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This thesis is concerned with the topic of gravitational radiation in asymptotically locally
(anti)-de Sitter spacetimes and, in particular, how one can use the tools of holographic
duality to provide deeper insights into the nature of radiation. The thesis can broadly be
separated into two parts. The first part approaches the topic of gravitational radiation
by studying gravity in Bondi-Sachs gauge, specifically solutions to the vacuum Einstein
equations R, = Ag,, in the presence of a cosmological constant A # 0. We solve these
equations for an axisymmetric Bondi-Sachs metric and observe that these differential equa-
tions admit an algebraic re-writing based upon data at the conformal boundary, .#, of the
space-time. Using the Fefferman-Graham coordinate expansion and tools of the AdS/CFT
correspondence we are further able to analyse the solutions in the Bondi-Sachs gauge and
comment upon the holographic interpretation of the Bondi Sachs data at .#. We examine
the notion of Bondi mass in AdS and discuss whether or not the natural candidate for
such a quantity obeys the monotonicity properties that one would expect due to outgoing
gravitational radiation. We finally examine methods of ‘breaking’ the Bondi gauge in or-

der to relax aspects of the gauge which appear overly restrictive.

The second part of the thesis turns attention to asymptotically locally dSy4 spacetimes
(A > 0) and a discussion of how one can apply Bondi-Sachs gauge as well as other
techniques in order to gain an understanding of gravitational radiation in this class of
spacetimes. We give the analytic continuation of the Fefferman-Graham expansion from
Bondi-AdS to Bondi-dS spacetimes as well as an analysis of the asymptotic gravitational
charges using the covariant phase space formalism, together with holographic renormali-
sation techniques adapted to dS spacetime. We provide explicit examples of these charges
by considering tensorial perturbations of dS4 in the inflationary patch coordinates, before
finally connecting this example to global coordinates via a Bogoliubov transformation of

the tensorial mode coefficients.
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CHAPTER 1

Introduction

In the 1960s the theoretical physicists Bondi, Metzner, Van der Burg, and Sachs (BMS)
revolutionised the study of asymptotically flat spacetimes in a number of pioneering pa-
pers [1, 2, 3]. Using a metric based approach to asymptotic flatness, they were able to
establish a notion of mass at future null infinity, .#, which characterises the mass loss of
a spacetime due to outgoing gravitational radiation. In addition to this remarkable result,
they also showed that the class of asymptotically flat spacetimes enjoys a larger symmetry
group at .# T than the 10-dimensional Poincaré group of Minkowski spacetime, the infinite
dimensional BMS group. This group consists of the Poincaré transformations as well as

an infinite number of transformations named supertranslations'.

Since the publication of the original papers, much work has been undertaken in vari-
ous related areas. Connections have been established between the BMS group and the
gravitational memory effect [4, 5, 6] as well as the scattering problem in general relativ-
ity [7]. There has also been an increased interest in further understanding the field of
asymptotic symmetries in general, in both the algebra and associated charges of the BMS
group [8, 9, 10, 11, 12, 13, 14, 15, 16, 17] as well as related symmetries in other theories,
such as electromagnetism in d > 4 spacetime dimensions [18, 19]. Much of the recent
work on the BMS group includes the consideration of an extended symmetry group by

adding extra transformations known as superrotations.?> Physically, these transformations

'So named as they extend the translations of the Poincaré group.
230 named as they extend the rotations of the Poincaré group.



2 Chapter 1. Introduction

are conjectured to be related to spacetimes with cosmic string singularities [20, 21, 22]
(cosmic branes in higher spacetime dimension [23]) as well as (with supertranslations) the
so-called ‘soft hair’ charges on black holes [24, 25, 26], an avenue which may shed light
upon the black hole information paradox [27, 28, 29]. A broad programme of research has
been initiated, primarily by Strominger and collaborators, into an ‘infrared triangle’ of

physics relating soft theorems, gravitational memory, and asymptotic symmetries [30, 31].

Due to their rich geometric nature, aspects of the Bondi formalism are also of interest
to the mathematical relativity community. The Bondi mass has been proven to obey a
positive mass theorem [32, 33| in asymptotically flat spacetime, and the Bondi metric ex-
pansions have been generalised to include polyhomogeneous ., all the while maintaining
the asymptotic symmetry group as the BMS group [34, 35, 36, 37, 38, 39, 40].

An important feature of all the literature referenced thus far is that this work has been
performed in the setting of asymptotically flat spacetime. The work described in this
thesis attempts to fill a gap in the literature by investigating aspects of gravitational radi-
ation, primarily by use of the Bondi-Sachs gauge, in asymptotically locally (anti)-de Sitter
((A)dS) spacetimes. These are spacetimes which solve the Einstein field equations in the
presence of a cosmological constant A # 0 as opposed to A = 0 in the asymptotically
flat case. Although a less studied case, the topic of gravitational radiation in such space-
times has been discussed in the work of Ashtekar and collaborators, who pay particular
attention to gravitational radiation in the A > 0 case [41, 42, 43, 44, 45], as well as work
examining the energy and Bondi mass in A # 0 spacetimes [46, 47, 48, 49]. Also of note is
the recent work [50, 51], which examines similar issues to published work written in part
by the author of this thesis [52] and relaxes some of the extra spacetime symmetry that

we enforced.

Part of the motivation for this change of asymptotics is the aim of gaining a holographic
understanding of the Bondi-Sachs gauge, as well as extra physical intuition regarding the
behaviour of radiation. Originally proposed by 't Hooft [53] and Susskind [54], the holo-
graphic principle conjectures that any quantum theory of gravity can be described in terms
of a theory without gravity in one less dimension. The most famous example of this con-
jecture was discovered by Maldacena [55] in the context of string theory on anti-de Sitter
space. Following soon after this work, [56, 57] fleshed out the description of a subclass of
the holographic principle by conjecturing equivalence between an asymptotically locally
AdS spacetime and a conformal field theory which lives on the conformal boundary of
the spacetime, resulting in the so-called AdS/CFT correspondence. Early work [58] was
able to verify with spectacular success the predictions of such a correspondence and this
has become a highly active area of research. Of particular use when studying the gravita-
tional side of the correspondence is the Fefferman-Graham coordinate system [59], a gauge

choice for which all asymptotically locally AdS metrics can be written in, and one which



provides a holographic interpretation of the spacetime via the AdS/CFT correspondence
[60, 61, 62]. Part of the goal of this work is to compare the asymptotic description in this

gauge with that of Bondi-Sachs and to provide an explicit map between the two choices.

Before we move on to more technical discussions, we will briefly summarise the structure
of this thesis chapter by chapter. In chapter 2 we give a review of the important literature
and technical work that we will need for the remainder of the thesis. This includes a
review of the various spacetime asymptotics in 2.1; an introduction to the Bondi gauge
and the BMS group in 2.2; the important results and techniques from holography in 2.3
and finally a discussion of the covariant phase space formalism for charges in the style of
Wald et. al [63, 64, 65, 66, 67] in 2.4.

In chapter 3 we discuss the application of the Bondi gauge to asymptotically locally
(anti)-de Sitter spacetimes. To save from repetition, we point the reader to the final

paragraph of 3.1 which lists details of the contents of each section.

In chapter 4 we discuss a number of additional aspects of the Bondi gauge in asymptot-
ically locally (A)dS spacetimes. In 4.1 we discuss the notion of Bondi mass in asymptoti-
cally locally AdS spacetime, and show that the naive definition from the asymptotically flat
literature no longer decreases monotonically in the presence of a small negative cosmologi-
cal constant. In 4.2 we discuss the restrictions of the Bondi gauge, and give a proposal for
a ‘breaking’ of the gauge in order to easily incorporate a larger phase space of metrics. A
particular motivation for this is to apply a Bondi type gauge the AdS-Robinson-Trautman
class of solutions [68, 69], which we also discuss. We summarise the main results and

future directions of this chapter in 4.3.

In chapter 5 we switch focus from (predominantly) AdS spacetimes to asymptotically
locally dS spacetimes, work which serves as a natural continuation of that performed in the
preceding chapters. In section 5.1 we show that an understanding of the Bondi-Sachs gauge
in asymptotically locally dS spacetimes can be gained via a suitable analytic continuation
of our results in AdS, giving details of the transformations required. In 5.2 we give the
prescription to define conserved quantities in AldS spacetime, work which adapts many of
the techniques of the Hamiltonian approach to holographic renormalisation as described
in [70, 71]. We will start by introducing the class of theories we consider and derive the
equations of motion and conjugate momenta, paying close attention to the differences
between AdS and dS. We will then discuss the computation of the Wald Hamiltonians for
the theory and conclude that their existence is determined by the vanishing of the trace
anomaly A. In 5.3 we give an explicit example for the procedure that we have developed
in the chapter, namely a computation of the Wald Hamiltonian for a tensorially perturbed
dS4 metric in the inflationary patch, an important example both for its relative simplicity

as well as it being of considerable cosmological interest [72, 73, 74, 75, 76]. We end this
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chapter with an attempt to understand the global nature of our charges by performing the
Bogoliubov transformation between the perturbation in the inflationary patch and global

coordinates on dSy, before drawing conclusions in 5.4

Finally, in chapter 6 we give our final summary of the body of work as a whole. We
provide an outlook on possible future directions one could take, with speculation upon the
development of a description of advanced gravitational wave phenomena (e.g. the memory

effect) in A # 0 spacetimes, as well as holography for asymptotically flat spacetimes.



CHAPTER 2

Background literature review

2.1 Spacetime asymptotics

We will begin this thesis with a short review of spacetime asymptotics using the technique
of conformal compactification. We will begin with the much discussed case of asymptoti-
cally flat space times, before moving to de Sitter and anti-de Sitter spacetimes, including

the subtleties in their “local” asymptotics.

2.1.1 Asymptotic flatness

Asymptotic flatness may be viewed as the property that the spacetime tends to Minkowski
spacetime as r — oo. This imprecise statement can be given a rigorous definition, which
we will briefly touch upon referring to [77, 78] for a detailed discussion, before seeing how
to implement asymptotic flatness in a coordinate dependent manner by imposing suitable

fall-off conditions upon the metric components.

Let us first recall the notion of conformal compactification [79]. Consider a manifold
with boundary M = M U OM where OM is the boundary. A metric Guv is conformally
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compact if there exists a defining function ) which satisfies
Q(OM) =0, dQ(OM) # 0, QM) > 0. (2.1.1)

and the metric g defined by
gm/ = Q2g;w (212)

extends smoothly to M. Let us also consider another spacetime (M, g), which we will
refer to as the unphysical spacetime, and an embedding f : M — M such that f embeds
M as a manifold with smooth boundary M in M and such that

g:f*(g)v (2'1'3)

where f,(g) denotes “push-forward” of the the metric § with respect to the embedding
function f. This embedding procedure is often referred to as the conformal compactifica-

tion of the spacetime (M, g) and OM is the conformal boundary of the spacetime.

Asymptotic flatness is now defined by putting further conditions on the conformal com-
pactification. Different definitions have been proposed through the years, see [77, 78] (and
references therein). The precise details also depend on whether one would like to consider
asymptotic flatness at spatial infinity, null infinity or both. We will not need these details
here. For our purposes it suffices to say that we will consider cases with R,, = 0 in an
open neighbourhood of OIM in M = M U OM?.

2.1.2 Anti-de Sitter and de Sitter asymptotics

Let us now consider spacetimes that satisfy the Einstein field equations with A # 0
1
R, — §ng, + Agp = 81T, (2.1.4)

We will focus mainly on the case of anti-de Sitter asymptotics (A < 0) although the
discussion generalises straightforwardly to the de Sitter case (A > 0). Throughout this
thesis we will concentrate on vacuum spacetimes, i.e. 7Tj,, = 0 (the generalisation to

include matter is conceptually straightforward).

AdSy is the maximally symmetric solution to the vacuum Einstein equations with neg-
ative cosmological constant. The AdS; metric can be written in coordinates with an
outgoing null time ,u, as

2
dsids = — (1 + ;) du® — 2dudr + r>dQ? (2.1.5)

1Such conformal compactification is called asymptotically empty.
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where [? = —3/A; [ is the AdS radius or curvature radius of the spacetime as the Riemann
tensor for AdS, takes the form

1
Ruypa = ﬁ(guagyp - g,upgyo')- (216)

We define an asymptotically locally AdS metric to be a conformally compact Einstein
metric of negative cosmological constant. In what follows we briefly review the key features
relevant for this thesis, see [59, 80, 81, 62] for more details. Consider a manifold with
boundary M = M UJM, equipped with a conformally compact metric G, as in (2.1.1)-
(2.1.2). We further require that

90) = glom (2.1.7)

is non-degenerate. Note that g(g) is not unique since the choice of defining function is
non-unique: if € is a suitable defining function, then so is 2e”, where w is a function with
no zeroes or poles on M. Thus the induced metric at M, g(q), is also non-unique. This
procedure defines a conformal class of metric and g(g) is a representative of the conformal

class of metrics.

A<O A>0

]+

Figure2.1.1: Left panel. Penrose diagram of the asymptotic region of an asymptotically
locally AdS spacetime, where the timelike boundary manifold OM is denoted .#. The
dashed green curves represent null hypersurfaces N, = {u = wu;|u; = constant} and
the dotted blue curves timelike surfaces of constant r. Right panel. Penrose diagram of
the asymptotic region of an asymptotically locally dS space-time, where we have chosen
to foliate the future spacelike boundary OM = .# . The dashed green curves represent
null hypersurfaces N, = {u = u;|u; = constant} and the dotted blue curves spacelike
surfaces of constant r. The difference in the properties of constant r surfaces between
AdS (timelike) and dS (spacelike) is due to the presence of a cosmological horizon in
asymptotically locally dS spacetimes.
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Using (2.1.2) the Riemann tensor of g, takes the form

Raﬁyé[g} = |dQ|?](ga§g,B'y - ga'ygﬁd) + O(Q_S) (2.1.8)

where the leading order term is O(Q2%). One can also define
dQL2 = 3 (2,2)(9,9). (2.19)

a quantity which smoothly extends to M; its restriction to OM is a conformal invariant
[62]. The metric g,, should be Einstein, i.e. it should satisfy (2.1.4). As in the asymptot-
ically flat case, Q7'T, should have a smooth conformal completion to IM = {Q = 0}.
Enforcing (2.1.4) upon (2.1.8) gives

39 |dQ2 + Aguw + O(Q) = 87T (2.1.10)
and thus as Q@ — 0 (after rearrangement)

2
]dQ|§|aM =z (2.1.11)
Thus near the boundary M, the Riemann curvature tensor of the metric g, is to leading

order the same as that of the AdS, metric.

We emphasise that this definition does not enforce any restriction on the topology of
OM or the metric g induced at M. For global AdS, the conformal boundary has the
topology of R x S? and the metric 9g(oy is conformally flat. Asymptotically locally AdS
spacetimes for which g is conformally flat are called asymptotically AdS spacetimes.
(Thus asymptotically AdS spacetimes are a subset of asymptotically locally AdS space-
times). Holographically g corresponds to conformal class of the background metric for
the dual quantum field theory and it is thus essential to consider generic g(q), even if one is
only interested in a CFT on a flat background. This is because g(g) acts as the source for
the holographic stress tensor, and thus we will need to keep it generic in order to compute
correlation functions. We will see more explicitly how this relationship works in section
2.3.4.2.

The discussion of asymptotically locally AdS metrics extends to the case of a posi-
tive cosmological constant in a very straightforward manner. The Einstein equations for
asymptotically locally dS spacetimes are related to those of AdS via the simple transfor-

mation
Pas — —l3g (2.1.12)

and thus to define dS asymptotics, one simply repeats (2.1.4)-(2.1.11) with every occur-
rence of 12 being replaced by —I2.
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In preparation for the discussion in the next section we indicate in figure 2.1.1 how

asymptotically locally A # 0 spacetimes are locally foliated by null hypersurfaces.

2.2 Bondi gauge metrics

We begin this section with an introduction to the Bondi gauge and explain its advantages
in studying asymptotically flat spacetimes. We will then provide a short review of the

asymptotic symmetry group of asymptotically flat spacetimes, the BMS group.

