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Cochlear implants (CIs) have been remarkably successful at restoring hearing in
severely-to-profoundly hearing-impaired individuals. However, users often struggle to
deconstruct complex auditory scenes with multiple simultaneous sounds, which can
result in reduced music enjoyment and impaired speech understanding in background
noise. Hearing aid users often have similar issues, though these are typically less
acute. Several recent studies have shown that haptic stimulation can enhance CI
listening by giving access to sound features that are poorly transmitted through the
electrical CI signal. This “electro-haptic stimulation” improves melody recognition and
pitch discrimination, as well as speech-in-noise performance and sound localization.
The success of this approach suggests it could also enhance auditory perception in
hearing-aid users and other hearing-impaired listeners. This review focuses on the use
of haptic stimulation to enhance music perception in hearing-impaired listeners. Music is
prevalent throughout everyday life, being critical to media such as film and video games,
and often being central to events such as weddings and funerals. It represents the
biggest challenge for signal processing, as it is typically an extremely complex acoustic
signal, containing multiple simultaneous harmonic and inharmonic sounds. Signal-
processing approaches developed for enhancing music perception could therefore
have significant utility for other key issues faced by hearing-impaired listeners, such
as understanding speech in noisy environments. This review first discusses the limits
of music perception in hearing-impaired listeners and the limits of the tactile system. It
then discusses the evidence around integration of audio and haptic stimulation in the
brain. Next, the features, suitability, and success of current haptic devices for enhancing
music perception are reviewed, as well as the signal-processing approaches that
could be deployed in future haptic devices. Finally, the cutting-edge technologies that
could be exploited for enhancing music perception with haptics are discussed. These
include the latest micro motor and driver technology, low-power wireless technology,
machine learning, big data, and cloud computing. New approaches for enhancing
music perception in hearing-impaired listeners could substantially improve quality of
life. Furthermore, effective haptic techniques for providing complex sound information
could offer a non-invasive, affordable means for enhancing listening more broadly in
hearing-impaired individuals.

Keywords: neuroprosthetic, cochlear implant, hearing aid, tactile aid, electro-haptic stimulation, pitch, multi-
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INTRODUCTION

Cochlear implants (CIs) recover hearing for severely-to-
profoundly hearing-impaired individuals by electrically
stimulating the cochlea. They deploy an array of up to 22
microelectrodes, replacing the approximately 3,500 hair cells that
transfer sound to the brain in normal-hearing listeners. Despite
the fact that only limited sound information can be provided
through this small number electrodes, CIs have been remarkably
successful at recovering access to speech in quiet listening
conditions (Zeng et al., 2008). However, CI users typically have
impaired speech recognition in background noise (Fletcher et al.,
2019, 2020b), as well as substantially reduced sound-localization
accuracy (Dorman et al., 2016; Fletcher et al., 2020a) and music
enjoyment (McDermott, 2004; Drennan et al., 2015). Hearing-aid
(HA) users and other hearing-impaired listeners have similar
performance limitations, though typically to a lesser extent (Looi
et al., 2008; Dorman et al., 2016; Miller et al., 2016).

Several studies have recently shown that haptic stimulation
can enhance CI listening by allowing access to sound features
that are poorly transferred through electrical CI stimulation (see
Fletcher, 2020; Fletcher and Verschuur, 2021). This “electro-
haptic stimulation” can substantially improve speech-in-noise
performance (Huang et al., 2017; Fletcher et al., 2018, 2019,
2020b), sound localization (Fletcher and Zgheib, 2020; Fletcher
et al., 2020a), and melody recognition (Huang et al., 2019;
Luo and Hayes, 2019), as well as discrimination of basic
sound features such as pitch (Fletcher et al., 2020c). The
impressive performance found in studies of haptic sound-
localization and haptic enhancement of pitch discrimination
suggests that it could also assist HA users (Fletcher and Zgheib,
2020; Fletcher et al., 2020a,c). There is also evidence that haptic
stimulation can improve timbre discrimination (Russo et al.,
2012) and music appreciation (Nanayakkara et al., 2009) in
HA users. Music represents the biggest challenge for signal
processing as it is often an extremely complex acoustic signal
that contains several simultaneous harmonic and inharmonic
sounds. Progress in enhancing music perception could therefore
have strong implications for enhancing listening in the complex
auditory environments in which hearing-impaired listeners
often struggle to understand speech, such as busy offices,
classrooms, or restaurants.

This review will focus on the use of haptic stimulation to
enhance music perception in hearing-impaired listeners. Most
people in the deaf community report being involved in music
activities (Darrow, 1993) and music is central to many significant
events, such as weddings and funerals, as well as to media, such
as film. It is an important part of interactions with children
(Hallam, 2010), can strongly influence the mood of films and
the audience’s connection to the characters (Hoeckner et al.,
2011), and can even bias shopping habits (North et al., 1999).
As will be discussed, music perception is highly limited in many
hearing-impaired listeners. This review first assesses the limits
of music perception in hearing-impaired listeners, the suitability
of the tactile system for transferring musical signals, and the
evidence that audio and haptic inputs are integrated in the brain.
It then discusses the existing haptic systems for enhancing music

perception, the evidence of their utility, and the signal-processing
approaches that could be deployed on future devices. Finally, it
reviews the cutting-edge technologies that could be utilized for
haptic enhancement of music perception.

IS HAPTIC STIMULATION SUITABLE FOR
ENHANCING MUSIC PERCEPTION?

Music Perception in Hearing-Impaired
Listeners
When considering whether a haptic system might enhance music
perception in hearing-impaired listeners, it is important to first
establish the limits of music listening when hearing is impaired.
It has been reported that, after a CI is implanted, only around 15%
of adults enjoy listening to music (Philips et al., 2012) and around
70% are disappointed by how music sounds (Mirza et al., 2003).
On a 10-point visual analog scale, CI users rated their musical
enjoyment at 8.7 on average prior to hearing loss and at just 2.6
after implantation (Mirza et al., 2003). Low music appreciation
has also been found for HA users, with those that have the most
severe hearing loss reporting the lowest music appreciation (Looi
et al., 2019). Some hearing-impaired listeners describe music as
sounding “dissonant,” “out-of-tune,” “fuzzy,” and “tinny” (Uys
et al., 2012; Jiam et al., 2017).

