
Replaced Elements 1

Running head: REPLACED ELEMENTS SIMULATION

Simulation of Associative Learning with the Replaced Elements Model

Steven Glautier

Southampton University

Replaced Elements 2

Abstract

Associative learning theories can be categorised according to whether they treat the

representation of stimulus compounds in an elemental or configural manner. Since it is

clear that a simple elemental approach to stimulus representation is inadequate there have

been several attempts to produce more elaborate elemental models. One recent approach,

the Replaced Elements Model (Wagner, 2003), reproduces many results that have until

recently been uniquely predicted by Pearce’s Configural Theory (Pearce, 1994).

Although it is possible to simulate the Replaced Elements Model using “standard”

simulation programs the generation of the correct stimulus representation is complex. The

current paper describes a method for simulation of the Replaced Elements Model and

presents the results of two example simulations that show differential predictions of

Replaced Elements and Pearce’s Configural Theory.

Replaced Elements 3

Simulation of Associative Learning with the Replaced Elements Model

A simple application of the Rescorla-Wagner Model (RWM) of associative

learning treats stimulus inputs as simple experimenter-defined elements (Rescorla &

Wagner, 1972). For example, in Mackintosh’s 1976 study of overshadowing in rats, a

compound of two stimuli, A and B, was trained as a signal for electric shock

(Mackintosh, 1976). In this procedure, according the RWM, the associative strength of A

and B would increase on each trial as specified in Equation 1.

∆ Vn = α β λ - VAn - 1 + VBn - 1()()
Equation 1

Equation 1 states that the change in associative strength for each of A and B (∆Vn) is a

function of two learning rate parameters (α and $) and the difference between an

asymptote (λ) and the sum of the strengths of A and B on the previous trial (VAn-1 and

VBn-1). In this model, after a number of trials, it would be expected that VA and VB

would both approach 1/2λ is A and B are of equal salience. In contrast, if A was trained

alone its asymptotic associative strength would be λ. Unfortunately this does not lead to

the prediction that the response to A after training with an AB compound will be half of

the magnitude of that seen to A after training with A alone. This prediction does not

follow for at least two reasons. First, there is no accepted mapping between associative

strength and response strength and second, there is no accepted account of the process by

which associative mechanisms treat stimulus compounds.

The assumption that stimulus compounds are treated by the associative

mechanism simply as experimenter-defined elements has been challenged on a number of

grounds. For example, there are numerous experiments that show both animals and

humans can learn to respond more to the elements than to the compound in negative

patterning discriminations (e.g. Woodbury, 1943; Lachnit & Kimmel, 2000). In negative

patterning, elements are reinforced whereas a compound of those elements is non-

reinforced (i.e. A+, B+, and AB- trials, where + and – symbolize reinforcement and non-

reinforcement, respectively). This type of discrimination cannot be solved by treating the

stimulus inputs as simple elements but, under the assumption that compounding produces

Replaced Elements 4

a unique configural cue (Wagner & Rescorla, 1972) the RWM can solve this type of

problem. For instance, the experimenter may present a light (A) and a tone (B) but the

organism represents the light-tone compound as ABX, where X is the unique configural

cue that occurs in the presence of the AB compound. Apart from the fact that negative

patterning discriminations can be learned some experimental evidence has been provided

that a unique-cue is actually generated when two stimuli are compounded (e.g. Rescorla,

1973).

Negative patterning discriminations have been dealt with in alternatives to the

unique-cue extension of the RWM. In one approach, a configural theory (CT), has been

proposed (Pearce, 1987; Pearce, 1994). In Pearce’s CT changes in associative strength

are calculated in a similar way to the computations in the RWM. But, CT assumes that

entire stimulus patterns gain associative strength. Thus, in negative patterning, three

distinct patterns would undergo associative changes; a representation of A, a

representation of B, and a representation of AB. Because the AB compound has its own

distinct representation and associative strength the model is readily able to predict that

negative patterning discriminations can be learned. Furthermore, CT, has the advantage

over the unique-cue version of the RWM because the unique-cue RWM predicts

summation effects, despite the fact that summation does not always occur. For example

Aydin and Pearce have reported that responding to an AB compound did not exceed

responding to the previously reinforced A and B elements (Aydin & Pearce, 1995; Aydin

& Pearce, 1997). The RWM would predict that after training A and B the associative

strengths of A and B would summate in an AB compound and hence the response to AB

should exceed that seen to either A or B alone.

