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Abstract—Over-the-air computation (AirComp) has been rec-
ognized as a promising technique of enabling the fusion center
(FC) to aggregate the data gleaned from massive distributed
wireless devices (WDs). Nevertheless, the computational perfor-
mance of AirComp is significantly affected by the potentially poor
channel conditions between the WDs and FC due to physical ob-
stacles. For mitigating this limitation, we employ reconfigurable
intelligent surfaces (RISs) for enhancing the reception quality
and thus improve the computational performance of AirComp.
Moreover, the previous studies of RIS-assisted AirComp tend to
rely on the real-time channel state information (CSI), leading to
excessive overhead since the number of RIS elements is large.
To mitigate the above issue, a mixed-timescale penalty-dual-
decomposition (MTPDD) algorithm is proposed, in which the
transmit power of each WD, the receive beamforming vector at
the FC, and the passive beamforming matrix of the RIS are
jointly optimized. We aim to minimize the average computation
mean-squared error (MSE) over time with reduced signaling
overhead. Specifically, at each time slot, we optimize the short-
term transmit power and receive beamforming vector based
on the real-time low-dimensional CSI vectors. By contrast, in
each frame, we update the long-term passive RIS beamforming
matrix based on the channel statistics. Besides, we analyzed
both the convergence and the computational complexity of the
proposed algorithms. Simulation results verify the benefits of
our proposed MTPDD beamforming algorithm. It is also shown
that the performance of the MTPDD algorithm approaches that
achieved by the scheme using real-time perfect CSI with reduced
signal overhead.

Index Terms—Internet-of-Things (IoT) networks, over-the-air
computation (AirComp), reconfigurable intelligent surface (RIS),
mixed-timescale beamforming.

The work of X. Zhai was supported by the Science and Technology
Program of Guangzhou under Grant 202102020869. The work of G. Han
was supported in part by the Joint Funds of the National Natural Science
Foundation of China and Guangdong under Grant U2001203, and the National
Natural Science Foundation of China under Grant 61871136. The work of Y.
Cai was supported in part by the National Natural Science Foundation of
China under Grants 61971376 and 61831004, and in part by the Zhejiang
Provincial Natural Science Foundation for Distinguished Young Scholars
under Grant LR19F010002. L. Hanzo would like to acknowledge the financial
support of the Engineering and Physical Sciences Research Council projects
EP/P034284/1 and EP/P003990/1 (COALESCE) as well as of the European
Research Council’s Advanced Fellow Grant QuantCom (Grant No. 789028).
(Corresponding author: Yunlong Cai)

X. Zhai and G. Han are with the School of Information Engineering,
Guangdong University of Technology, Guangzhou 510006, China (e-mail:
zhaixiongfei@gdut.edu.cn; gjhan@gdut.edu.cn).

Y. Cai is with the College of Information Science and Electronic
Engineering, Zhejiang University, Hangzhou 310027, China (e-mail: yl-
cai@zju.edu.cn).

L. Hanzo is with the Department of Electronics and Computer Science,
University of Southampton, Southampton, UK (Email: lh@ecs.soton.ac.uk).

Copyright (c) 2021 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

I. INTRODUCTION

The swift data aggregation from massive wireless devices
(WDs) is required in the Internet-of-things (IoT) networks [1]–
[3]. In conventional wireless communication systems, the
fusion center (FC) has to extract each and every WD’s
signal from the received signal for data aggregation. Hence
the signals gleaned from different WDs constitute harmful
interference. However, the computation of a specific function
of the aggregated data is required at the FC in practical IoT
applications, e.g., the sum or the mean, rather than the recovery
of each individual message. Hence, as the number of WDs
becomes extremely large, the traditional wireless techniques
are not energy-efficient in this context and may result in
excessive latency. To deal with the above impediments, over-
the-air computation (AirComp) has emerged as a promising
solution [4]–[8], which finds a way for exploiting the co-
channel interference among WDs during its computations.
By exploiting the signal superposition imposed by wireless
channels, the direct computation of the arithmetic mean,
weighted sum, and polynomial of the parameter/data gathered
from the WDs is workable at the FC. Due to the above
advantages, AirComp has beneficial applications in federat-
ed learning, distributed sensing, and consensus control [9].
Based on federated learning, the edge server can obtain the
average model from edge devices via wireless channels for
updating the global model by exploiting AirComp. For the
applications of distributed sensing, AirComp can be harnessed
by unmanned aerial vehicles (UAVs) carrying the FC, which
can perform ultra-fast data aggregation of a large number
of sensors mounted on buildings. The computation results
support the ubiquitous city-wide surveillance in smart-city
applications. Furthermore, for the application of consensus
control (e.g., for UAV swarm formation control and vehicular
platooning), an agreement needs to be reached based on the
interaction among all the vehicles. Hence, the information state
of each vehicle can be updated with the average of those of
others based on AirComp.

In the literature, there are two lines of research, which
focus on digital coded AirComp (see, e.g., [10]–[18]) and
analog uncoded AirComp (see, e.g., [4]–[8], [19]–[24]). Sim-
ple uncoded transmission was proven to achieve a sufficiently
low computation distortion for independent and identically
Gaussian distributed data sources [19]. As a further advance,
the authors of [10] and [11] have shown that coding is neces-
sary for enhancing the computation performance for bivariate
and correlated Gaussian distributed data sources. The concept
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of digital AirComp was first investigated in [12] for the
computation of certain functions in wireless sensor networks
and for physical-layer network coding aided two-way relaying
channels in [13]. As a further development, linear coding
and lattice coding were studied in [14] and [15], respectively.
Based on information theory, the achievable computation rate
of AirComp was investigated in [16] and [17]. To improve the
computation rate of multi-function AirComp, non-orthogonal
multiple access (NOMA) was studied in [18], where various
functions arriving from different WDs were superimposed in
each resource block.

On the other hand, the computation mean-squared error
(MSE) is typically adopted as the accuracy metric for analog
AirComp. The optimal power control strategies for AirComp
under fading channels and coherent multiple access channels
were investigated in [4], [20] and [21] by using convex
optimization, respectively. The authors of [22] developed
optimal power allocation for minimizing the probability that
the computation MSE exceeds a given threshold. Recently,
multiple-input multiple-output (MIMO) techniques have also
been investigated in the context of multi-function computa-
tion in AirComp. In particular, the authors of [7] investi-
gated MIMO-aided AirComp employed for simultaneously
computing multiple functions and proposed a closed-form
equalization solution at the access point (AP) based on zero-
forcing (ZF) transmit beamforming at the WDs. Furthermore,
a powerful massive MIMO assisted AirComp solution was
designed in [6], [8], [23] for mitigating the computation
accuracy erosion upon increasing the number of WDs. It is
important to note however that accurate synchronization of all
WDs is pivotal in AirComp. Hence a novel synchronization
technique referred to as AirShare was proposed in [24], where
the synchronization is implemented by broadcasting a shared
clock to all WDs.

But naturally, the computational performance of AirComp
may be significantly affected by the propagation conditions
between the WDs and FC due to physical obstacles. As a
remedy, it has been shown that the spatial degrees of freedom
and the resultant array gain can be improved by the reconfig-
urable intelligent surfaces (RIS) at a low energy and hardware
cost [25]–[29]. In particular, an RIS is able to independently
change both the amplitude and phase shift of the incident
signal. In this way, a favorable propagation environment can be
created to enhance the system performance. Furthermore, no
radio frequency (RF) chains are required by the passive RISs,
which significantly reduces the fabrication cost and energy
consumption as compared to that of the active antennas at the
relays. Furthermore, it was shown in [30] that no modification
of the existing infrastructure and operating standards is needed
for the implementation of RIS in cellular systems.

