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Analysing Newsvendor Problems: A Cash-flow Net Present Value Approach

by Hafizah binti Zulkipli

Cash-flow based Net Present Value (NPV) modelling in supply chain and inventory
management has not received much attention in the context of stochastic demand.
It offers, however, an accurate approach to study the interactions between logistics
decisions, demand pattern characteristics, and payment contract details with suppli-
ers, and their combined effect on expected future profits. In this thesis, we examine
the usefulness of this technique in the context of two-echelon supply chains in which
the downstream firm (retailer) faces a newsvendor problem for each product to be
sold during a selling season. In a first part, we examine the value proposition of Net D
clauses. Popular opinion is that these contracts, often used in retail supply chains, hurt
suppliers. Using cash-flow NPV modelling we can get insight into why this would be,
and when this popular opinion is incorrect. In the second part, we show how cash-
flow NPV modelling helps to design so-called mixing contracts to establish perfect
coordination in such supply chains. A mixing contract includes elements of discount,
buyback, and revenue sharing contracts, and the increased flexibility means that the
firms can also aim to achieve good performance on other criteria besides profit. In the
case of information asymmetry, we show that with a dishonest firm, both parties can
still benefit. In the final part, we develop an NPV model that captures non-stationary
demand over a selling season and solve it with backward induction. Firms could ben-
efit from this approach to help exploit their knowledge about product sales variations
during the normal selling period, and/or about the conditions for selling during a dis-
count/sales period.
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Chapter 1

Overview

A supply chain (SC) involves an entire network of firms that work either directly or

indirectly in serving the same end customer. It consists of suppliers that supply raw

material, manufacturers who produce finished products from thematerial, warehouses

and distributions centres that keep products and deliver them to retailers, and retailers

who deliver the products to the end-customers (Simchi-Levi et al. 2008).

Supply chainmanagement (SCM) can be defined as themanagement of activities across

the entire supply chain to maximise customer value and attain a continuous competi-

tive advantage. SC firms strive to have the most effective and efficient ways to develop

and run the SC. The concept of SCM is based on three core flows in SC; the physical

flows, information flows, and financial flows from the upstream suppliers to the end-

customers.

Physical flows generally move downstream (forward) from the supplier to the end-

customers. However, the flow can also go backward (upstream), due to product re-

turns. The physical flows involve goods and material that require a process of trans-

formation such as from raw-material to finished products, the movement of goods

from supplier to customers, storage, and returns or rejections of products. Information

flows are the invisible piece of the supply chain. A variety of information involves in

1



Chapter 1 Overview 2

SCM, namely, pricing, bills of materials, order information and financial information.

Within the sharing of information, the firms in the SC can coordinate their current

and future plans, and are able to execute the daily routine of physical flow throughout

the supply chain.

Lastly, financial flows are related to the cost, investment, and flow of cash. Profitability

in the SC is significantly related to the optimisation of the total supply chain cost. In

addition, the optimisation of the return on the capital engaged in a firm corresponds

to the optimisation of investment in the SC. Firms in a supply chain have both cash in-

flow (receivables) from the end-customers going backward to the other supply chain

member (retailers, manufacturers, and suppliers), and cash out-flow (payable). For

a better understanding of financial flows in a supply chain, the cost of capital also

gives clear insight into the flow’s representation. By definition, the capital costs are

the monetary expenses incurred by delays in time between cash in-flow and out-flow

in the firms, inclusive of value-loss and interest charges (Grubbström & Thorstenson

1986). Thus, it is essential to manage these flows properly with minimal effort to gain

an effective and efficient supply chain.

However, SCM also recognises that in most situations, various parts within a supply

chain are being operated by independent firms. Each firm controls only a part of the

whole supply chain and has its own specific objectives. The classic players include

suppliers, manufacturers, retailers, and final customers, but one can also identify many

third parties playing a role in supply chains, such as the transport companies that link

the various parts of the chain.

In a world where firms within a supply chain are only concerned about the optimisa-

tion of their supply chain as a whole, and where all the information needed is shared

with a central decision-maker having the same aim, the management of a supply chain

can be controlled by this central decision-maker, who can delegate to each of the firms

the actions they need to undertake to realise the best possible plan.
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When independent firms do not make any effort to coordinate their actions, they make

decisions that are typically only locally optimal, and they impose constraints onto

other supply chain members. As a consequence, the channel profit (i.e. the total profit

across their supply chain) is typically not as high as it could be under the centralised

decision maker setting, where internal constraints are not imposed, and where the

objective is to maximise the profits across the supply chain.

If a centralised decision-making process can be installed, then it is possible to inves-

tigate, based on cooperative game theory principles, how to distribute the gains of

centralised optimisation among the participating firms such that they are each better

off participating.

In most SCs, however, the installation of a central decision-making unit is difficult

to implement, and the decision-making remains decentralised. As the different par-

ties involved in a SC are part of different individual firms, they may each want to

keep control over certain aspects relevant to their own operations within the SC, they

may be unwilling to share sensitive information with other firms, and in aiming to

maximise their own individual profits, they may account for firm-specific opportunity

costs of both monetary and resource usages that would be difficult to account for in a

centralised solution.

However, the centralised optimal solution may still be used as a benchmark against

which any decentralised way of working can be compared. A decentralised SC is con-

sidered to be perfectly coordinated if the channel profits achieved are the same as in

the centralised situation. Simple transaction-based decentralised operations in SCs

cannot usually achieve perfect coordination, and hence a more sophisticated coordi-

nation mechanism is needed. A large part of the literature is therefore concerned with

identifying which types of mechanisms can achieve perfect coordination under which

assumptions.
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In this dissertation, we examine newsvendor-type situations. Not only are suchmodels

a good characterisation of many SC settings, but they have also been used extensively

in the study of supply chain coordination through various types of contracts.

Where this study deviates from the main literature on this topic is that the modelling

methodology is based on cash-flow functions. In principle, this approach has several

advantages:

• A firm’s cash-flow function is dependent on both the financial arrangements

adopted in any contract and the logistics decisions, the impact of the timing of

both processes on the net present value of the firm is explicitly incorporated.

This makes it a more accurate approach compared to models that do not explic-

itly account for the timing of events.

• The Laplace transform of the cash-flow function is the net present value of the

modelled activity for the firm. This approach therefore automates the derivation

of profit functions. It automatically accounts, for example, for any opportunity

costs of inventories as a consequence of the firm’s order pattern from suppliers,

and it automatically includes the opportunity rewards from customers’ order

pattern. This makes it a more robust approach than models that postulate profit

functions based on intuitive principles, such as average cost methods, which

often do not account for opportunity rewards.

• The relevant terms in cash-flow functions of firms that exchange cash are, under

mild assumptions, skew-symmetric. This greatly facilitates the study of various

coordination mechanisms as well as the game theoretic study of coordination

mechanisms. Skew-symmetry is often not present in classic models of firms in

supply chains in which inventories are considered.

• This study’s approach is expected to lead to refinements in the theory of sup-

ply chain coordination due to the explicit modelling of not only the timings of

events, but also of the opportunity costs of independent firms.
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1.1 Study Background

This section provides background information regarding this study. It begins by re-

viewing the definition and formulation of the traditional single-period newsvendor

problem (NP). In particular, Section 1.1.1 to 1.1.3 gives a detailed description of the

works that have extended the traditional NP. Section 1.1.4 provides an example of

problem related to the asymmetry information. Section 1.1.5 briefly defines the price-

dependent demand problem. Section 1.1.6 examines the existing work on dynamic

demand NP, and in particular a model of the multi-period NP that has been proposed

for non-stationary demand. Finally, section 1.1.7 briefly defines net present value.

1.1.1 The Single-Period NP

TheNP is an important topic in the field of inventorymanagement to determine the op-

timal order quantity involving stochastic demand over a short selling season (Nahmias

& Olsen 2015). The present study deals mainly the uncertain demand of perishable, or

seasonal products (Fisher et al. 1994).

Hill (2011) has proposed five situations that undergo the NP requiring a one-time busi-

ness decision:

• Selling seasonal goods;-

• Determining safety stock levels;-

• Making a final production run;-

• Setting target inventory levels; and-

• Making capacity decisions.

The idea of the NP started as follows: a newsvendor (retailer) needs to decide how

many newspapers to order, with unknown demand. If the newsvendor orders too
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many, at the end of the day he may have excess items, thus acquiring holding costs if

he keeps the items or recoups salvage value for the excess inventory. If the newsvendor

orders too few, on the other hand, he loses sales and profit, as he may not be able to

meet all his customers’ demand. Since the NP is the basis of our proposed model, a

short introduction and general formulation of the model is described in Section 1.1.2

below.

1.1.2 Underlying Newsvendor Problem

Suppose that the retailer decides to order quantity Qa at the beginning of the selling

season and to pay at the wholesale price w per item ordered. If the realised demand in

this period does not exceed the order quantity, then the retailer’s revenue is px, and

the unsold items in inventory are salvaged at v(Qa − x). If the realised demand is

greater than Qa, the retailer’s revenue is pQa.

The retailer’s revenue function is given as;

P (Qa, x) =


px+ v(Qa − x), if x ≤ Qa,

pQa, if x ≥ Qa.

(1.1)

Let the subscripts r and s denote the retailer and wholesaler in the supply chain, re-

spectively. The retailer’s objective function is to maximise the expected total profit.

The equation is:

max
Qa

E[Π]r = p
(∫ Qa

0

xf(x)dx+Qa

∫ ∞

Qa

f(x)dx
)
+ v

∫ Qa

0

(Qa − x)f(x)dx

− TP. (1.2)
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The wholesaler’s expected profit is given as:

[E[Π]s = TP −Qa, (1.3)

where TP is the transfer payment made from the retailer to the wholesaler. Let con-

sider a wholesale-price only contract. The wholesaler charges w per item to the re-

tailer. Therefore, TP = wQa. By substituting TP into Eq.(1.2), we have:

max
Qa

E[Π]r = p
(∫ Qa

0

xf(x)dx+Qa

∫ ∞

Qa

f(x)dx
)
+ v

∫ Qa

0

(Qa − x)f(x)dx

− wQa. (1.4)

The first order condition of E[Π]r w.r.t Qa for a given w is

dE[Π]r/dQa = p
(∫ ∞

0

f(x)dx−
∫ Qa

O

f(x)dx
)
+ v

∫ Qa

0

f(x)dx− w

.

Since
∫∞
0

f(x)dx = 1, and
∫ Qa

0
f(x)dx = F (Qa), then the equation above can be

simplified to;

dE[Π]r/dQa = p− w + F (Qa)(−p+ v)

.

The second order condition of E[Π]r w.r.t Qa is;

dE2[Π]r/dQ
2
a = −(p− v)f(Qa) < 0,
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respectively. Thus, the optimal order quantity Q∗
a that maximises the objective func-

tion is given by;

Q∗
a = F−1

(p− w

p− v

)
, (1.5)

where F is the cdf of the demand distribution and F−1 is its inverse.

The wholesaler’s expected profit function is given by;

E[Π]s = (w − c)Qa. (1.6)

However, when decisions in a supply chain are made individually, the system optimal

profits cannot be achieved due to the double marginalisation problem. To rectify this,

various supply contracts are needed. Section 1.1.3 provides more details on the double

marginalisation problem and contracts to coordinate the supply chain. All models

analysed in this thesis follow a NP.

1.1.3 Coordination and Contract

Spengler (1950) was the first to introduce the concept of vertical integration and

the term double marginalisation. Double marginalisation occurs when at least two

independent firms exist in a supply chain, instead of a single firm. Each firm applies its

own markup in price, resulting in ordering too little, as compared with an integrated

supply chain.

Perfect coordination happens when the channel profits in a decentralised supply chair

are similar to those in the centralised situation. Thus, the optimal order quantity in

an integrated supply chain is used as a benchmark to coordinate the supply chain. In

addition, Cachon (2003) highlights two points that are needed to coordinate the supply

chain:
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• The set of supply chain optimal actions is a Nash equilibrium – that is, no firm

has a profitable unilateral deviation from the set of supply chain optimal actions.

• The action to coordinate is the retailer’s order quantity.

The model in Chapter 4 is developed based on coordination in SC.

Below, we introduce a simple example to introduce a key concept in the study of coor-

dination. Specifically, this example illustrates the classic double marginalisation prob-

lem and why it is a common root cause of inefficiency in decentralised supply chains.

Example 1 Consider a supply chain with a wholesaler delivering goods to a retailer.

The retailer’s demand Q is price-sensitive according to the function Q(p) = a − bp,

where p is the retailer price and a and b are positive constants (0 < p < a/b). The

wholesaler’s unit cost to produce a product is c and charges the retailer a transfer

payment TP . The retailer does not incur any other costs. Both firms are monopolists

in that they can set their sales prices. Since c < p is a necessary condition to ensure

profitability in the supply chain, if follows that c < a/b.

In this decentralised supply chain, the sequence of events is as follows. In step 1, the

wholesaler sets TP . In step 2, the retailer observes T and sets p.

The profit function of retailer and wholesaler is, respectively, given by;

πr = pQ(p)− TP (1.7)

and

πw = TP − cQ(p). (1.8)

Vertical integration. In the vertically integrated supply chain, the power of decision

making is given to an unbiased central decision maker, who has perfect information

and aims to maximise the channel profit that is given as;
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πSC = πr + πw = (p− c)Q(p) = (p− c)(a− bp). (1.9)

The first order condition gives the optimal price:

p∗SC =
a+ bc

2b
=

a

2b
+

c

2
. (1.10)

The channel profits when setting the retail price at p∗SC are therefore:

πSC(p
∗
SC) = (p∗SC − c)Q(p∗SC)

= (p∗SC − c)(a− bp∗SC) =
1

4b
(a− bc)2. (1.11)

Thewholesale-price contract. In this case, the wholesaler charges the retailer a unit

price w, and thus TP = TPw = wQ(p). The profit function of retailer and wholesaler

is, respectively, given by:

πr = (p− w)Q(p) (1.12)

and

πw = (w − c)Q(p). (1.13)

In order to determine thewholesaler’s optimal decision in step 1, wework by backward

induction. Given a wholesale price w, the retailer’s decision in step 2 is to set a retail

price that maximises πr. From the first order condition, we derive this optimal price

to be:

p(w) =
a+ bw

2b
, (1.14)

and therefore, this corresponds to a demand:

Q(w) =
a

2
− bw

2
. (1.15)
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So, the wholesaler’s profit function:

πw = (w − c)Q(p(w)) = (w − c)(
a

2
− bw

2
), (1.16)

is optimised by taking:

w∗ =
a

2b
+

c

2
. (1.17)

Therefore, in step 2, the retailer will set the optimal retail price based on w∗, and finds:

p∗ =
3a

4b
+

c

4
. (1.18)

The channel profits in the decentralised scenario are:

πSC(p
∗) = (p∗ − c)Q(p∗) =

3

16b
(a− bc)2. (1.19)

Comparison with the vertically integrated solution gives;

πSC(p
∗
SC)

πSC(p∗)
=

4

3
, (1.20)

or the benefit of the centralised decisionmaking process is that it increases the channel

profit with 33.3%. A contract based on a wholesale price cannot perfectly coordinate

the supply chain.

Proof. It is easy to verify that p∗SC < p∗ if and only if c < a/b; and then Q(p∗SC) >

Q(p∗). The vertically integrated supply chain acting as a monopolist will set the retail

price below the retail price set in the decentralised supply chain. As a result, more

products will be sold to the market. ■
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The example above provides insights into how to overcome the double marginalisa-

tion problem. With the ‘right’ contract, perfect coordination can be achieved. Ca-

chon (2003) briefly reviews the contracts in the NP. For a better understanding of the

wholesaler-retailer contract, a sequence of events relative to the time frame is pre-

sented in Figure 1.1.

Figure 1.1: Sequence of events within wholesaler-retailer contract.

A number of contracts that coordinate the newsvendor setting have been studied in

the literature. These contracts are characterised based on different parameters used to

design themodel. We refer interested readers to Khouja (1999), Petruzzi &Dada (1999),

Lariviere & Porteus (1999), Cachon (2003), and Qin et al. (2011) for detailed reviews of

the NP and contracts of coordination.

1.1.3.1 Wholesale-Price-Only Contract

Thewholesale price contract cannot coordinate a supply chain (see Bernstein & Feder-

gruen (2005); Cachon (2003);Lariviere & Porteus (2001)). However, due to its simplic-

ity, this contract has received much attention and is set as a benchmark for the other

contracts proposed in the literature. In this contract, the retailer is given the whole-

sale price, w per item from the wholesaler. The transfer payment TP from retailer to

wholesaler is TP = wQa. Restating the Eqs. (1.4), (1.5), and (1.6), we have:

E[Π]r = p
(∫ Qa

0

xf(x)dx+Qa

∫ ∞

Qa

f(x)dx
)
+ v

∫ Qa

0

(Qa − x)f(x)dx− wQa,
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Q∗
a = F−1

(p− w

p− v

)
,

and

E[Π]s = (w − c)Qa,

which represents retailer’s expected profit, optimal order quantity, and wholesaler’s

expected profit, respectively.

1.1.3.2 Buyback Contract

Under a buyback contract, the wholesaler first sells a product to the retailer at a unit

wholesale price w. w is assumed to be greater than the wholesaler’s operation cost

c. The retailer can then return any unsold items to the wholesaler at a unit buyback

price b, which is b > v, and the wholesaler salvages the excess inventory at salvage

value v per unit. The transfer payment in this setting is TP = wQa − b(Qa − x)+. By

substituting TP into Eqs. (1.2) and (1.3), we have:

E[Π]r = p
(∫ Qa

0

xf(x)dx+Qa

∫ ∞

Qa

f(x)dx
)
+ b

∫ Qa

0

(Qa − x)f(x)dx− wQa

and

E[Π]s = (w − c)Qa + (v − b)

∫ Qa

0

(Qa − x)f(x)dx,

which give;

Q∗
a = F−1

(p− w

p− b

)
.

This type of contract has been implemented in industries such as publishing, apparel,

and cosmetics (Kandel 1996, Emmons & Gilbert 1998).
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1.1.3.3 Revenue-Sharing Contract

Under a revenue-sharing contract, the retailer shares a percentage of β of her revenue

with the wholesaler. In return, the wholesaler lowers the price to wm per unit pur-

chased. The transfer payment is TP = wmQa + βp
( ∫ Qa

0
xf(x)dx+Qa

∫∞
Qa

f(x)dx
)
.

Thus, we have:

E[Π]r = (1−β)p
(∫ Qa

0

xf(x)dx+Qa

∫ ∞

Qa

f(x)dx
)
+v

∫ Qa

0

(Qa−x)f(x)dx−wmQa

and

E[Π]s = (wm − c)Qa + βp
(∫ Qa

0

xf(x)dx+Qa

∫ ∞

Qa

f(x)dx
)
,

which give;

Q∗
a = F−1

((1− β)p− wm

(1− β)p− v

)
.

Giannoccaro & Pontrandolfo (2004), Cachon & Lariviere (2005), and Yao et al. (2008)

are among of the authors that investigate this type of contract on various aspects such

as inventory, risk adverse, and incomplete information.

1.1.4 Information Asymmetry

We first introduce a simple example of a profit-sharing contract to discuss the issue

of dishonest firms. This topic has gained in importance in the recent literature, and it

is related to the study of the value of information sharing in supply chains. A part of

Chapter 3 assumes that there is information asymmetry in the wholesaler’s production

cost and opportunity cost.

Example 2 The following illustrates how the decentralised supply chain may arrive

at the centrally optimal solution by a profit-sharing contract. The idea is to make the

profit function of the decision maker in step 2 be an affine transformation of the supply
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chain profit function. Therefore, let:

πw = βπSC , (1.21)

where β (0 ≤ β ≤ 1) represents the fraction of channel profits awarded to the whole-

saler. Then (1−β) is the fraction awarded to the retailer. Indeed, we can rewrite (1.21)

to:

⇔ πw = β(πw + πr)

⇔ πr = (1− β)(πw + πr) = (1− β)πSC .

Therefore, the retailer in step 2, in maximising her own profit function πr, will arrive

at the optimal p∗SC .

To find the payment structure T that can realise this, we work out condition (1.21):

⇔ T − cQ(p) = β(p− c)Q(p)

⇔ T = (βp+ (1− β)c)Q(p).

Choosing T = Tp = wpQ(p), we get:

⇔ wp(p) = βp+ (1− β)c = c+ β(p− c). (1.22)

The decentralised supply chain can thus arrive at the optimal integrated solution if a

wholesale pricewp is set as the wholesaler’s marginal cost plus a fraction of the supply

chain marginal profit. Rearranging (1.22):

wp(p) = βp+ (1− β)c = γ + δp. (1.23)

The wholesaler could thus perfectly coordinate the actions of the retailer by specifying
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a contract in which the wholesale price is given by (1.23). This contract could also dis-

tribute the gains of reaching the integrated channel profits in any acceptable manner

by specification of δ(= β).

There are numerous ways in which the contract can be implemented. The wholesaler

could charge wp upon delivery of the batch. This corresponds to the classic wholesale-

price contract arrangement. Another way is to let the wholesaler deliver all the goods

for free initially, and receive payments at the level of wp each time the retailer sells the

products. Or, the wholesaler could charge initially c per product when delivering the

batch, and receive a fraction of the profits γ(p− c) upon sales. In practical terms these

different forms of implementation will have different cash-flow consequences for the

firms which are not explicitly incorporated in the model.

Information asymmetry. The cost structure of a firm is one of the most sensitive

pieces of information that a firm is not readily willing to reveal. In this example, the

wholesaler might for example not be willing to tell the retailer its real marginal cost

c. However, assuming that the retailer knows the modeling logic and thus (1.23), the

wholesaler, by specifying the contract for the optimal values of γ and δ, reveals his

true marginal cost c to the retailer since this is specified from the system of equations:

δ = β,

γ = (1− β)c.

For example, if the wholesaler sets the contract atwp(p) = 0.6p+4, the retailer derives

β = 0.6 and c = 10. If this contract is to perfectly coordinate the supply chain, then

the true marginal cost of the wholesaler needs to be 10.

Dishonest firms. Information problems between the two firms leads to divergence

from the integrated supply chain solution. Suppose, for example, that the wholesaler

wishes to cheat by setting the contract at wp(p) = 0.6p + 5, while claiming that this
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would perfectly coordinate their supply chain. Then the retailer would derive c = 12.5.

