
 

1 

 

Final submitted manuscript: published in Construction and Building Materials 304 (2021) 124588  

Improved indirect measurement of the dynamic stiffness of a rail fastener and its 

dependence on load and frequency  

Qi Li1, Baorui Dai1, Zhihui Zhu2,3*, David J. Thompson4 

1 Department of Bridge Engineering, Tongji University, Shanghai 200092, China 
2 School of Civil Engineering, Central South University, Changsha 410005, China 

3 National Engineering Laboratory for High-Speed Railway Construction, Changsha 410005, China 
4 Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ, United Kingdom 

Abstract 

The dynamic stiffness of rail fasteners has a significant effect on the noise radiated by the 

rails as well as the vibration transmitted to the underlying structures, such as bridges, tunnels 

or track at grade. This study investigates the load- and frequency-dependence of a WJ-2A 

fastener which is commonly used in urban rail transit systems in China. This is a two-stage 

fastener with a rail pad and a baseplate pad separated by a steel plate. Results are obtained using 

the indirect measurement method in the frequency range 30 to 1000 Hz. The dynamic stiffness 

of the individual components is investigated as well as that of the whole fastener system and 

the combined stiffness of the components is verified by comparison with the whole fastener 

system. A numerical model of the test rig is used to provide understanding of various artefacts 

that are observed in the measurements and corrections are proposed to minimise their effects 

on the measured results. These allow for the differences between the response at the 

measurement positions and at the ideal positions at the interfaces between the fastener system 

and the rig. The stiffness magnitude of the rail pad, baseplate pad, and whole fastener system 

increases strongly with increasing static preload and increases weakly with increasing 

frequency; it is important to take these effects into account in prediction models for noise and 

vibration. The damping loss factors are not strongly dependent on preload or frequency. To 

describe the frequency-dependence, a fractional derivative Kelvin-Voigt (FDKV) model is 

introduced and is fitted to the dynamic stiffness with the help of a genetic algorithm method. 
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The dynamic stiffness of the whole fastener system is influenced by both the rail pad and the 

lower baseplate pad. It is important to take account of both of them, as well as the internal 

resonance of the baseplate assembly which appears at around 1 kHz. 
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dynamic stiffness 

1 Introduction 

As vital components of the track structure, the rail fasteners connect the rails to the sleepers 

or track slab, or directly to bridges, and play the role of transferring loads to the supporting 

structure while also providing appropriate resilience. To reduce the vibration and noise 

transmission, rubber components known as rail pads are introduced within the fastener systems. 

Due to the viscoelasticity and nonlinearity of the rubber materials [1], and sometimes their 

geometrical nonlinearity (e.g. ribbed or studded rail pads) [2], the dynamic properties of the rail 

pads contain noticeable dependence on load and frequency.  

Numerous studies have been carried out to investigate the influence of the dynamic 

properties of the rail pads on the vibration and noise of railway track and the coupled vehicle-

track system. Sol-Sanchez et al. [3] reviewed the problems and test method associated with 

elastic elements (e.g. rail pads, under-sleeper pads, and under-ballast mats) in the railway track. 

Knothe and Grassie [4] reviewed models of railway track and vehicle/track interaction at 

frequencies above 20 Hz and pointed out the importance of the rail pad for the dynamic 

behaviour. Carrascal et al. [5] compared the stiffness, fatigue aging and other properties of a 

metal cushion pad with plastic pads, showing the dynamic stiffness of various pads was 

dependent on the excitation frequency in the direct measurement. Vincent et al. [6] conducted 

a parametric study on the effect of rail pad stiffness on the noise radiated by railway track and 

showed that stiffening the rail pad reduced the noise radiation from the rail whereas it increased 
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that from the sleeper. Oregui et al. [7] analysed the effect of the dynamic behaviour of the rail 

pad on the vibration response of tracks with monoblock concrete sleepers. The results showed 

that, to reproduce the measured characteristics of the tracks in a specific frequency range, the 

frequency-dependent stiffness of the rail pad should be considered. Zhu et al. [8] developed an 

improved vehicle-track dynamic model by introducing the frequency- and amplitude-dependent 

properties of rail pads. The dynamic responses obtained from their model were shown to be 

related to the dynamic properties of the rail pads, in both frequency and time domain. By 

studying models of high-speed vehicles and track, Wei et al. [9, 10] found that the dynamic 

properties of the rail pads have a significant influence on the vibration of the rails, car bodies, 

bogies, etc. in the medium- and high-frequency ranges.  

Considering the temperature-dependent properties of the rail pads, Squicciarini et al. [11] 

conducted a field test to measure the noise from passing trains at various temperatures from 0 

to 35°C. The measured results showed that the noise increased with the increase of temperature. 

This was consistent with the measured rail pad stiffness and track decay rates which reduce at 

higher temperatures. In terms of the load dependence effects of rail pads, Thompson et al. [12] 

assessed, through simulations, the noise radiated from a track containing typical soft pads. 

Neglecting the load dependence of the rail pads was found to overpredict the track noise, which 

indicated that the increase in noise with softer pads was less severe than previously suggested. 

It is clear that it is important to take proper account of the dynamic behaviour of the rail pads 

in the analysis of vibration and noise to achieve suitable calculation accuracy [11, 13].  

Over the last 30 years, a variety of experiments have been performed to determine the 

dynamic properties of the rail pads. A set of standards related to laboratory measurement 

methods has been produced to guide the testing of resilient elements [14-16]. The test methods 

can be divided into two main types, known as the direct method and the indirect method. In the 

direct method the transmitted force is measured directly, while in the indirect method the force 
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is derived from the dynamic response of a suspended mass [17]. Several publications have 

addressed the application of the direct method in the measurement of the frequency-dependent 

properties of resilient elements [5, 18, 19]. However, the direct method is limited to relatively 

low frequencies and a single measurement direction [20]. Conversely, the indirect method is 

more suitable for higher frequencies and can be used for multiple directions. Thompson et al. 