In what follows a recent model for the processing of stimulus compounds, the

Replaced Elements Model (REM) will be described (Brandon, Vogel, & Wagner, 2000;

Wagner & Brandon, 2001; Wagner, 2003). Although the computation of associative

strengths in the REM is a straightforward application of the delta-rule used in the RWM

(Rescorla et al., 1972; Sutton & Barto, 1981) the model is complex in its specification of

the elements for which associative strengths need to be calculated. Nevertheless, it is of

particular interest to evaluate the REM because, although it is an “elemental model” of

associative learning, it can behave either “configurally” or elementally as its key

Replaced Elements 5

parameter, R, varies. As a result the model is a challenge both to alternative elemental

(e.g. RWM and it’s unique-cue variants) and configural accounts (Pearce, 1987; Pearce,

1994) of associative learning which incorporate different mechanisms for processing of

stimulus compounds. The current paper outlines the key features of the REM and

describes a method for specifying the REM elements so that REM predictions can be

generated computationally. In addition, examples simulations are presented. These show

differential predictions of the REM and Pearce’s Configural Theory.

In essence, the REM extends the idea that unique configural cues can be produced

whenever two or more stimuli are compounded. The suggestion is that representation of a

stimulus is comprised of three types of element: (a) elements that represent the stimulus

independently of the context set by other stimuli, (b) elements that represent the stimulus

in a context that encodes the presence of other stimuli, and (c) elements that represent the

stimulus in a context that encodes the absence of other stimuli. For example, in order to

represent a stimulus world consisting of two stimulus components A and B the REM

specifies elements of A that are always active when A occurs (Ai, read “A independent”

elements), elements of A that represent A in the presence of B (AB, read “A in the

presence of B” elements), and elements of A that represent A in absence of B (Ab, read

“A in the absence of B” elements). Representation of B is similarly specified by Bi, BA,

and Ba elements. The parameter R (0 ≤ R ≤ 1), dictates the proportion of stimulus

elements that encode the context set by the presence and absence of other stimuli and

variation in R renders the REM capable of behaving either elementally or configurally.

For instance, when R = 0 the entire representation of A is made up of Ai elements – there

is no encoding of the presence or absence of other stimuli. When R = 0.5 half of the

representation of A is made up of Ai elements and other half encodes the

presence/absence of other stimuli. This scheme will be expanded upon in the description

of the simulation program below (for further details see Wagner, 2003).

For simple simulations of the REM it is possible to adapt conventional programs

for RWM simulations by choosing stimuli to represent the REM elements providing that

the numbers of stimuli representing the elements are proportional to those required in

REM. For example, to simulate a world with two components A and B with an R-value

of 0.5 the A component would be represented by three elements, one to code Ai, one to

Replaced Elements 6

code Ab, and one to code AB and the B component would be represented likewise, one

for element Bi, one for Ba, and one to code BA. The proportional representations

required for A, B, and AB trials with R=0.5 are illustrated in the left-hand-side of Table 1

which shows how the conditioned stimulus (CS) inputs to a conventional RWM

simulation of this scenario could be presented in a binary vector with length 6. Referring

to Table 1, conditioning on a trial involving CS A alone would require re-calculation of

Ai and Ab elements whilst a trial with an AB compound would require computations on

Ai, AB, Bi, and BA elements.

Simulations of this two-component world are also possible for other values of R.

The right-hand-side of Table 1 shows proportional representations required for an R-

value of 0.25. These proportions can be represented using a binary vector of length 10 for

the CS encoding, three elements for each of Ai and Bi and one element for each of Ab,

AB, Ba, and BA. On a trial with CS A alone all three Ai elements would need their

associative strengths adjusted, along with the single Ab element. Once the correct

proportional representations of different elements for each conditioning trial are

established the simulation can then proceed keeping track of the associative strengths of

elements in the conventional way. Equation 1 shows how this works on conditioning

trials involving A alone.

∆ V = α β λ - Σ
k = 1

3

VAi
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

 + VAb
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

Equation 2

In Equation 2 the summation term indicates that there are three elements representing Ai

(for a two component model with R=0.25) and one element representing Ab, each of

which needs to be included in the error term. Application to trials involving B, and AB

compounds is approached in a similar way. Tests on A, B, and AB would then be carried

out by adding the associative strengths of their respective elements e.g. for a test on A

alone add the associative strengths of all elements that represent A alone (i.e. three Ai

and one Ab element).

Replaced Elements 7

Table 2 gives the results of a RWM simulation of REM for a sequence of three

reinforced trials involving A, AB, and then B with R=0.25 based on Equation 2 with

αβ=0.125. For more complex simulations involving multiple stimuli e.g. a three stimulus

world of A, B, and C or four stimuli, A-D and arbitrary R-values the total number of

stimulus elements required to represent the required proportions becomes very large and

construction of the vectors for different stimulus patterns is complex. As a result a more

effective method is suggested below.