If the wholesaler’s truemarginal cost is 10, however, then the contract would no longer

perfectly coordinate the supply chain. However, the wholesaler might still wish to

cheat, as illustrated in the numerical example below.

Numerical example. Let a = 200, b = 5, and c = 10.

In the vertically integrated solution under perfect information, channel profits are op-

timised for p∗ = 25, giving Q∗ = 75. The channel profit is π∗
SC = 1125.

With a wholesale-price contract, we find w∗ = 25, p∗ = 32.5, Q∗ = 37.5. The profits

of the firms are πr = 281.25, πw = 562.5, and the channel profit is thus πSC = 843.75.

As proven earlier, π∗
SC/πSC = 4/3.

Under a profit-sharing arrangement with β = 0.6 and perfect information, the whole-

sale price is set in the contract to wp(p) = 0.6p + 4. From maximising its own profit

function, the retailer derives the optimal sales price p∗ = 25, and thus w∗
p = 19 and

Q∗ = 75. The profits of the firms are πr = 450, πw = 675, and the channel profit

equals the profit obtained in the vertically integrated solution, π∗
SC = 1125. The con-

tract thus perfectly coordinates the supply chain. With β = 0.6, both firms are also

better off than in the decentralised setting.

Now assume that the retailer does not know the wholesaler’s marginal cost, and that

the wholesaler proposes the contract wp(p) = 0.6p + 5. From maximising its own

profit function, the retailer then derives the optimal sales price p∗ = 26.25, and thus

w∗
p = 20.75 andQ∗ = 68.75. The retailer’s profit is then πr = 378.125. Thewholesaler,

claiming this contract to be the one that perfectly coordinates the channel, signals to

the retailer that his marginal cost is 12.5 = c + 2.5 = c′. The retailer would then

assume that the wholesaler makes a profit π′
w = (w∗

p − c′)Q∗ = 567.1875 and that the

optimal channel profit is πr + π′
w = 945.3125.
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Also, according to this misinformation that c′ is the wholesaler’s marginal cost, the

retailer could calculate that in the uncoordinated decentralised setting, one would find

w∗ = 26.5, p∗ = 33.125, Q∗ = 34.375, and that the profits of the firms would be

πr = 236.3281, πw = 558.5938, and the channel profit πSC = 794.9219. According

to the retailer, it would hence make sense to adopt the wholesaler’s contract wp(p) =

0.6p + 5. In fact, the retailer would observe a much more generous increase in its

profits that the increase in profits that the wholesaler would make.

In reality, however, the wholesaler’s profit under the offered contract would be πw =

(w∗
p − c)Q∗ = 739.0625. The channel profit under this contract thus amounts to

πr + πw = 1117.188. The wholesaler would not mind deviating from the optimal

integrated solution since his profits are significantly higher than those he makes in

the profit-sharing contract under perfect information (739 >> 675).

Also note that the optimal quantity in the dishonest scenario is lower than in the

perfect information case. If the wholesaler would be a manufacturer producing at

marginal cost c, then by being dishonest, he would not only make more profits, but

also use up less of his production capacity, which reduces his opportunity cost of re-

source usage. Finally, the wholesaler by being dishonest has given the retailer misin-

formation about his true marginal cost. A naive retailer will assume this marginal cost

to be 12.5 and thus higher than the true value, and a smarter retailer, suspecting the

wholesaler might be dishonest, only knows that the true marginal cost is not higher

than 12.5. Keeping his true marginal cost as private information might be valuable to

the wholesaler in future negotiations. All in all, it seems that the wholesaler has very

good reasons for being dishonest.

1.1.5 Price-dependent Demand

Many studies consider pricing and order quantity as decision variables (Petruzzi &

Dada 1999). The randomness of price-dependent demand is modelled using either an
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additive case Mills (1959) or a multiplicative case (Karlin & Carr 1962). For an additive

case, demand is defined as x(p, ξ) = y(p) + ξ, and for a multiplicative case, x(p, ξ) =

y(p)ξ. y(p) denotes a decreasing function that expresses the dependency between

selling price and demand, and ξ represents a random variable defined in the range of

[A,B]. y(p) in additive case follows a linear form, y(p) = a−bp, and in amultiplicative

case it follows an isoelastic form with constant elasticity, y(p) = ap−b, where a, and b

are given parameters.

This scope of modelling is presented in Chapter 5 considering a multiplicative case

only, and assuming that the selling price is a known parameter.

1.1.6 Dynamic Programming

Dynamic programming (DP) is based on the recursive process that describes the re-

lationship between the value of being in a state at one point in time and the value of

being in the states that we will visit next, following our decision. The Markov deci-

sion process (MDP) method is used to solve this problem. The MDP consists of five

elements: decision epoch, state, action, transition probabilities, and rewards. The op-

timal policy for MDP is one that provides the optimal solution to all sub-problems of

the MDP (Bellman 1957).

Example 3 Consider a model of an inventory control system where a manager needs

to decide whether or not to order additional stock from the supplier based on the

current inventory at period of time t (month) (Puterman 2014). Let st denotes the

inventory on hand and letDt be the random demand at the beginning of month t. The

demand is assumed to be independent and identically distributed (i.i.d) with a known

probability distribution pj = P (Dt = j), j = 0, 1, 2, .... At decision epoch t + 1, the

inventory st+1 is related to the inventory at decision epoch t, st, with the equation
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given below:

st+1 = max{st + at −Dt, 0} = [st + at −Dt]
+, (1.24)

where at denotes the action at state t, which represents the additional stock to order

at time t from a certain set of A. The transition probability of moving from state st

to state st+1 is pt(st+1|st, at). When the reward depends on the state of the system

at the next decision epoch, let rt(st, at, st+1) denote the value at time t of the reward

received at the decision epoch t. Thus, the total expected reward is given as:

rt(st, at) = max
at∈A

{rt(st, at) + E[
∑
j∈S

rt(st, at, j)pt(j|st, at)], } (1.25)

which follows Bellman’s equation. In Chapter 5, we consider a dynamic demand prob-

lem where the objective function is to find the optimal order quantity that maximises

the expected annuity stream of profit. Later, we modify Bellman’s equation to the case

in which we only need one action at one decision epoch.

1.1.7 Net Present Value for the Inventory Model

The time value of money (TVM) is the concept that money at the present time is worth

more than the same amount of money in the future. In other words, it refers to a

present discounted value or NPV. Money has time value because of the unpredictable

risk and uncertainty in the future. In addition, the TVM is related to the opportunity

cost of not having the money earlier.

For a long time, the NPV principle has been studied in a mass of production-inventory

problems, such as in (Trippi & Lewin 1974). For a comprehensive review related to

NPV, see Beullens (2014). As stated in Van der Laan & Teunter (2002), there are three

main arguments against the average cost function, which is mainly applied as an ap-

proximation to the NPV approach. First, the TVM is not explicitly taken into account,
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but only implicitly by including opportunity costs. Second, the traditional approach

only considers the opportunity cost of holding inventory and disregards all other cash-

flows (fixed costs, sales, etc.) that generate opportunity costs. Lastly, the conditions of;

1. fast moving items, 2. lower interest rates, and 3. the payment structure of customer

does not depend on the inventory policy, are neglected. The authors conclude that

when comparing the NPV approach with the average cost (AC) approach, the class

for the transformation of model parameters either exists (both approaches are identi-

cal) or does not exist. An example of the latter class is a system with manufacturing,

re-manufacturing, and disposal.

Grubbström (1980) concluded that the NPV framework should be considered rather

than the traditional cost approach, since the economic consequences of production

planning decisions need to be known; this is more realistic. Later, Gurnani (1983)

presented the NPV analysis for various inventory systems assuming a given constant

planning horizon. The results in Gurnanis’ paper show that in the NPV model, the

optimal order quantity and the length of the period constantly vary with the discount

rates.

Grubbström (1980) states that the NPV of an activity for firm i follows the Laplace

transform of a cash-flow function ai(t)), where the Laplace frequency is the continuous

capital rate αi of the firm:

NPVi =

∫ ∞

0

ai(t)e
−αitdt. (1.26)

For a discussion of the Laplace transform, see, e.g., (Buck & Hill Jr 1971, Hill Jr & Buck

1974).

The annuity stream function ASi, for an infinite horizon model is defined as ASi =

αiNPVi. Thus;
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ASi = αi

∫ ∞

0

ai(t)e
−αitdt. (1.27)

Then, the generalisation of the annuity streams (AS) function is based on theMaclaurin

expansion of the exponential terms in the decision variable, which can later be directly

compared to the classical inventory functions. The linearised NPV and AS functions

have been adopted in many studies related to NPV, see (Kim et al. 1984, Teunter &

Van der Laan 2002, Grubbström 2010, Beullens & Janssens 2011, 2014).

In brief, the main advantage of deriving profit functions from the NPV approach in-

stead of the traditional inventory framework is that the appearance of cash-flows (in-

flow and out-flow) differs with the physical transactions that move products through

the system. Although the NPV approach is often rather complicated, one can derive

the NPV of the cash-flows by using AS functions, which are linear approximations

in the discount factor. All models developed in this thesis adopt the NPV approach,

which optimises a discounted cash-flow of future revenues and costs.

1.1.7.1 Payment Structure

At a particular moment in time, a cash-flow function may have a discrete payment

or continuous payment over a period of time intervals. Beullens & Janssens (2014)

provides the details of payment structures in the NPV approach. When there is more

than one firm, the payment structures between these firms specify at what future point

in time, relative to the event time t, which amount of the event payment w is paid

out by the retailer; and for the wholesaler, at certain future times relative to t, which

amount of w arrives at the wholesaler. Let the total amount paid by the retailer be w′

at period t′. The payment is considered to be symmetric if the retailer pays an amount

w′ at time t′, and the wholesaler receives an amountw′ at time t′. The symmetric terms
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imply that the cash-flow of the payment for the retailer (negative) is the opposite of the

wholesaler cash-flow (positive). Otherwise, the payment is asymmetric. The payment

is called asymmetric if the wholesaler incurs a cost c′ or there is a delay in payment at

t′+ d′ on receiving the amount w′.

The last stream of related research involves trade credit in production-inventory man-

agement. Trade credit is a short-term business loan given by a wholesaler to a retailer

who purchases products, allowing the retailer to delay the payment. The net-term

policy is a basic form of trade credit (e.g., Net 30 days). It means that the wholesaler

allows the retailer to delay the payment until the net date. For example, under trade

credit, the retailer pays a total amount of w′ at time t + Lz ,its NPV is −w′e−αr(t+Lz),

and the wholesaler’s NPV is w′e−αr(t+Lz) where Lz is the time for retailer to pay to the

wholesaler in time unit year.

We consider a firm supplying a newsvendor-type retailer under a Net D clause, mean-

ing that both parties agree that the payment will be made D days after the invoice

(i.e. supply) date. The retailer orders a quantity that maximises his expected net prof-

its over the selling season. We are interested in establishing the factors that affect

whether the supplier would prefer a low or high value of D. How do the supplier’s

profits depend on the method the retailer uses to establish the order quantity? We

reformulate the classic newsvendor supply chain in terms of cash-flow functions, and

we use this to derive insights into the impact of Net D contract clauses on the NPV of

profits of each of the firms.

In their contracts with their suppliers, large retailers commonly include a Net D clause,

meaning that both parties agree that the payment will be made D days after the invoice

date. The EU Late Payment Directive (2011/7/EU) states that the period for payment in

a business-to-business contract should never exceed 60 days, unless expressly agreed

by both parties. In the aftermath of the 2009 crisis, some large businesses in the UK

shifted payment terms from 30 days to well over 100 days, in some cases. In 2012, for
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example, supermarket chain Morrisons extended its payment terms to Net 90 for most

of its suppliers, and around the same time, Marks and Spencer extended their Net 60 to

Net 75 for clothing and general merchandise suppliers (Steiner 2015). In March 2017,

ASDA announced that they were extending their terms from Net 60 to Net 90 days for

their clothing suppliers because of the lower value of the pound (Steiner 2017).

Goyal (1985) was the first to develop an economy order quantity, EOQ model with a

constant demand rate and a permissible delay in payments. Ever since its introduction,

many studies have used it, for example , in deteriorating items (Aggarwal & Jaggi 1995,

Jamal et al. 1997, Jonas 2013, Chung et al. 2014). These models mainly involve two

types of interest: interest earned Ie and interest charged, Ic. The retailer earns a return

rate on investment Ie when the payment is made at the end of the permissible delay

term. However, the wholesaler charges the retailer a rate of Ic if the payment is made

after the agreed period. Gupta & Wang (2009) developed an inventory model under

stochastic demand with the existence of trade credit, and derived the optimal policy.

Lee & Rhee (2011) examined the trade credit from a wholesaler’s perspective, but they

presented trade credit as a tool for SC coordination. Thangam (2012) considered both

upfront payment and a two-echelon trade credit term in a supply chain with perishable

items. Seifert et al. (2013) provided a comprehensive review of the literature addressing

trade credit. The authors posed a question about the important of accounting for cash-

flow timing in the objective function. They highlighted that the comparison between

traditional and NPV approaches is needed. In all models studied in this thesis, we

applied this type of payment.

1.2 Research Aim and Objectives

The main aim of this thesis is to provide insight into the NPV framework in the NP.

In line with this aim, this research is divided based on three objectives. Objective 1:
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To examine the behaviour of supply chain parties in making decisions in the proposed

NPV NP and the classical NP.

Research questions :

1. Is there a difference in results between the proposed Newsvendor problemmodel and

the classical model?

2. Is the wholesaler always disadvantaged when the Net-D contract is implemented?

3. Do parameters such as opportunity cost, Net-D terms, and variability of demand

determine the parties’s optimal decision?

Objective 2: To examine the coordination and asymmetric information mechanism in

the NP.

Research questions:

1. Is there a difference in results between the NPV model and the classical model?

2. Does the proposed model achieve perfect coordination?

3. Under what circumstances does the wholesaler benefit from delayed payment?

4. How does dishonesty in information asymmetry affect the retailer’s optimal order

quantity and both SC members’ expected annuity stream of profit?

Objective 3: To examine the non-stationary demand in the NP in NPV analysis.

Research questions:

1. Is there a difference in optimal results between the NPV model and the traditional

model?

2. Is there a difference in optimal results when varying demand patterns?
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3. Is the difference in optimal results between constant price and price-dependent de-

mand significant?

4. Do changes in parameter values determine the firm’s optimal decision?

1.3 Thesis outline

The study is conducted based on the following outline, of which the first three chapters

present the material to examine each of the three objectives stated in the previous

section, respectively:

• Chapter 2 first describes the problem and then develops the NPVmodel in the NP

with a wholesale price only contract to analyse the effect of payment structures

under Gamma-distributed demand. Themodel is based on individual policy. Nu-

merical results and sensitivity analysis are provided to observe the performance

behaviour of change in parameters.

• Chapter 3 The concept of the NPV approach is introduced for the wholesaler-

retailer coordination in theNPwith the combination ofwholesale price discount,

buyback, and revenue contracts with symmetry and asymmetry of information.

Then, numerical analysis is performed to compare the performance of themodels

with that of the classical framework.

• Chapter 4 considers the single-echelon NP in a dynamic demand environment.

The mathematical model is developed based on non-stationary demand in one

selling season. Two cases are considered: a single pricing model and a price

adjustment model. Then, the performance of these models is evaluated based on

numerical results, and conclusions are drawn from the outcomes.

• Chapter 5 concludes the study; it summarises the findings and proposes future

research to extend the present work.
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1.4 Expected Research Deliverable

Firstly, we propose a model of the NP from the NPV perspective with the addition

of payment terms under Net D contract clauses to analyse and investigate the gap be-

tween the classical model and the proposed model. The outcome of this study can help

us to better understand the advantages and disadvantages from both supply chain per-

spectives, as the impact of giving delayed payment has not been thoroughly explained

in the literature. In particular, we expect that suppliers may in some circumstances

benefit from being paid later if the additional order quantity from the retailer more

than compensates for this.

Secondly, we extend the first model to one that can coordinate the supply chain. We

introduce a mixing contract that includes the basic contract types: wholesale price

discount, buyback, and revenue sharing. These contracts are expected to be able to

perfectly coordinate the supply chain. Because of additional degrees of freedom they

may also offer opportunities for tailoring contracts to specific needs. Then, we inves-

tigate the case in which the wholesaler has the option to deviate from having perfect

coordination to gain benefit from giving delayed payment to the retailer. Extending

this model, we investigate dishonest behaviour when there is asymmetry information.

Can both parties still benefit from a mixing contract if one party is dishonest?

Lastly, the final outcome of the research lies in the third model of dynamic demand.

We introduce two cases: time-dependent demand, and price- and time-dependent de-

mand with price adjustment. Both cases assume a random non-stationary demand.

The option of a second period (with e.g. ‘discount’ sales) is included. The outcome of

this model can help to establish the value for the retailer of using knowledge about

the anticipated evolution of the stochastic demand pattern over the selling season. We

compare in particular the difference between a downward or upward demand pattern

– and under which conditions the retailer should expect more profit. In addition, the

model with price adjustment is believed to be superior to the price-dependent demand
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model without price adjustment. Sensitivity analysis is conducted for all of the devel-

oped models to address the way their behaviour depends on their parameters.



Chapter 2

Supplying to the Newsvendor under

Net D Clauses - A Net Present Value

Analysis

Abstract

This study considers a NP consisting of a retailer and a wholesaler and considering

the timing of events and the opportunity costs of independent firms. The objective of

this model is to determine the optimal order quantity, to maximise the expected total

profit. The effects of variability of demand, opportunity costs, and delayed payment are

discussed. Numerical analysis is used to illustrate the implementation of the solutions

and the degree to which the parameter system affects decision -making and expected

profit. The results show that the retailer is always better off using the NPV model

instead of the traditional NP, and vice-versa for the wholesaler. We also conclude that

with delayed payment, the benefit gain increases for both parties when the demand is

highly variable, and the retailer’s opportunity cost is greater than the wholesaler’s.

29
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2.1 Introduction

A Net D clause with a large D value equates to the buyer receiving an interest-free

loan from the supplier. It is clear that delaying payments to suppliers may hurt them

in their ability to pay their own bills and invest in new business developments; it may

also force them to take on short-term loans and increase their risk of bankruptcy. In

fact, some supermarkets offer suppliers access to credit from a bank instead of paying

more quickly, but the bank will charge interest on the loan at, for example, 1.2 % per

month (Steiner 2015). Note that this corresponds to an annual (compounded) interest

rate of 15.4%.

A study by the Federation of Small Businesses (FSB, 2016) concludes that, in addition

to demanding Net D agreements with large D values, many (large) firms settle bills on

average well beyond these payment terms. Rebecca (2015) reported that in 2014, UK

supermarkets paid on average 33 days beyond payment terms. The FSB study found

that about 80 % of small businesses did not charge interest for these late payments,

although according to the EUDirective, they would be entitled to do so at a rate at least

8% above the European Central Bank’s base rate. The FSB report also presents findings

from a European Commission impact assessment: ‘Exercise of the rights conferred by

the Directive is not widespread due to fear of damaging good business relationships.

Rather than legislation, business culture, economic conditions, and power imbalances

in the market are driving factors of payment behaviour.’

In this paper, we aim to better understand the impact of the above practices on the

newsvendor problem. We provide an NP that considers elements such as delayed pay-

ment and the time value of money (TVM), which have not been discussed directly in

NPs. Finally, we provide solutions that take into account these characteristics, and we

analyse the implications of our assumptions.
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2.2 Related literature

In the past decades, the issues related to supply chain management have been widely

studied with the objective of minimising expected cost or maximising expected profit.

However, most of these studies consider that the wholesaler receives payment from

the retailer as soon as the items have arrived, which neglects the regular component

of business, that is, delayed payment (trade credit). However, in reality, when delayed

payment is offered, the wholesaler is thought to be disadvantaged or to not benefit

from the scheme. Large retailers tend to pay the wholesaler later than the agreed

due date to alleviate their own financial management. The aim of this paper is to

analyse whether the wholesaler will always be in a difficult position when delayed

payment is implemented, and, if not, in what setting he will benefit from the scheme.

The newsvendor model is considered because of its simplicity in terms of stochastic

demand.

Inventory models involving stochastic demand have received much attention in the

inventory management literature. Reviews of the NP include Khouja (1999), Petruzzi

& Dada (1999), and Qin et al. (2011). Lariviere & Porteus (2001) studied the price-only-

contract in the NP as the Stackelberg game between the wholesaler and the retailer

explicitly financial constraint. Cachon (2003) noted that a simple contract is always

favourable for the contract maker. In practice, the wholesale-price-only contract is

used in the supply chain due to its simplicity, where the wholesaler decides the whole-

sale price per unit of the products he sells. In addition, researchers always use the

wholesale price contract as a benchmark for their proposed model. Some of the most

interesting works on the NP are those of Wang & Webster (2009), Cachon & Lariviere

(2005), and Xinsheng et al. (2015).

All the aforementioned studies omit the TVM, which refers to the interest one possibly

gains when a payment is received today as opposed to some future time. There are very

few articles that account for TVM in inventory and production problems. This is due
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to its complexity, which hinders research (Sun & Queyranne 2002). Seifert et al. (2013)

hconducted a comprehensive review of the literature on trade credit, and highlighted

the urgent need to compare the results of an opportunity cost approach and an NPV

approach, which would provide a valuable base for further research.

The NPV may be adapted if the aftermath of economic in production planning deci-

sions needs to be considered (Grubbström 1980). Grubbström (1967, 2007) provided

a close-form solution of the discounted cash-flow analysis using Laplace Transform.

Subsequent works on the NPV model include those of Kim et al. (1984), Beullens &

Janssens (2011), Beullens & Janssens (2014), and Marchi et al. (2016).

Grubbström (1980) showed that the capital costs of inventory in the various stages

of an SC can be restored from the linearised NPV or annuity stream of the cash-flow

function. Later, Gurnani (1983) compared the NPV model with the classical inventory

framework. The author concluded that there are inaccuracies in the classical model,

since the holding cost is assumed to reflect only certain items, namely storage space

and deterioration. Disney & Warburton (2012) show that by using the Laplace trans-

form and the Lambert W function in two types of EOQ models, they can get the exact,

explicit optimal results. Later, Disney et al. (2013) extended the EPQ model to incor-

porate the NPV in the model.

