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Abstract 38 

 39 

Despite its critical role in containing outbreaks, the efficacy of contact tracing (CT), 40 

measured as the sensitivity of case detection, remains an elusive metric. We estimated the 41 

sensitivity of CT by applying unilist capture-recapture methods on data from the 2018-2020 42 

outbreak of Ebola virus disease in the Democratic Republic of Congo. We applied different 43 

distributional assumptions to the zero-truncated count data to estimate the number of 44 



unobserved cases with a) any contacts and b) infected contacts, to compute CT sensitivity. 45 

Geometric distributions were the best fitting models. Our results indicate that CT efforts 46 

identified almost all (n=792, 99%) of the cases with any contacts, but only half (n=207, 48%) 47 

of the cases with infected contacts, suggesting that CT efforts performed well at identifying 48 

contacts during the listing stage, but performed poorly during the contact follow-up stage. We 49 

discuss extensions to our work and potential applications for the current COVID-19 50 

pandemic. 51 

 52 

Introduction 53 

 54 

Contact tracing (CT) is the process by which individuals who are believed to have come into 55 

contact with a confirmed case of an infectious disease during their infectious period are 56 

located and checked for the presence of the infection or disease. Under traditional 57 

approaches, CT involves three distinct steps; contact identification, in which potential 58 

contacts are identified through interview with the primary case; contact listing, in which 59 

those identified contacts are listed and communication established with them; and contact 60 

follow-up, in which those listed contacts are monitored for presence of infection or 61 

development of disease over a predefined period [1].  62 

 63 

Due to its important role in case detection to monitor and curtail chains of transmission, CT 64 

often forms part of the public health response to directly-transmitted infectious diseases [2]. 65 

Recently, CT has received widespread attention due to its critical role in the response to 66 

outbreaks of diphtheria [3], Ebola virus disease (EVD) [4–6], and the ongoing COVID-19 67 

pandemic [7,8].  68 

 69 



From 2018-2020, the Democratic Republic of the Congo (DRC) experienced its twelfth and 70 

largest EVD outbreak, the second largest ever experienced globally [9]. EVD is a disease 71 

caused by viruses of the genus Ebolavirus, family Filoviridae. Zoonotic spillover events from 72 

the animal reservoir have led to large, explosive outbreaks in West and Central Africa in 73 

recent years [9–12]. Owing to its high pathogenicity and virulence, an elimination control 74 

strategy is always adopted, aiming to ensure that all cases are identified, isolated, and treated 75 

promptly after disease onset, thereby limiting the opportunity for onward community spread. 76 

Although CT is a central pillar of control [13], there are no standardised methods to assess a 77 

critical aspect of performance, its sensitivity, i.e. the ability to detect all contacts and 78 

secondary infections resulting from cases.  79 

 80 

One approach to quantifying this metric is to employ capture-recapture (CRC) methods 81 

[14,15]. Broadly, this family of methodological approaches permits quantifying the number 82 

of individuals missing from lists, and subsequently estimate the sensitivity of the surveillance 83 

effort and the probability of case detection. While CRC has previously been used to estimate 84 

the number of unobserved cases of disease [16,17], such approaches typically rely on 85 

comparison of multiple lists, which are generally not available for contact lists. Therefore, we 86 

describe the application of a unilist capture-recapture approach [15] to quantifying the 87 

number of unobserved cases and contacts, and describe their sociodemographic profile, 88 

helping to identify plausible risk factors that can be used to target limited resources at those 89 

unobserved cases most likely to generate onward transmission. 90 

 91 

More precisely, we aim to address the following questions, from which we can derive CT 92 

sensitivity estimates: 93 

1. How many cases with any contacts did CT miss?  94 



2. How many cases with infected contacts did CT miss?  95 

 96 

 97 

Materials and methods 98 

 99 

Materials  100 

We included all confirmed and probable EVD cases and contacts (classified according to 101 

standardised case definitions [18,19]) identified in Beni Health Zone, DRC between 31 July 102 