2.2.1 Null hypersurfaces

Bondi gauge metrics were introduced and studied in [1, 2] in the context of studying
gravitational waves. The Bondi approach involves foliating the spacetime manifold by
null hypersurfaces. Following [2], one chooses the coordinate system as follows. Consider
a Lorentzian 4-manifold, M, equipped with a metric g, (2”) of signature (— + ++) and
assume the existence of a scalar field F' = F(a*) such that the normal co-vector to F,
O F, is null:

g (0, F)(0,F) = 0. (2.2.1)

This criterion means null hypersurfaces, N,, can be described in terms of the level sets of
Fie.
N, ={azt e M| F(a*) = a} (2.2.2)

and the spacetime (M, g,,,) can be foliated, at least locally, using the null hypersurfaces,

namely

M = {N,|a € Range(F)} (2.2.3)

where Range(F') denotes all possible values of the function F.

The motivation for choosing null hypersurfaces can best be illustrated by looking at
their interesting geometrical properties. Let us consider an arbitrary surface N, C M
and the integral curves in the spacetime of the vector field t* = g0, F’; such curves are
clearly null and normal to N, and are commonly referred to as null rays. Null rays are

also geodesic curves contained within N:
V" = Xaf)t". (2.2.4)

By choosing a suitable (affine) parametrisation we can set A = 0 and thus the null rays
are also null generators of A,. This outlines the overall picture of this procedure as being

a way to work from space-time — null hypersurface — null ray — null geodesic.
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An adapted coordinate system can be chosen to describe such a situation. Typically,
one works in retarded Bondi coordinates (u,r,0',02). The coordinate u is a retarded
time coordinate which labels the null hypersurfaces N, (v = F from above equations);
this coordinate is commonly referred to as the Bondi time and takes values in R. The ©4

are angular coordinates which are defined to be constant along null rays:
9,0 = 110,6% = 0. (2.2.5)

This condition means that rays take the form c*(\) = (ug,7()\), 0},02) and thus the
coordinate r can be interpreted as a radial distance coordinate measuring the distance

along a null ray. This setup is displayed on a Penrose diagram in figure 2.2.1.

Figure2.2.1: Penrose diagram of null hypersurfaces, V,,., foliating future null infinity, £,
of an asymptotically flat spacetime. As indicated by the solid red axis, the retarded time
coordinate u ranges from (—o0, 00) along .# ™ and thus the dashed green lines represent the
u = constant hypersurfaces. (The arrows show the direction of increasing radial coordinate
r). The dotted blue curves represent timelike hypersurfaces of constant r.
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2.2.2 The Bondi gauge

Following closely the notation of [30] (see also the reviews [82, 83]), the most general line

element that satisfies the previously discussed coordinate conditions is
ds® = —Xdu® — 2¢*Pdudr + hap (d@A + ;UAdu> <d®B + ;UBdu) . (2.2.6)
It is usual to impose in addition the following four gauge conditions:
Oy det (iL;B) =0, grr = gra = 0. (2.2.7)

This metric together with the gauge conditions is known as the Bondi gauge (or Bondi-
Sachs gauge) and any spacetime metric can be locally written in this form. It is the most
commonly used approach to analyse foliations by null hypersurfaces, although there are
alternative approaches based on the Newman-Penrose formalism [84] using a null tetrad

instead of a metric e.g. [13].

The capital Roman indices A, B take values {1,2} which together with the symmetry of
hag, gives seven functions in the line element: (X, 3, hap, U4), all of which depend upon
the spacetime coordinates (u,r, 0!, ©2). The gauge condition on the determinant of hap
reduces the number of unknown functions in the metric to six. The latter are determined

by the Einstein equations, subject to asymptotic data (r — oo).

One may choose to retain general covariance in the angular coordinates as in [12] but it
is often useful to consider a local choice. In this thesis we will commonly utilise the usual

(6, ¢) of the spherical coordinate system as well as complex coordinates (¢, (), related by

¢ = e cot (Z) , ¢ =e " cot (g) . (2.2.8)

2.2.3 Asymptotic flatness in the Bondi gauge

Let us now implement asymptotic flatness in a coordinate dependent manner. The

Minkowski metric in retarded coordinates (u,r,(, ) is given by
dsiyy = —du® — 2dudr + 2r*zdCdC (2.2.9)

where
u=t—r, Vi =TT (2.2.10)
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Here u is a retarded time coordinate and ¢ is the round metric on S?2. This metric is in
Bondi gauge with function choices h¢e = th ==U4=0,X =1, h“r = 7"27@. Note
that this choice of coordinates is suitable for analysis near .# *. To analyse neighbourhoods
of #~ the metric can be expressed in advanced coordinates (v, r, (, ¢ ) where v = t+r and
thus

dsiy = —dv? + 2dvdr + 2r°zdCdC. (2.2.11)

For this thesis, we will use retarded coordinates and thus restrict our attention to neigh-
bourhoods of .#*.

For a general asymptotically flat metric the metric functions admit power series expan-
sions in 1/r with the leading order term being that of the Minkowski metric, as we will
re-derive here. The review [30] discusses suitable fall-off conditions for the subleading
terms in the series: the fall-off should include gravitational wave emitting solutions, as
was the motivation in [1]. These criteria were imposed in [1, 2] and if we combine this
with the following fall-off of the Weyl curvature tensor components at large r

Crerg ~ o(r=?), Crur¢ ~ o), C uré ™ O(r=?) (2.2.12)

r

as in [30] then we obtain the class of asymptotically flat metrics in Bondi gauge as

2mp . S .
ds® =ds3; + - du? +rCed(® + rCzzd(* + D Cecdud( + D Crzdud( 2213

174 1
+ (3(N< +udcmp — 48<(C<<CCC)) dud( +c.c.+ .. ..

where D 4 is the covariant derivative with respect to the metric of the round sphere y4p
and the first term in the equation is just the Minkowski metric. The rest of the terms in
the first line are the first order subleading terms in powers of r. Notice that although these
terms have different powers of r preceding them, they are all subleading as r — oo when
compared to the Minkowski metric. The second line of the equation contains second order

subleading terms, included here as these terms contain physically interesting functions.

At O(1/r) in gy, is a function mp = mp(u,(, ) is known as the Bondi mass aspect.
One of the key results of [1] is that the Bondi mass aspect can be integreated over the

unit S? to give the total Bondi mass> Mp of the system at time u

1

MB:E 52

1 2
B = E/d ZYcEMB- (2.2.14)

The Bondi mass is a natural way to define the mass of a system at .# T, and is an alternative

to the ADM mass which is defined as an integral at spatial infinity 7°.

2This quantity is sometimes referred to in the literature as the Trautman-Bondi mass, as it was also
discussed by Trautman in [85], see also the lecture notes [86] for further comments and references.
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Contained in the 1/r suppressed terms relative to the Minkowski metric is the shear
tensor Cap(u,(,¢); a symmetric and traceless tensor of type [0,2]. This tensor describes
the gravitational waves in the spacetime (recall we wanted the fall-off conditions to include
these solutions) and it motivates the definition of another key concept in the Bondi gauge,

the Bondi news tensor, Napg,

NAB(“?Cag) = auCAB(uag.vg)' (2215)

The news tensor is again a symmetric and traceless tensor of type [0, 2]. The name “news"
for this tensor can be best explained by imposing Einstein’s equations (with A = 0) upon
the metric )

R, — §gWR = 81T, Tli_}n(r)lo Ty =0 (2.2.16)

where the limit condition on the stress energy tensor is typically enforced such that Q=17
has a smooth conformal completion to &+ = {Q = 0} (where Q ~ 1/r for the case at
hand). This condition is a requirement for asymptotic flatness as it forces the asymp-
totically empty condition mentioned above. The authors of [1] solved the field equations
by expanding in large r and solving the equations that arise at each order and we will
streamline this derivation here. The leading order (O(r~2)) of the (uu) component of the

Einstein equations then reads (see discussions in [12, 30])
1 —
aMnB::Zu%Nﬂ1+DgNK-N¢Aﬂq—4nA§;ﬁ7MV (2.2.17)

Thus the news tensor, along with the stress tensor, governs the change in the Bondi mass
aspect - it provides the “news” regarding the change in the mass aspect. If the spacetime
under consideration is vacuum (as in [1]) then the news entirely governs the change in

mass.

The final interesting term is the N4 which appears in the subleading terms in the second
line of (2.2.13). This vector is named the angular momentum aspect and - in a similar
fashion to the mass aspect - can be used to define the total angular momentum at .# ™ via
a suitable integral. Both the mass aspect and angular momentum aspect arise as functions
of integration in the full set of Einstein field equations, although the field equations do

contain evolution equations for these [87, 7, 5, 12] which we will discuss in detail later.

Comparing the general Bondi gauge metric with the asymptotically flat metric, the

fall-off conditions on the metric functions are

X:1—2m3+0@4% B=0("?),
" (2.2.18)

1
gap = 12yap +rCap + O(1), Uy = T—2DBC’AB +0(r 3.

The infinite dimensional symmetry group of all coordinate transformations that preserves
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these conditions as well as the gauge itself is known as the BMS group [3].

2.2.4 Asymptotic symmetries

In this section we will derive the BMS group in the style most commonly seen in modern
work concerning asymptotic symmetries and their applications (see for example the review
articles [30, 82, 83]). This calculation will lead us to the result that the asymptotic
symmetry group of asymptotically flat spacetimes is infinite dimensional and consists of
the standard Lorentz transformations as well as an infinite number of “supertranslations”,
as was first discovered in [1, 2]. We will then briefly discuss how one can extend the group
even further to include an infinite number of “superrotations” before commenting on some

of the more modern work and applications of the BMS group.

As mentioned at the end of the previous section, we define the BMS group as the set
of coordinate transformations which preserve both the Bondi gauge (2.2.6)-(2.2.7) as well
as the r — oo falloffs of (2.2.18). In order to identify these, we consider transformations

generated by vector fields £# such that

09 = LeGuw = 009w + 91a0v€™ + 9ar 08" (2.2.19)

and now we must solve the differential equations which result from wanting to preserve
the boundary conditions. In order to preserve Bondi gauge (2.2.7), we have the exact
equations
L _ _ AB _ A
egrr =0, Legra =0, 9" Legap = dw(u, z™) (2.2.20)

where the final equation comes from the need to preserve the determinant condition in
(2.2.7) and the factor of 4 is just for convenience [50]. We begin by solving these equations

one by one for £#, explicitly we have
Legrr =0 = 2¢,0," =0 = " = f(u, z) (2.2.21)
and thus €0, = f0, + & (u,r,22)0, + €4 (u,r,2%)04. The next equation gives us
Legra =0 = —e®04f + gapdie® =0 (2.2.22)

where we recall that S(u,r, :1:A) is one of the functions appearing in the Bondi gauge line

element (2.2.6). Integrating this equation with respect to r gives us

e = v u, 2P) + 1 (u,r,2B), 14 = —8Bf/ dr' (e?P gAB) (2.2.23)
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and thus &40, = f0, + & (u,r,x2)0, + (YA + I1)94. The third equation gives

gABﬁggAB = 4dw(u, .CEA)

= &g 09+ f97 0ug + 9P Liyeroygas + 29" P gaudp f = dw (2.2.24)

r 1 1
— = -5 (DAYA +DAT? — 2w + 5UBan + 2fg‘18ug>

where g = det(gap) and Dy is the covariant derivative operator on gap. Putting this all
together, we have derived the most generic coordinate transformations preserving Bondi

gauge.

£h9, = fO, + (YA + TN 4—
(2.2.25
g <DAYA + DAl — 2w+ %UBan + ;fg_laug> oy )

notice that we have not had to enforce any asymptotic conditions yet. These vectors have 4
undetermined functions of u and z4, (f, Y4, w), all of which are completely unconstrained

at this point.

In order to complete our derivation of the BMS group, we must also solve the asymptotic
Killing equation in order to find the vectors which preserve not only the Bondi gauge
(2.2.6)-(2.2.7), but the asymptotic fall off conditions (2.2.18) as well. The fall off conditions

give us the asymptotic Killing equations
LeGuu = O(r_l), LeGur = (9(1"_2), Legua = O(1), Legap = O(r) (2.2.26)

which we will shortly solve for the components of the metric. Before we do this, we note
that the fall off conditions on g4 in (2.2.18) together with 9,(g/r*) = 0 give us

C
g= det(TQ’}/AB +rCap+...)= r* det (fyAB + % + .. ) =riy (2.2.27)

where v = det(y4p) is the determinant of the round unit S2. We note that this determi-
nant condition imposes constraints on the sub leading terms in the metric expansion on
the angular part of the metric, the first of which is Cﬁ = 0 (indices raised and lowered
with v4p). For a list of the higher order constraints, we point the reader to [50].

As the leading order of g4p is preserved, we thus necessarily have w = 9,9 = 0. We also

note
1 1

V9 el

which immediately simplifies the generic form of a BMS vector field to be

Da? = —0a(Vge?) = —=0a(y7€?) = Dag? (2.2.28)

Er9, = fOu+ (YA + 104 — % (DAYA + DaI* + %UB(B?B f) . (2.2.29)
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Using this general form, we now solve the asymptotic Killing equations (2.2.26). The

vanishing of the O(r) term of the first equation gives us
OuDAYA =0 = DuYVA =h(zP) = YA =Y4(@P) (2.2.30)

and we will return to examine the O(1) equation shortly. We now move to the second

equation of (2.2.26), whose O(1) term gives the equation

DAYA
2

DAYA
2

Ouf — =0 = f=T@") 4u (2.2.31)

which in itself is sufficent to solve the {ur} component of the asymptotic Killing equation
to the required order of @O(r~2). This changes the form of the BMS vector field to be

A
a_Loa u B —2 2.2.32
Y4~ —DUT + S DpY?) + O(r?) ) 04— (2.2.32)

g <DAYA — %DZ(T + gDBYB) - (’)(r2)> .

The next step is to examine the fourth equation of (2.2.26). The vanishing of the O(r?)
term gives the equation
Lyvyap = yapDcY© (2.2.33)

which is nothing other than the conformal Killing equation on S?, enforcing the additional
constraint that Y4 is a conformal Killing vector of S2. We note the following identity for

conformal Killing vectors on S?
D?D YA = —2D,7v4 (2.2.34)

i.e. that DY 4 are the [ = 1 harmonics. To prove this identity, we first take the contracted

covariant derivative of the conformal Killing equation (2.2.33) and rearrange to obtain
(D4, DplYE = D%y, (2.2.35)

then using the definition of the Riemann/Ricci tensor as well as the fact that Rap = yap
for the unit round S2, we have
—Yq = D?*Yy (2.2.36)

and now taking another contracted covariant derivative and rearranging gives
—DsYA = DAD%Y,
= [D4, DY, 4+ D*DAY, (2.2.37)
= DaY* + D?DY,y
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which completes the proof of (2.2.34). This result is necessary and sufficient to enforce
the vanishing of the O(1) piece of L¢gy, and thus we have solved all of the asymptotic
Killing equations (2.2.26) to sufficient order. We write the asymptotic Killing vectors as

DAYA

o, =T+ u + 0™ Y| 0.+

Ox— (2.2.38)

1
y4 - -p4 (T+ ;‘DBYB) +0(r %)
T

" 1DayA (1 + “) _lppy 0(7«2)} O,
2 T T

Now that we have derived the generic form of the asymptotic symmetry vector fields &,

we will make a number of comments in order to illuminate the structure of the group.