[2, 20] and Fenander [21] used the indirect method to measure the dynamic properties of rail 

pads under different preloads. The test rig and the test element were modelled as a multi-body 

system with two degrees of freedom, excited by a dynamic exciter. In addition, an instrumented 

hammer can also be considered as an alternative method of excitation. Van’t Zand [22] and De 

Man [23] developed a resonant apparatus called a rail pad tester and excited it with an impact 

hammer to assess the stiffness and damping of rail pads. Remennikov and Kaewunruen [17, 24] 

developed a methodology based on the impact hammer technique to determine the dynamic 

properties of rail pads, and demonstrated the effect of preload on these properties. Kaewunruen 

and Remennikov [25, 26] also developed a method to measure the dynamic properties of the 

track in the field using impact excitation for the evaluation of the track state. Due to the ability 

to control the temperature and preload simultaneously, universal testing machines are often used 

to measure the temperature dependence of whole rail pads or pad specimens. Wei et al. [27, 28] 

conducted an experimental study on the temperature-dependent properties of whole rail pads 

using a universal testing machine, and used the Williams-Landel-Ferry formula [29] relating 

temperature- and frequency-dependence to predict the frequency-dependent properties of the 

pads. Liu et al. [30] tested cylindrical specimens from a rail pad, with diameter 15 mm and 

height 10 mm, to extract the temperature-dependent Young’s modulus; temperature sweep tests 

were performed with the help of a dynamic mechanical testing machine. The temperature-

dependent stiffness of the rail pad was obtained and then considered in a vehicle-track-viaduct 

vertical coupled model. These various experimental studies have proposed effective methods 
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and designed practical test rigs, using both direct and indirect methods, which can be adopted 

to measure the dynamic properties of rail pads. 

To take the dynamic properties of rail pads into account in the theoretical analysis of 

structural vibration or noise, suitable mathematical models for the stiffness and damping should 

be established. In general, temperature- and load-dependent properties can be based on simple 

curve-fitting whereas the frequency-dependent properties are described by more complex 

models, especially if the viscoelastic characteristics are to be introduced into time domain 

analysis. The traditional models combining springs and dashpots, the Kelvin-Voigt and 

Maxwell models, have been widely used in characterizing viscoelastic materials [31-33]. 

However, the ordinary Kelvin-Voigt and Maxwell models are limited in their ability to describe 

the frequency-dependence of the dynamic stiffness of rail pads [8, 32]. Although extending such 

models with additional springs and dashpot elements can achieve a better approximation of the 

frequency dependence, the complexity of the model fitting increases considerably.  

An alternative method to express the frequency-dependence of the dynamic characteristics 

of rail pads is to use the constitutive relations that introduce fractional order derivatives. In 

general, fractional order derivatives can be considered as an interpolation between the elastic 

and viscous behaviour of rubber components [34]. Compared with the traditional models, 

fractional derivative models require fewer parameters to accurately characterize the complex 

behaviour of viscoelastic materials [35, 36]. Caputo is one of the pioneers who introduced 

fractional derivative operators to describe viscoelasticity and presented a proper mathematical 

definition [37]. Since then, the efficiency of the fractional derivative models in describing the 

behaviour of rubber pads has been extensively demonstrated [21, 27, 38, 39].  

Generally, fastener systems used on slab tracks, bridges and in tunnels contain not only 

rubber materials but also a steel baseplate. Due to the influence of inherent resonances of the 

steel plate, the dynamic behaviour of the whole fastener is different from that of the rubber 
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materials alone.  

This study aims to investigate experimentally the dynamic properties of a whole fastener 

assembly, as well as the individual fastener components. A test rig is designed for measuring 

the load- and frequency-dependent properties of the test elements under hydraulic preloads and 

dynamic excitation, based on the indirect method [20]. An enhancement of the experimental 

method is proposed on the basis of theoretical analysis and numerical simulation. The 

frequency-dependent stiffness values and damping loss factors of the whole fastener assembly 

and fastener components are obtained and then represented by linear functions in double 

logarithmic coordinates. A comparison is also presented of the results for the whole fastener 

assembly and the combination of the results for the components. The stiffness values and 

damping loss factors are then fitted by a fractional derivative Kelvin-Voigt (FDKV) model 

through parameter identification using a genetic algorithm method [40] in the frequency domain. 

It is expected that the dynamic properties of the whole fastener and the fastener components 

obtained in this experimental study will contribute to improving the calculation accuracy of 

models for the vibration and noise of track systems in both the frequency and time domain. 

2 Experimental method 

2.1 Experimental preparation 

A full-size WJ-2A rail fastener, a type used widely in urban rail transit in China, was 

prepared for the dynamic performance test. As a shoulderless structure, the WJ-2A fastener 

system is composed of a rail pad, a steel plate and a second rubber pad beneath it, as shown in 

Figure 1a. The steel plate has a mass of 10.05 kg. The rail pad is a ribbed thick plate (see Fig. 

1b) and the lower baseplate pad is flat thin plate (see Fig. 1c). They are made of viscoelastic 

materials, thermoplastic polyester elastomer (TPEE) and thermoplastic vulcanizate (TPV) 

respectively. The static stiffness of the rail pad as specified by the manufacturer is about 40 

MN/m, obtained from the average relative compression of the pad subjected to a vertical load 
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of 10 kN and 50 kN. The dynamic stiffness of the pad should not be larger than 1.25 times the 

static stiffness, which is obtained by the manufacturer from a harmonic load between 10 kN 

and 50 kN and at a frequency of 4 Hz. The static and dynamic stiffness obtained by the above 

methods can be used to evaluate the manufacturing quality of rail pads. However, they are not 

suitable to be adopted in the noise prediction of the rail and bridge up to 1000 Hz because the 

pad stiffness is generally larger at these high frequencies and the corresponding small strain 

amplitudes [2]. The indirect measurement method is thus utilized in this study to obtain the 

frequency dependent dynamic stiffness of the fastener. Although new pads were tested in this 

study, deteriorated pads can be also tested by this method to evaluation of their performance 

after years of service.  

In this test, the dynamic stiffness is measured of the whole fastener unit, the rail pad, and 

the baseplate pad (in combination with the steel plate). The behaviour is represented by a 

frequency-dependent complex dynamic stiffness 𝐾(𝑓) = 𝐾𝑟(𝑓)(1 + i𝜂(𝑓)) where 𝐾𝑟 is the 

real part of the complex stiffness, f is frequency, 𝜂 is the loss factor and i is the imaginary unit. 

If the lower face of the sample is constrained and a displacement of amplitude 𝑋(𝑓) is applied 

to the upper face, the force transmitted to the blocked termination is given by 𝐾12(𝑓)𝑋(𝑓) and 

the reaction force at the upper face is 𝐾11(𝑓)𝑋(𝑓)  where 𝐾11  is the drive point dynamic 

stiffness and 𝐾12  is the transfer stiffness. At low frequency they are identical. The 

measurement method is intended to obtain the transfer stiffness. 