Beullens & Janssens (2014) developed the NPV equivalence analysis (NPVEA) under

various payment structures – conventional payment, delayed payment, and advance

payment – and applied it to a few classic inventorymodels. The results lead to different

perceptions of, or alternatives to, the classical inventory model. While the NPV analy-

sis in production-inventory systems has already been widely studied in deterministic

demand, Grubbström (2010) is the only one to have considered the NPV approach in

the NP. However, no attention has been paid to the impact of payment structures on

the SC under TVM.
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The second dimension that differentiates our work from the literature is howwe confer

delayed payment terms. Under a delayed payment or trade credit framework, the re-

tailer is allowed to make payments to the wholesaler by a certain time at no additional

charge. Goyal (1985) was among the first to propose an EOQmodel with a permissible

delay in payment. Since then, many articles have been published related to the delay

in payments by the wholesaler under the lot sizing inventory problem, including Ja-

mal et al. (1997), Lou & Wang (2013), and Teng et al. (2014). Recently, Chen & Teng

(2015), andWu et al. (2016) examined trade credits under deteriorating items consider-

ing discount cash-flow analysis on all relevant revenue and costs. Furthermore, a few

papers have attempted to integrate the financial and production decisions. Kouvelis &

Zhao (2011) and Kouvelis & Zhao (2012) considered the simple NP to incorporate the

bankruptcy cost with the structure of optimal trade credit. However, these articles do

not take into account the payment terms in every cash transaction.

In particular, the wholesaler benefits from offering delayed payment within a certain

period by increasing sales and transferring inventory to the retailer. However, in re-

ality, timely payment is a nightmare for small and medium-sized enterprises. These

issue shows that wholesalers are in the worst position because of bad cash-flow. Thus,

we seek to determine under which circumstances the wholesaler will benefit from giv-

ing/obtaining delayed payment. We find these interesting issues in the above article,

where the result using the NPV objective function is observed from the retailer mak-

ing a delayed payment to the wholesaler, which discounts these costs over the time

periods. Regarding the aforementioned question, our analysis yields meticulous con-

clusions about the implications of using anNPVmodel, and it allows comparison to the

traditional NP. In addition, it provides insights into how the wholesaler reacts when

delayed payment is implemented. To make the model more relevant and applicable in

practice, we amend the traditional NP by developing a generalised version using the

NPV of the expected total profit as the objective function, and we compare the results

with those obtained using the traditional newsvendor model.
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The remainder of the chapter is organised as follows. Section 2.3 presents the bench-

mark model and the proposed model. Section 2.4 provides solution procedures to solve

the problem. Section 2.5 demonstrates numerical examples to illustrate the model and

generate managerial insights. Finally, Section 2.6 includes some concluding remarks

and future research suggestions.

2.3 The Mathematical Model

We consider a two-echelon NP consisting of one wholesaler and one retailer. The re-

tailer orders from the wholesaler to satisfy the uncertain demand x at time T . Without

loss of generality, we assume that the wholesaler delivers the product to the retailer.

The wholesaler only sells a single product to the retailer. The retailer needs to decide

the optimal order quantity in order to maximise the expected profit function.

2.3.1 Assumptions

• The demand distribution is known.

• The selling price and the wholesale price are given (based on market price).

• No shortage is allowed.

• There are n sequential selling periods within an accounting year.

• The time unit is one accounting year.

To begin, we consider a traditional NPwith awholesale price-only-contract as a bench-

mark case of this model.
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2.3.2 Traditional Newsvendor Problem

The retailer decides order quantity Qa at the beginning of the selling season and pays

the wholesale price w per unit ordered. The unsold products at the end of the selling

season are sold with a salvage value v. If the realised demand in this period does not

exceed the order quantity, then the retailer’s revenue is px, and the unsold items in

inventory are salvaged at v(Qa − x). If the realised demand is greater than Qa, the

retailer’s revenue is pQa.

The retailer’s problem is given as;

P (Qa, x) =


px+ v(Qa − x), if x ≤ Qa,

pQa, if x ≥ Qa.

(2.1)

The retailer’s objective function is

max
Qa

E[Π]r = p
(∫ Qa

0

xf(x)dx+Qa

∫ ∞

Qa

f(x)dx
)

+ v

∫ Qa

0

(Qa − x)f(x)dx− wQa, (2.2)

where E[Π]r represents an expected profit function for the retailer. The first and sec-

ond order conditions of E[Π]r w.r.t Qa for a given w are;

dE[Π]r/dQa = −(p− v)F (Qa) + (p− w)

and

dE2[Π]r/dQ
2
a = −(p− v)f(Qa) < 0,

respectively. Thus, the optimal order quantity Q∗
a that maximises the objective func-

tion is given by;

Q∗
a = F−1

(p− w

p− v

)
. (2.3)
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The wholesaler’s expected profit function is given by;

E[Π]s = (w − c)Qa. (2.4)

From Eq.(2.3), the wholesaler can predict the retailer’s order quantity for any given

wholesale price, w.

2.3.3 NPV-I Newsvendor Problem

We first derive a NP based on the NPV perspective. The sequence of events is as fol-

lows.

1. Before the beginning of the selling period, for instance at a period of lc days or

Lc = lc/365 year, the retailer initiates an order from the wholesaler, given by

QⅠ. For every unit of product, the wholesaler incurs an operation cost, c.

2. When the orders arrive at the beginning of the selling period, the wholesaler

charges the retailer w per unit of product. The retailer can pay w at period of

lz days which equal to Lz = lz/365 year depends on what type of payment

structures involved. The selling price of the product is p per unit.

3. At lv days or Lv = lv/365 year after the end of the selling season, the retailer

earns a salvage value, v per unit unsold by selling these products to the end-

customers.

We now examine our new divergence from the problem. We introduce the payment

term to account for the time of event. In the real market, all of the cash-flow trans-

actions between retailer and wholesaler are based on the timing of revenue and cost

cash-flows. In the traditional model, the wholesaler invests in QⅠ order quantity and

the retailer pays the wholesaler at the start of the selling season. Any unsold inven-

tory is assumed to be at the end of the selling period. This assumption is used in most
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of the literature. In reality, the retailer can pay at different moments in time, either

before or after the selling period starts. The investments from the wholesaler will start

before the beginning of the selling period, and the salvages occur after the end of this

period.

We will assume without loss of generality that one accounting year is 365 days. Note

that a Net-D contract with payment terms of e.g. lz = 60 days then corresponds to

taking a value for Lz = 60/365. A situation with two selling seasons (summer and

winter, for example) will have n = 2 and T = 365/2 days, or T = 1/2 in accounting

years; and in general the adopted assumptions imply nT = 1.

Figure 2.1: Cash-flows of retailer and wholesaler for NPV-I model

If Lc, Lc, Lv = 0, the investment occurs at the beginning of the selling period, and

salvage revenue is achieved at the end of this period. It is more sensible to consider

values of Lc, Lv > 0. In our case, we only consider Lz > 0, which happens when the

retailer makes a delayed payment to the wholesaler.



Chapter 2 Supplying to the Newsvendor under Net D Clauses - A Net
Present Value Analysis

38

2.3.3.1 Retailer’s Profit Function

Figure 2.1 represents the cash-flow of the profit maximisationmodel for the wholesaler

and retailer. From the figure, the expected present value of sales revenue at the rate of

px/T throughout one selling period is given by;

E[R1] =
p

αrT

[ ∫ QI

0

(
1− e−αrT

)
xf(x)dx+

∫ ∞

QⅠ

(1− e−αrQⅠT/x)xf(x)dx
]
.(2.5)

The two brackets in Eq. (2.5) indicate, first, that when x ≤ QⅠ, the sales revenue is

continuously earned from 0 until T ; and second, that when x > QⅠ, the sales revenue

at the rate of px/T is continuously earned at the start of the selling period untilQⅠT/x.

The expected annuity stream of the sales revenue earned in that accounting year is

subject to the sum of the time-adjusted expected value over n selling periods each of

duration T over an infinite of the future accounting year. Then, the equation is;

E[AS1]r = E[R1]
( n−1∑

i=0

αre
−iαrT

)( ∞∑
j=0

e−jαrnT
)

=
p

T

[ ∫ QⅠ

0

(
1− e−αrT

)
xf(x)dx

+

∫ ∞

QⅠ

(1− e−αrQⅠT/x)xf(x)dx
]( n−1∑

i=0

e−iαrT
)( ∞∑

j=0

e−jαrnT
)
. (2.6)

Since nT = 1, the equivalent annuity stream for Eq. (2.6) is;

E[AS1]r =
p

T

[ ∫ QⅠ

0

xf(x)dx+
1

(1− e−αrT )

∫ ∞

QⅠ

(1− e−αrQⅠT/x)xf(x)dx
]
. (2.7)

After the end of the selling season, the retailer will receive salvage revenue at Lv. The

corresponding expected annuity stream of the salvage activities is;

E[AS2]r = v

∫ QⅠ

0

(QⅠ − x)f(x)dx(e−αrLv)
( n−1∑

i=0

αre
−(i+1)αrT

)( ∞∑
j=0

e−jαrnT
)
, (2.8)
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leads to:

E[AS2]r = vγvE[V (QⅠ)], (2.9)

where γv = αre−αr(Lv+1/n)

1−e−αr/n
, E[V (QⅠ)] = QⅠ − E[X] +

∫∞
QⅠ
(x − QⅠ)f(x)dx, and E[X]

represents the expected value of X .

For a wholesale price contract, the transfer payment TP made by the retailer is the in-

vestment of the n period of ordersQⅠ which happens at Lz over an infinite accounting

year. Thus, the expected transfer payment is given by;

E[TP ] = −wQⅠe
−αrLz

( n−1∑
i=0

αre
−iαrT

)( ∞∑
j=0

e−jαrnT
)
, (2.10)

or equivalently:

E[TP ] = −wQγzr , (2.11)

where γzr = αre−αrLz

1−e−αr/n
. Hence, by adding Eq. (2.7), Eq. (2.9), and Eq. (2.11) together,

the expected total annuity stream for the retailer is given by;

E[AS]r(QⅠ) =
p

T

[ ∫ QⅠ

0

xf(x)dx+
1

(1− e−αrT )

∫ ∞

QⅠ

(1− e−αrQT/x)xf(x)dx
]

+ vγvE[V (QⅠ)]− wQⅠγzr . (2.12)

To find the optimal order quantity, Q∗
Ⅰ , we differentiate Eq. (2.12) with respect to QⅠ,

and we have:

dE[AS]r
dQⅠ

= vγv

∫ QⅠ

0

f(x)dx+
αp

1− e−αT

∫ ∞

QⅠ

e−αQⅠT/xf(x)dx− wγr
z . (2.13)

The above equation cannot be solved analytically. Thus, the optimal order quantity is

obtained by solving the following nonlinear program:
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maximise
QⅠ

E[AS]r(QⅠ),

subject to QⅠ ≥ 0.

(2.14)

A corresponding algorithm is detailed in Section 2.4.1.

2.3.3.2 Wholesaler’s Profit Function

Before the beginning of the selling period, thewholesaler produces each of the n orders

QⅠ over an infinite accounting year, incurs a production cost c for each unit of order

at time Lc, and receives a payment of w for each unit of order at time Lz at/after the

start of the selling season. The expected annuity stream is given by;

E[AS1]s = −cQe−αs(−Lc)
( n−1∑

i=0

αse
−iαsT

)( ∞∑
j=0

e−jαsnT
)
. (2.15)

The negative sign of Lc denotes the time of payment occurs before the start of the

selling season. Hence, Eq. (2.15) can be rewritten as;

E[AS1]s = −cQγc, (2.16)

where γc = αseαsLc

1−e−αs/n
. The expected annuity stream of revenue for the wholesaler is

the transfer payment made by the retailer. By replacing αr with αs from Eq. (2.10), we

have:

E[AS2]s = wQγzs , (2.17)

where γzs = αse−αsLz

1−e−αs/n
.
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Adding Eq. (2.16), and Eq. (2.17) together, the expected profit function for the whole-

saler is:

E[AS]s(QⅠ) = (wγzs − cγc)QⅠ. (2.18)

2.3.4 Simplified NPV-II Model

Themodel developed in the previous section had the feature that sales occurred only as

long as stocks last. This is realistic in most circumstances. In this section we develop

a simple model of rationing. In this alternative model, illustrated in Figure 2.2, we

assume that the retailer’s revenue is always received at a continuous rate for the whole

of the selling season. This would only be realistic in the case of stock-outs if the firm

would ration the available stock each day of the selling season so that a fractionQ/X of

daily demand would be sold only. The notation ofE[S1(x)], andE[S2(x)] in Figure 2.2

represent retailer’s revenue.

2.3.4.1 Retailer-II’s Profit Function

The difference between NPV-I and NPV-II is in the expected NPV of sales revenue in an

accounting year. Other formulations remain the same. In this model, we assume that

the retailer’s sales revenue is continuously received between 0 and T (see Figure 2.2).

The expected NPV of the sales revenue in an accounting year is given by;

E[R1]
b =

P

T

[ ∫ QⅡ

0

(1− e−αrT

αr

)
xf(x)dx+

∫ ∞

QⅡ

(1− e−αrT

αr

)
QⅡf(x)dx

]
. (2.19)
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Figure 2.2: Cash-flows for the retailer and wholesaler over time, t

Then, the expected annuity stream of revenue for the retailer in n period of an ac-

counting year over an infinite accounting year is;

E[AS1]
b
r =

P

T

[ ∫ QⅡ

0

(1− e−αrT

αr

)
xf(x)dx

+

∫ ∞

QⅡ

(1− e−αrT

αr

)
QⅡf(x)dx

]( n−1∑
i=0

αre
−iαrT

)( ∞∑
j=0

e−jαrnT
)
.(2.20)

This leads to the following linearisation in αr of the annuity stream:

E[AS1]
b
r =

P

T

(∫ QⅡ

0

xf(x)dx+

∫ ∞

QⅡ

QⅡf(x)dx
)
. (2.21)

The expected total annuity stream for the retailer is the sum of (2.21), (2.9), and (2.11):

E[AS]br(QⅡ) =
P

T

(∫ QⅡ

0

xf(x)dx+

∫ ∞

QⅡ

QⅡf(x)dx
)
+ vγvE[V (QⅡ)]− wQⅡγzr .(2.22)
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By using the fundamental theoremof calculus, we first findQⅡ that satisfies dE[AS]br/dQⅡ =

0.
dE[AS]br
dQⅡ

= pn

∫ ∞

QⅡ

f(x)dx+ vγv

∫ ∞

QⅡ

f(x)dx− wγzr .

By setting dE[AS]br
dQⅡ

= 0, the optimal Q∗
Ⅱ satisfies

Q∗
Ⅱ = F−1

(pn− wγzr
pn− vγv

)
. (2.23)

Proof. To checkwhetherE[AS]br has a uniquemaximum, we find the second derivative

of E[AS]br,
d2E[AS]br

dQ2
Ⅱ

= (vγv − pn)f(QⅡ).

Since (vγv − pn) < 0, d2E[AS]br
dQ2

Ⅱ
< 0, therefore E[AS]br is a concave function on [0,∞).

Thus, the optimal order quantity Q∗
Ⅱ is given in (2.23). ■

2.3.4.2 Wholesaler-II’s Profit Function

The expected annuity stream for the wholesaler is the same as in (2.18).

2.4 Model Comparison

In this section, we present numerical examples of the single-period newsvendormodel.

We assume that demand uncertainty, x is Gamma distributed. To illustrate the benefits

of the NPV-I model, we compare the solution with the T-newsvendor model. Nine

instances are used in this section, as shown in Table 2.1. The other parameter values

are stated here: p = 15, w = 10, c = 4, v = 2, n = 1.
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Table 2.1: Problem instance characteristics

Instance shape, αg scale, τ µ σ αr αs

1 4 250 1000 500 0.2 0.2
2 4 250 1000 500 0.05 0.2
3 4 250 1000 500 0.2 0.05
4 3 333.33 999.99 577.34 0.2 0.2
5 3 333.33 999.99 577.34 0.05 0.2
6 3 333.33 999.99 577.34 0.2 0.05
7 2 500 1000 707.11 0.2 0.2
8 2 500 1000 707.11 0.05 0.2
9 2 500 1000 707.11 0.2 0.05

2.4.1 Algorithm

The NPV-I model is the (corrected) model based on the real-world problem. To see the

differences in result between the T-NP and the NPV-I and NPV-II models, we derive

the following algorithm and use the software Mathematica as a solution tool:

Algorithm 1
Input. List of parameters.
Output. A local maximum Q∗

Ⅰ , and Q∗
Ⅱ with E[AS]r(Q

∗), E[AS]s(Q
∗), and

E[AS]br(QⅡ) .
Step 1. Compute Q∗

a from Eq. (2.3). Then, set Q∗ = Q∗
a.

Step 2. Compute E[AS]r(Q
∗), and E[AS]s(Q

∗) in Eq. (2.12) and Eq. (2.18).
Step 3. (Local search.) Find local maximum of Q∗ of function in Eq. (2.12) using
FindArgMax function in software Mathematica.
Step 4. Go to Step 2.
Step 5. Compute Q∗

Ⅱ from Eq. (2.23). Then, set Q∗ = Q∗
Ⅱ .

Step 6. Compute E[AS]br(Q
∗
Ⅱ), and E[AS]s(Q

∗) from Eq. (2.22) and Eq. (2.18).

2.4.2 Comparison of NPV-I and NPV-II

For this comparison, we set values of lz = 0, lc = lv = 30 days. PGi denotes a

percentage gain for i = r and i = s with:

PGi = 100× (E[AS]i(NPV I)− E[AS]i(NPvII))/E[AS]i(NPV II)
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Table 2.2 presents the optimal solution of expected profit functions for NPV-I and NPV-

II.

Table 2.2: Optimal solution expected profit functions for NPV-I and NPV-II

No. Model Q∗ Retailer PGr Wholesaler PGs

1 NPV-I 668.31 2211.21 13.99 4375.31 -3.27NPV-II 690.92 1939.90 4523.31

2 NPV-I 755.65 2581.57 2.47 4947.15 -0.85NPV-II 762.10 2519.29 4989.37

3 NPV-I 668.31 2211.21 13.99 4099.65 -3.27NPV-II 690.92 1939.90 4238.32

4 NPV-I 621.19 1965.78 16.46 4066.81 -2.62NPV-II 637.91 1687.94 4176.26

5 NPV-I 710.96 2294.50 2.92 4654.57 -0.75NPV-II 716.37 2229.39 4689.93

6 NPV-I 621.19 1965.78 16.46 3810.58 -2.62NPV-II 637.91 1687.94 3913.14

7 NPV-I 543.36 1585.44 21.06 3557.30 -0.97NPV-II 548.66 1309.64 3591.99

8 NPV-I 633.47 1852.36 3.75 4147.25 -0.48NPV-II 636.55 1785.44 4167.36

9 NPV-I 543.36 1585.68 21.08 3333.18 -0.97NPV-II 548.36 1309.64 3365.67

The table reveals that for any given instance, the difference of optimal order quantity

between bothmodels is not considered small. For example, in instance 1, the increment

in order quantity when using NPV-I is 22.61(=690.92-668.31). The percentage increase

is about 3.38%. It seems reasonable to expect that the profitability of ordering less

than actual demand is now higher since revenues happen at the start of the period up

to Q/x < T ; thus, optimal Q∗ in NPV-I is lower than in the NPV-II model of sales.

It can also be deduced from the table that the optimal expected profit function for

the wholesaler is sensitive to changes in optimal order quantity. Moreover, Table 2.2

indicates that the difference in PG for the retailer between both models is relatively

high. Therefore, we choose NPV-I for the next examples.
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2.4.3 Comparison of NPV-I and the Newsvendor Model

Now, we set the values of Lz = Lc = Lv = 0. PGi denotes the percentage gain for

i = r(retailer), and i = s(wholesaler) as:

PGi = 100× (E[AS]i(Q
∗)− E[AS]i(Qa))/E[AS]i(Qa)

.

Table 2.3: Optimal solution expected profit functions in NPV model

No. NPV-I Q∗ E[AS]r PGr E[AS]s PGs

1 QI 668.98 2212.80 3.90 4428.65 -14.84
Qa 785.58 2129.68 5200.53

2 QI 755.9 2582.22 0.20 5004.03 -3.78
Qa 785.58 2577.04 5200.53

3 QI 668.98 2212.80 3.90 4115.08 -14.84
Qa 785.58 2129.68 4832.3

4 QI 621.93 1967.51 4.35 4117.14 -16.23
Qa 742.45 1885.42 4915.01

5 QI 711.23 2295.20 0.23 4708.36 -4.20
Qa 742.45 2290.02 4915.01

6 QI 621.93 1967.51 4.35 3825.62 -16.23
Qa 742.45 1885.42 4567

7 QI 544.17 1587.57 5.09 3602.5 -18.31
Qa 666.20 1510.62 4410.24

8 QI 633.78 1853.11 0.27 4195.61 -4.87
Qa 666.20 1848.16 4410.24

9 QI 544.19 1587.57 5.09 3347.42 -18.31
Qa 666.20 1510.62 4097.96

From Table 2.3, we see that Q∗
a is the same when αg, and τ are the same regardless

of any values of opportunity costs. The newsvendor model does not consider the op-

portunity cost, so this does not affect Qa. In addition, the optimal QI differs for each

instance except for the case in which αg, τ , and αr are fixed, and αs change. Compar-

ing the expected profit function, the NPV-I(QI)model generates a higher profit for the

retailer compared to NPV-I(Qa) for all instances. For example, from instance 9, when

the NPV model is used instead of the traditional model, the retailer earns 5.094% more



Chapter 2 Supplying to the Newsvendor under Net D Clauses - A Net
Present Value Analysis

47

profit. However, the opposite is true for the wholesaler, with a profit loss of 750.54 (a

decrease of 18.314%).

This comparison shows that when adopting the NPV model, the retailer benefits, but

the wholesaler does not. The differences in PG for both parties are considered high.

Thus, adopting the NPV model is a correct way to see how much the firms earn in

every transaction.

2.5 Insight from NPV-I on Payment Terms

To study the effect of the expected annuity stream of profit for E[AS]r, and E[AS]s

of the NPV model, we perform a numerical analysis by varying value of lz, lc, αg, τ ,

n, αr, and αs. To be more realistic, lv = 30. The other parameters remain the same as

before.