2018 and 26 April 2020. Cases were principally detected through three identification 103 

mechanisms: i) passive detection at healthcare facilities from clinically suspect individuals 104 

presenting symptoms consistent with EVD, ii) house-to-house active case finding by 105 

community health workers, and iii) tracing the contacts of EVD cases. CT was coordinated 106 

by the Ministry of Public Health with support from WHO, and conducted by locally-recruited 107 

teams of contact tracers. Upon detection of a case, efforts to identify and list their contacts 108 

were undertaken.  109 

 110 

For cases, our data contains basic information on sociodemographic characteristics (age, sex, 111 

Health Area of residence), and dates of disease onset and isolation. For contacts, our data 112 

contains similar socio-demographic information, and information on the daily follow-up and 113 

final status of the contact (either “completed the 21 days follow-up”, “confirmed as EVD 114 

case”, “lost to follow-up”, “never seen”, and “died during follow-up”). Contacts recorded as 115 

“confirmed as EVD case” were those identified by the CT teams during the course of their 116 

work. EVD was assumed to be the cause of death for contacts recorded as “died during 117 

follow-up” due to the short interval between their contact with an EVD case and their death.  118 



 119 

Methods 120 

 121 

Exploratory data analysis 122 

 123 

We present the distribution of cases according to age, sex, and timing of disease onset. The 124 

distribution of the number of contacts per case are described between two distinct epidemic 125 

waves, with the Wilcoxon test used to explore differences in continuous variables and Chi-126 

squared test used for categorical variables. “Superspreading”, or overdispersion in the 127 

offspring distribution of secondary cases arising from infectious individuals, may have 128 

profound impacts on control strategies in low-resource settings [20,21], and we describe the 129 

extent of this phenomenon in two ways: firstly by assessing the proportion of infectious 130 

individuals linked to 80% of onward transmission using methods described by Endo et al 131 

[22]; and secondly by estimating the dispersion parameter (k) using methods described by 132 

Althaus [23].  133 

 134 

A multivariable logistic regression model was used to explore risk factors associated with 135 

loss to follow-up, in which previously successfully traced contacts (those identified, listed, 136 

and among whom follow-up has begun) become untraceable at some point during the 21 days 137 

follow-up period. In such cases, contacts unable to be traced for three consecutive days are 138 

recorded as having been lost to follow-up, with no further attempts at tracing made.  139 

 140 

To explore characteristics of cases with infected contacts, we calculated the mean number of 141 

contacts, mean age, and sex ratio of cases with at least one listed contact (among whom we 142 

can be confident that at least a minimal investigation was conducted), according to three 143 



categories – those with no infected contacts identified, those with precisely one, and those 144 

with two or more. 145 

 146 

Capture-recapture modelling 147 

 148 

We classified the observed cases according to their number of listed contacts (either precisely 149 

zero or those with at least one), further classifying this latter category according to the 150 

number of infected contacts observed (either precisely zero or those with at least one). For 151 

each detected case, the CT process generates a list of individuals fitting the definition for a 152 

contact (Supplemetary Materials), some of whom may themselves have been infected and 153 

will eventually become secondary cases. From this, frequency distributions of cases with any 154 

listed contacts, and of cases with infected contacts, can be generated by first excluding 155 

(truncating) those cases with zero contacts. For example, the data can be binned into the 156 

number of cases with exactly one contact (𝑓𝑓1), two contacts (𝑓𝑓2), and so on to the number of 157 

cases with the maximum number of contacts (𝑓𝑓𝑚𝑚). Statistically, this leads to a zero-truncated 158 

observed count distribution of cases with at least one contact. By applying a unilist CRC 159 

approach designed to estimate unobserved population sizes using the distribution of count 160 

data within single lists [15], we can infer 𝑓𝑓0, the number of unobserved cases with at least one 161 

contact. Associated with the observed frequencies (f1, f2,…, fm) and unobserved 𝑓𝑓0 there are 162 

probabilities p1, p2,…, pm and p0 informing the probability of identifying a case with exactly 163 

1, 2,…, m and 0 contacts, respectively. A conventional approach is to assume that the 164 

frequencies arise from a discrete distribution such as the Poisson where 𝑝𝑝0 = 𝑒𝑒−𝜆𝜆, 𝑝𝑝1 = 𝑒𝑒−𝜆𝜆𝜆𝜆
1!