Numerous studies have explored which of the auditory
features within musical pieces can be effectively extracted by
hearing-assistive device users. CI users typically perform well
at basic rhythm (Cooper et al., 2008; Kim et al., 2010), tempo
(Kong et al., 2004), and meter (Cooper et al., 2008) perception
tasks (although there is evidence that they perform less well
for more complex rhythms (Gfeller et al., 2000; Petersen et al.,
2012; Jiam and Limb, 2019). In contrast, CI users perform poorly
for spectral and spectro-temporal features, such as pitch (Galvin
et al., 2007; Cooper et al., 2008), harmony (Brockmeier et al.,
2011), melody (Galvin et al., 2007; Zeng et al., 2014), and timbre
(Gfeller et al., 2002c; Drennan and Rubinstein, 2008; Nimmons
et al., 2008). CI users also have poorer spectral and temporal
modulation detection thresholds than normal-hearing listeners
(Choi et al., 2018).

HA users have similar spectral and temporal modulation
thresholds to normal-hearing listeners (Choi et al., 2018; Looi
et al., 2019) and, like CI users, tend not to have deficits with
basic rhythm perception (Looi et al., 2019). HA users have been
found to have subnormal pitch, melody, and timbre perception
(Choi et al., 2018; Looi et al., 2019). However, HA users tend to
perform much better than CI users on music perception tasks,
such as instrument identification, melody recognition, and pitch
discrimination (Gfeller and Lansing, 1991, 1992; Gfeller et al.,
1998, 2002a,c; Fujita and Ito, 1999; Leal et al., 2003). It should,
however, be noted that there is substantial variance between
individual CI and HA users.

Vision plays an important role in music perception for
hearing-impaired listeners. Viewing the performer and reading
lyrics can increase their musical enjoyment (Gfeller et al., 2000;
Looi and She, 2010) and raves targeted at the deaf community
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frequently include musical visualization. Furthermore, the size
of sung musical intervals can be determined when only viewing
the singer’s face (without audio), with larger intervals associated
with more head movement, eyebrow raising, and mouth opening
(Thompson and Russo, 2007; Abel et al., 2016). Viewing
a singer’s face with accompanying audio can also bias the
perception of pitch interval size (Thompson et al., 2010),
with the mouth apparently increasing in significance as audio
signal-to-noise ratios become more challenging (Russo et al.,
2011). For musical instruments, visual influences have been
observed on timbre perception (Saldana and Rosenblum, 1993),
as well as on loudness (Rosenblum and Fowler, 1991) and
duration (Schutz and Lipscomb, 2007; Schutz and Kubovy, 2009)
perception for rhythms.

Several other factors are known to have important influences
on music perception for hearing-impaired listeners. For example,
the age at which hearing impairment occurred, the amount of
residual hearing retained for CI users, and the efficiency of
sequential cognitive processing are predictive of pitch and timbre
perception (Gfeller et al., 2000, 2008, 2010; O’Connell et al.,
2017). Age is also important, with younger CI users listening to
music more often and tending to have better timbre perception
(Gfeller et al., 2008, 2010; Drennan et al., 2015). More listening
hours and musical training have both been linked to higher acuity
and music appraisal scores (Gfeller et al., 2002b, 2008, 2010, 2011;
Fu and Galvin, 2007; Galvin et al., 2009; Chen et al., 2010; Looi
and She, 2010; Driscoll, 2012). However, no strong relationship
has been found between perceptual accuracy and music appraisal
or enjoyment (Gfeller et al., 2008; Drennan et al., 2015).

Limits of Haptic Sensitivity Compared to
Hearing-Impaired Listening
To establish how haptic stimulation might effectively augment
listening, this section compares the sensitivity of the tactile
system to the impaired auditory system. First, sensitivity to
frequency, intensity, and temporal features will be considered (for
a detailed review in the context of speech perception, see Fletcher
and Verschuur, 2021).

While frequency discrimination for CI and other hearing-
impaired listeners is poorer than for normal-hearing listeners
(Moore, 1996; Turgeon et al., 2015), it is better than for haptic
stimulation (Goff, 1967; Rothenberg et al., 1977). Because of
this poor frequency resolution, several systems for transmitting
sound information through haptic stimulation have mapped
sound frequency information to location on the skin using an
array of haptic stimulators, each triggered by a different pitch
or frequency band (Guelke and Huyssen, 1959; Brooks and
Frost, 1983; Fletcher et al., 2020c). Using this approach, high-
resolution pitch information has been transferred through haptic
stimulation (Fletcher et al., 2020c). This could be important for
enhancing music perception in hearing-impaired listeners.

The dynamic range of the tactile system at the arm, wrist, and
hand is similar to that available to HA users and is around four
times larger than that available through electrical CI stimulation
(Verrillo et al., 1969; Moore et al., 1985; Zeng and Galvin, 1999;
Zeng et al., 2002; Fletcher et al., 2021a,b). CI users are able to

discriminate approximately 20 different intensity steps across
their dynamic range (Kreft et al., 2004; Galvin and Fu, 2009). For
HA users and for haptic stimulation at the arm, wrist, or hand,
approximately 40 different steps can be discriminated (Hall and
Fernandes, 1983; Gescheider et al., 1996; Fletcher et al., 2021a,b).
Interestingly, there is evidence that congenitally deaf people have
higher tactile sensitivity than those with normal hearing (Levanen
and Hamdorf, 2001), which may mean that the available dynamic
range is larger than has been estimated previously in studies using
participants with no known hearing impairment. The tactile
system therefore seems well suited to deliver sound intensity
information to CI users and could provide additional intensity
information for at least a subset of HA users.

As highlighted above, CI users typically perform well when
extracting temporal sound features. Temporal gap detection
thresholds for hearing-impaired listeners and CI users are
typically only slightly worse than those for normal-hearing
listeners (Moore and Glasberg, 1988; Garadat and Pfingst, 2011).
Gap detection thresholds for the tactile system are worse than
for most hearing-impaired listeners (Gescheider, 1966, 1967) and
tactile signals are more susceptible to masking from temporally
remote maskers (Elliot, 1962; Gescheider et al., 1989; Shannon,
1990). Haptic stimulation may therefore not be suitable for
providing complex temporal information.

