017 ; 18(1): 5.
427	42.	Cameron B, Flamand L, Juwana H, et al. Serological and virological investigation of the role of
428		the herpesviruses EBV, CMV and HHV-6 in post-infective fatigue syndrome. J Med Virol
429		2010 ; 82(10): 1684-8.

430 43. National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing the 431 long-term effects of COVID-19. Available at: https://www.nice.org.uk/guidance/ng188. 432 44. Kingstone T, Taylor AK, O'Donnell CA, Atherton H, Blane DN, Chew-Graham CA. Finding the 433 'right' GP: a qualitative study of the experiences of people with long-COVID. BJGP Open 434 2020; 4(5). 435 45. Piraino B, Vollmer-Conna U, Lloyd AR. Genetic associations of fatigue and other symptom domains of the acute sickness response to infection. Brain Behav Immun 2012; 26(4): 552-8. 436 437 Cvejic E, Li H, Hickie IB, Wakefield D, Lloyd AR, Vollmer-Conna U. Contribution of individual 46. 438 psychological and psychosocial factors to symptom severity and time-to-recovery after 439 naturally-occurring acute infective illness: The Dubbo Infection Outcomes Study (DIOS). 440 Brain Behav Immun 2019; 82: 76-83. 441 47. Theorell T, Blomkvist V, Lindh G, Evengard B. Critical life events, infections, and symptoms 442 during the year preceding chronic fatigue syndrome (CFS): an examination of CFS patients 443 and subjects with a nonspecific life crisis. Psychosom Med 1999; 61(3): 304-10. 444 48. Jackson ML, Bruck D. Sleep abnormalities in chronic fatigue syndrome/myalgic 445 encephalomyelitis: a review. J Clin Sleep Med 2012; 8(6): 719-28. 49. 446 Nelson MJ, Bahl JS, Buckley JD, Thomson RL, Davison K. Evidence of altered cardiac 447 autonomic regulation in myalgic encephalomyelitis/chronic fatigue syndrome: A systematic 448 review and meta-analysis. Medicine (Baltimore) 2019; 98(43): e17600. 449 50. Papadopoulos AS, Cleare AJ. Hypothalamic-pituitary-adrenal axis dysfunction in chronic 450 fatigue syndrome. Nat Rev Endocrinol 2011; 8(1): 22-32. 451 Afari N, Buchwald D. Chronic fatigue syndrome: a review. Am J Psychiatry 2003; 160(2): 221-51. 452 36. 453 52. King E, Beynon M, Chalder T, Sharpe M, White PD. Patterns of daytime physical activity in 454 patients with chronic fatigue syndrome. J Psychosom Res 2020; 135: 110154. 455

457 Figure legends.

458 Figure 1: Prevalence of fatigue in COVID-19 from prospective studies. Black symbols refer to the

459 original rate reported by each study. Grey symbols refer to rate recalculated with all eligible

- 460 individuals included in the denominator.
- 461 Figure 2: Prevalence of fatigue in COVID-19 from cross-sectional studies. The box extends from the
- 462 25th to 75th percentiles, the line represents the median, the whiskers show the minimum and
- 463 maximum. Week 28 is represented by a single study. Panel A shows the original rates reported by
- the included studies. The proportion of patients reporting fatigue were: 10%-73% at 4-7 weeks[17,
- 465 23, 24, 28]; 22%-69% at 8-11 weeks[13, 15, 21, 22, 26], 39%-52.3% at 12-15 weeks[12, 18, 19]; 16%-
- 466 59% at 16-20 weeks[14, 16, 20, 25, 27] and 34% at 28 weeks from symptom onset[29]. Panel B
- 467 shows these rates recalculated with all eligible individuals included in the denominator: 8%-24% at
- 468 4-7 weeks[17, 23, 24, 28], 10%-55% at 8-11 weeks[13, 15, 21, 22, 26], 14%–26% at 12-15 weeks [12,
- 469 18, 19], 13%-33% between weeks 16–20 weeks[14, 16, 20, 25, 27] and 32% at 28-weeks from
- 470 symptom onset (Figure 2)[29]

Weeks since symptom onset

Weeks since symptom onset

Supplementary Figure 1: PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram.