+ Notice that the function T'(z*) is completely unconstrained by the asymptotic Killing
equation (2.2.26), giving rise to infinitely many asymptotic Killing vectors £# defined
by arbitrary angular functions T(:):A). These are referred to as the supertranslations
as they generalise the translations of the Poincaré group. If one restricts T'(z4)
to being the [ = 0,1 spherical harmonics then one reproduces the four Poincaré

translations [82].

o The vector field Y4(x?) is constrained by (2.2.33) to be a conformal Killing vector
on S%. If we write (2.2.33) in the coordinates (¢,() as used in (2.2.9) then the

equation reduces to the standard holomorphicity conditions

Y =0 = Y =Y() = ar*
keZ

Y =0 = Y =Y()=) apc*
keZ

(2.2.39)

and in order to restrict to vector fields with no singularities, one now sets ap = a; = 0
for all & ¢ {0,1,2}. This gives six globally well defined conformal Killing vectors of
52, which generate exactly the Lorentz group SO(3,1)

o Putting these two sources of symmetry together, we have the BMSy group:
BMS, = SO(3,1) x supertranslations (2.2.40)

where the semidirect product x is due to the algebraic relations satisifed by the
Lie bracket of vector fields in the group, [82]. This will not be important for our

discussion.

e There is a common extension of the BMSy group, referred to as the extended BMSy
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group [82], which arises from dropping the restriction that the conformal Killing
vectors Y4 have no singularities on S2. Instead one allows for meromorphic vector
fields, in this case those with singularities at the poles of the sphere [88, 87]. This
is a natural thing to do from the point of view of two dimensional conformal field
theory [89, 90, 30] and as in that case, one now finds an infinite number of confor-
mal Killing vectors of the form Y¢ = (¥, Vk € Z (and equivalently Ye¢ = ¢ for
the anti-holomorphic component). These transformations typically gain the name

superrotations as they extend the rotations of the Lorentz group.
e The structure of extended BMS, is:
extended BMS, = superrotations x supertranslations (2.2.41)

which follows the style pioneered by Barnich & Troessaert. See [9, 87, 10, 11, 13] for a
much deeper discussion of these transformations, as well as their charges and algebra.
The singular nature of these transformations has been related to the presence of
cosmic strings singularities in the spacetime [20, 21, 22] and thus they do appear to

be physically motivated.

We will now conclude this subsection by pointing the reader to some of the literature
related to the BMS group its physical applications (much of which is also pointed out in
the review papers [30, 82, 91, 83]). We first point out that the asymptotic field expansions
(2.2.18) that we used to derive the BMS group, namely analytic expansions in inverse
powers of the Bondi radial coordinate r, are not the most general asymptotic solutions to
the field equations. In particular, one can consider polyhomogeneous solutions to the field
equations, where powers of rlogr are also allowed in the asymptotic expansions of the
metric coefficients. These solutions have been studied in depth in [34, 92, 93, 35, 36, 37,
94, 38, 39, 40] and one still finds the asymptotic symmetry structure of the BMSy group.
In the next chapter we will show that polyhomogeneous solutions are absent in AL(A)dSy

spacetimes and comment upon our findings.

In addition to the discussion of enlarging the BMS, group to include the superrotations,
an even larger extension has been proposed to extend the Y4 to include all diffeomorphisms
of S? [95, 96]. Such an extension to the BMS group was motivated by the discovery of a
new subleading soft graviton theorem of Cachazo and Strominger [97] and the extension of
the BMS group to include diff(S?) was necessary in order to match the Ward identities with
the soft theorem. It remains an interesting problem to understand both the mathematics
of this extension, as well as whether the associated charges can be obtained from covariant

phase space methods [98, 99].

In our derivation of the BMS, group, we were explicitly considering 4-dimensional space-
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time manifolds. Work has also been done to understand the structure of the BMS group
in three spacetime dimensions [100, 101, 102] as well as five [103, 23] and higher [104].
Different dimensions have a number of subtleties which we will not discuss in this thesis

as we will always be considering a four dimensional spacetime.

A major project in understanding the physical implications of the infinite number of
transformations in the BMS group is underway, having been pioneered by Strominger et
al. [7, 105, 97, 106, 4, 5]. These works aim to discover the relationship between the
asymptotic symmetries (as we have discussed), gravitational wave memory effects [107,
108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118] and soft theorems in quantum field
theory [119]. This research programme has been nicknamed the “infrared triangle” due to
the aim of connecting these different branches of IR physics. Much work has been done in
this area by various groups, see for example [95, 96, 120, 121, 122, 123, 124, 125, 118], as
well as works which attempt to extend the understanding of these relationships to higher
dimensions [126, 127, 128, 129, 130, 6, 131].

Finally we comment that as the BMS group is an asymptotic symmetry group, one
expects to be able to compute asymptotic charges corresponding to elements of the group
and attempt to understand the meaning of such quantities. The charges of the extended
BMS group have been computed [12] and the physics of such quantities is conjectured
to be related to a possible resolution of the black hole information loss paradox [28].
This conjecture states that the “lost” information during the black hole evaporation is
actually contained in BMS charges, named the soft hair of the black hole [24, 25, 132, 26].
With regard to how one computes these charges, we will introduce a method to compute
conserved quantities in section 2.4. We will also show how this can be modified to derive

the Bondi mass loss (and other BMS charges) in section 2.4.3.

2.3 Holography

In this section we will introduce another major topic which the work in this thesis will
make great use of the anti-de Sitter/conformal field theory correspondence, which we will
refer to as the AdS/CFT correspondence from here on. The main aspect of this vast topic
that we will need is that of the procedure of holographic renormalisation, which we will
introduce in this section and discuss some of the famous results that this procedure allows
one to realise. We will give an adaptation of these techniques in the context of de Sitter

spacetimes in chapter 5.
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2.3.1 The holographic principle

Before discussing the AdS/CFT correspondence, we begin by giving some motivation for
the correspondence and show how it has arisen as part of the search for a theory of
quantum gravity. The guiding principle in establishing the AdS/CFT correspondence is
the holographic principle as formulated by 't Hooft [53] and Susskind [54]. This principle

is a conjecture upon the nature of quantum theories of gravity which states:

Any quantum theory of gravity can be described in terms of a theory without

gravity in one less (non-compact) dimension.

Such a conjecture arose from the observations made in the study of black hole physics
[133, 134, 135, 136, 137, 138, 28], namely that the entropy of a black hole, Sgy, is directly

proportional to the area, A, of the event horizon expressed in units of Planck area

A

T (2.3.1)

SBH =

the much-celebrated Bekenstein-Hawking entropy formula. This formula is used to argue
that black holes maximise the entropy in a given volume, going roughly as follows: A
black hole is the densest object in nature, i.e. the most massive object in a fixed volume is
single black hole (if one adds more mass to the system then the volume must necessarily
increase, as the black hole mass, m, satisfies m o r, where r is the radius of the hole).
The argument now proceeds by contradiction, where we assume existence of a system
contained in the fixed volume with a greater entropy than the black hole. This system
must necessarily contain less energy than the black hole and thus if we add more mass to
the system, we would eventually create a black hole which fills the volume. However, in
doing this, we would decrease the total entropy of the system, §5 < 0. This goes against
the second law of thermodynamics, S > 0, and thus such a system cannot exist. The

black hole is the object which maximises the entropy in a given volume.

The important result of this argument is that the maximal entropy of a system is related
to the area, not the volume as one may naively expect. In a quantum system, there is
a close relationship between the entropy and the dimension of the Hilbert space of the

system, A/, namely

S =N (2.3.2)

and thus we may associate the maximal dimension of the Hilbert space with the area
of the boundary of the region. The interpretation of this by 't Hooft [53], is that any
theory of quantum gravity in the region should be entirely equivalent to a theory living
at the boundary of the region, as all degrees of freedom are contained there. This tells

us that the fundamental description of the physics in a given volume is described by a
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quantity of dimension one lower than the volume, a first hint at the “holographic” nature of
gravitational theories. As quantum field theories typically have entropy scaling extensively
with the spatial volume, the black hole argument suggests that any quantum theory of

gravity can be described entirely in terms of a theory with one less spatial dimension.

This conjecture of the holographic principle has a concrete realisation in the class of
AIAdS spacetimes (as discussed in section 2.1.2). We will now give a brief introduction
to the more precise statements of this AdS/CFT correspondence, before moving on to
a more technical discussion of the asymptotic analysis necessary to perform holographic

renormalisation.

2.3.2 AdS/CFT correspondence

The first concrete realisation of the holographic principle was discovered by Maldacena in
the seminal work [55]. In this work, Maldacena showed numerous examples of holographic
duality on AIAdS spacetimes (x a compact space), inlcuding AdSs x .S°, AdSyx S7, AdS7 x
S4 and AdS3 x S3. In the case of AdS5 x S°, the gravitational theory was type IIB string
theory on an AdSs x S° and the ‘holographically dual’ quantum theory a 4-dimensional
SU(N) gauge theory (Yang-Mills theory) with N' = 4 supersymmetry generators. The
rough idea as to how this duality manifests itself is that the quantum theory arises as the
worldvolume theory of N coincident D3-branes associated with the conformal boundary,
OM, of the AdSs factor of the background.

Many of the details regarding these theories will be unimportant for the work discussed
in this thesis, and so we will not go into great detail on topics such as string theory,
supersymmetry, D-branes etc. The important fact to note from this discovered duality is
that the gravitational theory (ignoring for now the S° factor) is an asymptotically locally
AdS spacetime, and the dual quantum theory is a conformal field theory (a theory invariant
under the action of the conformal group of transformations). This (and other examples
see e.g. [139]) lead to the conjecture of a special sub class of the holographic principle,

namely the AdS/CFT correspondence:

Quantum gravity in a d + 1 dimensional asymptotically locally anti-de Sitter

spacetime is equivalent to a d dimensional conformal field theory.

After the publication of [55], the conjectured correspondence was clarified in the works
of Witten [57] and Gubser, Klebanov and Polyakov [56]. The more precise statement of
the duality is as follows: Consider a (super)gravity theory on the product of an A1AdS;;
manifold M and a compact manifold C (in Maldacena’s example that we discussed above
M = AdS; and C = S°). The CFT is defined on the conformal boundary dM of the
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AlAdS manifold, and there is a 1-1 map between primary operators O of the CFT and
fields ¢ in the gravitational theory. The master formula of the AdS/CFT correspondence
is an conjectured equivalence between the partition function of the gravitational theory,

Zgrav, and the generating functional of correlation functions in the CFT, Zcpt:
Zgrav[¢(0)] = ZCFT[(ZS(O)] (233)

where ¢(©) = ®|lon constitutes boundary conditions for the fields ¢. Explicitly one has

Zeen9V] = | DY exp(=S[9)) (2:3.4)
where the path integral is taken over all field configurations ¢ which satisfy ¢(©) = ¢|ans
and S[¢] is the action functional for the gravitational theory. The gravitational theory
is generically a quantum theory, thus making the partition function a quantum object
(although for the work considered in this thesis we will consider the classical limit). On
the right hand side of (2.3.3) we have

Zcpr = <exp <— /aM ddz O¢(O))> (2.3.5)

and thus one can see that ¢(©) acts as a source for the operator O.

In general, one finds that the full path integral in Zg.y is an extremely difficult object
to calculate, and thus attention is typically restricted to the tree level term arising in the
path integral, namely the classical solutions to the equations of motion. We denote these
solutions as ¢!, which satisfy the boundary condition ¢% |5y, = #©). The tree level form
of the gravitational is

z'ree — exp(—S[¢)) (2.3.6)

grav

which is often sufficient to use as left hand side of (2.3.3) in order to verify equivalences

between AIAdS spacetimes and CFTs, see for example [58].

We will work in this regime and thus we will only be considering classical gravitational
theories which admit ALAdS solutions. In particular, we will consider the theory of general
relativity in the presence of a cosmological constant, A < 0. The only dynamical field in
the theory is the spacetime metric tensor i.e. ¢ = {g,} and the only operator which
we will consider in the dual CFT is the stress tensor. The equations of motion for the

spacetime metric are those given in (2.1.4), namely
G;w + Ag,uu =0. (2.3.7)

Regarding boundary conditions for g,,, we recall the discussion in and around equation

(2.1.7) which shows that the boundary conditions ) for g Will amount to specifying a
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given conformal structure [g()] at M. This means that we do not have a unique metric
specified at M, but rather a metric unique up to conformal transformations. From the
perspective of the CFT, the metric at the boundary, g(), is the background and thus it
makes perfect sense for this to only be specified up to a conformal transformation. This
is because (by definition) the CFT is invariant under conformal transformations and thus

will only have a background metric specified by the conformal class.

We will now discuss the solutions to (2.3.7) in the asymptotic region (near OM) of the
spacetime, before moving on to discuss renormalisation of the classical action, S[g,,], for
AlAdS spacetimes.

2.3.3 Fefferman-Graham gauge

We will begin this section by introducing the coordinates which we will use to study
the asymptotic form of the metric. These are typically referred to as Fefferman-Graham
coordinates due to the work of these authors [59], where a theorem was proved which
states that on any AIAdS manifold there exists a coordinate system (p, x®) such that the
asymptotic metric can always be brought into the form

l2
ds® = p (dp2 + gab(p,xc)d:v“dxb> (2.3.8)

where | = \/—d(d — 1)/2A is referred to as the AdS radius of the spacetime. This theorem
was proven for metrics of general signature (p, q) where p+ ¢ = d+ 1, but we will consider
the Riemannian case of signature (d+1, 0) in order to retain consistency throughout section
2.3 (all previous formulae e.g. (2.3.6) have been written using Euclidean signature). We
also note that for most of the work in this thesis we will put d = 3, but in this subsection

we will keep d generic in order to highlight the differences between the odd and even cases.

Following the discussion of section 2.1.2, p is a coordinate which describes the location
of the conformal boundary, specifically .# = {p = 0}. For this discussion we will take
p > 0 and thus the range of p will be (0, 00) (we will later consider p < 0 in the context of
AldS spacetimes). The lower case Roman indices (a,b) run over all other coordinates in
the spacetime and for now we will leave these abstract indices in a covariant form. We will

now solve the field equations, following the standard method as discussed in [59, 58, 81, 60].

In order to proceed with solving the field equations (2.3.7), we first compute the compo-
nents of the equations, making a distinct split between {ab}, {pa} and {pp} components.
For the {ab} component of (2.3.7) we find

pa?)gab + (1 - d)apgab - .@Cd(apgcd)gab - p(apgac)ng(apgdb)
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+ £5°U0,904)Dpat — 20Rap0) = 0 (2.3.9)

NI

which will be the ‘main’ equation that we will use in order to derive the asymptotic
solutions to the field equations.? In the notation here, §* is the inverse of the metric up
and R,p[g] is the Ricci tensor of §up. The {pa} and {pp} components of (2.3.7) respectively

take the forms

Val["(0pdee)] — VP (Opdap) = 0

“ “ n “ P . A “
pi™(023ab) — §°"Opda — §g“b(8p9b0)90d(0pgda) =0.

(2.3.10)

where V is the covariant derivative operator associated with the metric at g, at a fixed

value of p.

In order to solve the field equations, we first assume suitable regularity of the field
Jab, Where ‘suitable regularity’ will amount to requiring that we can take p-derivatives of
(2.3.9) and evaluate at the resulting equations at p = 0 i.e. we will not a priori restrict
the existence of 9} gap (we will discuss cases where this breaks down during our analysis).
We then pick a metric 957,%) = Jap(p = 0) on OM which acts as a representative of the
conformal equivalence class [g(g)]. We can then solve the ‘main equation’ (2.3.9) order by
order in p, first by differentiating the equation with respect to p the requisite number of
times and then setting p = 0. In order to illuminate this process we will work through the

first few orders explicitly.
At the first order we differentiate 0 times and set p = 0 in (2.3.9) to find
(1 - d)apgab - ng(apgcd)gab é 0 (2.3.11)

where we use the symbol £ to denote the fact that this equation only holds at p = 0.
Taking the trace of this equation by contracting this with §** we get

3 (0pdea) = 0 (2.3.12)
which when put back into (2.3.11) gives us
Dplap = 0 (2.3.13)

the statement that the first p derivative of § vanishes at the boundary. At the second

order we differentiate once (2.3.9) with respect to p and then set p = 0. This gives us

029ab + (1 — d)02Gab — §°(039cd) Gab — 2Rap[9] = 0 (2.3.14)

30ur R has the opposite sign to that in [60] due to our differences in curvature conventions. We use
the conventions of [77].
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upon which we perform a similar procedure as before by first taking the trace and then
substituting the trace term back into this equation. This procedure results in
» R[g]

(2= d)3pgap = 1 5ab + 2Ra[3] (2.3.15)

and we thus see that (generically) the second p derivative of §,; does not vanish at the
boundary and is locally formally determined by 9((1?;)' The procedure runs in this fashion
order by order and one can compute precise relations for each number of p derivatives. We
will now provide a general proof of the functional form of the higher order terms rather

than evaluating them explicitly.