 
(a) components of the fastener 
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(b) rail pad                            (c) baseplate pad 

Figure 1. Structure of WJ-2A rail fastener and the associated pads 

In the test rig (Figure 2), a large steel block of dimensions 35 cm × 74 cm × 104 cm (height 

× width × length) and mass 2128 kg is supported by resilient mounts on a strong floor. The test 

element is mounted on the top surface of this block and a short length of rail is attached above 

the test element, allowing rail clips to be installed as required. The top of the rail head was 

machined flat and a loading plate was attached to it. Above this, resilient mounts support a 

further steel loading plate, above which is the hydraulic loading system. This is used to 

introduce a static preload whereas dynamic excitation is introduced by an inertial exciter of 

mass 5 kg attached above the rail. A pair of accelerometers (numbered A1 and A2) are attached 

on either side of the rail head and used to measure its vertical vibration; using their average 

signal eliminates any effect of rotation. Another pair of accelerometers (A3 and A4) are fixed 

on the upper surface of the block on either side of the test element and their signals are averaged 

to obtain the vertical vibration of the block. Compared with the similar test rig used in [2, 20, 

21], the main difference is the inclusion of a section of rail for the attachment of the rail clips 

and fasteners; this together with a loading plate forms the upper ‘mass’. 
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(a)                                          (b) 

 

(c) 

 Figure 2. Test rig for measuring the dynamic properties of rail fasteners: (a) schematic diagram; (b) 

photograph; (c) measuring points position, top view (unit: cm) 

Considering the typical wheel load, the maximum static load for a single fastener is about 

40 kN. Additionally, the rail clips introduce a nominal preload of 20 kN on the rail pads. 

Therefore, preload values from 20 to 50 kN were used, with intervals of 5 kN, with additional 

results obtained for preloads up to 80 kN in some cases. The test is carried out using a pseudo-

random force time-history and the results were then transformed into the frequency domain by 

using Fourier transforms. This allows all frequencies of interest to be measured simultaneously. 

The force signal was generated by the analyser and covered the frequency range up to 2500 Hz. 

During the test, the temperature in the laboratory was kept around 20 ℃ to avoid temperature 

variations.  
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2.2 Experimental principle 

The experimental rig is designed to measure the dynamic properties of test elements, i.e. 

the dynamic stiffness and damping loss factor, under the combination of a static preload and 

dynamic excitation. If it is assumed that the rail section and the large lower block have no elastic 

deformations, and for harmonic motion at circular frequency 𝜔 , the dynamic equilibrium 

equation of the block can be written as follows:  

𝐾(𝑥1 − 𝑥2) = 𝐾2𝑥2 − 𝑚𝑏𝜔2𝑥2                     (1) 

where 𝐾  is the complex dynamic stiffness of the test element, 𝐾2  is the total dynamic 

stiffness of the elastic supports beneath the lower block, 𝑚𝑏 is the mass of the lower block, 

and 𝑥1 and 𝑥2 are respectively the vertical displacement amplitudes of the rail section and 

the lower block.  

By rearranging this and substituting displacements with accelerations, the dynamic 

stiffness of the test element can be expressed as: 

𝐾 = (𝐾2 − 𝑚𝑏𝜔2)
𝑥2

𝑥1−𝑥2
= (𝐾2 − 𝑚𝑏𝜔2)

𝑎2

𝑎1−𝑎2
                       (2) 

where 𝑎1 and 𝑎2 are respectively the vertical acceleration amplitudes of the rail section and 

the lower block. In the above equation, 𝐾 can be determined from the measured accelerations 

of the rail and the block if 𝑚𝑏 and 𝐾2 (stiffness of the resilient mounts) are known. However, 

previous studies [2, 41, 42] often used formulae that ignore 𝐾2 to represent 𝐾 as: 

𝐾 ≈ −𝑚𝑏𝜔2 𝑎2

𝑎1−𝑎2
                         (3) 

At high frequencies, the result obtained by Eq. (3) is in good agreement with that obtained 

by Eq. (2) because 𝐾2 is significantly smaller than 𝑚𝑏𝜔2, while at low frequencies there is a 

large difference between them because 𝐾2 and 𝑚𝑏𝜔2 have similar magnitudes around the 

natural frequency of the block sitting on the mounts. Thus, it is preferable to obtain the value 

of 𝐾2 . This has been achieved by means of a simple hammer test on the lower block 
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disconnected from the fastener and loading system. The block and its elastic supports can be 

simplified as a single-degree-of-freedom mass-spring system; then the stiffness of the mounts 

can be expressed as: 

𝐾2 = 𝑚𝑏(2π𝑓0)2(1 + i𝜂)                         (4) 

where 𝑓0  is the fundamental resonance frequency of the mass-spring system and 𝜂  is its 

damping loss factor.  

After impacting the centre of the upper surface of the block with a hammer, when the 

fastener and upper part of the test rig had been removed, its acceleration was obtained through 

the accelerometers A3 and A4. The acceleration amplitude in the time domain showed an 

exponential decay, from which the loss factor 𝜂  can be calculated by the logarithmic 

decrement method [43]. Its value is found to be 0.10. 

  

Figure 3. Spectra of the measured acceleration subjected to hammer impact for A3 and A4 

The acceleration spectra of the lower block obtained from the two accelerometers are 

shown in Figure 3. From this the fundamental resonance frequency of the system is identified 

as about 14 Hz. It is worth noting that the stiffness of the resilient mounts below the lower block 

is slightly load-dependent. However, this property was shown to have only a small effect on the 

dynamic test results of the fasteners and was therefore neglected in the following analysis. 

3 Numerical simulation of the test rig 

3.1 Finite element model 
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Before presenting results from the measurements, in order to verify the correctness of the 

test results using the aforementioned test rig and data analysis method, a finite element model 

was established using solid elements (Solid95) in the commercial software ANSYS to represent 

the test rig. The elastic modulus of the rubber and steel material were assigned as 4.15 MPa and 

2.1×105 MPa respectively, and their damping loss factors were set to be 0.06 and 0.02 

respectively. The dimensions of all the components in the finite element model are consistent 

with the actual dimensions in the test. The density of the steel material and the resilient mount 

were set as 7900 kg/m3 and 1000 kg/m3 respectively. The mass of the rubber pads was ignored 

in the modelling so the stiffness of the rubber pads is assumed to be frequency-independent. 