,  165 

𝑝𝑝2 = 𝑒𝑒−𝜆𝜆𝜆𝜆2

2!
, .., 𝑝𝑝𝑚𝑚 = 𝑒𝑒−𝜆𝜆𝜆𝜆𝑚𝑚

𝑚𝑚!
 . Other common distributions are the negative binomial and the 166 

geometric distribution. The geometric distribution has probabilities  𝑝𝑝0 =  𝑝𝑝, 𝑝𝑝1 = 𝑝𝑝(1 − 𝑝𝑝),167 



𝑝𝑝(1 − 𝑝𝑝)2 . ..   𝑝𝑝𝑚𝑚 = 𝑝𝑝(1 − 𝑝𝑝)𝑚𝑚  where  p is a probability parameter. Poisson and geometric 168 

are special cases of the negative binomial distribution which provides a flexible model 169 

family. More details are given in the Supplementary Materials. As the observed distribution 170 

contains only positive numbers of contacts we need to consider the associated zero-truncated 171 

distribution 𝑝𝑝1/ (1 − 𝑝𝑝0), 𝑝𝑝2/ (1 − 𝑝𝑝0)  , . . .  𝑝𝑝𝑚𝑚/ (1 − 𝑝𝑝0) . In other words, we (1) assume 172 

that the number of observed contacts among cases who actually had contacts follows a 173 

parametric distribution (although non-parametric approaches are possible [15,24,25]), (2) find 174 

the best-fitting zero-truncated distribution based on the cases with at least one observed 175 

contact (we explore the zero-truncated Poisson, negative binomial, and geometric 176 

distributions (see Supplementary Materials)), and (3) use the estimated probability 𝑝𝑝0 of not 177 

observing a case with contacts (calculated from the best-fitting distribution) to inform 178 

standard population estimators. Here we use the Horvitz-Thompson estimator to estimate 𝑓𝑓0, 179 

the unobserved number of cases 180 

𝑓𝑓0�  =  𝑛𝑛 
𝑝𝑝0

1 − 𝑝𝑝0
 181 

where 𝑛𝑛 is the number of observed cases with at least one observed contact and 𝑝𝑝0 is defined 182 

as above. The Horvitz-Thompson estimator provides an unbiased estimate of 𝑓𝑓0 , provided 183 

that 𝑝𝑝0 is correctly specified, hence it is important to use a correctly-specified distribution for 184 

the number of observed contacts. We use maximum likelihood for model fitting, selecting the 185 

model with the smallest Akaike and Bayesian Information Criteria (AIC and BIC, 186 

respectively). Details are given in the Supplementary Materials.  187 

 188 

To estimate 95% confidence intervals (95%CIs), we use a parametric bootstrap, described as 189 

follows. Suppose that 𝑁𝑁� is the estimated size of the (observed and unobserved) population 190 

under a fitted model. We generate B samples of size 𝑁𝑁� using the fitted model and its 191 

estimated parameter(s). For each sample, all zeros are truncated and the size estimate  𝑁𝑁�𝑏𝑏 192 



computed, for each of the samples b=1, …, B. We chose B=10000 to minimise bootstrap 193 

simulation random error. We constructed 95%CIs using the 2.5th percentile of the distribution 194 

of  𝑁𝑁�𝑏𝑏  as the lower end and the 97.5th percentile as the upper end.  195 

 196 

 197 

Results 198 

 199 

Exploratory data analysis 200 

 201 

We identified 913 confirmed and 10 probable EVD cases in Beni HZ. The CT process listed 202 

