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The universal triangular map is the Farey map M̂3 as shown by David Singerman in
1988. The orientation-preserving automorphism group of M̂3 is the classical modular
group Γ = PSL(2,Z) and M̂3 is universal in the sense that every triangular map on
an orientable surface is a quotient of M̂3 by a subgroup of Γ. In this thesis we describe
tessellations M̂q of the upper-half complex plane H which are universal for q-gonal maps.
The orientation-preserving automorphism group of M̂q is the Hecke groups Hq and we
show that every q-gonal map on an orientable surface is of the form M̂q/H where H is
a subgroup of Hecke groups Hq.

Chapter 1 is devoted to a brief outline of map theory. We define algebraic maps and
topological maps, explaining the connections between them.

Chapter 2 is devoted to discussing the modular group and Hecke groups, and describing
their fundamental regions.

Chapter 3 is devoted to describing the Farey map and the universal q-gonal tessella-
tions M̂q and showing that M̂q is universal, in the sense that every q-gonal map on an
orientable surface is a quotient of M̂q by a subgroup of Hq.

Chapter 4 is devoted to discussing the principal congruence subgroups of the Hecke
groups Hq and the quotients of M̂q by these subgroups. An important result gives the
index of these subgroups in the Hecke groups in the cases q = 4 and 6, a result given
previously by Parsons with a different proof. We then discuss many of these maps for
q = 4 and 6, and also study the combinatorics and geometry of these maps, including
the graphical distance, diameter, stars and poles particularly nice example is a quotient
of M̂4 corresponding to Bring’s curve.

Chapter 5 is devoted to considering the Petrie paths for M̂q. These project to Petrie
polygons on the quotient maps and we relate the sizes of the Petrie polygons on these
maps to the period of the Hecke-Fibonacci sequence modulo n.
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Chapter 1

Maps

The majority of the content in this section is drawn from [Jon81] and [JS78].

1.1 Topological maps

A topological map M is a connected graph G imbedded (without crossing) in a
surface S , which we assume is connected, oriented and without a boundary, where
each face of M (as a connected component of S \ G ) is homeomorphic to an open
disc. Simply put, it represents a decomposition of S into simply-connected polygonal
cells, called faces (Platonic solids embedded into the Riemann sphere Σ are examples of
topological maps).
If a topological map has an underlying surface S , and an associated graph G , with
a vertex set V , then that map is represented with a triple (G ,V ,S ). Then S is
homeomorphic to surface Sγ which comprises of a sphere with γ handles attached, for
some integers γ ≥ 0; we refer to γ as the genus of M .
Whenever an edge of M intersects a vertex, we draw an arrow at the edge facing that
vertex, as shown in Figure 1.1; we call every such vertex-edge pair a dart of M . Usually
each edge of M carries two darts corresponding to the two vertices on the edge, but it is
convenient to allow edges that carry just one dart as in Figure 1.1 (i.e. edges for which
only one end is incident with a vertex) and we call them free edges.
Let Ω be the set of all the darts formed from M in this way. Thus, a topological map
M is composed of vertices, edges, faces and darts.
Throughout this chapter the symbol M will denote a topological map.
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1.2 Algebraic maps

From a topological map we can describe how to obtain a permutation group. If Ω

denotes the set of all darts in M , we can then define three permutations x, y, z of Ω as
follows:

• If an edge of M carries two darts, α and β we define a permutation x of order 2
of Ω by αx = β and hence βx = α. We write our maps on the right, so αx results
from applying x to α. However for a free edge α we must have αx = α. We do this
so that we can always construct a topological map from an algebraic map, even if
the two cycle has fixed points (see below).
The permutation x is a product of two-cycles and one-cycles (fixed points), so
x2 = 1.

Figure 1.1

• The permutation y cyclically permutes the darts directed towards each vertex v in
an anti-clockwise direction. There will therefore be one cycle of y for each vertex
v ∈M ; thus, y will be a product of k cycles, where k is the number of vertices of
M . The order m of y is the least common multiple m of the valencies of the vertex
, so ym = 1. (See Figure 1.2)

• A further permutation z = y−1x of Ω, that permutes the darts around every face
of M , whereby the composition is taken from left to right, so xyz = x2 = 1. (See
Figure 1.2)

Thus
x2 = ym = zn = xyz = 1

where n is the least common multiple of the face valencies, where the valency of a face
is determined by the number of sides of the face. We say that M has type (m,n) if
m,n ∈ N ∪ {∞} are the orders of y and z respectively. Also we say M has finite type
if m and n are finite, and we say M is finite if Ω is finite; thus every finite map has
finite type. (in some works, e.g Coxeter and Moser [CM57, Chapter 4] m is the least
common multiple of the face valencies, and n is the least common multiple of the vertex
valencies). It is convenient to allow one or both of m or n to be ∞. For example if
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m =∞ in M then we don not care about the vertex valencies as the relation y∞ = 1 is
regarded as being vacuous, hence

x2 = zn = xyz = 1.

Figure 1.2: Permutations

Note that,
cycles of x↔ edges of M

cycles of y ↔ vertices of M

cycles of z ↔ faces of M

Let G be the subgroup generated by x, y and z (or by any combination of two of these,
since xyz = 1) in the group SΩ of all the permutations of Ω. Since G is connected, G is
transitive.

Definition 1.1. An algebraic map A is a quadruple (G,Ω, x, y), where Ω is a set, and
x, y are permutations of Ω; such that:
x2 = 1 (the identity on Ω) and G = 〈x, y〉 is transitive on Ω.

We define A to have type (m,n) if y and z = y−1x have orders m,n ∈ N ∪ {∞},
A has finite type if m,n ∈ N, and is finite if Ω is finite.

Example 1.2. Viewing Figure 1.3 consider the set of darts Ω = {1, 2, 3, 4, 5, 6, 7} with
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Figure 1.3

the following two permutations in S7:

x = (1)(2 3)(4 5)(6 7),

y = (7 1 2)(4 3)(6 5),

then
z = y−1x = (1 6 4 2)(3 5 7).

The map has type (6, 12), since

x2 = y6 = z12 = 1.

(Here 1 is a free edge).

We define an associated algebraic map A = (G,Ω, x, y) of a topological map M to
be AlgM where G = 〈x, y〉 is a transitive permutation group, and Ω is a set of darts as
defined above.

1.3 Triangle groups

Let l,m, n be the integers > 2, and let T be a triangle with the angles π
l ,
π
m ,πn .

If


1
l + 1

m + 1
n = 1, then T is a Euclidean triangle

1
l + 1

m + 1
n > 1, then T is a spherical triangle

1
l + 1

m + 1
n < 1, then T is a hyperbolic triangle

Let R1, R2, R3 be the reflections on the sides of the T as in Figure 1.4.
Let Γ∗(l,m, n) be the group generated by the reflections R1, R2, R3. It has a presentation,
as in the notation of Coxeter and Moser [CM57, Section 4.3],

〈R1, R2, R3 |R2
1 = R2

2 = R2
3 = (R1R2)l = (R2R3)m = (R3R1)n = 1〉.
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Figure 1.4: Hyperbolic Triangle

Let Γ(l,m, n) denote the subgroup of index 2 in Γ∗(l,m, n) consisting of transformations
designed to preserve orientation. This group is generated by the rotations;

X = R1R2, Y = R2R3, Z = R3R1

and has the presentation

〈X,Y, Z |X l = Y m = Zn = XY Z = 1〉,

where X,Y and Z are rotations. Γ(l,m, n) is called a triangle group and Γ∗(l,m, n) is
called an extended triangle group.

1.4 M̂ (m,n) and Â

The word "tessellation" usually refers to some of the well-known regular maps on
the Euclidean or the hyperbolic plane.
The universal topological map M̂ (m,n) is the tessellation of one of the three simply
connected Riemann surfaces U , that is

U =


Σ = C ∪ {∞} (Riemann sphere) if 1

m + 1
n >

1
2 ,

C (complex plane) if 1
m + 1

n = 1
2 ,

H (hyperbolic plane) if 1
m + 1

n <
1
2 .

by regular n-gons with m meet at each vertex.

• In the first case, 1
m + 1

n >
1
2 so if m,n ≥ 2 then

(m,n) = (3, 5), (3, 4), (3, 3), (5, 3), (4, 3), (2, n), (m, 2). These figures correspond
to the dodecahedron, cube, tetrahedron, icosahedron, octahedron, dihedron, and
hosohedron (beach ball). The first five are the platonic solids.
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• In the second case, 1
m + 1

n = 1
2 we get the Euclidean tessellations (4, 4), (3, 6), (6, 3).

For example (3, 6) is the honeycomb tessellation. (See Figure 1.5)

• In the third case, 1
m + 1

n <
1
2 we get hyperbolic tessellations. For example, Figure

1.6 is a tessellation of type (3, 7).

Figure 1.5: Honeycomb Tessellation

Figure 1.6: Tessellation of type (3,7)

Definition 1.3. [Universal algebraic maps] For eachm,n ≥ 2 ∈ N∪{∞}, let Γ = Γ(m,n)

be the triangle group Γ(2,m, n). We then define the universal algebraic map of type
(m,n) as Â (m,n) = (Γ, |Γ|, X, Y ), where |Γ| denotes the underlying set of Γ, and each
g ∈ Γ acts on |Γ| by right-multiplication, g : h 7→ hg for all h ∈ |Γ|.

1.4.1 Map-subgroups

The triangle group Γ(2,m, n) has a presentation of the form

Γ(2,m, n) = 〈X,Y, Z |X2 = Y m = Zn = XY Z = 1〉. (1.4.1)

If M is a map of type (m,n) with corresponding algebraic map A = (G,Ω, x, y), then
there is an epimorphism θ : Γ → G given by X 7→ x, Y 7→ y, Z 7→ z, so Γ performs a
transitive action on Ω. If Gα = {g ∈ G |αg = α} for any α ∈ Ω, then M = θ−1(Gα),
and is known as the map-subgroup associated to M . We can identify Ω with the set of
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right M -cosets in Γ(2,m, n) by the bijection

Mh 7−→ α(hθ) (1.4.2)

where h ∈ Γ(2,m, n). (The map 1.4.2 is well defined, since if Mg = Mh then gh−1 ∈M
and so (gh−1)θ ∈ Gα, which implies that α(gθ) = α(hθ)).
The map-subgroups play a similar role to the fundamental groups in topology; see the-
orem 1.5.

1.4.2 Map automorphisms

If Mi = (Gi,Vi,Si) are topological maps (i = 1, 2), we can then define a morphism
θ : M1 →M2 as the covering of surfaces θ : S1 → S2 preserving orientation, such that:
(1) θ−1(G2) = G1 and θ−1(V2) = V1;
(2) all branch-points have a finite order.
We say the topological map M1 covers M2 if there is a morphism M1 →M2.
More generally, there is a morphism M1 → M2 if and only if g−1M1g 6 M2 for some
g ∈ Γ.
Two topological maps are isomorphic if there is a morphism between them, such that
the covering of surfaces θ is a homeomorphism. Thus an automorphism of a topolo-
gical map is a self-morphism induced by a homeomorphism of the underlying surface
to itself. We can also define morphisms between algebraic maps: an algebraic morph-
ism between AlgM1 = (G1,Ω1, x1, y1) and AlgM2 = (G2,Ω2, x2, y2) is a pair (δ, σ) of
functions δ : Ω1 → Ω2, σ : G1 → G2, where σ is a group homomorphism, x1σ = x2,
y1σ = y2 and the diagram in Figure 1.7 commutes (the horizontal arrows in the diagram
represent the actions of G1 and G2). Thus we require that (αg)δ = (αδ)(gσ) for all
g ∈ G1,α ∈ Ω1. Two algebraic maps are then isomorphic if there exist an algebraic
morphism (δ, σ) between them, where σ is a group isomorphism and δ is a bijection.

Figure 1.7

Ω1 ×G1 Ω1

Ω2 ×G2 Ω2

(δ,σ) δ

We say the algebraic map A1 covers the algebraic map A2 if there is a morphism
A1 → A2.

The set of topological automorphisms of a map forms an infinite group, since its
edges can be continuously deform, and each vertex can be perturbed in some small
neighborhood. We therefore follow Jones and Singerman [JS78, Section 3] in defining
the automorphism group AutM of a map M as the group of algebraic automorphisms
of its associated algebraic map AlgM .
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1.4.3 Quotient maps and universal maps

Let A = (G,Ω, x, y) be an algebraic map. If T is a group of automorphisms of A ,
then T induces an equivalence relation ∼ on Ω, that is, α ∼ β implies αt ∼ βt for all
t ∈ T . There is an action of G on the quotient set Ω̄ = Ω/ ∼ given by g : [α] 7→ [αg], and
if K is the kernel of this action, then K/G and Ḡ = G/K acts faithfully and transitively
on Ω̄. Setting x̄ = Kx and ȳ = Ky, we call Ā = (Ḡ, Ω̄, x̄, ȳ) the quotient map of A by
T .
Any subgroup M ≤ Γ(2,m, n) acts as a group of automorphisms of Â by left action
a : h 7→ a−1h for all h ∈ |Γ|, a ∈M . We can therefore form the quotient algebraic map

Â /M = (Γ/M∗,Γ/M,M∗X,M∗Y ) (1.4.3)

where the M -cosets, i.e. Γ/M = {Mg | g ∈ Γ} is the underlying set of Â /M , M∗ is the
core of M (the intersection of all conjugates of M in Γ i.e. M∗ =

⋂
g∈Γ g

−1Mg), and
Γ/M∗ acts on Γ/M by M∗g : Mh 7→Mhg for all g, h ∈ Γ.

Theorem 1.4 ([JS78, Theorem 3.4]). Every algebraic map A of type (m,n) is iso-
morphic to a quotient of the universal algebraic map Â of type (m,n) by a map-subgroup
M corresponding to the map as defined above.

Theorem 1.5 ([JS78, Theorem 3.6]). If A1,A2 are algebraic maps, then A1 covers A2

if and only if we can find map-subgroups Mi ≤ Γ(m,n) for Ai (i = 1, 2) with M1 ≤M2.

According to Proposition 5.5 in [JS78], the categories TM(m,n) and AM(m,n)

of topological and algebraic maps are equivalent. Thus, we can restate Theorem 1.5 as
following, and Theorem 1.4 also applied to topological maps.

Proposition 1.6 ([JS78, Theorem 3.7]). Two topological maps M1 and M2 are iso-
morphic if and only if their map-subgroups M1 and M2 are conjugate in Γ.

Theorem 1.7. If M1,M2 are topological maps, then M1 covers M2 if and only if we
can find map-subgroups Mi ≤ Γ(m,n) for Mi (i = 1, 2) with M1 ≤M2.

The proof of the following theorem follows by using the proof of [JS78, Corollary
5.2] and (1.4.3).

Theorem 1.8. Let M̂ and Â be the universal topological and algebraic maps of type
(m,n) respectively, with M ≤ Γ(2,m, n). Then Alg(M̂ /M) ∼= Â /M .

We explain this as follows, by the definition of the algebraic map Alg(M̂ /M) =

(G,Ω, x∗, y∗). The darts of M̂ are permuted by Γ = Γ(2,m, n), and the set of darts of
M̂ /M = Γ/M = Ω (the set of M -cosets of Γ i.e. |Γ/M |). As there is an epimorphism
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θ : Γ → G given by X 7→ x, Y 7→ y, Z 7→ z. If Gα = {g ∈ G |αg = α} for any α ∈ Ω,
and if M = θ−1(Gα), then ker(θ) = M∗, inducing a permutation group Γ/M∗ which we
may identify with G, as well as identifying x∗ with M∗X and y∗ with M∗Y . Hence the
algebraic map corresponds to the quotient M̂ /M is isomorphic to the quotient of the
algebraic map Â /M = (Γ/M∗,Γ/M,M∗X,M∗Y ).

Theorem 1.9. If A is an algebraic map, then there is a topological map M such that
AlgM ∼= A .

Proof. Let A be an algebraic map of type (m,n). Then according to Theorem 1.4 we
have A ∼= Â /M , where Â is the universal algebraic map of type (m,n) and M is some
subgroup of Γ(2,m, n).
If M̂ is the universal topological map of type (m,n), then according to Theorem 1.8 we
have Alg(M̂ /M) ∼= A . Therefore the required map is M ∼= M̂ /M .

If M is a topological map of type (m,n), with a map-subgroup M ≤ Γ(2,m, n),
then the isomorphism M ∼= M̂ /M defines an embedding of M into the Riemann surface
X = U /M . In this way, every topological map can be embedded naturally into some
Riemann surface.

Definition 1.10. A map M is regular if AutM acts transitively on the darts of M .

Theorem 1.11 ([JS78, Theorem 6.3]). The following are equivalent:
(i) M is regular;
(ii) (G,Ω) is a regular permutation group, that is, Gα = 1, for all α ∈ Ω;
(iii) M E Γ.

Corollary 1.12. Every finite map of type (m,n) is the quotient of a finite regular map
of type (m,n) by a group of automorphisms.

This follows because every subgroup of a finite index in Γ contains a normal sub-
group of a finite index in Γ.

Remark 1.13. With a topological map M we can readily construct an algebraic map A .
We simply define Ω as the set of darts, and x, y as permutations of Ω corresponding to
the edges and vertices respectively. This enables us to go from a topological map M to
an algebraic map A . (Using Lemmas 2.1a, 2.1b and 2.1c in [JS78].)
The converse process is given by Theorem 1.9.
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Chapter 2

Modular group and Hecke groups

2.1 Modular group

The majority of the content of this section is taken from [JS87].

Definition 2.1. The Projective Special Linear Group PSL(2,R).
Let R be the field of real numbers. The special linear group SL(2,R) is defined as the
group of all 2× 2 matrices(

α β

γ δ

)
; αδ − βγ = 1, α, β, γ, δ ∈ R.

The center of SL(2,R) consists of the matrices ±I , where I denotes the 2 × 2

unit matrix. The quotient group of SL(2,R), with respect to its center is the projective
special linear group PSL(2,R).
In addition, we can consider the group PSL(2,R) as the group of real Möbius trans-
formations,

z 7→ αz + β

γz + δ
, αδ − βγ = 1, α, β, γ, δ ∈ R, z ∈ H ∪ R ∪ {∞}.

This is because −I acts trivially on H. Note: PSL(2,R) also has an action on R∪{∞},
and that PSL(2,R) acts on H ∪ R ∪ {∞}.

Classifying the elements of PSL(2,R). Before commencing geometric classification
of PSL(2,R), we need to recall that if A is a matrix then the trace of A is defined as
the sum of the diagonal entries of A. That is, if

A =

(
α β

γ δ

)
, then Trace(A) = α+ δ.

11



Additionally, to find the fixed points of any A ∈ PSL(2,R), we need to solve

z = A(z) =
αz + β

γz + δ
, αδ − βγ = 1, α, β, γ, δ ∈ R.

We have A(∞) = α
γ , thus A fixes ∞, if and only if, γ = 0. If γ 6= 0, then z ∈ R is a fixed

point of A, if and only if
γz2 + (δ − α)z − β = 0;

therefore A has two fixed points in C, z =
(α−δ)±

√
(δ−α)2+4βγ

2γ unless (δ−α)2 + 4βγ = 0,
in which case A, then has a unique fixed point. Using αδ−βγ = 1, the condition becomes
(α+ δ)2 − 4 = 0, so A has a single fixed point if and only if (α+ δ)2 = 4.
If γ = 0 then A fixes ∞, and we have αδ = 1 and A(z) = α2z + αβ, so there is a second
fixed point z = αβ

(1−α2)
6=∞ if and only if α2 6= 1, or equivalently (α+ δ)2 6= 4.

The next step is then to classify the elements of PSL(2,R) in terms of their trace and
fixed points;
A non-identity element is parabolic if |α + δ| = 2, and so A has a single fixed point in
R ∪ {∞},
an element is hyperbolic if |α+ δ| > 2, then A has two fixed points in R ∪ {∞},
and an element is elliptic if |α+ δ| < 2, and so A has a single fixed point in H.

Definition 2.2. Fuchsian Groups
A Fuchsian group is a discrete subgroup of PSL(2,R). An example of such a Fuchsian
group is the modular group Γ = PSL(2,Z).

The results derived from this section come from [JS87, sections 5.7 and 6.8]
Thus, from now on we will define Γ as the modular group consisting of all transformations

z 7→ αz + β

γz + δ
, αδ − βγ = 1, α, β, γ, δ ∈ Z.

Γ is generated by the transformations

and

X : z 7→ −1
z

Z : z 7→ z + 1


Putting Y = XZ : z 7→ −1

(z+1) we see that X and Y generate Γ and that satisfies the
relations

X2 = Y 3 = 1.

In fact Γ has the presentation

Γ = 〈X,Y |X2 = Y 3 = 1〉, (2.1.1)

12



and so there are no other relations are necessary to define Γ, see [JS87, Corollary 6.8.6].
The generator Z = XY : z 7→ z+1 is represented by the matrix

(
1 1
0 1

)
which is parabolic,

and Z fixes ∞ (see Figure 2.1 (1)). The parabolic elements of Γ are the conjugates of
the non-identity powers of Z, and so they take the form TZkT−1 where k ∈ Z\{0}, such
that T (∞) = a ∈ R, T ∈ Γ (see Figure 2.1 (2)). An elliptic element is conjugate to a
hyperbolic rotation and fixes a point in H, as in Figure 2.1 (3). If the elliptic element has
an order n, (i.e. there are n darts meeting at this fixed point), then the angles between
the hyperbolic geodesics in Figure 2.1 (3) are 2π

n . In Figure 2.1 (2) the angles are 0 = 2π
∞ .

Consequently, a parabolic element can be considered to be an elliptic element of infinite
order.

Figure 2.1: Treating parabolic elements as being elliptic elements of order ∞

∞

!(1)

From (2.1.1) , Γ = PSL(2,Z) can be considered the triangle group Γ(2,∞, 3).

The group Γ is an example of a free product. If

〈X |X2 = 1〉 ∼= C2

and
〈Y |Y 3 = 1〉 ∼= C3,

then we have
Γ ∼= C2 ∗ C3.

Given a Fuchsian group Λ, we define z, w ∈ H as a congruent modulo Λ, written as
w ∼ z, if w = λz, for some λ ∈ Λ.

Definition 2.3. F is a Fundamental region for a Fuchsian group Λ if F is a closed set
in H such that
(i)

⋃
T∈Λ

T (F ) = H, i.e. every point z ∈ H is congruent to some point in F .

(ii) F̊ ∩ T (F̊ ) = ∅ for all T ∈ Λ \ {I}, where F̊ is the interior of F , i.e. no pair of points
in the interior of F are congruent and each orbit of every z ∈ H, meets F̊ at most once.

13



Theorem 2.4 ([JS87, Theorem 5.8.4]).

F = {z ∈ H
∣∣ |z| ≥ 1 and |Re(z)| ≤ 1

2
}

is a fundamental region for the modular group.

The fundamental region here is bounded by the vertical lines Re(z) = 1
2 and

Re(z) = −1
2 , and the circle |z| = 1. This region is a hyperbolic triangle; it has three

vertices in H ∪Q ∪ {∞} at 1
2 + i

√
3

2 , −1
2 + i

√
3

2 , which are the fixed points of the elliptic
generators and ∞, which is the unique parabolic fixed point in the region, as shown in
Figure 2.2 below;

Figure 2.2: The fundamental region for the modular group

This region is determined in many books, e.g. [Ran77], [For51], [JS87].

2.2 The Hecke groups Hq

In [Hec36], Hecke introduced the groups Hq which are generated by two real Möbius
transformations:

S(z) = −1
z and T (z) = z + λ,

where λ is a fixed positive real number. Moreover, we can represent S and T as(
0 −1

1 0

)
and

(
1 λ

0 1

)
.
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Let R(z) = TS(z) = λz−1
z .

Hecke showed Hq is properly discontinuous, i.e. it is a Fuchsian group, when
(i) λ ≥ 2, or when
(ii) λ = λq = 2 cosπq where q is an integer ≥ 3.
We are particularly interested in the case (ii) as we are considering Γ(2,∞, q) groups
and using them to study q-gonal maps. Case (i) might be interesting to study for some
Hecke group problems but not in the context of this thesis.
Before we start introducing the representations of the Hecke groups, we first need to
show that

Rq =
(
λq −1
1 0

)q
= −I.

To accomplish this we diagonalize R. i.e. find a diagonal matrix conjugate to R. The
elements on the diagonal are the eigenvalues of R. These are easily computed to be
cosπq ± i sinπq . That is e

π
q
i and e

−π
q
i. Thus

Rq =
(−1 0

0 −1

)
= −I,

which defines the identity in PSL(2,R).
The Hecke groups in (ii) have the following presentation in terms of the triangle group
Γ(2,∞, q);

Hq = 〈S,R |S2 = Rq = I〉.

These groups are isomorphic to the free product of two finite cyclic groups of orders 2
and q, which is the same argument given for the modular group, see [JS87, Section 6.8];
i.e.

Hq
∼= C2 ? Cq.

These facts are proven using the same method as that described for the modular group,
see [JS87, Section 6.8].

We have the following table of the values of λq for small q;

q 3 4 5 6
λq 1

√
2 1+

√
5

2

√
3

The best known example here is when q = 3, andH3 is the modular group Γ = PSL(2,Z).

2.2.1 The elements of Hq

An element of the Hecke groups Hq takes the form(
p1(λq) p2(λq)

p3(λq) p4(λq)

)
15



where the pi , (i = 1, ..., 4) are elements of Z[λq] and these pi are determined modulo
the minimal polynomial of λq, and thus, these matrices are elements of PSL(2,Z[λq]).
This means we have the inclusion Hq ≤ PSL(2,Z[λq]). One of the principal difficulties
when analysing the elements of Hq is to determine whether or not a given matrix of
PSL(2,Z[λq]) belongs to the Hecke group Hq.
The most well known Hecke groups are those for q = 3, 4 and 6. In these cases λ3 = 1, λ4 =

√
2

and λ6 =
√

3. Therefore the underlying fields are Q, Q(
√

2) and Q(
√

3), i.e. they are
quadratic extensions of the field Q of the rationals.
The Hecke groups H4 and H6 are of particular interest, since they are the only Hecke
groups, apart from the modular group Γ, whose elements are completely known.

For q = 4 and 6, Hq consists a set of all matrices of the following two types:
(i) the elements of type(

a b
√
m

c
√
m d

)
a, b, c, d ∈ Z , ad−mbc = 1,

(ii) the elements of type(
a
√
m b

c d
√
m

)
a, b, c, d ∈ Z , mad− bc = 1.

