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Abstract 

Associative learning theories can be categorised according to whether they treat the 

representation of stimulus compounds in an elemental or configural manner. Since it is 

clear that a simple elemental approach to stimulus representation is inadequate there have 

been several attempts to produce more elaborate elemental models. One recent approach, 

the Replaced Elements Model (Wagner, 2003), reproduces many results that have until 

recently been uniquely predicted by Pearce’s Configural Theory (Pearce, 1994). 

Although it is possible to simulate the Replaced Elements Model using “standard” 

simulation programs the generation of the correct stimulus representation is complex. The 

current paper describes a method for simulation of the Replaced Elements Model and 

presents the results of two example simulations that show differential predictions of 

Replaced Elements and Pearce’s Configural Theory.
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Simulation of Associative Learning with the Replaced Elements Model 

A simple application of the Rescorla-Wagner Model (RWM) of associative 

learning treats stimulus inputs as simple experimenter-defined elements (Rescorla & 

Wagner, 1972). For example, in Mackintosh’s 1976 study of overshadowing in rats, a 

compound of two stimuli, A and B, was trained as a signal for electric shock 

(Mackintosh, 1976). In this procedure, according the RWM, the associative strength of A 

and B would increase on each trial as specified in Equation 1. 

 

∆ Vn = α β λ - VAn - 1 + VBn - 1( )( )
Equation 1 

 
Equation 1 states that the change in associative strength for each of A and B (∆Vn) is a 

function of two learning rate parameters (α and $) and the difference between an 

asymptote (λ) and the sum of the strengths of A and B on the previous trial (VAn-1 and 

VBn-1). In this model, after a number of trials, it would be expected that VA and VB 

would both approach 1/2λ is A and B are of equal salience. In contrast, if A was trained 

alone its asymptotic associative strength would be λ. Unfortunately this does not lead to 

the prediction that the response to A after training with an AB compound will be half of 

the magnitude of that seen to A after training with A alone. This prediction does not 

follow for at least two reasons. First, there is no accepted mapping between associative 

strength and response strength and second, there is no accepted account of the process by 

which associative mechanisms treat stimulus compounds.  

The assumption that stimulus compounds are treated by the associative 

mechanism simply as experimenter-defined elements has been challenged on a number of 

grounds. For example, there are numerous experiments that show both animals and 

humans can learn to respond more to the elements than to the compound in negative 

patterning discriminations (e.g. Woodbury, 1943; Lachnit & Kimmel, 2000). In negative 

patterning, elements are reinforced whereas a compound of those elements is non-

reinforced (i.e. A+, B+, and AB- trials, where + and – symbolize reinforcement and non-

reinforcement, respectively). This type of discrimination cannot be solved by treating the 

stimulus inputs as simple elements but, under the assumption that compounding produces 
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a unique configural cue (Wagner & Rescorla, 1972) the RWM can solve this type of 

problem. For instance, the experimenter may present a light (A) and a tone (B) but the 

organism represents the light-tone compound as ABX, where X is the unique configural 

cue that occurs in the presence of the AB compound. Apart from the fact that negative 

patterning discriminations can be learned some experimental evidence has been provided 

that a unique-cue is actually generated when two stimuli are compounded (e.g. Rescorla, 

1973).  

Negative patterning discriminations have been dealt with in alternatives to the 

unique-cue extension of the RWM. In one approach, a configural theory (CT), has been 

proposed (Pearce, 1987; Pearce, 1994). In Pearce’s CT changes in associative strength 

are calculated in a similar way to the computations in the RWM. But, CT assumes that 

entire stimulus patterns gain associative strength. Thus, in negative patterning, three 

distinct patterns would undergo associative changes; a representation of A, a 

representation of B, and a representation of AB. Because the AB compound has its own 

distinct representation and associative strength the model is readily able to predict that 

negative patterning discriminations can be learned. Furthermore, CT, has the advantage 

over the unique-cue version of the RWM because the unique-cue RWM predicts 

summation effects, despite the fact that summation does not always occur. For example 

Aydin and Pearce have reported that responding to an AB compound did not exceed 

responding to the previously reinforced A and B elements (Aydin & Pearce, 1995; Aydin 

& Pearce, 1997). The RWM would predict that after training A and B the associative 

strengths of A and B would summate in an AB compound and hence the response to AB 

should exceed that seen to either A or B alone. 