Method

The alternative approach involves using single elements to represent each REM

element and weighting the updates on the associative strengths of those elements to

reflect their proportional representations in REM. Equation 3 illustrates the use of these

weights in simulation of trials involving A alone.

∆ Vn = ω α β λ - VAi + VAb()()
 Equation 3

In the case of R=0.25 for the two component simulation the weight (ω) for ∆VAi is (1-R)

whereas ω for ∆VAb is R. The far right-hand column of Table 1 shows weights required

for all the elements involved in an REM simulation involving two stimuli. Table 3 shows

the results of the same simulation carried out previously (Table 2) but this time using

weighted single elements to code for each component according to Equation 3. Inspection

of Tables 2 and 3 shows that the associative strength of the single Ai component in Table

3 is the sum of the three individual Ai components from Table 21. Two further steps are

required to facilitate simulations with arbitrary values of R and arbitrary numbers of

stimulus elements. The first is enumeration of the REM components present on a

conditioning trial and the second is calculation of the correct weights for each

component.

Replaced Elements 8

Enumeration of REM components

 Given a list of the stimuli that are present on a trial, and a list of stimuli that are

absent, the algorithm REMElements (StimuliPresent, StimuliAbsent) returns the list of

REM elements that are assumed to be active and whose associative strengths will need

updating on that trial (see Appendix 1 and text below for details of this algorithm).

Returning to the two component world involving A and B, the REM element list for a

trial involving A alone would be returned from a function call of the form

REMElements(A, b). The first parameter of this function call takes a list of the

components that are actually present (in upper case) and the second parameter takes a list

of elements that are absent (in lower case). If a three component world (components A-C)

was simulated then a list of REM elements for a trial involving BC would be generated

by the call REMElements (BC, a). The outputs from this algorithm for different stimulus

combinations for a three component simulation are given in Table 4. The left-hand-side

of Table 4 lists all of the REM elements that could be active in the three component

world. The main body of the table contains 0s and 1s to indicate whether an REM

element is active given the presence of the stimulus components listed across the top of

the table. For example, if AB was presented then REM elements Ai, AB, Ac, ABc, Bi,

BA, Bc, BAc would be activated and the call REMElements (AB, c) would generate the

list of strings A, AB, Ac, ABc, B, BA, Bc, BAc corresponding to those elements. Note

that A, B, and C correspond to Ai, Bi, and Ci – the suffix i, used in the text, is dropped as

redundant.

Appendix 1 gives further details of the algorithm that generates a list of all the

REM elements present on a trial for an arbitrary number of components. This algorithm

can be incorporated into a simulation program using two lists TList and SList. A new

TList is created on each trial of the simulation and uses the REMElements function to

establish which elements are present on that trial. SList is created once for each

simulation and is a list of all the elements that have already been encountered during the

simulation, along with their current associative strengths. On any trial the first step is to

populate TList with the elements that are present on that trial. Next, referring to SList,

update the associative strengths of all the elements in TList. If there is an element in

TList but not in SList then it has never been encountered before and its strength can be

Replaced Elements 9

set to a default (e.g. 0). Next, the change in associative strength for each element of TList

is computed using Equation 4 and these change values are added to the associative

strengths already recorded for each element in TList.

 = ∆ Vk ωk α β
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

 − λ
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∑

 = k 1

n

Vk
Equation 4

In Equation 4 the summation in the error term (the major parenthesised term) is over the

n elements present in TList, i.e. this is the sum of the associative strengths of all of the

elements used in REM to represent the particular pattern of CSs present on that trial. The

ω values for each element are required (see below) but once these changes have been

calculated these values are added to those already present in TList and to complete the

trial SList is updated with new associative strengths for all of those stimuli that are in

TList.

Calculation of REM component weights

 A major feature of the current approach to simulation of REM is the use of a

single element to represent each REM component instead of using multiple elements (see

Table 1 and introductory text). This simplification allows relatively straightforward

simulations involving arbitrary numbers of stimuli and values of R but requires

calculation of weights (ω values) for each REM component for use in Equation 4.

Inspection of the right-hand columns of Tables 1 and 4 shows that the weights for

components vary according to the overall “dimensionality” of the simulation. For

example, in Table 1 where a 2 stimulus world of A and B is simulated, the weight for Ai

is 1-R. In Table 4, where a 3 stimulus world is simulated, the weight for Ai is (1-R)^2.