Figure 4(a) shows the finite element model corresponding to the experiment for the whole WJ-

2A fastener. This simulation was also carried out for the separate fastener components. From 

top to bottom, the finite element model consists of loading plate, rail section, test element, lower 

block and resilient mount, which are respectively connected by common nodes at the interfaces. 

The additional mass of the test equipment (excluding the exciter) above the steel plate was 

considered by introducing point mass elements. The elastic supports below the lower block 

were modelled as four supporting columns. For the supporting columns, all degrees of freedom 

of the bottom nodes and the horizontal degrees of freedom of the residual nodes were 

constrained. The degrees of freedom of other nodes in the finite element model were kept 

unconstrained. To make the finite element model consistent with the test rig, the stiffness of the 

supporting columns was chosen to give the correct resonance frequency of the lower block on 

the mounts. 

Direct harmonic analysis was performed with a concentrated force applied vertically at the 

centre node at the top of the rail section (corresponding to the location of the exciter). The 

responses of the finite element nodes corresponding to the measurement points (A1-A4) were 

obtained at frequencies from 5 Hz to 2000 Hz, with an increment of 5 Hz.  
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(a)                                 (b) 

 

(c) 

 Figure 4. Finite element model and typical dynamic deformations of the test rig at different 

excitation frequencies: (a) finite element model; (b) deformation of the rail, 910 Hz; (c) deformation 

of the lower block, 1470 Hz 

Figures 4(b) and 4(c) give typical dynamic deformations of the rail section and lower block. 

From this, it is clear that both the rail section and the lower block show local deformations in 

the high frequency region and therefore they cannot be simply regarded as rigid bodies. The 

accelerometers used in the test capture the vibration of the measurement points, but do not 

necessarily reflect the displacements input to the test elements or the transmitted forces. 

Therefore, it is useful to derive the relationship between the vibration responses of the 

measurement points and the responses of the test elements, in order to lay the foundation for 

determining the stiffness of the fastener system more accurately. The finite element model is 

used to simulate the dynamic stiffness measurement of the fastener system and to derive a 

revised method considering the local vibration of the rail and lower block in the high frequency 

range. 

3.2 Stiffness estimation based on simulated acceleration of the lower block 

An idealised measurement method would be based on the vibration of the upper and lower 
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surfaces of the fastener system. This can be simulated with the FE model but cannot be 

measured in practice. Taking into account the local vibration of the bodies, the equilibrium 

equation of the lower block can be established as: 

𝐾(𝑥𝑓1 − 𝑥𝑓2) = 𝑎𝑏/𝐴𝑏                          (5) 

 

where 𝐾  is the dynamic stiffness of the fastener; 𝑥𝑓1  and  𝑥𝑓2  are the overall (averaged) 

displacement amplitudes of the upper surface and lower surface of the fastener system, 

respectively; 𝑎𝑏 is the average acceleration of the two nodes in the finite element model with 

the same positions as the measurement points on the surface of the block, and 𝐴𝑏 is the average 

transfer accelerance from the lower surface of the fastener system to the positions A3 and A4. 

To determine 𝑥𝑓1 and  𝑥𝑓2 weighting factors are introduced according to the surface area 

associated with each node in the finite element mesh, and then a weighted average of the 

displacements of all nodes in the corresponding interfaces is taken to represent their overall 

displacements. The dynamic stiffness of the fastener at circular frequency 𝜔 can be expressed 

as: 

𝐾 =
𝑎𝑏𝜔2

𝐴𝑏(𝑎𝑓2−𝑎𝑓1)
                             (6) 

where 𝑎𝑓1 and 𝑎𝑓2 are the averaged vertical acceleration amplitudes of the upper and lower 

surfaces of the fastener system. This idealised method should represent the dynamic stiffness 

correctly but cannot be used for practical measurements. Nevertheless, it will be used as the 

basis for correction factors derived below. 

3.3 Simulation of test results 

To simulate the test process described in Section 2, the responses of the four nodes in the 

finite element model corresponding to positions A1-A4 are used to represent the measured 

responses. Figure 5 shows the dynamic stiffness (magnitude) curves obtained by simulating the 

test method in Section 2, with and without including the support stiffness 𝐾2 (i.e. using Eq. (2) 
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or (3)), and the idealised method proposed in the previous section based on the vibration 

response at the interfaces of the resilient elements and the test rig. Simulated results are shown 

for a ‘measurement’ of the rail pad, the baseplate pad (including the steel plate) and the whole 

fastener assembly. 

    

(a) rail pad                      (b) baseplate pad 

 

(c) whole fastener 

Figure 5. Simulated stiffness magnitude plotted against frequency derived from three methods 

In each case the curve derived from Eq. (3), ignoring the stiffness of the resilient mounts 

𝐾2, has a significant peak at low frequency which is eliminated by including 𝐾2 (i.e. using Eq. 

(2)). However, at high frequencies the dynamic stiffness obtained from both of these simple 

methods is quite different from the idealised method. For the rail pad (Figure 5(a)), the dynamic 

stiffness obtained using the idealised method is basically a constant value which is equal to the 

stiffness introduced into the finite element model of the rail pad (which has no mass), indicating 

that the peaks and dips in the stiffness curves obtained from the simple methods (seen in Section 
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4 below) are the result of the test rig dynamics. For the baseplate pad and whole fastener (Figure 

5(b) and 5(c)), the results derived from the idealised method gradually increase and then 

fluctuate above 600 Hz and 400 Hz respectively, which is due to the internal resonances of the 

test elements. 

3.4 Modification of test results 

In view of these discrepancies between the different estimates, the test results should be 

obtained from a modified version of Eq. (2) by establishing the relationships between the 

response at the two sides of the resilient element and the responses at the corresponding 

accelerometer positions. For this, two modification factors are derived using the FE model. The 

first, 𝐻1, represents the transmissibility from the response of A1/A2 (the two accelerometers 

on the side of the rail head) to the vibration of the contact surface between the bottom of the 

rail and the fastener. This is obtained from the FE model and defined as 

𝐻1 = 𝑎𝑓1/𝑎𝑢                           (7) 

where 𝑎𝑢 is the averaged vertical acceleration of the two nodes in the finite element model 

with the same positions as the measurement points on the side of the rail head. 