Given its advantages, RISs have been studied in various
contexts, such as RIS-assisted orthogonal frequency division
multiplexing (OFDM) [31], [32], physical layer security [33]–
[35], and wireless power transfer [36]–[40], etc. More recently,
RISs have also received substantial attention in AirComp [41]–
[43]. Specifically, an alternating difference-of-convex (DC)
programming algorithm based on matrix lifting was proposed
in [41] for the joint beamforming design problem of RIS-
assisted AirComp systems. Moreover, a new scheme com-

bining RIS-assisted AirComp with energy beamforming was
studied in [43], where the problems of AirComp and energy
beamforming are addressed separately based on semidefinite
relaxation (SDR) and DC programming. It was shown that
the computation performance is significantly improved with
the aid of RISs. However, the RIS-related channel state
information (CSI) was routinely assumed to be known in the
prior contributions, which is not realistic for the following two
reasons. 1) The RIS usually consists of a very large number
of reflecting elements, hence it is quite challenging to obtain
accurate CSI at the RIS, and the CSI estimation error may
lead to poor computation performance; 2) the optimization of
the passive beamforming matrix by utilizing the instantaneous
CSI may result in heavy signaling overhead.

To address the aforementioned challenges, the mixed-
timescale beamforming philosophy has emerged [44]–[47].
In this scheme, the short-term variables are optimized by
exploiting the instantaneous CSI. In the contrast, the long-term
variables are updated based on the channel statistics. In partic-
ular, an online algorithm based on stochastic optimization was
proposed in [45] for addressing the mixed-timescale hybrid
beamforming problem of a massive MIMO aided cloud radio
access network (C-RAN). However, we cannot directly apply
most of the designs to RIS-assisted AirComp systems, since
the design objectives are fundamentally different. In [44]–
[46], the conventional RIS-assisted wireless communication
systems focus on detecting the data of each user, in which
the data from others is treated as the harmful interference.
Hence, the mixed-timescale beamforming in [44]–[46] was
designed for suppressing the multi-user interference. However,
the RIS-assisted AirComp systems generally aim to recovery
the sum of the data from all WDs by exploiting the signal
superposition. There is no multi-WD interference and all WDs
contribute to the computation accuracy. Therefore, the mixed-
timescale beamforming for RIS-assisted AirComp systems
should concurrently and beneficially exploit the signals from
all WDs to assist functional computation. Based on stochastic
successive convex approximation (SSCA), a mixed-timescale
hybrid beamforming algorithm for massive MIMO AirComp
systems was developed in [47]. It has been shown that the
mixed-timescale scheme in [47] can significantly reduce the
signaling overhead as compared to [8]. In contrast to [8]
and [47], in this contribution we investigate a more refined
RIS-assisted AirComp system, which offers a more energy-
efficient solution. Specifically, we first equivalently transfor-
m the stochastic beamforming problem into a deterministic
one by fully exploiting the channel statistics. Then a novel
mixed-timescale beamforming algorithm is developed based
on solving the resultant problem. It is verified that the proposed
algorithm outperforms the design in [47] in terms of the
computation MSE and signaling overhead.

Explicitly, our main contributions are summarized as fol-
lows.

• We investigate an RIS-assisted AirComp system relying
on a multi-antenna FC, an RIS, and a number of WDs,
which aims for computing the sum of the data gleaned
from the WDs. We conceive a mixed-timescale scheme,
where the transmit power at the WDs, the passive beam-
forming matrix at the RIS, and the receive beamforming
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vector at the FC are jointly optimized for minimizing
the average computation MSE with the reduced CSI
signaling overhead. This challenging problem is generally
intractable due to facts that the objective function is
stochastic and the constraints are non-convex.

• We first transform this challenging stochastic optimiza-
tion problem into an equivalent but more tractable deter-
ministic problem based on the channel statistics. Then, we
propose a mixed-timescale penalty-dual-decomposition
(MTPDD) algorithm for optimizing the variables at d-
ifferent time scales. Specifically, we optimize the short-
term variables (i.e., the transmit power at the WDs and
receive beamforming vector at the FC) at each time slot
by exploiting the real-time low-dimensional CSI vector.
Then we update the long-term RIS passive beamforming
matrix based on the channel statistics in a frame-based
manner. The convergence and computational complexity
of the proposed MTPDD algorithm are also analyzed.

• Our numerical results show that the proposed mixed-
timescale beamforming design substantially outperforms
other benchmarks inspired by the block coordinate de-
scent (BCD) method and the SSCA method. Finally, the
proposed algorithm is shown to match the performance
upper bound associated with the perfect real-time RIS-
related CSI.

The remainder of this paper is organized as follows. Section
II describes the system model. Section III formulates the
average computation MSE minimization problem under the
transmit power and constant modulus constraints. Section IV
presents the MTPDD approach to address the investigated
problem. Section V presents the simulation results. Finally,
Section VI draws the conclusion.

The acronyms in this paper are summarized in Table I.

TABLE I: The acronyms appeared in the paper.

Acronym Full name
AirComp Over-the-air computation

FC Fusion center
WD Wireless device
CSI Channel state information

MSE Mean-squared error
IoT Internet-of-things

UAV Unmanned aerial vehicle
NOMA Non-orthogonal multiple access
MIMO Multiple-input multiple-output

ZF Zero-forcing
RF Radio frequece

OFDM Orthogonal frequency division multiplexing
DC Difference-of-convex

SDR Semidefinite relaxation
C-RAN Cloud radio access network
SSCA Stochastic successive convex approximation
BCD Block coordinate descent

CSCG Circularly symmetric complex Gaussian
LTE Long term evolution

AWGN Additive white Gaussian noise
LoS Line-of-sight

NLoS Non-line-of-sight
PDD Penalty duality decomposition
KKT Karush-Kuhn-Tucker
ULA Uniform linear array
URA Uniform rectangular array

Notations: Throughout this paper, bold upper-case letters
and bold lower-case letters are adopted for matrices and

vectors, respectively. A(i, j) denotes the entry on the ith row
and the jth column for a matrix A, while AT , AH , and
A∗ denote its transpose, Hermitian transpose, and conjugate,
respectively. Furthermore, we denote I as the identity matrix
whose dimension will be clarified from the context, and denote
Cm×n (Rm×n) as the m-by-n dimensional complex (real)
space. The notations E(·), vec(·), ‖ · ‖, and ‖ · ‖∞ represent
the expectation, vectorization, Frobenius norm, and infinite
norm of an input variable, respectively [48]. We denote ◦ and
⊗ as the Hadamard product and Kronecker product between
two matrices, respectively. CN (Υ,Φ) denotes the circularly
symmetric complex Gaussian (CSCG) distribution with mean
Υ and covariance matrix Φ.

II. SYSTEM MODEL

We investigate the RIS-assisted AirComp system as shown
in Fig. 1, where one FC and one RIS simultaneously serve K
single-antenna WDs. We assume that the FC and the RIS are
equipped with N and M antenna elements, respectively 1.
A smart controller is employed for adjusting the passive
reflection coefficients at the RIS, which communicates with
the FC via a backhaul link for enhancing the computation
accuracy and exchanging information (this link is capacity
limited and cannot support the transmission of massive data
from all WDs). Besides, we assume that the synchronization
of different WDs relies on accurate timing advance control
mechanism 2, which is commonly considered in long term
evolution (LTE) systems [9]. For convenience, the variables in
this paper are summarized in Table II.