In what follows a recent model for the processing of stimulus compounds, the 

Replaced Elements Model (REM) will be described (Brandon, Vogel, & Wagner, 2000; 

Wagner & Brandon, 2001; Wagner, 2003). Although the computation of associative 

strengths in the REM is a straightforward application of the delta-rule used in the RWM 

(Rescorla et al., 1972; Sutton & Barto, 1981) the model is complex in its specification of 

the elements for which associative strengths need to be calculated. Nevertheless, it is of 

particular interest to evaluate the REM because, although it is an “elemental model” of 

associative learning, it can behave either “configurally” or elementally as its key 
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parameter, R, varies. As a result the model is a challenge both to alternative elemental 

(e.g. RWM and it’s unique-cue variants) and configural accounts (Pearce, 1987; Pearce, 

1994) of associative learning which incorporate different mechanisms for processing of 

stimulus compounds. The current paper outlines the key features of the REM and 

describes a method for specifying the REM elements so that REM predictions can be 

generated computationally. In addition, examples simulations are presented. These show 

differential predictions of the REM and Pearce’s Configural Theory. 

In essence, the REM extends the idea that unique configural cues can be produced 

whenever two or more stimuli are compounded. The suggestion is that representation of a 

stimulus is comprised of three types of element: (a) elements that represent the stimulus 

independently of the context set by other stimuli, (b) elements that represent the stimulus 

in a context that encodes the presence of other stimuli, and (c) elements that represent the 

stimulus in a context that encodes the absence of other stimuli.  For example, in order to 

represent a stimulus world consisting of two stimulus components A and B the REM 

specifies elements of A that are always active when A occurs (Ai, read “A independent” 

elements), elements of A that represent A in the presence of B (AB, read “A in the 

presence of B” elements), and elements of A that represent A in absence of B (Ab, read 

“A in the absence of B” elements). Representation of B is similarly specified by Bi, BA, 

and Ba elements. The parameter R (0 ≤ R ≤ 1), dictates the proportion of stimulus 

elements that encode the context set by the presence and absence of other stimuli and 

variation in R renders the REM capable of behaving either elementally or configurally. 

For instance, when R = 0 the entire representation of A is made up of Ai elements – there 

is no encoding of the presence or absence of other stimuli. When R = 0.5 half of the 

representation of A is made up of Ai elements and other half encodes the 

presence/absence of other stimuli. This scheme will be expanded upon in the description 

of the simulation program below (for further details see Wagner, 2003).  

For simple simulations of the REM it is possible to adapt conventional programs 

for RWM simulations by choosing stimuli to represent the REM elements providing that 

the numbers of stimuli representing the elements are proportional to those required in 

REM. For example, to simulate a world with two components A and B with an R-value 

of 0.5 the A component would be represented by three elements, one to code Ai, one to 
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code Ab, and one to code AB and the B component would be represented likewise, one 

for element Bi, one for Ba, and one to code BA. The proportional representations 

required for A, B, and AB trials with R=0.5 are illustrated in the left-hand-side of Table 1 

which shows how the conditioned stimulus (CS) inputs to a conventional RWM 

simulation of this scenario could be presented in a binary vector with length 6. Referring 

to Table 1, conditioning on a trial involving CS A alone would require re-calculation of 

Ai and Ab elements whilst a trial with an AB compound would require computations on 

Ai, AB, Bi, and BA elements.  

Simulations of this two-component world are also possible for other values of R. 

The right-hand-side of Table 1 shows proportional representations required for an R-

value of 0.25. These proportions can be represented using a binary vector of length 10 for 

the CS encoding, three elements for each of Ai and Bi  and one element for each of Ab, 

AB, Ba, and BA. On a trial with CS A alone all three Ai elements would need their 

associative strengths adjusted, along with the single Ab element. Once the correct 

proportional representations of different elements for each conditioning trial are 

established the simulation can then proceed keeping track of the associative strengths of 

elements in the conventional way. Equation 1 shows how this works on conditioning 

trials involving A alone. 