The second modification factor 𝐻2  represents the transmissibility from the average 

response of A3/A4 (the two accelerometers arranged on the lower block) and the vibration of 

the contact surface between the lower block and the fastener, which is similarly defined as 

𝐻2 = 𝑎𝑓2/𝑎𝑏                           (8) 

Both factors are determined for loading at the rail head but they are independent of the 

resilient element under test. By substituting the two modification factors into Eq. (6), the 

modified dynamic stiffness estimate 𝐾𝑚 of the fastener can be obtained as: 

𝐾𝑚 =
𝑎𝑏𝜔2

𝐴𝑏(𝐻2𝑎𝑏−𝐻1𝑎𝑢)
                         (9) 

where, by comparison with Eq. (2) the mass 𝑚𝑏 has also been replaced by the inverse of 𝐴𝑏, 

which is the average transfer accelerance from the lower surface of the fastener system to the 
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positions A3 and A4 in the frequency domain. 

The modification factors including the transfer accelerance 𝐴𝑏  (shown normalised by 

multiplying by the block mass 𝑚𝑏) obtained from the finite element model are shown in Figure 

6(a). It can be seen that 𝐻1, 𝐻2 and 𝐴𝑏𝑚𝑏 depend on frequency. In the low frequency range, 

the two modification factors 𝐻1 and 𝐻2 are approximately equal to 1, whereas in the high 

frequency range, they fluctuate sharply. The peak in 𝐻1 at around 900 Hz is due to a bending 

mode of the rail shown in Figure 4(b), and the dip in 𝐻2 at around 700 Hz is an anti-resonance 

of the block which occurs between the rigid mode at low frequency and the first flexible mode 

at 1.47 kHz shown in Figure 4(c). 𝐻2 fluctuates more than 𝐻1, but it only has a small effect 

on the estimate of dynamic stiffness as 𝑎𝑏 is much smaller than 𝑎𝑢 at high frequencies. The 

peak in 𝐴𝑏𝑚𝑏 at around 15 Hz is due to the resonance of the block-support system, as seen in 

Figure 3. 

To evaluate the sensitivity of the results to the accelerometer positions used on the lower 

block, two additional layouts of the accelerometers were simulated in the finite element model, 

as shown in Figure 6(b). Loc0 represents the original accelerometer layout used in the 

experiments. It can be seen that the results for 𝐴𝑏𝑚𝑏 corresponding to original accelerometer 

layout are close to 1 for a wider frequency range than the other two layouts, which justifies the 

choice of accelerometer positions A3/A4. These positions Loc0 were chosen in the experiment 

to be as close as possible to the nodal positions of both the first vertical bending mode of the 

block and the twisting mode. 
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(a)                                      (b) 

Figure 6. Modification factor magnitudes and the transfer accelerance magnitude 𝑨𝒃 (normalised 

by the block mass 𝒎𝒃): (a) 𝑯𝟏, 𝑯𝟐 and 𝑨𝒃𝒎𝒃; (b) 𝑨𝒃𝒎𝒃 corresponding to three different 

accelerometer layouts (shown in plan view) 

4 Measured dynamic properties of the fastener 

4.1 Rail pad 

The dynamic stiffness (magnitude) of the rail pad derived from the measurements using 

the simplified formula (Eq. (3)) and the modified formula (Eq. (9), i.e. including the corrections 

obtained from the FE model) is shown in Figure 7 (a). For frequencies below 50 Hz, the 

modified curve fluctuates less sharply than the unmodified one, although some fluctuations 

remain. The two curves agree well with each other in the middle of the frequency range. 

However, between 400 Hz and 900 Hz, the unmodified curve tends to rise with increasing 

frequency, whereas the modified curve is relatively flat. It can be noticed that the stiffness curve 

obtained from the modified formula is flatter over a wider frequency range (50 Hz-900 Hz) than 

the unmodified one (50 Hz-400 Hz), as also found in the simulations (Figure 5(a)). With regard 

to the phase of the rail pad stiffness (Figure 7 (b)), the effect of the modification is less 

significant. The phase is relatively flat in the range 80–700 Hz but has large fluctuations outside 

this range. 
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(a)                                       (b)  

Figure 7.  Dynamic stiffness obtained from modified and simplified formulae under preload of 30 

kN: (a) magnitude-frequency curves; (b) phase-frequency curves 

To investigate the cause of the fluctuations of the stiffness curves below 50 Hz and above 

900 Hz, the accelerations at A3 and A4 caused by the dynamic excitation are compared with 

the background vibration in Figure 8. It is clear that the accelerations at A3 and A4 in the 

dynamic test are not contaminated by background noise except for frequencies below 10 Hz. 

Therefore, the remaining fluctuations appear to result from the properties of the test rig, or 

differences between the correction factors derived from the finite element model and those that 

apply in reality.  

 

Figure 8. Accelerations at A3 and A4 caused by dynamic excitation and background vibration 

Figure 9(a) shows the stiffness magnitude curves obtained from the modified formula for 

different preloads. The stiffness value of the rail pad gradually increases with the increase of 

the preload. On the double logarithmic scale, the stiffness shows a linear increasing trend with 

frequency within the frequency range 50–900 Hz. 
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(a)                                      (b) 

 Figure 9. Stiffness magnitude and phase of the rail pad under various preloads: (a) stiffness 

magnitude; (b) phase 

The corresponding phase under different preloads is shown in Figure 9(b). For frequencies 

below 80 Hz and above 700 Hz, the phase curves again show irregular fluctuations and are 

therefore considered unreliable. Within the frequency range 80–700 Hz, the phase value is 

within the range 0.1–0.15 rad, and the phase is approximately linearly related to log frequency. 

Considering the fact that the loss factor 𝜂 is approximately equal to the phase angle 𝜙 (𝜂 =

tan𝜙 ≈ 𝜙) when the phase angle is small, the loss factor also shows a linear dependence on log 

frequency within this frequency range.  

The relationship between the stiffness magnitude and frequency within the frequency range 

50–900 Hz, as well as the relationship between the loss factor and frequency within the 

frequency range 80–700 Hz, were fitted with linear functions in the (double) logarithmic scale. 