WD 1

WD 2

WD K
FC with N

antennas

RIS with M reflecting elemantsRIS controller

Fig. 1: RIS-assisted AirComp system.

In this AirComp system, the heterogeneous time-varying
parameter of the environment (e.g., humidity, temperature,

1As illustrated in Section I, the general AirComp system investigated in
the literature (e.g., [4], [6]–[8], [21]–[23]) can be exploited in various areas.
However, there exists the case that the channel condition of the direct link
between the FC and the WDs is pretty poor due to long distance and obstacles.
Hence, in this paper, we consider the deployment of a RIS to deal with the
poor channel condition. It is shown that the RIS can improve the computation
performance efficiently [41]–[43].

2Accordingly, each WD estimates the propagation delay and then transmit
ahead of time, thus the FC receives the transmitted signal in the allocated
time slot - regardless of the WDs’ location. Since the cyclic prefix (about 5
microseconds) in LTE systems is much longer than the typical synchronization
offset/error (about 0.1 microseconds) [49], the FC can correct the phase
shift of the received signal by sub-channel equalization. Therefore, the time
synchronization proposed for our system is feasible.
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TABLE II: The variables appeared in the paper.

Variables Meaning Domain/Dimension
N The number of antennas at the FC Positive integer
M The number of reflecting elements at the

RIS
Positive integer

K The number of WDs Positive integer
K The set of WDs Define as K , {1, 2, . . . ,K}
sk The collected parameter at the WD k C
s The sum of the collected parameters C
xk The signal transmitted by the WD k C
vk The transmit coefficient at WD k C
P The maximum transmit power of each WD Positive number
Θ The RIS diagonal passive beamforming ma-

trix at the RIS
CM×M

θm The phase shift of the mth reflecting ele-
ment

Positive number in the set of [0, 2π)

gk The channel vector from WD k to the RIS CM×1

Q The channel matrix from the RIS to the FC CN×M

hk The channel vector from WD k to the FC CN×1

y The received signal vector at the FC CN×1

n The AWGN vector CN×1

σ2 The noise power Positive number
u The receive beamforming vector at the FC CN×1

ŝ The processed signal after the receive beam-
forming

C

βWI The Rician factor for the WD-RIS link R
z̄g,k The LoS component of gk CM×1

zg,k The NLos component of gk CM×1

Φg,k The spatial correlation matrix between WD
k and the RIS

RM×M

βIF The Rician factor for the RIS-FC link R
F̄ The LoS component of Q CN×M

F The NLos component of Q CN×M

Φt The RIS transmit correlation matrix RN×N

Φr The RIS receive correlation matrix RM×M

βWF The Rician factor for the WD-FC link R
z̄h,k The LoS component of hk CN×1

zh,k The NLoS component of hk CN×1

Φh,k The correlation matrix between WD k and
the FC

RN×N

R The number of frames in a long time block Positive integer
T The number of time slots in a frame Positive integer
F The feasible set of Θ Defined as F , {Θ = diag(ejθ1 , . . . , ejθM ), θm ∈ [0, 2π),m ∈M}
φ The diagonal vector of Θ∗ CM×1

φm The mth element in φ C
f The auxiliary variable in the PDD frame-

work
CM×1

fm The mth element in f C
ρ The penalty parameter Positive number
λ The dual variable vector CM×1

ε The threshold to control the termination of
the short-term algorithm

Positive number

εin The threshold to control the termination of
the inner-loop of the PDD-based method

Positive number

εout The threshold to control the termination of
the outer-loop of the PDD-based method

Positive number

L The path loss Positive number
C0 The path loss at the referent distance Positive number
D0 The referent distance Positive number
αWI The path loss exponent for the WD-RIS link Positive number
αWF The path loss exponent for the WD-FC link Positive number
αIF The path loss exponent for the RIS-FC link Positive number
dx The distant between the reference antenna

at the FC and the origin along the x-axis
Positive number

dy The distant between the reference element
at the RIS and the origin along the y-axis

Positive number

dr The radius of the circle on which the WDs
locate

Positive number

κr The correlation coefficient for Θr Positive number in the set of [0, 1]
κt The correlation coefficient for Θt Positive number in the set of [0, 1]
κg,k The correlation coefficient for Θg,k Positive number in the set of [0, 1]
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noise) is first recorded at every WD, and then the recorded data
from all the WDs is simultaneously transmitted to the FC for
computation. At a given time slot, sk ∈ C denotes the recorded
parameter at the WD k ∈ K. Without loss of generality, we
assume that the collected parameters are independent of each
other and normalized, i.e., E(sks

∗
k) = 1,E(sks

∗
j ) = 0,∀k, j ∈

K, k 6= j. The uniform normalization factor of each parameter
for all WDs can be inverted at the FC for data recovery.

To support ultra-fast data aggregation, by exploiting the
superposition encountered in multiple access channels, the
FC directly computes the target nomographic function at a
reduced communication overhead. Again, we assume that
the FC is interested in the sum operation, i.e. estimating
s =

∑K
k=1 sk [7], but this design is also readily extendable

to other nomographic functions [50]. Nevertheless, the poor
channel conditions between the WDs and FC due to physical
obstacles significantly affect the computational performance
of AirComp. To address the above issue, we employ an RIS
for enhancing the overall performance.

Based on the considered system model, we formulate the
signal transmitted by the WD k as

xk = vksk, (1)

where we denote vk ∈ C as the transmit coefficient at WD k.
By denoting P as the maximum transmit power of each WD,
we have E(|xk|2) = |vk|2 ≤ P,∀k ∈ K accordingly.

We denote Θ , diag(ejθ1 , ejθ2 , . . . , ejθM ) ∈ CM×M as
the RIS diagonal passive beamforming matrix, where θm ∈
[0, 2π), m ∈ M , {1, 2, . . . ,M}, represents the phase shift
coefficient of the reflecting element. Let gk ∈ CM×1, Q ∈
CN×M , and hk ∈ CN×1 denote the channel vectors/matrices
from WD k to the RIS, from the RIS to the FC, and from
WD k to the FC, respectively. Therefore, the received signal
vector at the FC is given by

y =
∑
k∈K

(QΘgk + hk)vksk + n, (2)

where we denote n as the additive white Gaussian noise
(AWGN) vector with n ∼ CN (0, σ2I).

By denoting u ∈ CN×1 as the receive beamforming vector
at the FC, the processed signal after the receive beamforming
is given by

ŝ = uHy. (3)

In this paper, we assume the tightly spaced antennas and
the limited angular spread of the scattering environment.
Hence, a general spatially correlated Rician fading channel
model is considered for the WD-RIS, RIS-FC, and WD-FC
links [51], which consists of both line-of-sight (LoS) and non-
LoS (NLoS) components. In this channel model, the channel
statistics of the WD-RIS link are assumed to be dependent on
the WD-location and its second-order statistics are assumed to
be identical for each WD. Such channel model is widely used
in literature [41], [43], [44]. In particular, the channel vector
from WD k to the RIS is given by

gk =

√
βWI

1 + βWI
z̄g,k +

√
1

1 + βWI
Φ

1/2
g,k zg,k, (4)

where we denote βWI ∈ R and z̄g,k ∈ CM×1 as the Rician
factor and the deterministic (LoS) component, respectively.
zg,k ∈ CM×1 is the NLoS component, which describes the
Rayleigh fading coefficients. Moreover, its elements follow
independently and identically CSCG distribution with zero
mean and unit variance. The spatial correlation matrix between
WD k and the RIS is denoted as Φg,k ∈ RM×M . Similarly,
we respectively formulate the channel matrices/vectors for the
RIS-FC link and the WD-FC link as