 

∆ V = α  β  λ  - Σ
k = 1

3
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⎛
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⎞
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⎟
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Equation 2 
 

 

In Equation 2 the summation term indicates that there are three elements representing Ai 

(for a two component model with R=0.25) and one element representing Ab, each of 

which needs to be included in the error term. Application to trials involving B, and AB 

compounds is approached in a similar way. Tests on A, B, and AB would then be carried 

out by adding the associative strengths of their respective elements e.g. for a test on A 

alone add the associative strengths of all elements that represent A alone (i.e. three Ai 

and one Ab element).  
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Table 2 gives the results of a RWM simulation of REM for a sequence of three 

reinforced trials involving A, AB, and then B with R=0.25 based on Equation 2 with 

αβ=0.125. For more complex simulations involving multiple stimuli e.g. a three stimulus 

world of A, B, and C or four stimuli, A-D and arbitrary R-values the total number of 

stimulus elements required to represent the required proportions becomes very large and 

construction of the vectors for different stimulus patterns is complex. As a result a more 

effective method is suggested below. 

 

Method 

The alternative approach involves using single elements to represent each REM 

element and weighting the updates on the associative strengths of those elements to 

reflect their proportional representations in REM. Equation 3 illustrates the use of these 

weights in simulation of trials involving A alone. 

 

∆ Vn = ω α β λ - VAi + VAb( )( )
 Equation 3 

 

In the case of R=0.25 for the two component simulation the weight (ω) for ∆VAi is (1-R) 

whereas ω for ∆VAb is R. The far right-hand column of Table 1 shows weights required 

for all the elements involved in an REM simulation involving two stimuli. Table 3 shows 

the results of the same simulation carried out previously (Table 2) but this time using 

weighted single elements to code for each component according to Equation 3. Inspection 

of Tables 2 and 3 shows that the associative strength of the single Ai component in Table 

3 is the sum of the three individual Ai components from Table 21. Two further steps are 

required to facilitate simulations with arbitrary values of R and arbitrary numbers of 

stimulus elements. The first is enumeration of the REM components present on a 

conditioning trial and the second is calculation of the correct weights for each 

component. 
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Enumeration of REM components 

 Given a list of the stimuli that are present on a trial, and a list of stimuli that are 

absent, the algorithm REMElements (StimuliPresent, StimuliAbsent) returns the list of 

REM elements that are assumed to be active and whose associative strengths will need 

updating on that trial (see Appendix 1 and text below for details of this algorithm). 

Returning to the two component world involving A and B, the REM element list for a 

trial involving A alone would be returned from a function call of the form 

REMElements(A, b). The first parameter of this function call takes a list of the 

components that are actually present (in upper case) and the second parameter takes a list 

of elements that are absent (in lower case). If a three component world (components A-C) 

was simulated then a list of REM elements for a trial involving BC would be generated 

by the call REMElements (BC, a). The outputs from this algorithm for different stimulus 

combinations for a three component simulation are given in Table 4. The left-hand-side 

of Table 4 lists all of the REM elements that could be active in the three component 

world. The main body of the table contains 0s and 1s to indicate whether an REM 

element is active given the presence of the stimulus components listed across the top of 

the table. For example, if AB was presented then REM elements Ai, AB, Ac, ABc, Bi, 

BA, Bc, BAc would be activated and the call REMElements (AB, c) would generate the 

list of strings A, AB, Ac, ABc, B, BA, Bc, BAc corresponding to those elements. Note 

that A, B, and C correspond to Ai, Bi, and Ci – the suffix i, used in the text, is dropped as 

redundant.  

Appendix 1 gives further details of the algorithm that generates a list of all the 

REM elements present on a trial for an arbitrary number of components. This algorithm 

can be incorporated into a simulation program using two lists TList and SList. A new 

TList is created on each trial of the simulation and uses the REMElements function to 

establish which elements are present on that trial. SList is created once for each 

simulation and is a list of all the elements that have already been encountered during the 

simulation, along with their current associative strengths. On any trial the first step is to 

populate TList with the elements that are present on that trial. Next, referring to SList, 

update the associative strengths of all the elements in TList. If there is an element in 

TList but not in SList then it has never been encountered before and its strength can be 
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set to a default (e.g. 0). Next, the change in associative strength for each element of TList 

is computed using Equation 4 and these change values are added to the associative 

strengths already recorded for each element in TList. 