If we consider the order at which we differentiate (2.3.9) v — 1 times and set p = 0 we
find

(v — d)@’;f]ab — gcd(aggcd)gab £ (terms involving 9l gab Where p1 < v) (2.3.16)
which is just a separation of the highest order derivatives on the left hand side and lower
ones on the right. The first observation that we make from this (when combined with our
inductive results above for v = 1,2) is that 9y Jab|onr is locally formally determined by gflg)

as long as v < d.

The second important observation that we now make is that (2.3.9) respects the parity
in p, by which we mean that the sum of powers of p and derivatives with respect to p
in every term has the same parity (namely odd parity in (2.3.9)). In particular, this
means that (2.3.16) also respects the parity in p, and thus all terms on the right hand
side of (2.3.16) must have a total number of p-derivatives equal to v. This observation is
sufficient to prove by induction that (95 Gap = 0 for all odd v < d: The base case is the
v = 1 example which we already showed to hold in (2.3.13) and the inductive step follows
from the argument that all terms on the right hand side of (2.3.16) must vanish as they
will all contain a factor of an odd number of p-derivatives. One then shows that a;; Gap =0

using the trace and substitution procedure that we used in the v = 1,2 cases.

This analysis breaks down at v = d where the first term on the left hand side of (2.3.16)
vanishes. In order to examine this order more carefully, we will now consider the cases of
odd and even d separately and give the form of the general asymptotic solution for each
in turn. We also note that this procedure of iterative differentiation can be carried in
order to obtain solutions to the field equations with matter present, but the structure of
the asymptotic expansions is now different. For a more technical discussion of the matter

case, see section A.3.

0Odd d:
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In this case, (2.3.16) becomes
940 Gea)far = 0 (2.3.17)

where all of the terms on the right hand side of (2.3.16) vanish by the parity argument.
This equation tells us ng((?chd) £ 0, i.e. that the trace of (9% Ged) £ 0, but now the trace

free part is (at this point) completely unconstrained.

A constraint upon (9} geq) arises from the {pa} component of the field equations, namely
the first equation of (2.3.10). We observe this by first by taking (v — 1) derivatives of this

equation to obtain
Va[f]bc(ﬁngc)] + vb(aggab) £ (terms involving O Gabs b < V) (2.3.18)

and now noting that gcd(ag Ged) = 0 as well as the vanishing of the terms on the right hand
side by the parity argument we have

V(0 Gab) = 0 (2.3.19)

which is our second constraint upon (QZ Jab), namely that it is conserved with respect to
(0)

V, the covariant derivative associated to the metric g,,’.
Putting all of these results together, we can apply Taylor’s theorem to conclude that
the most general form of the asymptotic solution to the field equations for odd d takes the

form

G =00 + 0% + .+l gD keZ, 2k<d  (23.20)

where gg}k) are all locally determined by 951%)- g((li) is undetermined but is trace-free and

conserved with respect to ggg). In the next section we will discuss the importance of these

terms in the context of AdS/CFT.
Even d:

Turning now to the case of even d, we again begin with the form of equation (2.3.16),

observing that we now have
— QCd(a’;ch)gab £ (terms involving O Jabs b < V) (2.3.21)

where the main difference between this and (2.3.17) is that now the terms on the right
hand side are not identically zero, but are locally determined by 9((;(;)- In order to proceed
we begin by taking the trace of (2.3.21) which leaves us with the result that ng(Gp” Jed) 1s

locally determined by g(q)-
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This tracing procedure removed all trace-free terms on the right hand side of (2.3.21),
meaning that the asymptotic solution given by a formal power series expansion is not
the most general. In order to account for the possibility of a trace-free term, one has
to introduce a term in the solution of the form hgy(2%)p?log p, where g&l)’)hab = 0. The

inclusion of such a term modifies equation (2.3.21) to give

dhap — gcd(a;gcd)gab £ (terms involving O Gab, p < V) (2.3.22)

and thus we see that hg, is locally determined by gfl?)) as it is identified with the trace-free

part of the right hand side. There is one more constraint satisfied by hy, which (as for
g'¥ in the odd d case) arises from studying the first equation of (2.3.10). Taking (d — 1)

p-derivatives of this equation generates a logarithmic term of the form
(log p)V2hey, (2.3.23)

which must vanish in order to allow us to take the p — 0 limit. This immediately gives

us that hgp is conserved, i.e. VPhy, = 0.

Putting these results together, we find that the general form of the asymptotic solution

to the field equations for d even is given by

. 0 2 2k d
Jab = géb)+p29¢(zb)+- : .—|—p2kg((lb 4. A+p(log p)hab—l—pdg((lb)—}—. oy k€Z,2k < d (2.3.24)
where again g((lik) are all locally determined by gé?)). hay is locally determined by g((lg) and

is trace-free and conserved. g((li) is undetermined but ggg) 9(%) is locally determined.
We will now discuss holographic renormalisation and discuss how the terms in both the

odd (2.3.20) and even (2.3.24) dimensional solutions (in particular g(©, h(p) and g D) are
interpreted in the context of the AdS/CFT correspondence [58, 140, 141, 60, 61, 142, 62].

2.3.4 Holographic renormalisation

So far we have discussed the asymptotics of AIAdS spacetimes, but we have not discussed
how this allows one to realise results in the AdS/CFT correspondence via the master
formula (2.3.3). In order to do this, we first note that the gravitational partition function
(2.3.4) includes the action functional for the gravitational theory, S[¢], which will be our
starting point for discussing how one can realise the AdS/CFT duality using the results

of the previous section.

The object we would like to consider is the gravitational action for a spacetime (M, g)
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with a boundary 0M

1

where the first term is the Einstein-Hilbert action and the second is the Gibbons-Hawking-
York term [143, 144], a necessary term to add when the spacetime contains a boundary. In
order to explain the other notation here, we note that -;; is the metric induced on 0M and
K =V,n" is the trace of the extrinsic curvature of M, where n® is the outward-pointing

unit normal vector.

This action is suitable in order to derive the equations of motion (2.3.7), however when
evaluated on-shell it will diverge. These divergences are most easily seen by considering
Fefferman-Graham gauge (2.3.8), where the double pole at p = 0 ensures that both the
bulk volume term and the induced metric at 9M = {p = 0} (and thus the boundary term)
diverge. Due to these divergences, we first need to regulate the theory. In order to do
this we the restrict the action (2.3.25) to the spacetime region p > € and evaluate the
boundary term at p = €, where € > 0 is the requlator. This procedure allows us to define

the regulated action, Sieglg], as

Sreglg] = 1673GN Up>€ d" 'z \/g(R[g] — 2A) + /:E dlx QWK] (2.3.26)

p

where now +;; is the metric induced upon the p = € hypersurface (so in particular 4, =

(I24ap)/€?) and K = V,n® is the trace of the extrinsic curvature of the p = ¢ hypersurface.

We will begin our analysis of the action functional by evaluating it on-shell, using the
Fefferman-Graham gauge (2.3.8) that we introduced in the previous section. We evaluate

the action (2.3.26) on-shell, meaning we have

2d

Rlg) —2A = 75 (2.3.27)

and thus the on-shell regulated action takes the form

—(4-1 J 2d - 2 _ _
Sesldl = Gy [ | [0 (i5av0) + ja (oo avi)| | )
This result prompts the observation that the regulated action diverges in the limit e — 0.
At a first pass, this seems to be a problem in how we should interpret the AdS/CFT corre-
spondence, as both sides of (2.3.3) diverge. This is an IR divergence from the perspective
of gravity and a UV divergence in the CFT and thus we can view (2.3.3) as representing

an equivalence between divergent ‘bare’ quantities prior to renormalisation.

In order to obtain a relationship between finite quantities, one has to follow the procedure
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of holographic renormalisation as formulated in the seminal works [58, 145, 140, 60, 61, 62].
This procedure allows one to remove the divergent terms of (2.3.28) by subtraction of
covariant counter terms. We will briefly review how to do this and state (without direct
computation) some of the key results that this procedure allows one to realise (for the

reader interested in further specifics, we point out the discussions given in [58, 60]).

The first step in the procedure is to use the asymptotic solution ((2.3.20) for d odd and
(2.3.24) for d even) in order to express the on-shell regulated action (2.3.28) in terms of a

divergent expansion in €. For d odd we find

_ld—l

d —d
oray ) ¢ V90 <6

Sreg = agy + € H2agy + .. 4+ e tagy) + (’)(e)) (2.3.29)
where each of the terms a(; are local covariant expressions of the metric g((l(;). This is
important because it means that we will be able to renormalise the theory by addition
of local counter terms. The infinities from the perspective of the dual QFT will be local
infinities and thus we must also be able to cancel the IR infinites via addition of local
counter terms. This local covariant form is due to the generic form of the Fefferman-

Graham solution (2.3.20), where each of the gﬁk) (for 2k < d) in the expansion were

locally determined by gc(g).

For d even, we find

_ld—l y
Sreg = 167GNn /d TVI0O)

(e_da(o) + e_d+2a(2) +...+ 6_2a(d_2) — (log €)ag) + O(é)) (2.3.30)
where, again, all of the a;) are local covariant expressions of the metric 9((1(1)))- This expres-
sion does have an important difference when compared with the odd d case of (2.3.29),
firstly in that it contains a divergent piece of the form loge. This term arises from the

[ dp term in (2.3.28) as v/ now admits terms of O(p?) in the series expansion.

Now that we have seen explicitly how the on-shell action diverges, we are at the point at
which we can renormalise the theory. In order to do this, one simply subtracts the divergent
terms which arise in (2.3.28) from the action Sieg and then removes the regulator e by

taking the limit as it vanishes. Explicitly we have
Stren = 11_{%(Sreg + Sct) (2331)

where

/dd.CC 9(0) (e*da(o) + e*d+2a(2) +...+ 671a(d,1)) (2.3.32)
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for d odd, and

ld—l
- 167G N

Set /ddx V9(0) (e_da(o) + e_d+2a(2) +...+ e_2a(d_2) — (log e)a(d)) (2.3.33)
for d even. We recall that each of the a(;) counterterms are covariant expressions in g(q),
but in order to express their covariant nature at the p = € hypersurface, they should be
expressed as covariant expressions in terms of the induced metric 4. In order to express

(0)
Yab
((2.3.20) for odd d or (2.3.24) for even d). Once this procedure is completed to satisfactory

order, one then places this expression into each a(;. For the explicit expressions of the

in terms of v,,, one has to formally invert the series expansion for gup = (€2vap)/1?

a(;) coefficients in the cases of both odd and even d, we refer the reader to appendix B of
[60]. We note that the series inversion is in general a challenging step in the procedure of
holographic renormalisation. In the next section we will discuss an alternative scheme of
holographic renormalisation based on [70], which will circumvent the series inversion and

thus provide a computationally more efficient procedure.

Now that we have outlined the steps of how one performes this renormalisation, we
will give details of two important results that this allows one to realise in the AdS/CFT

Correspondence.

2.3.4.1 The holographic Weyl anomaly

The first of these is the holographic Weyl anomaly, discovered in [58]. To discuss this
anomaly, our starting point is the finite part of the action, Sg,, which is equivalent to the

renormalised action Spen, before one takes the limit as e — 0:

Sﬁn = Sreg + Sct- (2.3.34)

We will consider the variation of this expression under a Weyl transformation 59((1?)) =

250953)). As we shall shortly explain, this necessarily takes the form

ld—l 4
5Sﬁn = 5SCt = 167TGN /d T | /9(0)50'./4 (2335)
where A is the Weyl anomaly which we will now calculate for both odd and even d.

In the odd d case we will have to consider the variation of (2.3.32). Following [58],
we begin by considering a constant rescaling parameter do and consider the combined

(0) (0)

transformation ég,,’ = 200g,, , d¢ = doe, under which we have dS;es = 0. This means

that we have
0San = 0S¢ (2.3.36)
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and now 0S¢ can be computed explicitly from (2.3.32). In order to evaluate this, we note
that due to the covariant nature of the coefficients we have da(,) = —ndoa(,), and using
this we can check that each individual term in the series of (2.3.32) is invariant under the

transformation. This gives us the result that §S2I¢ = 0 which gives us
A% =0, (2.3.37)
and so in odd dimensions the anomaly vanishes.

In the d even case the argument remains the same up to the point where we need to
compute §Sc¢, which is now computed by computing the variation of (2.3.33) instead. As
before, we find that each of the power law terms are invariant under the transformation,

but now we have the log term which transforms as

3(v/g(0)(log €)a(a) = a(a)\/J(0)00 (2.3.38)

which implies
AV = —a(d) (2339)

and thus in even dimensions the Weyl anomaly is generically non-zero and is given by the

coefficient of the logarithmic counterterm, a(g).

The importance of this result is that it matches (or gives us new information) about
the corresponding anomaly in the dual CFT. Indeed, in [58], the explicit form of a(g) was
computed in the cases of d = 2,4,6 and in d = 2,4 the result was shown to match with
known results. For d = 2 the result agrees with the central charge computed from the
asymptotic symmetry algebra of AdSs [146]. For d = 4 the anomaly matches with that of
the NV =4, SU(N) SYM theory in the large N limit (see [147] for a further discussion of
this anomaly). For d = 6 the procedure constructs the anomaly for the dual (0,2) theory,

which was a new result at the time of publication [58].

2.3.4.2 The holographic energy momentum tensor

The second important result which we will make great use of in this thesis is that of the
holographic energy momentum tensor, as first discussed in [60] (see also [140, 61, 62] for
further discussion). In order to motivate this construction, we recall our master formula
for AdS/CFT (2.3.3), which in our classical limit given by (2.3.6) now takes the form

S[6"")] = —log(Zorr[6”)]) = ~Worr[e")] (2.3.40)
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where Wepr is the generating function of connected graphs in the CFT. Following the
standard techniques from quantum field theory, one is able to obtain the 1-point correlation

function of the operator O by functional differentiation with respect to the source field

¢(0);
0S

— = (O(z)). (2.3.41)
361 (2) | 40—

Of course, the formula (2.3.41) is not useful without renormalisation as both sides di-
verge. We have already discussed how one renormalises the gravitational side via the
process of holographic renormalisation and thus we state that the correct prescription in

order to compute 1-point functions is to replace S — Sien in equation (2.3.41).

A particular 1-point function of interest to us is that of the expectation value of the
holographic energy momentum tensor, T,,. This is the operator sourced by our chosen
representative of the conformal class on OM, ggz), and thus its expectation value takes the

form

2 S
NCORL S

where the right hand side is evaluated by

, 2 6San ) .. INT? 2 68\ . A
l%(magab(x,e)> _15%<<e) N (e) Tall) (23.43)

where the first equality arises from use of v, = (l2§ab) / €2 and the second is just to make

(Tow) (2.3.42)

it clear that T,p[v] is the stress-energy tensor of the theory at p = e which will be the key
quantity to compute. We begin by recalling the split (2.3.34), which allows us to write

the stress energy tensor as the sum of two components

2 (68w 65
Tab[’)/] - = <5,},ab 5,},&6

val

where T;gg can be computed from the regulated action (2.3.26) and T from the counter
term action, (2.3.32) for d odd or (2.3.33) for d even. The expression for 7"° can be

obtained from the standard Brown-York procedure as computed in [148], namely

) =T+ T (2.3.44)

—_
ab 8GN

(Kab — Kap)- (2.3.45)

where we also note that T;Zg is closely related to the ADM momentum, 7., conjugate to

the induced metric 7,3 at the p = € hypersurface

5Sreg 1
= Kyp—-—K . 2.3.4

Tab =

For more on the ADM approach to holographic renormalisation, see section 2.3.5.
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In the Fefferman-Graham gauge (2.3.8), 7" can be expressed as

reg 1 i
ab T QG €2

. €4 . €. cda ~
<(1 = d)Jab — 59Jab + 59a(9 dapgcd)) : (2.3.47)

In order to obtain the expression for ng, one has to first express the counter term action
(2.3.32)/(2.3.33) in terms of 74, before taking the variation. We again point the reader in

the direction of appendix B of [60] for the relevant expressions in this case.