Where m = 2 or 3 for q = 4 and 6 respectively. The elements of type (i) are called even,
while those of type (ii) are odd. For q = 4, 6 the even elements are a subgroup of index
2 of Hq denoted by He

q , i.e.
|Hq : He

q | = 2 (2.2.1)

while the set of the odd elements is the other coset of He
q in Hq, denoted by Ho

q . Hence
we have

He
q =

{
A =

(
a b

√
m

c
√
m d

)
| A ∈ Hq

}
, (2.2.2)

and

Ho
q =

{
A =

(
a
√
m b

c d
√
m

)
| A ∈ Hq

}
. (2.2.3)

Note that if we consider the multiplication of these elements, we have

odd.odd=even.even=even

even.odd=odd.even=odd.

Thus, we know all the elements of H3 = Γ, H4 and H6. In other cases the elements
of Hq are worked out by Rosen [Ros54], using λ-fractions given the required conditions
for the substitution of an element of Hq, but for a description of the elements of H5 see
[Ros63], where the underlying field is once more the quadratic extension of Q. These
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four Hecke groups are the only ones where λq is a root of a polynomial of a degree less
than three which can be easily calculated. However, for q ≥ 7, q ∈ N, the algebraic
number λq is a root of a polynomial of degree ≥ 3. Therefore it is not possible to make
the determination of λq for q ≥ 7 as effectively as in the first four cases. Consequently,
we shall examine the minimal polynomial of λq instead of λq itself. The following table
presents minimal polynomials of λq for 3 ≤ q ≤ 8;

Table 2.1: The minimal polynomials of λq for 3 ≤ q ≤ 8

q The minimal polynomial
3 x− 1

4 x2 − 2

5 x2 − x− 1

6 x2 − 3

7 x3 − x2 − 2x+ 1

8 x4 − 4x2 + 2

Because of the importance of being able to determine the elements of Hq in our
work, we can recall Rosen’s ideas;
As shown in [JS87, p. 296-298] elements of Γ can be expressed in terms of the generators,
and any relation in Γ can be written in the form of a word in X and Y . Here we do so
for the elements of Hq, which could be expressed in terms of the generators S and T , as

V (z) =
az + b

cz + d
= T r0ST r1S...ST rn(z), (2.2.4)

where the ri’s, (0 < i < n) are integers, and only r0 and rn may be zero. The method
Rosen used is the development of a class of continued fractions, which arise naturally
from Hq. In [Hec36], Hecke gave the following result:

Theorem 2.5. When λ ≥ 2 and is real, or when λ = λq = 2 cosπq , q ∈ N, q ≥ 3, the set

Fλq = {z ∈ H
∣∣ |Re(z)| ≤ λ

2
, |z| ≥ 1} (2.2.5)

is a fundamental region for the group Hq.

R. Evans gave an elementary proof of this fact in [Eva73].

This fundamental region as shown in Figure 2.3, is bounded by the linesRe(z) =
−λq

2 ,
Re(z) =

λq
2 and the unit circle which form a hyperbolic quadrilateral with four vertices

in H ∪ R ∪ {∞} , two of which are the fixed points of two elliptic generators S and R,
these are i and ei

π
q respectively, the third is infinity which is the unique parabolic point
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Figure 2.3: The shaded and white region together form a fundamental region for Hq

for this region and −e−i
π
q . The fixed points for the parabolic elements are called the

cuspset, and these are the images of ∞, under the elements of Hq.

Figure 2.4: The fundamental region for H4
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Chapter 3

The Universal q-gonal Map

3.1 The Farey map

In simple terms, the Farey map M̂ (∞, 3), abbreviated here to M̂3, is a tessellation
of the upper half-plane. We construct the Farey map as follows. The vertex set is the set
of the extended rational numbers Q∪{∞} and two rationals a

b and c
d , where a and b, and

c and d are coprime pairs, a, b, c, d ∈ Z, are joined by an edge if and only if ad− bc = ±1.
The edges are given by hyperbolic geodesics. This map has the following properties.

1. There is a triangle with vertices 1
0 ,

1
1 ,

0
1 called the principal triangle.

2. The modular group Γ acts by Möbius transformations as a group of automorphisms
of the Farey map, as follows, if

A =

(
α β

γ δ

)
∈ Γ, then A(

a

c
) = (

αa+ βc

γa+ δc
).

3. Every triangle has vertices of the form a
c ,

a+b
c+d ,

b
d for some integers a, b, c and d.

Constructing the Farey map M̂3. The edges of M̂3 are the images of the imaginary axis
under Γ. The vertices are the images of ∞ under Γ, and the faces are the images of the
principal face under Γ.
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Figure 3.1: The edges are the images of the imaginary axis under Γ
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Figure 3.2: The vertices are the images of ∞ under Γ
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Figure 3.3: The principal face
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Figure 3.4: The faces are the images of the principal face under Γ
∞

The faces are the images of the principal face under Γ
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Thus the Farey map M̂3 (= M̂ (∞, 3)) (Figure 3.5) is a triangular map, meaning
that it is a map in which all the face are triangles. [Sin88] demonstrates this is the
universal triangular map; in the sense that any triangular map on an orientable surface
is a quotient of the Farey map M̂3 by a subgroup of the modular group Γ. In other
words the Farey map M̂3 covers all triangular maps on orientable surfaces, and by using
the extended modular group, we can extend this theory to non-orientable surfaces.
We give a slightly different proof from [Sin88] (for orientable surfaces) which more easily
generalizes to the corresponding result for universal q-gonal maps as in Theorem 3.4.
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Figure 3.5: Farey map
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Theorem 3.1 ([Sin88, Theorem 1]). Let T be a triangular map. Then there is a subgroup
M ≤ Γ(2,∞, 3), such that M̂3/M ' T .

Proof. Let x, y be permutations of the darts as described in Section 1.2. Let T be any
triangular map, that is a topological map of type (m, 3), then x2 = y3 = 1, so there is
a homomorphism θ : Γ → G =< x, y > as given by X 7→ x, Y 7→ y. Let M = θ−1(Gα)

be a map-subgroup for T as described in section 1.4. We show that the action of Γ on
the darts of M̂3 is regular (i.e transitive and fixed-point free), as described in Theorem
1.11. It is transitive because, if a

c → b
d is a dart in M̂3 then

(
a b
c d

)
takes the principal

dart δ = (∞, 0) = (1
0 ,

0
1) to a

c → b
d . To use transitivity to prove there are no fixed points,

we only need to prove that Γδ = {e}. This is because if
(
a b
c d

)
fixes 0 then b = 0 and if(

a b
c d

)
fixes∞ then c = 0, then as ad− bc = 1 and a, b, c, d ∈ Z, a = d = ±1, b = c = 0 so(

a b
c d

)
= ±

(
1 0
0 1

)
the identity in Γ. Thus the stabilizer of a dart of M̂3 is the trivial group

{e}. If T is any triangular map with map-subgroup M < Γ then as {e} < M , it follows
from Theorem 1.7 that M̂3 covers T . Now by Theorem 1.4 every algebraic map A of
type (m, 3) is isomorphic to a quotient of the universal algebraic map Â of type (m, 3)

by a map-subgroup M . As observed in Section 1.4.3, the categories of algebraic maps
and topological maps are equivalent, thus the same result holds for topological maps,
that is M̂3/M ' T .

This means that M̂3 is the universal triangular map as it covers every other trian-
gular map.
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3.2 The universal q-gonal maps

In this section we generalize the concept of the Farey map to the universal q-gonal
map, involving Hecke groups Hq. The universal topological q-gonal map M̂ (∞, q), which
we abbreviate to M̂q, is a tessellation of the upper half-plane. First we construct the
universal q-gonal map M̂q. The edges (the hyperbolic geodesics) of M̂q are the images
of the imaginary axis I (which is the edge between the two vertices 0

1 and ∞) under Hq.
The imaginary axis I consists of two darts one with a vertex ∞ and one with a vertex
0. As S(z) = −1

z takes 0 to ∞ and ∞ to 0, these two darts lie in the same Hq orbit.
Thus the darts are the images of the directed edge α̂ = (0,∞) along the imaginary axis
from 0 to ∞ i.e. the darts are all of the form (g(0), g(∞)) where g ∈ Hq. It follows that
Hq has a transitive action on the darts of M̂q. The vertex set is the images of ∞ under
Hq. The principal face in M̂q has vertices, that are the image of ∞ under the powers of
the elements R, as defined by R(z) = TS(z) = λz−1

z of order q. The faces are then the
images of the principal face under Hq.

Figure 3.6: The edges are the images of the imaginary axis under Hq
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Figure 3.7: The vertices are the images of ∞ under Hq
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Example 3.2. (a) The vertices of the principal face in M̂3 are

R(∞) =

(
1 −1

1 0

)(
1

0

)
=

(
1

1

)
, R2(∞) =

(
0

1

)
, R3(∞) =

(
1

0

)
,

as shown in Figure 3.8.

Figure 3.8: Principal face when q = 3

(b) The vertices of the principal face in M̂4, λ4 =
√

2, are 1
0 ,

0
1 ,

1√
2
,
√

2
1 as shown

in Figure 3.9.

Figure 3.9: Principal face when q = 4

(c) The vertices of the principal face in M̂5, λ5 = 1+
√

5
2 , are 1

0 ,
0
1 ,

1
λ5
, λ5
λ5
, λ5

1 as
shown in Figure 3.10.

Figure 3.10: Principal face when q = 5
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To generalize Theorem 3.1 to q-gonal maps, we require the following Lemma.

Lemma 3.3. The transformation Uk : z 7→ kz, is not an element of Hq, for any
q ∈ Z ≥ 3 where λq = 2 cosπq and k > 0, k 6= 1 ∈ R.

Proof. Suppose that the transformation Uk : z 7→ kz ∈ Hq for some real k > 0, k 6= 1.
Replacing Uk with its inverse if necessary, we may assume that k > 1. Let F be the
fundamental region for Hq shown in Figure 2.3. As F has width λq, it follows Uk(F ) has
width kλq > λq. Thus we can find z0 ∈ Uk(F ) such that z0, z0 + λq both lie in Uk(F ).
As Uk ∈ Hq then Uk(F ) would be a fundamental region which is a contradiction as we
have found two points of the same orbit in Uk(F ).

If a real Möbius transformation fixes 0 and ∞ then it has the form z 7→ kz, k > 0.
(Suppose z 7→ az+b

cz+d , ad− bc = 1, fixes 0 and ∞. Then b = c = 0 so we have z 7→ az
d . As

ad− bc = 1 then d = 1
a so z 7→ a2z and z 7→ kz, k > 0.)

Thus, Lemma 3.3 implies that only the identity element in Hq fixes the principal
dart δ = (∞, 0).

Theorem 3.4. Let M be any q-gonal map. Then there is a subgroup M ≤ Hq such that
M̂q/M 'M .

Proof. Now Hq acts as a group of automorphisms of M̂q and we have seen that its action
on the darts of M̂q is regular. That is transitive and free (i.e. the stabilizer of the principal
dart δ is {e}), as shown in Lemma 3.3. Also there is a bijection θ : Hq = Γ(2,∞, q)→
G =< x, y > as given by S 7→ x, R 7→ y−1x, where x, y are the permutations of the darts
as described in Section 1.2, such that x2 = ym = (y−1x)q = 1 in G. We may identify
the set of darts Ω̂ of M̂q with |Hq| by means of the bijection g 7→ α̂g, g ∈ Hq, so that
Hq acts transitively on the set of darts by right multiplication. Therefore the algebraic
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map that is associated to the universal topological q-gonal map M̂q is just the universal
algebraic q-gonal map Âq defined by Âq = (Hq, |Hq|, S,R), as introduced in Definition
1.3, where |Hq| denotes the underlying set of Hq(= Γ(2,∞, q) = 〈S,R |S2 = Rq

= I〉, as defined in Section 2.2).
Let M be any q-gonal map (i.e. M is a topological map of type (m, q)). By Theorem
1.4 every algebraic map A of type (m,n) is isomorphic to a quotient of the universal
algebraic map Â of type (m,n) by a map-subgroupM . As observed in Section 1.4.3, the
categories of algebraic maps and topological maps are equivalent, thus the same result
holds for topological maps, that is M̂q/M 'M . As the map-subgroup for the universal
q-gonal map is trivial and {e} < M , then by Theorem 1.7 it follows that M̂q covers M

which is isomorphic to M̂q/M .

We have shown that M̂q is a universal object in the category of q-gonal maps and
their morphisms. This justifies us calling M̂q the universal q-gonal map.

Example 3.5. When we look at M̂4 as illustrated in Figure 3.11, we know that ∞ and
0 are vertices of M̂4 but it is convenient to write ∞ = 1

0
√

2
and 0 = 0

√
2

1 . The vertices

of M̂4 as in Table 3.1 are of two forms. The first have the form a
c
√

2
, where a is odd

and (a, c) = 1, these vertices called the even vertices which are the images of ∞ when
we apply elements of He

4 . The second have the form b
√

2
d , where d is odd and (b, d) = 1,

these vertices called the odd vertices which are the images of ∞ when we apply elements
of Ho

4 . It follows that the subgroup He
4 of even elements in H4 maps even vertices to

even vertices and odd vertices to odd vertices, while the set Ho
4 of odd elements in H4

maps even vertices to odd vertices. As ∞ = 1
0
√

2
is an even vertex and 0 = 0

√
2

1 is an

odd vertex, and the edges of M̂4 are images under H4 of the edge joining 1
0
√

2
to 0

√
2

1 ,

the edges of M̂4 join even and odd vertices. Therefore, a
c
√

2
is joined to b

√
2
d if and only

if ad− 2bc ≡ ±1 mod n. Also as the principal face of M̂4 has vertices 1
0
√

2
,0
√

2
1 , 1

1
√

2
,1
√

2
1 ,

the faces of M̂4 are the images of this principal face under H4.

Example 3.6. Figures 3.11, 3.12, 3.13 and 3.15 below illustrate the universal q-gonal
tessellation for q = 4, 5, 6, 7 and their tables of correspondence for each case. The vertices
of the maps are polynomials in Q(λq), as apparent from the tables. It is evident from
Table 3.4 that the vertices for the case q = 7 are polynomials of degree 2, replacing each
λ3

7 with its equivalent value λ2
7 + 2λ7 − 1, using Table 2.1.
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Table 3.1: Table of Correspondence for M̂4

a1 : 1
4
√

2
i1 : 5

√
2

17 a2 : 4
√

2
7 i2 : 17

12
√

2

b1 :
√

2
7 j1 : 3

5
√

2
b2 : 7

6
√

2
j2 : 5

√
2

7

c1 : 1
3
√

2
k1 : 3

4
√

2
c2 : 3

√
2

5 k2 : 4
√

2
5

d1 : 2
√

2
11 l1 : 5

√
2

13 d2 : 11
9
√

2
l2 : 13

8
√

2

e1 : 3
8
√

2
m1 : 7

9
√

2
e2 : 8

√
2

13 m2 : 9
√

2
11

f1 :
√

2
5 n1 : 2

√
2

5 f2 : 5
4
√

2
n2 : 5

3
√

2

g1 : 2
√

2
7 o1 : 5

6
√

2
g2 : 7

5
√

2
o2 : 6

√
2

7

h1 : 7
12
√

2
p1 : 3

√
2

7 h2 : 12
√

2
17 p2 : 7

4
√

2

Table 3.2: Table of Correspondence for M̂5

a : 1
2λ5

d : 2λ5
2λ5+1 g : 2λ5+1

λ5+2

b : λ5
2λ5+1 e : 2λ5+1

2λ5+2 h : 2λ5+2
2λ5+1

c : λ5
λ5+2 f : λ5+2

2λ5+1 i : 2λ5+1
2λ5

Table 3.3: Table of Correspondence for M̂6

a1 : 1
5
√

3
m1 : 1

2
√

3
a2 : 3

√
3

8 a3 : 8
5
√

3
a4 : 5

√
3

7 m4 : 6
√

3
7

b1 :
√

3
14 n1 : 2

√
3

11 b2 : 8
7
√

3
b3 : 7

√
3

13 b4 : 13
6
√

3
n4 : 13

5
√

3

c1 : 2
9
√

3
o1 : 5

9
√

3
c2 : 5

√
3

13 c3 : 13
8
√

3
c4 : 8

√
3

11 o4 : 7
√

3
8

d1 :
√

3
13 p1 : 3

√
3

16 d2 : 7
6
√

3
d3 : 6

√
3

11 d4 : 11
5
√

3
p4 : 8

3
√

3

e1 : 1
4
√

3
q1 : 4

7
√

3
e2 : 2

√
3

5 e3 : 5
3
√

3
e4 : 3

√
3

4 q4 : 9
√

3
10

f1 :
√

3
11 r1 :

√
3

5 f2 : 5
4
√

3
f3 : 4

√
3

7 f4 : 7
3
√

3
r4 : 19

7
√

3

g1 : 2
7
√

3
s1 : 2

3
√

3
g2 : 3

√
3

7 g3 : 7
4
√

3
g4 : 4

√
3

5 s4 : 10
√

3
11

h1 :
√

3
10 t1 :

√
3

4 h2 : 4
3
√

3
h3 : 3

√
3

5 h4 : 17
7
√

3
t4 : 11

4
√

3

i1 : 1
3
√

3
u1 : 4

5
√

3
i2 : 5

√
3

11 i3 : 11
6
√

3
i4 : 13

√
3

16 u4 : 12
√

3
13

j1 :
√

3
8 v1 : 3

√
3

11 j2 : 11
8
√

3
j3 : 8

√
3

13 j4 : 22
9
√

3
v4 : 25

9
√

3

k1 : 2
5
√

3
w1 : 5

6
√

3
k2 : 6

√
3

13 k3 : 13
7
√

3
k4 : 9

√
3

11 w4 : 13
√

3
14

l1 :
√

3
7 x1 : 2

√
3

7 l2 : 7
5
√

3
l3 : 5

√
3

8 l4 : 5
2
√

3
x4 : 14

5
√

3
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Table 3.4: Table of Correspondence for M̂7

a : 1
2λ7

f : 2λ7
2λ7

2−1
k : 2λ7

2−1
2λ7

2+λ7−2
p : 2λ7

2+2λ7−2
λ7

2+2λ7−1
u : λ7

2+2λ7−1
λ7

2+1

b : λ7
2λ7

2−1
g : 2λ7

2−1
2λ7

2+2λ7−2
l : 2λ7

2+2λ7−2
2λ7

2+2λ7−1
q : 2λ7

2+2λ7−1
2λ7

2+λ7
v : 2λ7

2+λ7
λ7

2+2λ7−1

c : λ7
2−1

2λ7
2+λ7−2

h : 2λ7
2+λ7−2

2λ7
2+2λ7−1

m : 2λ7
2+2λ7−1

2λ7
2+2λ7

r : 2λ7
2+2λ7

2λ7
2+2λ7−1

w : 2λ7
2+2λ7−1

2λ7
2+λ7−2

d : λ7
2−1

λ7
2+2λ7−1

i : λ7
2+2λ7−1

2λ7
2+λ7

n : 2λ7
2+λ7

2λ7
2+2λ7−1

s : 2λ7
2+2λ7−1

2λ7
2+2λ7−2

x : 2λ7
2+2λ7−2

2λ7
2−1

e : λ7
λ7

2+1
j : λ7

2+1
λ7

2+2λ7−1
o : λ7

2+2λ7−1
2λ7

2+λ7−2
t : 2λ7

2+λ7−1
2λ7

2−1
y : 2λ7

2−1
2λ7

To draw a diagram for the universal q-gonal tessellation M̂q, we must first find the
principal face, F0. Let R =

(
λq −1
1 0

)
, then R is an elliptic element of order q, as shown

in Section 2.2. The vertices of F0 are Rk(∞), (k = 0, ..., q − 1), as apparent from the
Example 3.2. Then, all the other faces are images of the principal face F0 under the
elements A of Hq, of the form AF0. Whenever the entries of the matrix involve the
polynomial of λq for q ≥ 5, we reduce this polynomial using the minimal polynomial for
each λq. Overall, symmetry occurs around the center of each principal face for every
M̂q.

Example 3.7. Applying A =
(

1 0
√

2√
2 1

)
∈ He

4 to the principal face F0 of M̂4, we get the
shaded face, as shown in Figure 3.16.
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Chapter 4

Principal congruence maps Mq

4.1 The congruence subgroups of the modular group

We mentioned in Section 2.1 that the triangle group Γ(2,∞, 3) is considered to be
Γ = PSL(2,Z), which is defined by

Γ =

{(
a b

c d

)
| a, b, c, d ∈ Z, ad− bc = 1

}
/{±I}.

Now for any positive integer n we define the principal congruence subgroup of level
n of the modular group Γ as follows

Γ(n) =

{(
a b

c d

)
∈ Γ |

(
a b

c d

)
≡ ±I mod n

}
that is, the group of elements of the matrices of Γ which are congruent to ±I mod n,
while remembering to identify each element of Γ with its negative. Any subgroup G of Γ

containing a principal congruence subgroup Γ(n) is referred to as a congruence subgroup,
and the least n such that G ≥ Γ(n) is called the level of G.
Some examples of congruence subgroups of special interest are

Γ0(n) =

{(
a b

c d

)
∈ Γ | c ≡ 0 mod n

}

and

Γ1(n) =

{(
a b

c d

)
∈ Γ | a ≡ d ≡ ±1 mod n and c ≡ 0 mod n

}
;

each can be defined for any positive integer n. Observe that the congruence d ≡ ±1 mod n
in the definition of Γ1(n) can be deduced from the congruences a ≡ ±1 mod n, c ≡ 0 mod n
and the condition ad− bc = 1 of the determinant.
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Clearly the inclusions

Γ(n) ≤ Γ1(n) ≤ Γ0(n) ≤ Γ

hold for any positive integer n. Furthermore, we have

1. Γ(n) is a normal subgroup of Γ, i.e. Γ(n) / Γ and so it is a normal subgroup of
Γ0(n) and of Γ1(n).

2. Γ1(n) is a normal subgroup of Γ0(n), i.e. Γ1(n) / Γ0(n).

For the indices of the above inclusions we have the following formulae, [Ran77],[DS05];

|Γ : Γ0(n)| = n
∏
p|n

(1 +
1

p
) (4.1.1)

|Γ : Γ1(n)| = n2

2

∏
p|n

(1− 1

p2
) (4.1.2)

|Γ : Γ(n)| = n3

2

∏
p|n

(1− 1

p2
) (4.1.3)

|Γ1(n) : Γ(n)| = n (4.1.4)

|Γ0(n) : Γ1(n)| = φ(n)

2
(4.1.5)

for any n > 2 and with the product running over the distinct prime divisors of n. For the
proof of the above indices see [IS05, Section 2.1]. The case n = 2 is treated in Section
4.3.

4.2 The congruence subgroups of the Hecke groups

Let I be an ideal of Z[λq]. We define

PSL(2,Z[λq], I) =

{(
a b

c d

)
∈ PSL(2,Z[λq]) | a− 1, b, c, d− 1 ∈ I

}
.

Similarly, we define PSL1(2,Z[λq], I) and PSL0(2,Z[λq], I), as follows,

PSL1(2,Z[λq], I) =

{(
a b

c d

)
∈ PSL(2,Z[λq]) | a− 1, c, d− 1 ∈ I

}
,
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and

PSL0(2,Z[λq], I) =

{(
a b

c d

)
∈ PSL(2,Z[λq]) | c ∈ I

}
.

Now for any ideal I of Z[λq] we define the principal congruence subgroup of the Hecke
group Hq as,

Hq(I) = PSL(2,Z[λq], I) ∩Hq,

that is, the subgroup of Hq consisting of elements in PSL(2,Z[λq]). Moreover, analogous
definitions of (Hq)1(I) and (Hq)0(I) of the form;

(Hq)1(I) = PSL1(2,Z[λq], I) ∩Hq,

and
(Hq)0(I) = PSL0(2,Z[λq], I) ∩Hq.

Clearly,
Hq(I) 6 (Hq)1(I) 6 (Hq)0(I) 6 Hq.

For the rest of this chapter we take the special case when I = (n) and 2 < n ∈ Z+, i.e.
(n) is a principal ideal of Z[

√
m] where m = 2, 3 for q = 4, 6. In particular

Hq(n) 6 (Hq)1(n) 6 (Hq)0(n) 6 Hq. (4.2.1)

The even principal congruence subgroup is now

He
q (n) =

{(
a b

√
m

c
√
m d

)
∈ He

q | a ≡ d ≡ ±1 mod n, b ≡ c ≡ 0 mod n

}
. (4.2.2)

We define the even subgroups of (Hq)1(n) and (Hq)0(n) as follows;

(Hq)
e
1(n) =

{(
a b

√
m

c
√
m d

)
∈ He

q | a ≡ d ≡ ±1 mod n, c ≡ 0 mod n

}
, (4.2.3)

(Hq)
e
0(n) =

{(
a b

√
m

c
√
m d

)
∈ He

q | c ≡ 0 mod n

}
. (4.2.4)

Also,

(Hq)
o
0(n) =

{(
a
√
m b

c d
√
m

)
∈ Ho

q | c ≡ 0 mod n

}
(4.2.5)

is the set of odd elements and the other coset of (Hq)
e
0(n) in (Hq)0(n).

As a
√
m and d

√
m are not congruent to ±1 mod n we can not have odd elements in
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Hq(n) and (Hq)1(n). Hence

Hq(n) = He
q (n), i.e. |Hq(n) : He

q (n)| = 1, (4.2.6)

and
(Hq)1(n) = (Hq)

e
1(n), i.e. |(Hq)1(n) : (Hq)

e
1(n)| = 1. (4.2.7)

Thus
He
q (n) 6 (Hq)

e
1(n) 6 (Hq)

e
0(n) 6 He

q . (4.2.8)

An even element is an element of the even subgroups (4.2.2), (4.2.3) and (4.2.4)
otherwise the element is odd.
Note that if we consider the multiplication of these elements, we have

odd.odd=even.even=even

even.odd=odd.even=odd.

Our aim is to compute the index |Hq : Hq(n)| for q = 4, 6 and so in the following
pages we compute the intermediate indices |(Hq)1(n) : Hq(n)|, |(Hq)0(n) : (Hq)1(n)| and
|Hq : (Hq)0(n)|.

If q = 4 and m = 2, then we have the following lemma;

Lemma 4.1. If n is even then there are no odd elements in (H4)0(n).

Proof. If n is even and as c ≡ 0 mod n i.e. n|c by (4.2.5) then c is even. Therefore
2ad− bc is even, which is a contradiction. Hence if n is even then (H4)0(n) contains no
odd elements.

Now let q = 6 and m = 3, then

Lemma 4.2. If 3|n then there are no odd elements in (H6)0(n).

Proof. If 3|n and as c ≡ 0 mod n i.e. n|c by (4.2.5) then 3|c. Therefore 3|3ad− bc, which
is a contradiction. Hence there are no odd elements in (H6)0(n) when n is a multiple of
3.

Remark 4.3. If m = 2 then (n,m) = m if and only if n is even. If m = 3 then (n,m) = m

if and only if 3|n. Then
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Proposition 4.4. If (n,m) = m, then (H2m)0(n) = (H2m)e0(n) (i.e. there are no odd
elements in (H2m)0(n)) . If (n,m) = 1, then (H2m)e0(n) is a subgroup of index two in
(H2m)0(n), for m = 2, 3.