The tactile system has been shown to be highly sensitive to
amplitude modulation (Weisenberger, 1986). For a carrier tone
at 250 Hz – the frequency at which tactile sensitivity is highest
(Verrillo et al., 1969) and a common characteristic frequency
for compact motors – amplitude modulation sensitivity was
found to be high across the range of frequency modulations
most important for speech and music (Drullman et al., 1994;
Ding et al., 2017). Sensitivity was reduced when the carrier
tone frequency was reduced to 100 Hz (around the lowest
characteristic frequency for a compact motor). At modulation
frequencies most important to music and speech, amplitude
modulation sensitivity for a 250-Hz carrier is below that for an
auditory tone carrier at 250 Hz (Zwicker, 1952), but similar to
auditory sensitivity for a narrowband noise centred at 200 Hz
(Viemeister, 1979), in normal-hearing listeners. This suggests
that amplitude modulation is a highly viable route through which
sound information can be transferred through haptic stimulation,
particularly for CI users, who have reduced sensitivity to
amplitude modulation (Choi et al., 2018).

Besides transferring sound information through stimulation
at a single site or at adjacent sites, recent studies have shown
that sound location information can be transferred through
across-limb stimulation (Fletcher and Zgheib, 2020; Fletcher
et al., 2020a, 2021a,b). CI and HA users have reduced sound
localization accuracy compared to normal hearing listeners
(Dorman et al., 2016); using this approach, large improvements
in sound localization accuracy for CI users were shown, with
accuracy reaching levels that could be beneficial to HA users.
In this approach, the sound received by devices behind each
ear was converted to haptic stimulation on each wrist (Fletcher
and Zgheib, 2020; Fletcher et al., 2020a). This meant that time
and intensity differences between the ears, which are critical
sound localization cues, were available through time and intensity
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differences across the wrists. Recently, the tactile system has been
shown to be highly sensitive to intensity differences across the
arms and wrists, but insensitive to time differences (Fletcher et al.,
2021a,b). Strikingly, sensitivity to tactile intensity differences
across the limbs matched the sensitivity of the auditory system
to intensity differences across the ears. Given that instruments in
most musical pieces are mapped to a left-right spatial location
using only amplitude panning, this high sensitivity to across-
limb tactile intensity differences might be exploited to improve
localization and segregation of musical instruments.

Multisensory Integration of Auditory and
Haptic Signals
Effective integration of haptic and auditory inputs in the brain is
likely to be crucial to haptic augmentation of musical listening.
Encouragingly, projections from tactile brain regions have been
observed at all stages along the auditory pathway (Aitkin et al.,
1981; Foxe et al., 2000; Shore et al., 2000, 2003; Caetano and
Jousmaki, 2006; Allman et al., 2009; Meredith and Allman, 2015).
Furthermore, physiological studies have shown that the responses
of large numbers of auditory cortical neurons can be modulated
by input from tactile pathways (Lakatos et al., 2007; Meredith
and Allman, 2015) and neuroimaging studies have shown that
haptic stimulation can activate auditory cortex (Schurmann
et al., 2006); interestingly, stronger activation has been found
for deaf participants than for normal-hearing subjects (Levanen
and Hamdorf, 2001; Auer et al., 2007). One study in normal-
hearing subjects tracked the time course of cortical activation
for haptic stimulation on the fingertip (Caetano and Jousmaki,
2006). Initial responses peaked in primary tactile cortical brain
regions around 60 ms after the stimulus onset. This was followed
by transient responses to the haptic signal in auditory cortex
between 100 and 200 ms after onset, before a sustained response
was seen between 200 and 700 ms after onset. This could indicate
that tactile responses feed forward from tactile brain regions to
influence auditory brain regions.

Behavioral studies also offer a range of evidence that haptic
and auditory input is integrated. For example, haptic stimulation
has been shown to improve sound detection (Schurmann
et al., 2004), modulate perceived loudness (Gillmeister and
Eimer, 2007; Merchel et al., 2009), and influence syllable
perception (Gick and Derrick, 2009). Other studies have shown
that tactile feedback from a musical instrument can influence
a performer’s perception of sound quality (Fontana et al.,
2017). Audio and haptic stimulation have also been effectively
combined to improve speech-in-noise performance (Drullman
and Bronkhorst, 2004; Huang et al., 2017; Fletcher et al., 2018,
2019, 2020b) and sound localization (Fletcher et al., 2020a).

When considering whether haptic and audio input will
be integrated to improve music perception, individual
characteristics such as age at which hearing loss occurred,
length of time spent with hearing loss, and length of time spent
with a hearing-assistive device may be critical. It has been
observed that those who receive a CI after a few years of deafness
integrate audio and visual information less effectively than those
who are implanted shortly after deafness (Bergeson et al., 2005;

Schorr et al., 2005; Tremblay et al., 2010). It is possible that a
similar limitation will be seen for audio-haptic integration. Some
studies have also shown evidence that audio-haptic integration
is reduced in congenitally deaf CI recipients compared to
late-deafness CI recipients (Landry et al., 2013; Nava et al.,
2014). Future work should establish whether benefit of haptic
stimulation to music perception is dependent on these factors.

Age may also be important. Haptic stimulation has been
shown to improve performance when combined with auditory
stimulation in both young (Drullman and Bronkhorst, 2004;
Fletcher et al., 2018; Ciesla et al., 2019) and older (Huang et al.,
2017; Fletcher et al., 2019, 2020a,b) adults, although these groups
have not been directly compared. Several studies have shown
evidence that multisensory integration increases in older adults
(Laurienti et al., 2006; Rouger et al., 2007; Diederich et al., 2008;
Strelnikov et al., 2009, 2015; de Dieuleveult et al., 2017) and
there is also evidence that young brains are particularly open
to integrating multisensory stimuli (Lewkowicz and Ghazanfar,
2006). It is therefore possible that older adults and children will
benefit most from haptic enhancement of music perception.