2.5.1 Influence ofVariability ofDemand, Number of Period, and

Delayed Payment

By setting αr = αs = 0.2, the optimal Q∗ and PG for retailer and wholesaler are

shown in Table 2.4. The PGi is denoted as PGi = 100 × (E[AS]i((Lz ̸= 0)) −

E[AS]i(lz = 0))/E[AS]i(lz = 0).

As expected, the optimal order quantity is sensitive to the variability of demand. When

Lz andn are fixed, the optimal order quantity decreaseswhen the variability of demand

increases. This indicates that the retailer will not take the risk of ordering more when

there is high variability of demand.

However, when αg, τ , and n are fixed, the optimal Q∗ increases when Lz increases.

This is because the retailer will order more as the delayed payments reduce the amount
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of capital invested in stock during the delayed payment time. In addition, when αg, τ ,

and Lz are fixed, E[AS]r and E[AS]s increase with the increment of n. However, the

increment of n will reduce the PG for retailer and wholesaler.

From the wholesaler’s perspective, delayed payments are only beneficial when the

variability of demand is high. Therefore, to benefit both retailer and wholesaler, we

present the next examples by setting αg = 2, and τ = 500.

Table 2.4: Summary of experiments

No. αg τ lz n Q∗ E[AS]r E[AS]s PGr PGs

1

4 250 0 1 668.31 2211.21 4375.31 - -
4 250 30 1 682.95 2332.40 4348.32 5.481 -0.617
4 250 60 1 697.35 2454.87 4316.61 11.019 -1.342
4 250 90 1 711.53 2577.49 4280.51 16.565 -2.167
4 250 120 1 725.50 2700.52 4240.32 22.129 -3.085

2

3 333.33 0 1 621.19 1965.78 4066.81 - -
3 333.33 30 1 636.92 2078.94 4055.23 5.756 -0.285
3 333.33 60 1 652.45 2193.01 4038.64 11.559 -0.693
3 333.33 90 1 667.79 2307.92 4017.35 17.405 -1.216
3 333.33 120 1 682.95 2423.56 3991.63 23.287 -1.849

3

2 500 0 1 543.36 1585.68 3557.30 - -
2 500 30 1 560.39 1684.95 3568.01 6.260 0.301
2 500 60 1 577.31 1785.61 3573.53 12.608 0.456
2 500 90 1 594.11 1887.56 3574.12 19.038 0.473
2 500 120 1 610.81 1990.72 3570.00 25.544 0.357

4

2 500 0 2 601.55 3510.70 7501.77 - -
2 500 30 2 619.04 3719.82 7507.70 5.957 0.079
2 500 60 2 636.40 3931.40 7503.73 11.983 0.026
2 500 90 2 653.64 4145.26 7490.32 18.075 -0.153
2 500 120 2 670.78 4361.25 7467.93 24.227 -0.451

5

2 500 0 3 622.09 5453.32 11447.10 - -
2 500 30 3 639.71 5772.30 11447.90 5.849 0.007
2 500 60 3 657.20 6094.81 11434.00 11.763 -0.114
2 500 90 3 674.60 6420.59 11406.30 17.737 -0.356
2 500 120 3 691.85 6749.40 11365.40 23.767 -0.714

2.5.2 Influence of αr, αs, Lz, and Lc

This example serves to evaluate the relative performances with different αr, αs, Lz ,

and Lc. We set αg = 2, and τ = 500, and the other parameters are the same as in

the previous example. The optimal results of Q∗ and percentage gain for both parties

when varying these parameters are reported in Table 2.5. Table 2.5 shows that when

Lz , Lc, αr are fixed and αs increases, the optimal Q∗, and PGr remain the same. In



Chapter 2 Supplying to the Newsvendor under Net D Clauses - A Net
Present Value Analysis

49

addition, the PGs decreases with the increases in αs. Moreover, the wholesaler only

benefits from delayed payment when αs is low. . In conclusion, it can be determined

from this data that the wholesaler can expect to benefit from the delayed payment

when his opportunity cost is small, while the retailer always benefits from this type of

payment.

Table 2.5: Summary of experiments

lz lc αr αs Q∗ E[AS]r E[AS]s PGr PGs

0 30 0.05 0.05 633.47 1852.36 3885.96 - -
30 30 0.05 0.05 637.92 1879.09 3886.39 1.443 0.011
60 30 0.05 0.05 642.35 1905.89 3886.51 2.890 0.014
90 30 0.05 0.05 646.78 1932.77 3886.32 4.341 0.009
120 30 0.05 0.05 651.20 1959.72 3885.82 5.796 -0.004
0 30 0.05 0.2 633.47 1852.36 4147.25 - -
30 30 0.05 0.2 637.92 1879.09 4061.58 1.443 -2.066
60 30 0.05 0.2 642.35 1905.89 3976.15 2.890 -4.126
90 30 0.05 0.2 646.78 1932.77 3890.97 4.341 -6.180
120 30 0.05 0.2 651.20 1959.72 3806.04 5.796 -8.227
0 30 0.05 0.3 633.47 1852.36 4326.22 - -
30 30 0.05 0.3 637.92 1879.09 4176.72 1.443 -3.456
60 30 0.05 0.3 642.35 1905.89 4029.07 2.890 -6.869
90 30 0.05 0.3 646.78 1932.77 3883.27 4.341 -10.239
120 30 0.05 0.3 651.20 1959.72 3739.30 5.796 -13.567
0 30 0.2 0.05 543.36 1585.68 3333.18 - -
30 30 0.2 0.05 560.39 1684.95 3414.10 6.260 2.428
60 30 0.2 0.05 577.31 1785.61 3492.97 12.608 4.794
90 30 0.2 0.05 594.11 1887.56 3569.85 19.038 7.100
120 30 0.2 0.05 610.81 1990.72 3644.83 25.544 9.350
0 30 0.3 0.05 490.07 1439.73 3006.24 - -
30 30 0.3 0.05 514.74 1581.36 3135.94 9.837 4.314
60 30 0.3 0.05 539.18 1726.29 3262.26 19.904 8.516
90 30 0.3 0.05 563.41 1874.22 3385.38 30.179 12.612
120 30 0.3 0.5 587.46 2024.87 3505.49 40.642 16.607
0 0 0.3 0.05 490.07 1439.73 3014.51 - -
30 0 0.3 0.05 514.74 1581.36 3144.63 9.837 4.316
60 0 0.3 0.05 539.18 1726.29 3271.36 19.904 8.520
90 0 0.3 0.05 563.41 1874.22 3394.90 30.179 12.619
120 0 0.3 0.05 587.46 2024.87 3515.41 40.642 16.616
0 60 0.3 0.05 490.07 1439.73 2997.93 - -
30 60 0.3 0.05 514.74 1581.36 3127.21 9.837 4.312
60 60 0.3 0.05 539.18 1726.29 3253.11 19.904 8.512
90 60 0.3 0.05 563.41 1874.22 3375.83 30.179 12.605
120 60 0.3 0.05 587.46 2024.87 3495.53 40.642 16.598

When lz, lc, and αs are fixed, the retailer orders less if her opportunity cost increases.

In addition, the highest benefit gain from the delayed payment happens when the

difference between both opportunity costs is large: namely, the retailer has a high

opportunity cost and the wholesaler has a low one. For example, when lz = 120,

lc = 30, and αr = 0.3, the result shows an increment in expected annuity stream for

the retailer by 40.642% compared to conventional payment, which boosts the order
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quantity from 490.07 to 587.46. Conversely, for the wholesaler, the expected annu-

ity stream increases by 16.607% compared to conventional payment, so a large order

quantity increases the benefit for the wholesaler in the NPV, despite the disadvantage

of being paid late.

Furthermore, when lc changes and other parameters are fixed, the optimal order quan-

tity remains the same. The impact of lc only relates to E[AS]s. Increasing or decreas-

ing lc does not affect the retailer’s optimal order quantity or expected profit.
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2.6 Conclusions

This study has focused on the cash-flow-based NPV for the NP in which the timing of

events and the opportunity costs of two independent firms are considered. The objec-

tive was to examine how the retailers choice of optimal order quantity is affected by

different Net D clause conditions, and how this affects profit for retailer and whole-

saler. Numerical examples and analysis were used to illustrate the solution procedure

and to show the difference between using the NPV model and using a traditional one,

as well as the effect of parameters’ value on decision-making and expected profit.

The findings of this paper show a difference between the results when using the NPV

model and the traditional one. However, implementing the NPV model only benefits

the retailer. This indicates that if the wholesaler has the power to make the decision,

he will not consider using the NPV model.

We also conducted an experiment using a second NPV model for which an analytical

solution can be readily obtained. The aim was to see whether the results would show

a small difference compared to the first NPV model. Unfortunately, the results were

not what we expected and the use of the second simpler NPV model will typically not

be as accurate.

Regarding the effect of delayed payment transaction, the analysis of the NPV model

showed that the benefit of higher D values increases for both parties when the demand

is highly variable, and when the retailer’s opportunity cost is greater than the whole-

saler’s. The optimal Net D clause is thus subject to the circumstances. These findings

are important in order to provide a warning sign for both parties when including a

payment term contract.

The cash-flow-based NPV model used in this paper, though a simplification of reality,

can provide insight to both retailers and wholesalers based on the optimal solutions

proposed in this paper, which show that the right value of opportunity cost and high
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variability of demand could result in significant profit enlargement. In fact, the NPV

approach is the appropriate model to capture the time value of events, which appears

significant to the real-life model.

There are several opportunities for further research. First, this paper considered an in-

dependent/sequential supply chain; a future study could consider a coordinated supply

chain instead. Second, further research could examine the impact of lead time on pro-

duction cost based on the NPV model.



Chapter 3

A Mixing Contract for Coordinating

a Supply Chain with Stochastic

Demand

Abstract

This study investigates a coordinated two-echelon supply chainmodel for the newsven-

dor problem in the presence of cash-flow. We introduce a mixing contract that com-

bines the buyback, revenue-sharing, and wholesale price discount contract, which

achieves perfect coordination. The impact of trade credit on supply chain coordina-

tion is investigated and a few adjustments to the current parameters are made, such as

non-integrated optimisation. We then extend the model to the information asymme-

try setting in which the wholesaler’s operation cost and opportunity cost are unknown

to the retailer. From numerical examples, we show that, in each setting, the retailer

can reveal private information. The results still indicate a win-win situation for both

retailer and wholesaler, and the wholesaler can gain more profit from cheating.

53
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3.1 Introduction

With the increment of market competition among individual enterprises, it is essential

for firms to cooperate in supply chain (SC) coordination to maximise their expected

profits. In a traditional business setting, each SC member commonly acts indepen-

dently and tries to maximise his own profit. This kind of setting is called decentralised

SC. It leads to the concept of double marginalisation (Spengler 1950), which occurs if

both firms charge a markup which will result in a higher selling price and a lower

demand in comparison with vertically integrated SC. In contrast, in centralised SC, a

decision-maker is responsible for making decisions to maximise profits from the whole

SC’s point of view.

Over the last decades, there has been extensive study of SC contracts, since they can

improve the profit of the whole SC. Double marginalisation ccan be eliminated by pro-

viding an incentive mechanism among the members of the SC. According to Cachon

(2003), three main objectives can be achieved through an SC contract: (i) the total

SC profit is increased so as to make it closer to the profit resulting from a centralised

SC (ii), the risks are shared among the SC members (iii), each SC member obtains an

expected profit higher than he/she would do without the contract. The SC contract

becomes more complex when the retailer does not know the exact cost components of

the wholesaler, such as raw material costs, labour costs, and opportunity cost. In this

case, the wholesaler’s production cost or opportunity cost is privately known.

In addition, inmost business activities, thewholesaler/retailer normally offers/requests

a delayed payment period to/from the retailer/wholesaler. In this case, modelling a SC

in the NPV approach is a ‘correct’ way to see what is happening to the cash-flow of

both the wholesaler and the retailer. With delayed payment, the retailer will gain more

profit as it frees up working capital for her. From the wholesaler’s perspective, hold-

ing an unpaid debt for long terms can have a destructive effect on his cash-flow. Our
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proposed model includes the delayed payment terms to analyse the effect of making

such a payment to the wholesaler.

Our first goal is to examine whether there is a difference in optimal solution when

implementing the NPV of the newsvendor problem (NPVNP) instead of the traditional

newsvendor problem (NP). Our second goal is to develop a mixing contract that will

perfectly coordinate the SC. Our third goal is to analyse how the wholesaler should

adjust the model to benefit from the delayed payment term. Our last goal is to analyse

how dishonesty (i.e. false information) affects the retailer’s optimal order quantity

and impacts both SC members’ expected annuity stream of profit. The benchmark of

the problem is the case in which the wholesaler is honest by giving true information.

Thus, our aim here is not to design the principal-agent framework to elicit truthful

information, but to yield insights on optimal results when the retailer faces a dishonest

wholesaler.

To reach the aforementioned goals, we study a two-echelon SC with one wholesaler

and one retailer. The wholesaler manufactures a single item and sells it to the retailer.

The retailer faces a random demand that follows a known distribution function. The

wholesaler proposes a mixing contract, which is a combination of buyback and price

discount, to the retailer to entice the latter to order more. However, the retailer nego-

tiates and provides another contract: revenue sharing if the wholesaler offers delayed

payment terms to the retailer. This model is developed considering two cases: com-

plete information and asymmetric information.

Our work contributes to the literature in three ways. First, we derive the mixing con-

tract in the NP under a few payment structures with time value of money (TVM). Un-

der TVM, the results show an increment in the expected annuity stream of SC profit

and a decrease in optimal order quantity compared to the traditional NP. Second, the

proposed mixing contract perfectly coordinates the SC. Regarding the effect of giving
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delayed payment to the retailer, the wholesaler has an option to deviate from hav-

ing perfectly coordinated results to non-integrated optimisation to benefit from the

delayed payment. Third, we show that under asymmetric information, given a set of

mixing contracts, the retailer can reveal private information. In addition, the retailer

and wholesaler’s expected annuity stream of profit is still higher than with a wholesale

price contract when the wholesaler is dishonest.

The remainder of the paper is organised as follows. Section 3.2 reviews the relevant

literature. Sections 3.3 to 3.6 provide a mathematical formulation to develop the pro-

posed model. Numerical analysis is given in Section 3.7. Finally, conclusions are pre-

sented in Section 3.8.

3.2 Literature Review

This study is directly related to three streams of the production and inventory man-

agement literature: SC contracts, NPV, and information asymmetry.

There is a vast body of literature on SC contracts that coordinate the SC. The revenue-

sharing contract is one of the most popular incentive mechanisms and has received

much attention in the SC literature (Cachon & Lariviere 2005, Xu et al. 2014, Arani

et al. 2016). Chen (2011) proposed a mixing contract based on two sub-contracts –

wholesale price discount and return contracts – that can achieve perfect coordination.

Chintapalli et al. (2017) propose a contract that involves both advance-order discount

and a minimum order quantity requirement, which can coordinate the supply chain.

Recently, Tang & Kouvelis (2014) presented a contract with random yield based on a

combination of buyback and revenue sharing that can coordinate the SC. In contrast

to Chen (2011) and Tang & Kouvelis (2014), we propose a contract with a combina-

tion of buyback, revenue sharing, and price discount in the presence of different pay-

ment structure and NPV. Most buyback contract and revenue-sharing contract studies



Chapter 3 A Mixing Contract for Coordinating a Supply Chain with
Stochastic Demand

57

neglect TVM. If there is a payment structure, such as delayed payment terms, it is

important to consider the TVM in the SC environment. In the past few decades, nu-

merous studies have examined production-inventory systems incorporating the cash-

flow-based NPV approach.

One of the earliest studies in this field was that of Goyal (1985), who developed an EOQ

formula for the case in which the buyer may delay the payment by a specified number

of days. Since then, many researchers have extended the model into different aspects.

Seifert et al. (2013) conducted a comprehensive review of the literature addressing

trade credit. The authors highlighted the importance of accounting for cash-flow tim-

ing in the objective function. Recently, Chen & Teng (2015) developed an EOQ model

for deteriorating items with upstream and downstream trade credit financing consid-

ering the discounted cash-flow analysis. However, the aforementioned papers mainly

use trade credit in deterministic demand. There are a few recent studies combining

the financing and inventory environment considering trade credit under stochastic

demand (Kouvelis & Zhao 2011, 2012). The authors developed an SC model consider-

ing that both wholesaler and retailer have limited working capital and assumed that

the retailer can either choose to finance with the wholesaler by trade credit or borrow

from the bank. In the present study, we omit the financing part and only consider a

basic trade credit (delayed payment).

Surveying the literature on delayed payment reveals that no studies have examined

the impact of payment structures on the SC under TVM. Most papers on newsvendor

models have failed to take into account the TC and TVM. Furthermore, most papers on

TC and TVM have not considered stochastic demand (newsvendor model). A model

including stochastic demand and incorporating TC and TVM does not exist(see more

details on the past literature in Section 2.2). Therefore, such a model should be devel-

oped.

The third aspect that differentiates our work from the literature is how we evaluate
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the asymmetric information in our model. The wholesaler’s cost and the retailer’s

demand forecast are the common parameters that are set as a private information in

the study of SC coordination with asymmetric information. Among others, Corbett

& Tang (1999), Corbett & De Groote (2000), Ha (2001) considered a take-it-or-leave-

it contract using the principal-agent framework and mechanism design principle to

ensure information credibility. However, such a contract involves complexity and, in

practice, the agreement of a contract is normally based on negotiations among the

firms. Our model is developed based on the idea in Heese & Kemahlıoğlu-Ziya (2016).

Instead of designing a contract principle to reveal true information, these authors in-

vestigated the revenue-sharing contract with dishonest information from the retailer

to coordinate the SC.They showed that the wholesaler might benefit from the retailer’s

dishonesty when the retailer can exert the sales effort. In contrast, we are interested

in the retailer’s perspective: whether he would be better off with inaccurate informa-

tion regarding the wholesaler’s operation and opportunity costs. To our knowledge,

no study has set opportunity cost as private information.

3.3 Mathematical Model

In this study, a two-echelon SC model is developed under the NP, which comprises

a downstream retailer R and an upstream wholesaler W. The retailer faces a random

demand x which is a non-negative random variable with a probability distribution

f(x) and corresponding cumulative distribution function F (x).

The following assumptions are used in this model:

Assumptions

• The wholesale price is decided by the wholesaler.

• The demand follows a Gamma distribution.
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• The selling price is exogenous determined and known.

• The selling season is in an accounting year.

• The retailer’s sales revenue continuously received between 0 and T.

• F (x) is a differentiable and strictly increasing function on its support.

The superscript ∗ denotes the optimal solutions, and the use of subscripts s and r serves

to distinguish between wholesaler and retailer, respectively.

The sequence of event is as follow. Before the start of the selling season, W propose a

contract toR, and thenR, negotiates with the wholesaler by offering another contract

to increaseR’s expected profit. When both parties agree with the contract, the retailer

decides how much quantity to order. The aim of proposing the contract is to coordi-

nated the SC and maximise the entire SC’s expected profit. In the next section, we first

develop a general formulation of the expected annuity stream for both wholesaler and

retailer.

3.3.1 Retailer’s Expected Profit Function

Considering n selling periods of an accounting year over an infinite accounting year,

the expected annuity stream of revenue received by the retailer at a continuous time

from 0 to T is;

E[AS1]r =
P

T

[ ∫ Q

0

(1− e−αrT

αr

)
xf(x)dx

+

∫ ∞

Q

(1− e−αrT

αr

)
Qf(x)dx

]( n−1∑
i=0

αre
−iαrT

)( ∞∑
j=0

e−jαrnT
)
. (3.1)

Leading to the following linearisation in αr of the expected annuity stream:

E[AS1]r =
P

T

(∫ Q

0

xf(x)dx+

∫ ∞

Q

Qf(x)dx
)
. (3.2)
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For simplicity, let E[S(Q)] =
∫ Q

0
xf(x)dx+

∫∞
Q

Qf(x)dx. Thus, we have;

E[AS1]r =
P

T
E[S(Q)]. (3.3)

At Lz = lz/365 times after the end of the selling season T , the retailer receives the

corresponding expected annuity stream from the salvage activities;

E[AS2]r = v

∫ Q

0

(Q− x)f(x)dx(e−αrLv)
( n−1∑

i=0

αre
−(i+1)αrT

)( ∞∑
j=0

e−jαrnT
)
, (3.4)

leads to;

E[AS2]r = vγv

(
Q−

∫ ∞

0

xf(x)dx+

∫ ∞

Q

(x−Q)f(x)dx
)
, (3.5)

where γv = αre−αr(Lv+1/n)

1−e−αr/n
. For simplicity, let E[V (Q)] = Q−

∫∞
0

xf(x)dx+
∫∞
Q
(x−

Q)f(x)dx. Thus, we have:

E[AS2]r = vγvE[V (Q)]. (3.6)

The total expected annuity stream of profit for the retailer is the summation of Eqs.

(3.3) and (3.6) minus the transfer payment (TP ) from retailer to wholesaler. Thus, we

have;

E[ASr] =
P

T
E[S(Q)] + vγvE[V (Q)]− TP. (3.7)

3.3.2 Wholesaler’s Expected Annuity Stream

Thewholesaler produces n ordersQ over an infinite accounting year before the start of

the selling period, with a production cost c per order at timeLc = lc/365. The expected

annuity stream of total profit for the wholesaler is the TP made by the retailer minus
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the expected annuity stream of total cost, which is given by;

E[ASs] = TP − cQe−αs(−Lc)
( n−1∑

i=0

αse
−iαsT

)( ∞∑
j=0

e−jαsnT
)
. (3.8)

By taking an algebraic manipulation, we have:

E[ASs] = TP − cQγc, (3.9)

where γc = αseαsLc

1−e−αs/n
.

3.3.3 The Integrated Channel

In this section, we derive two integrated models: the traditional and the NPV NPs.

Then, we compare the results of these two models using numerical experiments.