Q =

√
βIF

1 + βIF
F̄ +

√
1

1 + βIF
Φ

1/2
t FΦ1/2

r , (5)

hk =

√
βWF

1 + βWF
z̄h,k +

√
1

1 + βWF
Φ

1/2
h,kzh,k, k ∈ K, (6)

where F̄ ∈ CN×M and z̄h,k ∈ CN×1 represent the LoS
components, and F ∈ CN×M and zh,k ∈ CN×1 are the NLoS
components. Φh,k ∈ RN×N and Φr ∈ RM×M (Φt ∈ RN×N )
denote the correlation matrix between WD k and the FC and
the RIS receive (transmit) correlation matrix, respectively. It is
assumed that the correlation matrices (i.e., Φg,k, Φr, Φt, and
Φh,k) and the LoS components (i.e., z̄g,k, F̄ and z̄h,k) vary
quite slowly, which are viewed as the channel statistics. On the
other hand, the real-time CSI (the NLoS components) varies
rapidly. For the ease of presentation, we involve the terms
of Rician factors into {z̄g,k, zg,k, F̄,F, z̄h,k, zh,k}. Hence
the channel matrices/vectors can be equivalently reduced to
gk = z̄g,k + Φ

1/2
g,k zg,k, Q = F̄ + Φ

1/2
t FΦ

1/2
r , and hk =

z̄h,k + Φ
1/2
h,gzh,k.

III. PROBLEM FORMULATION

In this section, we first introduce the frame structure used
and then mathematically formulate the problem investigated.

A. Frame Structure

In practice, the estimation and exchange of real-time CSI
lead to huge overhead. Thus it is unrealistic to jointly optimize
the required variables for each channel realization. Therefore,
to circumvent this problem, we conceive a mixed-timescale
algorithm. As shown in Fig. 2, we consider a sufficiently long
time block, where we assume that the channel statistics of
all links (e.g., the LoS components) are constant. This block
consists of R frames, each of which is further divided into T
time slots. Note that the obtained CSI varies at different time
slots due to the small scale fading. Besides, we assume that
the CSI remains time-invariant within each time slot. In our
algorithm, to achieve the tradeoff between the performance and
signaling overhead, we only make use of the channel statistics
to optimize the passive RIS beamforming matrix at the end
of each frame. By contrast, we exploit the low-dimensional
effective real-time CSI for determining the transmit power and
receive beamforming vector within each time slot. This scheme
would have a low signaling overhead of CSI acquisition, as
compared with the assumption of perfect real-time full CSI of
all links [41]–[43].



6

0 1 r R-1

Frame

rT+1

Time slot

rT+t (r+1)T

Update the passive 

beamforming matrix 

based on the constant 

channel statistics

Optimize the transmit 

power and the receive 

beamforming  with 

effective CSI

Fig. 2: The transmission scheme for the mixed-timescale design
algorithm.

B. Problem Formulation

We measure the computation accuracy by the MSE between
ŝ and s with given {hk}, {gk}, and Q, which can be expressed
as

g({vk},Θ,u; {hk}, {gk},Q)

, E(|s− ŝ|2)

= E(|
∑
k∈K

sk − uH
∑
k∈K

(QΘgk + hk)vksk − uHn|2)

= E(|
∑
k∈K

(1− uH(QΘgk + hk)vk)sk − uHn|2)

=
∑
k∈K

|1− uH(QΘgk + hk)vk|2E(sks
∗
k)

+ uHE(nnH)u

=
∑
k∈K

|uH(QΘgk + hk)vk − 1|2 + σ2|u|2, (7)

where the second last equality holds due to fact that the
collected parameters are independent of the AWGN noise
among the WDs. The last equality holds due to E(sks

∗
k) = 1

and n ∼ CN (0, σ2I). Then the average computation MSE is
given by

ḡ({vk},Θ,u) = E[g({vk},Θ,u; {hk}, {gk},Q)], (8)

where the expectation is taken over {hk}, {gk}, and Q.
In order to achieve accurate computation, we aim for

minimizing the average computation MSE over the channels.
Thus, the stochastic problem formulated may be written as

P1: minimize
vk,u,Θ

ḡ({vk},Θ,u)

subject to |vk|2 ≤ P,∀k ∈ K,
Θ ∈ F ,

(9)

where we denote the feasible set of Θ as F , {Θ =
diag(ejθ1 , . . . , ejθM ), θm ∈ [0, 2π),m ∈ M}. Furthermore,
the first constraint denotes the transmit power constraint of
WD k.

Problem P1 is quite challenging to solve, since the long-
term variable (i.e., Θ) and short-term variables (i.e., {vk} and
u) are highly coupled in the objective function. Moreover, the
average computation MSE is neither a convex function nor a
concave function. Even worse, it also involves expectation over
{hk}, {gk}, and Q. To the best of our knowledge, there is
a paucity of efficient algorithms for handling this non-convex
stochastic problem.

IV. PROPOSED MTPDD ALGORITHM

In this section, a MTPDD algorithm is proposed for dealing
with P1. In particular, we optimize the receive beamforming

vector u at the FC and the transmit coefficients {vk} at
the WDs in each time slot, while the passive beamforming
matrix Θ at the RIS is updated in a frame-based manner.
More specifically, we optimize {vk} and u with the aid of
the Lagrange duality method and the first order optimality
condition. Then Θ is updated by exploiting the penalty duality
decomposition (PDD) based algorithm.

A. Short-term Optimization Over Time Slot

In the following, in order to minimize the computation MSE
at each time slot, the transmit coefficients {vk} at the WDs
and the receive beamforming u at the FC are optimized. With
given Θ, {hk}, {gk}, and Q, problem P1 is reformulated as
a deterministic problem as follows:

P2: minimize
vk,u

g({vk},Θ,u; {hk}, {gk},Q)

subject to |vk|2 ≤ P,∀k ∈ K.
(10)

Based on the objective function of (10), we can address
problem P2 in an alternating manner. Firstly, given u, we
can equivalently decompose problem P2 into the following
K independent subproblems:

P3: minimize
vk

|uH(QΘgk + hk)vk − 1|2

subject to |vk|2 ≤ P.
(11)

It is obvious that problem P3 is a convex quadratic opti-
mization problem. To obtain more insights, we propose the
following lemma to obtain a closed-form optimal solution by
employing the Lagrange duality method [52].

Lemma 1: By denoting µ?k ≥ 0 as the optimal Lagrange
multiplier associated with the transmit power constraint in
problem P3, the optimal solution for problem P3 is given
by:

v?k(µ?k) =
h̃Hk u

uH h̃kh̃Hk u+ µ?k
, (12)

where h̃k = QΘgk+hk. If uH h̃kh̃Hk u 6= 0 and the following
inequality holds

|v?k(0)|2 < P, (13)

then the optimal Lagrange multiplier must be zeros; otherwise,
we choose µ?k to satisfy the following equation

|v?k(µ?k)|2 = P. (14)

We can prove Lemma 1 by exploiting the Karush-Kuhn-
Tucker (KKT) conditions [52]. To save space, we omit the
details of the proof. According to Lemma 1, it can be observed
that we can solve problem P3 by considering two different
cases: If (13) is met, we set µ?k = 0 and update vk according
to (12); otherwise, we then determine µ?k based on (14) using
the bisection method and update vk according to (12).