Auditory deprivation has been associated with increased
sensitivity to visual (Finney et al., 2001, 2003) and tactile
(Auer et al., 2007) stimuli in auditory brain regions. During
early development, substantial neural pruning occurs based
on the sensory input received. If auditory input is limited or
extinguished by congenital or early-onset deafness, this process
can be disrupted and non-auditory inputs can take over auditory
brain areas (Quartz and Sejnowski, 1997; Sharma et al., 2007;
Glennon et al., 2020). If auditory pathways later receive new
sensory stimulation (e.g., because a CI has been fitted), this is
thought to compete for neural resources in auditory brain regions
with the other sensory inputs that have become established
(Sharma et al., 2007; Glennon et al., 2020). This may explain why
early implantation is associated with better speech performance
(Robbins et al., 2004; Svirsky et al., 2004; Kral, 2009; Tajudeen
et al., 2010) and why more visual takeover of auditory brain
regions is associated with poorer speech outcomes (Lee et al.,
2001; Sandmann et al., 2012; Zhou et al., 2018). The influence of
auditory-derived haptic stimulation on this process is unknown,
but it may be that such an input would allow auditory brain
areas to tune to critical auditory features, such as the amplitude
envelope, in the absence of auditory input. Such a process might
allow auditory input to compete for neural resources more
effectively once input has been restored and might facilitate more
effective audio-haptic integration. Future work should explore
these possibilities.

Visual input is thought to provide missing speech and
sound location information when the audio signal is degraded,
to calibrate auditory neural responses, and to guide auditory
perceptual learning (Rouger et al., 2007; Bernstein et al., 2013;
Strelnikov et al., 2013; Isaiah et al., 2014). As discussed,
audio-derived haptic stimulation has been shown to provide
missing speech and sound location information when audio
is degraded (e.g., Fletcher et al., 2019, 2020a) and to improve
lip-reading ability in the absence of auditory stimulation (e.g.,
De Filippo, 1984; Brooks et al., 1986b; Hanin et al., 1988;
Cowan et al., 1991; Reed et al., 1992). However, it has not
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yet been established whether haptic stimulation can calibrate
auditory neural responses or guide auditory perceptual learning.
There are relatively few studies of tactile influences on auditory
cortex, but one has shown tactile stimulation can enhance
responses to auditory input by modulating the rhythm of ambient
neural responses in auditory cortex (Lakatos et al., 2007). This
might reflect a critical mechanism for haptic enhancement of
music perception.

Training is important both for integration of audio and
haptic information and for extraction of information from
haptic stimulation. Studies with haptic devices for providing
speech information when no auditory information is available
have shown continued benefits of training throughout long-
term training regimes (Sparks et al., 1979; Brooks et al., 1985).
Other studies have also shown the importance of training for
maximizing haptic sound-localization accuracy (Fletcher and
Zgheib, 2020; Fletcher et al., 2020a) and for improving speech-
in-noise performance in CI users (Fletcher et al., 2018, 2019,
2020b).

The delay in arrival time of the haptic signal relative to
the audio signal is also likely to be important for maximizing
integration. A study using broadband signals showed that
audio and haptic signals were judged to be simultaneous if
the haptic signal onset was delayed from the audio by up to
around 25 ms (Altinsoy, 2003). Another study with musical
instruments found that the delay at which audio and haptic
signal were no longer judged to be simultaneous varied across
musical instruments, with attack time seemingly an important
factor (Kim et al., 2006). It should be noted that there is
significant evidence of rapid temporal recalibration, whereby
stimulation from two modalities (including audio and tactile)
that are consistently delayed by tens of milliseconds rapidly
become perceived as synchronized, provided that they are
highly correlated (Navarra et al., 2007; Keetels and Vroomen,
2008; van der Burg et al., 2013). There is evidence that
integration occurs even for substantially delayed audio and haptic
stimulation. Haptic stimulation has been shown to influence
vowel perception, with no statistically significant reduction in
this effect when the haptic signal onset was delayed from
the audio onset by up to 100 ms (Gick et al., 2010). If
haptic signal delays of several tens of milliseconds do not
reduce the benefits of haptic stimulation, sophisticated real-
time signal-processing strategies could be deployed to enhance
music perception.

CURRENT SYSTEMS FOR IMPROVING
MUSIC PERCEPTION USING HAPTIC
STIMULATION

A range of systems have been developed to enhance music
perception using haptic stimulation. At the largest scale, these
include systems used for delivering whole-body vibration, such
as those used at Deaf Raves, where music containing a lot of low-
frequency energy is played at a high intensity. There is evidence
that whole-body low-frequency vibration, which is also common
during live pop or organ concerts, can play a significant role

in the quality of the concert experience (Merchel and Altinsoy,
2014). There is also evidence that vibrating floors can improve
the synchronization of dancing to music for hearing-impaired
listeners (Shibasaki et al., 2016; Tranchant et al., 2017).

In addition to these large-scale systems, several smaller
systems built into chairs have been developed. These typically use
a multi-band filtering approach similar to that used in devices to
improve access to speech cues in hearing-impaired people (e.g.,
Brooks et al., 1986a; Fletcher et al., 2019; reviewed in Fletcher,
2020; Fletcher and Verschuur, 2021). In this approach, the audio
signal is separated into multiple frequency bands, with each band
represented by a haptic stimulator at a different location on the
skin. One example is the Emoti-Chair, which has eight haptic
stimulators at different body locations (Karam et al., 2009, 2010).
Users of the Emoti-Chair were shown to be able to discriminate
between a cello, piano, and trombone (matched for fundamental
frequency, duration, and intensity), and to be able to discriminate
bright from dull timbres (varying only by spectral centroid)
(Russo et al., 2012).

Another chair system developed by Jack et al. (2015)
also splits the sound into frequency bands that are
mapped to different haptic stimulators (see Figure 1A).
In addition to haptic stimulation transferring information
about energy within each frequency band, the bandwidth
of haptic stimulation at each stimulator is modulated
to deliver timbre information (spectral flatness). While
subjective reports when using this system were favorable,
formal behavioral testing was not performed. They did
note, however, that highly rhythmic music tended to be
received more positively than music that relied heavily on
harmonic motion.

A final example is the haptic chair built by Nanayakkara
et al. (2009), which delivered unprocessed music through contact
loudspeakers targeting the feet, back, arms, and hands. In their
study with 43 young hearing-impaired listeners (with their
hearing aids switched off), participants rated their musical
experience considerably higher with vibration through the
chair than without. However, there were several limitations
to the study, including the absence of control for novelty or
placebo effects and the possible influence of audio from the
contact loudspeakers.

Other medium-scale wearable systems have also been
developed, typically deployed using suits or vests. One system
uses a suit with 13 haptic stimulators placed around the body
and maps different musical instruments to different stimulators
(Gunther et al., 2003). A major limitation of this approach is
that it requires access to each instrument within a musical piece,
which is not typically possible. No formal testing of this haptic
suit was performed, although informal feedback from individuals
using it as part of an art exhibition was reported to be favorable.