3.3.3.1 Traditional NP

From traditional NP, the expected total profit function for the integratedmodel is given

below;

E[Πsc] = p
(∫ Qt

0

xf(x)dx+Qt

∫ ∞

Qt

f(x)dx
)
+ v

∫ Qt

0

(Qt − x)f(x)dx− cQt.(3.10)

It is relatively easy to prove that E[Πsc] is concave in Qt (Silver et al. 1998). Thus, the

first order conditions (FOCs) are necessary to determine the optimalQt. By taking the

first derivative of Eq. (3.10) with respect to Qt and setting it to zero, the optimal order

quantity is given by;

Q∗
t = F−1

(p− c

p− v

)
. (3.11)
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3.3.3.2 NPV NP

The integrated firm’s expected annuity stream of total profit is the summation of Eqs.

(3.7) and (3.9);

E[ASsc] =
P

T
E[S(Qsc)] + vγvE[V (Qsc)]− cQscγc. (3.12)

By taking the first derivative of Eq. (3.12) with respect toQsc and setting it to zero, the

optimal order quantity is given by;

Q∗
sc = F−1

( p− cγ̄c
p− vγ̄r

v

)
, (3.13)

where γ̄c = αreαrLc

n(1−e−αr/n)
, and γ̄r

v = αre−αr(Lv+1/n)

n(1−e−αr/n)
. From Eq. (3.13), the existence of γ̄c

and γ̄r
v lower the value of critical ratio p−cγ̄c

p−vγ̄r
v
. Therefore, Q∗

sc < Q∗
t .

3.4 The Mixing Contract

Thewholesaler first proposes a mixing contract, denoted byCs(b, wm), combining two

popular contracts: the buyback policy and wholesale price discount policy. Then, the

retailer negotiates by adding another contractCr(β, Lz): a revenue-sharing contract if

the wholesaler agrees with a delay in payment. Assuming both firms agree with these

contract, the final contract follows C(b, wm, β, Lz). The graphical representation of

this system is shown in Figure 3.1. We now describe in detail the contracts considered

in this paper.

Before the start of the selling season,W makes two decisions: the unit wholesale price

wm, and the buyback price b per unsold item returned by R based on the given β and

Lz . The retailer then decides the optimal order quantity Qm based on wm, and b from
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Figure 3.1: Cash-flows representation of the mixing contract

the wholesaler. At the start of the selling season, the sales revenue is continuously

received until T . The first TP happens at t = Lz , where R pays wmQm to W . At the

end of the selling period, the TP happens twice. First, at t = Lr, the retailer shares

her revenue at βpE[S(Qm)] with the wholesaler. At t = Lb,W pays R for any unsold

items at bE[V (Qm)] and sells the salvage, vE[V (Qm)] at t = Lv. The cash-flow is

repeated until j times in the future accounting year.
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Thus, the expected transfer payment for this model is developed as follow;

E[TP ] =
( ∞∑

j=0

e−jαknT
)[

wmQme
−αkLz

( n−1∑
i=0

αke
−iαkT

)
− βp

T

(∫ Qm

0

xf(x)dx+

∫ ∞

Qm

Qmf(x)dx
)
e−αk(Lr+T )

( n−1∑
i=0

αke
−(i+1)αkT

)
− b

∫ Qm

0

(Qm − x)f(x)dx(e−αk(Lb+T ))
( n−1∑

i=0

αke
−(i+1)αkT

)]
, (3.14)

where αk denotes the opportunity cost for the retailer(k = r) and wholesaler (k = s).

Since we assume that the sales period occurs at an accounting year, nT = 1. Then, by

using linear approximation, Eq. (3.14) can be written as;

E[TP ] = βpnE[S(Qm)]γ
k
p + wmQmγ

k
z − bγk

bE[V (Qm)], (3.15)

where,

E[S(Qm)] =

∫ Qm

0

xf(x)dx+

∫ ∞

Qm

Qmf(x)dx

E[V (Qm)] =

∫ Qm

0

(Qm − x)f(x)dx

γk
p =

αke
−αk(Lr+1/n)

(1− e−αk/n)
, γk

z =
αke

−αkLz

(1− e−α/n)
, andγk

b =
αke

−αk(Lb+1/n)

(1− e−αk/n)
.

Therefore the retailer’s and wholesaler’s expected annuity stream of profit is given by:

E[ASr
m] = (1− βγr

p)pnE[S(Qm)]− wmγ
r
zQm + bE[V (Qm)]γ

r
b , (3.16)

and

E[ASs
m] = βpnE[S(Qm)]γ

s
p + wmγ

s
zQm − cγcQm + (vγs

v − bγs
b )E[V (Qm)], (3.17)

respectively.

Proposition 1. E[ASr
m] is concave in Qm.
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Proof. The first derivative of E[ASr
m] with respect to Qm is;

Qm = F−1
((1− βγr

p)p− wmγ̄
r
z

(1− βγr
p)p− bγ̄r

b

)
, (3.18)

where γ̄r
z = αre−αrLz

n(1−e−αr/n)
, and γ̄r

b = αre−αr(Lb+1/n)

n(1−e−α/n)
. The second derivative of the retailer’s

expected annuity stream with respect to Qm can be calculated as;

d2E[ASr
m]

dQ2
m

= (bγ̄r
b − (1− βγr

p)p)f(Qm). (3.19)

Note that the expected annuity stream for the retailer, E[ASm
r (Qm)] is concave if (1−

βγr)p > bγ̄b. To ensure a profitable return in business, we assume that bγ̄r
b < wmγ̄

r
z <

(1− βγr)p. Thus, E[ASr
m] is concave in Qm, and maximises the given annuity stream

function. ■

The mixing contract is perfectly coordinated if Q∗
m = Q∗

sc. Thus, we have;

(1− βγr
p)p− wmγ̄

r
z

(1− βγr
p)p− bγ̄r

b

=
p− cγ̄c
p− vγ̄r

v

. (3.20)

Given wm, β, and Lz , and rearranging Eq. (3.20) the optimal value of b∗ is;

b∗ =
p(1− βγr

p)λ+ wmyγ̄
r
z

φγ̄r
b

, (3.21)

where y = p− vγ̄r
v , φ = p− cγ̄c, and λ = vγ̄r

v − cγ̄c.

3.5 Pareto Improvement

In this section, we provide an analytical condition for setting the sales target that can

achieve Pareto improvement under the mixing contract. In a decentralised situation,

both wholesaler and retailer make their own decisions to maximise the expected an-

nuity stream of total profit. In particular, the wholesale price contract can usually be
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used as a benchmark to compare the channel performance. The wholesaler and re-

tailer, each can provide an appealing sales target to induce both parties to accept the

mixing contract, and thus, achieve Pareto improvement.

Under the wholesale price contract, the retailer’s and the wholesaler’s expected annu-

ity streams of total profit are given as;

E[ASr
d(Q)] = pnE[S(Q)]− wγr

zQ+ vE[V (Q)]γr
v , (3.22)

and

E[ASs
d(Q)] = wγr

zQ− cγcQ, (3.23)

respectively.

The optimalE[ASr
d] is concave inQ, thus, the optimalQ that maximises (3.22) is given

by;

Q∗ = F−1
[p− wγ̄r

z

p− vγ̄r
v

]
, (3.24)

where γ̄r
z = αre−αrLz

n(1−e−αr/n)
, and γ̄r

v = αre−αr(Lv+1/n)

n(1−e−α/n)
.

The condition for the retailer and wholesaler to accept the mixing contract is when the

expected annuity stream of the mixing contract is higher than that of the wholesale

price contract:

i. [ASr
m(b

∗, Q∗
m)] ≥ E[ASr

d(Q)].

ii. E[ASm
w (Qm, b

∗)] > E[ASd
w(Q)].

By substituting Eqs. (3.21), (3.16), and (3.22) into (i), we have;

wm ≤
pn(1− βγr

p)
(
E[S(Qm)]φ+ E[V (Qm)]λ

)
− φE[ASr

d]

γr
z(φQm − yE[V (Qm)])

= w. (3.25)
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By substituting Eqs. (3.21), (3.17), and (3.23) into (ii), we have;

wm ≥

(
E[S(Qm)]pnβγ

s
p + E[V (Qm)]vγ

s
v − cQmγc − E[ASd

w(Q)
)
φ

γr
z

(
yE[V (Qm)]−Qmφ

)
−

E[V (Qm)]np(1− βγs
p)λ

γr
z

(
yE[V (Qm)]−Qmφ

) = w. (3.26)

To avoid a trivial case, we assume that c < b∗ < wm < wd. The equation above is

solved numerically. Then wm ∈ [w,w]. Thus, if the wholesaler choose wm ∈ [w,w],

and b∗ after the retailer decides β and Lz , the mixing contract can achieve perfect

coordination and yield a higher expected annuity stream of profit than the wholesale

price contract.

3.6 Asymmetric Information

In this section, we examine two cases of asymmetric information: first, when the

wholesaler’s operation cost c is unknown; and second, when the wholesaler’s oppor-

tunity cost αs is unknown.

Unknown operation Cost, c. From the mixing contract, we assume that the value

of β is axiomatically shared information, and that the retailer knows the modelling

structure of the problem. Therefore, specifying the contract of (β, wm, b∗) reveals the

wholesaler’s true marginal cost, c to the retailer, since this is given from Eq. (3.21).

Rearranging Eq. (3.21) to find c, thus, the value of c is given by;

c =
p(bγ̄r

b − γ̄r
vv(1− βγr

p))− γ̄r
zwm(p− vγ̄r

v)

γ̄c(bγ̄r
b − p(1− βγr

p))
. (3.27)

Unknown opportunity cost of the wholesaler, αs. The wholesaler’s opportunity

cost αs is unknown. The value of β is necessarily shared information for revenue

sharing to occur, and we assume that the retailer knows the modelling structure of the
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problem. Hence, by specifying the optimal value of wm, b∗ and claimingFalse Signal

of c that the contract will achieve perfect coordination, the wholesaler reveals his true

opportunity cost αs to the retailer. The retailer can reveal αs by rearranging Eq. (3.21)

to find αs. The equation is given below;

γ̄c =
p(bγ̄r

b − γ̄vv(1− βγr
p))− γ̄r

zwm(p− vγ̄r
v)

c(bγ̄r
b − p(1− βγr

p))
. (3.28)

Since the RHS of the equation is known, the retailer can use optimisation to find αs

in γ̄c.

3.6.1 Dishonest Firm

In this section, we assume that the retailer has no prejudice regarding the wholesaler’s

behaviour, whichmeans that she trusts the wholesaler. From thewholesaler’s perspec-

tive, if he prefers to cheat, he needs to ensure that he meets all the previously stated

conditions for the retailer to accept the contract. We investigate whether the retailer

still benefits from the wholesaler’s behaviour in this case.

3.6.1.1

Assume that the wholesaler’s unit cost c is unknown and that the wholesaler wishes

to cheat. Let c be the true marginal cost, while c′′ = c +∆c denotes the wholesaler’s

signal of his marginal cost to the retailer. Let b′′ be the buyback price when cheating

and let wm be in the range of (wl, wu) from true c. Thus, b′′ is given by;

b′′ =
p(1− βγr

p)λ
′′ + wmyγ̄

r
z

φ′′γ̄r
b

, (3.29)

where φ′′ = p− (c+∆c)γ̄c, and λ′′ = vγ̄r
v − (c+∆c)γ̄c.
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The retailer’s optimal quantity is Q′′. Therefore, the expected annuity streams for the

retailer and wholesaler are;

E[ASr
m(Q

′′)] = (1− βγr
p)pnE[S(Q′′)]− wmγ

r
zQ

′ + b′′E[V (Q′′)]γr
b , (3.30)

and

E[ASs
m(Q

′′)] = βpnE[S(Q′′)]γs
p + wmγ

r
zQ

′′ − cγcQ
′′ + (vγs

v − b′′γs
b )E[V (Q′′)],(3.31)

respectively.

Proposition 2. Cheating decreases the buyback value for the wholesaler.

Proof. Assume that b′′ from Eq. (3.29) is less than b∗ in Eq. (3.21). Thus we have:

p(1− βγr
p)(vγ̄

r
v − (c+∆c)γ̄c) + wmyγ̄

r
z

(p− (c+∆c)γ̄c)γ̄r
b

<
p(1− βγr

p))(vγ̄
r
v − cγ̄c) + wmyγ̄

r
z

(p− cγ̄c)γ̄r
b

.

By solving this equation, we have wγ̄r
z < p(1 − βγr

p). This equation holds because

if the marginal cost is greater than the marginal revenue, the retailer will not gain

profit. ■

Proposition 3. Cheating decreases the optimal order quantity of the retailer if and only

if Proposition 2 holds.

Proof. The optimal Qm(b
′′), and Qr

m(b
∗) are:

Qm(b
′′) = F−1

[ (1− βγr)p− wγ̄z
(1− βγr)p− b′′γ̄b

]
, Qm(b

∗) = F−1
[(1− βγr)p− wγ̄z
(1− βγr)p− bγ̄b

]
.

From the above Eqs., it can easily prove that Qm(b
′′) < Qm(b

∗) when b′′ < b∗. ■
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3.6.1.2 False Signal of the Wholesaler’s Opportunity Cost

This scenario is only valid when αs ≤ αr. For the SC to achieve perfect coordination,

αs = αr. Therefore, let the true αs < αr. Let αs′ be the true opportunity cost, and let

αs′ = αs+∆αs be the wholesaler’s signal of his opportunity cost to the retailer. Thus

we have γ̄′
c =

αs′eα
s′Lc

n(1−e−αs′/n)
.Then, we set b from the mixing contract as;

b′ =
p(1− βγr

pλ
′ + wmyγ̄

r
z

φ′γ̄r
b

, (3.32)

where φ′ = p− cγ̄
′
c, and λ′ = vγ̄r

v − cγ̄
′
c.

The retailer now arrives at quantity Q′ that optimises;

E[ASr
m(Q

′)] = (1− βγr
p)pnE[S(Q′)]− wmγ

r
zQ

′ + b′E[V (Q′)]γr
b . (3.33)

The wholesaler’s true expected annuity stream is hence given by;

E[ASs
m(Q

′)] = βpnE[S(Q′)]γs
p + wmγ

r
zQ

′ − cγcQ
′ + (vγs

v − b′γs
b )E[V (Q′)]. (3.34)

Proposition 4. Cheating decreases the wholesaler’s buyback value.

Proof. Assuming that b′ from Eq. (3.32) is less than b∗ in Eq. (3.21), we have:

p(1− βγr
p)(vγ̄

r
v − cγ̄

′
c) + wmyγ̄

r
z

(p− cγ̄′
c)γ̄

r
b

<
p(1− βγr

p))(vγ̄
r
v − cγ̄c) + wmyγ̄

r
z

(p− cγ̄c)γ̄r
b

.

By solving this equation, we have vγ̄r
v < p. Therefore, b′ < b∗. ■

Proposition 5. Cheating decreases the retailer’s optimal order quantity if and only if

Proposition 4 holds.
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Proof. The optimal order quantity for Q′
(b′), and Qr

m(b
∗) are

Q′(b′) = F−1
[(1− βγr)p− wγ̄z
(1− βγr)p− b′γ̄b

]
, Qr

m(b∗) = F−1
[(1− βγr)p− wγ̄z
(1− βγr)p− bγ̄b

]
.

Since b′ < b, then Q′(b′) < Q′(b∗) . ■

3.7 Numerical Examples

In this section, we present a numerical example of the single-period newsvendormodel.

We assume that demand uncertainty, x is Gamma distributed. . Five instances are used

in this section, as in Table 3.1. The other standard parameter values are the following:

Table 3.1: Problem instance characteristics

Instance shape, αg scale, τ µ σ
1 10 100 1000 316.23
2 8 125 1000 353.55
3 6 166.6667 1000 408.25
4 4 250 1000 500.00
5 2 500 1000 707.11

p = 15, w = 10, c = 4, v = 2, n = 1, αs = 0.2, αr = 0.2

3.7.1 Comparison between Traditional and NPV Model

To see the differences in results between the traditional NP and the NPV models, we

derive the following algorithm and use the Mathematica software as a solution tool:

We assume that there are no payment terms involved. Thus,

lc = lz = lv = 0
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Algorithm 2
Input. List of parameters.
Output. A local maximum Q∗

t , and Q∗
sc with E[ASsc(Q

∗
t )], and E[ASsc(Q

∗
sc)] .

Step 1. Compute Q∗
t from Eq. (3.11). Then, set Q∗ = Q∗

t .
Step 2.Compute E[ASsc(Q

∗)],using Eq. (3.12).
Step 3. Repeat Steps above by finding Q∗

sc from Eq. (3.13).

Table 3.2 compares the optimal order quantity and expected total profit of the tradi-

tional newsvendor and the NPV models. To represent the gains from using the NPV

model versus the traditional model, we define PGsc =
100(E[ASsc(Q∗

sc)]−E[ASsc(Q∗
t )])

E[ASsc(Q∗
t )]

.

Table 3.2: The Expected Annuity Stream for Integrated SC (NPV framework)

No. Q∗
sc Q∗

t E[ASsc(Q
∗
sc)] E[ASsc(Q

∗
t )] PGsc

1 1255.08 1318.65 9337.67 9325.43 0.131
2 1282.70 1354.97 9180.63 9159.13 0.235
3 1321.95 1407.36 8947.87 8922.41 0.285
4 1384.18 1492.65 8551.56 8519.19 0.380
5 1505.29 1669.79 7641.26 7592.02 0.649

Firstly, it is clear that for each instance, the NPV model generates more profit than the

traditional model. The highest PGsc is at 0.649%when the variability of demand is the

highest and the lowest PGsc is at 0.131% when the variability of demand is the lowest.

Overall, when moving down the rows, the expected annuity stream of SC for both

cases decreases with the increase in variability of demand. This indicates that when

the variability of demand is high, the risk of the item not being sold is high as well, thus

lowering the expected profit. In contrast, the value of Q∗
sc, and Q∗

t show an opposite

pattern when moving down the row. For example, at instance 1, Q∗
sc = 1255.08, and

Q∗
t = 1318.65 are lower than Q∗

sc = 1505.29, and Q∗
t = 1669.79 at instance 5. This

result shows that the retailer will order more when the variability of demand is high.

WhileE[ASsc(Q
∗
sc)] is greater thanE[ASsc(Q

∗
t )], in fact, the optimal order quantity is

smaller in the NPV model than in the traditional newsvendor model for each instance.

For example, at instance 1, Q∗
sc = 1255.08 < 1318.65(Q∗

t ). This happens because the

existence of the opportunity cost in Q∗
sc reduces the value (Proposition ⁇) . This data
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shows that it is generally correct to consider the NPV framework, as it reflects the ‘real

world’ situation that accounts for TVM.

3.7.2 The Mixing Contract.

To show the effectiveness of the proposed policies, we adopt the same instances as

in Table 2.1. For ease of reference, other parameter values are restated as follows:

p = 15, w = 10, c = 4, v = 2, n = 1. In this example, we consider β = 0.4, lb = lr =

lc = 10, and lz = 0. We derive the following algorithm:

Algorithm 3
Input. List of parameters.
Output. b∗, a local maximum Q∗

m, and Q∗
sc with E[ASs

m(Q
∗
m)] and E[ASs

m(Qsc)].
Step 1. (Local search). Find the value for w,and w̄ using FindRoot function in Soft-
ware Mathematica.
Step 2.Choose wm between the limit w and w .
Step 3.Compute b∗, Q∗

m E[ASs
m(.)] and E[ASs

m(.)].

Assume that thewholesaler chooseswm = 5, as this value lies within the boundaries of

wm for all instances. For example, for instance 1, wm ∈ [4.67, 5.07]. Thus, the optimal

b∗ = 4.9665. Table 3.3 gives the optimal solutions for (a) the mixing contract, and

(b) the wholesale-price only contract. The parenthesis represents the optimal value of

Q∗, the expected annuity stream for the wholesaler, E[ASw
d ] and the expected annuity

stream for the retailer, E[ASr
d] in the wholesale-price-only contract. To represent the

gain from using a proposed model versus a wholesale-price-only contract, we define

the percentage gain as PGr/s =
100(E[AS

r/s
m ]−E[AS

r/s
d ])

E[AS
r/s
d ]

where subscript (r/s) represents

either the retailer or the wholesaler. Overall, the results show that both parties gain

profit when using a mixing contract compared to a wholesale-price-only contract.

For example, in instance 1, the retailer gains about 37.70% and the wholesaler 5.95%

more profit in themixing contract compared to thewholesale price-only-contract. This

is due to the increment of the order quantity, which is about twice the amount in the

wholesale-price-only contract. Moving down the row in Table 3.3, as the variability
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Table 3.3: The Expected Annuity Stream

No. Q∗
m E[ASr

m] E[ASs
m] PGr PGs E[ASsc

m ] = E[ASsc]

1 1245.5 3596.21 5641.3 37.696 5.951 9237.51(813.28) (2611.70) (5324.44)

2 1271.84 3533.93 5543.59 43.224 7.319 9077.52(789.01) (2467.41) (5165.53)

3 1309.15 3441.67 5398.86 52.085 9.538 8840.53(752.85) (2262.99) (4928.76)

4 1368 3284.76 5152.72 69.326 13.915 8437.48(690.92) (1939.9) (4523.31)

5 1481.01 2925.17 4588.64 123.357 27.747 7513.81(548.66) (1309.64) (3591.98)

of demand increases, the PG for both parties is highest in instance 5. Normally, when

there is high variability of demand, the retailer will not take much risk and will thus

order less to avoid unexpected loss. However, as we can see, the difference between

wm and b∗ is only 0.03. Thus, the retailer confidently orders more, as she knows that

she will definitely earn a high profit from unsold items. This is a win-win situation, as

the wholesaler can still profit from the revenue sharing while giving a wholesale price

discount and buyback to the retailer.

We also observe that the total expected profit from the mixing contract is the same as

in the integrated SC for every instance. The results can be seen in the last column in

the table above. This proves that the proposed contract achieves perfect coordination.