 

 = ∆ Vk ωk α β
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

 − λ
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∑

 = k 1

n

Vk
Equation 4 

 

In Equation 4 the summation in the error term (the major parenthesised term) is over the 

n elements present in TList, i.e. this is the sum of the associative strengths of all of the 

elements used in REM to represent the particular pattern of CSs present on that trial. The 

ω values for each element are required (see below) but once these changes have been 

calculated these values are added to those already present in TList and to complete the 

trial SList is updated with new associative strengths for all of those stimuli that are in 

TList. 

 

Calculation of REM component weights 

 A major feature of the current approach to simulation of REM is the use of a 

single element to represent each REM component instead of using multiple elements (see 

Table 1 and introductory text). This simplification allows relatively straightforward 

simulations involving arbitrary numbers of stimuli and values of R but requires 

calculation of weights (ω values) for each REM component for use in Equation 4. 

Inspection of the right-hand columns of Tables 1 and 4 shows that the weights for 

components vary according to the overall “dimensionality” of the simulation. For 

example, in Table 1 where a 2 stimulus world of A and B is simulated, the weight for Ai 

is 1-R. In Table 4, where a 3 stimulus world is simulated, the weight for Ai is (1-R)^2. 

Different weights are required to ensure that the overall rate of conditioning reflects the 

number of experimenter defined stimuli that are present in a trial. The bottom row of 

Table 4 shows that the sum of the weights for all of the REM components present on a 

trial is N, where N is the number of CSs present. This also holds for the two dimensional 

world of Table 1 where different REM components would be used to represent, for 
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example, AB. Thus, different ω values are required for REM components as the 

dimensionality of the simulation varies. The method for determining the ω values ensures 

that the results of a simulation will be the same whatever the dimensionality of the 

simulation e.g. a sequence of A+, AB+, B+ would yield the same results whether 

conducted in a 2 stimulus or a 4 stimulus simulation. Calculation of the required weights 

can be achieved using the binomial expansion in Equation 5. 

 

R + S( ) D - 1( )

Equation 5 
 

 Equation 5 is a general expression for REM weights where D is the 

dimensionality of the simulation being conducted and S = 1-R. In a simulation of a two 

stimulus world the elements Ab, AB, Ba, and BA have a weight of R whereas Ai and Bi 

have a weight of (1-R). In simulation of a three stimulus world Equation 5 expands to  

 

R 2 + 2 R S + S 2

Equation 6 

and the weights R^2, R(1-R), and (1-R)^2 are applied to REM element strings (generated 

as described in Appendix 1) with lengths 3, 2 and 1, respectively. See Tables 1, 4, and 6 

for examples of weights generated for elements from 2, 3, and 5-D simulations. Table 7 

lists all weights needed for models involving up to 6-D simulations. 

 

Discussion and Example Simulations 

Although simulations of REM can be carried out using conventional RWM 

approaches, generation of the required elements is cumbersome, but the foregoing 

illustrates an alternative method for simulation of the REM. The method includes 

algorithmic generation of REM stimulus components from a list of experimenter defined 

stimuli so that, subject to computing limitations, simulations can be carried out with 

arbitrary numbers of stimuli and values of R. Simulation of REM is of interest because it 

represents an attempt to overcome limitations of purely elemental approaches such as the 
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RWM. For example, the RWM cannot generate appropriate predictions for non-linear 

discriminations such as negative patterning. Whilst it is possible for the RWM to solve 

this type of discrimination using unique cues to code stimulus compounds the unique-cue 

approach still predicts summation when summation effects do not always occur (Aydin et 

al., 1995; Aydin et al., 1997). 

Both Pearce’s configural model (Pearce, 1994) and the REM are alternatives to 

the RWM that can generate the correct predictions for the negative patterning design and 

both indicate that summation may or may not occur. In the case of Pearce’s model 

summation is predicted when there are common elements to the trained stimuli. For 

example a test on ABC will lead to summation after reinforced AC and BC trials. In the 

case of the REM summation is predicted to occur with low R values. What then 

differentiates these models? Wagner referred to several experiments in which the 

different predictions of the RWM and Pearce’s configural model had both been supported 

and showed how the REM could predict the outcomes subject to variation in R (Wagner, 

2003). Nonetheless, the most interesting tests of these theoretical models are from 

designs that make parameter free differential predictions.  