Different weights are required to ensure that the overall rate of conditioning reflects the

number of experimenter defined stimuli that are present in a trial. The bottom row of

Table 4 shows that the sum of the weights for all of the REM components present on a

trial is N, where N is the number of CSs present. This also holds for the two dimensional

world of Table 1 where different REM components would be used to represent, for

Replaced Elements 10

example, AB. Thus, different ω values are required for REM components as the

dimensionality of the simulation varies. The method for determining the ω values ensures

that the results of a simulation will be the same whatever the dimensionality of the

simulation e.g. a sequence of A+, AB+, B+ would yield the same results whether

conducted in a 2 stimulus or a 4 stimulus simulation. Calculation of the required weights

can be achieved using the binomial expansion in Equation 5.

R + S() D - 1()

Equation 5

 Equation 5 is a general expression for REM weights where D is the

dimensionality of the simulation being conducted and S = 1-R. In a simulation of a two

stimulus world the elements Ab, AB, Ba, and BA have a weight of R whereas Ai and Bi

have a weight of (1-R). In simulation of a three stimulus world Equation 5 expands to

R 2 + 2 R S + S 2

Equation 6

and the weights R^2, R(1-R), and (1-R)^2 are applied to REM element strings (generated

as described in Appendix 1) with lengths 3, 2 and 1, respectively. See Tables 1, 4, and 6

for examples of weights generated for elements from 2, 3, and 5-D simulations. Table 7

lists all weights needed for models involving up to 6-D simulations.

Discussion and Example Simulations

Although simulations of REM can be carried out using conventional RWM

approaches, generation of the required elements is cumbersome, but the foregoing

illustrates an alternative method for simulation of the REM. The method includes

algorithmic generation of REM stimulus components from a list of experimenter defined

stimuli so that, subject to computing limitations, simulations can be carried out with

arbitrary numbers of stimuli and values of R. Simulation of REM is of interest because it

represents an attempt to overcome limitations of purely elemental approaches such as the

Replaced Elements 11

RWM. For example, the RWM cannot generate appropriate predictions for non-linear

discriminations such as negative patterning. Whilst it is possible for the RWM to solve

this type of discrimination using unique cues to code stimulus compounds the unique-cue

approach still predicts summation when summation effects do not always occur (Aydin et

al., 1995; Aydin et al., 1997).

Both Pearce’s configural model (Pearce, 1994) and the REM are alternatives to

the RWM that can generate the correct predictions for the negative patterning design and

both indicate that summation may or may not occur. In the case of Pearce’s model

summation is predicted when there are common elements to the trained stimuli. For

example a test on ABC will lead to summation after reinforced AC and BC trials. In the

case of the REM summation is predicted to occur with low R values. What then

differentiates these models? Wagner referred to several experiments in which the

different predictions of the RWM and Pearce’s configural model had both been supported

and showed how the REM could predict the outcomes subject to variation in R (Wagner,

2003). Nonetheless, the most interesting tests of these theoretical models are from

designs that make parameter free differential predictions.

Two examples will be given. The first is a simulation of a feature negative design

(A+, AB-) which is predicted to be made more difficult by CT after the addition of a

common feature (AC+, ABC-). On the other hand the addition of the common feature is

predicted to make the discrimination easier by the REM. Figure 1 shows the results of

this simulation and the clear differential predictions made by CT and REM. In the limit

(R=1) the two discriminations are equivalent in the REM since there is no overlap in the

components for the reinforced and non-reinforced trials. The REM (R<1) suggests that

the common feature will facilitate the discrimination because inhibition develops more

rapidly on the ABC trials and, as a result, excitation develops more rapidly on the AC

trials. On the other hand, CT suggests the addition of the common feature will increase

the similarity of the stimuli that signal reinforced and non-reinforced trials and make the

discrimination more difficult. Evidence has previously by obtained in support of the

predictions of CT (e.g. Pearce & Redhead, 1993). The second example is a contrast

between a simple (A+, B+, AB-) and a complex (AB+, CD+, ABCD-) negative

Replaced Elements 12

patterning discrimination (Figure 2). According to the predictions of CT there is

equivalence in the similarity relations in the two discriminations so the simple and

complex design should be equally difficult. In the REM though, the complex

discrimination is predicted to be easier because more stimuli are present on each trial and

so both excitatory and inhibitory conditioning proceed more rapidly. When R=1 there is

no overlap between the non-reinforced stimulus compounds so the elements representing

AB (simple) and ABCD (complex) do not become inhibitory and the discrimination only

involves increases in excitatory strength for the reinforced stimuli A/B (simple) and

AB/CD (complex). Although increasing the complexity of a negative patterning design

has been found to increase the difficulty of the discrimination, in support of CT, this

result has been found by increasing the similarity between the reinforced and non-

reinforced cues (Pearce et al., 1993).