3.7.3 The impact of Delayed Payment

3.7.3.1 Perfect Coordination

Another objective of this study is to observe the impact of time of payment from the

retailer to the wholesaler. For this example, we use αg = 2, and τ = 500, and other

parameter values are the same as the above example.
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Table 3.4: The optimal results under the mixing contract

wm b∗ lz Q∗
m E[ASr

m] E[ASs
m]

5.0 4.97 0 1245.50 3596.21 5641.30
(1481.01) (2925.17) (4588.64)

30 1269.48 3710.24 5524.39
(1542.06) (3063.05) (4443.42)

60 1294.12 3823.63 5402.31
(1605.65) (3202.25) (4281.77)

90 1320.30 3937.39 5273.41
(1674.15) (3344.94) (4099.45)

4.8 4.66 0 1245.50 3790.10 5447.41
(1481.01) (3082.87) (4430.94)

30 1266.66 3898.55 5336.71
(1534.84) (3213.05) (4295.03)

60 1288.82 4007.06 5221.21
(1591.91) (3345.81) (4144.28)

90 1312.17 4115.71 5100.41
(1652.78) (3481.32) (3977.07)

4.6 4.35 0 1245.50 3983.98 5253.53
(1481.01) (3240.58) (4273.23)

30 1264.74 4087.83 5147.81
(1529.93) (3365.13) (4143.93)

60 1284.77 4191.59 5038.31
(1581.42) (3491.74) (4002.53)

90 1305.72 4295.29 4924.67
(1635.88) (3620.52) (3847.91)

4.4 4.04 0 1245.53 4177.92 5059.59
(1481.01) (3398.29) (4115.52)

30 1263.04 4277.19 4958.77
(1706.32) (3748.64) (3672.02)

60 1281.17 4376.23 4854.98
(1770.34) (3883.95) (3480.44)

90 1300.01 4475.07 4747.98
(1839.64) (4022.15) (3268.83)

Table 3.4 gives the optimal values of buyback, order quantity, and expected annu-

ity stream for the retailer and wholesaler under the proposed contract. Since wm ∈

[4, 5.06], we vary wm accordingly, as in Table 3.4. The parenthesis represents the op-

timal solutions for instance 5. From the table, we can see that the value of b∗ is pro-

portional to the value of wm. This is because b∗ must always be smaller than wm. As

expected, E[ASr
m] increases when the delayed payment time lz increases, regardless

of any circumstance – namely, low or high variability of demand, and high or low wm.

The reason for this is that the amount of capital invested in stock for the retailer during

lz times is reduced. Thus, she will order more from the wholesaler and increase her
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expected profit. In contrast, E[ASr
m] decreases with the increases in lz under any of

the circumstances mentioned before. This is because the chosen wm is too small to

compete with the increment of lz. Thus, we can conclude that through perfect coor-

dination, the wholesaler will not benefit from giving delayed payment to the retailer.

However, in reality, it always comes to the negotiation process between the parties:

the retailer asks for a low wholesale price. For example, suppose that the variability

of demand is high (instance 5). In the initial contract, both parties agree with wm = 5,

b∗ = 4.97 β = 0.4, and the retailer agrees to pay lz = 90 days prior to the start of

the selling season. The retailer and wholesaler will obtain E[ASr
m] = 3344.94 and

E[ASr
m] = 4099.45, respectively. After a few negotiations, the wholesaler agrees to

reduce the wholesale price from 5 to 4.6, with b∗ = 4.35, but the retailer needs to pay

at lz = 30 days after the start of the selling season. This new∗ contract benefits both

parties, as it increases the expected profit for the retailer and wholesaler to E[ASr
m] =

3365.13 and E[ASs
m] = 4143.93, respectively. Thus, the wholesaler can increase his

expected annuity stream. Note that, the results showno differencewhen the variability

of demand is low. For example, consider the same situation as above, but using instance

1 instead of instance 5. From Table 3.4, the new∗ contract benefits the retailer, with

E[ASr
m] = 4087.83 > 3937.39. The wholesaler’s new expected annuity stream is

E[ASs
m] = 5147.81 < 5273.41.

Sensitivity Analysis

To study the effect of b∗, Q∗
m, E[ASr

m],and E[ASs
m], we analyse these optimal values

and objective functions by varying some parameter values. We perform a numerical

sensitivity analysis by varying the value of Lc, and n. The following standard param-

eter values are used:

αg = 2, τ = 500, lz = lb = lv = 30, β = 0.2, wm = 6.28
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The other parameter values remain the same as before. In this example, we vary the

value of lc and lr from 0 to 60 to see the changes in the optimal values and objective

functions. The results are illustrated in Figure 3.2.
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Figure 3.2: Optimal results of (a)b∗, (b) Q∗
m, , (c)E[ASr

m], (d) E[ASs
m] with different lb

and n .

The blue, red, yellow, and purple lines represent the optimal valueswhen lr = 0, 20, 40,

and 60, respectively. First, let lr be constant at value 20. Overall, the values for b∗,Q∗
m,

E[ASr
m],and E[ASs

m] decrease over lc. As this contract is for perfect coordination, the

value of Lc affects the value of b since the optimal order quantity under global optimi-

sation depends on lc. Increasing lc will reduce the optimal b, thus lowering the value

of optimal order quantity Q∗
m. When Q∗

m decreases, the expected annuity stream for

both SC members will decrease too.
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Now consider lc = 20. From Figure 3.2, when lr increases, b∗ and E[ASs
m] gradually

decrease, E[ASr
m] noticeably increases , and Q∗

m remains constant. The value of Q∗
m

remains constant since Q∗
m = Q∗

sc, and Q∗
sc does not depend on lr. The drop in b∗ is

expected, as in Eq. (3.21), the optimal b∗ decreases with the increasing lr. The values of

E[ASs
m] fall for the wholesaler when lr increases because the wholesaler’s amount of

capital of investment is high as he needs to wait longer than that of small lr to obtain

his payment. For example, E[ASr
m] stands at about 3922 at lr = 0 but rises to 3984.80

at lr = 60. In sharp contrast to this, the increment in E[ASr
m] is due to the reduced

amount of capital invested in stock for the retailer, as she holds the revenue-sharing

payment to the wholesaler for much longer that of small lr.

Suppose now that β = 0.1, lc = 10, lr = 10, and other parameter values remain

constant. We vary the value of n = 1 up to 4, and lb = 0 up to 60. The results are

shown in Figure 3.3.

The four coloured lines in Figure 3.3 represent the optimal values when varying lb. To

begin, from Figure 3.3(a), for each constant lb (lb = 0, 20, 40, 60), the graph shows a

similar pattern which first, the optimal b∗ decreases from n = 1 to n = 2, and then

gradually increases up to n = 4. The optimal b∗ is the highest at lb = 60 than that of

lb = 0, 20, 40 over n. For example, when n = 4, the optimal b∗ when lb = 60 stands

at value 6, greater than 5.9025 when lb = 0.

The optimal values of Q∗
m, E[ASr

m], and E[ASs
m] in Figure 3.3(b), (c), and (d), respec-

tively remain the same when varying lb over n. This indicates that a change in lb does

not affect the optimal order quantity and the retailer’s and wholesaler’s expected an-

nuity streams. In addition, when lb remains constant,Q∗
m increases dramatically from

n = 1 to n = 2, and continues to climb gradually until n = 4.

Similarly, E[ASs
m] sharply increases from 2676.20 when n = 1 to 24117.57 when n =

4. This result is predicted as the revenue-sharing is higher when n is larger. Thereafter,

E[ASr
m] increases rapidly from 4910.33 to 9608.05 during the given n, except for a
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Figure 3.3: Optimal results of (a)b∗, (b) Q∗
m, , (c)E[ASr

m], (d) E[ASs
m] with different lc

and lr .

slight drop to 8552.73 when n = 4. The result implies that when n is relatively large,

the retailer needs to share more of her profit with the wholesaler, thus reducing her

expected profit.

3.7.3.2 Non-integrated Optimisation

One way to increase wm is by decreasing the value of β. We now assume that β =

0.2 and other parameter values are the same as in the previous example. Table 3.5

shows the optimal results of the mixing contract for both parties with (a) a perfect
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coordination policy (rows 1-2), and (b) a non-integrated optimisation policy (rows 3-

4). The parenthesis denotes the optimal value of expected profits for both SC members

in the wholesale-price-only contract.

Table 3.5: The optimal results of the mixing contract with delayed payment

wm b∗ lz Q∗
m[.] EASr

m[.] EASs
m[.] EASsc

m [.]
6.28 6.17055 0 1481.01 3842.05 3671.76 7513.81

30 1537.63 4012.51 3494.96 7507.48
60 1597.90 4186.69 3300.83 7487.52
90 1662.50 4364.84 3087.36 7452.20

6.38 6.32501 0 1481.01 3763.19 3750.62 7513.81
30 1539.82 3936.50 3570.49 7506.98
60 1602.63 4113.83 3371.58 7485.41
90 1670.21 4295.51 3151.57 7447.08

8 3.07 0 637.55 1309.74 4135.85 5445.59
30 658.81 1403.02 4161.53 5564.55
60 679.93 1497.77 4180.82 5678.59
90 700.94 1593.92 4194.03 5787.95

8 5.07 0 759.93 1520.18 4553.35 6073.54
30 788.13 1631.57 4567.64 6199.21
60 816.45 1745.13 4573.38 6318.52
90 844.94 1860.81 4570.86 6431.67

(1309.64) (3591.98)

From the first two rows, we observe that the results show the same pattern as in Table

3.4. This indicates that even though the value of β decreases and wm increases, the

wholesaler still does not benefit from giving delayed payment to the retailer. How-

ever, let us assume that the wholesaler has the power to decide any value ofwm as long

as both parties can still gain advantages from the contract compared to the wholesale-

price-only contract. The value of wm must be high to compete with the increment of

lz. The underline value in Table 3.5 represents the chosen wm < wd and the optimal

b∗. Notice that, E[ASr
m] = 1309.74 for the retailer and E[ASs

m] = 4135.85 for the

wholesaler. This means that both parties still accept this contract because it results in

more profit than the wholesale-price-only contract. Suppose that the retailer asks to

pay lz = 90 days later; the new expected annuity streams for the retailer and whole-

saler are then E[ASr
m] = 1593.92 > 1309.64, and E[ASs

m] = 4194.03 > 4135.85,

respectively. In addition, when b increases to 5.07 while wm is constant, the E[ASr
m],
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E[ASs
m], and E[ASsc

m ] proportionally increase. This yields the insight that the whole-

saler can increase the value of b to offer a more attractive contract to the retailer.

Overall, the wholesaler is happy to choose the non-integrated contract but not achieve

perfect coordination, as he obtains more profit than in the case of perfect coordina-

tion. Furthermore, the wholesaler benefits from offering delayed payment. From the

retailer’s perspective, if she has the bargaining power, she will choose the case of per-

fect coordination, as it generates more profit for her compared to the non-integrated

optimisation. Nevertheless, both cases benefit both SC members.

Sensitivity Analysis

A sensitivity analysis is performed to examine how the optimal results respond to

some parameter values. We restate the standard parameter values as follow:

β = 0.2, wm = 8, b = 5.07, αr = 0.2, αs = 0.2

First, we vary the value of αs and lz while other parameter values remain the same.

The line graphs in Figure 3.4 depict the optimal results of Q∗
, , E[ASs

m], and E[ASr
m]

over different values of αs and lz. From Figure 3.4(a), Q∗
m remains constant as αs

increases. This pattern is similar for any value of lz. However, when αs is constant,

Q∗
m increases as lz does. For example, when αs = 0.3, Q=

m759.93, and 844.94 when

lz = 0 and 60, respectively.

As can be seen in Figure 3.4(b), when αs is ≤ αr, E[ASs
m] is the highest when lz = 60

and the lowest when lz = 0. In contrast, whenαs >αr, the opposite result is observed.

At αs = 0.4, E[ASs
m] is 4768.78 and 4412.46 when lz is 0 and 60, respectively. Based

on the four lines in Figure 3.4(c), there appears to be a clear upward pattern for any

given lz over αs. According to the graph, E[ASr
m] is highest (2056.72) when lz = 60

at αs = 0.4, and the lowest(1428.23) when lz = 0 at αs = 0.1. This indicates that the
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Figure 3.4: Optimal results of (a)Q∗
m, (b)E[ASs

m], (c)E[ASr
m] with different αs, and lz.

retailer will obtain the most profit gain when the value of αs is high, with the longest

delay payment time,is high with the longest delayed payment time, lz.

Next, we vary αr from 0.1 to 0.4 and lz from 0 to 60. All the other standard parameter

values remain the same. The corresponding results are displayed in Figure 3.5. Firstly,

the results forQ∗
m in Figure 3.5(a) show a downward trend for any given lz overαr. The

highest value ofQ∗
m(1035.67) is when lz = 60 at αr = 0.1 and the lowestQ∗

m(718.24) is

when lz = 0 at αr = 0.4. This shows that the retailer will order more (less) when her

opportunity cost is low (high) and there is a longer (shorter) delayed payment time.

Figure 3.5(b) indicates that a decrease in E[ASs
m] happens over αr for any constant

value of lz. According to the figure, when αr ≤ αs,E[ASs
m] is the highest when lz = 0
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Figure 3.5: Optimal results of (a)Q∗
m, (b)E[ASs

m], (c)E[ASr
m] with different αr, and lz.

and the lowest when lz = 60. For example, when αr = 0.1, E[ASs
m] = 4593.53 and

4296.03 at lz = 0 and 60, respectively. Meanwhile, when αr > αs, the results show

the opposite pattern, whereE[ASs
m] is the smallest when lz = 0 and the highest when

lz = 60. In sum, the wholesaler will benefit from delayed payment time when αr is

greater than αs. Meanwhile,E[ASr
m] in Figure 3.5(c) shows the same decrease over αr,

reaching its highest value (3060.45) when lz = 60 at αr = 0.1 and the lowest (1620.47)

when lz = 0 at αr = 0.4.
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3.7.4 NPV of the Dishonest Firm

This section provides some numerical examples to evaluate the retailer and whole-

saler’s expected annuity stream under information asymmetry. The parameter values

used are:

β = 0.4, lc = lb = lr = 10, lv = 30, lz = 0, c = 5

and other parameter values remain the same.

3.7.4.1 Unknown c

Suppose that c is unknown to the retailer. To see the effect of being dishonest on the

retailer and wholesaler, we consider two scenarios:

1. The wholesaler is honest with the retailer;

2. The wholesaler is dishonest with the retailer.

Table 3.6 shows the parameter values and results for two instances when the value of

c is true. The retailer can easily reveal the value of c.

Table 3.6: The optimal results with the true value of c

Instance. [wl, wu] wm b∗ lz Q∗
m E[ASr

m] E[ASs
m]

1 [4.66,5.01] 5 4.99 0 1250.31 3603.21 5695.32
30 1274.05 3716.72 5579.02
60 1299.15 3830.55 5456.47
90 1325.88 3944.76 5326.90

5 [4.66,5.01] 5 4.99 0 1493.18 2939.81 4646.72
30 1553.81 3076.80 4502.60
60 1618.75 3217.10 4339.69
90 1688.87 3360.99 4155.51

Instance 5 represents a higher variability of demand compared to instance 1 (see Ta-

ble 3.1). It is evident that whereas the optimal order quantity, Q∗
m increases over the

instance, the others show a corresponding decline. Meanwhile, Q∗
m and E[ASr

m] rises
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when lz does but the opposite is true for E[ASs
m] for any given instance. The data

from Table 3.6 is used later for comparison with the second scenario.

Suppose now that the wholesaler wishes to cheat. Note that wm ∈ [5, 5.9], and by

setting the contract (wm = 5, b∗ = 4.32) with the agreed β = 0.4 from the retailer,

the retailer reveals a value of c′ = 5. However, the wholesaler’s true marginal cost is

c = 4. Table 3.7 represents the parameter values and optimal results for scenario 2. The

parenthesis value denotes the optimal results under the wholesale-price-only contract.

This result acts as a benchmark to accept the mixing contract. PGs represents the

Table 3.7: The optimal results when the wholesaler is being dishonest

No. wm b′′ lz Q∗
m E[ASr

m] E[ASs
m] E[ASs

m(αs)] PGs

1 5 4.32 0 1153.78 3449.62 4517.53 5797.53 1.79
30 1170.21 3554.12 4411.30 5709.53 2.34
60 1187.00 3658.40 4301.81 5618.67 2.97
90 1204.21 3762.45 4188.92 5524.87 3.72

5.8 5.69 0 1152.61 2704.09 5263.04 6541.74 14.86
30 1177.02 2825.61 5138.12 6443.89 15.50
60 1202.49 2947.70 5004.72 6338.75 16.17
90 1229.24 3070.44 4862.09 6225.80 16.87

(813.28) (2611.70) (4461.96) (5364.18)
5 5 4.32 0 1255.38 2627.56 3440.98 4833.69 4.02

30 1294.84 2742.23 3322.18 4758.66 5.69
60 1335.61 2858.58 3193.15 4674.87 7.72
90 1377.85 2976.65 3053.40 4581.98 10.26

5.8 5.69 0 1252.57 2057.76 4010.76 5400.36 16.22
30 1311.31 2191.47 3868.82 5323.58 18.23
60 1373.59 2329.21 3703.41 5227.26 20.45
90 1440.07 2471.19 3511.97 5109.58 22.96

(548.66) (1309.64) (3010.13) (3618.81)

percentage gain for the wholesaler when he cheats. We define the percentage gain as

PGs = 100(E[ASs
m(c,b′′,lc)]−E[ASs

m(c,b∗,lc)])
E[ASs

m(c,b∗,lc)]
. The retailer will accept the offer because she

will earn more profit than with a traditional wholesale-price contract. For example, in

instance 1, when lz = 0, the retailer obtains the expected profit (3894.11 >> 2611.70).

In addition, the retailer will be happy to accept the contract with the delayed payment.

In contrast, the wholesaler’s real expected profit (c = 4) is in column 9 of Table 3.7.

The wholesaler’s expected profit is much higher than in scenario 1 (see Table 3.6). For

example, in instance 1, the PGs is highest at 3.72% when lz = 90.
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According to the table, the values of wl and wu are higher than when the wholesaler is

honest. This indicates that in the case of dishonesty, the wholesaler has more options

in choosing the value of wm to maximise his expected profit. As we can see, when

wm = 5.8, the wholesaler gains much profit. For example, in instance 2, when lz = 90,

the PGs = 22.06% higher than when the wholesaler is honest with the retailer. As

stated in Proposition 1(a), b′′ < b∗, and from Proposition 1(b) Qm(b
′′) < Qm(b

∗).

Unknown αs

Let c = 4, while other parameter values are kept constant and are the same as in

the above example. To study the effect of being dishonest, we consider the same two

scenarios as before:

1. The wholesaler being honest with the retailer;

2. The wholesaler being dishonest with the retailer.

Table 3.8 provides the parameter values and results for scenario 1. From the chosen

b∗, the retailer can reveal αs = 0.1. . In the table, we can see a similar pattern as in

Table 3.6 regarding the optimal values ofQ∗
m, E[ASr

m], andE[ASs
m] over the instances,

except for the values of wl, wu, and the chosen wm. The E[ASs
m] in this table will be

compared to scenario 2 later.

Table 3.8: The optimal results with asymmetry information

Instance [wl, wu] wm b∗ lz Q∗
m E[ASr

m] E[ASs
m]

1 [4,4.78] 4.7 4.66 0 1273.22 3642.85 5583.75
30 1295.74 3750.25 5523.29
60 1319.51 3857.85 5457.87
90 1344.78 3965.72 5386.92

5 [4,4.78] 4.7 4.66 0 1551.67 2986.71 4473.71
30 1609.86 3117.25 4387.75
60 1672.05 3250.70 4287.97
90 1739.03 3387.28 4172.49
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Now consider Scenario 2, where the wholesaler wishes to cheat. Note that wm ∈

[4, 5.01], and by setting the same value of wm = 4.7, b∗ = 4.53. The wholesaler’s op-

portunity cost is unknown to the retailer. The retailer reveals αs = 0.2 by solving Eq.

(3.28). However, the wholesaler’s true opportunity cost is 0.1. Table 3.9 summarises

the results obtained when there is dishonesty. The value in the parenthesis represents

the wholesale-price-only contract. Again, the retailer will accept the offer regardless

of any instance and lz, since she will obtain more profit than with the wholesale-price-

only contract. From the wholesaler’s perspective, he gains more profit than he would

if he was honest with the retailer.

In addition, the effect of being dishonest increase the value ofwl andwu while decreas-

ing the value of b′′ andQ∗
m. Again, the wholesaler will consider higher wm to increase

his profit.

Table 3.9: The optimal results under dishonest firm

No. wm b′′ lz Q∗
m E[ASr

m] E[ASs
m] E[ASs

m(αs)] PGs

1 4.7 4.53 0 1250.00 3894.11 5404.42 5625.35 0.75
30 1270.53 4000.66 5295.85 5571.59 0.87
60 1292.00 4107.21 5182.88 5513.79 1.02
90 1314.59 4213.82 5065.06 5451.57 1.20

4.9 4.84 0 1250.43 3700.52 5598.01 5801.22 3.89
30 1273.06 3811.72 5484.24 5744.12 4.00
60 1296.90 3923.13 5364.90 5681.94 4.11
90 1322.17 4034.81 5239.34 5614.15 4.22

(813.28) (2611.70) (5364.21) (5118.38)
5 4.7 4.53 0 1492.39 3176.52 4410.00 4563.22 2.00

30 1544.75 3304.88 4276.46 4494.67 2.44
60 1600.16 3435.63 4129.14 4415.02 2.96
90 1659.12 3568.93 3966.59 4323.08 3.61

4.9 4.84 0 1493.48 3019.42 4567.10 4695.01 4.95
30 1551.26 3153.58 4426.40 4620.81 5.31
60 1612.88 3290.72 4268.72 4532.80 5.71
90 1679.08 3431.07 4092.00 4429.20 6.15

(548.66) (1309.64) (3618.81) (3452.97)

Thus, in both cases of information asymmetry, the wholesaler will not mind cheat-

ing. In addition, the optimal order quantity and buyback value in both cases is lower

than in the perfect information case. By being dishonest, the wholesaler can use less
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of his production capacity and pay for fewer of the unsold items, which reduces his

opportunity cost of resource usage and cash out-flow.

3.8 Conclusions

This chapter focused on the NP under the NPV framework. The optimal order quanti-

ties from the traditional problem were compared with those of the model derived from

the NPV framework for a single buyer and single supplier under stochastic demand.

By introducing the NPV framework to derive newsvendor models, the consideration

of the timing of cash-flows – namely, delayed payment –influences the relative attrac-

tiveness of the different coordination contracts.