Proof. To prove this we just need to show that (H2m)0(n) contains an odd element if

(n,m) = 1. Suppose m = 2, then A =

(
1
√

2 1

n n+1
2

√
2

)
is an odd element in (H4)0(n).

Similarly, if m = 3 and n ≡ −1 mod 3, then B =

(
1
√

3 1

n n+1
3

√
3

)
and if n ≡ 1 mod 3

then we get C =

(
1−n

3

√
3 1

−n 1
√

3

)
, where B and C are odd elements in (H6)0(n).

Example 4.5. If m = 2 and n = 3, then the following is the set of cosets representatives
for the subgroup (H4)0(3)

{±
(

1 0
√

2

0
√

2 1

)
,±
(

1 1
√

2

0
√

2 1

)
,±
(

1 2
√

2

0
√

2 1

)
,

±
(

1
√

2 1

3 2
√

2

)
,±
(

2
√

2 1

3 1
√

2

)
,±
(

5
√

2 3

3 1
√

2

)
}.

In the following table we determine the indices for the vertical inclusions in
Figure 4.1

Table 4.1

|Hq(n) : He
q (n)| = 1 by (4.2.6)

|(Hq)1(n) : (Hq)
e
1(n)| = 1 by (4.2.7)

|(Hq)0(n) : (Hq)
e
0(n)| =

2 if (n,m) = 1

1 if (n,m) = m.

(4.2.9)

by Proposition 4.4

|Hq : He
q | = 2 by (2.2.1)

Hq(n) 6 (Hq)1(n) 6 (Hq)0(n) 6 Hq

∨ ∨ ∨ ∨
He
q (n) 6 (Hq)

e
1(n) 6 (Hq)

e
0(n) 6 He

q

Figure 4.1: The subgroups lattices of Hq
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Our aim is to determine the index |Hq : Hq(n)| by determining the index of each
inclusion in the lower chain of inclusions in Figure 4.1. As a consequence we can determine
the index of each inclusion in the upper chain of inclusions in Figure 4.1 using Table 4.1
i.e. the indices |(Hq)0(n) : (Hq)1(n)|, |Hq : (Hq)0(n)| and |(Hq)1(n) : Hq(n)|.

As
He
q (n) 6 (Hq)

e
1(n) 6 (Hq)

e
0(n) 6 He

q 6 Hq, (4.2.10)

we will show

1. He
q (n) E Hq, and so He

q (n) is normal in (Hq)
e
1(n), (Hq)

e
0(n) and He

q .

2. (Hq)
e
1(n) E (Hq)

e
0(n).

To prove (1) suppose A =

(
a

√
mb

√
mc d

)
∈ He

q (n), then we conjugate A by the gener-

ators of Hq

S =

(
0 −1

1 0

)
and T =

(
1
√
m

0 1

)
respectively, we get

SAS−1 =

(
d −√mc

−√mb a

)
≡ ±I mod n,

so SAS−1 ∈ He
q (n), and

TAT−1 =

(
a+mc

√
m(b+ d− a−mc)

√
mc d−mc

)
≡ ±I mod n

so TAT−1 ∈ He
q (n). To prove (2), let U(n) denotes the group of units modulo n and

consider the ring homomorphism

θ : (Hq)
e
0(n)→ U(n)/{±1}

defined by θ

(
a

√
mb

√
mnc d

)
≡ ±d mod n .

Because

θ(

(
a

√
mb

√
mnc d

)(
a′

√
mb′

√
mnc′ d′

)
) = θ

(
aa′ +mnc′b

√
m(ab′ + bd′)

n
√
m(ca′ + dc′) mncb′ + dd′

)

≡ ±(mncb′ + dd′) mod n ≡ ±dd′ mod n

≡ θ
(

a
√
mb

√
mnc d

)
θ

(
a′

√
mb′

√
mnc′ d′

)
,
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θ is a homomorphism. To prove θ is epimorphism, let d ∈ U(n)/{±1} and we need to
find A ∈ (Hq)

e
0(n) such that θ(A) ≡ ±d mod n. We first consider the case m = 2; if n is

even, then d is odd as (n, d) = 1. If n is odd, by replacing d with d+n if needed, we may
assume as well that d is odd. Then d is coprime to 2n and by Bézout’s identity, there

exist integers a, b such that ad+ 2bn = 1. Then the matrix

(
a b

√
2

−n
√

2 d

)
∈ (H4)e0(n)

has determinant 1 and we have θ(A) ≡ ±d mod n as desired. For m = 3; if 3|n, then
3 - d as (n, d) = 1. If 3 - n, by replacing d with d+ n when d ≡ 2 mod 3 and replacing d
with (d+ 1) +n when d ≡ 1 mod 3, if needed, we may assume as well that 3 - d. Then d
is coprime to 3n and by Bézout’s identity, there exist integers a, b such that ad+3bn = 1.

Then the matrix

(
a b

√
3

−n
√

3 d

)
∈ (H6)e0(n) has determinant 1 and we have θ(A) ≡ ±d

mod n. Hence θ is an epimorphism.
If d ≡ ±1 mod n, then because ad ≡ 1 mod n, then a ≡ ±1 mod n, showing that the
kernel of θ is (Hq)

e
1(n) and hence (Hq)

e
1(n) E (Hq)

e
0(n) with index φ(n)

2 .

For the indices of the quotient groups in the above chain (4.2.10), working out the index
of He

q (n) in (Hq)
e
1(n), we define a homomorphism

ψ : (Hq)
e
1(n)→ Zn

by

ψ(±
(
an+ 1

√
mb

cn
√
m dn+ 1

)
) ≡ b mod n.

ψ is homomorphism because

ψ(

(
an+ 1

√
mb

√
mcn dn+ 1

)(
a′n+ 1

√
mb′

√
mc′n d′n+ 1

)
)

= ψ

(
n(aa′n+ a+ a′ +mbc′) + 1

√
m(b′an+ b′ + bd′n+ b)

√
mn(cna′ + c+ c′dn+ c′) n(mcb′ + dd′n+ d+ d′) + 1

)
≡ (b′an+ b′ + bd′n+ b) mod n ≡ (b′ + b) mod n

≡ ψ
(
an+ 1

√
mb

√
mcn dn+ 1

)
ψ

(
a′n+ 1

√
mb′

√
mc′n d′n+ 1

)
.

Also given any b ∈ Zn, then

(
1
√
mb

0 1

)
∈ (Hq)

e
1(n) and is mapped to b under ψ, hence

ψ is clearly an epimorphism. The kernel consists of those elements with b ≡ 0 mod n.
As b ≡ 0 mod n, ad ≡ ±1 mod n. Then the kernel is He

q (n) which shows that

|(Hq)
e
1(n) : He

q (n)| = n. (4.2.11)
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Using (4.2.6) and (4.2.7), as there are no odd elements in Hq(n) and (Hq)1(n), we
get

|(Hq)1(n) : Hq(n)| = n. (4.2.12)

From (2) as the kernel is (Hq)
e
1(n), so the index of (Hq)

e
1(n) in (Hq)

e
0(n) is

|(Hq)
e
0(n) : (Hq)

e
1(n)| = φ(n)

2
. (4.2.13)

Now as

|(Hq)0(n) : (Hq)1(n)| = |(Hq)0(n) : (Hq)
e
0(n)||(Hq)

e
0(n) : (Hq)

e
1(n)|,

using (4.2.7), (4.2.9) and (4.2.13) , we get

|(Hq)0(n) : (Hq)1(n)| =

φ(n) if (n,m) = 1

φ(n)
2 if (n,m) = m.

(4.2.14)

The index of (Hq)0(n) in Hq was worked out by Keskin [Kes98, Lemma 3]. In order
to show the proof of this lemma we need to mention the following proposition.

Proposition 4.6. The groups He
4 , He

6 are conjugate to the congruence subgroups Γ0(2)

and Γ0(3) respectively inside PSL(2,R).

Proof. For q = 4, 6 and m = 2, 3. Let

A =

(
m
−1
4 0

0 m
1
4

)
∈ PSL(2,R) and B =

(
a b

√
m

c
√
m d

)
∈ He

q ,

then

ABA−1 =

(
a b

cm d

)
∈ Γ0(m).

Then the mapping χ : He
q → Γ0(m) defined by

χ(

(
a b

√
m

c
√
m d

)
) =

(
a b

cm d

)
∈ Γ0(m)

shows that He
q is conjugate to Γ0(m).

Theorem 4.7.

|Hq : (Hq)0(n)| =

n
∏
p|n(1 + 1

p) if (n,m) = 1

2n
∏
p|n,p 6=m(1 + 1

p) if (n,m) = m.
(4.2.15)

Proof. First assume that (m,n) = m, where p 6= m. It is clear that (Hq)
e
0(n) ⊂ He

q ⊂ Hq.
Let χ be the mapping defined in Proposition 4.6. Then χ is a mapping fromHe

q to Γ0(m).

42



Also since the map χ is conjugation by an element of PSL(2,R) then χ is an isomorphism
and χ((Hq)

e
0(n)) = Γ0(mn). Since Γ0(mn) ⊂ Γ0(m) ⊂ Γ, we get

|Hq : (Hq)0(n)| = |Hq : He
q ||He

q : (Hq)0(n)| = 2|He
q : (Hq)

e
0(n)|,

where

|He
q : (Hq)

e
0(n)| = |Γ0(m) : Γ0(mn)| = |Γ : Γ0(mn)|

|Γ : Γ0(m)| = n
∏

p|n,p 6=m
(1 +

1

p
).

Now if m = 2 and p 6= 2 , we have

|H4 : (H4)0(n)| = 2|He
4 : (H4)e0(n)| = 2|Γ0(2) : Γ0(2n)| = 2

|Γ : Γ0(2n)|
|Γ : Γ0(2)| = 2n

∏
p|n,p 6=2

(1+
1

p
).

Similarly when m = 3 and p 6= 3, we have

|H6 : (H6)0(n)| = 2|He
6 : (H6)e0(n)| = 2|Γ0(3) : Γ0(3n)| = 2

|Γ : Γ0(3n)|
|Γ : Γ0(3)| = 2n

∏
p|n,p 6=3

(1+
1

p
).

For the case where (m,n) = 1, since (Hq)
e
0(n) ⊂ He

q and (Hq)
e
0(n) ⊂ (Hq)0(n). It is clear

that
|Hq : He

q | = |(Hq)0(n) : (Hq)
e
0(n)| = 2.

Thus we have
|Hq : (Hq)0(n)| = |Hq : (Hq)

e
0(n)|

|(Hq)0(n) : (Hq)
e
0(n)|

=
|Hq : He

q ||He
q : (Hq)

e
0(n)|

|(Hq)0(n) : (Hq)
e
0(n)| = |He

q : (Hq)
e
0(n)|.

Using Proposition 4.6 and the map χ as defined above, we have

|He
q : (Hq)

e
0(n)| = |Γ0(m) : Γ0(mn)| = |Γ : Γ0(mn)|

|Γ : Γ0(m)| = n
∏
p|n

(1 +
1

p
).

If (n,m) = 1, using the first factors given by Theorem 4.7 and (4.2.14) with
φ(n) = n

∏
p|n(1− 1

p), we have

|Hq : (Hq)1(n)| = |Hq : (Hq)0(n)||(Hq)0(n) : (Hq)1(n)| = n2
∏
p|n

(1− 1

p2
).

As the case (n,m) = m can be calculated in a similar way, we get

|Hq : (Hq)1(n)| =

n2
∏
p|n(1− 1

p2
) if (n,m) = 1

n2(1− 1
m)
∏
p|n,p 6=m(1− 1

p2
) if (n,m) = m.

(4.2.16)
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Now as a conclusion, using Theorem 4.7, (4.2.14) and (4.2.12) as defined above we
can derive the following index formulae.
For (n,m) = 1, we have

|Hq : Hq(n)| = |Hq : (Hq)0(n)||(Hq)0(n) : (Hq)1(n)||(Hq)1(n) : Hq(n)|

= n
∏
p|n

(1 +
1

p
).n
∏
p|n

(1− 1

p
).n

= n3
∏
p|n

(1− 1

p2
).

For (n,m) = m, we have

|Hq : Hq(n)| = 2n
∏

p|n,p 6=m
(1 +

1

p
).
n

2

∏
p|n

(1− 1

p
).n

= n3(1− 1

m
)
∏

p|n,p 6=m
(1− 1

p2
).

Let us define µq(n) as follows:

µq(n) =

n3
∏
p|n(1− 1

p2
) if (n,m) = 1

n3(1− 1
m)
∏
p|n,p 6=m(1− 1

p2
) if (n,m) = m.

(4.2.17)

Now we have the following theorem which confirms Parson’s result [Par76, Theorem 2.3].

Theorem 4.8. µq(n) = |Hq : (Hq)(n)|.

As we know this is valid for q = 4 and 6, and only for n > 2. In the next section
we discuss the corresponding results for H3,H4 and H6 where n = 2.

4.3 The case n = 2

Every element of H3 = Γ is congruent mod(2) to precisely one of:

e = ±
(

1 0

0 1

)
, s1 = ±

(
0 1

−1 0

)
, s2 = ±

(
1 1

0 1

)
,

s3 = ±
(

1 0

1 1

)
, r1 = ±

(
1 1

−1 0

)
, r2 = ±

(
0 −1

1 1

)
.

The group Γ/Γ(2) is generated by s1, r2 which obey the relations

s2
1 = r3

2 = (s1r2)2 = e,
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so Γ/Γ(2) is isomorphic to the dihedral group D3 of order 6. Also for n = 2 we have
Γ0(2) = Γ1(2), a subgroup of index 3 in Γ.
Every element of H4 is congruent mod(2) to precisely one of:

e = ±
(

1 0
√

2

0
√

2 1

)
, s1 = ±

(
1 1

√
2

0
√

2 1

)
, s2 = ±

(
1 0

√
2

1
√

2 1

)
,

s3 = ±
(
−1 −1

√
2

1
√

2 1

)
, s4 = ±

(
1
√

2 1

1 1
√

2

)
, r1 = ±

(
1
√

2 1

−1 0
√

2

)
,

s5 = ±
(

0
√

2 −1

1 0
√

2

)
, r2 = ±

(
0
√

2 −1

1 1
√

2

)
.

The group H4/H4(2) is generated by s1, r1 which obey the relations

s2
1 = r4

1 = (s1r1)2 = e,

so H4/H4(2) is isomorphic to the dihedral group D4 of order 8.
Also for n = 2 we have (H4)0(2) = (H4)1(2), is a subgroup of index 4.
Every element of H6 is congruent mod(2) to precisely one of:

e = ±
(

1 0
√

3

0
√

3 1

)
, s1 = ±

(
1 1

√
3

0
√

3 1

)
, s2 = ±

(
1 0

√
3

1
√

3 1

)
,

s3 = ±
(

2 1
√

3

1
√

3 2

)
, r1 = ±

(
5 1

√
3

3
√

3 2

)
, r2 = ±

(
2 1

√
3

3
√

3 5

)
,

s4 = ±
(

1
√

3 10

2 7
√

3

)
, s5 = ±

(
1
√

3 7

2 5
√

3

)
, s6 = ±

(
0
√

3 −1

1 0
√

3

)
,

s7 = ±
(

5
√

3 2

7 1
√

3

)
, r3 = ±

(
1
√

3 1

−1 0
√

3

)
, r4 = ±

(
0
√

3 1

−1 1
√

3

)
.

The group H6/H6(2) is generated by s1, r1 which obey the relations

s2
1 = r6

1 = (s1r1)2 = e,

so H6/H6(2) is isomorphic to the dihedral group D6 of order 12. Also for n = 2 we have
(H6)0(2) = 2(H6)1(2), is a subgroup of index 3.

The following table summarizes the corresponding indices;
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Γ H4 H6

|(Hq)1(2) : Hq(2)| 2 2 2
|(Hq)0(2) : (Hq)1(2)| 1 1 2
|Hq : (Hq)0(2)| 3 4 3
|Hq : Hq(2)| 6 8 12
Hq/Hq(2) ∼= D3 D4 D6

As a conclusion, when n = 2, q = 4, 6 and m = 2, 3, the index |Hq : Hq(2)| = 4m.

4.4 The principal congruence maps M3(n)

The majority of the content in this section is drawn from [IS05].

Definition 4.9. Let M3(n) be the triangular map M̂3/Γ(n).
We call M3(n) the principal congruence map, PC-map or the Farey map modulo n.

The vertices of this map are the Farey fractions mod n. These are of the form a
c

where a, c ∈ Z and (a, c, n) = 1, excluding 0
0 . We can think of these vertices as fractions

a
c where now a, c ∈ Zn (not both zeros), and we identify a

c with −a−c . Essentially these
are ordered pairs (a, c) where (a, c, n) = 1 , (a, c) 6= (0, 0) and where (a, c) is identified
with (−a,−c). The edges and triangular faces of M3(n) are the projections of the edges
and triangles of the universal triangulation M̂3; thus two vertices are joined by an edge
if and only if ad− bc ≡ ±1 mod n, and a+c

b+d and a−c
b−d are the vertices forming triangular

faces with a
b and c

d . These are the only faces in the map.

Example 4.10. The vertices of M3(4) are 1
0 ,

1
1 ,

2
1 ,

3
1 ,

1
2 ,

0
1 .

The vertices of M3(5) are 1
0 ,

1
1 ,

2
1 ,

3
1 ,

4
1 ,

0
2 ,

1
2 ,

2
2 ,

3
2 ,

4
2 ,

2
0 ,

0
1 .

As we can notice that 2
2 is a vertex in M3(5) as (2, 2, 5) = 1 but not a vertex in M3(4)

as (2, 2, 4) = 2.

Example 4.11. If n = 2 there are three vertices 1
0 ,

0
1 ,

1
1 . Any two vertices are joined by

an edge and so M3(2) is a triangle embedded in the sphere. For n = 3, 4 we obtain a
tetrahedron and octahedron respectively, as in Figure 4.2. Also for n = 5 we obtain an
icosahedron; thus all the regular triangular maps on the sphere are PC-maps. Moreover,
for n ≥ 6 the maps M3(n) give some interesting geometric objects, such as the map of
type {6, 3}2,2 of genus 1 on a torus for n = 6. Also Klein’s Riemann surface of genus 3
and the Fricke-Klein surface of genus 5 when n = 7 and 8 respectively.

The vital statistics for PC-maps M3(n) were discussed in [IS05]. As M3(n) is a
regular map, using |Γ : Γ(n)| as defined in (4.1.3), we have: the number of edges is equal
to |Γ : Γ(n)|/2, the number of faces is equal to |Γ : Γ(n)|/3, and the number of vertices
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Figure 4.2: Left: M3(3); tetrahedron. Right: M3(4); octahedron

is equal to |Γ : Γ(n)|/n. Every vertex has valency n. The genus g3(n) of M3(n) can be
found using the following well-known formula [Ran77]

g3(n) = 1 +
n2

24
(n− 6)

∏
p|n

(1− 1

p2
) (n > 2).

The case n = 2 was discussed in Section 4.3. The following table gives some inform-
ation (number of vertices and edges, valency of faces, genus, etc.) for n = 2, 3, 4, 5, 6, 7.

n |V | |E| |F | g3(n) |Γ : Γ(n)| Aut(M3(n)) Description of M3(n) Riemann surface
2 3 3 2 0 6 S3 Triangle Riemann sphere
3 4 6 4 0 12 A4 Tetrahedron Riemann sphere
4 6 12 8 0 24 S4 Octahedron Riemann sphere
5 12 30 20 0 60 A5 Icosahedron Riemann sphere
6 12 36 24 1 72 PSL2(Z6) {6, 3}2,2 Hexagonal torus
7 24 84 56 3 168 PSL2(Z7) Klein’s surface Klein’s quartic

Table 4.2: Vital statistics for some M3(n) maps

Here Aut(M3(n)) is the automorphism group of the maps M3(n). Also Sn and An
are the symmetric and alternating groups on n letters, respectively.

4.5 The principal congruence maps Mq(I)

In this section we generalize the concept of the Farey map modulo n to the Hecke
groups Hq. We deal with ideals in Z[λq] of the form I = (n), where n is an integer, and
with the cases q = 4 and 6.

Definition 4.12. If M̂q is the universal q-gonal map, and I is an ideal of Z[λq] then a
PC-map is a map of the form M̂q/Hq(I).
We call Mq(I) a principal congruence map or PC-map.
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The maps M̂q/Hq(n) for q = 4 and 6 lie on the Riemann surface H∗/Hq(n), where
H∗ = H ∪ Q ∪ {∞} and H∗/Hq(n) denotes the quotient surface H/Hq(n) compactified
by adding the points in Q(

√
m) ∪ {∞} to the plane H.

4.5.1 Vital Statistics for PC-maps M4(n)

As described in Example 3.5 the vertices of M̂4 are classified as even and odd
vertices, and the same applies in M4(n). The even vertices of M4(n) form the orbit of
∞ = 1

0
√

2
under even elements of H4. For a, b, c, d ∈ Zn, even vertices have the form a

c
√

2

where (a, c, n) = 1, and a is odd whenever n is even. The odd vertices form the orbit of
0 = 0

√
2

1 under even elements of H4. Odd vertices have the form b
√

2
d where (b, d, n) = 1

and d is odd whenever n is even. Also we identify a
c
√

2
with −a

−c
√

2
. As ∞ = 1

0
√

2
is an

even vertex which is joined to 0 = 0
√

2
1 that is an odd vertex, so edges of M4(n) must

join even and odd vertices a
c
√

2
and b

√
2
d if and only if ad− 2bc ≡ ±1 mod n. Because the

edges never join two vertices of the same type we have a bipartite graph. The faces of
M4(n) are just the images of the principal face of M̂4 under H4.

Elements of H4 has been discussed in Section 2.2. H4 acts transitively on the darts
of M̂4. A dart of M̂4 is an ordered pair ( a

c
√

2
, b
√

2
d ) and elements of H4 map the principal

dart δ = ( 1
0
√

2
, 0
√

2
1 ) to ( a

c
√

2
, b
√

2
d ) and so H4/H4(n) acts transitively on the darts of

M̂4/H4(n). By Definition 1.10 M̂4 is a regular map and for a similar reason so is M4(n).
As 1

0
√

2
is joined to k

√
2

1 in M4(n) for k ∈ Zn, it follows that 1
0
√

2
has valency n and

hence by regularity every vertex of M4(n) has valency n. Using Theorem 4.8 helps us in
working out the numbers of darts, edges, faces and vertices of M4(n), therefore we have:

The number of darts = µ4(n)

The number of edges = µ4(n)/2

The number of faces = µ4(n)/4

The number of vertices = µ4(n)/n

Here |H4 : (H4)(n)| = µ4(n) as defined immediately before the Theorem 4.8.
If g4(n) is the genus of the map M4(n) then the Euler characteristic is given by

2− 2g4(n) = µ4(n)(
1

n
− 1

2
+

1

4
) = µ4(n)(

4− n
4n

),

g4(n) = µ4(n)(
n− 4

8n
) + 1,
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from which we deduce the following formulae for the genus of M4(n)

g4(n) =


0 if n = 2

1 + n2

8 (n− 4)
∏
p|n(1− 1

p2
) if (n, 2) = 1

1 + n2

16 (n− 4)
∏
p|n,p 6=2(1− 1

p2
) if (n, 2) = 2.

(4.5.1)

g4(n) is also the genus of the surface H∗/H4(n) which carries the map M4(n).

Let us see what these vertices are for low values of n, say n = 2, 3, ..., 8. As shown
in Figures 4.4, 4.6, 4.7 and 4.3, these maps give interesting geometric shapes.

Table 4.3: M4(n) vertices for low values of n

n M4(n) vertices
2 1

0
√

2
, 1

1
√

2
, 0
√

2
1 , 1

√
2

1

3 1
0
√

2
, 0

1
√

2
, 1

1
√

2
, 1

2
√

2
, 0
√

2
1 , 2

√
2

1 , 1
√

2
0 , 1

√
2

1

4 1
0
√

2
, 1

1
√

2
, 3

1
√

2
, 1

2
√

2
, 0
√

2
1 , 1

√
2

1 , 1
√

2
3 , 2

√
2

1

5 1
0
√

2
, 2

0
√

2
, 0

1
√

2
, 1

1
√

2
, 2

1
√

2
, 3

1
√

2
, 4

1
√

2
, 0

2
√

2
, 1

2
√

2
, 3

2
√

2
, 2

2
√

2
, 4

2
√

2
,

0
√

2
1 , 0

√
2

2 , 1
√

2
0 , 1

√
2

1 , 1
√

2
2 , 1

√
2

3 , 1
√

2
4 , 2

√
2

0 , 2
√

2
1 , 2

√
2

2 , 2
√

2
3 , 2

√
2

4

6 1
0
√

2
, 1

1
√

2
, 3

1
√

2
, 5

1
√

2
, 1

2
√

2
, 3

2
√

2
, 5

2
√

2
, 1

3
√

2
,

0
√

2
1 , 1

√
2

1 , 1
√

2
3 , 1

√
2

5 , 2
√

2
1 , 2

√
2

3 , 2
√

2
5 , 3

√
2

1

7 1
0
√

2
, 2

0
√

2
, 3

0
√

2
, 0

1
√

2
, 1

1
√

2
, 2

1
√

2
, 3

1
√

2
, 4

1
√

2
, 5

1
√

2
, 6

1
√

2
, 0

2
√

2
, 1

2
√

2
, 2

2
√

2
, 3

2
√

2
, 4

2
√

2
, 5

2
√

2
,

6
2
√

2
, 0

3
√

2
, 1

3
√

2
, 2

3
√

2
, 3

3
√

2
, 4

3
√

2
, 5

3
√

2
, 6

3
√

2
,

0
√

2
1 , 0

√
2

2 , 0
√

2
3 , 1

√
2

0 , 1
√

2
1 , 1

√
2

2 , 1
√

2
3 , 1

√
2

4 , 1
√

2
5 , 1

√
2

6 , 2
√

2
0 , 2

√
2

1 , 2
√

2
2 , 2

√
2

3 , 2
√

2
4 , 2

√
2

5 ,
2
√

2
6 , 3

√
2

0 , 3
√

2
1 , 3

√
2

2 , 3
√

2
3 , 3

√
2

4 , 3
√

2
5 , 3

√
2

6

8 1
0
√

2
, 3

0
√

2
, 1

1
√

2
, 3

1
√

2
, 5

1
√

2
, 7

1
√

2
, 1

2
√

2
, 3

2
√

2
, 5

2
√

2
, 7

2
√

2
, 1

3
√

2
, 3

3
√

2
, 5

3
√

2
, 7

3
√

2
, 1

4
√

2
, 3

4
√

2
,

0
√

2
1 , 0

√
2

3 , 1
√

2
1 , 1

√
2

3 , 1
√

2
5 , 1

√
2

7 , 2
√

2
1 , 2

√
2

3 , 2
√

2
5 , 2

√
2

7 , 3
√

2
1 , 3

√
2

3 , 3
√

2
5 , 3

√
2

7 , 4
√

2
1 , 4

√
2

3

The corresponding maps M4(n) for these values of n are as follows:

1
1
√

2

1
0
√

2
0
√

2
1

1
√

2
1

Figure 4.3: M4(2); Square embedded in a sphere
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2 2
1

0 2
1

1 2
0

1 2
1

0
1 2

1
1 2

1
0 2

1
2 2

Figure 4.4: M4(3); Cube embedded in a sphere

2 2
1

0 2
1

1 2
0

1 2
1

0
1 2

1
1 2

1
0 2

1
2 2

Figure 4.5: The cube with its bipartite structure
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1
2
√

2

1
2
√

2
1

2
√

2

1
2
√

2

1
1
√

2

1
1
√

2
1

3
√

2

1
3
√

2

1
0
√

2
1
√

2
1

3
√

2
1

0
√

2
1

2
√

2
1

Figure 4.6: M4(4); {4, 4}2,2 embedded in a square torus of genus 1

[The square torus is obtained by identifying the opposite sides of the outer square].