This allows the stiffness and loss factor to be extrapolated to frequencies beyond these 

frequency ranges. For rail transit bridges, frequencies such as 60 Hz, 200 Hz and 600 Hz are 

often prominent in the noise spectrum [44, 45]. Therefore, the stiffness as well as the damping 

loss factor at these frequencies have been extracted from the fitted functions and plotted against 

preload in Figure 10. The stiffness magnitude increases with the increase of preload, whereas 

the damping loss factor is largely independent of preload. The damping loss factor of the pad 

reduces slightly with increasing frequency. 
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(a)                                        (b) 

Figure 10. Fitted stiffness and damping loss factor of the rail pad under various preloads and 

frequencies: (a) stiffness; (b) damping loss factor 

The damping loss factors of viscoelastic materials, such as rubbers, generally increase with 

frequency up to a peak in the transition zone and then fall with further increasing frequency 

[46]. The peak of the loss factor corresponds to the region of frequency at which the magnitude 

of the dynamic stiffness varies most strongly. Similar behaviour is found with respect to 

temperature; reducing temperature and increasing frequency are known to be equivalent. 

However, whereas these changes occur over a rather limited range of temperature (typically 

around 100℃) the same changes occur over typically 6-9 decades of frequency. The variation 

over one decade of frequency, such as shown here, is therefore likely to be small and could have 

either an increasing or decreasing trend. 

Thompson et al. [20] and Fenander [21] showed results for a natural rubber railpad which 

contained a slight increase of damping loss factor with increasing frequency. Maes et al. [18] 

presented results on three rail pad materials that indicated a more strongly increasing loss factor 

with increasing frequency. Diehl et al. [47] showed loss factor results for a railpad which were 

largely independent of frequency. To summarise, the damping loss factors here are found to be 

largely independent of frequency, in some cases with a slight reduction with increasing 

frequency. The literature contains results that increase with frequency or are constant. In 

principle it is also possible for the loss factor to reduce with increasing frequency as found here. 

4.2 Baseplate pad 
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The baseplate pad was measured together with the steel baseplate as it is wider than the rail 

foot used to excite the rail pad. Based on these measurements of the baseplate pad, its dynamic 

properties have been determined using the modified formula, as shown in Figure 11. The linear 

relationships with frequency in the double logarithmic scale are fitted within the frequency 

range 50–600 Hz, because the frequencies above 600 Hz are affected by the internal resonance 

as shown by the simulations in Figure 5(b).  

 

(a)                                        (b) 

Figure 11. Stiffness magnitude and phase of the baseplate pad under various preloads: (a) stiffness 

magnitude; (b) phase 

Figure 12 shows the stiffness magnitude and loss factor of the baseplate pad under the 

corresponding frequencies and preloads. Compared with the rail pad, the baseplate pad has a 

higher stiffness and a lower damping loss factor for the same frequency and preload. The 

stiffness is more strongly dependent on both the preload and the frequency, which seems to 

contradict the fact that the loss factor of the baseplate pad is smaller. However, it seems from 

Figure 5(b) that the results at 600 Hz are already affected by proximity to the internal resonance 

at around 1 kHz and this will affect the curve fitting to some extent. 
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 (a)                                        (b) 

Figure 12. Fitted stiffness and damping loss factor of the baseplate pad under various preloads and 

frequencies: (a) stiffness; (b) damping loss factor 

4.3 Whole fastener 

The measured dynamic properties of the whole fastener were also obtained using the 

modified method and fitted by a linear function in the double logarithmic scale within the 

frequency range 50–400 Hz, avoiding the frequency range of the internal resonance seen in the 

simulations in Figure 5(c). Similar to the properties of the rail pad and baseplate pad, the 

stiffness value increases with the increase of preload as well as frequency. Figure 13 shows the 

fitted dynamic properties of the whole fastener under the specified frequencies and preloads. 

As expected, it can be found from Figures 10, 12, and 13 that, for a given frequency and preload, 

the stiffness of the whole fastener is lower than that of the individual components, while the 

loss factor of the whole fastener mostly lies between the loss factors of the two components. 

    
(a)                                   (b) 

Figure 13. Fitted stiffness and damping loss factor of the whole fastener under various preloads and 

frequencies: (a) stiffness; (b) damping loss factor 
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5 Verification of test results 

As the fastener components and the whole fastener system were tested separately, the test 

results can be verified by comparing the dynamic stiffness of the whole fastener with the 

combined dynamic stiffness of the components. 

5.1 Based on measured dynamic stiffness 

At low frequencies, the structure of the rail pad and baseplate pad can be regarded as two 

springs in series, although the simplification causes some errors at high frequencies due to the 

neglected mass. Based on this, the stiffness of the rail pad, baseplate pad and whole fastener 

should satisfy the relationship: 

1

𝐾𝑤
=

1

𝐾𝑢
+

1

𝐾𝑙
                            (10) 

where 𝐾𝑤 is the stiffness of the whole fastener system, 𝐾𝑢 is the stiffness of the upper rail 

pad, 𝐾𝑙 is the stiffness of the lower baseplate pad.  

Based on the above formula, the dynamic stiffness of the whole fastener was derived by 

using the measured dynamic stiffnesses of the rail pad and baseplate pad. Then, the results were 

compared with the measured dynamic stiffness of the whole fastener. All the stiffness values 

involved in this section were obtained using the modified method based on Eq. (9). The results 

are given in Figure 14 for two values of preload and show good agreement. In the range 50–

800 Hz, the maximum deviation is about 20%, which verifies the correctness of the experiment 

and the modification procedure. The deviation at the higher end of the frequency range results 

from the effect of the missing mass in the simplified spring-spring system. 
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(a)                                    (b) 

   

(c)                                     (d) 

Figure 14.  Comparison of the measured dynamic properties of the whole fastener and that 

calculated from the measured stiffness of the two pads in series: (a) stiffness magnitude at preload 20 

kN; (b) stiffness magnitude at preload 40 kN; (c) phase at preload 20 kN; (d) phase at preload 40 kN 

5.2 Based on fitted stiffness and intermediate mass 

Due to the influence of the inertia characteristic of the steel plate in the high frequency 

region, the above relation cannot fully describe the dynamic characteristics of the baseplate. 