Two examples will be given. The first is a simulation of a feature negative design 

(A+, AB-) which is predicted to be made more difficult by CT after the addition of a 

common feature (AC+, ABC-). On the other hand the addition of the common feature is 

predicted to make the discrimination easier by the REM. Figure 1 shows the results of 

this simulation and the clear differential predictions made by CT and REM. In the limit 

(R=1) the two discriminations are equivalent in the REM since there is no overlap in the 

components for the reinforced and non-reinforced trials. The REM (R<1) suggests that 

the common feature will facilitate the discrimination because inhibition develops more 

rapidly on the ABC trials and, as a result, excitation develops more rapidly on the AC 

trials. On the other hand, CT suggests the addition of the common feature will increase 

the similarity of the stimuli that signal reinforced and non-reinforced trials and make the 

discrimination more difficult. Evidence has previously by obtained in support of the 

predictions of CT (e.g. Pearce & Redhead, 1993).  The second example is a contrast 

between a simple (A+, B+, AB-) and a complex (AB+, CD+, ABCD-) negative 
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patterning discrimination (Figure 2). According to the predictions of CT there is 

equivalence in the similarity relations in the two discriminations so the simple and 

complex design should be equally difficult. In the REM though, the complex 

discrimination is predicted to be easier because more stimuli are present on each trial and 

so both excitatory and inhibitory conditioning proceed more rapidly. When R=1 there is 

no overlap between the non-reinforced stimulus compounds so the elements representing 

AB (simple) and ABCD (complex) do not become inhibitory and the discrimination only 

involves increases in excitatory strength for the reinforced stimuli A/B (simple) and 

AB/CD (complex). Although increasing the complexity of a negative patterning design 

has been found to increase the difficulty of the discrimination, in support of CT, this 

result has been found by increasing the similarity between the reinforced and non-

reinforced cues (Pearce et al., 1993). 

The simulations shown in Figures 1 and 2 were carried out as follows. The 

learning rate parameter α was set at 0.005, while $ was set at 1 or 0.5 for reinforced and 

non-reinforced trials respectively. For the simulations in Figure 1, 1800 trials of each 

type were carried out in a randomized order. The simulation was stopped after every 45 

trials and tests carried out. The values in the figure are averaged over 10 runs. The 

A+/AB- simulation was carried out separately from the AC+/ABC- simulation. The same 

procedure was followed for Figure 2 except 1200 trials of each type were carried out. The 

A+/B+/AB- simulation was run separately from the AB+/CD+/ABCD- simulation. 

Appendix 2 includes the data from Figures 1 and 2 for the first 20 sample points for 

selected trial types. 
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RWM simulation of REM would result in faster changes in associative strength as more 
stimuli are conditioned on each trial. 
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 CSs  

 R=0.5 R=0.25  

Input 

elements 

A B AB A B AB REM element 

weight (ω) 

Ai 1 0 1 3 0 3 1-R 

Ab 1 0 0 1 0 0 R 

AB 0 0 1 0 0 1 R 

Bi 0 1 1 0 3 3 1-R 

Ba 0 1 0 0 1 0 R 

BA 0 0 1 0 0 1 R 

 

Table 1. An illustration of the vector inputs required for a RWM based simulation of 

REM for R-values of 0.5 and 0.25 to represent all combinations of two component 

stimuli, A and B. With R=0.25 three elements are required to represent each of Ai and Bi.  

The far right-hand column shows REM weights for each element. 

 

Trial λ-ΣV Ai1 Ai2 Ai3 Ab AB Bi1 Bi2 Bi3 Ba BA 

A+ 1.0000 0.1250 0.1250 0.1250 0.1250 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AB+ 0.6250 0.2031 0.2031 0.2031 0.1250 0.0781 0.0781 0.0781 0.0781 0.0000 0.0781

B+ 0.7656 0.2031 0.2031 0.2031 0.1250 0.0781 0.1738 0.1738 0.1738 0.0957 0.0781

 

Table 2. RWM simulation of REM (R=0.25) based on Equation 2 for three reinforced 

trials. The column headed λ-ΣV shows the error term at the start of each trial and the 

numbers in the body of the table are associative strengths for each element after the trial.
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Trial λ-ΣV Ai Ab AB Bi Ba BA 