Secondly, with the transmit coefficients {vk} given, we
optimize the receive beamforming u at the FC for minimizing
the computation MSE. Hence, we can equivalently rewrite the
corresponding subproblem as

P4: minimize
u

g({vk},Θ,u; {Hk}, {Gk},Q). (15)
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Algorithm 1 The Short-term Alternating-optimization Algo-
rithm for Address Problem P2
Input ε > 0, Θ, {hk}, {gk}, and Q
Repeat

Step 1: Optimize vk by exploiting Lemma 1.
Step 2: Optimize u according to (16).

Until the decrease of the objective function in problem P2 is
less than ε.

Since problem P4 is an unconstrained convex problem, by
exploiting the first-order optimality condition [52], the closed-
form solution for u is given by

u? =

(∑
k∈K

|vk|2h̃kh̃Hk + σ2I

)−1(∑
k∈K

h̃kvk

)
. (16)

From (16), one can see that there exists a sum-MMSE structure
in the expression of u. The above sum-MMSE receiver is quite
different from the conventional MMSE receiver in multi-user
communication systems. In particular, the conventional MMSE

receiver is in the form of
(∑

k∈K |vk|2h̃kh̃Hk + σ2I
)−1

h̃kvk
aiming for estimating the dedicated message sk of WD k. For
computing the sum of sk, k ∈ K in AirComp, the term outside
the matrix inversion in (16) is

∑
k∈K h̃kvk. However, in the

conventional MMSE receiver, this term becomes h̃kvk aiming
for individually estimating sk’s of each WD. This sum-MMSE
structure is better to concurrently and beneficially exploit the
signals of all the WDs for assisting function computation
in RIS-aided AirComp systems. Therefore, with the aid of
the sum-MMSE structure, there are only the terms of signal
misalignment and noise in the expression of the computation
MSE in (7). Nevertheless, the signals transmitted by different
WDs are viewed as harmful inter-WD interference in the con-
ventional multi-user communication systems. In other words,
the receive beamforming relying on the sum-MMSE structure
is capable of exploiting the co-channel interference among
WDs as a beneficial factor in order to better deal with the
issue of signal misalignment.

We summarize the short-term alternating-optimization pro-
cedure in Algorithm 1. Observe from (12) and (16) that vk
and u are both updated based on h̃k, which is viewed as the
effective low-dimensional real-time CSI between the WD and
the FC. As discussed in the Section II, the estimation of h̃k
relying on a fixed passive beamforming matrix Θ is much
easier to obtain in practice than that of Q and {gk}. In other
words, the update of {vk} and u based on the effective real-
time CSI is much more efficient than the methods used in [41]–
[43], where the high-dimensional RIS-related CSI matrices Q
and {gk} have to be acquired at each time slot.

B. Long-term Optimization Over Frames
Given the transmit coefficients {vk} at the WDs and the

receive beamforming vector u, we can reformulate problem
P1 with respect to Θ as follows:

P5: minimize
Θ∈F

ḡ({vk},Θ,u), (17)

which aims for minimizing the average computation MSE over
channels by optimizing the passive beamforming matrix Θ at

the RIS. As it can be observed in problem P5, the objective
function (shown in (8)) is stochastic and the feasible set is
non-convex. To solve problem P5, by exploiting the following
theorem, we equivalently reformulate P5 into a more tractable
form by exploiting the channel statistics in all RIS-related
links.

Theorem 1: The objective function of problem P5 can be
equivalently rewritten as φHAφ+ φHb+ bHφ+ c, where

φ , [φ1, . . . , φM ] = diag(Θ∗), (18)

A ,
∑
k∈K

|vk|2
(

diag(uHF̄)z̄g,kz̄
H
g,kdiag(F̄Hu)

+
diag(uHF̄)Φg,kdiag(F̄Hu)

1 + βWI

+

∑
i∈M

λi

1 + βIF

(
Φr ◦ (z̄g,kz̄

H
g,k) +

Φr ◦Φg,k

1 + βWI

))
, (19)

b ,
∑
k∈K

(
|vk|2diag(uHF̄)z̄g,kz̄

H
h,ku

− diag(uHF̄)z̄g,kvk

)
, (20)

c ,
∑
k∈K

(
|vk|2uH

(
z̄h,kz̄

H
h,k +

Φh,k

1 + βWF

)
u

− 2<(uH z̄h,kvk) + 1
)

+ σ2|u|2, (21)

λi denotes the ith eigenvalue of Φ
1/2H
r uuHΦ

1/2
r .

Proof: See Appendix A.
Inspired by [44], we first expand the objective function

of P5 by considering the independence of F, zg,k, and
zh,k in Appendix A. Then we remove the expectation op-
erator by joint exploiting the matrix identities in [48] (e.g.,
qHD = diagT (D)diag(qH), Dq = diag(q)diag∗(D), and
diag(qH)ppHdiag(q) = (qqH) ◦ (ppH) for any vectors q,
p and diagonal matrix D) and eigendecomposition. In this
way, we can obtain the result of Theorem 1 and transform the
stochastic objective function of problem P5 to a deterministic
one, which is more tractable.

According to Theorem 1, problem P5 can be equivalently
reformulated as the following deterministic problem:

P6: minimize
φ

φHAφ+ φHb+ bHφ

subject to |φm| = 1,∀m ∈M.
(22)

As we can see, problem P6 is more tractable than problem
P5 but it is still non-convex, which is NP-hard in general. The
authors of [25] and [26] proposed two methods to address
a similar problem based on the techniques of SDR and
BCD. However, there are several drawbacks in these methods,
namely the high complexity of the SDR method and the one-
by-one iterative optimization of the elements of the BCD
method. To solve P6 with reduced computational complexity,
we propose a PDD-based method by updating the elements
of φ in parallel. Specifically, the proposed algorithm consists
of two loops. We iteratively optimize the primal variables in
the inner loop, while updating the penalty parameter and dual
variables in the outer loop.

To facilitate the PDD optimization framework [53], we
introduce an auxiliary variable f = [f1, . . . , fM ]T ∈ CM×1
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and set φ = f . Then problem P6 is equivalently reformulated
as

P7: minimize
φ,f

φHAφ+ φHb+ bHφ

subject to φ = f ,

|fm| = 1,∀m ∈M.

(23)

In the PDD framework, we optimize φ by solving the aug-
mented Lagrangian problem of P7 [52], which is given by:

P8: minimize
φ,f

φHAφ+ φHb+ bHφ

+
1

2ρ
‖φ− f + ρλ‖2

subject to |fm| = 1,∀m ∈M,

‖φ‖2 ≤M,

(24)

where we denote ρ and λ = [λ1, . . . , λM ]T as the penalty
parameter and the dual variable vector associated with the
constraint φ = f , respectively. Without loss of optimality, we
add the constraint ‖φ‖2 ≤ M due to φm ≤ 1. Furthermore,
this new constraint is necessary to guarantee the efficient
search space of the proposed algorithm, which can accelerate
the convergence. In the following, we detail the optimization
in the inner and outer loops.

1) Optimization in the Inner Loop: In the inner loop, we
optimize φ and f in an alternating manner. Given f , the
subproblem with respect to φ is expressed as

P9: minimize
φ

φHAφ+ φHb+ bHφ

+
1

2ρ
‖φ− f + ρλ‖2

subject to ‖φ‖2 ≤M.

(25)

It is readily seen that P9 is convex. Thus we can directly solve
this problem based on the first-order optimality condition [52]
if the obtained solution satisfies the constraint. Otherwise, a
factor is needed to scale the solution. Hence, we have the
following the optimal solution of problem P9:

φ? =


Φ−1a φb, if ‖Φ−1a φb‖2≤M,

Φ−1a φb
φc

, otherwise.
(26)

Φa = A +
1

2ρ
I,

φb =
1

2ρ
f − λ

2
− b,

φc = ‖Φ−1a φb‖2/M.