Therefore, the fastener system was represented as a spring-mass-spring system, and the 

combined dynamic stiffness obtained from the components (the springs and mass) was 

compared with the result for the whole system. For the components, the fitted stiffness functions 

were used. The stiffness of the whole fastener system can be expressed as: 

  𝐾𝑤
′ =

𝐾𝑢
′𝐾𝑙

′

𝐾𝑢
′+𝐾𝑙

′−𝑚𝑒𝜔2
                      (11) 

where 𝐾𝑤′  is the total dynamic stiffness of the whole fastener system; 𝐾𝑢′  is the fitted 

dynamic stiffness of the upper rail pad; 𝐾𝑙′ is the fitted dynamic stiffness of the lower baseplate 

pad; 𝑚𝑒 means the effective mass of the intermediate steel plate. The effective mass 𝑚𝑒 is 
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determined from the finite element model of the fastener by constraining the bottom of the 

lower rubber pad and applying a dynamic force distributed over the upper rail pad. The curve 

of 𝑚𝑒 against frequency is shown in Figure 15. The effective mass of the steel plate remains 

roughly constant in the frequency range below 800 Hz, and fluctuates at around 1 kHz due to 

the internal resonance. The figure also shows that the effective mass is less than the actual mass 

over the entire frequency range. This is because the upper rail pad has a significantly smaller 

area than the intermediate steel plate. As a result, not all parts of the steel plate transfer load 

when the upper surface of the rail pad is loaded. This is illustrated in Figure 16 which shows 

the vertical displacement of the steel plate when a unit force is distributed over the surface of 

the rail pad, indicating that the steel plate undergoes quasi-static bending even at low 

frequencies. 

  

Figure 15. Actual mass and effective mass of the steel plate 

   
(a)                                        (b) 

Figure 16. Vertical displacement of the steel plate under unit force: (a) 20 Hz; (b) 200 Hz 

The dynamic stiffness of the whole fastener obtained from the above formula is compared 

with the measured stiffness obtained using the revised method in Figure 17 (a) and (b) for the 
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same two values of preload. The two curves agree well in the range 20–900 Hz, which again 

indicates the effectiveness of the dynamic performance test and stiffness fitting. Above 900 Hz, 

the two curves have a certain deviation, which is mainly caused by the error of test rig. Figure 

17 (c) and (d) show the corresponding phase curves which similarly show good agreement in 

the frequency range 50–700 Hz. 

    

(a)                                       (b) 

    

(c)                                       (d) 

Figure 17. Comparison of the measured dynamic properties of the whole fastener and that calculated 

from fitted dynamic properties of the two pads and the steel plate in series: (a) stiffness magnitude at 

preload 20 kN; (b) stiffness magnitude at preload 40 kN; (c) phase at preload 20 kN; (d) phase at 

preload 40 kN 

5.3 Based on field measured track decay rate  

The track decay rate (TDR) is commonly used to describe the attenuation of rail vibration 

amplitude along the track [48, 49]. It is strongly influenced by the fastener stiffness, especially 

at the frequencies at which the TDR drops sharply. As a result, the field measured TDR can be 

utilized to verify the fastener stiffness measured in this study by using a numerical model of the 
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track. The TDR can be directly measured by hammer impact or indirectly estimated through 

measured rail vibration during the pass-by of trains [50]. The latter method has been applied to 

obtain the track decay rate of an elevated urban rail transit line adopting the WJ-2A fastener. 

Figure 18 compares the field measured TDR (from Ref [51] using the energy iteration method) 

with those calculated from the track-bridge system with different fastener models. Three spans 

of simply-supported girders each with length 30 m were considered although they mainly 

influence the TDR in the low frequency range. The rail is modelled as infinite Timoshenko 

beam model and it is then connected to the girders through discrete fasteners with a spacing of 

0.6 m. The fasteners are represented by the two models as follows: the constant stiffness model 

of 40 MN/m (measured by the supplier using static method) and damping loss factor of 0.05; 

and the two-stage fastener model considering the effective mass for the baseplate and measured 

frequency-dependent complex stiffness of the rail pad and baseplate pad under the preload of 

20 kN. The driving point and transfer mobilities of the rail are then calculated by applying a 

unit force on the rail at the middle span of the centre girder. These are used to determine the 

TDRs based on the standard method [48]. It can be seen from Figure 18 that the calculated 

TDRs with the frequency-dependent stiffness fastener model match the measured values better 

than the constant stiffness model especially around 200 Hz where the TDR drops sharply. Better 

agreement is also seen on average at high frequencies. This indicates the frequency-dependent 

stiffness measured in this study can be used to model the track with higher accuracy. It is noted 

that the measured TDR is subject to some measurement errors in the frequency range of interest, 

especially below 160 Hz where the TDR is high due to relatively large noise in the measured 

rail acceleration. The differences between the measured and calculated results above 1000 Hz 

are also affected by neglecting the sectional deformation of the rail [50].  
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Figure 18. Comparison of field measured track decay rate with those calculated from various 

fastener models 

6 Constitutive model of the fastener 

The linear fitting on a double logarithmic scale conducted in the previous section of the 

dynamic stiffness obtained from the revised method can simulate the measured stiffness reliably 

within a certain frequency range, but the parameters obtained have no clear physical 

significance. In the following, curve fitting and parameter identification will be carried out 

based on the widely used fractional derivative Kelvin-Voigt (FDKV) model. 

6.1 FDKV model 

For viscoelastic materials, their constitutive equation can be represented by the FDKV 

model, which is written as [28, 52]: 

𝜎(𝑡) = 𝜇1𝜀(𝑡) + 𝜈1𝐷𝛾[𝜀(𝑡)]                        (12) 

where 𝜎  is the stress, 𝜀  is the strain, 𝜇1  is the elastic modulus, 𝜈1  is the viscosity 

coefficient, and 𝐷𝛾 means the fractional derivative operator, defined by 

𝐷𝛾𝑥(𝑡) =
1

Γ(1−𝛾)

𝑑

𝑑𝑡
∫

𝑥(𝜏)

(𝑡−𝜏)𝛾 𝑑𝜏
𝑡

0
                       (13) 

where 𝛤 is the Gamma function (𝛤(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
∞

0
), and 𝛾 is the derivative order (0 <

𝛾 < 1).  

By taking Fourier transforms, the complex modulus of the FDKV model can be expressed 

as: 

𝑌∗(𝜔) =
𝜎(𝜔)

𝜀(𝜔)
= 𝑌𝑠 + i𝑌𝑙                         (14) 

where 𝑌𝑠 is the storage modulus (𝑌𝑠 = 𝜇1 + 𝜔𝛾𝜈1 cos
𝛾𝜋

2
), and 𝑌𝑙 is the loss modulus (𝑌𝑙 =



 

30 

 

𝜔𝛾𝜈1 sin
𝛾𝜋

2
). 