80,556 contacts, of whom 6224 were duplicates, having been listed as the contact of more 203 

than one case, giving 74,181 contacts to trace. In discussion with contact tracing teams, 204 

duplicates were identified by matching name and residential location; for operational reasons, 205 

these individuals were recorded as a contact of only the earliest-identified primary case with 206 

which they were associated. The majority of cases for whom sex and age were available were 207 

female (n = 515, 55.8%), while median (interquartile range, IQR) age was 25 (13-38) years. 208 

Most contacts (64,545, 87.0%) were successfully traced, leading to the detection of 396 209 

secondary cases. The median delay between last contact with the primary case and first 210 

contact by the CT teams was 4 days (interquartile range: 3-6 days). 211 

 212 

Disease onset dates spanned the period 31 July 2018 to 26 April 2020, and was bimodally 213 

distributed, with two waves peaking in October 2018 and June 2019 (Figure 1A). The second 214 

wave followed a period of insecurity in this conflict-affected area that severely hampered 215 

response activities, including CT [26].  216 

 217 



The median (IQR) number of contacts among all cases was 61 (18 - 120), but this was 218 

significantly lower during the first wave than the second (34 vs. 80, p < 0.001). Cases 219 

occurring in the first wave were more likely to have zero listed contacts than those in the 220 

second wave (31.3% vs. 9.6%, X2 (1, N = 603) = 43.2, p < 0.001), and second wave cases 221 

were more likely to have a large number (> 100) of contacts (Figure 1B). 792 cases (85.8%) 222 

reported at least one contact (Figures 2 and 3), among whom the median (IQR) and mean 223 

number of contacts was 74 (36 - 134) and 102, respectively. 224 

 225 

64,545 contacts (87.0%) were successfully traced, of whom 308 were confirmed as an EVD 226 

case and 88 died during follow-up. Therefore, the inferred total number of infected contacts 227 

was 396 (308 + 88), or 0.7% of the contacts successfully traced to completion of the follow-228 

up period. Precise detail on the mechanism of identification of confirmed cases among 229 

contacts is not available; while we assume these were identified by contact tracers during 230 

follow-up, the role of other surveillance activities cannot be excluded. 231 

 232 

There was substantial overdispersion in the offspring distribution of secondary cases, with 233 

80% of onward transmission linked to just 13.9% (95%CI 11.4 – 16.2) of primary cases, and 234 

all secondary cases concentrated among the contacts of 207 (22.4%) cases. Further, just 99 235 

(10.7%) primary cases led to more than one secondary case (Figures 2 and 4). We estimated k 236 

as 0.27 [95%CI 0.20 – 0.33]. 237 

 238 

Male contacts had slightly (but statistically significantly) greater odds of being lost to follow-239 

up (odds ratio (OR) = 1.06, 95%CI 1.01 – 1.11, Table 1). Contacts in older age groups had 240 

significantly greater odds of being lost to follow-up compared to contacts in the youngest age 241 

group (0-15 years), with the greatest effect being observed among those aged 60 years and 242 



older (OR = 1.65, 95%CI 1.47 – 1.86) and a marginally smaller effect among those aged 45-243 

59 years (OR = 1.55, 95%CI 1.43 – 1.69). Conversely, contacts traced during the second 244 

wave had lower odds of being lost to follow-up (OR = 0.83, 95%CI 0.79 – 0.88).  245 

 246 

 247 

Capture-recapture modelling 248 

 249 

How complete was CT for cases with at least one listed contact? 250 

Among cases with at least one contact listed, the best fitting distribution of the count of cases 251 

with any contacts was given by the zero-truncated geometric model, which produced the 252 

lowest AIC and BIC (Table S1(a), Supplementary Materials). This distribution was very 253 

long-tailed (Figure 5), indicating that the majority of cases with contacts were successfully 254 

detected, as with increasing mean of any count distribution, the probability for a zero count 255 

becomes smaller. This is seen from the parameterization of the geometric distribution (see 256 