Perhaps the most famous example of a regular map of type {n, 4} corresponds to a
Riemann surface of genus 4 with 120 automorphisms (having S5 as automorphism group)
when n = 5. We can construct this by defining an epimorphism ω : Γ(2, 5, 4)→ S5. If

Γ(2, 5, 4) = 〈X,Y, Z |X2 = Y 5 = Z4 = XY Z = 1〉,

then ω is given by X 7→ x = (1 5), Y 7→ y = (1 5 4 3 2), and Z 7→ z = (2 3 4 5). If
K is the kernel then H/K is a Riemann surface with 120 automorphisms. Then by the
Riemann-Hurwitz formula

2− 2g4(5) = µ4(5)(
1

5
− 1

2
+

1

4
) = 120(

−1

20
),

therefore the genus of the quotient surface is g4(5) = 4. The surface underlying this map
is the unique Riemann surface of genus 4 with 120 automorphisms, namely Bring’s curve.
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H2

C2C2

F1I2 D2

C1

A1

D1

L2

E1

G2

G1

A2

H2 H2

H2H2

C2

C2

C2

H1

G1

E2B2

E1

K1

J2

F2 J2

F2B1 B1

B1 J2

B2

B1F2

E2

J1

K2
C1D1

L1

K2

F2 E1

I1

B1
B2

J2

G1
J2

I1

B1
J2

F2

J2
C1

L1

E2
F1

J1

F1
B2

D1
F2

K1H1

B1

B1B1

B1

J2

K2

K2
K2

K2

B2

B2
E2

Figure 4.7: M4(5); {5, 4} embedded in Bring’s curve of genus 4

Table 4.4: Table of Correspondence for M4(5)

A1 : 1
0
√

2
B1 : 2

0
√

2
C1 : 0

1
√

2
D1 : 1

1
√

2

E1 : 2
1
√

2
F1 : 3

1
√

2
G1 : 4

1
√

2
H1 : 0

2
√

2

I1 : 1
2
√

2
J1 : 3

2
√

2
K1 : 2

2
√

2
L1 : 4

2
√

2

A2 : 0
√

2
1 B2 : 0

√
2

2 C2 : 1
√

2
0 D2 : 1

√
2

1

E2 : 1
√

2
2 F2 : 1

√
2

3 G2 : 1
√

2
4 H2 : 2

√
2

0

I2 : 2
√

2
1 J2 : 2

√
2

2 K2 : 2
√

2
3 L2 : 2

√
2

4

Bring’s curve is famous because it has the largest possible automorphism group of
any Riemann surface of genus 4, namely S5. Every compact Riemann surface corresponds
to a complex curve, which in this case is the complete intersection of the three hyper-
surfaces

5∑
i=1

xi = 0

5∑
i=1

x2
i = 0

5∑
i=1

x3
i = 0

in four-dimensional projective space P4 [Web05] and [RR92]. The regular map M4(5) of
genus 4 has 120 automorphisms as shown in Table 4.5. In [CD01] a list of regular maps
of genus 2 ≤ g ≤ 101 is given. From this we find that there is a unique regular map of
type {5, 4} with 120 automorphisms.
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Figure 4.8: An early picture of Bring’s curve which is associated to the small stellated
dodecahedron [Web05]. It appeared as a mosaic by Paolo Uccello on the floor of San

Marco cathedral, Venice ca. 1430.

This picture actually denotes a map of type {5, 5}, but because of the inclusion
Γ(2, 5, 5) < Γ(2, 4, 5) it can be shown that the underlying Riemann surfaces are the
same. In [SS03] it is shown that this map of type {4, 5} is the medial map of the map of
type {5, 5}. Start with a map M of type {5, 5}. Two edges are adjacent if they intersect
in a vertex. We define a medial to be a geodesic joining the midpoints of two adjacent
edges. The medial map of M , denoted by Med(M ), has a vertex set the mid-points of
the edges of M , the edge set of Med(M ) are the medials of M and there are two kinds
of face centers of Med(M ); firstly those at the vertices of M and secondly, those at the
face-centers of M . It is easy to see that the vertices of Med(M ) have valency 4, and
the face sizes are equal to 5, so the Med(M ) has type {4, 5}. Our map in Figure 4.7 of
type {5, 4} is just the dual map of the medial map of type {5, 5} and so corresponds to
Bring’s curve.

Example 4.13. The following table provides the vital statistics for some examples of
maps M4(n)

n µ4(n) |E| |V | |F | g4(n)

2 8 4 4 2 0
3 24 12 8 6 0
4 32 16 8 8 1
5 120 60 24 30 4
6 96 48 16 24 5
7 336 168 48 84 19
8 256 128 32 64 17

Table 4.5: Vital statistics for some maps M4(n)
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The following is the technique of drawing any M4(n):
To draw M4(n) we do the following.

• Find out the number of edges, vertices and faces, using the formulae in (4.5.1), as
demonstrated in Table 4.5.

• Knowing the valency n of each vertex, accordingly we can work out the n neigh-
bor vertices of each vertex, applying the relations ad − 2bc ≡ ±1 mod n, and
2ad− bc ≡ ±1 mod n.

• Finding the principal face as has been shown in Section 3.2, Example 3.2.

• Applying the generators T =

(
1
√

2

0 1

)
and R =

(√
2 −1

1 0

)
or words in them to

the principal face to form all others equilateral faces.

• Depending on the neighborhoods and the valency of each vertex, we can arrange
the quadrilateral faces to get geometric objects as in Figures 4.3, 4.4, 4.6,4.7.

Let us discuss the drawing of M4(5) in details.

Example 4.14. • Listing the 24 vertices as shown in Example 4.13, working out the
number of vertices from (4.5.1). The even and odd vertices are;
A1 = 1

0
√

2
, B1 = 2

0
√

2
, C1 = 0

1
√

2
, D1 = 1

1
√

2
, E1 = 2

1
√

2
, F1 = 3

1
√

2
,

G1 = 4
1
√

2
, H1 = 0

2
√

2
, I1 = 1

2
√

2
, J1 = 3

2
√

2
, K1 = 2

2
√

2
, L1 = 4

2
√

2
,

A2 = 0
√

2
1 , B2 = 0

√
2

2 , C2 = 1
√

2
0 , D2 = 1

√
2

1 , E2 = 1
√

2
2 , F2 = 1

√
2

3 , G2 = 1
√

2
4 ,

H2 = 2
√

2
0 , I2 = 2

√
2

1 , J2 = 2
√

2
2 , K2 = 2

√
2

3 , L2 = 2
√

2
4 .

Also there are 30 faces.

• The valency of each vertex is 5. Applying the relations ad− 2bc ≡ ±1 mod 5, and
2ad− bc ≡ ±1 mod 5, among the vertices to find the neighborhood vertices of each
vertex. We have;

• The principal face, call it face 1, has the vertices D2, D1, A2, A1.
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A1 ↔ A2, D2, I2, L2, G2 A2 ↔ A1, D1, I1, L1, G1

B1 ↔ B2, E2, F2, J2,K2 B2 ↔ B1, E1, F1, J1,K1

C1 ↔ H2, I2, J2,K2, L2 C2 ↔ H1, I1, J1,K1, L1

D1 ↔ A2, D2, F2, H2,K2 D2 ↔ A1, D1, F1, H1, J1

E1 ↔ B2, F2, G2, H2, L2 E2 ↔ B1, F1, G1, H1, L1

F1 ↔ B2, D2, E2, H2, I2 F2 ↔ B1, D1, E1, H1, I1

G1 ↔ A2, E2, G2, H2, J2 G2 ↔ A1, E1, G1, H1,K1

H1 ↔ C2, D2, E2, F2, G2 H2 ↔ C1, D1, E1, F1, G1

I1 ↔ A2, C2, F2, J2, L2 I2 ↔ A1, C1, F1,K1, L1

J1 ↔ B2, C2, D2,K2, L2 J2 ↔ B1, C1, G1, I1,K1

K1 ↔ B2, C2, I2, G2, J2 K2 ↔ B1, C1, D1, J1, L1

L1 ↔ A2, C2, E2, I2,K2 L2 ↔ A1, C1, E1, I1, J1

Table 4.6: Vertices Neighborhoods

H2

C2C2

F1I2 D2

C1

A1

D1

L2

E1

G2

G1

A2

H2 H2

H2H2

C2

C2

C2

H1

G1

E2B2

E1

K1

J2

F2 J2

F2B1 B1

B1 J2

B2

B1F2

E2

J1

K2
C1D1

L1

K2

F2 E1

I1

B1
B2

J2

G1
J2

I1

B1
J2

F2

J2
C1

L1

E2
F1

J1

F1
B2

D1
F2

K1H1

B1

B1B1

B1

J2

K2

K2
K2

K2

B2

B2
E2

1

2

3

4 5

6

7
8

9

14
16

20

17

18
21

15 22

12
13

10
11

25

24
27

26
28

2930

31
322333

34

35
36

37

38

39
40

41 42 43 44

45
46

47

48

49
50

Figure 4.9: Faces of M4(5)

• Applying the generators T and R to get some faces as follow;
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T over Face 1→ Face 2 T 2 over Face 1→ Face 3 T 3 over Face 1→ Face 4
T 4 over Face 1→ Face 5 R over Face 34→ Face 43 R over Face 3→ Face 7
R over Face 4→ Face 8 R2 over Face 2→ Face 9 R2 over Face 19→ Face 35
R2 over Face 4→ Face 11 R3 over Face 17→ Face 46 R3 over Face 4→ Face 13
T over Face 6→ Face 14 T over Face 46→ Face 39 T over Face 31→ Face 35
T over Face 7→ Face 16 T 2 over Face 7→ Face 18 T 3 over Face 7→ Face 19
T over Face 8→ Face 20 T 2 over Face 8→ Face 21 T 3 over Face 8→ Face 22
T over Face 10→ Face 23 T 2 over Face 10→ Face 24 T 3 over Face 10→ Face 25
T over Face 11→ Face 26 R3 over Face 22→ Face 47 R3 over Face 27→ Face 31
T over Face 39→ Face 34 T 2 over Face 24→ Face 30 T over Face 34→ Face 38

• Arranging the faces to build up the final shape of the map, depending on the
common neighbor vertices of each vertex and the edge in common.

4.5.2 Vital Statistics for PC-maps M6(n)

Discussion of the vital statistics for M6(n) is analogous to that for M4(n), with
slight differences. The vertices of M̂6 are partitioned into even and odd vertices, as in
M6(n). The even vertices of M6(n) are the orbit of ∞ = 1

0
√

3
under even elements of

H6. For a, b, c, d ∈ Zn, even vertices have the form a
c
√

3
where (a, c, n) = 1, and 3 - a

whenever 3|n. The odd vertices are the orbit of 0 = 0
√

3
1 under even elements of H6. Odd

vertices have the form b
√

3
d where (b, d, n) = 1 and 3 - d whenever 3|n. Edges and faces

are exactly the same as described in M4(n). As in case q = 4, the edges never join two
vertices of the same type this implies that the graph is bipartite. Finding the numbers
of darts, edges, faces and vertices of M6(n), using Theorem 4.8 we have;

The number of darts = µ6(n)

The number of edges = µ6(n)/2

The number of faces = µ6(n)/6

The number of vertices = µ6(n)/n

Here |H6 : (H6)(n)| = µ6(n) as defined immediately before the Theorem 4.8.
If g6(n) is the genus of the map M6(n) then the Euler characteristic is given by

2− 2g6(n) = µ6(n)(
1

n
− 1

2
+

1

6
) = µ6(n)(

3− n
3n

),

g6(n) = 1 + µ6(n)(
n− 3

6n
),
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from which we deduce the following formulae for the genus of M6(n)

g6(n) =


0 if n = 2

1 + n2

6 (n− 3)
∏
p|n(1− 1

p2
) if (n, 3) = 1

1 + n2

9 (n− 3)
∏
p|n,p 6=3(1− 1

p2
) if (n, 3) = 3.

(4.5.2)

The vertices for low values of n, say n = 2, 3, ..., 6 are;

Table 4.7: M6(n) vertices for low values of n

n M6(n) vertices
2 1

0
√

3
, 0

1
√

3
, 1

1
√

3
, 0
√

3
1 , 1

√
3

0 , 1
√

3
1

3 1
0
√

3
, 1

1
√

3
, 1

2
√

3
, 0
√

3
1 , 1

√
3

1 , 2
√

3
1

4 1
0
√

3
, 0

1
√

3
, 1

1
√

3
, 2

1
√

3
, 3

1
√

3
, 1

2
√

3
,

0
√

3
1 , 1

√
3

0 , 1
√

3
1 , 1

√
3

2 , 1
√

3
3 , 2

√
3

1

5 1
0
√

3
, 2

0
√

3
, 0

1
√

3
, 1

1
√

3
, 2

1
√

3
, 3

1
√

3
, 4

1
√

3
, 0

2
√

3
, 1

2
√

3
, 2

2
√

3
, 3

2
√

3
, 4

2
√

3
,

0
√

3
1 , 0

√
3

2 , 1
√

3
0 , 1

√
3

1 , 1
√

3
2 , 1

√
3

3 , 1
√

3
4 , 2

√
3

0 , 2
√

3
1 , 2

√
3

2 , 2
√

3
3 , 2

√
3

4

6 1
0
√

3
, 1

1
√

3
, 2

1
√

3
, 4

1
√

3
, 5

1
√

3
, 1

2
√

3
, 5

2
√

3
, 1

3
√

3
, 2

3
√

3
0
√

3
1 , 1

√
3

1 , 1
√

3
2 , 1

√
3

4 , 1
√

3
5 , 2

√
3

1 , 2
√

3
5 , 3

√
3

1 , 3
√

3
2

7 1
0
√
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√
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√
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√
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√
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√
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√
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√
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The corresponding M6(n) maps for these values of n;
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Figure 4.10: M6(2); Hexagon embedded in a sphere
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Figure 4.11: M6(3); {3, 6} embedded in a hexagonal torus
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Figure 4.12: M6(4); {4, 6} of genus 3
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Example 4.15. The following table provides the vital statistics for some examples of
maps M6(n)

n µ6(n) |E| |V | |F | g6(n)

2 12 6 6 2 0
3 18 9 6 3 1
4 48 24 12 8 3
5 120 60 24 20 9
6 108 54 18 18 37
7 336 168 48 56 33
8 384 192 48 64 41

Table 4.8: Vital statistics for some maps M6(n)

4.6 The star of a vertex

In a graph G the star of a vertex x consists of all vertices of G that are joined to x
by an edge, including x itself.

Definition 4.16. An even-star is the star consisting of an even vertex of the map Mq(n)

and all its neighbors (always odd vertices). Also an odd-star is the star consisting of an
odd vertex of the map Mq(n) and all its neighbors (always even vertices).

Definition 4.17. An arithmetic progression consisting of successive neighbors of points
a

c
√
m
∈ Q̂(

√
m) is a sequence xk

√
m

yk
, where each of xk and yk is an arithmetic progression

sequence of points in Z by itself. The first term is x0
√
m

y0
. While an arithmetic progression

consisting of successive neighbors of points a
√
m
c ∈ Q̂(

√
m) is a sequence xk

yk
√
m
, where

each of xk and yk is an arithmetic progression sequence of points in Z by itself. The first
term is x0

y0
√
m
.

If T =

(
a b

√
m

c
√
m d

)
is a unuimodular matrix then T (xk

√
m

yk
) is an arithmetic

progression of points in Q̂(
√
m), meaning it is an arithmetic progression consisting of

successive neighbors of the point a
c
√
m
, where the first term is T ( b

√
m
d ) and the common

difference is T (a
√
m

cm ). Similarly if T =

(
a
√
m b

c d
√
m

)
, then T ( xk

yk
√
m

) is an arithmetic

progression of neighbors of the point a
√
m
c , where the first term is T ( b

d
√
m

) and the
common difference is T ( am

c
√
m

).
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Theorem 4.18. The even-star of the even vertex a√
mc

of the map Mq(n) consists of
a√
mc

together with all odd vertices of the form

(b+ ak)
√
m

d+mck
(4.6.1)

where ad−mbc ≡ 1 mod n and k = 0, 1, ..., n− 1.

Proof. First we find the even-star of 1
0
√
m

in Q(
√
m). This consists of 1

0
√
m

together

with the odd vertices 0
√
m

1 , 1
√
m

1 , ..., (n−1)
√
m

1 . Here a√
mc

= 1
0
√
m

so
√
mb
d = 0

√
m

1 , hence

a = d = 1 and b = c = 0, therefore (b+ak)
√
m

d+mck = k
√
m

1 , k = 0, 1, ..., n− 1, as required.

More generally, let T =

(
a b

√
m

c
√
m d

)
be a unimodular matrix, U =

(
1 1

√
m

0
√
m 1

)
∈ He

q .

Then T ( 1
0
√
m

) = a√
mc

. The stabilizer of 1
0
√
m

is the cyclic group generated by U so the
stabilizer of a√

mc
consists of elements of the form TUkT−1. Let

S = TUkT−1 =

(
1−mkac a2k

√
m

−mkc2√m 1 +mkac

)
.

Therefore if a√
mc
←→

√
mb
d , then S( a√

mc
)←→ S(

√
mb
d ) so that a√

mc
←→ S(

√
mb
d ) (where

←→ denotes an edge). Now

S(

√
mb

d
) =

(
1−mkac a2k

√
m

−mkc2√m 1 +mkac

)(√
mb

d

)

=

(√
m(b−mkacb+ ka2d)

−m2kbc2 +mkacd+ d

)
.

Using ad−mbc = 1 =⇒ ad = 1 +mbc, this becomes

(b+ ak)
√
m

d+mck
.

This is true for k = 0, 1, ..., n − 1 so that these are the n odd points in the even-star of
a√
mc

.

Theorem 4.19. The odd-star of the odd vertex
√
ma
c of the map Mq(n) consists of

√
ma
c

together with all even vertices of the form

b+mak

(d+ ck)
√
m

(4.6.2)

where mad− bc ≡ 1 mod n and k = 0, 1, ..., n− 1.

The proof is similar to the proof of Theorem 4.18.
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By Definition 4.17, the sequence (4.6.1) is an arithmetic progression consisting of
successive neighbors of the point a

c
√
m
, where the first term is b

√
m
d and the common

difference is a
√
m

cm . Similarly the sequence (4.6.2) is an arithmetic progression consisting
of successive neighbors of the point a

√
m
c , where the first term is b

d
√
m

and the common
difference is am

c
√
m
.

Example 4.20. To find the even-star of 4
1
√

2
in M4(5), see Figure 4.7, we have

√
mb
d = 0

√
2

1 ,

then our unimodular matrix T is

(
4 0

√
2

1
√

2 1

)
. The first term and the common dif-

ference of the arithmetic progression (4.6.1) are 0
√

2
1 and 4

√
2

2 respectively. Thus the
successive neighbors of 4

1
√

2
is given by the formula 4k

√
2

1+2k . Therefore, the even-star of
4

1
√

2

in M4(5) is

{ 4

1
√

2
,

0
√

2

1
,

1
√

2

2
,

2
√

2

0
,

2
√

2

2
,

4
√

2

1
} = {G1, A2, E2, H2, J2, G2}.

Figure 4.13: Left: The odd-star of 1
√
3

2 in M6(4) . Right: The even-star of 4
1
√
2
in

M4(5)

Example 4.21. To find the odd-star of 1
√

3
2 in M6(4), see Figure 4.12, we have b

d
√
m

= 0
1
√

3
,

then our unimodular matrix T is

(
1
√

3 0

2 1
√

3

)
. The first term and the common dif-

ference of the arithmetic progression (4.6.2) are 0
1
√

3
and 3

2
√

3
respectively. Thus the

successive neighbors of 1
√

3
2 is given by the formula 3k

(1+2k)
√

3
. Therefore, the odd-star of

1
√

3
2 in M6(4) is

{1
√

3

2
,

0

1
√

3
,

1

1
√

3
,

2

1
√

3
,

3

1
√

3
}.

Theorem 4.22. For a prime p the even-stars of 1
0
√
m
, 2

0
√
m
, ..., (p−1)/2

0
√
m

, and the odd-stars

of 1
√
m

0 , 2
√
m

0 , ..., ((p−1)/2)
√
m

0 are disjoint and cover Mq(p).
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Proof. Consider an even vertex a
0
√
m
. Let A be the inverse of a mod p. Then the even-

star of a
0
√
m

is { a
0
√
m
, 0
√
m
A , 1

√
m
A , ...., (p−1)

√
m

A }. Consider a distinct even-vertex a′

0
√
m
, so

that a 6≡ ±a′ mod p. Let A′ be the inverse of a′ mod p. Then A 6≡ ±A′ mod p so that the
even-star of a′

0
√
m

is { a′

0
√
m
, 0
√
m

A′ ,
1
√
m

A′ , ....,
(p−1)

√
m

A′ }. Now let b
√
m

0 be an odd vertex. Let

B be the inverse of b mod p. Then the odd-star of b
√
m

0 is { b
√
m

0 , 0
B
√
m
, 1
B
√
m
, ...., (p−1)

B
√
m
}.

Let B′ be the inverse of b′ mod p. Then B 6≡ ±B′ mod p so that the odd-star of b
′√m
0 is

{ b′
√
m

0 , 0
B′
√
m
, 1
B′
√
m
, ...., (p−1)

B′
√
m
}. As A 6≡ ±A′ mod p these even-stars are disjoint, also as

B 6≡ ±B′ mod p, these odd-stars are disjoint. There are p+ 1 vertices in each even-star
and odd-star and (p − 1)/2 stars of each type. Thus there are p2 − 1 vertices which is
the total number of vertices of Mq(p).

Example 4.23. M6(5). Using Table 4.7 we find that the even-star of

1

0
√

3
is { 1

0
√

3
,

0
√

3

4
,

1
√

3

4
,

2
√

3

4
,

3
√

3

4
,

4
√

3

4
},

and that of
2

0
√

3
is { 2

0
√

3
,

0
√

3

2
,

1
√

3

2
,

2
√

3

2
,

3
√

3

2
,

4
√

3

2
}.

The odd-star of
1
√

3

0
is {1

√
3

0
,

0

2
√

3
,

1

2
√

3
,

2

2
√

3
,

3

2
√

3
,

4

2
√

3
},

and that of
2
√

3

0
is {2

√
3

0
,

0

1
√

3
,

1

1
√

3
,

2

1
√

3
,

3

1
√

3
,

4

1
√

3
}.

Thus the even-stars of 1
0
√

3
and 2

0
√

3
and the odd-stars of 1

√
3

0 and 2
√

3
0 give us 24 vertices,

as listed in Table 4.7, which is the number of vertices of M6(5).

Example 4.24. M4(5). Using Table 4.4 we find that the even-star of

A1 is {A1, D2, I2, L2, G2, A2},

and that of
B1 is {B1, B2, J2, K2, F2, E2},

The odd-star of
H2 is {H2, D1, C1, F1, G1, E1},

and that of
C2 is {C2, K1, L1, I1, J1, H1}

Thus the even-stars of A1 and B1 and the odd-stars of H2 and C2 give us 24 vertices,
as listed in Table 4.4 and illustrated in Figure 4.14, which is the number of vertices of
the map {5, 4} of genus 4.
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Figure 4.14: The even-stars of A1 and B1 and the odd-stars of H2 and C2 partition
the vertices of the map {5, 4} of genus 4

If we replace primes p by some composite numbers n, then the theorem does not
apply as described in the following counter-example.

Example 4.25. M6(4). Using Table 4.7 and Figure 4.12 we find that the even-star of

1

0
√

3
is { 1

0
√

3
,

0
√

3

1
,

1
√

3

1
,

2
√

3

1
,

1
√

3

3
}.

The odd-star of
1
√

3

0
is {1

√
3

0
,

0

1
√

3
,

1

1
√

3
,

2

1
√

3
}.

Thus the even-star of 1
0
√

3
and the odd-star of 1

√
3

0 give us nine vertices, which do not
cover M6(4).

4.7 Poles of Mq(n)

We call the points of the form a
0
√
m

or b
√
m

0 the even-poles and odd-poles of Mq(n)

respectively.

Lemma 4.26. (i) If n is even then M4(n) has no odd-poles.
(ii) If 3|n then M6(n) has no odd-poles.

Proof. (i) The odd elements of M4(n) have the form b
√

2
d with (b, d, n) = 1 and d is odd

if n is even (Section 4.5.1). The odd-poles are those with d = 0. Since 0 is even, there
can be no odd-poles if n is even. (ii) Similar to (i) but for M6(n) the odd elements have
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the form b
√

3
d with (b, d, n) = 1 and 3 - d if 3|n (Section 4.5.2). As 3|0 = d, then there

can be no odd-poles if 3|n.

Even-poles and odd-poles have the form a
0
√
m

and b
√
m

0 respectively, where (a, 0, n) = 1

and (b, 0, n) = 1 implies (a, n) = 1 and (b, n) = 1. Since the Euler function φ(n) counts
all the integers that are relatively prime to n, and we identify a with −a and b with −b
therefore the number of even-poles in Mq(n) is φ(n)/2 for n > 2. Similarly the number
of odd-poles, if they are exist, is φ(n)/2. So the total number of poles is either φ(n) if
both even and odd-poles exist or φ(n)/2 if there are no odd-poles.

Example 4.27. From Table 4.3, for n = 6, the number of poles in M4(6) is φ(6)/2 = 1,
namely 1

0
√

2
, and there are no odd-poles.

For n = 7, the number of poles in M4(7) is φ(7) = 6, and these are 1
0
√

2
, 2

0
√

2
, 3

0
√

2
, 1
√

2
0 , 2

√
2

0 ,

3
√

2
0 .