Study	Triggering infection or illness	Participants (n=eligible / n=followed- up, % female, mean age, setting, country)	Study design	Chronic fatigue and related measure(s) – Questionnaires (Q) Interviews (I)	Outcome timepoints	Case rate of chronic fatigue (CF) or post- infective fatigue syndrome (PIFS) caseness	Baseline predictors of chronic fatigue (CF) or post-infective fatigue syndrome (PIFS) caseness at 6 months	Alternative diagnoses identified at 6 month clinical and laboratory assessment for PIFS
Buchwald et al, 2000[1]	EBV	n=150 / n=144, 53% 21 years Health maintenance organisation - mixed primary, secondary, tertiary care USA	Prospective cohort	Q: checklist of IM symptoms, SF-36, SCL-90, List of Threatening Experiences, Perceived Social Support Inventory, I: DIS	2 months, 6 months	CF: 38% at 2 months; 12% at 6 months	CF: female gender; greater premorbid life events, greater social support	NA
Candy et al, 2003[2]	EBV	n=139 / n=71, 60% 23 years Six general practices and a student healthcare centre, UK	Prospective cohort	Q: Chalder Fatigue Scale, GHQ, SF-36, Illness Perceptions Questionnaire	3 months, 6 months, 12 months	CF: 47% at 3 months; 40% at 6 months; 38% at 12 months	CF: female gender, illness perceptions	NA
Cope et al, 1996[3]	Presumed viral illness	n=64 cases with CF; (n=64 non-infective controls) 78% 30 years primary care UK	Case-control	Q: Symptom Interpretation Questionnaire, GHQ, Beck depression Inventory, Spielberger State and Trait Anxiety Inventory, Multi- dimensional Health Locus of Control, Ways of Coping Questionnaire I: Semi-structured clinical interview for fatigue, CIS	6 months	PIFS: 35% at 6 months	PIFS: premorbid fatigue, sick certification, psychological attributional style	Yes (but no details of other diagnoses available)
Duvignaud et al, 2018[4]	Chikungunya	n=440 / n=362 (cases were required to report fatigue at onset) 62% Adolescents and adults Population level Reunion Island	Prospective case- control	I: Telephone interview	15-36 months post onset (mean = 24 months)	CF: 39%	CF: Female gender, age>60, severe acute illness	NA
Hanevik et al, 2014[5]	Giardia	n=1252 / n=817 67% 38 years Population Norway	Prospective case- control	Q: Chalder Fatigue Scale	3 years 6 years	CF: 46% at 3 years; 31% at 6 years	NA	NA
Hickie et al, 2006[6]	EBV, Ross River Virus, Q fever	n=430 / n=253 43% 34 years Primary care	Prospective cohort	Q: SPHERE, Brief Disability Questionnaire, Eysenck Personality Inventory	3 months, 6 months, 12 months	CF: 27% at 3 months; 12% at 6 months; 9% at 12 months PIFS: 11% at 6 months	Severe acute illness	Yes - Q fever endocarditis (n=1)

Supplementary Table 1: Summary of cohort studies evaluating post-infective fatigue.

Study	Triggering infection or illness	Participants (n=eligible / n=followed- up, % female, mean age, setting, country)	Study design	Chronic fatigue and related measure(s) – Questionnaires (Q) Interviews (I)	Outcome timepoints	Case rate of chronic fatigue (CF) or post- infective fatigue syndrome (PIFS) caseness	Baseline predictors of chronic fatigue (CF) or post-infective fatigue syndrome (PIFS) caseness at 6 months	Alternative diagnoses identified at 6 month clinical and laboratory assessment for PIFS
		Austrana		interview (CIDI)				
Hotopf et al, 1996[7]	Aseptic meningitis	n=255 / n = 83 cases, (n=76 viral illness controls) 64% female 32 years Specialist hospital UK	Prospective case- control	Q: Chalder Fatigue Scale, Beck Depression inventory, GHQ, SF-36	6-24 months post onset (mean = 18 months)	CF: 25%	Premorbid psychiatric disorder; prolonged convalescence	NA
Jason et al, 2020[8]	IM	n=4703 / n=4501 61% 19 years University USA	Prospective cohort	Q: Fatigue Severity Scale, COPE scale, Perceived Stress Scale, Beck Depression Inventory, Beck Anxiety Inventory, SF-36. I: Medical and psychiatric examination	Baseline (pre- IM), at IM diagnosis, 6 months	PIFS: 23% at 6 months	Severe acute illness, cytokine levels	Yes (but no details of other diagnoses available)
Katz et al, 2009[9]	IM	n=301 90% Adolescent -age NA Primary / secondary care USA	Prospective cohort	Q: Chalder Fatigue Scale I: Semi-structured clinical interview	6 months, 12 months, 24 months	PIFS: 13% at 6 months, 7% at 12 months, 4% at 24 months	Female gender	Yes – transverse myelitis, depression, anorexia nervosa (n=1 for each)
Lowe et al, 2014[10]	STEC	n=608 / n=389 69% 46 years Regional hospitals Germany	Prospective cohort	Q: Chalder Fatigue Scale, Patient Health Questionnaire-9, Generalised Anxiety Disorder Scale, Post- traumatic Stress Diagnostic Scale, SF-12 I: Structured Clinical Interview for DSM-IV (SCID)	6 months	CF: 43% at 6 months	Severe acute illness, pre- existing chronic condition	NA
Moss-Morris et al 2011[11]	IM	n=440 / n=246 62% 29 years Primary care New Zealand	Prospective case- control	Q: Fatigue (in house), HADS, IPQ, BRIQ	3 months 6 months	CF: 9% at 3 months; 7% at six months	Female gender, younger age, prolonged convalescence, perfectionism, anxiety, depression, emotional representations	NA
Pedersen et al, 2019[12]	EBV	n=200 / n=195 65% 17 years Primary care Norway	Prospective case- control	Q: Chalder Fatigue Scale, HADS, IPQ, CAPS, Functional Disability Inventory, PedsQL	6 months	CF: 46% PIFS: 14%	CRP, step count, sensory sensitivity score, pain severity, cognitive performance, anxiety	Yes (but no details of other diagnoses available)
Seet et al, 2007[13]	Dengue	n=163 / n=127 44%	Cross-sectional	Q: Fatigue Questionnaire I: Telephone interview	2 months	CF: 24 % at 2 months	CF: older age, female gender, severe illness	NA