We considered a mixing contract that improved on the traditional contracts. We found

that given equal opportunity costs of the wholesaler and retailer, a returns policy and

revenue-sharing contract with a reduction of the wholesale price can coordinate the

SC.When delayed payment is implemented in the system, the wholesaler will not ben-

efit in a perfectly coordinated SC. Furthermore, we found that when the wholesaler’s

objective is to increase his expected annuity streamwithout perfectly coordinating the

SC – that is, by setting a large wm and a set value of b < wm with the given β, both

firms still benefit from this kind of contract. Moreover, the wholesaler gains more

than he would from perfect coordination. Finally, through analytical and numerical

studies, we further confirmed that the retailer can reveal private information, and that

under incomplete information, the wholesaler can gain advantages from cheating.



Chapter 4

Non-Stationary Demand in

Newsvendor Problem under an NPV

Approach

Abstract

The traditional newsvendor problem (NP) assumes that the demand for every period

is independent and identically distributed, i.i.d. In this study, we relax these assump-

tions and consider that the demand in each period is independent but non-identically

distributed. Based on the literature on the NP, we consider two types of multi-period

NP: non-stationary demand and dynamic pricing. In the first case, we assume that the

selling price is constant over a selling period. The second case extends the first model

by assuming that the demand depends on the selling period, and the retailer makes

a price adjustment at a certain point in time before the end of the selling season. In

addition, we use a net present value (NPV) approach in developing the model. We

solve the problem using the backward induction method. Then, we perform a series

of sensitivity analyses to examine the impact of different values of parameters on the

89
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optimal expected NPV and order quantity. The study concludes with a summary of

the findings.

4.1 Introduction

This study considers a multi-period newsvendor problem (NP) with non-stationary

demand using the NPV approach. The problem is deciding the optimal order quantity

to meet the required demand for every period so as to maximise the expected NPV of

total profit for the retailer. The practical relevance of the problem is conspicuous, since

in today’s market the life cycle of products is becoming shorter due to intense global

competition. This phenomenon is happening not only with fashion apparel, but also

with many high-tech electronic devices (Neale & Willems 2009).

As an example, we consider a UK retailer selling swimming attire. The sales of the

item are strongly seasonal – they take place during the summer term only, from May

to September. The retailer purchases the order before the start of the selling season,

and reorders are impossible during the selling season, because the lead time is longer

than this season. This scenario is in contrast to the traditional multi-period demand

NP that considers a multiple lot sizing model. In addition, instead of having indepen-

dent and identical demand distributions for every period, we assume that the demand

for every period t is independent but not identically distributed. The importance of

considering non-stationary demand in a stochastic demand environment has received

much attention from researchers and practitioners (see, Morton & Pentico (1995) and

Chen & Song (2001)). However, the difference in demand patterns may yield different

optimal solutions. It is worth examining a new dimension of this problem: namely,

considering time value of money since demand is non-identical across periods.

Our work is motivated by the fact that in a business industry, the retailer faces a certain

type of demand pattern – an upward or downward demand pattern. For example,
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suppose that a new product is launched in the market. Since the end-customers are

initially unfamiliar with the product, the demand at the beginning of the selling period

is considered low. Over time, however, demand increases due to certain factors, such

as an effective marketing strategy. In contrast, the downward demand pattern shows

a very high demand at the beginning of the selling season and then decreases over

time. This kind of situation happens often in today’s business. Our aim in this study is

to develop a model that can capture these two types of demand patterns and compare

them to see under which conditions the results vary.

In addition, we consider another case in which demand depends on selling price: de-

mand increases when the selling price decreases and vice-versa. The intention here is

not to find the optimal pricing policy as provided in the literature; instead, we consider

this assumption as an added parameter which seems realistic in real business, where

the selling price is based on the competitive price. A well-known multiplicative case is

included in our model to capture the price-demand relationship. In the traditional NP,

the selling price is constant over the selling period. However, a retailer who is dealing

with an overstocking situation before the end of the selling period can provide a price

adjustment to clear the remaining stock. Hence, this model extends the traditional NP

by assuming that the retailer can make a price adjustment before the end of the selling

season.

This study is organised as follows. After the literature review in Section 4.2, Section

4.3 provides a problem definition related to two cases, a single pricing model (4.3.1)

and dual pricing model (4.3.2). In Section 4.4, we introduce the general formulation of

this model. In Section 4.5, we then present a numerical study to investigate the effec-

tiveness of the model, based on assumed parameters and with the specific assumption

that demands are uniformly distributed. A summary of findings, implications, and

suggested directions for future research are described in Section 4.6.
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4.2 Literature Review

In the classical NP, the retailer determines the optimal order quantity at the beginning

of the selling season when the demand is stochastic and follows a known distribution.

As the simplest and most fundamental problem in stochastic inventory control, this

problem has been studied bymany researchers in the past decades. Comprehensive re-

views on this topic can be found in Khouja (1999), Petruzzi &Dada (1999), and Qin et al.

(2011). Our works compress three stream: non-stationary demand, price-dependent

demand, and the NPV approach. Thus, we only focus on the literature in these three

areas.

Prior work on the multi-period NP has usually considered that the demand is i.i.d.

However, today it is quite common to have a stochastic and non-stationary demand

due to seasonality, short product life cycles, and customer buying patterns, among

others (Neale & Willems 2009). Wagner & Whitin (1958) developed a dynamic pro-

gramming model to deal with non-stationary demand.

Sox (1997) extended Wagner & Whitin (1958) with some additional feasibility con-

straints. Recently, Kim et al. (2015) developed a multi-stage stochastic use of the pro-

gressive hedging method to solve the lot sizing problem. Furthermore, Chen & Song

(2001) proposed a periodic reviewmodel of non-stationary demand. The objective was

to find the optimal total order quantity commitment that would minimise the expected

total cost for the retailer. The authors assumed a smaller T , and the demand pattern

increased and decreased with the same variance. Alwan et al. (2016) considered the

dynamic demand problem of non-stationary demand, and assumed the demand over

the time period to be autocorrelated.

Whitin (1955) presented the first mathematical formula for price-dependent demand,

whereby the retailer has to decide both the price and the order quantity optimally.

Karlin & Carr (1962) developed a price-dependent demand model in the form of mul-

tiplicative demand. In this model, the expected demand is given as the multiplication
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of the decreasing function and the stochastic factor. The authors proved that under

uncertainty, the optimal selling price is strictly higher than when there is no uncer-

tainty. For a review of price-dependent demand, the reader is referred to Petruzzi &

Dada (1999). Subsequent works on multiplicative models include (Yao et al. (2006), Xu

et al. (2011)). The studies reviewed above have assumed a single pricing policy. How-

ever, in reality, throughout one selling season, the retailer can provide a sales discount

at a certain period of time to boost sales or clear stock. Bitran & Caldentey (2003) re-

viewed the literature on dynamic pricing policies and their relationship with revenue

management. A few authors have considered markdown pricing. You (2005) proposed

an inventory model under the condition that demand is time and price dependent.

The authors assumed that a decision-maker has the opportunity to adjust prices dur-

ing n period of time before the end of the sales season. They showed that the dynamic

pricing strategy outperforms the static pricing strategy. However, they assumed the

demand to be deterministic. Forghani et al. (2013) proposed a price-dependent demand

model of the NP. They assumed demand to be dependent on price and to follow three

types of function: linear, two-segment, and exponential. The objective was to find the

optimal adjustment price, either a markup or markdown from the original price, that

captured the unwanted costs due to the deviation between the actual demand and the

given inventory at the beginning of the selling period. The authors restricted their

study by assuming a known inventory at the beginning of the selling season, and as-

suming the demand to be continuous over the selling period. Recently, Ullah et al.

(2019) proposed a free distribution NP considering price adjustment at the end of the

selling period. The authors showed that the proposed discount policy increased the

retailer’s sales and expected profit.

A common characteristic of the above works is that the models consider optimal pric-

ing with stocking policies. Typically, the lead time to replenish the stock is longer than

the selling season. Therefore, reorders are not possible. Likewise, the selling price is

typically a known parameter based on competitors’ price. In our model, we assume
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that the price and discount rate are given, and we only consider a single-ordering

policy. Furthermore, the aforementioned studies do not consider the TVM. Yet, time

value of money is an indispensable element in business transactions, because a pound

in hand today is more valuable than a pound received in the future: the pound in hand

today can be used to invest and earn interest or capital gains. Several authors have em-

phasised the importance of the TVM in lot sizing decisions; see Section 2.2 for further

details on the past literature.

This study contributes to the existing literature in the following ways. First, it analyses

the behaviour of non-stationary stochastic demandwhich follows a demand pattern – a

downward or upward pattern. Second, it considers the TVM with payment structures

in the optimal solutions in the NP, which has so far been ignored in this problem.

Lastly, the model is extended to the case in which the retailer makes an adjustment in

price and the demand is assumed to be dependent on selling price.

4.3 Problem Definition

We consider the multi-period NP for a single product based on NPV analysis. The

retailer faces random demand xt and decides to order quantity Q at a price of w per

unit before the start of the selling season. The ordered lots arrive at the beginning

of the period to fulfil the random demand xt of each period t = 1, 2,…, T . The de-

mand is realised when the selling season starts. We assume that xt follows uniform

distribution U [0, Dt] and comprises independent but not identically distributed ran-

dom variables, with ft(xt) and Ft(xt) being their probability density and cumulative

distribution function, respectively. Salvaging occurs in period T + 1. In this period,

we assume that there is no demand or holding cost.
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4.3.1 Case 1: Constant Price

We first consider the case in which the selling price is constant, as modelled in the

traditional NP. The stochastic demand xt is dependent on time, where xt∈[0, Dt], and

follows the generalised increasing failure rate (GIFR). This means that xt can be any

positive integer such that xt = j, where j = 0, 1, ..., Dt. Then, the probability of

demand scenario j at period t is denoted by ft,j = Pr[xt = j]. The retailer faces one

type of demand profile, which is either an upward trend (D1) or a downward trend

(D2). The formula to generate the demand pattern of D1 and D2 is given below:

For t = 1, 2, ..., N ,

Dt =


⌈a(1− β)(N−t)⌉, for D1,

⌈a(1− β)(t−1)⌉, for D2.

(4.1)

where a, and β are known and constant, and a > 0, 0 < β < 1 is the geometri-

cal approach of demand a. This type of demand pattern is common in the literature

(Panda 2013). The above formula is necessary to make both demand profiles compa-

rable with each other. The demand functions must be symmetrical to be fair when

making comparisons. The cumulative maximum demand over T is CD =
∑N

t=1Dt.

Example 1. Suppose that N = 30, a = 300, and β = 0.2. By using Eq. (4.1) to

generate Dt, we obtain the possible demand pattern for a 30-day selling period, as in

Figure 4.1. The CD = 1512 for both demand profiles. As we can see from the figure,

D1 and D2 are symmetrical in terms ofDt. Later, we provide insights regarding having

different demand profiles.
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Figure 4.1: xt over t with varying demand profiles

4.3.2 Case 2: Price Dependent Demand with Price Adjustment

End of season sales are now a trend among retailers selling seasonal items. These re-

tailers normally offer a discount at a certain time before the start of the next selling

season. Typically, the selling season in the UK is classified as Spring or Summer, Au-

tumn or Winter, or Halloween or Valentine’s Day, among others. In contrast to the

first case, we only assume that the demand pattern is going downward, (D2).

We consider two time intervals. First, during time interval [1, t1], items are sold at a

competitive unit selling price p0 > 0. Second, at time interval [t1 + 1, T ], the retailer

sells the remaining items at p1 = (1 − θ)p0, where θ represents the price discount

percentage. t1 and θ are parameters. After the end of the selling period, any excess

items are salvaged at value v per unit. We assume that v < p1 < p0.

Considering a multiplicative case (Karlin & Carr 1962), the demand is assumed to be

dependent on times and selling price, which the demand is xt(pi, ξt) = y(pi)ξt, where

y(pi) is the deterministic part of xt that decreases in selling price, and ξt captures

the random factor of the demand model where ξt ∈ [0, Dt]. Dt denotes the possible

maximum demand that depends on time t. Let ft(ξt) be the density function and Ft(ξt)

the cumulative distribution function. For simplicity, assume that Ft(ξt) is continuous,
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differentiable, and strictly increasing. We let y(pi) = ϑp
−βp

i where ϑ > 0 is a price-

sensitive parameter of demand, and 0 < βp < 1 is the elasticity of the price.

Eq. (4.2) provides the formula to generate Dt;

Dt =


⌈a0(1− β)t−1⌉, for 1 ≤ t ≤ t1,

⌈a1(1− β)t−t1−1⌉, for t1 + 1 ≤ t ≤ N.

(4.2)

where a0 and a1 represent parameters of themaximum possible demand (highest peak)

at the first time interval and second time interval, respectively with 0 < a1 < a0.

0 < β < 1 is the elasticity of demand rate over time. If θ = 0, Dt = ⌈a0(1 − β)t−1⌉

for t = 1, 2, ..., N .
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Figure 4.2: xt over t with varying β

Example 2. Suppose that N = 30, t1 = 21, p0 = 8, θ = 0.3, a0 = 300, a1 = 150,

ϑ = 2, and β = 0.2. Thus we have p1 = 5.6 and t1 = 21 with the cumulative demand

CD(θ = 0.3) = 2163 and CD(θ = 0) = 1438. Figure 4.2 shows two figures of xt over

selling period t corresponding to the given parameter values.
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4.4 Model Development

The cost function of ordering Q units before the start of the selling season is O1(Q).

It consists of a fixed costK > 0 and a variable cost w(Q). We assume that the retailer

pays the ordering cost at lz times after the selling period start. Let Lz = lz/365.

Therefore, Ot(Q) is calculated using Eq. (4.3) below;

Ot(Q) =


(K + w(Q))e−αrLz , if Q > 0 & t = 1,

0, if Q = 0 or t ̸= 1.

(4.3)

For every period t, the present value of the inventory cost of Q unit inventory is rep-

resented by the non-decreasing function H(Q), where H(Q) = h(Q)e−αrt. Consider

that the demand is j units. If the inventory is sufficient to meet demand j, the retailer

receives revenue with present value rt(j) at time t. We assume that rt(0) = 0.

The expected NPV of the sales profit received at time t is denoted as E[Rt(Q)]. If the

demand j does not exceed the inventory Q (0 ≤ j < Q− 1), the expected NPV of the

sales revenue is rt(j) = pje−αrt with probability ft,j , otherwise, it is rt(Q) = pQe−αrt

with a probability of qt,Q =
∑∞

j=Q ft,j . Therefore, the total expected NPV of the profit

received at time t when the inventory at t is Q is given by;

E[Rt(Q)] =


∑Q−1

j=0 rt(j)ft,j + r(Q)qt,Q −H(Q)−Ot(Q), if Q ≤ Dt,

E[Rt(Q− 1)], if Q > Dt.

(4.4)

AtLv = lv/365 times after the end of the selling period t = T+1, any excess inventory

is salvaged at a unit price v. Thus, the expected NPV of the salvaged revenue is given

as;

g(Q) = vQe−αr(T+1+Lv). (4.5)
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Now, let St denotes the inventory in period t. The inventory for each period is reduced

by satisfying a stochastic demand xt. We illustrate the situation in Figure 4.3.

Figure 4.3: Inventory Management

From Figure 4.3, the inventory level in the first selling period (day 1) is given by s1 = Q.

Since xt units are demanded during period t, the inventory state dynamic equation at

the beginning of period t+ 1 is;

St+1 = St − xt, (4.6)

where 0 ≤ St+1 ≤ CD.

The formulation of our problem follows a finite horizon MDP. The components of an

MDP consist of decision epochs, states, actions, transition probabilities and a rewards

function (Puterman 2014). We describe these in detail below.

Decision epoch: Decisions are made at a point in time. Let t denote the set of decision

epochs. The set of decision epochs is;

t = 1, 2, ..., N. (4.7)
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States: In a system, there are states in each decision epoch. In our model, the states

represent the inventory level at the start of period t;

S = {0, 1, ..., CD}. (4.8)

Actions set: By definition, for every states, the retailer may choose an action a from

the set of allowable actions in state S, such as As (Puterman 2014). The action in our

model represents the number of items to order before the start of the selling season.

As mentioned before, the inventory level (state) when t = 1, S1, is equal to the amount

to order. Since we assume a single-ordering model, there is only one action which is

the optimal state to maximise the overall system at t = 1. Following the definition,

we assume a ∈ As = 0.

Transition probabilities: The system state in the next decision epoch t + 1 is de-

termined by the probability distribution ft(.|s, a). As proposed in Puterman (2014),

transition probability is given by;

ft(k|S, a) =


0, if k > S,

ft,S−k, if k ≤ S,

qt,S, if k = 0.

(4.9)

The explanation for the above transition probabilities is as follows. An inventory level

of k > 0 at the start of period t+ 1 requires a demand of (S − k) ∈ [0, Dt] in period t

with probability ft,S−k. If the demand in period t exceeds S units, then the inventory

at the start of period t+ 1 is 0 units. This occurs with probability qt,s. The probability

is equal to 0 if the inventory level k exceeds S, since S − k cannot be negative.
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Expected rewards: The retailer receives a reward in every period t, and this reward

depends on the state of the system at the next decision epoch. Thus, we have;

ESSUt(S, a) = E[Rt(S, a)] +
∑
k∈S

ft(k|S, a)SSUt+1(k, a)]. (4.10)

Eq. (4.10) follows the Bellman equation without maximisation. We show the opti-

mality of this equation later. The value of the terminal inventory (salvage) is given

as;

ESSUN+1(S) = g(S), t = N + 1. (4.11)

Let us denote Eq. (4.12) as the expected annuity stream of profit over an infinite ac-

counting year.

EASr(Q) = SSU1(S)
∞∑
i=0

αre
−iαr(1) (4.12)

By using the Maclaurin series to solve the above equation, we obtain:

EASr(Q) = SSU1(S)
αr

1− e−αr
(4.13)

The objective is to find the optimal order quantity Q, Q ∈ (0, S] that maximises the

expected annuity stream of profit, EASr(Q).

4.4.1 Optimality Solution

In this section, we introduce the optimality equation. Eq. (4.10) is restated below:

E[SSUt(S, a)] = E[Rt(S, a)] +
∑
k∈S

ft(k|S, a)SSUt+1(k)]

Theorem 1. ∀S, the function of SSUt(S, a) is decreasing in t.
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Proof. Weprove this by using induction (follow optimality solution in Bellman (1957)).

i. Base case: For completeness, we define SSUT+1(S) = g(S). We assume that

E[RT (S, a)] >
∑

k∈S ft(k|S, a)g(k). By definition;

SSUT+1(S) = g(S) ≤
∑

k∈S ft(k|S, a)g(S) + E[Rt(S, a)] = E[SSUT (S, a)].

ii. Induction Hypothesis: E[SSUt+1(S)] ≤ E[SSUt+2(S)] for all S.

iii. Induction Step:

Proof.

E[SSUt(S)] = E[Rt(S) + ft(k|S, a)SSUt+1(k)]

= E[Rt(S) + ft(k|S, a)[Rt+1(S) + ft+1(k|S, a)SSUt+2(k)]

≥ E[Rt+1(S) + ft+1(k|S, a)SSUt+2(k)] = E[SSUt+1(S)] (4.14)

■

Note that, in every period t, E[SSUt(S, a)] follows a single-period NP with an optimal

value of S∗ that maximises the NPV of E[SSUt(S
∗, a)].

Theorem 2 ∀t, SSUt(S) is maximises with optimal value S∗.

Proof. Let consider one selling period with t = 1 The equation is given by:

E[SSUt=1(S)] = p

S−1∑
j=0

jf1,je
−αrt + p

∞∑
j=S

Sf1,je
−αrt − wSe−αrLz

− hSe−αrt + v

S−1∑
j=0

(S − j)f1,je
−αrt+1+Lv (4.15)

We know from economics that the optimal expected NPV of profit will be where the

expected NPV of profit for ordering S units is approximately the same as for S + 1 units
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(Hill 2011). Setting E[SSUt=1(S)] = E[SSUt=1(S+1)] and applying Eq. (4.15) yields:

[
p

S−1∑
j=0

jf1,j + p

∞∑
j=S

Sf1,j − hS
]
e−αrt − wSe−αrLz + v

S−1∑
j=0

(S − j)f1,je
−αrt+1+Lv

=
[
p

S∑
j=0

jf1,j + p

∞∑
j=S+1

(S + 1)f1,j − h(S + 1)
]
e−αrt − w(S + 1)e−αrLz

+ v

S∑
j=0

(S + 1− j)f1,je
−αrt+1+Lv (4.16)

Rewriting the above equation, we have:

[
p

S∑
j=0

jf1,j − pSf1,S + p

∞∑
j=S+1

Sf1,j + pSf1,S − hS
]
e−αrt − wSe−αrLz

+ v
S∑

j=0

(S − j)f1,je
−αrt+1+Lv

=
[
p

S∑
j=0

jf1,j + p
∞∑

j=S+1

(S + 1)f1,j − h(S + 1)
]
e−αrt − w(S + 1)e−αrLz

+ v
S∑

j=0

(S + 1− j)f1,je
−αrt+1+Lv (4.17)

Combining the terms in Eq. (4.17) and defining the CDF as F (S) =
∑S

j=0 f1,j yields:

F (S) =
(p− h)γt − wγz

pγt − vγv
(4.18)

where γt = e−αrt, γz = e−αrLz , and γv = e−αrt+1+Lv . Thus, for each period t, there

exists an optimal S∗ for discrete demand of NP by finding the smallest S such that

F (S) =
∑S

j=0 f1,j = (p−h)γt−wγz
pγt−vγv

. Since we only consider single-ordering, at period

t = 2, 3, ..., N , we can simply put w = 0 and no action taken at these periods. ■
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4.4.2 Solution Algorithm

This section presents the backward induction algorithm to find the optimal solution.

This method is well-known for solving the finite horizon discrete time of MDPs. The

algorithm is shown in Algorithm 4.

Algorithm 4
Input. List of parameters.
Output. A local maximum A∗

1, and SSU1(A1)
∗.