From Table 4.7, for n = 6, the number of poles in M6(6) is φ(6)/2 = 1, namely 1
0
√

3
, and

there are no odd-poles.
For n = 5, the number of poles in M6(5) is φ(5) = 4, and these are 1

0
√

3
, 2

0
√

3
, 1
√

3
0 , 2

√
3

0 .

In a connected graph the distance δ(x, y) between two vertices x, y is defined as the
least number of edges in a path from x to y, provided at least one such path exists. The
diameter of a graph or map is the maximum distance between two of its vertices.

Lemma 4.28. Paths in a bipartite graph must be of even length if they are connecting
two vertices in the same part and they must be of odd length if they are connecting vertices
in different parts.

Theorem 4.29. If odd-poles exist, then the distance between any even-pole and any
odd-pole of Mq(n) is equal to 3.

Proof. For the existence of the odd-poles, we take 2 - n and 3 - n for M4(n) and
M6(n) respectively. By regularity of Mq(n) we may assume that one of the even-poles
is 1

0
√
m
. As Mq(n) is a bipartite graph (Section 4.5.1, Section 4.5.2), then δ( 1

0
√
m
, a
√
m

0 )

is odd, by Lemma 4.28. This even pole 1
0
√
m

is not adjacent to an odd-pole a
√
m

0 , so

δ( 1
0
√
m
, a
√
m

0 ) 6= 1. However, we can always find an odd vertex and even vertex to

construct a path of length 3 between 1
0
√
m

and a
√
m

0 of the form

1

0
√
m
←→ 0

√
m

1
←→ 1

y
√
m
←→ a

√
m

0
, (4.7.1)

where y ∈ Zn such that amy ≡ ±1 mod n implies y ≡ ±(am)−1 mod n. As a−1 is the
inverse of a modulo n exists because (a, 0, n) = 1, hence (a, n) = 1. Also m−1 is the
inverse of m modulo n exists because (m,n) = 1 then y has a solution.
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Example 4.30. 1- Using Figure 4.7 of the map M4(5) and Table 4.3, when n = 5 and
x = 0, then δ( 1

0
√

2
, 1
√

2
0 ) = 3, using (4.7.1) we have

1

0
√

2
←→ 0

√
2

1
←→ 1

2
√

2
←→ 1

√
2

0
= A1←→ A2←→ I1←→ C2

where y = 2. ( See Figure 4.15.)
2- Using Figure 4.12 of the map M6(4) and Table 4.7, when n = 4 and x = 0, then
δ( 1

0
√

3
, 1
√

3
0 ) = 3, using (4.7.1) we have

1

0
√

3
←→ 0

√
3

1
←→ 1

1
√

3
←→ 1

√
3

0

where y = 1. ( See Figure 4.15.)

Figure 4.15: Left: δ( 1
0
√
2
, 1

√
2

0 ) = d(A1, C2) = 3. Right: δ( 1
0
√
3
, 1

√
3

0 ) = 3

Theorem 4.31. The distance between any two distinct even-poles in Mq(n) is equal to
4, for n > 6.

Proof. By regularity we may assume that one of the even-poles is 1
0
√
m
. As Mq(n) is a

bipartite graph (Section 4.5.1, Section 4.5.2), then δ( 1
0
√
m
, a

0
√
m

) is even by Lemma 4.28,
where a 6≡ ±1 mod n. This immediately excludes δ( 1

0
√
m
, a

0
√
m

) = 1 and 3. Also there is
no path of length 2 between 1

0
√
m

and a
0
√
m
, for otherwise there would be x, y ∈ Zn such

that we have the following path

1

0
√
m
←→ x

√
m

y
←→ a

0
√
m
. (4.7.2)

Then y ≡ ±1 mod n and ay ≡ ±1 mod n. As (a, n) = 1 then a−1 exists, therefore y is
the inverse of a mod n. Thus ay ≡ a ≡ ±1 mod n, implies a ≡ ±1 mod n, which is a
contradiction. Thus δ( 1

0
√
m
, a

0
√
m

) 6= 2.
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However, we can always construct a path of length 4 between 1
0
√
m

and a
0
√
m
, of the

form

1

0
√
m
←→ 0

√
m

1
←→ 1

a−1
√
m
←→ m−1(a+ 1)

√
m

a−1
←→ a

0
√
m
, (4.7.3)

where a−1 is the inverse of a modulo n, and m−1 is the inverse of m modulo n. The
inverse a−1 exists because (a, 0, n) = 1 and hence (a, n) = 1. The inverse m−1 exists if
(m,n) = 1, meaning that whenever n is odd for q = 4, m = 2 and 3 - n for q = 6, m = 3.
If m−1 does not exist i.e. (m,n) = m, we have the following cases.
(i) For q = 4,m = 2 and n is an even integer, then a is odd, so we can construct a path
of length 4 between 1

0
√

2
and a

0
√

2
, of the form

1

0
√

2
←→ 0

√
2

1
←→ 1

a−1
√

2
←→

1
2(a+ 1)

√
2

a−1
←→ a

0
√

2
. (4.7.4)

(ii) For q = 6,m = 3 and 3|n, then 3 - a. Let a ≡ 1 mod 3, so we can construct a path
of length 4 between 1

0
√

3
and a

0
√

3
, of the form

1

0
√

3
←→ 0

√
3

1
←→ 1

a−1
√

3
←→

1
3(a− 1)

√
3

a−1
←→ a

0
√

3
. (4.7.5)

If 3 - a and a ≡ 2 mod 3, we can construct a path of length 4 between 1
0
√

3
and a

0
√

3
, of

the form
1

0
√

3
←→ 0

√
3

1
←→ 1

a−1
√

3
←→

1
3(a+ 1)

√
3

a−1
←→ a

0
√

3
. (4.7.6)

Thus for all n > 6 the distance between two distinct even-poles in Mq(n) is equal to
4.

Theorem 4.32. If odd-poles exist then the distance between any two distinct odd-poles
in Mq(n) is equal to 4 for n ≥ 5.

Proof. For the existence of the odd-poles, we take 2 - n and 3 - n for M4(n) and M6(n)

respectively. By regularity we may assume that one of the odd-poles is 1
√
m

0 . As Mq(n)

is a bipartite graph (Section 4.5.1, Section 4.5.2), then δ(1
√
m

0 , a
√
m

0 ) is even by Lemma
4.28, where a 6≡ ±1 mod n. This immediately excludes δ(1

√
m

0 , a
√
m

0 ) = 1 and 3. Also
there is no path of length 2 between 1

√
m

0 and a
√
m

0 , for otherwise there would be x, y ∈ Zn
such that we have the following path

1
√
m

0
←→ x

y
√
m
←→ a

√
m

0
. (4.7.7)

Then my ≡ ±1 mod n and amy ≡ ±1 mod n. Thus my is the inverse of a mod n,
so amy ≡ a ≡ ±1 mod n implies a ≡ ±1 mod n, which is a contradiction. Therefore
δ(1
√
m

0 , a
√
m

0 ) 6= 2. However, we can always construct a path of length 4 between 1
√
m

0
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and a
√
m

0 , of the form

1
√
m

0
←→ 1

m−1
√
m
←→ a−1√m

a−1 + 1
←→ a−1 − 1

a−1m−1
√
m
←→ a

√
m

0
, (4.7.8)

where a−1 is the inverse of a modulo n, and m−1 is the inverse of m modulo n. The
inverse a−1 exists because (a, 0, n) = 1 and hence (a, n) = 1, also the inverse m−1 exist
because (m,n) = 1.

Example 4.33. 1- Consider Figure 4.7 of the map M4(5) and Table 4.3, when n = 5. As
φ(5)/2 = 2 > 1, we have two distinct even-poles and odd-poles, thus (4.7.3) is applicable
and we have δ( 1

0
√

2
, 2

0
√

2
) = 4. Here we have a−1 = 3 and m−1 = 3.

1

0
√

2
←→ 0

√
2

1
←→ 4

2
√

2
←→ 1

√
2

2
←→ 2

0
√

2
= A1←→ A2←→ L1←→ E2←→ B1.

(See Figure 4.16.)

2- Consider Table 4.3, when n = 8. As φ(8)/2 = 2 > 1, we have two distinct even-
poles in M4(8), thus (4.7.4) is applicable and we have δ( 1

0
√

2
, 3

0
√

2
) = 4. Here a−1 = 3,

and we have the following path:

1

0
√

2
←→ 0

√
2

1
←→ 1

3
√

2
←→ 2

√
2

3
←→ 3

0
√

2
.

3- When q = 6 and n = 9. As φ(9)/2 = 3 > 1, we have three distinct even-poles
in M6(9), thus (4.7.6) is applicable and we have δ( 1

0
√

3
, 2

0
√

3
) = 4. Here a−1 = 5 and

a = 2 ≡ 2 mod 3. We have the following path:

1

0
√

3
←→ 0

√
3

1
←→ 1

5
√

3
←→ 1

√
3

5
←→ 2

0
√

3
.

Example 4.34. 1- Consider Figure 4.7 of the map M4(5) and Table 4.3, when n = 5.
As φ(5)/2 = 2 > 1, we have two distinct odd-poles, thus (4.7.8) is applicable and
δ(1
√

2
0 , 2

√
2

0 ) = 4. Here a−1 = 3 and m−1 = 3. We have the following path:

1
√

2

0
←→ 4

2
√

2
←→ 2

√
2

1
←→ 3

1
√

2
←→ 2

√
2

0
= C2←→ L1←→ I2←→ F1←→ H2.

(See Figure 4.16.)
2- Consider Table 4.7, when 3 - n = 7. As φ(7)/2 = 3 > 1, we have three distinct odd-
poles in M6(7), thus (4.7.8) is applicable and we have δ(1

√
3

0 , 2
√

3
0 ) = 4. Here a−1 = 4

and m−1 = 5. We have the following path:

1
√

3

0
←→ 6

2
√

3
←→ 3

√
3

2
←→ 4

1
√

3
←→ 2

√
3

0
.
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Figure 4.16: δ( 1
0
√
2
, 2
0
√
2
) = δ(A1, B1) = 4, δ( 1

√
2

0 , 2
√
2

0 ) = δ(C2, H2) = 4 in M4(5)

Lemma 4.35 ([SS18, Lemma 10]). Let b, d, n be integers such that (b, d, n) = 1. Then
there exists an integer x so that (b+ dx, n) = 1.

Theorem 4.36. Given an odd vertex b
√
m
d in Mq(n), n ≥ 5, then δ( 1

0
√
m
, b
√
m
d ) = 3 if

and only if d 6≡ ±1 mod n.

Proof. By Lemma 4.28, the distance δ( 1
0
√
m
, b
√
m
d ) is odd. If δ( 1

0
√
m
, b
√
m
d ) = 1, then b

√
m
d

is adjacent to 1
0
√
m

implies d ≡ ±1 mod n, which is a contradiction. If d ≡ 0 mod n then
δ = 3, by Theorem 4.26. Now for the case when d 6≡ 0 mod n, there are no odd-poles,
by Lemma 4.26 (i.e. n is even for q = 4 and 3|n for q = 6). We want to construct a path
of length 3 between 1

0
√
m

and b
√
m
d of the form

1

0
√
m
←→ x

√
m

1
←→ u

v
√
m
←→ b

√
m

d
,

where x, u and v ∈ Zn. In terms of congruences this means that we have two simultaneous
equations:

mxv − u ≡ ±1 mod n

ud−mvb ≡ ±1 mod n

=⇒


2v(dx− b) ≡ d+ 1 mod n if q = 4

3v(dx− b) ≡ d− 1 mod n if q = 6 and d ≡ 1 mod 3

3v(dx− b) ≡ d+ 1 mod n if q = 6 and d ≡ 2 mod 3.

(4.7.9)

By Lemma 4.7.12 we know that (dx − b) is coprime to n and therefore has a mul-
tiplicative inverse modulo n. Hence the equations in 4.7.9 can be solved for v which, in
turn, determines x and u.
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Example 4.37. (i) The distance between 1
0
√

2
and 2

√
2

9 in M4(18) is 3 and we have the
following path

1

0
√

2
←→ 3

√
2

1
←→ 11

2
√

2
←→ 2

√
2

9
,

where v = 2, u = 11 and x = 3.
(ii) The distance between 1

0
√

3
and 3

√
3

7 in M6(15) is 3 and we have the following path

1

0
√

3
←→ 2

√
3

1
←→ 11

12
√

3
←→ 3

√
3

7
,

where v = 12, u = 11 and x = 2.

Theorem 4.38. The diameter of Mq(n) is equal to 4 for all n > 6.

Proof. The distance between any odd vertex and even vertex in Mq(n) is equal 1, if they
are adjacent. Otherwise, δ = 3, by Theorems 4.29 and 4.36. Also, the distance between
any two distinct vertices of the same type is ≤ 4, by Theorems 4.31 and 4.32. Thus the
diameter of Mq(n) is equal to 4 for all n > 6. Refer to Table 4.9 for the diameters of
Mq(n) for n ≤ 5.

Table 4.9: The diameters of M4(n) and M6(n) for n ≤ 6

n q = 4 q = 6

M4(n) Diameter M6(n) Diameter
2 Square Figure 4.3 2 Hexagon Figure 4.10 3
3 Cube Figure 4.4 3 {3, 6} Figure 4.11 3
4 {4, 4}2,2 Figure 4.6 2 {4, 6} Figure 4.12 3
5 {5, 4} Figure 4.7 4 {5, 6} 4
6 {6, 4} 3 {6, 6} 3

Definition 4.39. If a
c
√
m

and b
d
√
m

are two distinct even vertices and a
√
m
c and b

√
m
d are

two distinct odd vertices in Mq(n), then ∆ = (ad− bc)√m.

Let us extend Definition 4.39 to include two vertices of different types, in this case
∆ = ±(ad−mbc).

Theorem 4.40. Let a
c
√
m

be an even vertex and b
√
m
d be an odd vertex in Mq(n). Then

δ(
a

c
√
m
,
b
√
m

d
) =

1 if and only if |∆| ≡ 1 mod n,

3 otherwise.
(4.7.10)
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Proof. Let a
c
√
m
, b
√
m
d be an even and an odd vertices respectively. By Lemma 4.28, δ is

odd. If |∆| 6≡ 1 mod n, then the two vertices are not adjacent, thus we must have δ = 3 by
Theorem 4.38. Now to see if an even vertex a

c
√
m

and an odd vertex b
√
m
d are distance three

apart when |∆| 6≡ 1 mod n, let T ∈ Hq be the transformation where T
( a
c
√
m

)
=
( 1

0
√
m

)
.

Apply this transformation to the odd vertex, T
(
b
√
m
d

)
=
(
x
√
m
y

)
and then we can apply

Theorem 4.36. Otherwise, if T
( a
c
√
m

)
=
( 1

0
√
m

)
and T

(
b
√
m
d

)
=
(
x
√
m

0

)
, then we can

apply Theorem 4.29.

Example 4.41. (i) Let us check if δ( 4
1
√

2
, 2
√

2
3 ) = δ(G1,K2) = 3 as in Figure 4.7. Let

T =
(

1 0
√

2
1
√

2 1

)
∈ Hq, then T

( 4
1
√

2

)
=
( 1

0
√

2

)
= A1, and T

(
2
√

2
3

)
=
(

2
√

2
2

)
= J2. Then

we can apply Theorem 4.36, to get δ( 1
0
√

2
, 2
√

2
2 ) = δ(A1, J2) = 3.

(ii) Applying the same T we can check the distance between 4
1
√

2
= G1 and 2

√
2

1 = I2. We

have T
( 4

1
√

2

)
=
( 1

0
√

2

)
= A1, and T

(
2
√

2
1

)
=
(

2
√

2
0

)
= H2, so δ( 1

0
√

2
, 2
√

2
0 ) = δ(A1, H2) = 3

by applying Theorem 4.29.

Theorem 4.42. If x and y are two distinct vertices that are either both odd or both even
in Mq(p) where p is a prime, then

δ(x, y) =

4 if and only if ∆ = 0,

2 otherwise.
(4.7.11)

Proof. By Lemma 4.28, δ(x, y) = 2 or 4 but not greater that 4, by Theorem 4.38. Let
x = a

c
√
m

= 1
0
√
m

and y = b
d
√
m

be two distinct even vertices such that ∆ 6= 0. Then we
can always construct a path of length 2 between them of the form

1

0
√
m
←→ (b± 1)m−1d−1√m

1
←→ b

d
√
m
, (4.7.12)

wherem−1 and c−1 are always exist because (m, p) = 1 and (c, p) = 1. Now if ∆ = 0, then
x and y must be two distinct even-poles, thus δ(x, y) = 4, by Theorem 4.31. Otherwise,
x = 0

1
√
m

and y = 0
d
√
m

(i.e. a ≡ b ≡ 0 mod p). We can always construct a path of length
4 between 0

1
√
m

and 0
d
√
m

of the form

0

1
√
m
←→ m−1√m

1
←→ 1

0
√
m
←→ d−1m−1√m

1
←→ 0

d
√
m
, (4.7.13)

where m−1 and d−1 are always exist because (m, p) = 1 and (d, p) = 1. Next we want
to show that if δ(x, y) = 4 then ∆ = 0. Apply the transformation T ∈ Hq, such that
T
( a
c
√
m

)
=
( 1

0
√
m

)
and T

( b
d
√
m

)
=
( e
f
√
m

)
. Now consider these two new points, i.e.

δ( 1
0
√
m
, e
f
√
m

) = 4 if ∆ = 0. As δ(x, y) = 4 which therefore can happen when f = 0

then we can apply Theorem 4.31. The determinant of these two points 1
0
√
m

and e
0
√
m
,

is equal to 0. As T preserves the determinants of points, thus the determinant of a
c
√
m

70



and b
d
√
m

is also equal 0.
Similarly, we can prove the theorem if given any two distinct odd vertices
a
√
m
c and b

√
m
d .

In the above theorem we have made this restriction from n to p as for the first case
when δ(x, y) = 4, the odd-poles and the even vertices of the form 0

c
√
m

only exist if n
is odd for q = 4 and 3 - n for q = 6, by Lemma 4.26 and Sections 4.5.1, 4.5.1. Thus it
is better to restrict n to p to satisfy that (0, c, n) = 1. Now for the second case if we
replace p by some composite numbers n, then δ(x, y) = 2 does not apply as described in
the following counter-example.

Example 4.43. (i) The distance between 1
0
√

2
and 2

5
√

2
in M4(25) is equal to 4 while

∆ = 5
√

2, as we can find a path of length 4 of the form

1

0
√

2
←→ 21

√
2

1
←→ 16

1
√

2
←→ 3

√
2

2
←→ 2

5
√

2
.

(ii) The distance between 1
0
√

3
and 5

11
√

3
in M6(24) is equal to 4 while ∆ = 11

√
3,

as we can find a path of length 4 of the form

1

0
√

3
←→ 20

√
3

1
←→ 13

1
√

3
←→ 1

√
3

2
←→ 5

11
√

3
.
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Chapter 5

Petrie polygons

A Petrie path in a map M on an orientable surface is defined by the zig-zag path
V1, V2, V3, ... through the map, where Vi are vertices of the map. We start at the vertex
V1, moving along an edge from V1 to V2, and then at V2 we take the first left (moving
anti-clockwise until we reach the next edge), reaching V3 then turning right, etc, . There
is then a path in which two consecutive edges belong to the same face, but in which
no three consecutive edges belong to the same face. In a finite regular map we return
to V1 and then V2 after a certain number of steps, independent of the initial edge; this
number is called the Petrie length of the map, and in this situation the Petrie path will
be referred to as a Petrie polygon.
Petrie paths for the Farey map M̂3, were studied by Singerman and Strudwick in [SS16].
One of the results of this paper was an easy way to show that the Petrie polygons for
the Klein quartic surface M3(7) have length eight, giving " The Eightfold Way" [Lev99].
In this chapter we want to generalize some of these results for other values of q.

5.1 The Petrie polygons of the Farey map

Most of this section’s material can be found in [SS16]. Consider a Petrie path
W1,W2,W3, ... of M̂3. By transitivity of the automorphism group on directed edges we
may assume its first edge goes from W1 = 1

0 to W2 = 0
1 . A left turn takes us to W3 = 1

1 .
Now a right turn takes us to W4 = 1

2 (see Figure 5.1).
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Figure 5.1: Petrie path of Farey map
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5
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7
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4
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5
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6
7

7
8
8
9

∞

By applying a modular transformation
(
a b
c d

)
to the vertices∞, 0 and 1 of the prin-

cipal triangle, we find that generally the three consecutive vertices of a Petrie path are
a
c ,

b
d ,

a+b
c+d , that is the third vertex is the Farey median of the previous two. Because the

first two vertices of the Petrie path are 1
0 and 0

1 , in [SS16], it was shown that the k-th
vertex of the Petrie path is equal to fk−1

fk
where fk is the k-th element of the Fibonacci

sequence, as defined by f0 = 1, f1 = 0, fk+1 = fk + fk−1 for k ≥ 1. Thus we define the
principal Petrie path P 3

0 of M̂3 as 1
0 ,

0
1 ,

1
1 ,

1
2 ,

2
3 ,

3
5 , ...

In [CM57, Section 5.2], Coxeter and Moser showed that if the following three trans-
formations R1(z) = −z̄, R2(z) = 1

z̄ , R3(z) = −z̄−1, act on the fundamental region
of Γ; as illustrated in Figure 5.2, then the composition of these three transformations is
R1R2R3(z) = 1

z̄+1 , represents a transformation going one step along a Petrie path. The
matrix corresponding to this composition is

P =

(
0 1

1 1

)
.
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Figure 5.2: Deriving the matrix P

z =1
1
2+

3i
2

−12+
3i
2

i

R1

R2

R3

Lemma 5.1. The matrix P =
(

0 1
1 1

)
maps each vertex of P 3

0 of M̂3 to the next one, and
also P k =

( fk fk+1

fk+1 fk+2

)
for all k ≥ 1.

Therefore all vertices of P 3
0 have the form P k(∞) for k = 0, 1, 2, .... For every k, the

first column
( fk
fk+1

)
of P k is a vertex fk

fk+1
∈ Q ∪ {∞} of the principal Petrie path. The

proof follows immediately from the definition of the Fibonacci sequence, and induction.
Note that P has determinant -1, and thus it is not an element of Γ.
In this chapter we examine the Petrie polygons on Mq(n).

Definition 5.2. The period π(n) of the Fibonacci sequence mod n is the least positive
integer m, such that fm−1 ≡ 1 mod n, fm ≡ 0 mod n. However, as a

b = −a
−b we can

consider the Fibonacci sequence mod n up to sign and so we define the semi-period σ(n)

of the Fibonacci sequence mod n to be the least positive integer m, with the property
that fm−1 ≡ ±1 mod n, fm ≡ 0 mod n.

Example 5.3. The Fibonacci sequence mod 5 is
0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2,... so that π(5) = 20 and σ(5) = 10.
The Fibonacci sequence mod 7 is
0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1,... so that π(7) = 16 and σ(7) = 8.
It is perhaps worth pointing out that it is possible that π(n) = σ(n). For example the
Fibonacci sequence mod 11 is
0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2... so that π(11) = 10 and σ(11) = 10.

Clearly σ(n) = π(n) or π(n)/2 and it is an open question to know which of these
occurs, see [SS16, Section 9].

5.2 The Petrie paths of the universal q-gonal map

In this section we generalize Lemma 5.1 to M̂q. Applying the same ideas as Coxeter
and Moser to the fundamental region of Hq , where R1(z) = −z̄, R2(z) = 1

z̄ ,
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R3(z) = −z̄ − λq, we get the matrix

Q =

(
0 −1

−1 −λq

)
,

which represents the same element as
(

0 1
1 λq

)
in PSL(2,R).

Recalling the extended triangle group defined in Section 1.3, and relating it to the Petrie
paths, the extended triangle group Γ∗(2,m, n) is a group generated by the reflections
R1, R2, R3. It has a presentation,

〈R1, R2, R3 |R2
1 = R2

2 = R2
3 = (R1R2)2 = (R2R3)m = (R3R1)n = 1〉. (5.2.1)

In [CM57, Section 8.6] it is shown that the transformation R1R2R3 which is represented
by the matrix Q goes one step along the Petrie path, i.e. this transformation has the
effect of shifting a Petrie path one step along itself. If we have an extra relation of the
form (R1R2R3)r = I, then this means that the Petrie path becomes a Petrie polygon
having r edges. This will often be the case for the maps Mq(n).

As we deal with regular maps, the automorphism group acts transitively on Petrie
paths, so they are all of the same length. Therefore it is sufficient to consider one of
them and in particular the principal Petrie path P q0 . By definition P q0 ’s first arc goes
from V1 = 1

0λq
to V2 =

0λq
1 . A left turn then takes us to V3 = 1

1λq
, (i.e. in case of q = 4, 6

it is alternating between even and odd vertices). The first two vertices of the principal
Petrie path are 1

0λq
and 0λq

1 .

Lemma 5.4. The matrix Q =
(

0 1
1 λq

)
maps each vertex of the principal Petrie path P q0

of M̂q to the next one, and also

Qk =

(
pk(λq) qk(λq)

qk(λq) pk(λq) + λqqk(λq)

)
, for some k ≥ 1, qk(λq) and pk(λq) ∈ Z[λq],

where, for every k ≥ 1, the first column
( pk(λq)
qk(λq)

)
of Qk is a vertex pk(λq)

qk(λq)
∈ Q(λq)∪ {∞}

of P q0 .

Proof. Let Π(k) be the proposition that

Qk =

(
pk(λq) qk(λq)

qk(λq) pk(λq) + λqqk(λq)

)
.

Then, Π(1) is true, as Q1 =
(

0 1
1 λq

)
, where p1(λq) = 0 and q1(λq) = 1.

Assume that Π(k) is true. Then,

Qk =

(
pk(λq) qk(λq)

qk(λq) pk(λq) + λqqk(λq)

)
.
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Hence

Qk+1 = QkQ =

(
qk(λq) pk(λq) + λqqk(λq)

pk(λq) + λqqk(λq) qk(λq) + λq[pk(λq) + λqqk(λq)]

)

Thus Π(k + 1) is true. Therefore, Π(1) is true, and Π(k) =⇒ Π(k + 1); so by the
principal of induction Π(k) is true for all k ≥ 1.