Study	Triggering infection or illness	Participants (n=eligible / n=followed- up, % female, mean age, setting, country)	Study design	Chronic fatigue and related measure(s) – Questionnaires (Q) Interviews (I)	Outcome timepoints	Case rate of chronic fatigue (CF) or post- infective fatigue syndrome (PIFS) caseness	Baseline predictors of chronic fatigue (CF) or post-infective fatigue syndrome (PIFS) caseness at 6 months	Alternative diagnoses identified at 6 month clinical and laboratory assessment for PIFS
		36 years Specialist hospital Singapore						
Sneller et al, 2019[14]	Ebola	n= 966 / n=869 antibody positive cases (and n=2350 antibody negative controls) Population Liberia	Prospective case- control	I: Structured clinical interview including single item report of fatigue	6 months, 12 months	CF: 18% at 18 months (versus 6% in controls)	NA	NA
White et al, 2001[15]	IM	n=469 / n=250 (including those with confirmed EBV: n=101) and various other diagnoses including URTI Primary / secondary care UK	Prospective cohort	I: Semi-structured clinical interview	6 months	PIFS: 10% of the confirmed EBV group	PIFS: positive Monospot test; lower physical fitness	Yes (but no details of other diagnoses available)

BRIQ: Behavioural Responses to Illness Questionnaire; CRP: C reactive protein; CAPS: Children and Adolescents Perfectionism Scale; CIDI: Composite International Diagnostic Interview; CIS: Clinical Interview Schedule for mental health; DIS: National Institute of Mental Health Diagnostic Interview Schedule; EBV: Epstein-Barr virus; GHQ: General Health Questionnaire; HADS: Hospital Anxiety and Depression Scale; IPQ-R: Illness Perception Questionnaire; IM: Infectious mono; Illness Perception Questionnaire; NA: Not Applicable; PedsQL: Paediatric Quality of Life Inventory; SCID: Structured Clinical Interview for DSM-IV; SPHERE: Somatic and Psychological HEalth Report; SF-36: Medical outcomes survey – short form; SF-12: 12-Item Short Form Health Survey; SCL-90: Symptom Checklist-90; STEC: Shiga toxin - producing Escherichia coli O104; URTI: Upper Respiratory Tract Infection