The simulations shown in Figures 1 and 2 were carried out as follows. The

learning rate parameter α was set at 0.005, while $ was set at 1 or 0.5 for reinforced and

non-reinforced trials respectively. For the simulations in Figure 1, 1800 trials of each

type were carried out in a randomized order. The simulation was stopped after every 45

trials and tests carried out. The values in the figure are averaged over 10 runs. The

A+/AB- simulation was carried out separately from the AC+/ABC- simulation. The same

procedure was followed for Figure 2 except 1200 trials of each type were carried out. The

A+/B+/AB- simulation was run separately from the AB+/CD+/ABCD- simulation.

Appendix 2 includes the data from Figures 1 and 2 for the first 20 sample points for

selected trial types.

Replaced Elements 13

Author Note

Steven Glautier, School of Psychology, Southampton University, UK.

I would like to thank Alan Wagner for his helpful comments and elaborations on

early attempts at simulation and Ed Redhead for discussion and comments on a draft of

this paper.

1 In order to produce the same numerical values the product of the learning rate
parameters (αβ) for the REM simulation was set at 0.5. Without this adjustment the
RWM simulation of REM would result in faster changes in associative strength as more
stimuli are conditioned on each trial.

Replaced Elements 14

Reference List

Aydin, A. & Pearce, J. M. (1995). Summation in autoshaping with short and long

duration stimuli. Quarterly Journal of Experimental Psychology, 42B, 215-234.

Aydin, A. & Pearce, J. M. (1997). Some determinants of response summation.

Animal Learning and Behavior, 25, 108-121.

Brandon, S., Vogel, E. H., & Wagner, A. R. (2000). A componential view of

configural cues in generalization and discrimination in Pavlovian conditioning.

Behavioural and Brain Research, 110, 67-72.

Lachnit, H. & Kimmel, H. D. (2000). Experimental manipulation of a unique cue

in Pavlovian SCR conditioning with humans. Biological Psychology, 53, 105-129.

Mackintosh, N. J. (1976). Overshadowing and stimulus intensity. Animal

Learning & Behavior, 4, 186-192.

Pearce, J. M. (1994). Similarity and discrimination: A selective review and a

connectionist model. Psychological Review, 101, 587-607.

Pearce, J. M. (1987). A model of stimulus generalisation for Pavlovian

conditioning. Psychological Review, 94, 61-73.

Pearce, J. M. & Redhead, E. S. (1993). The influence of an irrelevant stimulus on

two discriminations. Journal of Experimental Psychology: Animal Behavior Processes,

19, 180-190.

Replaced Elements 15

Rescorla, R. A. (1973). Evidence for a "unique stimulus" account of configural

conditioning. Journal of Comparative and Physiological Psychology, 85, 331-338.

Rescorla, R. A. & Wagner, A. R. (1972). A theory of Pavlovian conditioning:

variations in the effectiveness of reinforcement and non-reinforcement. In A.H.Black &

W. F. Prokasy (Eds.), Classical Conditioning II: Current Research and Theory (pp. 64-

69). New York: Appleton Century Crofts.

Sutton, R. S. & Barto, A. G. (1981). Toward a modern theory of adaptive

networks: expectation and prediction. Psychological Review, 88, 135-170.

Wagner, A. R. (2003). Context-sensitive elemental theory. Quarterly Journal of

Experimental Psychology, 56B, 7-29.

Wagner, A. R. & Brandon, S. E. (2001). A componential theory of Pavlovian

conditioning. In R.R.Mowrer & S. B. Klein (Eds.), Handbook of Contemporary Learning

Theories (pp. 23-64). Mahwah, N.J.: Lawrence Erlbaum Associates.

Wagner, A. R. & Rescorla, R. A. (1972). Inhibition in Pavlovian conditioning:

Application of a theory. In R.A.Boakes & M. S. Halliday (Eds.), Inhibition and Learning

(pp. 301-340). London: Academic Press Inc.

Woodbury, C. B. (1943). The learning of stimulus patterns by dogs. Journal of

Comparative Psychology, 35, 29-40.

Replaced Elements 16

 CSs

 R=0.5 R=0.25

Input

elements

A B AB A B AB REM element

weight (ω)

Ai 1 0 1 3 0 3 1-R

Ab 1 0 0 1 0 0 R

AB 0 0 1 0 0 1 R

Bi 0 1 1 0 3 3 1-R

Ba 0 1 0 0 1 0 R

BA 0 0 1 0 0 1 R

Table 1. An illustration of the vector inputs required for a RWM based simulation of

REM for R-values of 0.5 and 0.25 to represent all combinations of two component

stimuli, A and B. With R=0.25 three elements are required to represent each of Ai and Bi.

The far right-hand column shows REM weights for each element.