Next, we optimize f by fixing φ. The subproblem is given by
(ignoring the constant terms)

P10: minimize
f

‖φ− f + ρλ‖2

subject to |fm| = 1,∀m ∈M.
(27)

Since {fm} are separated in both the constraints and the
objective function of problem P10, the optimal solution can
be easily obtained [52], which is given by

f?m =
φm + ρλm
|φm + ρλm|

,∀m ∈M. (28)

Algorithm 2 The PDD-Based Method for Solving Problem
P6
Initialize εin > 0, εout > 0 φ, f , ρ, and λ such that they meet
all the constraints;
Repeat

Inner loop:
Optimize φ and f in an alternating manner according to

(26) and (28), until the decrease of the objective function in
problem P9 is less than εin.

Outer loop:
Update λ according to (29) and let ρ = ηρ.

Until the constraint violation ‖φ− f‖∞ is below εout.

Algorithm 3 The MTPDD Algorithm for Solving Problem P1

Initialize vk, u, and φ, such that they meet all the constraints;
Short-term optimization:

In each time slot, update {vk} and u according to Algorithm
1.
Long-term optimization:

At the end of each frame, update φ by solving problem P6
according to Algorithm 2.

2) Updation in the Outer Loop: In the outer loop, the dual
variable λ is updated by

λ = λ+
1

ρ
(φ− f), (29)

which is viewed as a dual ascend step [53]. Furthermore, we
decrease the penalty parameter ρ in the outer loop as ρ = ηρ,
where 0 < η < 1 is a constant. We summarize the proposed
PDD-based method in Algorithm 2.

C. Complete Algorithm
With the aid of the above derivation, the proposed overall

MTPDD procedure is summarized in Algorithm 3. Then, let us
analyze the complexity of Algorithm 1. According to Lemma
1, the complexity of updating {vk} is O(K(M2N + MN +
N)). Similarly, the complexity of optimizing u is given by
O(K(M2N+MN+N)+N3). The complexity of the PDD-
based method is dominated by solving problem P9, where
the complexities of updating φ and f are O(M3) and O(M),
respectively. Therefore, the overall complexity of Algorithm 2
is O(IiIo(M

3 + M)), where Ii and Io denote the maximum
iteration numbers for the inner and outer loop, respectively.
As illustrated in [25], the complexity of the SDR method in
the worst case is O((M + 1)6.5). It can be clearly observed
that our proposed PDD-based method significantly reduces the
complexity. Therefore, we can obtain the overall complexity.
Furthermore, we summarize the convergence of the proposed
MTPDD algorithm in the following theorem.

Theorem 2: Any limit point of the sequence generated
by the MTPDD procedure of Algorithm 3 is guaranteed to
converge to a stationary solution of problem P1.

Proof: See Appendix B.

V. SIMULATION RESULTS

In this section, the performance of the MTPDD beamform-
ing design proposed for RIS-assisted AirComp systems is
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evaluated and compared with that of the following benchmark
schemes.

• MTSDR: In this MTSDR scheme, we consider a mixed-
timescale beamformer based on the SDR technique
of [25]. Specifically, we optimize the passive beamform-
ing matrix at the RIS by exploiting the SDR method in
the long term, while updating the receive beamforming
vector at the FC and the transmit coefficients at the WDs
in the short term according to Algorithm 1.

• MTBCD: In this MTBCD scheme, we consider a mixed-
timescale beamformer based on the BCD technique.
Specifically, we optimize the passive beamforming matrix
at the RIS by exploiting the BCD method [26] in the long
term, while updating the receive beamforming vector at
the FC and the transmit coefficients at the WDs in the
short term according to Algorithm 1.

• SSCA: In this SSCA scheme, we consider a mixed-
timescale beamformer by exploiting the method of s-
tochastic successive convex approximation [45], [47].

• PCSI: In this PCSI scheme, we consider a single-
timescale beamformer by assuming that the FC, the RIS
and the WDs can perfectly estimate the complete CSI
in each time slot. The transmit coefficients are updated
according to Lemma 1. Then we design the receive
beamformer by (16). Finally, the passive beamforming
matrix is optimized by minimizing the instantaneous
computation MSE via the SDR method.

FC

RIS

WD 

Fig. 3: The location setup in the simulations.

In the following simulations, we define the distance-

dependent path loss as L = C0

(
d
D0

)−α
, where we denote

C0, d, and α as the path loss at the reference distance D0 = 1
meter (m), the individual distance, and the path loss exponent
(i.e., αWI, αWF, and αIF denote the path loss exponents for
the WD-RIS, WD-FC and RIS-FC links, respectively). Since
the RIS is deployed for the WDs that suffer from severe
channel condition in the WD-FC link, the path loss exponent
of the WD-FC link is assumed to be larger than those of other
links by setting αWF = 3.4, αWI = 2.2, and αIF = 3.
In the simulation setup, we consider the three-dimensional
system of Fig. 3, where we deploy the FC and the RIS on
the x-axis and y-z plane, respectively. We assume that the
FC is equipped with a uniform linear array (ULA). A uniform
rectangular array (URA) with M = MyMz reflecting elements

are deployed at the RIS, where we denote My and Mz as the
number of elements along the y-axis and z-axis, respectively.
Without loss of generality, we set My = 4. We deploy the
reference antenna/element at the FC/RIS at (dx = 2 m, 0, 0)
and (0, dy = 50 m, dz = 3 m). Besides, the WDs uniformly
locate on a circle with radius dr = 3 m whose center is at
(0, dy = 50 m, 0). Furthermore, we consider the exponential
correlation model in [54]–[56] for Φh,k, which is given by

Φh,k(i, j) =

{
κj−ih,k , if i ≤ j,
Φh,k(j, i), otherwise,

(30)

where 0 ≤ κh,k ≤ 1,∀k ∈ K is the correlation coefficient.
Similarly, we can also define Φt according to (30) with the
correlation coefficient κt, while we model Φr and Φh,k as
Φr = Φh

r ⊗ Φv
r and Φg,k = Φh

g,k ⊗ Φv
g,k. Φh

r (Φh
g,k)

and Φv
r (Φv

g,k) denotes the spatial correlation matrices of
the horizontal and vertical domains, respectively, which are
also defined as according to (30) with κr and κg,k being
the correlation coefficients. We define the signal-to-noise-ratio
(SNR) as SNR = P

σ2 . Furthermore, the simulation parameter
settings in Table II are considered unless otherwise specified.

TABLE III: The settings of the simulation parameters.

Parameter Value Parameter Value
M 32 dy 50 m
My 4 dz 3 m
Mz M/My dr 3 m
N 32 βWI 3 dB
K 64 βIF 3 dB
R 100 βWF −3 dB
T 10 κr 0.5
σ2 −80 dBm κt 0.5

C0 −30 dB κg,k
k−1
K

D0 1 m κh,k
0.2(k−1)

K
αWI 2.2 ε 10−4

αWF 3.4 εin 10−4

αIF 3 εout 10−4

dx 2 m

A. Convergence
Fig. 4 illustrates the convergence behavior of Algorithm 1

and Algorithm 2 with SNR = 5 dB, 15 dB, and 25 dB. As we
can see, the computation MSE in Algorithm 1 at the analyzed
SNRs monotonically converges to a stationary point within
a few number of iterations. Besides, Algorithm 1 converges
faster in the low SNR region. Furthermore, the constraint
violation of Algorithm 2 maintains decreasing and tends to
be zero, which means that the unit modulus constraint in
P6 is satisfied eventually. Figs. 5-7 illustrate the conver-
gence behaviors of the MTPDD algorithm over frames with
SNR = 5 dB, 15 dB, and 25 dB, respectively. One can see
that the computation MSE at different SNRs all converges to
a stationary point of P1 over a number of frames.