References

- 1. Buchwald DS, Rea TD, Katon WJ, Russo JE, Ashley RL. Acute infectious mononucleosis: characteristics of patients who report failure to recover. Am J Med **2000**; 109(7): 531-7.
- 2. Candy B, Chalder T, Cleare AJ, et al. Predictors of fatigue following the onset of infectious mononucleosis. Psychol Med **2003**; 33(5): 847-55.
- 3. Cope H, Mann A, Pelosi A, David A. Psychosocial risk factors for chronic fatigue and chronic fatigue syndrome following presumed viral illness: a case-control study. Psychol Med **1996**; 26(6): 1197-209.
- 4. Duvignaud A, Fianu A, Bertolotti A, et al. Rheumatism and chronic fatigue, the two facets of post-chikungunya disease: the TELECHIK cohort study on Reunion island. Epidemiol Infect **2018**; 146(5): 633-41.
- 5. Hanevik K, Wensaas KA, Rortveit G, Eide GE, Morch K, Langeland N. Irritable bowel syndrome and chronic fatigue 6 years after giardia infection: a controlled prospective cohort study. Clin Infect Dis **2014**; 59(10): 1394-400.
- 6. Hickie I, Davenport T, Wakefield D, et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ **2006**; 333(7568): 575.
- 7. Hotopf M, Noah N, Wessely S. Chronic fatigue and minor psychiatric morbidity after viral meningitis: a controlled study. J Neurol Neurosurg Psychiatry **1996**; 60(5): 504-9.
- 8. Jason LA, Cotler J, Islam MF, Sunnquist M, Katz BZ. Risks for Developing ME/CFS in College Students Following Infectious Mononucleosis: A Prospective Cohort Study. Clin Infect Dis 2020.
- 9. Katz BZ, Shiraishi Y, Mears CJ, Binns HJ, Taylor R. Chronic fatigue syndrome after infectious mononucleosis in adolescents. Pediatrics 2009; 124(1): 189-93.
- 10. Lowe B, Andresen V, Fraedrich K, et al. Psychological outcome, fatigue, and quality of life after infection with shiga toxin-producing Escherichia coli O104. Clin Gastroenterol Hepatol **2014**; 12(11): 1848-55.
- 11. Moss-Morris R, Spence MJ, Hou R. The pathway from glandular fever to chronic fatigue syndrome: can the cognitive behavioural model provide the map? Psychol Med **2011**; 41(5): 1099-107. doi: 10.17/S003329171000139X. Epub 2010 Jul 21.
- 12. Pedersen M, Asprusten TT, Godang K, et al. Predictors of chronic fatigue in adolescents six months after acute Epstein-Barr virus infection: A prospective cohort study. Brain Behav Immun **2019**; 75(doi): 94-100.
- 13. Seet RC, Quek AM, Lim EC. Post-infectious fatigue syndrome in dengue infection. J Clin Virol 2007; 38(1): 1-6.
- 14. Sneller MC, Reilly C, Badio M, et al. A Longitudinal Study of Ebola Sequelae in Liberia. N Engl J Med **2019**; 380(10): 924-34.
- 15. White PD, Thomas JM, Kangro HO, et al. Predictions and associations of fatigue syndromes and mood disorders that occur after infectious mononucleosis. Lancet **2001**; 358(9297): 1946-54. doi: 10.016/S0140-6736(01)06961-6.

Supplementary Table 2: Suggested list of questionnaires for investigation of persistent fatigue & symptoms after COVID-19

Questionnaire	Symptom Domain	Comment (Caseness for clinically-significant disorder in the relevant domain - if	Relevant references
Somatic and Psychological Health Report (SPHERE)	Fatigue	applicable) SPHERE: 34-item instrument assessing a range of physical and psychological symptoms that commonly accompany fatigue. Screens for caseness for both fatigue and mood disorder in medical and psychiatric settings. Fatigue caseness (SOMA): \geq 3 indicates 'clinically-significant' Mood disturbance caseness (PSYCH) \geq 2 indicates 'clinically-significant'	Hickie IB, Davenport TA, Hadzi-Pavlovic D, Koschera A, Naismith SL, Scott EM, et al. Development of a simple screening tool for common mental disorders in general practice. <i>Med J Aust</i> 2001;175(Suppl.):S10–7.
Chalder Fatigue Scale		Chalder fatigue scale: 11-item instrument with 4-choice format measure fatigue severity. Provides scores for mental and physical fatigue. ≥ 4 (bimodal scoring) indicates 'severe fatigue'.	Chalder T, Berelowitz G, Pawlikowska T, Watts L, Wessely S, Wright D, et al. Development of a fatigue scale. <i>J Psychosom Res</i> 1993;37:147–53.
Checklist Individual Strength (CIS)		CIS: 20-item inventory with four subscales: fatigue severity, concentration, reduced motivation, and activity. Fatigue severity measures general and physical fatigue. The fatigue severity subscale >36 indicates severe fatigue.	Bultmann U, de Vries M, Beurskens AJ, Bleijenberg G, Vercoulen JH, Kant IJ. Measurement of prolonged fatigue in the working population: determination of a cut-off point for the Checklist Individual Strength. <i>J Occup</i> <i>Health Psychol</i> 2000;5:411–6.
PedsQL-Multidimensional Fatigue Scale		PedsQL-MFS: 18-item, includes three subscales: general fatigue (six items), sleep/rest fatigue (six items), and cognitive fatigue (six items). Each item has a Likert-type response scale, with higher scores indicating fewer fatigue symptoms.	Worm-Smeitink M, Gielissen M, Bloot L, van Laarhoven HWM, van Engelen BGM, van Riel P, Bleijenberg G, Nikolaus S, Knoop H. The assessment of fatigue: Psychometric qualities and norms for the Checklist individual strength. J Psychosom Res. 2017; 98:40-46.
			Varni JW, Burwinkle TM, Katz ER, Meeske K, Dickinson, P. The PedsQL in pediatric cancer: reliability and validity of the Pediatric Quality of Life Inventory Generic Core Scales, Multidimensional Fatigue Scale, and Cancer Module. <i>Cancer</i> 2002, 94(7), 2090-106.
Fatigue Severity Scale (FSS)		FSS: 9-item on 7-point scale measuring severity of fatigue and affects the person's activities. A score of > 4 indicates problematic fatigue.	Krupp LB, LaRocca NG, et al. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. <i>Arch Neurol</i> 1989; 46(10): 1121-3.
PEM items from DePaul Symptom Questionnaire (DSQ)	Post-exertional malaise (PEM)	DSQ: Five items from the DSQ to assess frequency and severity of the common post-exertional exacerbation of symptoms (PEM) over 6 months.	Jason, L.; Jessen, T.; Porter, N.; Boulton, A.; Gloria-Njoku, M.; Friedberg, F. Examining Types of Fatigue among Individuals with ME/CFS. <i>Disabil. Stud</i> <i>Q.</i> 2009.
			Cotler J, Holtzman C, et al. A Brief Questionnaire to Assess Post-Exertional Malaise. <i>Diagnostics (Basel, Switzerland)</i> 2018; 8(3): 66.
Fatigue and Energy Scale (FES)		FES: A 6 item questionnaire which records the current fatigue state (i.e., "right now") and its severity in two dimensions (physical and mental fatigue).	Keech A, Sandler CX, Vollmer-Conna U, Cvejic E, Lloyd AR, & Barry, BK. (2015). Capturing the post-exertional exacerbation of fatigue following physical and cognitive challenge in patients with chronic fatigue syndrome. J <u>Psychosomatic Research</u> , 79(6), 537–549.
Pittsburgh Sleep Quality Index (PSQI)	Sleep disturbance	PSQI: A 19-item questionnaire evaluating sleep quality and disturbances over the past month. A total score (0-21) is calculated from 7 component scores (subjective sleep quality, sleep latency, sleep duration, habitual sleep	Buysse DJ, Reynolds 3rd CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. <i>Psychiatry Res</i> 1989;28:193–213.