1: Set t = N + 1 ;

SSUN+1(SN+1) = g(SN=1)∀SN+1 ∈ S

2: t− 1 is substituted for t and computes SSUt(St) ∀ St ∈ S by;

ESSUt(St) = E[Rt(St)] +
∑
k∈S

ft(k|St)SSUt+1(k)−Ht(St)

3: If t = 1 stop; Otherwise return to step 2;
4: Compute E[ASr(Q

∗)] ∀ Q ∈ S1 by;

E[ASr(Q
∗)] = max

Q∈S1

{
E[SSU1(Q)]

}
Set;

Q∗ = argmax
Q∈S1

{
E[SSU∗

1 (Q
∗)]

}

4.5 Numerical Experiments

The developed model is tested with a numerical experiment and sensitivity analysis of

the input parameters. We provide two sections of numerical examples to cover Case 1

and Case 2. The parameter values used are as follows.

p0 = p = 21, w = 15, v = 0.5, h = 0.01, αr = 0.1, lz = 0, lv = 0, N = 150,

a0 = a = 300, K = 7, β = 0.2
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4.5.1 Case 1:- Constant Price

It is worth noting that Peak = 1 represents the downward trend and Peak = N the

upward trend of the demand profile. Table 4.1 gives the optimal solutions of both types

in the NPV model (NPVNP) and the traditional NP(TNP) including ∆1 and ∆2 which

capture the difference between these two-demand patterns. When αr = 0.00001, the

optimal Q is based on TNP. Then, the Q is substituted into the NPVNP model to find

the optimal E[ASr] of TNP.

∆1 = 100× E[ASNPV NP
r ]− E[ASTNP

r ]

E[ASTNP
r ]

∆2 = 100× E[ASPeak=1
r ]− E[ASPeak=N

r ]

E[ASPeak=N
r ]

As shown in Table 4.1, when p increases, ∆1 decreases for both Peak. This indicates

that when the retailer increases the price, the presence of opportunity cost in the crit-

ical ratio in Eq. (4.18) is diminished, which decreases the difference in the optimal

Q between the traditional and NPV models. The results show similar pattern in ∆2.

When p = 18, ∆2= 220.51% which is four times higher than ∆2 when p = 21. This

demonstrates that when the retailer faces a random demand that follows a type of de-

mand pattern, the optimal results vary accordingly. Thus, it is crucial to examine this

kind of problem, as it provides guidance to the retailer regarding how much she could

earn if she knows that the random demand follows a certain type of pattern. In addi-

tion, it is necessary to apply the NPV approach since there exists a value in ∆1 which

represents the difference in expected annuity stream of NPV and traditional NP, and,

as we will consider the payment structure, namely, delayed payment – the approach

will capture the TVM.



Chapter 4 Non-Stationary Demand in Newsvendor Problem under an
NPV Approach

106

Table 4.1: Optimal solution of different p, Peak and αr

p Peak αr Q E[ASr] ∆1 ∆2

18 1 0.1 658 1816.13 0.006 220.51
0.00001 661 1816.02

150 0.1 575 566.64 2.147
0.00001 615 554.73

21 1 0.1 719 3941.94 0.002 58.74
0.00001 721 3941.84

150 0.1 683 2483.29 0.217
0.00001 700 2477.91

4.5.1.1 Sensitivity Analysis

To see how the parameters’ values affect the optimal solution, we run some additional

tests. The base values of the parameters are the same as in the previous example.

Now, ∆1 represents the percentage change in expected profit between the base and

the current parameters. ∆2 represents the percentage change in expected profit be-

tween Peak = 1, N . The computational results are shown in Tables 4.2 to 4.4. The

sensitivity analysis results from Table 4.2 reveal the following insights regarding the

model parameters:

• • For both Peaks, the results of changing a are the opposite of changing β. For

example, when Peak = 1, decreasing a by 50% reduces the expected profit by

45.13%, while decreasing β by 50% increases the expected profit by 104.32%.

Decreasing β increases the maximum possible demand in each selling period

and the optimal order quantity, thus leading to a greater expected profit. As a is

the maximum possible demand, reducing it will reduce the maximum possible

demand for every period, thus decreasing Q.

• When comparing the expected annuity stream between Peak = 1 and Peak =

N , ∆2 shows an increasing pattern when parameters a and β increases. How-

ever, when β increases by +50%, ∆2 is slightly lower than when the increment

is +25%. The difference in Q between Peak becomes smaller as β increases,

therefore giving the results.
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Thus, when the retailer faces low random demand, he hopes for a smaller β to in-

crease his expected profit. Regardless of any change in parameters, the result when

the demand pattern is decreasing is always higher than when the pattern is increasing.

Table 4.2: Sensitivity analysis for demand parameter

Parameter Peak Percentage Change
in Value Q ∆1 ∆2

a 1 -50 392 -45.13 52.64
-25 556 -22.47 56.55
25 884 22.66 60.12
50 1048 45.33 61.07

150 -50 376 -42.93 -
-25 530 -21.39 -
25 838 21.60 -
50 993 43.23 -

β 1 -50 1424 104.32 54.73
-25 954 34.83 57.66
25 580 -20.57 58.95
50 486 -34.39 58.72

150 -50 1377 109.62 -
-25 914 35.75 -
25 547 -20.68 -
50 456 -34.38 -

Table 4.3 provides a sensitivity analysis of the operational parameters. The following

insights are obtained from the results:

• The effect of changing h to ∆1 is greater when Peak = 150 compared to when

Peak = 1. Since the demand pattern is upward, at the beginning of the selling

period, the holding cost is higher as the range of demand is lower.

• The most effective parameter is w: decreasing w by 15% increases∆1 above 40%

for both Peaks.

• ∆2 shows a significant change at the lowest p with a 256.73% increment. This

is because the small margin of revenue cannot cover the high holding cost in

Peak = 150, thus drastically reducing the expected profit. This insight holds

when the h increases to +50%, where ∆2 = 94.45%.
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• When changing parameter v, there is only a small change in Q, ∆1, and ∆2.

Increasing or decreasing v hence does not have much impact on the optimal

result.

Thus, for the retailer facing any type of demand pattern with higher holding costs and

a higher wholesale price w, it is better to increase p to cover the high holding and

ordering costs. If the retailer is facing an upward demand pattern, it is worth identi-

fying anything that can reduce the holding cost per day, as this will yield a significant

change in result.

From Table 4.4, the results show that:

• When T decreases, ∆1 for both types of demand pattern increases. However,

when Peak = 1, there is a negative sign of ∆1 which means a percentage loss

from the original parameter. In contrast, the results show the opposite when

Peak = T . ∆1 is the highest when T = 30. Q does not change much when T

increases. ∆2 is the highest when T = 120, with an increment of 42.42%.

• When lz increases, the optimalQ rises slightly,∆1 increases, and∆2 decreases.

The impact of lz on∆1 is higher when Peak = T . This provides the insight that

when lz is longer, the retailer can buffer her capital pressure up to lz times.

• A change in lv does not affect Q, ∆1, and ∆2.

• When αr increases, ∆1 for Peak = 1 and Peal = T increases and decreases,

respectively. The results show the opposite when αr decreases.

These results indicate that when the selling season is shorter, it is beneficial for the

retailer who faces an upward demand pattern. At the beginning of the selling period,

the retailer has higher working capital due to low sales, but he also has high liability,

namely, ordering costs and holding costs. With a shorter selling season, the retailer

accumulates sales faster to overcome the negative cash-flow. In contrast, when the



Chapter 4 Non-Stationary Demand in Newsvendor Problem under an
NPV Approach

109

selling season is longer, this is beneficial for the retailer who faces a downward demand

pattern.

Table 4.3: Sensitivity analysis for operational parameters

Parameter Peak Percentage Change
in Value Q ∆1 ∆2

h 1 -50 725 1.07 33.89
-25 722 0.53 45.28
+25 716 -0.52 74.85
+50 713 -1.02 94.45

150 -50 703 19.83 -
-25 693 9.84 -
+25 673 -9.68 -
+50 662 -19.20 -

p 1 -15 654 -56.51 256.73
-10 681 -38.17 119.55
+10 747 39.52 39.65
+15 758 59.64 34.31

150 -15 563 -80.65 -
-10 623 -55.29 -
+10 721 58.59 -
+15 735 88.68 -

w 1 -15 763 44.46 36.69
-10 749 29.35 41.99
+10 686 -28.10 96.56
+15 667 -41.63 141.39

150 -15 738 67.76 -
-10 721 44.61 -
+10 635 -41.94 -
+15 603 -61.62 -

v 1 -50 718 -0.14 58.74
-25 718 -0.07 58.74
25 720 0.07 58.74
50 720 0.14 58.73

150 -50 682 -0.15 -
-25 683 -0.07 -
25 684 0.07 -
50 685 0.15 -
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Table 4.4: Sensitivity Analysis for time parameters

Parameter Peak Change in Value Q ∆1 ∆2

T 1 30 670 -7.93 6.63
60 683 -5.86 16.91
90 695 -3.85 28.75
120 707 -1.89 42.52

30 30 665 37.06 -
60 60 670 27.81 -
90 90 675 18.55 -
120 120 680 9.27 -

lz 1 30 722 2.36 56.90
60 724 4.70 55.18
90 727 7.04 53.57
120 729 9.36 52.06

150 30 687 3.56 -
60 690 7.11 -
90 693 10.64 -
120 696 14.16 -

lv 1 5 719 0.00 58.74
10 719 0.00 58.74
15 719 0.00 58.74
20 719 0.00 58.74

150 5 683 0.00 -
10 683 0.00 -
15 683 0.00 -
20 683 0.00 -

αr 1 0.05 720 -2.10 44.08
0.075 720 -1.06 51.10
0.125 719 1.06 67.08
0.15 718 2.13 76.22

150 0.05 692 7.86 -
0.075 688 3.95 -
0.125 679 -3.98 -
0.15 674 -8.00 -
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4.5.2 Case 2:-Price Dependent Demand with Price Adjustment

The additional data for the given examples is provided below.

a1 = 150, r = 0.7, θ = 0.1, βp = 0.4

With these assumed parameter values, we evaluate the retailer’s optimal decisions,

subject to the expected NPV of profit maximisation in all combination scenarios. By

putting the value of θ = a1 = βp = 0, and ϑ = 1, we obtain numerical results similar

to Case 1. Table 4.5 summarises the optimal results for Cases 1 and 2. For Case 2, we

examine the results for single pricing and dual pricing. From these results, it is clear

that the expected NPV of profit for Case 1 is higher than for Case 2. This is because the

demand is independent of the price. Comparing Case 2when (θ = 0) and (θ = 0.1) , the

dual pricing (θ = 0.1) assumption lead to ordering more stock and results in a higher

expected profit compared to the single pricing (θ = 0) assumption. This is because the

price adjustment can stimulate the demand and reduce the excess inventory at the end

of the selling season.

Table 4.5: Optimal results of Case 1 and Case 2

Optimal
Solution Case 1 Case 2

(θ = 0)
Case 2
(θ = 0.1)

Q 719 257 341
E[ASr] 3934.58 1416.82 1729.50

4.5.2.1 Sensitivity Analysis

The sensitivity analysis is performed and the results are compiled in Tables 4.6 to 4.9

including ∆1, and ∆2 which capture the difference in E[ASr] between the changing

parameters and base parameters, and between the two models, respectively. Note that

the underlined values in all tables represent the optimal solution for the dual pricing
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model.

∆1 = 100× E[ASr(change)]− E[ASr(base)]

E[ASr(base)]
(4.19)

∆2 = 100× E[ASr(θ = 0.1)]− E[ASr(θ = 0)]

E[ASr(θ = 0)]
(4.20)

Table 4.6: Sensitivity analysis for demand setting parameters

Parameter Change
in value Q E[ASr] ∆1 ∆2

ϑ 2 451 2479.30 74.99 28.74
625 3191.75 84.55 -

3 645 3532.56 149.33 31.56
907 4647.32 168.71 -

βp 0.3 327 1802.59 27.23 25.01
442 2253.41 30.29 -

0.5 206 1132.81 -20.05 18.72
267 1344.89 -22.24 -

a1 100 257 1416.82 0.00 15.82
311 1641.03 -5.12 -

200 257 1416.82 0.00 27.63
374 1808.34 4.56 -

In Table 4.6, the results reveal the following insight regarding the parameters:

• When varying ϑ, by increasing ϑ, Q, E[ASr], ∆1, and ∆2 increase accordingly.

For example, when ϑ = 3, under dual pricing, E[ASr] = 4647.32 > 3934.58

which is greater than the result in Case 1. This shows that increasing ϑ has a

high impact on E[ASr].

• The impact of βp on ∆1 is almost symmetrical regarding both increasing and

decreasing βp. However, when βp increases,∆2 is lower thanwhen βp decreases.

• Changing a1 only affects dual pricing. Increasing a1 will increase ∆1 and ∆2.

This is expected, as a1 represents the second peak of demand.
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All in all, this insight indicates that if the retailer faces higher demand with lower

elasticity in price, she will maximise her expected annuity stream of profit. It is always

beneficial to consider dual pricing over single pricing since it leads to more profit.

Table 4.7: Sensitivity analysis for price setting parameters

Parameter Change
in value Q E[ASr] ∆1 ∆2

p 19 254 931.70 -34.24 17.98
329 1099.23 -36.44 -

23 258 1896.31 33.84 24.17
345 2354.61 36.14 -

θ 0.05 348 1801.52 27.15 -
0.15 333 1661.23 -3.95 -

Table 4.7 provides a sensitivity analysis of the price setting parameters. The following

insights are obtained from the results:

• For ∆1, the results are nearly symmetric when p increases and decreases. In-

creasing p leads to a greater Q, E[ASr], and ∆2. This is expected, as it produces

a higher Q (based on Eq. (4.18), thus increasing the E[ASr].

• When θ increases, Q and E[ASr] decrease (negative value of ∆1). Giving a

greater price discount reduces the E[ASr] of the retailer.

Table 4.8: Sensitivity analysis for operational parameters

Parameter Change
in value Q E[ASr] ∆1 ∆2

w 13 269 1970.35 39.07 25.33
362 2469.40 42.78 -

17 243 891.14 -37.10 16.85
311 1041.30 -39.79 -

h 0.075 258 1428.21 0.80 23.32
345 1761.29 1.84 -

0.15 254 1394.85 -1.55 19.65
334 1668.99 -3.50 -

A sensitivity analysis of operational parameters is given in Table 4.8. The results show

that
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• when w increases, Q, E[ASr], ∆1 and ∆2 decrease. This is expected, since in-

creasing ordering cost will decrease the optimal order quantity, thus decreasing

the expected profit.

• The same happens when h increases. However, the impact of h on the optimal

solutions is not as great as that of w.

The sensitivity analysis results in Table 4.9 reveal the following insights regarding the

models’ parameters:

• T is proportional to Q and E[ASr]. A decrease in T leads to a lower Q and

E[ASr]. A longer selling season means higher sales. From ∆2, the difference

is larger when T is smaller. A shorter selling period means lower sales rev-

enues. This shows that when T becomes shorter, price adjustment happens

more quickly than when T is longer, and it boosts the demand faster. Thus,

the difference in E[ASr] between dual pricing and single pricing is higher.

• lz influences Q and E[ASr]. An increase in lz leads to a higher E[ASr] and

slightly higherQ. Therefore, with a longer delay in payment, the retailer can

accumulate more profit without ordering much. The results do not vary much

between∆1 and∆2 which means that lz has a similar impact on both the single

pricing and dual pricing models.

• When αr increases, Q decreases but E[ASr] increases. This indicates that the

retailer will order less when αr is high to reduce her risk of investing in Q.

• When r changes, the impact on Q and E[ASr] under dual pricing is small.

Changing r will not affect the single pricing.

In sum, this yields the insight that when the retailer faces a longer selling period with a

lower opportunity cost, she can adjust the selling price earlier. Delaying the payment

to the wholesaler is a bonus to increase the retailer’s expected profit. Thus, negotiating

with the wholesaler is necessary to allow a delay in payment.
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Table 4.9: Sensitivity analysis for time parameters

Parameter Change
in value Q E[ASr] ∆1 ∆2

T 60 217 1181.10 -16.64 35.72
308 1603.03 -7.31 -

90 231 1263.89 -10.79 30.58
319 1650.43 -4.57 -

120 244 1342.64 -5.24 26.06
330 1692.54 -2.14 -

lz 30 258 1450.11 2.35 22.32
343 1773.72 2.56 -

60 259 1483.22 4.69 22.55
344 1817.74 5.10 -

90 259 1516.16 7.01 22.78
346 1861.58 7.64 -

αr 0.08 257 1406.88 -0.70 22.61
343 1724.95 -0.26 -

0.12 257 1426.79 0.70 21.54
340 1734.09 0.27 -

0.14 256 1436.79 1.41 21.01
339 1738.72 0.53 -

r 0.6 257 1416.82 0.00 22.12
343 1730.18 0.04 -

0.65 257 1416.82 0.00 22.08
342 1729.68 0.01 -

0.75 257 1416.82 0.00 22.08
341 1729.61 0.01 -
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4.6 Conclusions

We have presented and analysed the NP with non-stationary demand and two types

of pricing schemes: constant price and price-dependent demand with price adjust-

ment. The model was derived based on an NPV approach to capture the TVM. The

numerical results proved that there is a difference in the optimal solution between the

traditional NP and the NPV NP. Therefore, it is necessary to conduct the model based

on NPV analysis. This model is divided into two large cases: 1) constant price, and 2)

price-dependent demand with price adjustment. We showed that the optimality of the

model can be proven analytically. For case 1, we analysed the model with two differ-

ent demand patterns: upward demand and downward demand. The numerical results

showed that the expected annuity stream of profit with a downward demand pattern

is always superior to the case with an upward pattern, regardless of any changes in

parameters.

In addition, we showed that with the right setting of parameter values, Case 2 can yield

better results than Case 1. The sensitivity analysis conducted for this model confirmed

the impact of TVMon optimal solutions, which has not been discussed in the literature.

Besides the impact of TVM, the analysis can provide a signal to the retailer if she faces

some kind of demand pattern under certain circumstances: a longer selling season,

lower opportunity cost, and higher ordering cost. The retailer can then make any

adjustment, for example by increasing or decreasing her selling price, considering dual

pricing, or decreasing holding costs in order to maximise her expected annuity stream

of profit.



Chapter 5

Conclusion and Recommendations

5.1 Introduction

The conclusions of this study are related to the research questions in Chapter 1. The

chapter is organised as follows: the key findings and contributions are discussed in

Section 5.2, and suggestions for future research are provided in Section 5.3.

5.2 Contributions of the Study

This study contributes to the existing literature in various ways. Its main contribution

is the introduction of the new policies in the NP based on the NPV framework in SC

management. We proved that the proposed models give more accurate results than

the classical framework. The specific contributions of the chapters are listed below.

In chapter 3, we developed a general model of the NP with the simplest contract – the

wholesale price contract. We showed that there was a difference in results between

the proposed model and the classical model. The difference indicated that the NPV

framework should be considered, as it provides more accurate results that capture

117
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TVM. The first question was thus answered. Then, to address the second question,

we found that the wholesaler might sometimes be better off if a Net D contract is

considered in NPV thinking, but not in classical newsvendor thinking. This depends

on variables such as demand variability, the opportunity costs, and the selling period,

which all impact the wholesaler’s optimal results. Thus, the third question was also

answered. In summary, these results can help the retailer to decidewhich optimiser she

should choose (as in this case, the NPV framework is the best) to give her the highest

profit. Then, the wholesaler has two possible outcomes under the Net D contract,

depending on the aforementioned variables.

Different models of the Net D contract derived from the NPV framework were com-

pared with the simplified model of the NPV framework. It can be concluded that small

changes in formulation can lead to a significant difference in results. It is necessary to

formulate a model that gives more accurate results than the traditional model, though

it cannot be simplified analytically. However, for ease of understanding, the simplified

NPV model was used in the next chapter to examine how the contract works from the

NPV perspective.

In Chapter 4, the previous NPV-II model was extended to include a combination of

contracts. The first finding is that the contract achieves perfect coordination. In ad-

dition, when the delayed payment terms are included, only the retailer benefits from

this option since the wholesale price is too low to cover the loss incurred by the whole-

saler through delayed payment. Then, we showed that when perfect coordination is

not necessary for both SC members to accept the contract, the wholesaler can benefit

from offering delayed payment because he can increase the wholesale price. We also

addressed the problem of the wholesaler being dishonest towards the retailer when

there is asymmetric information: the analysis showed that both SCmember still obtain

more profit than with the wholesale-price-only contract. In addition, the wholesaler

earns more than he would by being honest with the retailer.
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In Chapter 3 and 4, NP models were developed based on continuous demand. How-

ever, in real situations, it is common to have non-stationary demand due to seasonal-

ity and product life cycles, among others. Thus, the NP with non-stationary demand

was adopted in Chapter 5. The contribution of this model is its inclusion of differ-

ent demand patterns. The assumption made is based on single-ordering policy, which

is rarely found in the literature on non-stationary demand. In addition, the model

also considers the case of price-dependent demand and price adjustment. The best

solution of the expected annuity stream to the case of different demand patterns is

when the demand pattern is going downward. In contrast, delayed payment is more

beneficial to the retailer if she faces an upward demand pattern. When considering

a price-dependent demand pattern, the expected annuity stream of profit with price

adjustment can reach the highest value when the deterministic demand function is

high. Assuming a longer selling period with a low opportunity cost, we suggest that

the retailer adjust the selling price earlier to maximise the expected annuity stream of

profit. These findings are a few of the solutions from the model that the retailer can

consider when she knows some of the parameters.

5.3 Further Work

There are a few opportunities for further research to use the proposed NPV model in

other cases to test its wider applicability. We recommend that further development be

undertaken in the following area:

• The distribution used in chapter 3 and 4 is limited to a Gamma distribution. It

would be interesting to study the model with different distributions, such as a

Log-Normal distribution.
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• In chapter 3, we mainly focus on deriving simple contract to solve the asymme-

try information problem. For future research, it would be possible to derive a

more complex contract such as mechanism design to find the optimal solution.

• The input data in chapter 4 is based on simulation. It would be more realistic

to consider demand correlations such as ARIMA type demand model for further

research.

• In reality, the SC system has a more complex and larger network than consid-

ered in this study. Therefore, it is necessary to extend the model to make it

more realistic, for instance by adding multiple wholesalers, multiple retailers, or

multiple products.

• Finally, it would be useful to study the inventory model related to transporta-

tion and outsources, as the NPV approach has the potential to consider more

extended SC settings in which the roles of third parties (e.g. transport compa-

nies) and other external stakeholders (e.g. tax authorities) are explicitly incor-

porated. This could lead to the study of more realistic SC situations than those

models studied in the mainstream literature.
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