A+ 1.0000 0.3750 0.1250 0.0000 0.0000 0.0000 0.0000 
AB+ 0.6250 0.6094 0.1250 0.0781 0.2344 0.0000 0.0781 
B+ 0.7656 0.6094 0.1250 0.0781 0.5215 0.0957 0.0781 
 

Table 3. Simulation of REM based on Equation 3 for three reinforced trials. The column 

headed λ-ΣV shows the error term at the start of each trial and the numbers in the body of 

the table are associative strengths for each element after the trial. 
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 Stimulus components  
REM 
element string 

A B C AB AC BC ABC REM 
element weight (ω) 

Ai 1 0 0 1 1 0 1 (1-R)^2 
AB 0 0 0 1 0 0 1 R*(1-R) 
Ab 1 0 0 0 1 0 0 R*(1-R) 
AC 0 0 0 0 1 0 1 R*(1-R) 
Ac 1 0 0 1 0 0 0 R*(1-R) 
ABC 0 0 0 0 0 0 1 R^2 
ABc 0 0 0 1 0 0 0 R^2 
ACb 0 0 0 0 1 0 0 R^2 
Abc 1 0 0 0 0 0 0 R^2 
Bi 0 1 0 1 0 1 1 (1-R)^2 
BA 0 0 0 1 0 0 1 R*(1-R) 
Ba 0 1 0 0 0 1 0 R*(1-R) 
BC 0 0 0 0 0 1 1 R*(1-R) 
Bc 0 1 0 1 0 0 0 R*(1-R) 
BAC 0 0 0 0 0 0 1 R^2 
BAc 0 0 0 1 0 0 0 R^2 
BCa 0 0 0 0 0 1 0 R^2 
Bac 0 1 0 0 0 0 0 R^2 
Ci 0 0 1 0 1 1 1 (1-R)^2 
CA 0 0 0 0 1 0 1 R*(1-R) 
Ca 0 0 1 0 0 1 0 R*(1-R) 
CB 0 0 0 0 0 1 1 R*(1-R) 
Cb 0 0 1 0 1 0 0 R*(1-R) 
CAB 0 0 0 0 0 0 1 R^2 
CAb 0 0 0 0 1 0 0 R^2 
CBa 0 0 0 0 0 1 0 R^2 
Cab 0 0 0 0 0 0 0 R^2 
Σ weights 1 1 1 2 2 2 3  
 

Table 4. Illustration of REM element strings required to represent all combinations of 

CSs in a three-component world involving A, B, and C. The weights (ω) required in 

Equation 3 for each element are shown in the right-hand column and the sum of the 

weights for each trial is given in the bottom row.  Note, for the purpose of weight 

determination the length of the REM element string does not include the “i” – Ai, Bi, and 

Ci all have length 1. 
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A B C 

B C A 

C A B 

Table 5. Stimulus present strings after rotations in the function REMElements. The 

shading indicates the tails used in the calls on Combinations used in the function 

GeneratePresentStimuliList, see Appendix 1. 

 
 
A-elements B-elements C-elements REM 

element weight (ω) 
A B C (1-R)^4 
Ad Bd Cd R*(1-R)^3 
Ae Be Ce R*(1-R)^3 
Ade Bde Cde R^2*(1-R)^2 
AB BA CA R*(1-R)^3 
ABd BAd CAd R^2*(1-R)^2 
ABe BAe CAe R^2*(1-R)^2 
ABde BAde CAde R^3*(1-R) 
AC BC CB R*(1-R)^3 
ACe BCd CBd R^2*(1-R)^2 
ACd BCe CBe R^2*(1-R)^2 
ACde BCde CBde R^3*(1-R) 
ABC BAC CAB R^2*(1-R)^2 
ABCe BACd CABd R^3*(1-R) 
ABCd BACd CABe R^3*(1-R) 
ABCde BACde CABde R^4 
 
 
Table 6. REM element strings and weights generated from a call on REMElements(ABC, 
de). 
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 Dimensionality 
REM element 
string length 
(example) 