Questionnaire	Symptom	Comment	Relevant references
	Domain	(Caseness for clinically-significant disorder in the relevant domain - if applicable)	
Sleep Assessment Ouestionnaire		efficiency, sleep disturbances, use of sleeping medication, and daytime dysfunction). Total score > 5 suggests poor sleep quality.	
(SAQ)		SAQ (proprietary): A 17-item instrument measuring 7 factors intended to screen for sleep disorders: insomnia/hypersomnia, restlessness, sleep schedule, excessive daytime sleeping, sleep apnoea, restless leg/motility, and non-restorative sleep.	<u>Unger ER, Nisenbaum R, Moldofsky H, et al. Sleep assessment in a</u> population-based study of chronic fatigue syndrome. <i>BMC Neurol.</i> 2004;4:6.
McGill Pain Questionnaire (MPQ)	Pain	MPQ: For characterisation of pain states and their severity. Available in short and long form. The four components include: (1) a human figure drawing to indicate the location of pain; (2) a series of 78 adjectives to describe patient experience; (3) questions about prior pain experience, pain location, and the use of pain medication; and (4) a pain intensity index. The short form does not assess areas of bodily involvement.	Melzack R. The McGill Pain Questionnaire: major properties and scoring methods. <i>Pain</i> 1975;1:277–99.
Brief Pain Inventory (BPI)		BPI: Assesses the severity and impact of pain on daily function, location of pain, pain medications and amount of pain relief in the past 24 hours or the past week.	Cleeland CS. Measurement of pain by subjective report. In: Chapman CR, Loeser JD, editors. <i>Advances in Pain Research and Therapy</i> , Volume 12: Issues in Pain Measurement. New York: Raven Press; 1989. pp. 391-403.
Hospital Anxiety and Depression Symptoms (HADS)	Mental health (anxiety/depression)	HADS (proprietary): 14-item questionnaire measuring anxiety and depression in hospital and community settings. Detects presence and severity of mood disorders. For both scales ≥ 8 indicates caseness for anxiety or depression. 8–10 Mild, 11-14 Moderate, 15–21 Severe.	Zigmond AS, Snaith RP. The hospital anxiety and depression scale. <i>Acta</i> <i>Psychiatr Scand</i> 1983; 67(6): 361-70.
Patient Health Questionnaire-9 (PHQ9)		PHQ-9: 9 item questionnaire to assess the severity of depression. Depression severity: 0-4 none, 5-9 mild, 10-14 moderate, 15-19 moderately severe, 20-27 severe	Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. <i>J Gen Intern Med.</i> 2001 16(9):606-13.
Generalised Anxiety Disorder Assessment (GAD-7)		GAD-7: 7-item anxiety questionnaire to assess the severity of anxiety. <i>Anxiety</i> severity: 5-9 mild, 10-14 moderate, >15 severe.	Spitzer RL, Kroenke K, Williams JB, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006 22;166(10):1092-7.
General Health Questionnaire (GHQ)		GHQ (proprietary): 28-item questionnaire for screening minor psychiatric disorders in the general population. Assesses the individual's current state and asks if that differs from their usual state. Suitable from adolescence upwards (not children).	Goldberg D, Willaims P. A user's guide to the General Health Questionnaire. Windsor, UK: NFER-Nelson Publishing Company, Pty., Ltd.; 1998.
Depression Anxiety Stress Scale 21 (DASS21)		DASS21: 21-item designed to measure the emotional states of depression, anxiety and stress (7 items per scale).	Lovibond SH. & Lovibond, PF (1995). Manual for the Depression Anxiety & Stress Scales. (2nd Ed.) Sydney: Psychology Foundation.
Beck Depression Inventory (BDI)		BDI: 21-item questionnaire measuring depressive symptomatology Higher scores indicate more depression.	Beck AT, Steer RA, Brown GK. Manual for the Beck Depression Inventory-II 1996; San Antonio, TX: Psychological Corporation.
Beck Anxiety Inventory (BAI)		BAI: 21-item self-report instrument measuring anxiety. Higher scores indicate more anxiety.	Beck AT, Epstein N, et al. An inventory for measuring clinical anxiety: psychometric properties. <i>J Consult Clin Psychol</i> 1988; 56(6): 893-7.