Before giving the results for the expectation of the energy momentum tensor, we begin
with a comment regarding the properties it satisfies. Firstly, we note that Ty, is covariantly
conserved with respect to 9((1(1)))- In order to see this, we first argue that both 7,,* and T¢
are conserved with respect to the induced metric 7, on the p = € hypersurface. In order

to see the conservation of T,,%, we take the contracted covariant derivative of (2.3.47) and

ab
obtain
L 9%04us) + Val0udi)) = 0 (2.3.48)
167Gy € eJa a edbc 9.

where the equality comes from applying the first equation in (2.3.10). Covariant conser-
vation with respect to G, is equivalent to conservation with respect to 4. In order to
see that T is covariantly conserved with respect to v, it suffices to consider the covariant

nature of the counter term action (2.3.32)/(2.3.33), meaning that we necessarily have

55w = — / da /7 (;Tgbmb> (2.3.49)

then using the residual diffeomorphism invariance of the covariant counter term action

gives
0= / a7 (T Da6) = / d'e /7 (DaTE) & = DLT =0 (2.3.50)

where D, is now explicitly the covariant derivative with respect to 74, and we move from
the left to the right by integrating by parts and discarding the boundary term. This

shows that T, is covariantly conserved with respect to 7, but recall that we wanted to
argue that it was conserved with respect to the boundary metric gé?)). The final step in this
argument is provided by observing that (by construction) all divergences cancel in (2.3.42)

(0)

and thus the finite part of the expression is conserved with respect to lime 0 §op = 9, -

The second comment we have concerns the trace of (T,;) with respect to the metric

9((1(1)))7 where now the odd/even nature of d will play an important role. We consider the

schematic form of the variation of the finite part of the action

. 1 0
0Sren = 1M 0.5, = —/ddw\/g(m (2<T b>5g§b)) (2.3.51)

and consider the variation as that of a Weyl rescaling 59((1(;) = 2509(2). In the d odd case

a
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of a vanishing Weyl anomaly (2.3.37), we have 0Sg, = 0 and thus (T?) = 0. However, in

the d even case of a non-zero anomaly (2.3.39) we now have

ld_l
() = 167G N ()

(2.3.52)
which can be shown by comparison with (2.3.35).

We end this section by giving the explicit formulae for (T,;) in the case of d odd, as well

as the generic form of such a quantity for d even. For d odd we have

dld—1 (d)

(Tap) = _167rGNgab (2.3.53)

which we note is manifestly conserved and traceless with respect to ¢(®) by comparison
with (2.3.20). For the case of d even, we have

ld—l

d (d)
(Tap) = — 167Gy o + Xanl9(0)] (2.3.54)

(0)

where X is a tensor dependent upon g, and the trace of X, is related to the conformal
anomaly in the boundary conformal field theory. For explicit forms of the tensor X in the
cases of d = 2,4,6, see [60]. For the majority of this thesis, we will consider the case of

d = 3 (AlAdS, spacetimes) and thus we will be considering spacetimes with X,; = 0.

2.3.5 Holographic renormalisation - Hamiltonian formalism

The method of renormalisation that we have discussed in the previous section is heavily
reliant upon the computationally challenging step of inverting the series expression for the
counter term action (2.3.32)/(2.3.33) (as discussed in some detail in the paragraph below
equation (2.3.33)). We will now introduce an alternative method of holographic renormal-
isation developed by Papadimitriou & Skenderis [70, 149], based upon the Hamiltonian
approach to general relativity. This method has an important advantage over the tech-
nique that we previously discussed, namely that the computational difficulty involved in
inverting the series is now removed. This procedure can also be applied to nonrelativis-
tic systems of importance in quantum gravity, see for example [150, 151]. We will later
adapt this method to AldS,4 spacetimes in chapter 5 in order to renormalise the asymptotic

charges of such solutions.

The starting point to discuss the Hamiltonian approach to holographic renormalisation
is the original paper [70], of which we will follow closely in this section and summarise the
useful results which we will use later. We note that there are some different conventions

in that paper to the ones that we have applied thus far, namely the sign of the action
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(2.3.26) carries an extra minus (such that it is positive definite when evaluated on-shell),
and the convention is to set [ = 1 throughout. We will retain our convention of the sign
of the action (2.3.26) for the purpose of this subsection, but we will set [ = 1 (this can

always be reinstated via dimensional analysis).

2.3.5.1 The ADM formalism

The approach taken in this method is to analyse the gravitational field equations using
the Hamiltonian (ADM) formalism [152, 153, 154] (see also [77] for an overview). In the
typical setup of the ADM formalism, one chooses a global time function ¢ and foliates the
spacetime in question with a series of t = constant hypersurfaces. The field equations are
then solved by evolving in time after specifying conditions upon an initial hypersurface. In
the case of a Riemannian manifold with boundary, no such time coordinate exists and thus
the idea in [70] is to replace this “constant time” foliation by hypersurfaces whose normal
vector is orthogonal to the conformal boundary OM of the manifold (in the language of
the previous section these would be the p = constant hypersurfaces). In the Lorentzian
picture, this is a replacement of the “constant time” hypersurfaces by a foliation of the near
boundary region by timelike hypersurfaces, and now the evolution is a radial evolution in

the direction of the conformal boundary.

In order to implement this foliation geometrically, we decompose the metric g,,, as
follows: Pick a coordinate r as the radial coordinate emanating from OM, and consider
the hypersurfaces X, given by r = constant. The normal covector to these hypersurfaces
is

Q, = Or (2.3.55)

which has norm

1912 = g" Q.0 = [|dr][] (2.3.56)
and thus the outward pointing unit normal to the hypersurface X, is

o
1€2lg— ldrlg

nt gt o,r. (2.3.57)

This allows us to express the metric on the ¥, hypersurfaces, v,,, in a covariant way as

Vv = Guv — NN, (2.3.58)

where the hat denotes a quantity which is transverse to n* (from this we can verify

explicitly that 4,,n* = 0). Finally, we decompose the metric as

ds® = g, dztde’ = 4, d2"dzY + 2N,di*dr + (N? + N,N*)dr? 2.3.59
o Iz H H
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where N is the lapse function and N* is the shift vector. We will later gauge fix these to
values N = 1, N* = 0, which make the n* tangent to geodesics in M, orthogonal to 3.
For now, we will keep N and N* generic in order to highlight some of their features in

the ADM formalism and we will define the acceleration vector as
at =n"V,nt (2.3.60)
which of course vanishes in the case of geodesic n*.

The quantity which will be of primary importance to us is the extrinsic curvature of the
hypersurfaces >,

1.
5 Lnu (2.3.61)

where the second equality can be shown by explicitly expanding the Lie derivative of the

I A

induced metric and then using (2.3.57) to show that the totally antisymmetric part of
44V pny, vanishes. With a mind to understanding this in relation to the Einstein equa-
tions, we now apply the Gauss-Codacci equations. These geometrical equations relate the
intrinsic curvatures of g, to the intrinsic and extrinsic curvatures of the hypersurfaces

with induced metric 4,,. Explicitly these are given by

A

’AY,?’AYE’AYZ’AYS—RaB'ya = ]%,uupcr + Rﬂp}?—yo’ - IA{upKucr

b R (2.3.62)
A Ry = VKl — V,,K;j

where unhatted intrinsic curvature terms refer to those of g,, and hatted ones 4,,. In
order to make explicit how one can apply the Einstein equations to these (purely geometric)
equations, we want to replace terms in these equations with the Einstein tensor of g,

G- Manipulation of the Gauss-Codacci equations allows us to rewrite them as

A

K? - KWIA(“” =R+ 2G mtn”
VKl — VKl = Goodfn® (2.3.63)
,Cnf(w + KKW — 2K£KPV = RW — 4040 Rpo + @May — auay,

where the first equation here arises from the full contraction (u <> p, v <+ o) of the first
equation in (2.3.62) and the third from the partial contraction (u <> p and a relabelling
of free indices) of the same equation. The second equation above follows directly from
substitution of the Einstein tensor in the second equation of (2.3.62). Upon substitution of
the field equations (for vacuum gravity G, = —Ag,,) these equations become dynamical

and not just purely geometric.

Another aspect of the ADM formalism is that it allows us to express the action (2.3.26)
in terms of the quantities (9., N, N,). The precise details of this are discussed in [77],
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where in particular the bulk term of (2.3.26) can be expressed as

1
167G N

Shulk = /M e AN(R+ K? — K, K" — 21) (2.3.64)

from which we can define in the usual way the canonical momentum

SL 1 . .
T = % = O VAEA — K*) (2.3.65)
nv

where here S = [ dr L and the dot refers to the “radial derivative” of the induced metric,

in particular '*y,w = ’yﬁ"yﬁ L,Aq3 where the vector r# is given by
rt = Nn# + NH. (2.3.66)

In order to derive the right hand side of (2.3.65), one first has to show explicitly how this
radial derivative enters the terms in the action (2.3.64), a computation which is again

performed in [77]. The momentum corresponding to the lapse and shift vanish identically.

2.3.5.2 Application of the ADM formalism to holographic renormalisation

Now that we have reviewed the application of the ADM formalism to radial evolution in
AlAdS spaces, it remains to discuss how we can apply these methods to the procedure
of holographic renormalisation. To begin this, we first recall that a key ingredient in
the holographic renormalisation procedure that we have discussed so far was the on-shell

action (2.3.28), a quantity whose bulk piece we can rewrite using the ADM formalism as
bulk 1 T .
St = [ drd®s AN(R - 24) (2.3.67)
8GN r=rg

where now we have regulated by choosing the boundary 0M to be located at r = r;
(r =79 < 71 is just an interior hypersurface which we can always choose in a manner such
that it is sufficiently close to r1). We can now define the momenta on the boundary ¥,

by functional differentiation
5Son—shell

pv _
™ (Tlax) 5,%“/(7“1’$)

(2.3.68)

where these momenta are equivalent to those of (2.3.65). The importance of rewriting
these momenta in this way is apparent when considering holographic renormalisation, as
the expression above is precisely that which we wanted to compute in order to define the
regulated 1-point function ((2.3.43) before taking the limit as ¢ — 0). Of course, just as
in the case of unrenormalised AIAdS spaces, the momenta as defined above will naively
diverge as we take r; — oco. The main result of [70] is extending the renormalisation
scheme to the momenta as defined above, the main points and advantages of which we

will now summarise.
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e The key focus in this approach to holographic renormalisation is the canonical mo-
menta and not the on-shell action. We have already seen how one can relate these
via equations (2.3.65) & (2.3.68).

e In order to implement this renormalisation, one first expresses the second order
field equations (2.3.63) as first order functional equations by expressing the radial

derivative as a functional derivative

d ) N
— = [ d%4,, ~/W2Kf—f 2.3.
dr {/1 CE = v (2.3.69)

where ~ indicates that one needs to fix the gauge in order to make this a strict
equality (our choice of N =1, N# = 0 will show this).

e These first order equations are still very difficult to solve, but we can work asymptot-
ically in order to solve them. To do this, we start by prescribing Dirichlet boundary
conditions for the metric as r — co

ﬁuu ~ 627"’3/}(3,)- (2370)

Which we choose to prescribe because a bulk metric corresponds to a particular
conformal class at the boundary, so a natural choice of boundary condition is to keep
this conformal class fixed (but arbitrary). Any other choice of Dirichlet boundary
condition would break the bulk diffeomorphisms associated with Weyl rescalings at
the conformal boundary. We also note that in the context of AdS/CFT, specifying
the conformal class corresponds to specifying the non-normalisable modes of the
dual QFT, and thus the boundary conditions have an additional interpretation in

this setting. For work discussing alternative boundary conditions, see [155]

Using these boundary conditions we find the asymptotic form of the radial derivative
aw/w%ﬁ 0 (2.3.71)
(o v 5’3/;11/ 0.

where the right hand side is precisely the total dilatation operator, ép of the theory.
The procedure of asymptotic expansion will now be to expand the momenta in terms
of eigenfunctions of the operator dp. This is in contrast to the previous section,
where the asymptotic expansion was in the small parameter p, the coordinate which
measures distance from the conformal boundary. This choice explicitly broke bulk
covariance, a feature not present in the Hamiltonian approach. We will explain below
how preserving bulk covariance allows one to streamline the procedure of holographic

renormalisation.

e As in the previous method, covariant counter terms are required in order to make
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(2.3.68) finite as r; — oo. In order to construct these counter terms, one needs
merely to identify the singular part of the momentum, a quantity which has already
been expanded in eigenfunctions of dp. As it turns out, the singular pieces will be
those with eigenvalue less than the scaling dimension of the dual operator in the
CFT. In the case of the metric, the dual operator is of course the holographic energy
momentum tensor, which has scaling dimension equal to d. This leads us to the

result:

. 1 . L

(L) = —5 K@y — K a)Yuw) (2.3.72)
where the subscript (d) indicates the eigenvalue under dilatation. As we discussed
in (2.3.53) and (2.3.54), this expression is related to free data in the asymptotic

solution.

e This method removes the difficult computational step from the previous method of
computing the covariant counter terms for the on-shell action on the hypersurface
Y. Instead, one solves the equations of motion in order to generate counter terms
for the momenta. These can then be used to write down the expressions for the
1-point functions. In principle, the need to compute K(,) as part of this procedure
could be highly non-trivial, but as we will see in the case of general relativity, this

can be done iteratively and is a simplification relative to the older method.

e Even though the covariant counter terms for the on-shell action are no longer nec-
essary to write down 1-point functions, one can now compute them much more
efficiently than before using this formalism. They will be computed recursively by
solving the equations of motion and the step of series inversion is removed. In what

follows, we will comment upon this in the case of general relativity.

 This procedure is totally equivalent to the methods of [60] as discussed in the previous

section. This was shown explicitly in [70], where the map between K, w[y) and the
Fefferman-Graham coefficients g,(;;) was derived.

We will conclude this section with an application of this method to the case of general

relativity in the presence of a negative cosmological constant. This will serve as an example

of the advantages of the newer method as we summarised above, as well as a prelude to

chapter 5, where we will adapt these methods to the case of a positive cosmological constant
in d =3 (AldSy).

We will follow the example of [70] by setting [ = 1 and thus A = d(d — 1)/2. As we
mentioned beneath equation (2.3.59), we will begin by fixing the gauge such that N* =0
and N = 1, thus making the bulk metric

ds® = dr® + ~;;(r, z)dz'da? (2.3.73)
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where we drop the hats as indices i,j = 1,...,d are in directions along the hypersurface

and are all automatically transverse to the r-direction. The extrinsic curvature becomes

1
5Yij (2.3.74)

Kij:2

which we note now produces a precise equality in equation (2.3.69). The field equations
are G, = guwd(1 — d)/2 which in Gauss-Codacci form (2.3.63) now become

K? - KK =R+d(d—1)
ViK; — V;K =0 (2.3.75)
K; + KK = R} + dJd;
where we note that R and V are now quantities with respect to 7;; and KJZ = dir(’yikK kj)-

Using the gauge (2.3.73), we can express the r-derivative of the on-shell action (2.3.67) as

. 1
Son—shell =L= 87TGN

/Z dz /3R + d(d — 1)) (2.3.76)

which means that we can obtain an expression for Sy, shen if we are able to write the
integrand on the right hand side as a total r-derivative of a covariant expression. In order
to derive an expression for this expression, we introduce a covariant variable A and write

the on-shell action as )

—_— d K — 2.3.
el SLVAIL Y (2.3.77)

Son—shell =

where the K term above can be seen to be the Gibbons-Hawking term in (2.3.26). Taking
the radial derivative of the expression above and comparing with (2.3.76) we are able to

establish that A satisfies the first order differential equation
A KX=d (2.3.78)
where we used the trace of the third equation of (2.3.75), namely K + K2 = R + d?.

We will now define the asymptotic expansions that we will use to solve the field equations
(2.3.75), which (as previously mentioned) are expansions of K and X in eigenfunctions of

the dilatation operator, dp

A = )\(0) + /\(2) +...+ )‘(d) - 27”5\(,1) +...

— oK, " + ...
(@3 (2.3.79)
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where the terms in the expansion transform as follows

5DK(n)j = _nK(n)j’ n < d,
5pK ) = —dR ). (2.3.80)
OpK (g); = —dK y); — 2K g,

and A terms transform identically with K replaced by A everywhere. We note this result
follows from the identiﬁcation between the radial derivative and the dilatation operator
(2.3.71) and K (d ) - is not an eigenfunction of dp as it transforms inhomogeneously (due to

the presence of the Weyl anomaly).