Another wearable system, the LIVEJACKET, which uses a vest
with 22 haptic stimulators attached to the arms and torso has
also been developed (Hashizume et al., 2018). Like the haptic
suit, the LIVEJACKET presents different musical instruments
through different haptic stimulators. Survey results suggested
the LIVEJACKET enhanced the musical experience for normal-
hearing participants. However, critical experimental controls
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were not in place and, like for the haptic suit, access to each
instrument within the musical piece is required.

Finally, there are a range of more compact wearable systems.
One such system is the Pump-and-Vibe (Haynes et al., 2021),
which is worn on the arm (Figure 1B). The Pump-and-Vibe
has eight vibration motors mounted on the forearm arm and an
air pump on the upper arm to modulate pressure (“squeeze”).
Squeeze is thought to more effectively elicit emotional responses
than vibration (Tsetserukou, 2010) and has been deployed in
a number of previous devices for various applications (e.g.,
Chinello et al., 2014; Gupta et al., 2017; Moriyama et al., 2018;
Stephens-Fripp et al., 2018; Pezent et al., 2019). The Pump-and-
Vibe system aimed to increase the emotional impact of music.
The rhythm of the bass was mapped to changes in the amount
of squeeze. The squeeze system used was unable to track fast
rhythms, so these were mapped to three vibrotactile motors at
the top of the forearm. Melody information was mapped to
the remaining five motors, with pitch mapped to the location
of stimulation along the arm. For vibration, intensity changes
were mapped to co-varying haptic frequency and amplitude
changes. Sound information was extracted from music using a
process involving an online audio-to-MIDI converter. It is not
clear how effective this conversion will be for different music
types. A qualitative assessment of the Pump-and-Vibe evaluated
the mood evoked by a musical piece for audio alone, haptic
alone, and haptic and audio together in young participants with
no specified hearing impairment (Haynes et al., 2021). Results
suggested that the system could evoke moods and influence the
mood evoked by audio.

Other examples of more compact systems are the Mood
Glove and the mosaicOne series of devices. The Mood Glove
(Figure 1C) has eight motors, with five mounted on the back
of the hand and three on the palm (Mazzoni and Bryan-
Kinns, 2016). Stimulation frequency and intensity are adjusted
to portray different moods in musical pieces. A study of the
device reported that low-frequency pulses could induce a feeling
of calmness and higher-frequency pulses a feeling of excitement
(Mazzoni and Bryan-Kinns, 2016). However, the Mood Glove
requires the intended mood created by each section of the musical
piece to be extracted and provided to the device, which was
achieved in the study through manual labeling. This requirement
substantially limits the potential for real-world use.

The mosaicOne_B, has two sets of six haptic stimulators
arranged along the top and underside of the forearm (Fletcher
et al., 2020c). It maps the fundamental frequency of sound
(an acoustic correlate of pitch) to location on the skin. Using
this device, participants were able to discriminate fundamental
frequency differences of just 1.4%. This is markedly better than
can be achieved by most CI users (Kang et al., 2009; Drennan
et al., 2015) and would allow discrimination of the smallest
fundamental frequency changes found in most western melodies.
The mosaicOne_B incorporates a novel noise-reduction strategy
that was found to be highly effective, with discrimination
performance retained even with high levels of background noise.
However, it is important to note that the background noise used
was inharmonic, while many musical pieces contain multiple
simultaneous harmonic sounds. Further work is required to

establish the resilience of the mosaicOne_B against harmonic
background noise. Furthermore, development is required to
allow the device to extract multiple pitches simultaneously,
for tracking of multiple simultaneous harmonic instruments.
Musical experience was not formally tested using this device, but
users reported enhanced musical enjoyment (when listening and
feeling pop music) in informal testing by the author of this review
with several normal-hearing listeners. Another version of the
device, the mosaicOne_C (Figure 1D), has also been developed,
which uses a similar approach to that described above, but with
shakers spaced around the wrist (Fletcher, 2020; Fletcher and
Verschuur, 2021). This device has not yet been subjected to
behavioral testing.

Two further studies reported behavioral results for wearable
devices. One wrist-worn device extracted the fundamental
frequency, like the mosaicOne_B, but mapped it to changes in
the frequency and amplitude of the haptic signal (which varied
together), rather than spatial location (Luo and Hayes, 2019).
Critically, unlike for the mosaicOne_B, this meant that intensity
information could not be delivered. Another device delivered
the low-frequency portion of the audio signal through haptic
stimulation on the fingertip (Huang et al., 2019). Encouragingly,
both systems were shown to improve melody recognition.
However, the effectiveness of these devices in the presence of
background noise has not been tested, and the effect on music
appreciation also remains to be established.

In addition to devices developed to augment music
perception, several devices have been developed to aid those with
sensory impairments by substituting one sense with another. An
early example of a sensory substitution device is the Teletactor,
developed in the 1920s, which transferred sound to deaf listeners
through tactile stimulation on the hand (Gault, 1924, 1926). The
principle has since been applied across a number of senses, with
systems developed to substitute vision with tactile (Bach-Y-Rita
et al., 1969), vestibular with tactile (Bach-Y-Rita et al., 2005),
and vision with audio (Meijer, 1992). While these devices have
shown promising results, few have found widespread use. Several
factors have likely led to this. For example, many systems are
highly restrictive, such as the BrainPort (Bach-Y-Rita et al., 2003,
2005) that stimulates the tongue, leaving users unable to speak or
eat whilst using the device. Limitations in technology have also
often heavily limited discreetness, comfort, and effectiveness. For
example, the tactile aids for hearing that were developed in the
1980s and 1990s (before being superseded by CIs (see Fletcher
and Verschuur, 2021)) were often large, had short battery lives,
and could only perform crude signal processing. However, many
of these technological limitations have since been overcome
(Fletcher, 2020).