Methods) where for x=0 , i.e. the zero count, its estimated probability 𝑝𝑝0 resolves the 257 

expression 1
1+µ

( µ
1+µ

)𝑥𝑥 to return 1
1+µ

 where µ is the mean of the geometric model; the larger the 258 

mean, the smaller the probability of x=0.  259 

 260 

We estimated 𝑓𝑓0�  (the unobserved number of cases with any contacts) = 8 [95%CI = 8-10], 261 

where sample size (𝑛𝑛) was 792 and 𝑝𝑝0 found as 0.01. The sensitivity of CT to detect cases 262 

with any contacts was therefore 792/(792+8)  = 0.99 [95%CI 0.99-0.99]. There was no 263 

difference in sensitivity by epidemic wave (wave 1 = 0.99 [95%CI 0.99-0.99]; wave 2 = 0.99 264 

[95%CI 0.99-0.99]). 265 

 266 

How complete was CT for cases with infected contacts? 267 



Among cases with infected contacts, the best fitting distribution of the count of cases with 268 

infected contacts was again given by the zero-truncated geometric model, which produced the 269 

lowest AIC and BIC (Table S1(b), Supplementary Materials). This distribution is 270 

concentrated on the lower counts from 1 to 4 (Figure 6), indicating that a substantial 271 

proportion of cases with infected contacts may not have been detected.  272 

 273 

We estimated 𝑓𝑓0�  (the unobserved number of cases with infected contacts) = 227 [95%CI = 274 

171-241], where sample size (𝑛𝑛) was 207 and 𝑝𝑝0 found as 0.52. The sensitivity of CT to 275 

detect cases with infected contacts was therefore 207/(207+227)  = 0.49 [95%CI = 0.43-276 

0.55]. There was a statistically significant difference in sensitivity by epidemic wave, with 277 

lower sensitivity during wave 1 (0.24 [95%CI = 0.11-0.38]) than during wave 2 (0.48 278 

[95%CI = 0.40-0.56]). 279 

 280 

Among the 792 cases with at least one listed contact, those cases with zero infected contacts 281 

had fewer contacts overall, were slightly older, and slightly more likely to be female 282 

compared to the other groups (Table 2).  283 

 284 

 285 

Discussion 286 

 287 

Our findings suggest that CT efforts were very successful at identifying cases with at least 288 

one contact, but much less successful at identifying cases with contacts who later develop 289 

symptoms. This is unsurprising, as the investigation component (typically by interview with 290 

cases under treatment and/or their caregivers) is easier to conduct than the tracing component 291 

(typically requiring daily visits to a large number of difficult to locate and mobile 292 



individuals). This has important implications, as it is these infected contacts who contribute 293 

to ongoing chains of transmission when case investigation and contact tracing is inadequate, 294 

and in order to prioritise scarce resources, control efforts should target those cases among 295 

whose contacts secondary infections arise [20,21,27]. A high proportion of cases listed at 296 

least one contact (~85%), compared to 27% and 44% during EVD outbreaks in Liberia [28] 297 

and Sierra Leone [27], suggesting that lessons about enhancing the quality of CT were 298 

learned from previous EVD outbreaks [4,5,27,28]. 299 

 300 

Cases with infected contacts had more contacts on average, which may result from three 301 

possible explanations. Firstly, cases with more contacts are more likely to have at least one 302 

infected contact among these. Secondly, fewer overall listed contacts may be the result of 303 

poorly-conducted case investigations. We found some evidence in support of this, with the 304 

mean number of contacts increasing as the epidemic progressed, indicating possible 305 

improvements in case investigation quality over time as staff became more accustomed to the 306 

procedure and community trust and engagement in the response improved [29].  307 

 308 

Thirdly, cases with infected contacts may differ from other cases; in this study, such cases 309 

were younger and more likely to be male - demographic factors that have been previously 310 

shown to impact transmission of EVD and other diseases [30–32]. Indeed, cases with more 311 

contacts have been shown to play a greater role in disease transmission and are more likely to 312 

have infected contacts [33,34]. This is particularly true of diseases that demonstrate 313 

heterogeneous transmission, including EVD and COVID-19, and our results suggest a high 314 

degree of overdispersion and “superspreading”, in line with what has previously been 315 

reported during large EVD outbreaks [23]. Overdispersion can lead to rapid expansion, 316 

particularly among hidden chains of transmission, and one promising area of research is to 317 



identify correlates of “superspreading” to better target limited resources for greatest impact. 318 