With this asymptotic expansion of the fields set up, we return to the consideration of

the momenta, namely

ij _

V(KN — K1) = 0Son-shell (2.3.81)

167TGN (5’yij

which when compared with (2.3.77) becomes

Kl — K — \757 / dlz S5 (K — N), (2.3.82)
ij

into which we input the expansions in dilatation eigenfunctions (2.3.79). Comparing terms

of the same dilatation weight then leads us to the equations

K

N QL

(2n)j — Aan)dj — */ddiﬁ W%J‘r(K@n) —A@n));, 0<n<
(2.3.83)

K g; =A@ /dﬂff’kaé (K@) = May)

which will serve as the main equations we use to recursively compute the extrinsic curva-
ture terms K (2n ) In order to do this, we will need to first find a way to specify all of the
terms that appear on the right hand side of the equations. The first step in doing this is

to take the trace of the equations above and use the relations (2.3.80) to get

2n —1

d—1
A@n) = o — dK(Qn)a

~1, g =-——-Ku, Kag=0. (2384)

<n< D
0sns 2

1\3\&

These equations allow us to replace Ay terms in (2.3.83) with K (i) terms and also show
us that K (2n);’ are only determined by this procedure up to n < d/2 (as A(g) is not
determined). In order to finish the discussion of the recursion relation, all we need now is
an explicit expression for K(y,), which as it turns out is provided from the first equation
of (2.3.75). Once again, we input the expansion of the extrinsic curvature in dilatation

weights (2.3.79) and compare terms of the same dilatation weight. Using K (0); = 5;- the



42 Chapter 2. Background literature review

next lowest order gives us

R

7@-T (2.3.85)

Kg) =

which we can then use recursively to compute higher order terms by substitution in the

first equation of (2.3.75), obtaining

(2.3.86)

S

1 n—1 y
K(m) = 2(d—1) mEz:l[K(Zm)ijK(zn—zm) ! = KomyKen—om), 2<n<

The computations discussed above give us a procedure to compute the counter terms
necessary in order to obtain the renormalised 1-point function (2.3.72). The counter terms
i o %
(2n); for 2n < d as well as K ()" We can see
this explicitly as the renormalised 1-point function is given by

that one needs to compute are precisely K

d—1

. 1 -

(Tij) = lim [ﬂij ~ 3 (ZO(K (2m)ij — Kam)vij) — 27“K<d>z'j>] (2.3.87)
m=

and thus we observe that the equation (2.3.83) when utilised in tandem with equations

(2.3.84), (2.3.85) and (2.3.86) allow us to generate all of the required counter terms, thus

streamlining the procedure of holographic renormalisation!

We finish this section by expanding on the comment that this method is also more
efficient at computing the counter terms at the level of the on-shell action, even though
the renormalised action is no longer necessary in order to compute 1-point functions. By

using (2.3.77) we observe that the counter terms are given by

4
1 d E ~ ~

Set = ~gri /2 d®z /Y mZ::O(K@m) — Aem)) = 2r(K(2m) — Aa)) (2.3.88)

which upon application of (2.3.84) and using the coordinate transformation r = —% log p
can be rewritten as

4
S d_l/ dz \/y ZZ L Ko + 2Kglo (2.3.89)
ct = 871G e v L 2m —d (2m) 2 (d)tog¢€] . 3.

2.4 The covariant phase space formalism

In this section we will review the covariant phase space formalism, a formalism which
allows one to define charges in diffeomorphism invariant theories, and in particular in

asymptotically flat space times (we will later examine how one can adapt this formalism
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to AldS spacetimes). The seeds for this approach were developed in the pioneering work
[156, 157, 158] but the formalism that we will discuss is principally due to Wald and
collaborators, and was introduced and developed in [63, 64, 65, 66, 67]. These papers
provide a detailed discussion of the mathematical structure of this topic of which we
will summarise the useful information for the calculations to follow. We also note the
existence of a formalism developed by Barnich and Brandt [159, 160] which suffices to
provide a definition of conserved quantities for any gauge theory. For our purposes, the

two prescriptions will be equivalent and we will stick to the language of Wald et al.

2.4.1 Preliminaries and definitions

We begin by considering theories which admit a diffeomorphism invariant Lagrangian
description on a D = (d + 1)-dimensional manifold M. The dynamical fields for such
theories will consist of a Lorentzian spacetime metric g, of signature (— 4 ...+) as well
as any other matter fields ¢ which one may want to add to the theory (this may include
scalars, gauge fields etc). We will refer to the collective of both the metric and the extra
matter fields as ¢ = (gap, ¢). More generally, we will follow [63, 64, 65, 66, 67] in referring
to the space of allowed configurations of the fields as F, and the “on-shell” subspace as F.
This subspace is often named the covariant phase space, and thus will be our main object

of consideration in this section.

To give the explicit form of the diffeomorphism covariant Lagrangian, we utilise the
language of differential forms which we will mark with boldface lettering and often drop
the indices. The Lagrangian form is a D-form defined on M which satisifies the following
diffeomorphism invariance property: If we consider a diffeomorphism f : M — M then

we have

L(f*(¢)) = " (L(¥)) (2.4.1)

where f* denotes the extension of f to arbitrary rank tensor fields [77]. Due to this
diffeomorphism invariance property, the Lagrangian is forced to take the following form
[65]

L= L(gab, va1Rbcde7 ey V(al ce Vak)Rbcde, ¢, Valqs, ey v(a1 cee Vak)(ﬁ) (2.4.2)
where Rpcde is the Riemann curvature tensor of the spacetime metric gqp.

We now consider variations of L with respect to the dynamical fields 1. The first

variation of the Lagrangian always takes the form

5L = E&tp + d© (2.4.3)
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where

Edt) = E®5gy, + Egd6 (2.4.4)

and in the second term on the right hand side a sum over all of the matter fields is
understood. E is referred to as the equation of motion D-form and the equations of
motion are given by E = 0. © is the symplectic potential (D — 1)-form and is chosen to

be covariant in the fields v and their first variations v

® = O(), 51)). (2.4.5)

At this point we provide a brief comment upon the structure of the equations that
we have just introduced. Equation (2.4.3) takes the familiar form of the variation of a
Lagrangian in that it consists of an equation of motion term (Edt) and a total derivative
(d®) and is thus the sort of expression that one would naturally expect to find. One may
also notice that © suffers an ambiguity as it is only defined up to addition of an exact
differential form. If © is a suitable symplectic potential form then so is ® + dT where T

is any (D — 2)-form chosen such that dT is covariant in the fields and their variations
EéY + d(© + dT (1, 6¢)) = Edy + dO© + d*T (¢, 6¢) = Edyp + d© = L. (2.4.6)

This ambiguity is usually overcome by picking a ® which is particularly convenient for

the problem at hand and will not enter into the calculations that we perform later.

Using the symplectic potential form we can define the symplectic current w which is

given as the antisymmetrised variation of ®

w(Y, 019, 021) = 01O (1), 02)) — 02O (2, 017)) (2.4.7)

and w is clearly a (D — 1)-form. A particularly useful property of this form which we will
use later is that w is closed when ¢ satisfies the equations of motion and &1 and do1) the

linearised equations of motion. i.e.

We will repeat the proof here which was originally given in [63, 67] (a nice recap is also

given in [71]).

61621 = 61(Eda1) + dO(¢, 629))
= d61©(¢, 621))

where in going from the second to the third line we have used E = §1E = 0 as well as the
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commutativity of the variation and the exterior derivative. By an almost identical line of

argument we can write
0201 L = dd2© (1), 019) (2.4.10)

and now using the fact that the variation operators commute ([01,d2] = 0) we are able to

write

0 = d51©(1), da1p) — 2@ (1), 51))

(2.4.11)
= dw (v, 611, 621))

which completes the proof.

Another object associated with the symplectic current is the pre-symplectic form Q¢

which is defined as

Qe (1, 619, 6210) = /C (W, 611, 51)) (2.4.12)

where C is typically taken to be a Cauchy surface in the spacetime. In the context of
ALdS spacetimes we will revisit this property and argue that it is natural to define the
integral over a timelike hypersurface instead of a Cauchy surface, more on this later. The
name “form” given to (¢ can at first seem confusing as it has no spacetime indices but
is still considered a form due to its antisymmetry in the field variations 41, d29 and can

thus be thought of as a form over the phase space of all possible field configurations.

Finally, we introduce the differential forms corresponding to the Noether currents and
charges. To do this we first consider a diffeomorphism of the spacetime M generated a by
smooth vector field £ which is taken to be a fixed vector field. To such a diffeomorphism,

we can associate a Noether current (D — 1)-form J defined by

J[E] = (Y, Ley) — icL (2.4.13)

where L¢ is the Lie derivative in the direction of £ and i¢L denotes a contraction of £*
with the first index of L. When we are on shell (E = 0) we can relate the variation of the

Noether current form, dJ, to the symplectic current form

0J[€] = 0O(¢, Letp) — 0(iek)
= 00(¢, Letp) — igdL
= 5@(1/) Lep) — ig(dO(t), 1)) (2.4.14)
= 00(1), Lep) — LeO(, 6¢) + d(ig® (1), 51))

w (1,09, Leip) + d(ic® (¢, 69))).

In going from the first to the second line we have used the property of £ being fixed and
from the second to the third line we have used (2.4.3) together with E = 0. In third to
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the fourth lines we have applied the useful identity L¢ = i¢d + di¢ for the Lie derivative
acting on differential forms and finally we have applied (2.4.7) in order to reinstate w.
Following similar steps to this derivation, we are also able to show conservation of the

Noether current form when on shell (E = 0)

dJ[§] = dO (¢, Ley) — d(icL)
= L¢L — (L¢L — igdL) (2.4.15)
=0.

On the third line we have used the fact that dL = 0, which is of course true of the exterior
derivative acting on any D-form. Since J is closed on shell, it is locally exact and thus (on

shell) we can write

J[¢] = dQ[¢] (2.4.16)

where Q[¢] is defined as the Noether charge (D — 2)-form. Notice that in a similar vein
to the symplectic potential form, this equation only defines Q up to the addition of an
exact form, but again we will not be concerned with the specifics of this ambiguity for the

purpose of this thesis. More generally, it has been shown in [66] that off-shell we can write

J[§] = dQ[¢] + Cat” (2.4.17)

where C, is a (D — 1)-form which vanishes on shell (physically this form vanishing is
fulfillment of the constraint equations of the theory [63]). If we consider field configurations
which solve both the equations of motion and the linearised equations of motion we can
use (2.4.17) to simplify (2.4.14)

W(th, 50, Lew) = 5(dQIE] + Cul?) — d(ic® (1, 51))
= doQE] — d(ie® (v, 5¢)) (2.4.18)
= d(6Q[€] - ic®(¥, 5v))

where we used the linearised equations of motion (§C, = 0) in going to the second line.
Notice that w is exact for these field configurations, thus providing us with an alternative

way of proving (2.4.11).

With all of this technology established, we are finally at the stage where we can introduce
the concept of Wald Hamiltonians. We will first give the basic definition of the Hamiltonian

and then give two necessary and sufficient conditions for existence of such a Hamiltonian.

To define the Hamiltonian we restrict our configuration space to dynamical fields v
which satisfy the equations of motion (E = 0) but whose variations d¢» do not necessarily
satisfy the linearised equations of motion. Again, we consider a diffeomorphism of the

spacetime M generated by a fixed vector field £ and we define the Hamiltonian conjugate
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to the vector field &, He, as the function which satisfies the following equation

SHe = Qo (i, 80, Leth) = /C w(th, 80, Letp) (2.4.19)

when we take C' to be a Cauchy surface (or a “slice” as in [67]) we can view H¢ as giving us
a natural definition of a conserved quantity associated with the diffeomorphism generated
by & at the “instant of time” C. We will follow [67] in assuming that the integral on the
right hand side of (2.4.19) converges for all 1) which solve the equations of motion and dv
which solve the linearised equations of motion. We will now restrict our consideration to

this case.

In order to derive the existence conditions for the Hamiltonian we start by using (2.4.18)

to write the variation of the Hamiltonian as

SHe = [ d(6QIE] - ie®(v.50)) = [ (5QI¢] - ie@ (. 6v) (2.420)

where we have applied Stokes’ theorem and the interpretation of the integral over 0C
is that one takes the integral over the co-dimension 2 manifold given by a cut of C in
the limit to asymptotic infinity [67]. We will remain agnostic about the character (i.e.
timelike, null or spacelike) of both the hypersurface C' and the conformal boundary of the
spacetime (which we will generically denote as .#) and we will write 0C = C' N ..

The Hamiltonian, Hy, exists if (2.4.20) can be integrated to give H, i.e. if we can write
the right hand side as a total variation. The first term on the right hand side of (2.4.20)
is already a variation so it is only the second term which we need to worry about. By
inspecting this term, we can quickly write a necessary and sufficient condition for existence
of H¢, namely that there exists a (D — 1)-form B such that

/cm ie®(v,0y) =9 /W ieB(Y, 09) (2.4.21)

and thus
He = /CW[QK] —ieB(¥, 69)]. (2.4.22)

An alternative condition for existence of H¢ can be derived by considering [d1, d2] He,

which of course must vanish by the commutativity of the variational derivatives.

[61, 02| He = 61 /Cm][52Q[ﬂ —i¢® (1, 6200)] — 02 /Cm]le[f] — i@ (1), 019)]

= [ ich@waiw) - [ ieh®.00) (2.4.23)
cny cNny

= [ e 610)
cNny
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and thus the integrability condition becomes

/ ig(.d(?ﬁ, 52’(/1, 511[)) =0. (2.4.24)
cng

It seems clear that this condition is necessary for existence but it is also sufficient (proved in
[67]). We will now use this Hamiltonian description, along with these existence conditions

to compute the Wald Hamiltonians for ALdS spacetimes.

2.4.2 Non existence of a Hamiltonian

In this section, we will briefly discuss the case when the integrability condition (2.4.24)
fails, and how one can modify the definition of a ‘conserved quantity’ in this instance.
This section will be a summary of the work [67], which originally answered these questions
using the covariant phase space approach. We will also discuss an important physical case
when this occurs, namely that of a BMS asymptotic symmetry .# 7 in asymptotically flat
spacetime (as we introduced in section 2.2.4). This will allow us to derive a formula for

the Bondi mass loss (2.2.17) from the covariant phase space approach.

With the example of BMS in mind, in this subsection we will always take the vector
field £ to be complete on M U .# (meaning ¢ is tangent to .# on .#) and an asymptotic
symmetry. From the point of view of the covariant phase space, having £ as an asymptotic
symmetry means that the 1-parameter group of diffeomorphisms associated with £ maps
F into itself, i.e. it will preserve any asymptotic conditions in the specification of F. An
example would be the space of asymptotically flat spacetimes in the Bondi gauge (2.2.6),
which are defined by the fall off conditions (2.2.18). In this case the asymptotic symmetries
(the BMS group) are precisely the transformations which preserve both the gauge and the
asymptotic falloffs, hence mapping F into itself.

As discussed above, we will now consider the case when

/ igw(w, (52¢, (51’¢) 7é 0 (2.4.25)
cng

and thus H¢ will not exist. In order to construct a new notion of a ‘Hamiltonian’, we follow
[67] and consider the pullback of w to .#, which we will denote . On .#, we assume that

there exists a symplectic potential @ on .# which generates @ via

@ (1, 619, 691)) = 01O(1, G21)) — 62O (1), 514)) (2.4.26)

where we continue to take the all fields (1)) and their variations (811, 62¢0) on-shell. © is
required to be locally constructed from the fields ¢ and their derivatives, as well as the

“universal background structure” of M U .#, which can be considered as non-dynamical
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quantities which enter into the definition of the configuration space (e.g. the conformal

factor in (2.1.1)). Following [67], we will now define the modified Hamiltonian, He, via

He = / 5Q i@+ [ O (2.4.27)
cny cn.y

which we observe to be almost the same as (2.4.20), except now an additional term involv-
ing ® makes an appearance on the right hand side. We can now repeat the calculation of
the consistency check (2.4.23) and we find

[(51, 52]7’[5 = — /Cmy igw(ib, 01, (521/)) + /Cmﬂ if&)((/}, 01, 52¢) =0 (2.4.28)

where we used the property that £ is tangent to .# on .#. This shows that now the
consistency check is satisfied and we have identified a candidate for a “conserved quantity”
when the original prescription fails. However, we are not finished yet, due to an obvious

ambiguity in the presymplectic potential on &
© — O+ W (2.4.29)

which clearly generates the same @ via (2.4.26). In order to remove this ambiguity, we

will need to consider additional restrictions upon @.