Example 5.5. Letting λq = λ and computing the first 16 powers of Q =
( 0λq 1

1 λq

)
in

general, to find the principal Petrie path’s first 16 vertices, produce the following;

• k = 1 −→ Q =
(

0λ 1
1 λ

)
• k = 2 −→ Q2 =

(
1 λ
λ λ2+1

)
• k = 3 −→ Q3 =

(
λ λ2+1

λ2+1 λ3+2λ

)
• k = 4 −→ Q4 =

(
λ2+1 λ3+2λ
λ3+2λ λ4+3λ2+1

)
• k = 5 −→ Q5 =

(
λ3+2λ λ4+3λ2+1

λ4+3λ2+1 λ5+4λ3+3λ

)
• k = 6 −→ Q6 =

(
λ4+3λ2+1 λ5+4λ3+3λ
λ5+4λ3+3λ λ6+5λ4+6λ2+1

)
• k = 7 −→ Q7 =

(
λ5+4λ3+3λ λ6+5λ4+6λ2+1

λ6+5λ4+6λ2+1 λ7+6λ5+10λ3+4λ

)
• k = 8 −→ Q8 =

(
λ6+5λ4+6λ2+1 λ7+6λ5+10λ3+4λ
λ7+6λ5+10λ3+4λ λ8+7λ6+15λ4+10λ2+1

)
• k = 9 −→ Q9 =

(
λ7+6λ5+10λ3+4λ λ8+7λ6+15λ4+10λ2+1

λ8+7λ6+15λ4+10λ2+1 λ9+8λ7+21λ5+20λ3+5λ

)
• k = 10 −→ Q10 =

(
λ8+7λ6+15λ4+10λ2+1 λ9+8λ7+21λ5+20λ3+5λ
λ9+8λ7+21λ5+20λ3+5λ λ10+9λ8+28λ6+35λ4+15λ2+1

)
• k = 11 −→ Q11 =

(
λ9+8λ7+21λ5+20λ3+5λ λ10+9λ8+28λ6+35λ4+15λ2+1

λ10+9λ8+28λ6+35λ4+15λ2+1 λ11+10λ9+36λ7+56λ5+35λ3+6λ

)
• k = 12 −→ Q12 =

(
λ10+9λ8+28λ6+35λ4+15λ2+1 λ11+10λ9+36λ7+56λ5+35λ3+6λ
λ11+10λ9+36λ7+56λ5+35λ3+6λ λ12+11λ10+45λ8+84λ6+70λ4+21λ2+1

)
• k = 13 −→ Q13 =(

λ11+10λ9+36λ7+56λ5+35λ3+6λ λ12+11λ10+45λ8+84λ6+70λ4+21λ2+1
λ12+11λ10+45λ8+84λ6+70λ4+21λ2+1 λ13+12λ11+55λ9+120λ7+126λ5+56λ3+7λ

)
• k = 14 −→ Q14 =(

λ12+11λ10+45λ8+84λ6+70λ4+21λ2+1 λ13+12λ11+55λ9+120λ7+126λ5+56λ3+7λ
λ13+12λ11+55λ9+120λ7+126λ5+56λ3+7λ λ14+13λ12+66λ10+165λ8+210λ6+126λ4+28λ2+1

)
• k = 15 −→ Q15 =(

λ13+12λ11+55λ9+120λ7+126λ5+56λ3+7λ λ14+13λ12+66λ10+165λ8+210λ6+126λ4+28λ2+1
λ14+13λ12+66λ10+165λ8+210λ6+126λ4+28λ2+1 λ15+14λ13+78λ11+220λ9+330λ7+252λ5+84λ3+8λ

)
• k = 16 −→ Q16 =(

λ14+13λ12+66λ10+165λ8+210λ6+126λ4+28λ2+1 λ15+14λ13+78λ11+220λ9+330λ7+252λ5+84λ3+8λ
λ15+14λ13+78λ11+220λ9+330λ7+252λ5+84λ3+8λ λ16+15λ14+91λ12+286λ10+495λ8+462λ6+210λ4+36λ2+1

)
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Calculating Q14 for q = 3, 4, 5 and 6, thus the 14th vertex of the principal Petrie path
for q = 3, 4, 5, 6 is given by the following table:

Q14 for q = 3, 4, 5 and 6

λq 1
√

2 1+
√

5
2

√
3

k = 14
(

233 377
377 610

) (
2131 2911

√
2

2911
√

2 7953

) ( 1
2

(5857+2597
√

5) 6093+2740
√

5

6093+2740
√

5 12825+5715
√

5

) (
10009 12649

√
3

12649
√

3 47956

)
vertices ∈ Q ∪ {∞} ∈ Q(

√
2) ∪ {∞} ∈ Q(λ5) ∪ {∞} ∈ Q(

√
3) ∪ {∞}

As we consider the principal Petrie path P q0 in M̂q in which the first two vertices
are 1

0λq
and 0λq

1 . By Lemma 5.4 the kth vertex of the principal Petrie path is equal to
pk(λq)
qk(λq)

, where

pk(λq) = qk−1(λq) and qk(λq) = pk−1(λq) + λqqk−1(λq). (5.2.2)

Also pk(λq) is the kth element of the Hecke-Fibonacci sequence [ISg13] defined by

p0(λq) = 1, p1(λq) = 0λq, pk(λq) = pk−2(λq) + λqpk−1(λq) for k ≥ 1. (5.2.3)

For q = 3 putting λq = 1 in (5.2.3), we get the Fibonacci Sequence and the vertices of
the principal Petrie path for the Farey map as defined in Section 5.1.

Example 5.6. Applying Example 5.5 for λ4 =
√

2 and k = 0, ..., 6, we get the first seven
vertices of P 4

0 of M̂4 as follows;

k = 0 Q0 =
(

1 0
√

2
0
√

2 1

)
k = 1 Q =

(
0
√

2 1
1 1

√
2

)
k = 2 Q2 =

(
1 1

√
2

1
√

2 3

)
k = 3 Q3 =

(
1
√

2 3
3 4

√
2

)
k = 4 Q4 =

(
3 4

√
2

4
√

2 11

)
k = 5 Q5 =

(
4
√

2 11
11 15

√
2

)
k = 6 Q6 =

(
11 15

√
2

15
√

2 41

)

1
1 2

3
4 2

4 2
11

11
15 2

0 2
1

1
0 2

1 2
3
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These are 1
0
√

2
, 0
√

2
1 , 1

1
√

2
, 1
√

2
3 , 3

4
√

2
, 4
√

2
11 ,

11
15
√

2
.

For λ6 =
√

3, calculating the first seven powers of Q to get the first seven vertices of P 6
0

of M̂6 as follows;

k = 0 Q0 =
(

1 0
√

3
0
√

3 1

)
k = 1 Q =

(
0
√

3 1
1 1

√
3

)
k = 2 Q2 =

(
1 1

√
3

1
√

3 4

)
k = 3 Q3 =

(
1
√

3 4
4 5

√
3

)
k = 4 Q4 =

(
4 5

√
3

5
√

3 19

)
k = 5 Q5 =

(
5
√

3 19
19 24

√
3

)
k = 6 Q6 =

(
19 24

√
3

24
√

3 91

)

0 3
1

1
1 3

1 3
4

4
5 3

5 3
19

1
0 3

These are 1
0
√

3
, 0
√

3
1 , 1

1
√

3
, 1
√

3
4 , 4

5
√

3
, 5
√

3
19 ,

19
24
√

3
.

Now for λ5 = 1+
√

5
2 , we have to use λ2

5 = λ5 + 1 as mentioned in Table 2.1;

k = 0 Q0 =
(

1 0λ5
0λ5 1

)
k = 1 Q =

(
0λ5 1
1 1λ5

)
k = 2 Q2 =

(
1 1λ5

1λ5 1λ5+2

)
k = 3 Q3 =

(
1λ5 1λ5+2

1λ5+2 4λ5+1

)
k = 4 Q4 =

(
λ5+2 4λ5+1
4λ5+1 6λ5+6

)
k = 5 Q5 =

(
4λ5+1 6λ5+6
6λ5+6 16λ5+7

)
k = 6 Q6 =

(
6λ5+6 16λ5+7
16λ5+7 29λ5+22

)

Therefore the first seven vertices of P 5
0 of M̂5 are

1
0λ5

, 0λ5
1 , 1

1λ5
, 1λ5
λ5+2 ,

λ5+2
4λ5+1 ,

4λ5+1
6λ5+6 ,

6λ5+6
16λ5+7 .

5.2.1 The even and odd vertices of the principal Petrie paths

As the Hecke groups H4, H6 have even and odd elements, we can define even and
odd vertices of the principal Petrie paths of M̂4 and M̂6, the even vertices have the
form a

c
√
m

while the odd vertices have the form b
√
m
d . Lemma 5.4 shows that the kth
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vertex of the principal Petrie path which is the first column of Qk is equal to pk(λq)
qk(λq)

. By

(5.2.2) pk(λq)
qk(λq)

=
pk(λq)
pk+1(λq)

, where pk(λq) is the kth element of the Hecke-Fibonacci sequence
defined in (5.2.3) and given by

p0(λq) = 1, p1(λq) = 0λq, pk(λq) = pk−2(λq) + λqpk−1(λq) for k ≥ 1.

Start our principal Petrie path with 1
0λq

and call this vertex v0. The next vertex v1

is 0λq
1 . Then we can now generalize the idea of even and odd vertices of these principal

Petrie paths for all values of q of M̂q, as stated in the following definition.

Definition 5.7. The vertices v0, v2, v4, ... are defined to be the even-numbered vertices
of the principal Petrie path of M̂q, and v1, v3, v5, ... are defined to be the odd-numbered
vertices.

As in our work we consider only the principal Petrie paths starting with even-
numbered vertex v0 = 1

0λq
, hence in the case of M̂4 and M̂6 Definition 5.7 agrees with

the definition of even and odd vertices when q = 4 or 6: the even/odd-numbered vertices
of P q0 are even/odd vertices respectively. Now we introduce the following formulas to
find these vertices. Letting M = Q2 =

( 1 λq
λq λ2q+1

)
. We use the minimal polynomials of

λq, as listed in Table 2.1 to compute the powers of λq.

Lemma 5.8. The matrix M = Q2 =
( 1 λq
λq λ2q+1

)
maps each even-numbered and odd-

numbered vertex of P q0 of M̂q to the next even-numbered and odd-numbered vertex re-
spectively and also Mk has the form Mk =

( ak(λq) bk(λq)
bk(λq) ak(λq)+λqbk(λq)

)
, where ak, bk ∈ Z[λq].

Here the first columns ak(λq)
bk(λq)

of the powers of M are the even-numbered vertices of P q0 of

M̂q while the second columns bk(λq)
ak(λq)+λqbk(λq)

are the odd-numbered vertices.

Proof. This follows from Lemma 5.4. The formula for Mk follows by induction;
M1 =

( 1 λq
λq λ2q+1

)
has the required form, where a1(λq) = 1, b1(λq) = 1λq and a2(λq) = λ2

q+1.
Assume the formula for Mk is true, so we have ak+1(λq) = ak(λq) + λqbk(λq). Then

Mk+1 =

(
ak(λq) + λqbk(λq) λqak(λq) + (λ2

q + 1)bk(λq)

λqak(λq) + (λ2
q + 1)bk(λq) (λ2

q + 1)ak(λq) + (λ3
q + 2λq)bk(λq)

)
,

which has the required form. Thus by induction Mk has the required form for all k ≥ 1.
Also ak+2(λq) = (λ2

q + 1)ak(λq) + (λ3
q + 2λq)bk(λq).

Theorem 5.9. If ak(λq) is the numerator of the kth even-numbered vertex of P q0 of M̂q

starting from a0(λq), then it satisfies the following recurrence relation

a0(λq) = 1, a1(λq) = 1, ak(λq) = (λ2
q + 2)ak−1(λq)− ak−2(λq) for k ≥ 1. (5.2.4)
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Proof. As pk(λq) = pk−2(λq) + λqpk−1(λq) by (5.2.3) and ak(λq) = p2k(λq) by (5.2.9).
Considering (5.2.3) for the indices 2k, 2k − 1 and 2k − 2 we get the following equations

p2k(λq) = p2k−2(λq) + λqp2k−1(λq), (5.2.5)

p2k−1(λq) = p2k−3(λq) + λqp2k−2(λq), (5.2.6)

and
p2k−2(λq) = p2k−4(λq) + λqp2k−3(λq). (5.2.7)

Now the RHS of (5.2.3) is

(λ2
q + 2)ak−1(λq)− ak−2(λq) = (λ2

q + 2)p2k−2(λq)− p2k−4(λq)

= (λ2
q + 2)p2k−2(λq)− [p2k−2(λq)− (λq)p2k−3(λq)] by (5.2.7)

= (λ2
q + 2)p2k−2(λq)− [p2k−2(λq)− λq(p2k−1(λq)− λqp2k−2(λq))] by (5.2.6)

= p2k−2(λq) + λqp2k−1(λq) = p2k(λq) by (5.2.7)

= ak(λq) = the LHS.

Similarly we can prove the following theorem.

Theorem 5.10. If ck(λq) is the numerator of the kth odd-numbered vertex of P q0 of M̂q

starting from c0(λq), then it satisfies the following recurrence relation

c0(λq) = 0λq, c1(λq) = 1λq, ck(λq) = (λ2
q + 2)ck−1(λq)− ck−2(λq) for k ≥ 1. (5.2.8)

This means that these terms of (5.2.4) relate to the matrix Qk as follows,(
ak(λq)

bk(λq)

)
=

(
p2k(λq)

q2k(λq)

)
=

(
p2k(λq)

p2k+1(λq)

)
, (5.2.9)

while these of (5.2.8) relate to the matrix Qk as follows,(
ck(λq)

dk(λq)

)
=

(
p2k+1(λq)

q2k+1(λq)

)
=

(
p2k+1(λq)

p2k+2(λq)

)
=

(
bk(λq)

ak+1(λq)

)
.

The Hecke groups H4, H6 are much simpler than the other Hecke groups as we
know all the elements of these groups. For this reason the maps M̂4 and M̂6 are easy
to describe as we know precisely what their vertices, faces and edges are. So we now
consider Theorems 5.9 and 5.10 for those simple cases.
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For q = 4, the sequence in (5.2.4) happens to appear on the Online Encyclopedia
of Integer Sequences (OEIS). The first few terms of this sequence are
1, 1, 3, 11, 41, 153, 571, 2131, 7953, 29681. Those are the first few numerators of the
even vertices of P 4

0 of M̂4.
For q = 6, the first few terms of this sequence are
1, 1, 4, 19, 91, 436, 2089, 10009, 47956, 229771. Again those are the first few numerators
of the even vertices of P 6

0 of M̂6.

This means that these terms of (5.2.4) relate to the matrix Qk as follows,(
ak(
√
m)

bk(
√
m)

)
=

(
p2k(
√
m)

q2k(
√
m)

)
=

(
p2k(
√
m))

p2k+1(
√
m)

)
. (5.2.10)

Example 5.11. As illustrated in Example 5.5, for k = 3 and q = 4,(
a3(
√

2)

b3(
√

2)

)
=

(
p6(
√

2)

q6(
√

2)

)
=

(
11

15
√

2

)

where a3 is the numerator of the fourth even vertex of P 4
0 of M̂4, taking consideration

that the first even vertex of P 4
0 of M̂4 is

( a0
b0

)
=
( p0(

√
2)

q0(
√

2)

)
=
( 1

0
√

2

)
as shown in Exmaple

5.6.
Also for k = 3 and q = 6,(

a3(
√

3)

b3(
√

3)

)
=

(
p6(
√

3)

q6(
√

3)

)
=

(
19

24
√

3

)

where a3 is the numerator of the fourth even vertex of P 6
0 of M̂6.

For q = 4, the first few terms of the sequence (5.2.8) are
0
√

2, 1
√

2, 4
√

2, 15
√

2, 56
√

2, 209
√

2, 780
√

2, 2911
√

2. Those are the first few numerators
of the odd vertices of P 4

0 of M̂4.
For q = 6, the first few terms of this sequence are
0
√

3, 1
√

3, 5
√

3, 24
√

3, 115
√

3, 551
√

3, 2640
√

3, 12649
√

3. Again those are the first few
numerators of the odd vertices of P 6

0 of M̂6.

This means that these terms of (5.2.8) relate to the matrix Qk as follows,(
ck(
√
m)

dk(
√
m)

)
=

(
p2k+1(

√
m)

q2k+1(
√
m)

)
=

(
p2k+1(

√
m))

p2k+2(
√
m)

)
=

(
bk(
√
m))

ak+1(
√
m)

)
.

Example 5.12. As illustrated in Example 5.5, for k = 3 and q = 4,(
c3(
√

2)

d3(
√

2)

)
=

(
p7(
√

2)

q7(
√

2)

)
=

(
15
√

2

41

)
82



where a3 is the numerator of the fourth odd vertex of P 4
0 of M̂4. Also for k = 3 and

q = 6, (
c3(
√

3)

d3(
√

3)

)
=

(
p7(
√

3)

q7(
√

3)

)
=

(
24
√

3

91

)

where a3 is the numerator of the fourth odd vertex of P 6
0 of M̂6.

What happens if q = 5 or 7?

For q = 5 we have the following recurrence relation

a0(λ5) = 1, a1(λ5) = 1, ak(λ5) = (λ5 + 3)ak−1(λ5)− ak−2(λ5) for k ≥ 1. (5.2.11)

The first few terms of this sequence are
1, 1, λ5 + 2, 6λ5 + 6, 29λ5 + 22, 132λ5 + 89.
For q = 7, the recurrence relation defined as follow

a0(λ7) = 1, a1(λ7) = 1, ak(λ7) = (λ2
7 + 2)ak−1(λ7)− ak−2(λ7) for k ≥ 1. (5.2.12)

The first few terms of this sequence are
1, 1, λ2

7 + 1, 6λ2
7 + λ7, 30λ2

7 + 8λ7 − 8, 144λ2
7 + 61λ7 − 38.

Example 5.13. Using (5.2.4) for q = 5, and k = 4, we have(
a4(λ5)

b4(λ5)

)
=

(
p8(λ5)

q8(λ5)

)
.

M4 =

(
a4(λ5) b4(λ5)

bk(λ5) a4(λ5) + λ5bk(λ5)

)
= Q8 =

(
p8(λ5) q8(λ5)

q8(λ5) p8(λ5) + λ5q8(λ5)

)

=

(
29λ5 + 22 67λ5 + 36

67λ5 + 36 144λ5 + 82

)
,

so a4(λ5) is the numerator of the ninth vertex of the principal Petrie path of M̂5 and it
is also the numerator of the fifth even-numbered vertex of (5.2.11) as shown below:

1
0λ5

→
0λ5
1 → 1

1λ5
→

1λ5
1λ5 +2

→
1λ5 +2
4λ5 +1

→
4λ5 +1
6λ5 +6

→
6λ5 +6
16λ5 +7

→
16λ5 +7
29λ5 +22

→
29λ5 +22
67λ5 +36

→
67λ5 +36
132λ5 +89

a0 a1 a2 a3 a4

p0 p2 p4 p6 p8p1 p3 p5 p7 p9

c0 c1 c2 c3 c4
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5.3 The principal Petrie polygons of Mq(n)

In general, in this section we study the semi-period σ̂q(n) of the Hecke-Fibonacci
sequence mod n because this will enable us to determine the sizes of the principal Petrie
polygons Peq(n) of Mq(n). We follow the ideas of [SS16]. The vertices of Mq(n) are
equivalence classes of vertices of M̂q. To clarify matters we denote the equivalence class of

1
0λq

,
0λq
1 , ...,

pk−1(λq)
pk(λq)

,
pk(λq)
pk+1(λq)

by [ 1
0λq

], [
0λq
1 ], ..., [

pk−1(λq)
pk(λq)

], [
pk(λq)
pk+1(λq)

] respectively in Mq(n).
As these equivalence classes are consecutive vertices in Peq(n) then they are joined by
edges in Mq(n).

Then we consider some special cases for q = 4, 5 and 6.

Recalling (5.2.3), we introduce the following definition.

Definition 5.14. The semi-period σ̂q(n) of the Hecke-Fibonacci sequence mod n defined
by

p0(λq) = 1, p1(λq) = 0λq, pk(λq) = pk−2(λq) + λqpk−1(λq) for k ≥ 1

is the least positive integer i with the property that pi(λq) ≡ ±1 mod n and pi+1(λq) ≡ 0λq

mod n.

The term pi−1(λq), is the last term of the Hecke-Fibonacci sequence mod n (5.2.3)
before we get the repetition, and pi−1(λq) ≡ ±1λq mod n. Using Definition 5.14 and
(5.2.3), we get pi−1(λq) = pi+1(λq)− λqpi(λq) ≡ 0λq −±1λq ≡ ∓1λq mod n.

Definition 5.15. A principal Petrie polygon on Mq(n), has the points [ 1
0λq

], [
0λq
1 ], ...,

[
pk(λq)
pk+1(λq)

] where pk(λq) ∈ Z[λq] and it closes up when the two successive points [ 1
0λq

], [
0λq
1 ]

repeat. These points form the vertices of a principal Petrie polygon which we call Peq(n).
The vertices, which are the Farey fractions mod n, can be obtained using the Hecke-
Fibonacci sequence mod n, by dividing each term of the sequence by its next term.

Lemma 5.16. The semi-period σ̂q(n) of the Hecke-Fibonacci sequence mod n is the
order of the matrix

Q =

(
0 1

1 λq

)
∈ PSL(2,Z[λq]/(n)).

Proof. In Lemma 5.4 we defined the kth power of Q to be

Qk =

(
pk(λq) pk+1(λq)

pk+1(λq) pk+2(λq)

)
.

Substituting k by σ̂q(n) we get

Qσ̂q(n) =

(
pσ̂q(n)(λq) pσ̂q(n)+1(λq)

pσ̂q(n)+1(λq) pσ̂q(n)+2(λq)

)
.
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Now pσ̂q(n)+2(λq) ≡ ±1 mod n, pσ̂q(n)+1(λq) ≡ 0λq mod n and pσ̂q(n)(λq) ≡ ±1 mod n,
by Definition 5.14. Thus Qσ̂q(n) ≡ ±I mod n, so the order of Q divides σ̂q(n). Therefore
σ̂q(n) = k since σ̂q(n) is the least positive integer k with Qk ≡ ±I mod n.

Theorem 5.17. For all positive integers n > 2, σ̂q(n) is even.

Proof. Recall Lemma 5.16, we have

Qσ̂q(n) =

(
pσ̂q(n)(λq) pσ̂q(n)+1(λq)

pσ̂q(n)+1(λq) pσ̂q(n)+2(λq)

)
≡ ±I mod n.

From the proof of Lemma 5.16 det(Qσ̂q(n)) ≡ 1 mod n. Also

detQ =

(
0 1

1 λq

)
= 1.

As det(Qσ̂q(n)) = det(Q)σ̂q(n) thus (−1)σ̂q(n) ≡
1 mod n, hence σ̂q(n) is even.

Theorem 5.18. The Petrie length of Peq(n) is equal to σ̂q(n).

Proof. By Lemma 5.16 the order of the matrix Q is σ̂q(n). Also the length of the principal
Petrie polygon is the order of the transformation (R1R2R3) that is represented by the
matrix Q as mentioned in Section 5.2. Thus the Petrie length of Peq(n) is equal to
σ̂q(n).

In the finite group Hq/Hq(n), we have a relation (R1R2R3)σ̂q(n) = 1. In some cases
the group with presentation

< R1, R2, R3 |R2
1 = R2

2 = R2
3 = (R1R2)2 = (R2R3)m = (R3R1)n = (R1R2R3)σ̂q(n) = 1 >

(5.3.1)
is enough to define the group, (e.g. n = 7, q = 3), but usually this is not the case, see
[CM57, Section 8.6].

5.3.1 Some special cases when q = 4, 5, 6

The vertices of M4(n) and M6(n) are equivalence classes of vertices of M̂4 and M̂6.
To clarify matters we denote the equivalence class of a

c
√
m

and b
√
m
d by [ a

c
√
m

] and [ b
√
m
d ]

respectively in Mq(n). These equivalence classes [ a
c
√
m

] and [ b
√
m
d ] are joined by an edge

in Mq(n) if and only if ad−mbc ≡ ±1 or mad− bc ≡ ±1 mod n.

As we will consider the principal Petrie polygon modulo n and as a
c
√
m

= −a
−c√m , we

list sequences (5.2.4) modulo n for n = 1, 2, ..., 10 for the cases q = 4, 6.
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Table 5.1: The sequence (5.2.4) modulo n = 2, 3, ..., 10 for q = 4

n (5.2.4) modulo n
2 1, 1, 1, 1

3 1, 1, 0, 2, 2, 0, 1, 1, 0

4 1, 1, 3, 3, 1, 1, 3, 3

5 1, 1, 3, 1, 1, 3

6 1, 1, 3, 5, 5, 3, 1, 1, 3

7 1, 1, 3, 4, 6, 6, 4, 3, 1, 1, 3

8 1, 1, 3, 3, 1, 1, 3

9 1, 1, 3, 2, 5, 0, 4, 7, 6, 8, 8, 6, 7, 4, 0, 5, 2, 3, 1, 1

10 1, 1, 3, 1, 1, 3

Table 5.2: The sequence (5.2.4) modulo n = 2, 3, ..., 10 for q = 6

n (5.2.4) modulo n
2 1, 1, 0, 1, 1, 0

3 1, 1, 1, 1

4 1, 1, 0, 3, 3, 0, 1, 1, 0

5 1, 1, 4, 4, 1, 1, 4, 4

6 1, 1, 4, 1, 1, 4

7 1, 1, 4, 5, 0, 2, 3, 6, 6, 3, 2, 0, 5, 4, 1, 1, 4, 5, 0

8 1, 1, 4, 3, 3, , 4, 1, 1, 4

9 1, 1, 4, 1, 1, 4

10 1, 1, 4, 9, 1, 6, 9, 9, 6, 1, 9, 4, 1, 1, 4

Recalling Theorem 5.9, we introduce the following definition.

Definition 5.19. The period π∗q (n) of the sequence (5.2.4) mod n is the least positive
integer i, such that ai(

√
m) ≡ ai+1(

√
m) ≡ 1 mod n. We call the the least positive integer

i with the property that ai(
√
m) ≡ ai+1(

√
m) ≡ ±1 mod n the semi-period σ∗q (n) of the

sequence (5.2.4) mod n.

Recalling Definition 5.14, and applying it for q = 4, 6, the semi-period σ̂q(n) of the
Hecke-Fibonacci sequence mod n defined by

p0(
√
m) = 1, p1(

√
m) = 0

√
m, pk(

√
m) = pk−2(

√
m) +

√
mpk−1(

√
m) for k ≥ 1

is the least positive integer i with the property that pi(
√
m) ≡ ±1 mod n and pi+1(

√
m) ≡ 0

√
m

mod n.
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Example 5.20. The principal Petrie polygon Pe4(7) has vertices

[
1

0
√

2
], [

0
√

2

1
], [

1

1
√

2
], [

1
√

2

3
], [

3

4
√

2
], [

4
√

2

4
], [

4

1
√

2
], [

1
√

2

6
].

The next two vertices are [ 1
0
√

2
], [0
√

2
1 ] so we have closed up our polygon, which has

eight vertices. These vertices are obtained by dividing each term of the Hecke-Fibonacci
sequence mod n in Table 5.5 by its next term for n = 7.