Trial λ-ΣV Ai1 Ai2 Ai3 Ab AB Bi1 Bi2 Bi3 Ba BA

A+ 1.0000 0.1250 0.1250 0.1250 0.1250 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AB+ 0.6250 0.2031 0.2031 0.2031 0.1250 0.0781 0.0781 0.0781 0.0781 0.0000 0.0781

B+ 0.7656 0.2031 0.2031 0.2031 0.1250 0.0781 0.1738 0.1738 0.1738 0.0957 0.0781

Table 2. RWM simulation of REM (R=0.25) based on Equation 2 for three reinforced

trials. The column headed λ-ΣV shows the error term at the start of each trial and the

numbers in the body of the table are associative strengths for each element after the trial.

Replaced Elements 17

Trial λ-ΣV Ai Ab AB Bi Ba BA

A+ 1.0000 0.3750 0.1250 0.0000 0.0000 0.0000 0.0000
AB+ 0.6250 0.6094 0.1250 0.0781 0.2344 0.0000 0.0781
B+ 0.7656 0.6094 0.1250 0.0781 0.5215 0.0957 0.0781

Table 3. Simulation of REM based on Equation 3 for three reinforced trials. The column

headed λ-ΣV shows the error term at the start of each trial and the numbers in the body of

the table are associative strengths for each element after the trial.

Replaced Elements 18

 Stimulus components
REM
element string

A B C AB AC BC ABC REM
element weight (ω)

Ai 1 0 0 1 1 0 1 (1-R)^2
AB 0 0 0 1 0 0 1 R*(1-R)
Ab 1 0 0 0 1 0 0 R*(1-R)
AC 0 0 0 0 1 0 1 R*(1-R)
Ac 1 0 0 1 0 0 0 R*(1-R)
ABC 0 0 0 0 0 0 1 R^2
ABc 0 0 0 1 0 0 0 R^2
ACb 0 0 0 0 1 0 0 R^2
Abc 1 0 0 0 0 0 0 R^2
Bi 0 1 0 1 0 1 1 (1-R)^2
BA 0 0 0 1 0 0 1 R*(1-R)
Ba 0 1 0 0 0 1 0 R*(1-R)
BC 0 0 0 0 0 1 1 R*(1-R)
Bc 0 1 0 1 0 0 0 R*(1-R)
BAC 0 0 0 0 0 0 1 R^2
BAc 0 0 0 1 0 0 0 R^2
BCa 0 0 0 0 0 1 0 R^2
Bac 0 1 0 0 0 0 0 R^2
Ci 0 0 1 0 1 1 1 (1-R)^2
CA 0 0 0 0 1 0 1 R*(1-R)
Ca 0 0 1 0 0 1 0 R*(1-R)
CB 0 0 0 0 0 1 1 R*(1-R)
Cb 0 0 1 0 1 0 0 R*(1-R)
CAB 0 0 0 0 0 0 1 R^2
CAb 0 0 0 0 1 0 0 R^2
CBa 0 0 0 0 0 1 0 R^2
Cab 0 0 0 0 0 0 0 R^2
Σ weights 1 1 1 2 2 2 3

Table 4. Illustration of REM element strings required to represent all combinations of

CSs in a three-component world involving A, B, and C. The weights (ω) required in

Equation 3 for each element are shown in the right-hand column and the sum of the

weights for each trial is given in the bottom row. Note, for the purpose of weight

determination the length of the REM element string does not include the “i” – Ai, Bi, and

Ci all have length 1.

Replaced Elements 19

A B C

B C A

C A B

Table 5. Stimulus present strings after rotations in the function REMElements. The

shading indicates the tails used in the calls on Combinations used in the function

GeneratePresentStimuliList, see Appendix 1.

A-elements B-elements C-elements REM

element weight (ω)
A B C (1-R)^4
Ad Bd Cd R*(1-R)^3
Ae Be Ce R*(1-R)^3
Ade Bde Cde R^2*(1-R)^2
AB BA CA R*(1-R)^3
ABd BAd CAd R^2*(1-R)^2
ABe BAe CAe R^2*(1-R)^2
ABde BAde CAde R^3*(1-R)
AC BC CB R*(1-R)^3
ACe BCd CBd R^2*(1-R)^2
ACd BCe CBe R^2*(1-R)^2
ACde BCde CBde R^3*(1-R)
ABC BAC CAB R^2*(1-R)^2
ABCe BACd CABd R^3*(1-R)
ABCd BACd CABe R^3*(1-R)
ABCde BACde CABde R^4

Table 6. REM element strings and weights generated from a call on REMElements(ABC,
de).