As a prelude to these restrictions, we begin by considering the difference between vari-
ations of H¢ at different cuts of .# (arising from distinct bulk hypersyrfaces C, Co where

(5 lies in the causal future of Cy)

dHeloc, — 0Heloc, = —/j (@ (), 69, Le) + d[ig® (3, 09)]) (2.4.30)

12

where %15 denotes the portion of .# with boundary 0C71LUJC5. In order to arrive the right
hand side above, we have used (2.4.18) as well as Stokes’ theorem in order to write the
integrals over cuts as a boundary integral. The first observation that we make regarding the
equation above is that it shows that for a general asymptotic symmetry &, our “conserved
quantity” H¢ will not actually be conserved as the right hand side of (2.4.30) does not
vanish. Physically speaking, this means that there is a non-zero flux of charge through

12, to which we can associate a flux (n — 1)-form Fg, defined via

§F: = (¢, 80, Letb) + d[ic® (1, 6¢)] (2.4.31)

upon which we can use the definition of the Lie derivative on differential forms together

with equation (2.4.26) to write

6F = 0O©(¢), Leab). (2.4.32)
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Finally we are at the stage where we can give the extra restriction upon ©, based upon
physical considerations of the flux. Following [67], we require that the flux vanishes upon
solutions where no radiation is present, i.e. stationary solutions. We also assume that
there exists a “reference solution” v, where H¢ vanishes, which is itself stationary. These
assumptions translate to the result that @(w, 01) vanishes whenever 1) is stationary. We

can use this, together with F¢|y, = 0 to integrate (2.4.32) and obtain
F, = O(, Lev) (2.4.3)

from which we note that we also have Fy = 0 whenever L¢7) = 0 i.e. when § is an exact
symmetry. For a further discussion on the requirements for the existence of a suitable g,
we refer the reader to the original work [67]. We also note that this stationary assumption
upon © (1), 81)) does not a priori uniquely select W (1)), but enforces the restriction that
O0W vanishes when v is stationary. In the case of null infinity, these requirements do

uniquely select © [67].

To recap, (2.4.27) together with a zero-charge reference solution 1y allow us to define a
notion of a “charge with flux” for asymptotic symmetries £. Equation (2.4.33) is the flux
formula which then allows us to describe how flux leaks through a portion of the conformal
boundary .#15. The most studied occurrence of such a phenomenon is that of null infinity
in asymptotically flat spacetime [156, 161, 67, 87, 11] (as we will briefly recap) although
there is a recent development [51] to try and study flux at the conformal boundary of A # 0
spacetimes. Such issues are intrinsically related to the boundary conditions imposed at
the conformal boundary of the spacetime, as well as the presence (or lack of) a conformal
anomaly. We will return to these issues in chapter 5, where we consider fluxes at the

conformal boundary of AldS, spacetimes.

2.4.3 Fluxes at .# - Bondi mass loss

We will now give a summary of this procedure when applied to the theory of four dimen-
sional general relativity (L = Re/167G y), in particular at null infinity in asymptotically
flat spacetime. The first set of results we will briefly discuss are those of Wald & Zoupas
[67] who used the conformal approach to asymptotic flatness at £ as we discussed in sec-
tion 2.1.1. We will then give the adaptation of these results when the spacetime is defined
to be asymptotically flat using the Bondi gauge, as we also discussed in section 2.2.3, a
procedure that was first developed by Barnich & Troessaert [11]. We will use these results
to show how one can arrive at the Bondi mass loss formula from the covariant phase space

formalism.

Using the procedure of the previous section, [67] give the following prescription for
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charges H¢ where £ is a BMS symmetry in the sense of (2.2.40)

1
IHe = 6Q —ic®] — NaptP)ice 2.4.34
Me= [ 16Q-i®) - o [ (Nanrie  (243)

together with He = 0 for all £ and all cuts of .# T in Minkowski spacetime (in the language

of the previous section, this is 19 = {1, }). In the formula above we have

1
vl = —————€upa V*E7 2.4.
Qu €] 167G €vpo V'E ( 35)
and .
@p,l/p = meuw}avo (2436)
where
v = g"" g" [V 46 9vs — Vigpo] (2.4.37)

all of which can be verified starting from the definitions given in section 2.4.1. Napg is the

Bondi news tensor defined in (2.2.15) and 745 is given by
TaB = Q094B (2.4.38)

where (2 is the conformal factor used in the definition of asymptotic flatness (2.1.1). Fi-
nally, we note that € is the volume element at .#*. Equation (2.4.34) also allows us to
read off

_ 1
0= NapTiBe 2.4.
3Gy APT € (2.4.39)

and defining xap = QL¢gap, we arrive at the flux formula

~ 1

FE = e(g,ul/a Eﬁguu) = _327TGN NABXABE‘ (2.4.40)

The analysis of [67] also includes a proof that that ambiguity of (2.4.29) does not play
a role (the requirement that there is no flux for stationary spacetimes enforces W = 0)
and that Minkowski spacetime is the unique zero charge solution. These formulae are
very elegant and give us a prescription to compute all supertranslation charges and their
associated fluxes, although it is not immediately apparent how these formulae can be
applied to the coordinate dependent definition of asymptotic flatness using the Bondi
gauge as introduced section 2.2.3. This matching of the two definitions was performed in
[11], where the authors found

1
He = 167G N

1
/ 20 {4 fmp+ YA <2NA + aA(cBCcBC)ﬂ (2.4.41)
cns+ 16

where d2) is the area element on the unit round S% and we use the notation of section

2.2.4 in that f describes supertranslations, and Y4 superrotations. N, is the angular
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momentum aspect and C4p the Bondi shear tensor. [11] also gives the Bondi-gauge flux

formula
1

F —
¢ 327Gy

NABL.Cape (2.4.42)

which now gives us a direct connection between the flux at #* and the Bondi news (N4p)

and shear (Cap) tensors.

The most famous application of this formula is a computation of the flux formula for the
Bondi mass, M p, which by comparison with (2.2.14) is clearly the modified Hamiltonian
corresponding to f = 1, Y4 = 0 (¢ = 9,). Application of the flux formula (2.4.42) now

ields
Y 1

= 327Gy

where we computed L¢C4p using the action of a BMS symmetry on the metric. We also

Fy, N pNABe (2.4.43)

note that the coefficient of the flux form is strictly positive when evaluated upon a cut of

# T and gives the Bondi mass loss formula
_ 1

0Mp =~ [ Fyp =~ | QNN <0 (2.4.44)
cns+ 327G N Jons+

where F is the pullback of F to C' N .# 7.

This computation shows that one is able to recover the Bondi mass and mass loss from
the covariant phase space formalism. In fact, the procedure given in [67] is sufficient to
compute charges and fluxes for all supertranslations in the (unextended) BMS group. The
work of Barnich & Troessaert [9, 87, 10, 11] goes beyond that of [67] in that it allows one
to compute charges for the extended BMS group (2.2.41), i.e. to allow for meromorphic
superrotations. We can see this from (2.4.41), where there is no obstruction to choosing
a singular conformal Killing vector Y4. We also comment that there is ongoing work to
understand how one can compute charges for the proposed extension of the BMS group
where Y4 is now allowed to represent any diffeomorphism of S? [96, 125, 99]*. In this
case, it seems from [98] that the symplectic structure for such an asymptotic symmetry
group cannot be constructed from a local and covariant symplectic current at .# . Due
to this, the attempts to define charges would necessarily include the feature of including

terms non-local in the Bondi metric quantities.

4This is often to referred to as the generalised BMS group.



CHAPTER 3

(A)dS, in Bondi gauge

3.1 Introduction and summary of results

The Bondi metric was introduced in the seminal works of Bondi, Sachs and others on
gravitational radiation [1, 2]. While all gauges are equivalent a convenient choice of a
coordinate system may bring in simplifications and make the physical properties of space-
times most transparent. In the case of gravitational radiation the objective was to examine
the behaviour of the gravitational field far from the isolated object generating the radi-
ation, and to obtain and use asymptotic solutions of Einstein equations to characterise

radiating spacetime.

In asymptotically flat gravity, gravitational waves travel to future null infinity and the
task becomes that of obtaining asymptotic solutions near future null infinity. It was
shown in [1, 2] that in Bondi gauge the Einstein equations take a nested form and they
can be readily integrated near null infinity. If one specifies initial data on an outgoing null
hypersurface then the Einstein equations tell us how to propagate this data forward in
time to a nearby outgoing null hypersurface. The asymptotic solution involves a number
of data that are not determined by the asymptotic analysis alone: such data will be fixed
in any given exact solution of the field equations. This undetermined data consists of a
scalar function (the Bondi mass aspect); a vector (the angular momentum aspect) and a

tensor (the Bondi news). The mass and angular momentum aspects integrated over a cut

93
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at null infinity define the total mass and total angular momentum?® of the system at that
time and the news tensor controls how these quantities change in time. In particular, one
can show that if the news tensor vanishes (and the matter stress energy tensor goes to
zero fast enough at future null infinity) the total mass is constant, while if the news tensor
is non-vanishing the total Bondi mass monotonically decreases in time capturing the fact

that the system loses mass by emitting gravitational waves.

In the presence of a cosmological constant the nature of infinity changes: with nega-
tive cosmological constant conformal infinity is timelike while with positive cosmological
constant infinity is spacelike. As there is no null infinity in either case one may question
whether analyzing Einstein equations with non-zero cosmological constant in Bondi gauge
would be useful. There are however several reasons to do this. In the case of a negative
cosmological constant, as we review below, asymptotic solutions in Fefferman-Graham
gauge [59] have a clear holographic meaning [60] and one would like to understand the
holographic meaning of the data in Bondi gauge. This may then be used to get insight
into a possible holographic structure of asymptotically flat gravity. In addition, Bondi-
like gauges where Einstein equations take a nested form have been in the used already
in the holography literature (see [162] and references therein) and it would be desirable
to understand how to extract the holographic data directly in this gauge. Furthermore,
an analogue of Bondi mass with many interesting properties has already been defined for
a class of asymptotically locally AdS spacetimes [69] and one would like to understand

whether such a quantity exists more generally in asymptotically locally AdS spacetimes.

In the case of positive cosmological constant such results are needed even more urgently:
current observations indicate that we live in a Universe with a positive cosmological con-
stant and we have also observed gravitational waves. Yet a satisfactory discussion of
gravitational waves in de Sitter spacetime is still missing. Recent works addressing these
issues include [41, 163, 42, 43, 44, 164, 48, 46, 47, 49, 165].

With negative cosmological constant, the appropriate boundary conditions are to fix a
conformal class of metrics on the conformal boundary, and a natural coordinate system
to use is Gaussian normal coordinates centred at the conformal boundary, the Fefferman-
Graham gauge [59]. One may then obtain the general asymptotic solution to Einstein
equations by treating the radial coordinate as a small parameter. The Einstein equations
become algebraic in this gauge (i.e. they are solved by algebraic manipulation rather than
by integrating differential equations) and the pieces of data needed that are left unde-
termined by the asymptotic analysis are the conformal class and a covariantly conserved
symmetric traceless tensor (in even dimensions, in odd dimensions the tensor has a trace).

In holography, the boundary metric is the background for the dual CFT and the tensor

IThis definition of angular momentum suffers from supertranslation ambiguities. This issue will not
play a role here.
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is (the quantum expectation value) of the energy momentum tensor [58, 60]. The same
tensor can be used to obtain the bulk conserved changes when the spacetime possesses

asymptotic Killing vectors [71].

With positive cosmological constant, one may similarly use Gaussian normal coordinates
centred at future infinity and work out the asymptotic expansion [166] and the data are
again a conformal class of metrics and a covariantly conserved symmetric traceless tensor.
Actually, the asymptotic solutions for positive and negative cosmological are related by

simple analytic continuation [62].

With non-zero cosmological constant, one may foliate infinity with null hypersurfaces,
now ending either at timelike infinity (negative A) or spacelike infinity (positive A). The
structure of the Einstein equations in Bondi gauge and in the presence of a cosmological
constant is very similar to that with no cosmological constant. To explain the similarities
and differences relative to the case of no cosmological constant we first briefly review the

latter.

In this thesis for simplicity we restrict ourselves to d = 4 and axial and reflection
symmetry. It would be straightforward but tedious to relax these conditions. The metric

in Bondi gauge (for any cosmological constant) then takes the form

ds® = — (Wr2625 — U27‘2€27)alu2 — 2628 dudr—

(3.1.1)
2U eV dudf + v (e*7df* + 7 sin’ 0d¢?).

Here u is retarded Bondi time, r is a radial coordinate and 0, ¢ parametrise the transverse
space (which is topologically an S?) and W, U, 3,7 are functions to be determined by

solving Einstein equations.

We find it useful also to define the coordinate z = 1/r, which brings infinity to z = 0.
Inserting (3.1.1) in the Einstein equations leads to four main equations and three supple-
mentary conditions. One can then show that the coefficients appearing in these equations
are regular as z — 0. This means that they admit asymptotic solutions with W, U, 3, ~
being regular around z = 0 and one can obtain the asymptotic solutions by successively
differentiating the equations w.r.t. z, setting z = 0 and solving the resulting equations (as
was done for AdS gravity in Fefferman-Graham gauge in [60]). In all cases we solve the
resulting equations in the most general way, so we obtain the most general asymptotic so-
lutions of Einstein equations with the only assumption being that the functions W, U, 3, v

are four times differentiable.

With no cosmological constant, one provides as initial condition the value of v at a null

hypersurface u = ug = const. Imposing the “out-going gauge condition” ., = 0 2 (as

Indices after comma indicate differentiation, i.e. . = dv/0z etc.
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in [1]) one finds that all functions admit regular Taylor expansions around z = 0, and
one can iteratively solve for all coefficients, except that the coefficient W .., U ..., . are
left undetermined by the asymptotic analysis (apart from two equations that link their
uw and 0 derivatives). These three functions are essentially the Bondi mass aspect, the
angular momentum aspect and the Bondi news mentioned earlier and the relation of their
derivatives is linked to the monotonicity of the total Bondi mass. This data is then enough
to determine v, which allows us to obtain y at u = ug+ du and thus continue the iterative
construction of the solution. Note that if one is to relax the “out-going gauge condition”

then the solution will also contain logarithmic terms in z [34].

In the presence of a cosmological constant (with any sign), three of the four main
equations can be solved in exactly the same way as in the A = 0 case but the fourth
equation couples the coefficients in such a way that the integration scheme we used for
A = 0 does not work any more. We have found however two alternative integration
schemes. First, we note that the “out-going gauge condition” 7 ., = 0 is now implied by the
field equations, so there is no possibility for logarithms in the case of the vacuum Einstein
equations with cosmological constant (in four dimensions). In the presence of matter such
terms can arise and they always have a meaning in the AdS/CFT correspondence: they
are related to conformal anomalies of the dual CFT. The cases of A > 0 is related to A < 0
by analytic continuation. We will phrase our discussion using the AdS language, but the
same integrations schemes also apply to the dS case (but one should note that 9, now

becomes spacelike at future infinity).

The first integration scheme, which we call the “boundary scheme”; requires as initial
data the values of U, 5,v and 7 ..., U ..., W ... at z =0 (i.e. at the conformal boundary).
One can understand the meaning of this data by transforming to the Fefferman-Graham
gauge. Recall that in Fefferman-Graham gauge (I is the AdS radius)

dp?* 1 u
p% + ?(g(o)ab + %9200 + 0 9@3)ap + - - )dada®| | (3.1.2)

ds* = I?
where now the free data is g() and g(3) (with g3y traceless and divergenceless), with g
being a representative of the conformal class and the background metric of the dual CFT
and g(3) is related to the energy momentum tensor of the dual CFT. Now U, 8,v at z =0
determine 9(0) while v ...,U ..., W ... at 2 = 0 determine 9(3)- So the analysis in Bondi
gauge reproduces the salient features of the asymptotic solutions in Fefferman-Graham

gauge.