 
2-D 

 
3-D 

 
4-D 

 
5-D 

 
6-D 

1 (A) 1-R (1-R)^2 (1-R)^3 (1-R)^4 (1-R)^5 
2 (Ba) R R*(1-R) R*(1-R)^2 R*(1-R)^3 R*(1-R)^4 
3 (CAb) - R^2 R^2*(1-R) R^2*(1-R)^2 R^2*(1-R)^3 
4 (DBac) - - R^3 R^3*(1-R) R^3*(1-R)^2 
5 (ABCde) - - - R^4 R^4*(1-R) 
6 (FAbcde) - - - - R^5 
 
Table 7. REM element weights (ω) according to REM element string lengths and 

dimensionality of simulation. 
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Figure captions 

 
Figure 1. Simulations of feature negative discriminations with (AC+, ABC-) and without 
(A+, AB-) common features. The predictions from Pearce’s configural model and from 
the REM with R=0.2 and R=0.8 are shown. The abscissa shows associative strength (V) x 
100. See text for further details. 
 
 
Figure 2. Simulations of simple (A+/B+/AB-) and complex (AB+/CD+/ABCD-) negative 
patterning. The predictions from Pearce’s configural model, and from the REM with 
R=0.2 and R=0.8 are shown. The abscissa shows associative strength (V) x 100. See text 
for further details. 
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Appendix 1 

The function REMElements (StimuliPresent, StimuliAbsent) takes two strings as its 

parameters, StimuliPresent and StimuliAbsent, and returns a list of strings. Each string on 

the returned list represents one of the REM elements that are present, given the 

parameters, and the returned list is a complete enumeration of those elements required by 

the REM to represent the CSs present on that trial. The StimuliPresent string is an 

enumeration of the CSs actually present, the StimuliAbsent string enumerates those CSs 

that are absent. For example in simulation involving four CS components (A-D), a trial 

with A alone would require a call REMElements(A,bcd) whereas a trial of ACD would 

need the call REMElements (ACD, b). In a simulation involving five CS components (A-

E) the same trials would be called with REMElements (A,bcde) and REMElements 

(ACD,be). 

REMElements makes use of three lists. AList is generated from the StimuliAbsent 

string whereas PList is generated from the StimuliPresent string. RList is the list that the 

function returns, it is generated by merging AList and PList. In pseudocode the principle 

algorithm of REMElements is: 

 

AList:=GenerateAbsentStimuliList(StimuliAbsent); 

PList:=GeneratePresentStimuliList(StimuliPresent); 

RList:=Merge(AList,PList); 

 

GenerateAbsentStimuliList operates by generating substrings, of length 1..n, each of 

which is a unique combination of characters from the string StimuliAbsent, where n is the 

length of StimuliAbsent. In pseudocode: 

 

 i:=0; 

 while (i< length(StimuliAbsent)) 

  ReturnList:=ReturnList+Combinations(i+1, StimuliAbsent); 

  i:=i+1; 

 end while; 
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The call Combinations(i+1, StimuliAbsent) returns a list of all combinations of characters 

in StimuliAbsent with length i+1. As examples, the call Combinations(1, abc) would 

return a list containing elements a,b, and c; Combinations(2, abc) would return elements 

ab, ac, and bc; whereas Combinations(3, abc) would return a list with a single element 

abc. As a result the call GenerateAbsentStimuliList(abc) would produce the ReturnList 

consisting of elements a, b, c, ab, ac, bc, abc. The call GenerateAbsentStimuliList(de) 

would produce the ReturnList consisting of elements d, e, de.

 GeneratePresentStimuliList operates on similar principles but produces calls on 

the Combinations function with substrings of StimuliPresent. Substrings of 

StimuliPresent are generated by rotating the characters of StimuliPresent and, after each 

rotation, calling Combinations on the tail of StimuliPresent. Table 5 shows the first two 

rotations of StimuliPresent that would occur in a call of 

GeneratePresentStimuliList(ABC). The number of rotations in each call of 

GeneratePresentStimuliList is equal to the length of the StimuliPresent string and the last 

rotation returns StimuliPresent to its original state. The pseudocode runs: 

 

i:=0; 

j:=0; 

 while (i< length(StimuliPresent)) 

  ReturnList:=ReturnList+Head(StimuliPresent); 

while(j<length(StimuliPresent)-1) 

TempList:=Combinations(j+1, Tail(StimuliPresent)); 

ReturnList:=ReturnList+Prepend(TempList,Head(StimuliPresent)); 

 j:=j+1; 

end while; 

Rotate(StimuliPresent); 

  i:=i+1; 

 end while; 

 

Within this routine the function Head returns the first character of its string parameter and 

the function Tail returns all characters of its parameter except the first. Rotate moves all 
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characters of its parameter to the left and the “overflow” character is appended to the end, 

as indicated in Table 5. Prepend is a function that takes a list of strings as a target and for 

every string in that list it prepends a character before returning the list with the prepends. 