Questionnaire	Symptom Domain	Comment (Caseness for clinically-significant disorder in the relevant domain - if	Relevant references
Medical Outcomes Survey Short Form-36 (SF-36)	Functional impairment	applicable) SF-36: 36-item measure of physical health, mental health and quality of life. Measures the effects of the illness on physical activity, social activity, usual role activities, bodily pain, general mental health, vitality, and general health perceptions over the previous 4 weeks.	Ware Jr JE, Sherbourne CD. The MOS 36-item Short-Form Health Survey (SF-36). Conceptual framework and item selection. <i>Med Care</i> 1992;30:473– 83.
Sickness Impact Profile (SIP)		SIP: measures functional disability in different areas of daily functioning. Has 12 subscales: 12 categories including sleep and rest, eating, work, home management, recreation and pastimes, ambulation, mobility, body care and movement, social interaction, alertness behaviour, emotional behaviour, and communication.	Bergner M, Bobbitt RA, Carter WB. Gilson BS: the Sickness Impact Profile. Development and final revision of a health status measure. <i>Med Care</i> 1981;19:787–805.
Brief Disability Questionnaire (BDQ)		BDQ: 8-item, assessing disability in everyday activities. Measure physical disability and 'mental-health' disability. Score $8 - 13 =$ moderate disability, 14-22 severe disability. Asks individuals to estimate how many days over the prior few weeks they were unable to carry out their usual role and how many days they spent in bed.	Von Korff M, Ustun TB, Ormel J, Kaplan I, Simon GE. Self-report disability in an international primary care study of psychological illness. <i>J Clin</i> <i>Epidemiol</i> 1996;49:297-303.
PedsQL - PedsQLTM Generic Core Scales		PedsQL: 23 items to measure functional impairment in children aged 2–18.	Varni JW, Seid M,Kurtin PS. The PedQLTM 4.0: reliability and validity of the Pediatric Quality of Life Inventory Version 4.0 Generic Core Scales in healthy and patient populations. <i>Med Care</i> 2001;39:800–12.
Illness Perception Questionnaire (IPQ)	Psychological domains	IPQ: Measures individuals expectations of their illness. Has five scales which assess <i>identity</i> (the symptoms the patient associates with the illness), <i>cause</i> (personal ideas about aetiology), <i>timeline</i> (perceived duration of illness), <i>consequences</i> (expected effects and outcome and <i>cure control</i> (how the individual controls or recovers from the illness).	Weinman J, Petrie KJ, et al. The illness perception questionnaire: A new method for assessing the cognitive representation of illness. <i>Psychology & Health</i> 1996; 11(3): 431-45.
Positive and Negative Affect Schedule (PANAS)		PANAS: 20-item to measure positive affect (10-items) and negative affect (10-items negative affect)	Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988;54(6):1063-70.
Behavioural Responses to Illness Questionnaire (BRIQ)		BRIQ: 13-item questionnaire measuring illness-related behaviours: 1) <i>all-or-nothing</i> behaviour and 2) <i>limiting behaviour</i> (excessive rest).	Spence M, Moss-Morris R, Chalder T. The Behavioural Responses to Illness Questionnaire (BRIQ): a new predictive measure of medically unexplained symptoms following acute infection. <i>Psychol Med.</i> 2005 35(4):583-93.
Coping Orientation to Problems Experienced (COPE) Scale		COPE Scale: 28-item questionnaire assessing how people cope with stress, includes problem-focused and emotion-focused scales.	Carver CS, Scheier MF, Weintraub JK. Assessing coping strategies: a theoretically based approach. <i>J Pers Soc Psychol</i> 1986;56(2):267-283.