Table 5.3: The period and semi-period of the sequence (5.2.4) modulo low values of
n for M4(n) and M6(n)

n M4(n) M6(n)

π∗q (n) σ∗q (n) π∗q (n) σ∗q (n)

2 2 2 3 3
3 3 3 3 3
4 4 2 6 3
5 3 3 4 2
6 6 3 3 3
7 8 4 14 7
8 4 4 6 6
9 18 9 3 3
10 3 3 12 6
11 10 5 12 6
12 12 12 6 6
13 12 6 14 7
14 8 4 42 21
15 6 6 4 4
16 8 8 12 12
17 18 9 16 8
18 18 9 3 3
19 5 5 10 5
20 12 12 12 12
21 24 24 14 14
22 10 5 12 6
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Table 5.4: The period and semi-period of the sequence (5.2.4) modulo low values of
n for M4(n) and M6(n)

n M4(n) M6(n)

π∗q (n) σ∗q (n) π∗q (n) σ∗q (n)

23 11 11 8 4
24 12 12 6 6
25 15 15 20 10
26 12 6 42 21
27 54 27 9 9
28 8 8 42 21
29 15 15 5 5
30 6 6 12 12

Table 5.5: The semi-period σ̂4(n) of the Hecke-Fibonacci sequence mod n for q = 4
for low values of n

n σ̂4(n) Pe4(n) Hecke-Fibonacci sequence mod n (repeated block)
2 4 4 1, 0

√
2, 1, 1

√
2, 1, 0

√
2

3 6 6 1, 0
√

2, 1, 1
√

2, 0, 1
√

2, 2, 0
√

2

4 4 4 1, 0
√

2, 1, 1
√

2, 3, 0
√

2

5 6 6 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 1, 0
√

2

6 12 12 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 5, 3
√

2, 5, 2
√

2, 3, 5
√

2, 1, 0
√

2

7 8 8 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 4, 1
√

2, 6, 0
√

2

8 8 8 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 3, 7
√

2, 1, 0
√

2

9 18 18 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 2, 6
√

2, 5, 2
√

2, 0, 2
√

2, 4, 6
√

2, 7, 4
√

2, 6, 1
√

2, 8, 0
√

2

10 12 12 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 1, 5
√

2, 1, 6
√

2, 3, 9
√

2, 1, 0
√

2

11 10 10 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 0, 4
√

2, 8, 1
√

2, 10, 0
√

2

12 24 24 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 3
√

2, 5, 8
√

2, 9, 5
√

2, 7, 0
√

2, 7, 7
√

2, 9,

4
√

2, 5, 9
√

2, 11, 8
√

2, 3, 11
√

2, 1, 0
√

2

13 12 12 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 2
√

2, 2, 4
√

2, 10, 1
√

2, 12, 0
√

2

14 8 8 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 1
√

2, 13, 0
√

2

15 12 12 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 0
√

2, 11, 11
√

2, 3, 14
√

2, 1, 0
√

2

16 16 16 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 9, 8
√

2, 9, 1
√

2, 11, 12
√

2, 3, 15
√

2,

1, 0
√

2

17 18 18 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 7, 5
√

2, 0, 5
√

2, 10, 15
√

2, 6, 4
√

2,

14, 1
√

2, 16, 0
√

2

88



Table 5.6: The semi-period σ̂4(n) of the Hecke-Fibonacci sequence mod n for q = 4
for low values of n

n σ̂4(n) Pe4(n) Hecke-Fibonacci sequence mod n (repeated block)
18 36 36 1, 0

√
2, 1, 1

√
2, 3, 4

√
2, 11, 15

√
2, 5, 2

√
2, 9, 11

√
2, 13, 6

√
2, 7, 13

√
2, 15,

10
√

2, 17, 9
√

2, 17, 8
√

2, 15, 5
√

2, 7, 12
√

2, 13, 7
√

2, 9, 16
√

2, 5,

3
√

2, 11, 14
√

2, 3, 17
√

2, 1, 0
√

2

19 10 10 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 3, 18
√

2, 1, 0
√

2

20 24 24 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 1, 16
√

2, 13, 9
√

2, 11, 0
√

2, 11, 11
√

2,

13, 4
√

2, 1, 5
√

2, 11, 16
√

2, 3, 19
√

2, 1, 0
√

2

21 48 48 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 20, 14
√

2, 6, 20
√

2, 4, 3
√

2, 10, 13
√

2,

15, 7
√

2, 8, 15
√

2, 17, 11
√

2, 18, 8
√

2, 13, 0
√

2, 13, 13
√

2, 18, 10
√

2, 17,

6
√

2, 8, 14
√

2, 15, 8
√

2, 10, 18
√

2, 4, 1
√

2, 6, 7
√

2, 20, 6
√

2, 11, 17
√

2, 3,

20
√

2, 1, 0
√

2

22 20 20 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 19, 12
√

2, 21, 11
√

2, 21, 10
√

2, 19, 7
√

2,

11, 18
√

2, 3, 21
√

2, 1, 0
√

2

23 22 22 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 18, 10
√

2, 15, 2
√

2, 19, 21
√

2, 15, 13
√

2,

18, 8
√

2, 11, 19
√

2, 3, 22
√

2, 1, 0
√

2

24 24 24 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 17, 8
√

2, 9, 17
√

2, 19, 12
√

2, 19, 7
√

2, 9,

16
√

2, 17, 9
√

2, 11, 20
√

2, 3, 23
√

2, 1, 0
√

2

25 30 30 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 16, 6
√

2, 3, 9
√

2, 21, 5
√

2, 6, 11
√

2, 3,

14
√

2, 6, 20
√

2, 21, 16
√

2, 3, 19
√

2, 16, 10
√

2, 11, 21
√

2, 3, 24
√

2, 1, 0
√

2

26 12 12 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 15, 4
√

2, 23, 1
√

2, 25, 0
√

2

27 54 54 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 14, 2
√

2, 18, 20
√

2, 4, 24
√

2, 25, 22
√

2,

15, 10
√

2, 8, 18
√

2, 17, 8
√

2, 6, 14
√

2, 7, 2
√

2, 22, 16
√

2, 0, 16
√

2, 5, 21
√

2,

20, 14
√

2, 21, 8
√

2, 10, 18
√

2, 19, 10
√

2, 12, 22
√

2, 2, 24
√

2, 23, 20
√

2, 9,

2
√

2, 13, 15
√

2, 16, 4
√

2, 24, 1
√

2, 26, 0
√

2

28 16 16 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 13, 0
√

2, 13, 13
√

2, 11, 24
√

2, 3, 27
√

2,

1, 0
√

2

29 30 30 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 12, 27
√

2, 8, 6
√

2, 20, 26
√

2, 14, 11
√

2,

7, 18
√

2, 14, 3
√

2, 20, 23
√

2, 8, 2
√

2, 12, 14
√

2, 11, 25
√

2, 3, 28
√

2, 1, 0
√

2

30 12 12 1, 0
√

2, 1, 1
√

2, 3, 4
√

2, 11, 15
√

2, 11, 26
√

2, 3, 29
√

2, 1, 0
√

2

Table 5.7: The semi-period σ̂6(n) of the Hecke-Fibonacci sequence mod n for q = 6
for low values of n

n σ̂6(n) Pe6(n) Hecke-Fibonacci sequence mod n (repeated block)
2 6 6 1, 0

√
3, 1, 1

√
3, 0, 1

√
3, 1, 0

√
3

3 6 6 1, 0
√

3, 1, 1
√

3, 1, 2
√

3, 1, 0
√

3

4 6 6 1, 0
√

3, 1, 1
√

3, 0, 1
√

3, 3, 0
√

3

5 4 4 1, 0
√

3, 1, 1
√

3, 4, 0
√

3
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Table 5.8: The semi-period σ̂6(n) of the Hecke-Fibonacci sequence mod n for q = 6
for low values of n

n σ̂6(n) Pe6(n) Hecke-Fibonacci sequence mod n (repeated block)
6 6 6 1, 0

√
3, 1, 1

√
3, 4, 5

√
3, 1, 0

√
3

7 14 14 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 5, 3
√

3, 0, 3
√

3, 2, 5
√

3, 3, 1
√

3, 6, 0
√

3

8 12 12 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 3, 0
√

3, 3, 3
√

3, 4, 7
√

3, 1, 0
√

3

9 18 18 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 1, 6
√

3, 1, 7
√

3, 4, 2
√

3, 1, 3
√

3, 1, 4
√

3, 4, 8
√

3, 1, 0
√

3

10 12 12 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 9, 4
√

3, 1, 5
√

3, 6, 1
√

3, 9, 0
√

3

11 12 12 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 8, 2
√

3, 3, 5
√

3, 7, 1
√

3, 10, 0
√

3

12 12 12 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 7, 0
√

3, 7, 7
√

3, 4, 11
√

3, 1, 0
√

3

13 14 14 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 6, 11
√

3, 0, 11
√

3, 7, 5
√

3, 9, 1
√

3, 12, 0
√

3

14 42 42 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 5, 10
√

3, 7, 3
√

3, 2, 5
√

3, 3, 8
√

3, 13, 7
√

3, 6, 13
√

3,

3, 2
√

3, 9, 11
√

3, 0, 11
√

3, 5, 16
√

3, 11, 13
√

3, 8, 7
√

3, 1, 8
√

3, 11, 5
√

3, 12,

3
√

3, 7, 10
√

3, 9, 5
√

3, 10, 1
√

3, 13, 0
√

3

15 24 24 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 4, 9
√

3, 1, 10
√

3, 1, 11
√

3, 4, 0
√

3, 4, 4
√

3, 1, 5
√

3,

1, 6
√

3, 4, 10
√

3, 4, 14
√

3, 1, 0
√

3

16 24 24 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 3, 8
√

3, 11, 3
√

3, 4, 7
√

3, 9, 0
√

3, 9, 9
√

3, 4, 13
√

3,

11, 8
√

3, 3, 11
√

3, 4, 15
√

3, 1, 0
√

3

17 16 16 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 2, 7
√

3, 6, 13
√

3, 11, 7
√

3, 15, 5
√

3, 13, 1
√

3, 16, 0
√

3

18 18 18 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 1, 6
√

3, 1, 7
√

3, 4, 11
√

3, 1, 12
√

3, 1, 13
√

3, 4, 17
√

3, 1, 0
√

3

19 10 10 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 0, 5
√

3, 15, 1
√

3, 18, 0
√

3

20 24 24 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 19, 4
√

3, 11, 15
√

3, 16, 11
√

3, 9, 0
√

3, 9, 9
√

3, 16,

5
√

3, 11, 16
√

3, 19, 15
√

3, 4, 19
√

3, 1, 0
√

3

21 84 84 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 19, 3
√

3, 7, 10
√

3, 16, 5
√

3, 10, 15
√

3, 13, 7
√

3, 13,

20
√

3, 10, 9
√

3, 16, 4
√

3, 7, 11
√

3, 19, 9
√

3, 4, 13
√

3, 1, 14
√

3, 1, 15
√

3, 4,

19
√

3, 19, 17
√

3, 7, 3
√

3, 16, 19
√

3, 10, 8
√

3, 13, 0
√

3, 13, 13
√

3, 10, 2
√

3,

16, 18
√

3, 7, 4
√

3, 19, 2
√

3, 4, 6
√

3, 1, 7
√

3, 1, 8
√

3, 4, 12
√

3, 19, 10
√

3, 7,

17
√

3, 16, 12
√

3, 10, 1
√

3, 13, 14
√

3, 13, 6
√

3, 10, 16
√

3, 16, 11
√

3, 7,

18
√

3, 19, 16
√

3, 4, 20
√

3, 1, 0
√

3

22 12 12 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 19, 2
√

3, 3, 5
√

3, 18, 1
√

3, 21, 0
√

3

23 8 8 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 19, 1
√

3, 22, 0
√

3

24 12 12 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 19, 0
√

3, 19, 19
√

3, 4, 23
√

3, 1, 0
√

3

25 20 20 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 19, 24
√

3, 16, 15
√

3, 11, 1
√

3, 14, 15
√

3, 9,

24
√

3, 6, 5
√

3, 21, 1
√

3, 24, 0
√

3

26 42 42 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 19, 24
√

3, 13, 11
√

3, 20, 5
√

3, 9, 14
√

3, 25,

13
√

3, 12, 25
√

3, 9, 8
√

3, 7, 15
√

3, 0, 15
√

3, 19, 8
√

3, 17, 25
√

3, 14,

13
√

3, 1, 14
√

3, 17, 5
√

3, 6, 11
√

3, 13, 24
√

3, 7, 5
√

3, 22, 1
√

3, 25, 0
√

3
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Table 5.9: The semi-period σ̂6(n) of the Hecke-Fibonacci sequence mod n for q = 6
for low values of n

n σ̂6(n) Pe6(n) Hecke-Fibonacci sequence mod n (repeated block)
27 54 54 1, 0

√
3, 1, 1

√
3, 4, 5

√
3, 19, 24

√
3, 10, 7

√
3, 4, 11

√
3, 10, 21

√
3, 19,

13
√

3, 4, 17
√

3, 1, 18
√

3, 1, 19
√

3, 4, 23
√

3, 19, 15
√

3, 10, 25
√

3, 4,

2
√

3, 10, 12
√

3, 19, 4
√

3, 4, 8
√

3, 1, 9
√

3, 1, 10
√

3, 4, 14
√

3, 19, 6
√

3,

10, 16
√

3, 4, 20
√

3, 10, 3
√

3, 19, 22
√

3, 4, 26
√

3, 1, 0
√

3

28 42 42 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 19, 24
√

3, 7, 3
√

3, 16, 19
√

3, 17, 8
√

3, 13, 21
√

3,

20, 13
√

3, 3, 16
√

3, 23, 11
√

3, 0, 11
√

3, 5, 16
√

3, 25, 13
√

3, 8, 21
√

3, 15,

8
√

3, 11, 19
√

3, 12, 3
√

3, 21, 24
√

3, 9, 5
√

3, 24, 1
√

3, 27, 0
√

3

29 10 10 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 19, 24
√

3, 4, 28
√

3, 1, 0
√

3

30 24 24 1, 0
√

3, 1, 1
√

3, 4, 5
√

3, 19, 24
√

3, 1, 25
√

3, 16, 11
√

3, 19, 0
√

3,

19, 19
√

3, 16, 5
√

3, 1, 6
√

3, 19, 25
√

3, 4, 29
√

3, 1, 0
√

3

Example 5.21. The sequence (5.2.4) mod 5 for M4(5) is 1, 1, 3, 1, 1, 3, 1, 1, 3, ... hence
π∗4(5) = 3 and σ∗4(5) = 3. Therefore there are three even vertices of the principal Petrie
polygon and Pe4(5) has vertices

[
1

0
√

2
], [

0
√

2

1
], [

1

1
√

2
], [

1
√

2

3
], [

3

4
√

2
], [

4
√

2

1
].

The next two vertices are [ 1
0
√

2
], [0
√

2
1 ] so we have closed up our polygon, which has six

vertices. The length of Pe4(5) is equal to 2σ∗4(5) = 6.

Example 5.22. The sequence (5.2.4) mod 6 for M4(6) is 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, ... hence
π∗4(6) = 6 and σ∗4(6) = 3. Therefore there are six even vertices of the principal Petrie
polygon and Pe4(6) has vertices

[
1

0
√

2
], [

0
√

2

1
], [

1

1
√

2
], [

1
√

2

3
], [

3

4
√

2
], [

4
√

2

5
], [

5

3
√

2
], [

3
√

2

5
], [

5

2
√

2
], [

2
√

2

3
], [

3

5
√

2
], [

5
√

2

1
].

The next two vertices are [ 1
0
√

2
], [0
√

2
1 ] so we have closed up our polygon, which has twelve

vertices. The length of Pe4(6) is equal to 4σ∗4(6) = 12.

Example 5.23. The sequence (5.2.4) mod 6 for M6(6) is 1, 1, 4, 1, 1, 4, ... hence π∗6(6) = 3

and σ∗6(6) = 3. Therefore there are three even vertices of the principal Petrie polygon
and Pe6(6) has vertices

[
1

0
√

3
], [

0
√

3

1
], [

1

1
√

3
], [

1
√

3

4
], [

4

5
√

3
], [

5
√

3

1
].

The next two vertices are [ 1
0
√

3
], [0
√

3
1 ] so we have closed up our polygon, which has six

vertices. The length of Pe6(6) is equal to 2σ∗6(3) = 6.
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Example 5.24. The sequence (5.2.4) mod 4 for M6(4) is 1, 1, 0, 3, 3, 0, 1, 1, 0, ... hence
π∗6(4) = 6 and σ∗6(4) = 3. Therefore there are three even vertices of the principal Petrie
polygon and Pe6(4) has vertices

[
1

0
√

3
], [

0
√

3

1
], [

1

1
√

3
], [

1
√

3

0
], [

0

1
√

3
], [

1
√

3

3
].

The next two vertices are [ 1
0
√

3
], [0
√

3
1 ] so we have closed up our polygon, which has six

vertices. The length of Pe6(4) is equal to 2σ∗6(4) = 6.

Figure 5.3: Left: Pe6(3). Right: Pe6(4)

Lemma 5.25. π∗q (n) = σ∗q (n) if and only if aσ∗q (n)(
√
m) ≡ 1 mod n, and π∗q (n) = 2σ∗q (n)

if and only if aσ∗q (n)(
√
m) ≡ −1 mod n, for n > 2.

Proof. Let k be the least positive integer such that ak(
√
m) ≡ ak+1(

√
m) ≡ −1 mod n.

Then k = σ∗q (n) and a2σ∗q (n)+1(
√
m) ≡ −aσ∗q (n)+1(

√
m) mod n, so that a2σ∗q (n)+1(

√
m) ≡

−aσ∗q (n)+1(
√
m) ≡ 1 mod n, a2σ∗q (n)(

√
m) ≡ 1 mod n and π∗q (n) = 2σ∗q (n). Alternatively,

ak(
√
m) ≡ 1 mod n and then π∗q (n) = σ∗q (n).

Tables 5.5 and 5.7 reflect Theorem 5.18 as we can observe that the lengths of
Peq(n)’s column for q = 4, 6 matches the column of σ̂q(n)’s values.

Lemma 5.26. If aσ∗q (n) ≡ ±1 mod n and bσ∗q (n)(
√
m) ≡ 0

√
m mod n, then σ̂q(n) = 2σ∗q (n).

Otherwise, σ̂q(n) = 2mσ∗q (n), where m = 2, 3 for q = 4, 6 respectively.

Proof. If (
aσ∗q (n)

bσ∗q (n)(
√
m)

)
≡
(
±1

0
√
m

)
mod n,

then by (5.2.10)(
aσ∗q (n)

bσ∗q (n)(
√
m)

)
=

(
p2σ∗q (n)(

√
m))

p2σ∗q (n)+1(
√
m)

)
≡
(
±1

0
√
m

)
mod n.
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Thus σ̂q(n) = 2σ∗q (n) by Definition 5.14.
Now if (

aσ∗q (n)

bσ∗q (n)(
√
m)

)
6≡
(
±1

0
√
m

)
mod n,

then σ̂q(n) 6= 2σ∗q (n).

Therefore there is a least positive integer z such that(
azσ∗q (n)

bzσ∗q (n)(
√
m)

)
=

(
p2zσ∗q (n)(

√
m))

p2zσ∗q (n)+1(
√
m)

)
≡
(
±1

0
√
m

)
mod n,

here σ̂q(n) = 2zσ∗q (n), implies z = σ̂q(n)/2σ∗q (n).

For q = 4, if aσ∗4(n) ≡ ±1 mod n then azσ∗4(n) ≡ ±1 mod n. As bσ∗4(n)(
√

2) 6≡ 0
√

2

mod n, then n - bσ∗4(n)(
√

2). Now suppose that n is even, thus bσ∗4(n)(
√

2) is odd such
that (n, bσ∗4(n)) = bσ∗4(n). We need the least positive z such that bzσ∗4(n)(

√
2) ≡ 0(

√
2)

mod n. Choose z = 2 such that n|b2σ∗4(n)(
√

2) implies b2σ∗4(n)(
√

2) = 2bσ∗4(n) ≡ 0
√

2 mod
n. Therefore (

a2σ∗4(n)

b2σ∗4(n)(
√

2)

)
=

(
p4σ∗4(n)(

√
2))

p4σ∗4(n)+1(
√

2)

)
≡
(
±1

0
√

2

)
mod n,

σ̂4(n) = 2(2σ∗4(n)) = 4σ∗4(n).

For q = 6, if aσ∗6(n) ≡ ±1 mod n and bσ∗6(n)(
√

3) 6≡ 0
√

3 mod n, then n - bσ∗6(n)(
√

3).
Now suppose that 3|n and n - bσ∗6(n)(

√
3). We need the least positive z such that

bzσ∗6(n)(
√

3) ≡ 0
√

3 mod n. Since n - bσ∗6(n)(
√

3), then n - 2bσ∗6(n)(
√

3) ≡ b2σ∗6(n) ≡ −bσ∗6(n)(
√

3)

mod n, hence z = 2 is excluded. Choose z = 3 such that n|b3σ∗6(n)(
√

3), we have
b3σ∗6(n)(

√
3) = 3bσ∗6(n)(

√
3) ≡ 0(

√
3) mod n. Therefore(

a3σ∗6(n)

b3σ∗6(n)(
√

3)

)
=

(
p6σ∗6(n)(

√
3))

p6σ∗6(n)+1(
√

3)

)
≡
(
±1

0
√

3

)
mod n,

σ̂6(n) = 2(3σ∗6(n)) = 6σ∗6(n). Thus the value of z is 2 for q = 4 and 3 for q = 6 which
are the values of m.

Example 5.27. Recall Example 5.22 and Tables 5.1, 5.3 and 5.5.
As σ∗4(6) = 3, then (

aσ∗4(6)

bσ∗4(6)(
√

2)

)
6≡
(
±1

0
√

2

)
mod 6,

but (
a2σ∗4(6)

b2σ∗4(6)(
√

2)

)
≡
(
±1

0
√

2

)
mod 6.
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The length of the principal Petrie polygon Pe4(6) = σ̂4(6) = 4σ∗4(6) = 12. There
are six even vertices of the principal Petrie polygon Pe4(6), these are

[
1

0
√

2
], [

0
√

2

1
], [

1

1
√

2
], [

1
√

2

3
], [

3

4
√

2
], [

4
√

2

5
], [

5

3
√

2
], [

3
√

2

5
], [

5

2
√

2
], [

2
√

2

3
], [

3

5
√

2
], [

5
√

2

1
].

There are many examples, for q = 4 when n = 6, 10, 18, 22 as shown in Table 5.5
where σ̂4(n) = 4σ∗4(n), also for q = 6 where n = 9, 15, 18, 21, 27 as shown in Table 5.7
where σ̂6(n) = 6σ∗6(n).

Extending my calculations to include q = 5, the following table shows some facts
about Theorem 5.18 for values of n up to 15.

Table 5.10: The semi-period σ̂5(n) of the Hecke-Fibonacci sequence mod n for q = 5
for n = 2, ..., 15

n σ̂5(n) Pe5(n)

2 4 4
3 10 10
4 10 10
5 30 30
6 10 10
7 12 12
8 20 20
9 30 30
10 30 30
11 40 40
12 20 20
13 84 84
14 60 60
15 30 30

Example 5.28. The Hecke-Fibonacci sequence (5.2.3) mod 3 for M5(3) is
1, 0λ5, 1, λ5, λ5 + 2, λ5 + 1, 0, λ5 + 1, 2λ5 + 1, λ5, 2, 0λ5, 2, ... hence σ̂5(3) = 10. Pe5(3) has
vertices

[
1

0λ5
], [

0λ5

1
], [

1

1λ5
], [

λ5

λ5 + 2
], [
λ5 + 2

λ5 + 1
], [
λ5 + 1

0
], [

0

λ5 + 1
], [

λ5 + 1

2λ5 + 1
], [

2λ5 + 1

λ5
], [
λ5

2
].

The next two vertices are [ 2
0λ5

], [0λ5
2 ] so we have closed up our polygon, which has ten

vertices. The length of Pe5(3) is equal to σ̂5(3).
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1
0λ5

0λ5
1 1

1λ5

1
2λ5

1λ5
1λ5 +2

1λ5 +1
1λ5 +2

1λ5 +1
2λ5 +1

2λ5 +1
2λ5 +1

0
1λ5 +1

1λ5 +1
0

1λ5 +2
1λ5 +1

2λ5 +1
1λ5 +2

2λ5 +1
1λ5 +1

1λ5
1λ5

1λ5
2λ5

1λ5
1

2λ5
1

2λ5 +1
1λ5

1λ5 +2
1λ5

2λ5
1λ5 +2

Figure 5.4: Pe5(3)

It is a general fact that for regular maps, the map and its dual always have the same
Petrie path lengths. The map M3(5) (the icosahedron) has a Petrie polygon Pe3(5) of
length ten as shown in [SS18, Figure 2], and its dual M5(3) (the dodecahedron) has the
same length as shown in Figure 5.4.

It is very interesting to extend this to q = 7 because the non-identity finite quotients
of Γ(2, 3, 7) are the Hurwitz groups of 84(g − 1) automorphisms of a compact Riemann
surface of genus g ≥ 2. Using the minimal polynomial λ3

7 − λ2
7 − 2λ7 + 1 of λ7 we can

draw M7(3).
Using the Hecke-Fibonacci sequence (5.2.3) mod 3 for q = 7 we have the following Pe7(3)

1

0λ7
←→ 0λ7

1
←→ 1

λ7
←→ λ7

λ2
7 + 1

←→ λ2
7 + 1

λ2
7 + λ7 + 2

←→ λ2
7 + λ7 + 2

λ7
←→ λ7

2λ2
7 + λ7 + 2

←→ 2λ2
7 + λ7 + 2

λ7 + 1
←→ λ7 + 1

2λ7 + 2
←→ 2λ7 + 2

2λ2
7 + 1

←→ 2λ2
7 + 1

2λ2
7 + λ7

←→ 2λ2
7 + λ7

2λ2
7 + λ7 + 2

←→ 2λ2
7 + λ7 + 2

2λ2
7 + λ7 + 1

←→ 2λ2
7 + λ7 + 1

2λ2
7

←→ 2λ2
7

λ2
7 + 2λ7 + 2

←→ λ2
7 + 2λ7 + 2

2λ2
7 + λ7 + 2

←→ 2λ2
7 + λ7 + 2

λ2
7 + 2λ7

←→ λ2
7 + 2λ7

2λ2
7 + 1

←→ 2λ2
7 + 1

λ7 + 1
←→ λ7 + 1

λ7 + 1
←→ λ7 + 1

λ2
7 + 2λ7 + 1

←→ λ2
7 + 2λ7 + 1

λ7
←→ λ7

2λ2
7 + 2λ7 + 1

←→ 2λ2
7 + 2λ7 + 1

λ2
7 + 1

←→ λ2
7 + 1

2λ7
←→ 2λ7

1
←→ 1

0λ7
←→ 0λ7

1
.