Based on the above expressions, the magnitude of 𝑌∗ and the damping loss factor 𝜂 can 

be written as: 

|𝑌∗| = √𝑌𝑠
2 + 𝑌𝑙

2 = √𝜇1
2 + 2𝜇1𝜔𝛾𝜈1 cos

𝛾𝜋

2
+ 𝜔2𝛾𝜈1

2           (15) 

𝜂 =
𝑌𝑙

𝑌𝑠
=

𝜔𝛾𝜈1 sin
𝛾𝜋

2

𝜇1+𝜔𝛾𝜈1 cos
𝛾𝜋

2

                          (16) 

These two expressions contain three parameters (𝜇1 , 𝜈1  and 𝛾 ). In the next section, a 

genetic algorithm function built in MATLAB software is used for numerical fitting and 

parameter identification based on the measured dynamic stiffness results.  

6.2 Model parameter fitting 

The measured stiffness magnitude and loss factor data were converted to 1/3 octave 

frequency bands by averaging all values in each frequency band so that fewer data points are 

used to fit the parameters of the FDKV model. In the genetic algorithm, the difference between 

the fitted values (stiffness magnitude and loss factor) and the original data were divided by the 

original value to calculate the relative errors, and the sum of the squared relative errors was 

used as the objective function. Various weightings were tested for the stiffness relative error 

and loss factor relative error. Use of equal weightings was found to achieve a suitable trade-off 

in fitting these two dynamic properties. 

6.2.1 Rail pad 

Figure 19 shows the results of fitting the measured stiffness magnitude and loss factor of 

the upper rail pad using the FDKV model. The FDKV model can fit the data points well, for 

both stiffness magnitude and loss factor. This is because the rail pad is made of viscoelastic 

material, and the FDKV model gives a good characterization of viscoelastic material properties. 

The parameters fitted by the FDKV model for the rail pad under different preloads are listed in 

Table 4. 
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(a)                                      (b) 

 

   
(c)                                    (d) 

Figure 19. Dynamic properties of the rail pad from the test results in 1/3 octave bands and the fitted 

FDKV model: (a) stiffness magnitude at preload 20 kN; (b) damping loss factor at preload 20 kN; (c) 

stiffness magnitude at preload 40 kN; (d) damping loss factor at preload 40 kN 

Table 4 Fitted parameters of the FDKV model for the rail pad 

Preload (kN) 𝜇1 (MN/m) 𝜈1 (MN/m/(rad/s)γ) 𝛾 

20 50.9  19.56  0.12  

25 66.7  16.82  0.14  

30 72.1  19.79  0.13  

35 86.4  14.72  0.15  

40 83.2  20.79  0.13  

45 90.8  18.59  0.14  

6.2.2 Lower baseplate pad 

The FDKV model of the lower rubber pad can be obtained by fitting the dynamic properties 

of the baseplate pad in low frequency range (below 600 Hz as discussed in Section 4.2), as 

shown in Figure 20. Under different preloads, the fitting parameters of the lower rubber pad 

were obtained as listed in Table 5. 



 

32 

 

   
(a)                                     (b) 

 

   

(c)                                     (d) 

Figure 20. Dynamic properties of the lower rubber pad from the test results at 1/3 octave bands and 

the fitted FDKV model: (a) stiffness at preload 20 kN; (b) damping loss factor at preload 20 kN; (c) 

stiffness at preload 40 kN; (d) damping loss factor at preload 40 kN 

Table 5 Fitted parameters of the FDKV model for the lower rubber pad  

Preload (kN) 𝜇1 (MN/m) 𝜈1 (MN/m/(rad/s)γ) 𝛾 

20 176.4  2.17  0.26  

25 207.4  2.47  0.26  

30 234.7  3.89  0.23  

35 262.2  4.98  0.21  

40 288.9  4.63  0.22  

45 309.7  5.90  0.20  

 

6.2.3 Whole fastener 

Unlike the rail pad, the whole fastener does not have the dynamic characteristics of a pure 

rubber material, as it also contains the steel plate. Therefore, the FDKV model of the whole 

fastener is represented by combining the FDKV models of the two rubber pads with the 

influence of the intermediate steel plate.  
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The influence of the intermediate steel plate was considered using a frequency-dependent 

effective mass 𝑚𝑒 as described in Section 5.2. Similar to the Eq. (11), the stiffness of the whole 

fastener can be obtained through the FDKV models of the two pads together with the effective 

mass of the intermediate steel plate, as shown in Figure 21. It can be seen that the combined 

models fit well with the measured results in a wide frequency range. Similar to Figure 17, 

fluctuations appearing at around 1 kHz are caused by the internal resonance of the intermediate 

steel plate. 

 

   
(a)                                     (b) 

     
(c)                                     (d) 

Figure 21. Dynamic properties of the whole fastener from the test results and the combined models: 

(a) stiffness at preload 20 kN; (b) damping loss factor at preload 20 kN; (c) stiffness at preload 40 kN; 

(d) damping loss factor at preload 40 kN 

7 Conclusions 

The load- and frequency-dependence of the dynamic stiffness behaviour of a WJ-2A two-

stage rail fastener has been investigated using the indirect measurement method. The 

measurement results cover the frequency range 30 to 1000 Hz. 
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Using a numerical model of the test rig it has been shown that there are significant 

differences between the response at the measurement positions and at the ideal positions at the 

interfaces between the fastener and the rig. Consequently, this can be identified as the cause of 

measurement artefacts observed above 500 Hz. A correction procedure has been proposed based 

on the numerical results to reduce the effect of these artefacts and extend the usable frequency 

range. The influence of the test equipment on the measurement results should not be ignored 

and appropriate correction factors should be used to minimise measurement artefacts. Suitable 

correction factors have been obtained from the numerical model. 

The stiffness magnitude of the rail pad, baseplate pad, and whole fastener system increases 

strongly with increasing static preload and increases weakly with increasing frequency. 

However, the damping loss factors are not strongly dependent on either preload or frequency 

and are found to reduce slightly with increasing frequency. 

To account for the frequency-dependence of the materials, the fractional derivative Kelvin-

Voigt (FDKV) model has been fitted to the measurement results for the two rubber pads. It can 

adequately describe the frequency-dependent properties of the rubber pads at different preloads. 

However, the dynamic stiffness of the whole fastener system is influenced by both pads as well 

as the steel baseplate. It can be estimated from a combination of the FDKV models of the two 

pads together with the equivalent mass of the baseplate. It is important to take account of this 

to include the internal resonance of the baseplate assembly appearing at around 1 kHz. 
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