Indeed, prior research suggests that, if highly infectious individuals can be predictively 319 

identified and targeted, the efficiency of control can be greatly enhanced, such that focussing 320 

half of all control effort on the most infectious 20% of cases can improve effectiveness up to 321 

threefold [20,21].  322 

 323 

While it is possible to estimate the number of unobserved cases with (infected) contacts, it is 324 

not possible to identify whether these have been misclassified as having zero (infected) 325 

contacts or if they were undetected by the surveillance system in general. However, the 326 

greater probability of having zero contacts listed during the first epidemic wave suggests 327 

substantial misclassification and suboptimal performance in the period during which 328 

surveillance activities were being established, as reported during previous EVD outbreaks 329 

[4,27,28]. Indeed, the sensitivity of CT to detect cases with infected contacts was lower, and 330 

loss to follow-up greater, during the first epidemic wave, indicating quality improvements of 331 

this activity over time, either because the ability to conduct contact follow-up was hampered 332 

by the insecurity experienced during the first wave, or because of greater familiarity with, and 333 

acceptance of, the process among CT staff and the local population.  334 

 335 

 336 

 337 

Limitations 338 

 339 

While the method described herein proposes a robust framework to assess the sensitivity of 340 

contact tracing, there are important limitations. There is no gold standard list of contacts 341 

against which to validate this method, but the method itself has been validated to estimate 342 



true population size in a variety of other settings [25]. The dataset does not permit the 343 

distinction between cases who were confirmed to have no contacts after a thorough case 344 

investigation and cases having no listed contacts due to no (or inadequate) case investigation. 345 

However, our method may in fact help to identify the magnitude of the misclassification 346 

arising from this. The inferences made are exclusively informed by the definition of cases as 347 

defined by CT protocols; for example, our results would not inform the sensitivity of CT as 348 

applied to asymptomatic EVD cases if these individuals are not part of the testing strategy.  349 

Differences in performance between agents could result in strong heterogeneity in the count 350 

distribution, which might be detectable. For this reason, we applied Chao’s estimator (which 351 

allows for heterogeneity), and only if this was significantly different from the model-based 352 

estimate would we consider that there is an issue. In our results, this was not the case 353 

(Supplementary tables S2 and S3). Finally, we have not adjusted for observed heterogeneity, 354 

such as age, sex, profession, geographic location of the cases and delays within the contact 355 

tracing process. Further work is planned to incorporate such considerations. 356 

 357 

Conclusions 358 

 359 

In conclusion, CT is crucial to the containment of certain disease outbreaks. However, as 360 

with many surveillance activities, CT has the potential to suffer reduced effectiveness from 361 

underreporting and poor sensitivity [4,27,28]. The consequences of poor ascertainment and 362 

misclassification can be disastrous in the containment stages of an outbreak, potentially 363 

creating explosive expansion among hidden chains of transmission, particularly during 364 

containment and de-escalation phases. 365 

 366 



We have described a novel application of CRC models to estimate a crucial yet elusive 367 

performance indicator of a key component of the public health response to epidemics, namely 368 

the sensitivity of contact tracing, as applied to a recent outbreak of EVD. The method 369 

demonstrated that the majority of cases with any contacts were observed, suggesting that the 370 

case investigation component of CT performed well, while less than half of cases with 371 

infected contacts were observed, suggesting that the contact follow-up component of CT 372 

performed poorly in this setting. The approach described is disease-agnostic, and can be 373 

extended to assess the sensitivity of CT for any disease, including COVID-19, for which CT 374 

has been identified as a crucial component of the response activities.  375 
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Table 1. Multivariable logistic regression for predictors of loss to follow-up of contacts of 508 