We find that the length of the principal Petrie polygon is 26 which corresponds to the
Hurwitz group of the form PSL2(13). In [Mac99] Macbeath shows that there are three
Hurwitz surfaces associated with PSL2(13). These three surfaces correspond to choosing
a generator of order 7 from one of the three conjugacy classes of such elements in this
group. These elements have traces ±3, ±5 and ±6, and the corresponding maps have
Petrie lengths 14, 26 and 12 [JW16, Example 5.4].
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1
a1

b1

c1 d1

e1

g1
f1

a2
b2c2

d2
e2

a3

b3
c3d3

a4
b4

c4

d4

4

a5 b5
c5

d55

a6
b6 c6

d6

6

a7
b7
c7

d7

7

a8
b8
c8

8

a9
b9c9d9

a10
b10

c10d10

a11
b11
c11
d11

a12b12
c12
d12

12
a13
b13c13

d13

a14
b14
c14 d14

14

a15b15c15
d15 15

a16
b16

c16d16

10

16
a17
b17

c17

17

a23
b23

c23
d23

a24
b24
c24

24

23

a25b25
c25
d25

a26b26
c26

26

a27
b27c27

d27

27
a28 b28

c28
28

13
a19
b19
c19 d19

a29
b29c29

29

19

a21b21
c21

a18
b18
c18
d18
18

21

a22b22
c22

a20
b20c20

d20

22

3435
36

37
38

39
40

41
42

44

43

45

46

47

48
49

50

51
52 53

54 55
56 57

58 6059

61 62
63 64

65

66
67

72
73

74

75
76

77

78
79

80
8182

8384

68
25

11
71

70

69

32

920

85

a32c31
33 32

31
30

Figure 5.5: A partial picture of the map M7(3) showing a highlighted part of Pe7(3).

For a list of vertices of some of the numbered faces in Figure 5.5, see Appendix B.
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Appendix A

Drawing Technique for M̂q

This Appendix illustrates the technique that I use and follow to draw the universal
q-gonal tessellation M̂q for q = 3, 4, 5, 6, 7 as shown in Figures 3.5, 3.11, 3.12, 3.13,
3.15. One of the drawing examples in Chapter 3, is the universal 4-gonal tessellation M̂4

(Figure 3.11), which we draw by means of the following LaTeX code using TikZ package.
TikZ package is one of the most powerful and complex tool that allows us to program and
create graphic elements and figures into LaTeX documents. We can create images easily
by defining some of their key properties. Furthermore TikZ is a recursive acronym for
’TikZ ist kein Zeichenprogramm’ and is a part of a large package called PGF ’Portable
Graphics Format’. In this drawing technique the coordinates were found by hand and
calculator.

\documentclass[tikz]{standalone}

\begin{document}

\begin{tikzpicture}[scale=30]

\draw [dotted] (0,0) -- (1.414,0);

\filldraw (0,0) circle (0.09pt);

\filldraw (1.414,0) circle (0.09pt);

\draw (0,0) -- (0,.618);

\draw (1.414,0) -- (1.414,.618);

\draw (0.707,0) arc (0:180:.353);

\filldraw (0.707,0) circle (0.09pt);

\draw (1.414,0) arc (0:180:.353);

\draw [dotted] (0,0) -- (0,-.03) node[below]

{\Huge$\frac{0\sqrt(2)}{1}$};

\draw [dotted] (1.414,0) -- (1.414,-.03) node[below]

{\Huge$\frac{\sqrt{2}}{1}$};

\draw [dotted] (0.17678,0) -- (0.17678,-.03) node

[below]{\Large$a_{1}$};

\draw (0.17678,0) arc (0:180:.0883);

\filldraw (0.17678,0) circle (0.06pt);

\draw [dotted] (0.20203,0) -- (0.20203,-.03) node[below]

{\Large$b_{1}$};

\draw (0.20203,0) arc (0:180:.0125);
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\filldraw (0.20203,0) circle (0.06pt);

\draw [dotted] (0.23570,0) -- (0.23570,-.03) node[below]

{\Large$c_{1}$};

\draw (0.23570,0) arc (0:180:.0166);

\draw (0.23570,0) arc (0:180:.118);

\filldraw (0.23570,0) circle (0.06pt);

\draw [dotted] (0.257129,0) -- (0.257129,-.03) node[below]

{\large$d_{1}$};

\draw (0.257129,0) arc (0:180:.0105);

\filldraw (0.257129,0) circle (0.06pt);

\draw [dotted] (0.265165,0) -- (0.265165,-.02) node[below]

{\large$e_{1}$};

\draw (0.265165,0) arc (0:180:.004);

\filldraw (0.265165,0) circle (0.06pt);

\draw (0.28284,0) arc (0:180:.009);

\draw [dotted] (0.28284,0) -- (0.28284,-.03) node[below]

{\Large$f_{1}$};

\draw (0.28284,0) arc (0:180:.0235);

\filldraw (0.28284,0) circle (0.06pt);

\draw [dotted] (0.35355,0) -- (0.35355,-.03) node[below]

{\huge$\frac{1}{2\sqrt{2}}$};

\filldraw (0.35355,0) circle (0.09pt);

\draw (0.35355,0) arc (0:180:.0355);

\draw (0.35355,0) arc (0:180:.177);

\draw [dotted] (0.40406,0) -- (0.40406,-.03) node[below]

{\Large$g_{1}$};

\draw (0.40406,0) arc (0:180:.025);

\filldraw (0.40406,0) circle (0.06pt);

\draw [dotted] (0.42426,0) -- (0.42426,-.03) node[below]

{\Large$j_{1}$};

\draw (0.42426,0) arc (0:180:.004);

\draw (0.42426,0) arc (0:180:.01);

\filldraw (0.42426,0) circle (0.06pt);

\draw [dotted] (0.415945,0) -- (0.415945,-.01) node[below

]{\large$i_{1}$};

\draw (0.415945,0) arc (0:180:.0015);

\filldraw (0.415945,0) circle (0.03pt);

\draw [dotted] (0.4124789,0) -- (0.4124789,-.02) node[below]

{\large$h_{1}$};

\draw (0.4124789,0) arc (0:180:.004);

\filldraw (0.4124789,0) circle (0.03pt);

\draw [dotted] (0.47140,0) -- (0.47140,-.03) node[below]

{\huge$\frac{\sqrt{2}}{3}$};

\draw (0.47140,0) arc (0:180:.0235);

\draw (0.47140,0) arc (0:180:.059);

\filldraw (0.47140,0) circle (0.09pt);
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\draw [dotted] (0.56569,0) -- (0.56569,-.03) node[below]

{\Large$n_{1}$};

\draw (0.565693,0) arc (0:180:.0175);

\draw (0.565693,0) arc (0:180:.008);

\filldraw (0.565693,0) circle (0.06pt);

\draw [dotted] (0.606091,0) -- (0.606091,-.03) node[below]

{\Large$p_{1}$};

\draw (0.606091,0) arc (0:180:.0084);

\filldraw (0.606091,0) circle (0.06pt);

\draw [dotted] (0.58925,0) -- (0.58925,-.03) node[below]

{\Large$o_{1}$};

\draw (0.58925,0) arc (0:180:.0115);

\filldraw (0.58925,0) circle (0.06pt);

\draw [dotted] (0.70711,0) -- (0.70711,-.03) node[below]

{\Huge$\frac{1}{\sqrt{2}}$};

\draw (0.70711,0) arc (0:180:.0705);

\draw (0.70711,0) arc (0:180:.11755);

\draw (0.70711,0) arc (0:180:.0505);

\filldraw (0.70711,0) circle (0.06pt);

\draw [dotted] (0.53033,0) -- (0.53033,-.03) node[below]

{\Large$k_{1}$};

\filldraw (0.53033,0) circle (0.06pt);

\draw (0.53033,0) arc (0:180:.029);

\draw [dotted] (0.543928,0) -- (0.543928,-.02) node[below

]{\large$l_{1}$};

\filldraw (0.543928,0) circle (0.03pt);

\draw (0.543928,0) arc (0:180:.0065);

\draw [dotted] (0.549971,0) -- (0.549971,-.01) node[below]

{\large$m_{1}$};

\filldraw (0.549971,0) circle (0.03pt);

\draw (0.549971,0) arc (0:180:.0029);

\draw [dotted] (1.06066,0) -- (1.06066,-.03) node[below]

{\huge$\frac{3}{2\sqrt{2}}$};

\draw (1.41421,0) arc (0:180:.1175);

\draw (1.41421,0) arc (0:180:.088);

\filldraw (1.06066,0) circle (0.09pt);

\draw (1.41421,0) arc (0:180:.177);

\draw [dotted] (0.98994,0) -- (0.98994,-.03) node[below]

{\Large$g_{2}$};

\draw [dotted] (1.01015,0) -- (1.01015,-.03) node[below]

{\Large$j_{2}$};

\draw [dotted] (0.94281,0) -- (0.94281,-.03) node[below]
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{\huge$\frac{2\sqrt{2}}{3}$};

\filldraw (0.99826,0) circle (0.03pt);

\draw [dotted] (0.99826,0) -- (0.99826,-.02) node[below]

{\large$h_{2}$};

\draw [dotted] (1.00173,0) -- (1.00173,-.01) node[below]

{\large$i_{2}$};

\filldraw (1.00173,0) circle (0.03pt);

\draw (1.00173,0) arc (0:180:.0015);

\draw (0.99826,0) arc (0:180:.004);

\draw (1.01015,0) arc (0:180:.004);

\draw (1.06066,0) arc (0:180:.059);

\draw (1.06066,0) arc (0:180:.025);

\draw (0.98994,0) arc (0:180:.0235);

\draw (1.01015,0) arc (0:180:.0107);

\filldraw (0.98994,0) circle (0.09pt);

\filldraw (1.01015,0) circle (0.09pt);

\filldraw (0.94281,0) circle (0.09pt);

\draw [dotted] (0.88388,0) -- (0.88388,-.03) node[below]

{\Large$f_{2}$};

\draw [dotted] (0.84853,0) -- (0.84853,-.03) node[below]

{\Large$c_{2}$};

\draw [dotted] (0.808122,0) -- (0.808122,-.03) node[below]

{\Large$a_{2}$};

\draw [dotted] (0.824957,0) -- (0.824957,-.03) node[below]

{\Large$b_{2}$};

\filldraw (0.824957,0) circle (0.06pt);

\filldraw (0.808122,0) circle (0.06pt);

\draw (0.84853,0) arc (0:180:.0119);

\draw (0.824957,0) arc (0:180:.0085);

\draw (0.808122,0) arc (0:180:.05);

\draw (0.84853,0) arc (0:180:.07);

\draw (0.94281,0) arc (0:180:.0295);

\draw (0.88388,0) arc (0:180:.0175);

\draw (0.88388,0) arc (0:180:.007);

\draw (0.94281,0) arc (0:180:.117);

\filldraw (0.88388,0) circle (0.06pt);

\filldraw (0.84853,0) circle (0.06pt);

\draw [dotted] (0.86424,0) -- (0.86424,-.02) node[below]

{\large$d_{2}$};

\filldraw (0.86424,0) circle (0.03pt);

\draw (0.86424,0) arc (0:180:.0075);

\draw [dotted] (0.870285,0) -- (0.870285,-.01) node[below]

{\large$e_{2}$};

\filldraw (0.870285,0) circle (0.03pt);

\draw (0.870285,0) arc (0:180:.003);
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\draw [dotted] (1.13137,0) -- (1.13137,-.03) node[below]

{\Large$k_{2}$};

\filldraw (1.13137,0) circle (0.06pt);

\draw (1.13137,0) arc (0:180:.0355);

\draw [dotted] (1.178511,0) -- (1.178511,-.03) node[below]

{\Large$n_{2}$};

\filldraw (1.178511,0) circle (0.06pt);

\draw (1.178511,0) arc (0:180:.0235);

\draw (1.178511,0) arc (0:180:.0105);

\draw [dotted] (1.21218,0) -- (1.21218,-.03) node[below]

{\Large$o_{2}$};

\filldraw (1.21218,0) circle (0.06pt);

\draw (1.21218,0) arc (0:180:.0165);

\draw [dotted] (1.23743,0) -- (1.23743,-.03) node[below]

{\Large$p_{2}$};

\filldraw (1.23743,0) circle (0.06pt);

\draw (1.23743,0) arc (0:180:.0126);

\draw [dotted] (1.149048,0) -- (1.149048,-.02) node[below]

{\large$l_{2}$};

\filldraw (1.149048,0) circle (0.03pt);

\draw (1.149048,0) arc (0:180:.0085);

\draw [dotted] (1.15708,0) -- (1.15708,-.01) node[below]

{\large$m_{2}$};

\filldraw (1.15708,0) circle (0.03pt);

\draw (1.15708,0) arc (0:180:.004);

\end{tikzpicture}

\end{document}
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Appendix B

Faces of the map M7(3)

In this appendix, we list a table showing vertices of some of the numbered faces of
the map M7(3) in anticlockwise order as shown in Figure 5.5.

Table B.1: Table of Correspondence for M7(3)

Face Correspondent vertices

1 a1 : 1λ7
1 ↔ b1 :

λ27+2
λ7
↔ c1 :

λ27+2

λ27+2
↔ d1 : λ7

λ27+2
↔ e1 : 1

λ7
↔ f1 : 0λ7

1 ↔ g1 : 1
0λ7

2 a2 : 2λ7
1 ↔ b2 :

2λ27+2
λ7
↔ c2 :

λ27+λ7+1

λ27+2
↔ d2 :

λ27+2λ7+2

λ27+2
↔ e2 :

λ27+1
λ7
↔ a1 ↔ g1

3 f1 ↔ a3 : 2
λ7
↔ b3 : 2λ7

λ27+2
↔ c3 :

2λ27+1

λ27+2
↔ d3 :

2λ27+1
λ7
↔ a2 ↔ g1

4 e1 ↔ a4 : 2λ7
2λ27+2

↔ b4 : 2λ7+1
2λ27+λ7+1

↔ c4 :
2λ27+1

λ27+2λ7+2
↔ d4 : 2λ7

λ27+1
↔ a3 ↔ f1

5 a5 :
λ27+1

λ27+2λ7+2
↔ b5 :

λ27+2λ7+2

2λ27+λ7
↔ c5 :

2λ27+λ7+1

2λ27+2λ7+2
↔ d5 :

2λ27+2

2λ27+2λ7+1
↔ a4 ↔ e1 ↔ d1

6 a6 :
λ27+2λ7+2

2λ27+λ7+1
↔ b6 :

2λ27+λ7
2λ27+2λ7+2

↔ c6 :
2λ27+2λ7+2

2λ27+2λ7
↔ d6 :

2λ27+2λ7+1

2λ27+2λ7+2
↔ a5 ↔ d1 ↔ c1

7 a7 :
2λ27+λ7+1

2λ27+2
↔ b7 :

2λ27+2λ7+2

2λ27+2λ7+1
↔ c7 :

2λ27+2λ7
2λ27+2λ7+2

↔ d7 :
2λ27+2λ7+2

2λ27+λ7
↔ a6 ↔ c1 ↔ b1

8 e2 ↔ a8 :
2λ27+2λ7+1

2λ27+2
↔ b8 :

2λ27+2λ7+2

2λ27+λ7+1
↔ c8 :

2λ27+λ7
λ27+2λ7+2

↔ a7 ↔ b1 ↔ a1

9 d3 ↔ a9 :
λ27+2λ7+2

2λ27+2
↔ b9 :

2λ27+λ7
2λ27+λ7+1

↔ c9 :
2λ27+2λ7+2

λ27+2λ7+2
↔ d9 :

2λ27+2λ7+1

λ27+1
↔ b2 ↔ a2

10 d4 ↔ a10 :
λ27+1

2λ27+2λ7+1
↔ b10 :

λ27+2λ7+2

2λ27+2λ7+2
↔ c10 :

2λ27+λ7+1

2λ27+λ7
↔ d10 :

2λ27+2

λ27+2λ7+2
↔ b3 ↔ a3

11 d5 ↔ a11 :
2λ27+2λ7+1

2λ7
↔ b11 :

2λ27+2λ7+2
λ7+2 ↔ c11 :

2λ27+λ7
λ27

↔ d11 :
λ27+2λ7+2

λ27+λ7
↔ b4 ↔ a4

12 d6 ↔ a12 : 2λ7
λ7+2 ↔ b12 : λ7+2

2λ27+1
↔ c12 :

λ27
2λ27+λ7+2

↔ d12 :
λ27+λ7
λ27
↔ b5 ↔ a5

13 d7 ↔ a13 : λ7+2
λ27
↔ b13 :

2λ27+1

2λ27+λ7+2
↔ c13 :

2λ27+λ7+2

2λ27+1
↔ d13 :

λ27
λ7+2 ↔ b6 ↔ a6

14 c8 ↔ a14 :
λ27

λ27+λ7
↔ b14 :

2λ27+λ7+2

λ27
↔ c14 :

2λ27+1
λ7+2 ↔ d14 : λ7+2

2λ7
↔ b7 ↔ a7

15 d2 ↔ a15 :
λ27+λ7

λ27+2λ7+2
↔ b15 :

λ27
2λ27+λ7

↔ c15 : λ7+2
2λ27+2λ7+2

↔ d15 : 2λ7
2λ27+2λ7+1

↔ a8 ↔ e2
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Table B.2: Table of Correspondence for M7(3)

Face Correspondent vertices

16 e3 ↔ a16 :
λ27+2λ7+2

λ27+2λ7+2
↔ b16 :

λ27+λ7+1

2λ27+λ7
↔ c16 :

λ27+λ7
2λ27+2λ7+2

↔ d16 :
λ27+λ7+1

2λ27+2λ7+1
↔ a9 ↔ d3

17 d10 ↔ a17 :
2λ27+2λ7+1

λ27+λ7+1
↔ b17 :

2λ27+2λ7+2

λ27+λ7
↔ c17 :

2λ27+λ7
λ27+λ7+1

↔ a16 ↔ e3 ↔ b3

18 d15 ↔ a18 :
λ27+2λ7+1

2λ7
↔ b18 : λ7+2

λ7+2 ↔ c18 : 2
λ27
↔ d18 : λ7+1

λ27+λ7
↔ b8 ↔ a8

19 a19 : 0
λ7+1 ↔ b19 :

λ27+λ7
2λ27+2λ7+1

↔ c19 :
2λ27+2λ7+2

λ27+λ7
↔ d19 :

λ27+λ7+1
1 ↔ a13 ↔ d7 ↔ c7

20 d9 ↔ a20 : λ7
2λ27+2λ7+1

↔ b20 : 2λ7+1
2λ27+2λ7+2

↔ c20 :
2λ27

2λ27+λ7
↔ d20 :

2λ27+2λ7
λ27+2λ7+2

↔ c2 ↔ b2

21 d18 ↔ a21 :
2λ27+2λ7+1

λ7+1 ↔ b21 :
λ27+λ7

0 ↔ c21 : 1
2λ7+2 ↔ a14 ↔ c8 ↔ b8

22 d20 ↔ a22 : λ7+1
2λ27+2λ7+2

↔ b22 : 0
λ27+λ7

↔ c22 : 2λ7+2
2λ27+2λ7+2

↔ a15 ↔ d2 ↔ c2

23 a23 :
2λ27+λ7+1

λ27+λ7
↔ b23 :

2λ27+λ7
2λ27

↔ c23 :
2λ27+2λ7+2

2λ7+1 ↔ d23 : 2λ7+1
λ27+λ7

↔ a10 ↔ d4 ↔ c4

24 d11 ↔ a24 :
λ27+λ7+1
λ7+1 ↔ b21 ↔ c24 :

λ27+λ7+1
2λ7+2 ↔ a23 ↔ c4 ↔ b4

25 a25 :
λ27+λ7
λ7+1 ↔ b25 :

2λ27
1 ↔ b18 ↔ d25 :

λ27+λ7
2λ27+1

↔ a11 ↔ d5 ↔ c5

26 d12 ↔ a26 : λ7+1
2 ↔ b22 ↔ c26 : 2λ7+2

λ27+λ7+2
↔ a25 ↔ c5 ↔ b5

27 d13 ↔ a27 : 2
λ7+2 ↔ b27 :

2λ27+2λ7
λ27+λ7+1

↔ c27 :
λ27+λ7+2

2λ27+2λ7
↔ d27 : λ7+1

0 ↔ c6 ↔ b6

28 d27 ↔ a28 : 1
λ27+λ7

↔ b28 : 2λ7+1
2λ27+2λ7+2

↔ c28 :
2λ27+1

λ27+λ7+1
↔ a12 ↔ d6 ↔ c6

29 d14 ↔ a29 : λ7+2
λ27+2λ7+1

↔ b29 :
λ27+λ7+1
λ7+2 ↔ c29 :

λ27+λ7
1 ↔ a19 ↔ c7 ↔ b7

30 a30 :
2λ27

λ27+λ7
↔ b30 : 1

λ7+1 ↔ b21 ↔ c30 :
2λ27+2

2λ27+2
↔ d30 : λ7+1

2λ27+2λ7
↔ c9 ↔ b9

31 c9 ↔ d30 ↔ a31 : 1
λ27
↔ b31 : 2λ7+1

λ7+2 ↔ c31 :
2λ27+λ7+2

2λ7
↔ a20 ↔ d9

32 c31 ↔ a32 : λ7+1
λ27+2λ7+1

↔ b32 :
2λ27+1
λ7+2 ↔ c32 :

2λ27+λ7
2 ↔ a25 ↔ b20 ↔ a20

33 a25 ↔ a33 :
2λ27+1

2λ27+2λ7+1
↔ c6 ↔ b33 :

λ27+2λ7+1
1 ↔ c33 :

2λ27+2

2λ27
↔ c20 ↔ a20

34 c20 ↔ c33 ↔ a34 :
2λ27+2

2λ27+λ7+2
↔ b34 :

λ27
2λ27+1

↔ c34 :
2λ27+2λ7
λ7+2 ↔ a22 ↔ d20

35 c34 ↔ a35 :
λ27+2λ7+2
λ7+2 ↔ b35 :

λ27+2λ7+2

λ27+λ7+1
↔ c35 :

2λ27+2λ7
2λ27+2λ7

↔ d27 ↔ b22 ↔ a22

36 d27 ↔ a36 :
2λ27+2λ7
λ27+λ7

↔ b10 ↔ c36 :
λ27

λ27+λ7+1
↔ d36 :

2λ27+2λ7
2λ7+1 ↔ c22 ↔ b22

37 c22 ↔ d36 ↔ a37 :
2λ27

2λ27+1
↔ b37 :

λ27+1

2λ27+λ7+2
↔ c37 :

2λ27+2

λ27
↔ b15 ↔ a15

38 c37 ↔ a38 : 1
2 ↔ b38 :

λ27+λ7+1

2λ27+2λ7
↔ c38 :

2λ27+1

λ27+λ7+2
↔ d38 :

2λ27+2λ7
λ7+1 ↔ c15 ↔ b15

39 c15 ↔ d38 ↔ a39 :
2λ27+λ7

1 ↔ b39 :
2λ27+1
2λ7+1 ↔ c39 : λ7+1

2λ27+λ7+2
↔ a18 ↔ d15

40 c39 ↔ a40 : 2λ7+2
λ7+1 ↔ b40 :

2λ27+λ7+2

2λ27+1
↔ c40 : λ7+2

2λ27+λ7
↔ d40 :

2λ27+λ7+1

λ27+λ7
↔ b18 ↔ a18
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Table B.3: Table of Correspondence for M7(3)

Face Correspondent vertices

41 d40 ↔ a41 : 0
2λ27+1

↔ b41 :
λ27+2λ7+2

λ27+λ7+1
↔ c41 : 1

λ27+2λ7+1
↔ d41 : 1

2λ27+2
↔ c18 ↔ b18

42 c18 ↔ d41 ↔ a42 : 2λ7+2
2λ27+2

↔ b42 :
2λ27+2λ7+1

λ27
↔ c42 :

λ27+2

2λ27+2λ7
↔ a21 ↔ d18

43 c42 ↔ a43 : 0
λ27+2λ7+2

↔ b43 :
2λ27+1

λ27+2λ7+2
↔ c43 :

2λ27+2λ7+1

2λ27+2λ
↔ a25 ↔ b21 ↔ a21

44 a25 ↔ a44 : 1
2λ27+2λ7

↔ b44 :
λ27+2λ7
λ27+2λ7+2

↔ c44 : λ7+1
λ27
↔ d44 :

λ27+2λ7
2λ27+2λ

↔ c21 ↔ b21

45 c21 ↔ d44 ↔ a45 : λ7
2λ27
↔ b45 :

2λ27+2λ7
λ27+1

↔ c45 :
λ27+1

2λ27+2
↔ b14 ↔ a14

46 c45 ↔ a46 : λ7+1
1 ↔ b46 : λ7+2

λ27+λ7+1
↔ c46 :

λ27+λ7+2

2λ27+1
↔ d46 :

λ27
2λ27+2λ7

↔ c14 ↔ b14

78 a78 :
2λ27+2λ7
λ7+1 ↔ b78 : 2λ7+2

2λ27+2λ7+1
↔ b22 ↔ c78 :

λ27+1
1 ↔ a79 ↔ c10 ↔ b10

79 c10 ↔ a79 :
2λ27+2λ7

λ27
↔ b79 :

2λ27
2λ27+λ7+2

↔ c79 : 2λ7+1
2λ27+1

↔ d79 : λ7
λ7+2 ↔ a17 ↔ d16

80 d79 ↔ a80 :
2λ27+λ7+2
λ7+2 ↔ b80 : 2λ7+1

λ27+λ7+1
↔ c80 : 1

2λ27+2λ7
↔ d27 ↔ b17 ↔ a17

82 a82 :
λ27+2λ7

2λ27+2λ7+2
↔ b82 :

2λ27
λ7+2 ↔ c82 :

λ27+2λ7+1

2λ27+1
↔ d82 :

λ27+2

2λ27+λ7+2
↔ a83 ↔ b16 ↔ a16

83 a83 : 2λ7+1
λ27
↔ a1 ↔ b83 :

2λ27+2λ7+2

2λ27+2λ7
↔ c83 :

λ27+λ7
λ27+λ7+2

↔ a19 ↔ c16 ↔ b16

84 a19 ↔ a84 :
2λ27+2λ7

1 ↔ b84 :
λ27+λ7+1

2λ7+1 ↔ c84 :
2λ27+2λ7+2

2λ27+1
↔ a85 ↔ d16 ↔ c16

85 d16 ↔ a85 : 2λ7+1
2λ7

↔ b85 :
λ27+2
λ7+2 ↔ c85 :

λ27+2λ7+1

λ27
↔ a30 ↔ b9 ↔ a9
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