Supplementary Table 3: Suggested list of structured interviews, clinical and laboratory assessments for the investigation of persistent fatigue & symptoms after COVID-19.

Assessment or Investigation	Domain (*COVID-19 specific elements)	Comment	Relevant references
Medical assessment	Thorough medical history and physical examination including functional status, signs of respiratory impairment or heart failure*, pulse oximetry*.	Characterize the fatigue state (e.g., fatigue, weakness, somnolence, dyspnea), identify pre-morbid, concurrent, or <i>de novo</i> contributors to the fatigue state.	Wilson J, Morgan S, Magin PJ, van Driel ML. Fatigue–a rational approach to investigation. <i>Aust</i> <i>Fam Physician</i> 2014; 43: 457–461.
			Greenhalgh T, Knight M, A'Court C, Buxton M, & Husain L. Management of post-acute covid-19 in primary care. <i>The BMJ</i> . 2020 370.
			Sandler, C. X., & Lloyd, A. R. Chronic fatigue syndrome: progress and possibilities. <i>Medical</i> <i>Journal of Australia</i> . 2020 212(9), 428–433.
			National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing the long-term effects of COVID-19. 2020.
			World Health Organization. Global COVID-19 Clinical Platform Case Report Form (CRF) for Post COVID condition (Post COVID-19 CRF). 2021.
Mental health assessment	Thorough history and current mental state examination.	Characterize the fatigue state (e.g., anxiety, sleep disturbance, motivation loss). Identify pre-morbid, concurrent, or <i>de novo</i> contributors to the fatigue state.	Stadje, R., Dornieden, K., Baum, E. et al. The differential diagnosis of tiredness: a systematic review. <i>BMC Fam Pract</i> 2016 17, 147.
			Kroenke K, Wood DR, Mangelsdorff AD, Meier NJ, Powell JB. Chronic Fatigue in Primary Care: Prevalence, Patient Characteristics, and Outcome. JAMA. 1988;260(7):929–934.
			Griffith JP, Zarrouf FA. A systematic review of chronic fatigue syndrome: don't assume it's depression. Prim Care Companion J Clin Psychiatry 2008; 10: 120–128.
			World Health Organization. Clinical management of COVID-19: interim guidance. 2020. [†]
			National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing the long-term effects of COVID-19. 2020.
			World Health Organization. Global COVID-19 Clinical Platform Case Report Form (CRF) for Post COVID condition (Post COVID-19 CRF). 2021.

Blood tests	Full blood count, urea, electrolytes and creatinine levels, liver, and thyroid function tests, C-reactive protein levels or erythrocyte sedimentation rate, and fasting blood glucose, D- dimer,* brain natriuretic peptides,* ferritin*.	Investigations to identify potential causes of chronic fatigue.	Fukuda K, Straus SE, et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med 1994; 121(12): 953-9. Wilson J, Morgan S, Magin PJ, van Driel ML. Fatigue-a rational approach to investigation. Aust Fam Physician 2014; 43: 457-461. BMJ. BMJ Best Practice Coronovairus disease 2019 (COVID-19). 2020.† National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing the long-term effects of COVID-19. 2020. Shah S, Shah K, Patel SB, et al. Elevated D-dimer
Imaging and other investigations	Chest x-ray, chest CT*, 12-lead ECG*, echocardiogram*, neuroimaging (MRI)*	Investigations to identify potential causes of ongoing fatigue and/or end organ sequelae of COVID-19.	Inite of the product
			 <u>effects of COVID-19. 2020.</u> Marshall, J. C., et al. A minimal common outcome measure set for COVID-19 clinical research. <i>Lancet Infect Dis</i> 2020 20: e192–e197. Almqvist J, et al. Neurological manifestations of coronavirus infections - a systematic review. <i>Ann Clin Transl Neurol.</i> 2020;7(10):2057-2071. Castro RA, Frishman WH. Thrombotic complications of COVID-19 infection: a review. <i>Cardiol Rev</i> 2021; 29(1): 43-7. Ojo AS, Balogun SA, Williams OT, Ojo OS. Pulmonary fibrosis in COVID-19 survivors: predictive factors and risk reduction strategies. <i>Pulm Med</i> 2020: 6175964.