Some of the key design considerations when developing a
modern haptic device for enhancing listening are discussed by
Fletcher (2020). However, when developing a device for those
with hearing-impairment, close engagement with the intended
users (such as the deaf community) will be critical for ensuring
maximum uptake. Fletcher (2020) advocates a wrist-worn device
because they are easy to self-fit, offer a relatively large design
space, and because wrist-worn devices, such as smartwatches and
exercise trackers, are commonplace and therefore aesthetically

Frontiers in Neuroscience | www.frontiersin.org 6 August 2021 | Volume 15 | Article 723877

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-723877 August 25, 2021 Time: 17:48 # 7

Fletcher Haptic Enhancement of Music Perception

FIGURE 1 | Examples of haptic devices for enhancing music perception. Panel (A) Haptic chair developed at Queen Mary University of London (United Kingdom) by
Jack and colleagues. Image reproduced with permission of Robert Jack and Andrew McPherson. Panel (B) The Pump-and-Vibe, developed at University of Bristol
(United Kingdom) by Haynes and colleagues. Adapted from an image reproduced with permission of Alice Haynes. Panel (C) The Mood Glove, developed at Queen
Mary University of London (United Kingdom) by Antonella Mazzoni. Image reproduced with her permission. Panel (D) The mosaicOne_C, developed at the University
of Southampton (United Kingdom) by Samuel Perry and Mark Fletcher as part of the Electro-Haptics Research Project. Image reproduced with their permission.

acceptable. Indeed, technology for enhancing music perception
using haptics could in future be embedded into smartwatches and
exercise trackers.

HAPTIC SIGNAL-PROCESSING
APPROACHES

Music is commonly accessed through streaming services. This
opens the possibility of using signal-processing approaches that
cannot be applied in real-time or that are non-causal (require the
ability to look ahead). It also opens the possibility of using pre-
trained machine-learning algorithms that are selected between
based on metadata sent through the streaming service. These
algorithms could be trained using the numerous high-quality
musical corpora available, which can be supplemented using
advanced automated music generation algorithms (Herremans
and Chuan, 2020). So-called “near real-time” algorithms, which
have processing delays of no more than a few seconds, may
be of particular interest as such a delay before playback might
be tolerable if clear enhancement of music experience could
be demonstrated. Nevertheless, since a substantial portion of
music is not streamed (e.g., at a concert or as background
music in a shop), real-time signal-processing approaches are still
preferred. Current evidence suggests that large delays of haptic
stimulation from audio stimulation might be tolerable, which
would allow sophisticated real-time signal-processing approaches
to be deployed (see section “Multisensory Integration of Auditory
and Haptic Signals”). Both real-time and offline approaches
should therefore be considered.

It is important to first establish the goal when converting
audio to haptics for music enhancement. One approach is to

remove elements that reduce clarity when audio is transferred
at a low-resolution (e.g., through a CI). One example of this is
spectral complexity reduction, in which the frequency spectrum
is sparsened and simplified, using methods such as principal
component analysis (Nagathil et al., 2017; Gauer et al., 2019).
Spectrally reduced musical pieces have been shown to be
preferred for CI listening (Nagathil et al., 2017) and a similar
approach might be trialed for haptic enhancement of music
perception. An alternative approach is to enhance perception of
certain instruments within a multi-instrument piece. It has been
observed that CI and HA users find musical pieces with multiple
instruments less pleasant than pieces with a single instrument
(Looi et al., 2007) and that CI users prefer pop music with the
vocal level substantially increased (Buyens et al., 2014). It may
therefore be desirable to separate instruments and use haptic
stimulation to enhance one or a small subset.

Source Separation
Some basic methods for separating sound sources have already
been used for converting audio to haptic stimulation. One haptic
signal-processing approach uses an expander, which amplifies
loud sounds, to extract speech from background noise when
the signal-to-noise ratio (SNR) is positive (i.e., the speech is
louder than the noise; Fletcher et al., 2018, 2019). This simple
real-time approach improves speech-in-noise performance for
CI users at positive SNRs but is not expected to be suitable for
enhancing music, where the SNRs for individual instruments are
typically less favorable. Another approach used pitch extraction
methods to separate harmonic and inharmonic sounds (Fletcher
et al., 2020c). Pitch extraction is often susceptible to background
noise (Jouvet and Laprie, 2017), but the proposed approach was
shown to be robust to inharmonic noise (Fletcher et al., 2020c).
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However, this and other pitch extraction approaches for
enhancing music perception using haptics (e.g., Luo and Hayes,
2019), are not designed to accommodate musical pieces with
multiple simultaneous harmonic sounds. More advanced multi-
pitch extraction methods will likely be required if they are to be
effective across a range of musical pieces.

A range of noise-reduction techniques are deployed in
hearing-assistive devices to extract speech from background
noise, and these might also have utility for haptic signal-
processing strategies. One commonly used group of techniques
focus on the temporal domain. These exploit the fact that
the amplitude envelope of speech tends to have a lower
modulation frequency and depth than environmental noise
(Ding et al., 2017; Lakshmi et al., 2021). These techniques
classify speech signals as having a modulation rate less than
around 10–30 Hz and a modulation depth greater than around
15 dB (e.g., Schum, 2003). Another commonly used group of
techniques focus on the spectral domain. These estimate the
spectrum of the background noise and subtract this from the
speech-in-noise signal. To determine when only background
noise is present, these spectral subtraction techniques typically
employ a voice detector (Boll, 1979; Ephraim and Malah, 1984).
Another approach, that is less commonly used in modern
hearing-assistive devices, focuses on harmonic structure. Unlike
many noise signals, speech contains harmonics with strong co-
modulation. Synchrony detection algorithms classify the signal
as speech if it has highly synchronous energy fluctuations
across frequency bands (Schum, 2003). The latest noise-reduction
strategies in hearing-assistive devices often deploy multiple
noise-reduction approaches, as well as using environmental
classification methods and adaptive filtering (Ricketts and
Hornsby, 2005; Peeters et al., 2009). These techniques might
be adapted to focus on the typical characteristics of musical
instruments (e.g., Ding et al., 2017), although it should be
noted that these approaches were developed to extract a single
sound source and that musical instruments often share temporal
and spectral characteristics. Furthermore, a recent meta-analysis
found no significant improvement in speech intelligibility
with digital noise-reduction algorithms in HA users, although
subjective outcomes, such as sound quality, did show moderate
improvement (Lakshmi et al., 2021).

Many HAs have dedicated signal-processing settings
for music listening. While manufacturers often do not
reveal exactly how these differ from those for improving
speech-in-noise performance, they often appear to reduce or
remove the noise-reduction applied and use slower-acting
compression (Moore, 2016). In a survey of HA users, no clear
difference in music experience was found between those with
a dedicated music setting on their HA and those without
(Madsen and Moore, 2014).