Ebola Virus Disease cases, Beni Health Zone, Democratic Republic of the Congo, 31 July 509 

2018 - 26 April 2020.  510 

 511 

   
Unadjusted Adjusted 

Independent variable Level N OR (95% CI) p-value OR (95% CI) p-value 

Sex Female 41349 Reference - Reference - 

 Male 37296 1.07 (1.02 – 

1.12) 

0.003 1.06 (1.01 – 1.11) 0.013 

Age group 0-14 20616 Reference - Reference - 

 
15-29 26142 1.18 (1.11 – 

1.25) 

<0.001 1.19 (1.12 – 1.27) <0.001 

 
30-44 17665 1.16 (1.09 – 

1.24) 

<0.001 1.18 (1.10 – 1.26) <0.001 

 45-59 6157 1.56 (1.43 – 

1.70) 

<0.001 1.55 (1.43 – 1.69) <0.001 

 60+ 2599 1.64 (1.46 – 

1.84) 

<0.001 1.65 (1.47 – 1.86) <0.001 

Epidemic wave* First wave 14374 Reference - Reference - 

 
Second wave 66182 0.85 (0.81 – 

0.90) 

<0.001 0.83 (0.79 – 0.88) <0.001 

* Contacts were divided into 2 epidemic waves, according to the date of symptom onset of 512 

their associated primary case (first wave = 31 July 2018 – 28 February 2019, second wave = 513 

1 March 2019 - 26 April 2020). 514 

 515 



Table 2: Distribution of cases, their median age and sex ratio, and mean total number of 516 

contacts, grouped by number of infected contacts, among cases with at least one listed 517 

contact, Beni Health Zone, Democratic Republic of the Congo, 31 July 2018 - 26 April 2020. 518 

 519 

# infected 

contacts # cases Median age of cases % Female among cases 

Mean (95%CI) total number of 

contacts 

0 585 28.2 59.5 85.7 (79.1 - 92.4) 

1 108 23.6 56.7 122 (102.0 - 141.0) 

2+ 99 25.6 54.6 174 (144.0 - 204.0) 

  520 

 521 

Figure 1A: Epidemic curve by date of symptom onset among Ebola Virus Disease cases, 522 

Beni Health Zone, Democratic Republic of the Congo, 31 July 2018 - 26 April 2020. Cases 523 

and contacts were divided into 2 epidemic waves, according to the date of symptom onset 524 

among cases (first wave = 31 July 2018 – 28 February 2019, second wave = 1 March 2019 - 525 

26 April 2020). 526 

 527 

 528 

Figure 1B: Distribution of dates of symptom onset among cases, by number of listed 529 

contacts. Data were smoothed using a non-parametric (Gaussian) kernel-based estimate, with 530 

automatic bandwidth selection (37.6 days). 531 

 532 

Figure 2: Flowchart showing breakdown of observed cases by number of listed and infected 533 

contacts among Ebola Virus Disease cases, Beni Health Zone, Democratic Republic of the 534 

Congo, 31 July 2018 - 26 April 2020. 535 

 536 



Figure 3: Frequency distribution of Ebola Virus Disease cases by number of listed contacts, 537 

Beni Health Zone, Democratic Republic of the Congo, 31 July 2018 - 26 April 2020.  538 

 539 

Figure 4: Frequency distribution of Ebola Virus Disease cases with infected contacts by 540 

number of infected contacts, Beni Health Zone, Democratic Republic of the Congo, 31 July 541 

2018 - 26 April 2020. 542 

 543 

Figure 5: Observed and fitted (geometric) zero-truncated distribution of the total number of 544 

contacts for cases with at least one contact listed. 545 

 546 

Figure 6: Observed and fitted (geometric) zero-truncated distribution of the total number of 547 

infected contacts for cases with at least one infected contact listed. 548 

 549 
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