	Cognitive performance: Cambridge Neuropsychological Test Automated Battery (CANTAB) Cognitive Function Index (CFI)	CANTAB (proprietary): Includes tests of memory, attention, and executive function and is administered via a touch-sensitive computer screen. The CANTAB allows a decomposition of complex tasks commonly used in clinical assessment into their cognitive components. Tests include versions of the Wisconsin Card-Sorting Test, the Tower of London, and the Delayed Matching-to-Sample Test. Is non-verbal and largely language and culture independent. CFI: Measurement of cognitive performance. Assessment includes the California Verbal Leaning Test, the Rey-Osterrieth Complex Figure Test, the computerized NES continuous performance test, the Trail Making Test A and B, the grooved pegboard test, and the WAIS-III Vocabulary and Digit Span subtests. Eight factors were identified including: verbal learning and memory, visual learning and memory, focused attention, simple information processing, sustained attention, general verbal ability, complex information processing, and fine motor speed.	 Shafi AMA, Shaikh SA, Shirke MM, Iddawela S, Harky A. Cardiac manifestations in COVID-19 patients-A systematic review. <i>J Card Surg</i> 2020; 35(8): 1988-2008. World Health Organization. Global COVID-19 Clinical Platform Case Report Form (CRF) for Post COVID condition (Post COVID-19 CRF). 2021. Sahakian BJ, Owen AM. Computerized assessment in neuropsychiatry using CANTAB: discussion paper. <i>J R Soc Med</i> 1992;85:399–402. Brimacombe M, Lange G, et al. Cognitive Function Index for Patients with Chronic Fatigue Syndrome. <i>J Of Chronic Fatigue Syndrome</i> 2004; 12(4): 3-23.
Interviews	Domain	Comment	Relevant reference
Interviews Semi-structured Clinical Interview for Neurasthenia (SCIN)	Domain Fatigue and related symptoms	Comment Publicly available semi-structured clinical interview that assesses various aspects of fatigue (e.g., "fatigue" (including physical and mental fatigability), "pain symptoms", "neurocognitive difficulties", "sleep problems" and "mood disturbance". Captures patterns of occurrence of symptoms & degree to which each symptom causes functional impairment.	Relevant reference Bennett, B et al. Characterization of Fatigue States in Medicine and Psychiatry by Structured Interview. Psychosomatic Medicine, 76(5), 379–388.
Interviews Semi-structured Clinical Interview for Neurasthenia (SCIN) Composite International Diagnostic Instrument (CIDI)	Domain Fatigue and related symptoms Mood disturbance	Comment Publicly available semi-structured clinical interview that assesses various aspects of fatigue (e.g., "fatigue" (including physical and mental fatigability), "pain symptoms", "neurocognitive difficulties", "sleep problems" and "mood disturbance". Captures patterns of occurrence of symptoms & degree to which each symptom causes functional impairment. CIDI: A computerized structured interview for assessment of mental disorders. Measures prevalence, severity, determines burden of mental health disorders. Supported by the World Health Organization (WHO), the CIDI has been widely used in large epidemiologic studies and therefore allows for national comparisons of psychiatric prevalence rate. Can be administered by trained lay interviewers.	Relevant reference Bennett, B et al. Characterization of Fatigue States in Medicine and Psychiatry by Structured Interview. Psychosomatic Medicine, 76(5), 379–388. Andrews G, Peters L. The psychometric properties of the Composite International Diagnostic Interview. Soc Psychiatry Psychiatr Epidemiol 1998;33:80–8. Robins LN, et al. The Composite International Diagnostic Interview. An epidemiologic Instrument suitable for use in conjunction with different diagnostic systems and in different cultures. Arch Gen Psychiatry. 1988 Dec;45(12):1069-77.

Diagnostic Interview Schedule (DIS)		DIS: A structured diagnostic interview designed to assess specific symptoms, chronology, duration and associated impairments. Can be administered by trained lay interviewers.	Diagnostic Interview Schedule. Arch Gen Psychiatry 1982; 39(12): 1442-5.
Structured Diagnostic Interview for Sleep patterns and disorders (DISP)	Sleep	Publicly available structured interview that screens for a range of sleep disorders (delayed sleep phase, hypersomnia, insomnia, narcolepsy with cataplexy, period limb movement disorder, restless legs syndrome, rapid eye movement sleep behavior disorder, sleep apnea) and clinical impact (symptom course, impairment, severity and treatment). Can be administered by trained lay interviewers.	Merikangas KR, et al. The structured diagnostic interview for sleep patterns and disorders: rationale and initial evaluation. <i>Sleep Med.</i> 2014;15(5):530-5.

* COVID-19 specific elements † This reference is regarding the management of acute COVID-19. The relevance for persistent COVID-19 symptoms is uncertain.