More advanced methods for separating sound sources in
musical pieces have also been developed. One approach attempts
to separate harmonic and percussive sounds (Buyens et al., 2014,
2015). While this approach may have utility for haptic signal-
processing, its potential is significantly limited by the fact that
it cannot separate common key instruments, such as vocals
and bass, from each other. Another method using non-negative

matrix factorization has shown potential for separating and
enhancing vocals, although notable distortions and artifacts were
observed (Pons et al., 2016). More advanced machine-learning-
based source separation methods have also been tested and
were found to outperform non-negative matrix factorization
(Gajecki and Nogueira, 2018). Deep convolutional auto encoders,
which combine denoising auto encoding and convolutional
neural networks, performed extremely well, but only when
the audio processed was similar to that used to train the
algorithm. Multilayer perceptrons and deep recurrent neural
networks, on the other hand, performed well across a range of
data. The authors concluded that multilayer perceptrons were
most suitable because they were faster to compute, although
none of the techniques tested were implemented in real-time.
A recent study developed a real-time multilayer perceptron
method, which was shown to be effective in isolating vocals and
to be robust to background noise and reverb that would be
encountered with live audio (Tahmasebi et al., 2020). Advanced
source separation approaches like these could be critical to
maximizing the effectiveness of haptic devices for enhancing
music perception.

Feature Extraction
In addition to deciding the source or sources to be separated, it
will be important to determine which sound features should be
provided through haptic stimulation. Features shown to enhance
speech perception when presented through haptic stimulation,
such as amplitude envelope (e.g., Brooks and Frost, 1983; Fletcher
et al., 2019) and fundamental frequency (e.g., Huang et al., 2017),
should be explored. The utility of other features, like those used
by the Moving Picture Expert Group for audio content, should
also be investigated as they could provide additional information,
such as timbre (as in, for example, Jack et al., 2015). These include:
spectral features, such as centroid, spread, and flatness; harmonic
features, such as centroid, spread, variation, and deviation; and
temporal features, such as centroid and log attack time (see Zhang
and Ras, 2007).

The optimal features to extract are likely to differ across
instruments and musical styles. For example, vocals in rap music
might require rhythmic information through features such as
amplitude envelope, whereas vocals in show tunes may benefit
more from pitch-based features, such as fundamental frequency.
For a non-harmonic instrument like a snare drum, pitch-based
features cannot be extracted and features like spectral spread or
spectral centroid might be most appropriate.

Sound classification algorithms will be important to any
approach that selects features based on instrument type or
musical style. A range of methods for music genre classification
have shown promise, including ensemble classifiers and methods
that implement sound source segregation approaches, such as
non-negative matrix factorization (Silla et al., 2007; Pérez-García
et al., 2010; Rosner and Kostek, 2018). Several instrument
classification approaches have also shown promise, including
advanced methods using deep convolutional neural networks
(Benetos et al., 2006; Gomez et al., 2018; Solanki and Pandey,
2019; Racharla et al., 2020). Establishing the most effective
classification approaches and auditory features to provide
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through haptic stimulation will be a critical part of future
research in this area.

Haptic Mapping
Having separated the instruments and extracted sound features,
the next consideration will be how to map these to haptic
stimulation. Haptic music-enhancement approaches should
take advantage of the tactile system’s large dynamic range
(Verrillo et al., 1969; Fletcher et al., 2021a,b) and high
sensitivity to intensity differences, both at a single site
and across sites (Gescheider et al., 1996; Fletcher et al.,
2021a,b). As discussed (see section “Limits of Haptic Sensitivity
Compared to Hearing-Impaired Listening”), this might include
spatially mapping instruments using amplitude panning
across sites, such as the wrists (Fletcher and Zgheib, 2020;
Fletcher et al., 2020a,b), that mimics amplitude panning of
instruments within a musical piece. Stimulus features (such
as fundamental frequency) might also be mapped to changes
in spatial location on the skin to maximize information
transfer (e.g., Brooks and Frost, 1983; Karam et al., 2010;
Fletcher et al., 2020c).

IMPORTANT CUTTING-EDGE
TECHNOLOGIES

Modern haptic devices can take advantage of critical recent
advances in technology (see Fletcher, 2020 for a detailed
review). These include: haptic motor and driver technology
to deliver high-fidelity stimulation with low power usage;
battery technology, to increase the potential power usage and
reduce the necessity for frequent charging; manufacturing
techniques, such as 3D printing, to facilitate the development of
comfortable, aesthetically acceptable, and easy to self-fit devices;
wireless technologies, to allow audio streaming from remote
microphones and other devices and to link processing across
multiple stimulation points on the body; and microprocessors
to allow advanced signal-processing. Future devices might also
take advantage of flexible microprocessor technology, which is
currently being developed (Biggs et al., 2021). This could allow
additional signal-processing capacity to be built into device
components that need to be flexible, such as straps.

Several other recent and ongoing technological developments
could be exploited to maximize haptic enhancement of music
perception. One example is big data systems that have the
capacity to collect data from devices as they are being used in
the real world. This technology is currently being exploited in the
EVOTION platform (funded by the European Union) and the
HearingFitness program (developed by Oticon Medical), which
use big data collected from devices in the real world to inform
policy-making (Gutenberg et al., 2018; Dritsakis et al., 2020;
Saunders et al., 2020). In future, the technology might also be
used to optimize haptic signal-processing. Figure 2 shows an
example remote data processing pipeline. In this pipeline, audio
is streamed to the haptic device from a hearing-assistive device
to ensure maximum correlation between the audio and haptic
signals (see Fletcher, 2020). Audio statistics, such as spectral

flatness and short-term energy, are then extracted by the haptic
device and transferred to a smartphone. The smartphone also
has an app to collect user feedback, for example ratings of
sound quality and music enjoyment, and to link clinical data
such as hearing-assistive device type and hearing-loss profile.
Audio statistics and user data are stored on the smartphone
and uploaded to a remote server or The Cloud when a WIFI
connection is established (to reduce power consumption and
mobile data usage). The data is processed remotely to update
models and derive optimized signal-processing parameters.
These models could be optimized for each individual or be used
as part of a big data approach for optimizing signal-processing
globally, for subgroups of users, or for different music types. Once
updated signal-processing parameters are determined, these are
transferred to the haptic device via the smartphone.