B. Impact of the Number of WDs
We show the computation MSE of the RIS-assisted Air-

Comp systems versus the number of WDs K for the different
algorithms at SNR = 15 dB in Fig. 8. We can observe
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Fig. 4: The convergence of Algorithm 1 and Algorithm 2 with
SNR = 15 dB.

that the computation MSE of all the considered schemes
increases as K becomes larger. This matches our discussion
that enabling the connection of more WDs leads to worse
computation MSE, where the design of a common passive
beamforming matrix at the RIS to assist the data aggregation
of more WDs is quite challenging. Our proposed MTPDD
algorithm outperforms the MTBCD and SSCA algorithms
with the increasing performance gaps due to the fact that our
proposed algorithm can better exploit the channel statistics.
Besides, the MTPDD algorithm approaches the performance
of the MTSDR method with much reduced computational
complexity, since the MTSDR method requires to deal with
the Rank-1 issue. Furthermore, the computation MSE of the
MTPDD algorithm is also close to that of the PCSI method,
which is viewed as the performance lower bound. This verifies
the efficiency of our proposed mixed-timescale beamforming
design.

C. Impact of the Number of Receive Antennas at the FC

The computation MSE performance versus the number of
receive antennas at the FC N is shown in Fig. 9 at SNR =
15 dB. When the number of receive antennas increases, we can
observe that the computation MSE of the proposed algorithm
decreases considerably. In particular, the computation MSE of
the PCSI algorithm decreases almost linearly with N . It coin-
cides with the discussion in [8], stating that with sufficiently
large number of receive antennas N the computation MSE is
inversely proportional to N . Besides, the MTPDD algorithm
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Fig. 8: The computation MSE performance versus K with
SNR = 15 dB.

still outperforms the MTBCD and SSCA algorithms with the
increase of N . When N ≥ 96, the performance gaps between
our proposed algorithm and the above two benchmark schemes
become much smaller due to the rich spatial degree of freedom
brought by the large-scale receive antenna array of the FC.
Furthermore, when N varies from 32 to 128, the MTPDD
algorithm approaches the computation MSE of the MTSDR
and PCSI methods with much less complexity and overhead.
This further verifies the efficiency of our proposed algorithm
in RIS-assisted large-scale MIMO AirComp systems.

32 64 96 128

4

6

8

10

12

C
om

pu
ta

tio
n 

M
SE

10-3

MTPDD
MTSDR
MTBCD
SSCA
PCSI

Fig. 9: The computation MSE performance versus N with
SNR = 15 dB.
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D. Impact of SNR
We show the computation MSE performance versus SNR in

Fig. 10. It can be observed that the computation MSE achieved
by all the analyzed schemes decreases monotonically as SNR
increases. Within the considered region of SNR, the proposed
algorithm outperforms the MTBCD and SSCA algorithms with
an increasing performance gap. Specifically, the performance
gap between the MTPDD and MTBCD algorithms is roughly
3.5 dB, while that between the MTPDD and SSCA algorithm
is 2 dB. As SNR varies from 0 dB to 20 dB, our proposed
algorithm approaches the MTSDR algorithm with a small
performance gap.
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Fig. 10: The computation MSE performance versus SNR.

E. Comparison of Signaling Overhead and Complexity
We compare the number of CSI feedback bits required by

the proposed MTPDD algorithm, the SSCA algorithm and the
single-timescale beamforming scheme versus the number of
reflecting elements at the RIS M in Fig. 11. Assuming that
the quantization of each element of the CSI matrix requires
B = 6 bits, the total number of signaling bits of the proposed
MTPDD is MN +KM +BRTKN , while that of the SSCA
scheme is BR(TKN + MN + KM) since it requires to
obtain a full CSI sample in each frame. Similarly, the number
of signaling bits of the single-timescale beamforming scheme
is BRT (KN + MN + KM). One can see that these two
analyzed mixed-timescale beamforming schemes (MTPDD
and SSCA) both can significantly reduce the overhead (about
87% when M = 256) as compared to the single-timescale
scheme. Furthermore, our proposed MTPDD scheme requires
fewer signaling bits than that of the SSCA scheme for the
RIS-assisted AirComp systems (about 45% when M = 256).
Moreover, the ratios of CPU time of other schemes to the
PCSI scheme with SNR = 15 dB are presented in Table IV.
We can see that the ratios are about 70% to 92%. This unveils
the tradeoff between the system performance and computation
complexity. Furthermore, based on Figs. 8-11 and Table IV,
we can conclude that our proposed algorithm matches the
computation MSE performance of the PCSI algorithm with
much lower complexity and signaling overhead.

VI. CONCLUSION

In this work, the beamforming design of RIS-assisted Air-
Comp systems was investigated. To minimize the average com-
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Fig. 11: The number of signaling bits versus M .

TABLE IV: The ratios of the CPU time of other schemes to the
PCSI scheme with SNR = 15 dB.

Scheme The ratio of the CPU time
MTPDD 72%
MTSDR 92%
MTBCD 65%

SSCA 70%

putation MSE over time with reduced CSI signaling overhead,
we proposed a MTPDD algorithm for jointly optimizing the
WDs’ transmit power, the receive beamforming vector at the
FC and the passive RIS beamforming matrix. In particular, the
short-term transmit power and receive beamforming vector are
optimized at each time slot by exploiting the Lagrange duality
method and the first-order optimality condition. By contrast,
we update the long-term passive RIS beamforming matrix
in a frame-based manner by exploiting the PDD framework.
Our simulation results showed that the proposed MTPDD
beamforming design outperforms the MTBCD and SSCA
benchmark schemes. Besides, the performance of the MTPDD
algorithm approaches the computation MSE lower bound
achieved by the single-timescale beamforming scheme relied
on perfect real-time CSI with much lower signaling overhead
and complexity. Our proposed mixed-timescale beamforming
design can serve as an excellent candidate for RIS-assisted
AirComp systems, achieving the tradeoff between the perfor-
mance and signaling overhead.

In the following, some important issues that are not ad-
dressed yet in this work are discussed to motivate future
research.

• For simplicity, we only considered the single-antenna
WDs in this work. In general, the WDs may collect sev-
eral types of parameters simultaneously and be equipped
with multiple antennas. Then the RIS-assisted AirComp
systems need to perform multi-function computation.
Therefore, the mixed-timescale beamforming design for
RIS-assisted MIMO AirComp systems is an important
problem to investigate in the future.

• In this work, we assumed that there is no channel
estimation error when acquiring the real-time CSI or
the channel statistics. In practice, since the number of
reflecting elements at the RIS is large, it is challenging to
perform channel estimation and the large errors may exist.
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Hence, the robust mixed-timescale beamforming design
against CSI errors is worthy of further investigation.

• In practice, due to the hardware limitation, the phase
shifts at the reflecting elements of the RIS are discrete.
Thus, the mixed-timescale beamforming with discrete
phase shifts for RIS-assisted AirComp systems is an
interesting topic.”