Replaced Elements 20

 Dimensionality
REM element
string length
(example)

2-D

3-D

4-D

5-D

6-D

1 (A) 1-R (1-R)^2 (1-R)^3 (1-R)^4 (1-R)^5
2 (Ba) R R*(1-R) R*(1-R)^2 R*(1-R)^3 R*(1-R)^4
3 (CAb) - R^2 R^2*(1-R) R^2*(1-R)^2 R^2*(1-R)^3
4 (DBac) - - R^3 R^3*(1-R) R^3*(1-R)^2
5 (ABCde) - - - R^4 R^4*(1-R)
6 (FAbcde) - - - - R^5

Table 7. REM element weights (ω) according to REM element string lengths and

dimensionality of simulation.

Replaced Elements 21

Figure captions

Figure 1. Simulations of feature negative discriminations with (AC+, ABC-) and without
(A+, AB-) common features. The predictions from Pearce’s configural model and from
the REM with R=0.2 and R=0.8 are shown. The abscissa shows associative strength (V) x
100. See text for further details.

Figure 2. Simulations of simple (A+/B+/AB-) and complex (AB+/CD+/ABCD-) negative
patterning. The predictions from Pearce’s configural model, and from the REM with
R=0.2 and R=0.8 are shown. The abscissa shows associative strength (V) x 100. See text
for further details.

Replaced Elements 22

C
R

0

20

40

60

80

100

A+
AB-
AC+
ABC-

C
R

0

20

40

60

80

100

Trial block

C
R

0

20

40

60

80

100

Configural model

REM R = 0.2

REM R = 0.8

Replaced Elements 23

C
R

0

20

40

60

80

100
C

R

0

20

40

60

80

100

C
R

0

20

40

60

80

100

A+/B+
AB-
AB+/CD+
ABCD-

Configural model

REM R = 0.2

REM R = 0.8

Trial block

Replaced Elements 24

Appendix 1

The function REMElements (StimuliPresent, StimuliAbsent) takes two strings as its

parameters, StimuliPresent and StimuliAbsent, and returns a list of strings. Each string on

the returned list represents one of the REM elements that are present, given the

parameters, and the returned list is a complete enumeration of those elements required by

the REM to represent the CSs present on that trial. The StimuliPresent string is an

enumeration of the CSs actually present, the StimuliAbsent string enumerates those CSs

that are absent. For example in simulation involving four CS components (A-D), a trial

with A alone would require a call REMElements(A,bcd) whereas a trial of ACD would

need the call REMElements (ACD, b). In a simulation involving five CS components (A-

E) the same trials would be called with REMElements (A,bcde) and REMElements

(ACD,be).

REMElements makes use of three lists. AList is generated from the StimuliAbsent

string whereas PList is generated from the StimuliPresent string. RList is the list that the

function returns, it is generated by merging AList and PList. In pseudocode the principle

algorithm of REMElements is:

AList:=GenerateAbsentStimuliList(StimuliAbsent);

PList:=GeneratePresentStimuliList(StimuliPresent);

RList:=Merge(AList,PList);

GenerateAbsentStimuliList operates by generating substrings, of length 1..n, each of

which is a unique combination of characters from the string StimuliAbsent, where n is the

length of StimuliAbsent. In pseudocode:

 i:=0;

 while (i< length(StimuliAbsent))

 ReturnList:=ReturnList+Combinations(i+1, StimuliAbsent);

 i:=i+1;

 end while;

Replaced Elements 25

The call Combinations(i+1, StimuliAbsent) returns a list of all combinations of characters

in StimuliAbsent with length i+1. As examples, the call Combinations(1, abc) would

return a list containing elements a,b, and c; Combinations(2, abc) would return elements

ab, ac, and bc; whereas Combinations(3, abc) would return a list with a single element

abc. As a result the call GenerateAbsentStimuliList(abc) would produce the ReturnList

consisting of elements a, b, c, ab, ac, bc, abc. The call GenerateAbsentStimuliList(de)

would produce the ReturnList consisting of elements d, e, de.

 GeneratePresentStimuliList operates on similar principles but produces calls on

the Combinations function with substrings of StimuliPresent. Substrings of

StimuliPresent are generated by rotating the characters of StimuliPresent and, after each

rotation, calling Combinations on the tail of StimuliPresent. Table 5 shows the first two

rotations of StimuliPresent that would occur in a call of

GeneratePresentStimuliList(ABC). The number of rotations in each call of

GeneratePresentStimuliList is equal to the length of the StimuliPresent string and the last

rotation returns StimuliPresent to its original state. The pseudocode runs:

i:=0;

j:=0;

 while (i< length(StimuliPresent))

 ReturnList:=ReturnList+Head(StimuliPresent);

while(j<length(StimuliPresent)-1)

TempList:=Combinations(j+1, Tail(StimuliPresent));

ReturnList:=ReturnList+Prepend(TempList,Head(StimuliPresent));

 j:=j+1;

end while;

Rotate(StimuliPresent);

 i:=i+1;

 end while;

Within this routine the function Head returns the first character of its string parameter and

the function Tail returns all characters of its parameter except the first. Rotate moves all

Replaced Elements 26

characters of its parameter to the left and the “overflow” character is appended to the end,

as indicated in Table 5. Prepend is a function that takes a list of strings as a target and for

every string in that list it prepends a character before returning the list with the prepends.