To implement a remote data processing pipeline of this sort,
exploitation of cutting-edge technology and further research
are required. It should be noted that, in practice, simpler
systems that collect user feedback to optimize new iterations
of algorithms might be developed before a full pipeline like
that proposed is implemented. One key technology for the
proposed pipeline is wireless data streaming. This can be
achieved using the latest Bluetooth Low Energy technology,
which allows multiple simultaneous data streams, has low
power usage, and is already integrated into many of the
latest hearing-assistive devices. Another critical element is the
development of a smartphone app for collecting user feedback,
which must have a high level of data security and privacy.
User feedback is likely to be important as music perception
varies substantially across hearing-impaired listeners due to
factors such as previous musical experience (Galvin et al., 2009;
Gfeller et al., 2015). The app developed for the proposed system
can build on existing apps that are already deployed in the
growing field of telemedicine to collect real-world user feedback
for optimization of hearing-assistive devices, such as ReSound
Assist (Convery et al., 2020). Finally, future research will be
required to determine the optimal audio statistics to be extracted
and sent for remote processing, as well as the most effective
approaches for processing this data and deriving optimal signal-
processing parameters. The recent expansion in remote data
collection and analysis capacity through systems such as Cloud
computing will be critical in allowing big data to be processed
with sophisticated models.

In addition to user- and stimulus-based optimization of
signal processing, steps should be taken to ensure that haptic
stimulation is perceived as uniformly as possible across users.
One simple way to do this is to adjust the stimulation intensity
based on each user’s detection thresholds (as is done for hearing-
assistive devices). It may also be important to adapt the intensity
based on the fitting of the device on the body. The fitting
(e.g., how tightly the device is strapped on) can substantially
alter the amount of pressure applied to the haptic motor and
the coupling with the skin. Techniques have recently been
developed to estimate the pressing force on the motor and
dynamically calibrate it (Dementyev et al., 2020). Such techniques
should be explored for future haptic devices for enhancing
music perception.
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FIGURE 2 | Schematic representation of an example future remote data-processing pipeline for haptic signal-processing optimization (described in the text). Audio is
streamed from a hearing-assistive device to a haptic device that extracts audio statistics and sends them to a smartphone. A smartphone app also collects user
feedback about their experience using the haptic device. Audio statistics and user experience data are then sent for remote data processing, where optimized
signal-processing parameters are determined. Finally, these updated parameters are sent to the smartphone and uploaded to the haptic device.

DISCUSSION

Music perception is often significantly impaired in those with
hearing loss. Critical factors are the loss of ability to discriminate
sounds of different frequencies and a reduction in dynamic
range. Recently, it has been shown that haptic devices can be
highly effective at providing intensity (Fletcher and Zgheib,
2020; Fletcher et al., 2020a, 2021a,b) and frequency information
(Fletcher et al., 2020c), and can support perception of complex
signals such as speech (Huang et al., 2017; Fletcher et al.,
2018, 2019, 2020b). However, despite the large number of
haptic systems that have been developed for enhancing music
perception, there is a lack of robust data on whether haptic
devices can effectively improve music perception for hearing-
impaired listeners. Whilst haptic stimulation has vast potential
to enhance music perception, a significant research program is
required to provide a clear evidence base.

Several critical technologies have been developed in recent
years, which can be exploited in future haptic devices. These allow
faithful haptic signal reproduction, advanced signal processing,
wireless communication between hardware components (such
as smartphones, microphones, and haptic devices), long
battery lives, and rapid prototyping and manufacturing. These
technologies give scope for vast improvements to current
haptic devices for enhancing hearing. In addition, several
key emerging technologies and methods have been identified,
which further expand the potential for haptic enhancement of
music perception. These include cloud computing and cutting-
edge machine-learning approaches. Exploitation of these new
technologies could considerably increase haptic enhancement of
listening and allow a dramatic expansion in access to music and
other media for hearing-impaired listeners.

Another consideration raised in this review is the
interaction between haptic, audio, and visual stimulation. It
was highlighted that significant sound information from music
is accessible through vision, particularly pitch interval size
and direction. Future work should establish whether critical
sound information, such as pitch, provided through haptic,
audio, and visual modalities can be effectively combined to
enhance discrimination. It will also be critical to explore how
providing sound information through non-auditory senses can

alter auditory perception. This could determine whether future
research on haptic enhancement aims to restore conventional
music perception or whether it instead seeks to offer an
alternative way to experience music.

In addition to enhancing music listening, there is significant
potential for haptics to be used for enhancing musical
performance in hearing-impaired individuals. Of particular
interest might be enhancement of vocal performance. CI users
often have considerable difficulties when singing, particularly
in producing the correct pitch (Xu et al., 2009; Mao et al.,
2013). There have been some promising results when providing
pitch information to hearing-impaired listeners through haptic
stimulation to improve singing (Sakajiri et al., 2010, 2013;
Shin et al., 2020; Hopkins et al., 2021). Future work should
establish the effectiveness of the alternative pitch-based haptic
stimulation approach suggested by Fletcher et al. (2020c), which
was shown to provide high-resolution pitch information. These
pitch-based approaches might also be highly effective for speech
rehabilitation. Congenitally deaf individuals often struggle to
acquire and maintain normal speech (Smith, 1975; Gold, 1980),
and those who suffer hearing loss later in life often also experience
a reduction in vocal control, often including greater pitch
variability (Lane and Webster, 1991).

This review has discussed the enormous potential of haptic
stimulation to enhance music listening. It is estimated that
around 1.6 billion people across the world have hearing loss,
with this number expected to increase rapidly (Haile et al.,
2021). Alongside this growth in the number of people who
need support with hearing impairment is a rapid growth in
technologies that could improve and expand this support. The
use of haptic stimulation to enhance listening for those with
hearing impairment offers an opportunity to exploit many of
these recently developed technologies. The time therefore seems
right for a major expansion of research into haptic enhancement
of listening.

If effective and accessible systems are developed, as
well as directly enhancing music enjoyment, they could
substantially improve access to and enjoyment of media
(such as films and documentaries), video games, and social
events, such as weddings. Furthermore, given that music is
an extremely challenging signal because of its complexity,
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progress in this area could have substantial benefits for
enhancing communication and spatial awareness in complex
everyday acoustic environments. Thanks to inexpensive core
technologies, haptic devices could become widely accessible,
including in low- and middle-income countries, and bring
substantial improvements in quality of life for those with
hearing impairment.
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