APPENDIX A
PROOF OF THEOREM 1

From problem P5, we can rewrite its objective function as

E

[∑
k∈K

|uH(QΘgk + hk)vk − 1|2 + σ2|u|2
]

=
∑
k∈K

E
(
|uH(QΘgk + hk)vk − 1|2

)
+ E(σ2|u|2)

=
∑
k∈K

E
(
|uH(QΘgk + hk)vk|2

− uH(QΘgk + hk)vk − v∗k(QΘgk + hk)Hu+ 1
)

+ E(σ2|u|2)

=
∑
k∈K

E
(
|uH((F̄ + Φ

1/2
t FΦ1/2

r )Θ(z̄g,k + Φ
1/2
g,k zg,k)

+ z̄h,k + Φ
1/2
h,kzh,k)vk|2

− uH((F̄ + Φ
1/2
t FΦ1/2

r )Θ(z̄g,k + Φ
1/2
g,k zg,k)

+ z̄h,k + Φ
1/2
h,kzh,k)vk

− v∗k((F̄ + Φ
1/2
t FΦ1/2

r )Θ(z̄g,k + Φ
1/2
g,k zg,k)

+ z̄h,k + Φ
1/2
h,kzh,k)Hu+ 1

)
+ E(σ2|u|2)

=
∑
k∈K

(
|x1,k|2 + E(|x2,k|2) + E(|x3,k|2) + E(|x4,k|2)

+ E(|x5,k|2)− x1,k − x∗1,k + 1
)

+ σ2|u|2, (31)

where

x1,k = uH(F̄Θz̄g,k + z̄h,k)vk, (32)

x2,k = uHF̄ΘΦ
1/2
g,k zg,kvk, (33)

x3,k = uHΦ
1/2
t FΦ1/2

r Θz̄g,kvk, (34)

x4,k = uHΦ
1/2
t FΦ1/2

r ΘΦ
1/2
g,k zg,kvk, (35)

x5,k = uHΦ
1/2
h,kzh,kvk. (36)

Note that the last equality in (31) holds since F, zg,k, and
zh,k are independent of each other. For |x1,k|2, x1,k, and x∗1,k
in (31), according to [48], we have

|x1,k|2 = |vk|2(φHdiag(uHF̄)z̄g,kz̄
H
g,kdiag(F̄Hu)φ

+ φHdiag(uHF̄)z̄g,kz̄
H
h,ku

+ uH z̄h,kz̄
H
g,kdiag(F̄Hu)φ+ uH z̄h,kz̄

H
h,ku), (37)

x1,k = φHdiag(uHF̄)z̄g,kvk + uH z̄h,kvk, (38)

x∗1,k = v∗kz̄
H
g,kdiag(F̄Hu)φ+ v∗kz̄

H
h,ku. (39)

Next, by expanding the term E(|x2,k|2), we can obtain

E(|x2,k|2) = |vk|2E(φHdiag(uHF̄)Φ
1/2
g,k zg,k

× zHg,kΦ
1/2H
g,k diag(F̄Hu)φ)

=
|vk|2

1 + βWI
φHdiag(uHF̄)Φg,kdiag(F̄Hu)φ. (40)

For the term E(|x3,k|2), we have

E(|x3,k|2) = |vk|2E(φHdiag(uHΦ
1/2
t FΦ1/2

r )z̄g,k

× z̄Hg,kdiag(Φ1/2H
r FHΦ

1/2H
t u)φ)

= |vk|2E(φH(Φ1/2H
r FHΦ

1/2H
t uuHΦ

1/2
t FΦ1/2

r

◦ (z̄g,kz̄
H
g,k))φ)

= |vk|2φH(Φ1/2H
r E(FHΦ

1/2H
t uuHΦ

1/2
t F)Φ1/2

r

◦ (z̄g,kz̄
H
g,k))φ. (41)

Since Φ
1/2
t is a Hermitian matrices, by denoting

Φ
1/2H
t uuHΦ

1/2
t , UΣUH according to the

eigendecomposition (U is a unitary matrix) [48], we
can show that

E(FHΦ
1/2H
t uuHΦ

1/2
t F)

= E(FHUΣUHF)

= E(FHΣF)

=

(∑
i∈M

λi

)
1

1 + βIF
I, (42)

where the second equality is due to the fact that the distribution
of a matrix does not change after multiplying a unitary matrix
[48]. Hence, we can rewrite (41) as

E(|x3,k|2)

=

(∑
i∈M

λi

)
|vk|2

1 + βIF
φH(Φr ◦ (z̄g,kz̄

H
g,k))φ. (43)

Similarly, we have

E(|x4,k|2)

=

(∑
i∈M

λi

)
|vk|2φH(Φr ◦Φg,k)φ

(1 + βWI)(1 + βIF )
(44)

E(|x5,k|2) =
|vk|2

1 + βWF
uHΦh,ku. (45)

Combining (37)-(40) and (43)-(45), the results can be ob-
tained.

APPENDIX B
PROOF OF THEOREM 2

We first outline the main procedures of the proof for
Theorem 2. Based on the fixed long-term variable Θ and given
CSI, the short-term alternating-optimization algorithm applied
to problem P2 is proven to converge to a stationary point.
Besides, the sequence generated by the PDD-based algorithm
in Algorithm 2 also converges to a stationary point of the
problem P5 by fixing {vk} and u. With the above results, we
finally demonstrate the convergence of the MTPDD algorithm
(Algorithm 3) applied to problem P1.
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At the beginning of the proof, we prove that there exists at
least one limit point. In this paper, one can see that the feasible
sets of vk, u, and Θ are all compact. Then problem P1 over
their Cartesian product set is bounded. Hence, the sequence
generated by the MTPDD algorithm is compact and bounded,
which must have one limit point at least.

In the following, we prove the convergence of Algorithm
1 in the short-term optimization. As we can see that all the
objective functions of the subproblems are equivalent to that
of problem P2. Thus, the objective function of problem P2
is lower bounded at each iteration when we apply Algorithm
1. Next, we show that at each iteration the objective function
value of problem P2 is non-increasing. We denote q as the
iteration index. According to the derivation in Section III-A,
for given Θ, {hk}, {gk}, and Q, we have

g({vk,q+1},Θ,uq; {hk}, {gk},Q)

≤ g({vk,q},Θ,uq; {hk}, {gk},Q), (46)
g({vk,q},Θ,uq+1; {hk}, {gk},Q)

≤ g({vk,q},Θ,uq; {hk}, {gk},Q). (47)

We can be observed that the objective function value of
problem P2 is non-increasing and also lower bounded by zeros
at each iteration. Therefore, Algorithm 1 converges to a set of
stationary solution of problem P2.

Moreover, we obtain that the PDD-based algorithm in
Algorithm 2 is guaranteed to converge to a set of stationary
points of problem P6. The detailed proof can be found in
[53], which is omitted to save space. Considering the fact
that problem P6 is equivalent to problem P5 (i.e., the global
optimal solutions for the two problems are identical), the
convergence of the PDD-based algorithm applied in problem
P5 is also guaranteed.

Finally, we prove the convergence of the MTPDD algorithm.
Let φ? denote the stationary point generated by Algorithm 2.
From the first-order optimality condition, we have

5Tφḡ({v?k},φ?,u?)(φ− φ?) ≥ 0, |φm| = 1,∀m ∈M, (48)

where ḡ({v?k},φ?,u?) is equivalent to ḡ({v?k},Θ?,u?) by
replacing Θ? with φ?, where {v?k} and u? are generated by
Algorithm 1. Combining (46), (47), and (48), the proposed
MTPDD algorithm converges to a set of stationary points of
problem P1.
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