The result of the call GeneratePresentStimuliList(ABC) returns a list consisting of the 

elements A, AB,AC, ABC; B, BC, BA, BCA; C, CA, CB, CAB. The elements listed after 

semi-colons occur after rotations of StimuliPresent. 

 The final function of REMElements is Merge(AList,PList). It works by creating a 

list of strings that contains each element of PList plus each element of PList combined 

with each element of AList as follows: 

 

 i:=0; 

 j:=0; 

 while (i<length(PList)) 

  ReturnList:=ReturnList+PList[i]; 

  while (j<length(AList)) 

   ReturnList:=ReturnList+(PList[i]+AList[j])); 

j:=j+1; 

end while; 

i:=i+1; 

 end while; 

 

Using the examples above, if PList consisted of elements A, AB,AC, ABC; B, BC, BA, 

BCA; C, CA, CB, CAB and AList consisted of elements d, e, de, as they would after 

GenerateAbsentStimuliList(de) and GeneratePresentStimuliList(ABC) then Merge(AList, 

PList) would result in the list shown in Table 6. Thus, in a simulation of a five-

component world (A-E) presentation of an ABC compound would result in activation of 

16 A-elements, 16 B-elements, and 16 C-elements. This can be compared to simulation 

of the three component world where ABC would activate 4 A, 4 B,  and 4 C-elements. It 

should be noted, however, that the REM element weights that would be applied to each 

element ensure that the summed weights for an ABC stimulus always amount to 3, 

regardless of the “dimensionality” selected for the simulation (see text). 
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Appendix 2 

Figure 1 data Figure 2 data 
R=0.2 R=0.8 R=0.2 R=0.8 

A+ AB- AC+ ABC- A+/B+ AB- AB+/CD+ ABCD- 
22.3 
37.6 
48.5 
56.6 
64.1 
67.7 
72.4 
75.1 
78.1 
80.2 
82.8 
84.3 
85.9 
87.0 
88.1 
89.2 
90.5 
91.7 
92.2 
92.7 

16.2 
26.4 
29.6 
30.0 
31.6 
30.9 
31.0 
30.4 
28.1 
25.9 
23.3 
21.4 
19.9 
18.2 
16.8 
14.6 
12.5 
11.1 
10.3 
9.6 

37.5 
59.8 
76.2 
84.6 
88.3 
92.3 
94.6 
96.5 
97.6 
98.4 
98.8 
99.2 
99.5 
99.7 
99.8 
99.8 
99.9 
99.9 
99.9 
100.0 

5.9 
8.6 
8.2 
7.9 
6.7 
5.3 
4.0 
3.2 
2.4 
1.8 
1.4 
1.0 
0.8 
0.6 
0.4 
0.3 
0.2 
0.2 
0.1 
0.1 

12.2 
23.7 
30.7 
36.9 
43.5 
46.3 
50.1 
53.9 
56.5 
58.4 
61.0 
63.3 
65.3 
67.8 
67.4 
69.8 
70.1 
70.8 
70.7 
73.4 

20.7 
36.5 
44.7 
53.7 
56.4 
64.4 
66.3 
69.0 
72.1 
69.0 
64.9 
64.0 
62.4 
61.3 
59.2 
59.2 
56.6 
55.6 
53.5 
53.2 

26.2 
45.5 
59.0 
68.7 
76.3 
82.2 
86.6 
90.1 
92.6 
94.4 
95.8 
96.9 
97.7 
98.3 
98.7 
99.1 
99.3 
99.5 
99.6 
99.7 

1.8 
2.6 
3.0 
3.0 
2.7 
2.4 
2.1 
1.7 
1.5 
1.2 
1.0 
0.8 
0.6 
0.5 
0.4 
0.3 
0.2 
0.2 
0.2 
0.1 

 
Table 8. Sample simulation data from Figures 1 and 2. 
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