The result of the call GeneratePresentStimuliList(ABC) returns a list consisting of the

elements A, AB,AC, ABC; B, BC, BA, BCA; C, CA, CB, CAB. The elements listed after

semi-colons occur after rotations of StimuliPresent.

 The final function of REMElements is Merge(AList,PList). It works by creating a

list of strings that contains each element of PList plus each element of PList combined

with each element of AList as follows:

 i:=0;

 j:=0;

 while (i<length(PList))

 ReturnList:=ReturnList+PList[i];

 while (j<length(AList))

 ReturnList:=ReturnList+(PList[i]+AList[j]));

j:=j+1;

end while;

i:=i+1;

 end while;

Using the examples above, if PList consisted of elements A, AB,AC, ABC; B, BC, BA,

BCA; C, CA, CB, CAB and AList consisted of elements d, e, de, as they would after

GenerateAbsentStimuliList(de) and GeneratePresentStimuliList(ABC) then Merge(AList,

PList) would result in the list shown in Table 6. Thus, in a simulation of a five-

component world (A-E) presentation of an ABC compound would result in activation of

16 A-elements, 16 B-elements, and 16 C-elements. This can be compared to simulation

of the three component world where ABC would activate 4 A, 4 B, and 4 C-elements. It

should be noted, however, that the REM element weights that would be applied to each

element ensure that the summed weights for an ABC stimulus always amount to 3,

regardless of the “dimensionality” selected for the simulation (see text).

Replaced Elements 27

Appendix 2

Figure 1 data Figure 2 data
R=0.2 R=0.8 R=0.2 R=0.8

A+ AB- AC+ ABC- A+/B+ AB- AB+/CD+ ABCD-
22.3
37.6
48.5
56.6
64.1
67.7
72.4
75.1
78.1
80.2
82.8
84.3
85.9
87.0
88.1
89.2
90.5
91.7
92.2
92.7

16.2
26.4
29.6
30.0
31.6
30.9
31.0
30.4
28.1
25.9
23.3
21.4
19.9
18.2
16.8
14.6
12.5
11.1
10.3
9.6

37.5
59.8
76.2
84.6
88.3
92.3
94.6
96.5
97.6
98.4
98.8
99.2
99.5
99.7
99.8
99.8
99.9
99.9
99.9
100.0

5.9
8.6
8.2
7.9
6.7
5.3
4.0
3.2
2.4
1.8
1.4
1.0
0.8
0.6
0.4
0.3
0.2
0.2
0.1
0.1

12.2
23.7
30.7
36.9
43.5
46.3
50.1
53.9
56.5
58.4
61.0
63.3
65.3
67.8
67.4
69.8
70.1
70.8
70.7
73.4

20.7
36.5
44.7
53.7
56.4
64.4
66.3
69.0
72.1
69.0
64.9
64.0
62.4
61.3
59.2
59.2
56.6
55.6
53.5
53.2

26.2
45.5
59.0
68.7
76.3
82.2
86.6
90.1
92.6
94.4
95.8
96.9
97.7
98.3
98.7
99.1
99.3
99.5
99.6
99.7

1.8
2.6
3.0
3.0
2.7
2.4
2.1
1.7
1.5
1.2
1.0
0.8
0.6
0.5
0.4
0.3
0.2
0.2
0.2
0.1

Table 8. Sample simulation data from Figures 1 and 2.

	Running head: REPLACED ELEMENTS SIMULATION
	Simulation of Associative Learning with the Replaced Element
	Steven Glautier
	Southampton University
	Abstract
	Associative learning theories can be categorised according t
	Method
	Enumeration of REM components
	Calculation of REM component weights

	and the weights R^2, R(1-R), and (1-R)^2 are applied to REM
	Discussion and Example Simulations
	Although simulations of REM can be carried out using convent
	Both Pearce’s configural model (Pearce, 1994) and the REM ar
	Two examples will be given. The first is a simulation of a f
	The simulations shown in Figures 1 and 2 were carried out as follows. The learning rate parameter a was set at 0.005, while (was set at 1 or 0.5 for reinforced and non-reinforced
	Steven Glautier, School of Psychology, Southampton Universit
	Table 5. Stimulus present strings after rotations in the fun
	Figure captions
	Appendix 1
	Appendix 2