As mentioned earlier, one can obtain the bulk conserved charges from g(3) and thus as
in the asymptotically flat case U ..., W ... are related to conserved charges, and so is 7 ...
which was not related to a conserved charge in the asymptotically flat case. In contrast

to the asymptotically flat case v, is now fully determined in terms U, 3,y at z = 0 ,
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i.e. the analogue of the news is now fixed. If we further restrict to Asymptotically AdS
solutions, v, actually vanishes and the Bondi mass is constant. Similar observations were
made in [41, 164, 46, 47, 49] (mostly for the dS case). One can understand this result
as follows. Since AdS and dS do not have a null infinity, any gravitational radiation will
have to be absorbed at the conformal boundary and this would make the boundary metric
time dependent. If we fix the boundary metric to be time independent as in the case
of Asymptotically AdS solutions then there is no possibility for gravitational radiation.
A class of radiating spacetimes in AdS, the Robinson-Trautman spacetimes are indeed

asymptotically locally AdS and have a time dependent boundary metric [167, 69].

The second integration scheme is a hybrid version of the flat scheme and the previous
one: one fixes now v, W ..., U ... at a null hypersurface u = ug = const and U, 3,7 at
z =0, for all times u > ug. With this data one can recursively construct the solution to

the future of the initial hypersurface.

The rest of this chapter is organised as follows. In section 3.2 we provide the detailed
derivation of the asymptotic solutions and in section 3.3 we compare and contrast the dif-
ferent integration schemes used in section 3.2. In section 3.4 we derive the transformation
from Bondi gauge to Fefferman-Graham gauge and discuss the holographic interpretation
of the functions appearing in the asymptotic solution in Bondi gauge. In this section
we also illustrate the discussion using AdSy4, Schwarzschild AdS; and AdS, black branes
as examples and discuss the properties of Bondi mass for asymptotically AdSy solutions.
We conclude in section 3.5. The chapter contains a number of appendices: in appendix
A.1 we present the solution of the supplementary conditions for asymptotically locally
(A)dS solutions, in appendix A.2 we provide technical details about the coordinate trans-
formation from Bondi gauge to Fefferman-Graham gauge, in appendix A.3 we discuss
the presence of logarithmic terms in the asymptotic solutions when appropriate matter
is present and in appendix A.4 we show the equivalence of the Bondi and Abbott-Deser

masses in asymptotically AdS spacetimes.

3.2 The Einstein field equations

In this section we will compute the vacuum Einstein equations in the presence of a cos-
mological constant for an axisymmetric, ¢-reflection symmetric Bondi gauge metric. The
techniques employed in doing this are very similar to those of [1] and many of the properties

of the original method carry over.
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3.2.1 General considerations

We first apply some simplifications to the general Bondi gauge metric. Working in coordi-
nates (u,, 6, ¢), we enforce both axi-symmetry (0/9¢ a Killing vector field) and reflection
symmetry in ¢ (so the metric is invariant under d¢ — —d¢). In Bondi function notation,
this means we set hgy = hgg = U ¢ =0, reducing the number of unknown functions to
four. These choices are made entirely for computational simplification in the calculations
that follow.

Following [1], we now write the remaining functions in the form
X = Wr2e8, hop = r2e?7, hgp = r? sin? fe= 27, Ul = —2U (3.2.1)
giving us the line element

ds® = — (WrQeQﬂ — U27“2627)du2 — 2628 dudr—

(3.2.2)
2Ur%e® dudf + 2 (e*7d6? + e~ sin® 0d¢p?).

This choice of metric has a restriction in the determinant along the sphere ( det(hap/r?) =
sin?@); r is a luminosity distance. The Einstein equations are expressed in terms of the
four metric functions (y(u,r,0), 5(u,r,0), U(u,r,0), W(u,r,0)).

In this chapter we will analyse the Einstein vacuum equations,
Ry = Agu. (3.2.3)

The generalization to include matter would be straightforward. It is quite common in the
relativity literature to solve Einstein’s equations with “asymptotically vacuum” matter
such that lim, ,, 7, = 0; an example can be found in [12], involving an asymptotic
power series expansion in negative powers of the radial coordinate. However, as is well
known in holography, the presence of matter generically affects the powers arising in the
asymptotic expansions and logarithmic terms can arise for matter of specific masses, see

the discussion in appendix A.3 as well as the references [60, 62].
Following [1], we separate Einstein’s equations into the four ‘main equations’
Ry =Ryg=0, Rgg=Ar?e®", Ryy=Ar?e ? sin’0; (3.2.4)

three ‘trivial equations’
Ry =R,y = Rgy =0 (3.2.5)
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and three ‘supplementary equations’
Ryu = —A(W’I"QEQB —U?%e?), Ry =—-AUr%**, R, = —Ae?B. (3.2.6)

The main equations are so named because they must be solved in order to generate solu-
tions to the field equations. The trivial equations are automatically satisfied because of
the symmetries of the spacetime metric. The supplementary conditions will be shown to
provide constraint equations for the functions of integration arising from the main equa-
tions. These will be discussed in section 3.2.4 but first we will focus our attention on the

main equations:

0= ~Rpy =4 B, = 57(3, | ! (3.2.7)
0=2r’R,y = [T462(7_'8)U7r]7r* (3.2.7h)
2r%[B,r0 — V0 + 27,70 — 281" — 27, cot 4]
—2Ar2e?8 = —Ryge?P) — rzRiew =2(r’W) . + %7’462(7_5)([]702 — 72U g~
4rU g — r?U,,. cot 6 — 4rU cot 0+ (3.2.7¢)

26251 — (374 — B) cot §—
Y00 + Boo + (B6)° +276(7.0 — Bo)]
—Ar?e?P = —T‘2R£62’8 =2r(ry) ur + (1 =9, (FPW) o = 13 (10 + 70 ) W=
r(1 =71y, )Ug —r%(cot § — v9) U+
r(2ry,0 + 27,9 + 17y, cot @ — 3cot 6)U (3.2.7d)
+ 2B [—1 — (379 — 28) cot H—
Y00 +27,0(7v,0 — Bo)l-
Notice that the first two equations agree with the first two main equations in [1]. The
second two are altered by the inclusion of the cosmological constant but they manifestly

reduce to the original equations in the A — 0 limit. We will now follow closely the

integration scheme of [1] to see how this alters the solutions to the equations above.

We will first solve the main equations following the same approach as the original analysis

[1]:
1) Specify v(u,r,0) on an initial null hypersurface N, i.e. y(ug,r,0).

2) Solve (3.2.7a) on the null hypersurface N, to compute [3(ug,r, ). This is possible

as only ~y(ug,r,0) appears in the equation,

3) Solve (3.2.7b) for U(ug, r,8). This is possible as only v(ug, r,0) and S(ug, r, ) appear

in the equation.
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4) Solve (3.2.7¢) for W (ug,r,0). Only ~v(ug,r,0), B(ug,r,60) and U(ug,r,0) appear in

the equation.

5) Solve equation (3.2.7d) for v, (ug, 7, 8) i.e. to obtain v on the next null hypersurface
Nu0+5u-

6) Repeat from step 1 with the new Bondi time ug + du. Iteration gives the Einstein
solution for the future domain of dependence of N, D (N,,), see Fig. 3.2.1.

Figure3.2.1: Causal diagram illustrating how one applies the BMS scheme when given
suitable initial data on a null hypersurface Ay,

Specialising briefly to the case of AdS, we observe that unlike asymptotically flat space-
time we have DT (N,,) # J(Ny,), where J indicates the causal future. To solve the
equations in J*(MN,,) we would need to specify extra data on a new hypersurface (e.g.
the conformal boundary .#). We will discuss in detail the integration scheme for AdS

asymptotics in section 3.3.

In the case of asymptotically locally dS spacetimes the situation is slightly different,
firstly because we now have two boundaries: future spacelike infinity, .# ™, and past space-
like infinity, .# —. We will restrict consideration to a retarded null foliation of the future
spacelike boundary, .# 7, when we discuss this case in greater detail in section 3.3.3. We

will see that this has a number of different subtleties when compared with the flat and
AdS cases.
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3.2.2 Solving the main equations asymptotically

We are interested in solving the Einstein equations in the asymptotic region (large r) of the
spacetime in the most general manner possible. It is convenient to implement an inversion
map

r==- (3.2.8)

z
so that solving the equations as r — oo is reduced to the analytically simpler procedure

of solving around z = 0. Carrying out this substitution in the main equations gives

0=28+2(7:) (3.2.9a)
0=1489 — 2277280, — 22677 2PU B, — 4z cot Oy, + 4277+ (3.2.9b)
22627_2’3[],2’)/,2 + 220 .0 — 227,20 + 2627_26[],2,2
—20e* = 6W + 4z cot OU — 2:W , — 42U g — 2222274
222628727 cot 050+ 2z2626_27(679)2 —622e*8727 cot 09—
(3.2.9¢)

1422628 gy o + 42262572 (7 )2 + 2226257213 o

22227y gg + 2% cot OU , + Z;&“"”(U’Z)2 + 22U 9
—Ae?P = 3W — 3zcot OU — 2Ug+ 22Uy — 2W, +22Wry , + 2277, —

2228727 4 952620727 ot 05,6 — 322628727 cot 0y6—

2Z2€2’8727,879’Y,0 + 2Z2€2ﬁ72’y("}/79)2 — 22€2ﬁ*2my790 + 2% cot oU ,—  (3.2.9d)

2y U, — 22 cot OU,, — 22U gy, — 22W oy, —

2z2U’y,za - zQW’y’zz — 2227,%.

where we have multiplied the second equation through by z, and the last two through by

22 in order to obtain expressions that are regular at z = 0. We have also rescaled the first

equation by dividing through by 223; this is not necessary to make the equation regular

at z = 0 but enables iterative differentiation of the field equation.

We assume that the metric functions (v, 3, U, W) are suitably differentiable (at least C*)

at z = 0 and derive asymptotic solutions to the field equations via the following procedure:
1) Evaluate the field equations at z = 0 and solve the resulting algebraic equations.
2) Differentiate the field equations with respect to z.
3) Return to step 1) for the differentiated field equation.

We will follow this procedure equation by equation, making use of the nested structure to

move from one to the next.
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3.2.2.1 The first equation

The first main equation is (3.2.9a). Applying the differentiation procedure and solving at

each order we obtain

B,2(u0,0,0) =0

1
zz 7079 = =3 z ,O,H 2
B2 (uo,0,0) 2[7, (u0,0,0)] (3:2.10)

5,zzz (’U,(), 07 9) = —2"}/’2(110, 07 6)7,,22 (U(), 0; 6)
ﬁ,zzzz (u07 07 ‘9) =3 [(7,2,2 (u07 07 ‘9))2 — Y,z (Uo, 07 H)W,zzz (Uo, Oa 9)} .

This procedure can be continued to arbitrary order although the terms displayed above
will be sufficient for our analysis. In solving the subsequent field equations, it will be left
implicit that the equations are evaluated at (ug,0,60). Note that the iterative procedure
does not produce an equation for S(ug,0,0); the latter is an integration function, which
we denote as [By(u, ) = 5(u,0,0).

3.2.2.2 The second equation

The second equation is (3.2.9b). Given that we know both « and S from the first equation,
we can now solve this equation via the recursive differentiation procedure. The first two

iterations give

U, = 2507062(50—"1) (3.2.11a)
Uz = =267%727(260,07,2 — 27,07, + 7,20 + 2 c0t(6)7,2) (3.2.11b)

)

where all the equations are implicitly evaluated at z = 0 on the hypersurface N,,. The
procedure does not constrain U(ug,0,6) thus giving an integration function Uy(u, ) =
U(u,0,0).

The third iteration of the differentiation procedure does not give an equation for U ...

but instead a constraint equation:

27,07, — V220 — 2¢0t(0)Y 22 = 0 (3.2.12)

This equation was solved in the asymptotically flat case of [1] by setting 7., = 0, the
‘outgoing wave condition’. It has since been argued, most notably in [34, 168, 35|, that this
equation implies the existence of polyhomogeneous asymptotic solutions for asymptotically

flat spacetimes i.e. series involving terms of the form 2%log?(z), i,j € N.

We will leave this equation unsolved for now and return to discuss it after we solve the
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fourth of the main equations; we will argue that the solution to that equation forbids the
possibility of a polyhomogeneous form of the solution for non-zero cosmological constant
(in the absence of matter). For now, we merely note that this equation indicates the
presence of another integration function, as U ...(uo,0,0) remains undetermined by the
iterative procedure. We name this function Usz(u,0) = U ,..(u,0,0)/3! where the choice
of normalisation will become clearer as we continue to solve the main equations. In the
asymptotically flat literature, this function is related to the Bondi angular momentum of
the spacetime [1, 169].

The fourth iteration of the differentiation procedure produces the following equation

U,zzzz = - 26727(_1662&)50,9'7?; + 3062607,9’7?; - 1562&)7,,297,1 + 4626050,97,22’7,2"‘
1062'807,zz7,97,z - 362507,2297,z + 2625060,07,%2 + 662’80’}’,%27,9_
462/807,zz7,z0 - 362/807,2,&9 —30 COt(g)QQBO’Y,Bz_
10 cot(ﬁ)ezﬁofy@/y,z — 6cot(9)62’30”y,zzz + 36277,,3[]’222)
(3.2.13)

which is an algebraic equation for U ..., in terms of U ,,,. The presence of this equation
makes sense because of the structure of the integration functions for equation (3.2.9b). If
we were to repeat the differentiation procedure we would see that 8§n+1)U would be given
algebraically in terms of &g")U for n > 3 so we observe that knowledge of U ...(u,0,6)
would allow us to compute all higher derivatives at z = 0. We will later see via the

supplementary conditions that one does arrive at an evolution equation for U ...

3.2.2.3 The third equation

The third equation is (3.2.9¢); this is the first equation that explicitly includes the cosmo-

logical constant A and thus it will have different solutions from [1].

The equations are again solved by applying the iterative differentiation procedure:

W= —éewo/\ (3.2.14a)
W, = cot(0)Up + Up e (3.2.14b)

W.. = 62(’8077)(2 + Ae2'y(fy7z)2 + 4 cot(8)Bop + 8(5079)2—1—
, (3.2.14¢)
6 cot(0)y,0 — 850,070 —4(7,0)" + 480,00 + 27,00)-

The third equation does not give an algebraic equation for W .., but rather another
constraint equation

Aoy .. =0 =  4.7..=0. (3.2.15)
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Note that this equation is unique to A # 0. We will not yet solve this constraint: the
solution is determined by the fourth main equation. This constraint equation again im-
plies an integration function for the third equation as the differentiation procedure does
not produce an equation for W .... We will name this integration function W3(u, ) =
W .22(u,0,60)/3l. In the asymptotically flat case, this function is related to the Bondi
mass aspect of the spacetime, a concept we will examine in more detail in the asymptoti-

cally AdS case in section 3.4.

The structure of the higher order equations in the recursive differentiation procedure

is similar to that of the second equation. The result of the procedure is that aé”“)W

is determined algebraically in terms of 8§n)W. We again remark that once we know the

integration function W3 we can then compute all derivatives of third order and higher.

3.2.2.4 The fourth equation

The fourth and final main equation, which we consider as an equation for v, is (3.2.9d).
We again apply the recursive scheme to solve for v,. Using the solutions to the previous

equations, the first non-trivial equation is
3
Az = —Ze 0 (cot(0)Uo — Unp — 20070 — 27) (3.2.16)

This equation is presented slightly differently to the previous main equations; we will dis-
cuss this further in section 3.3. The key point here is that the presence of the cosmological

constant couples the equation for 7, to v ..

The next non-trivial equation is
AePor . =0 = ~..=0. (3.2.17)

This constraint automatically solves the two previous constraint equations (3.2.12) and
(3.2.15). This is precisely the outgoing wave condition that was enforced a priori in [1]
and has since been understood in more generality in a Bondi type set up (see e.g. [170]).
In the case of non-zero cosmological constant, .. = 0 is required by the field equations

i.e. it is not an assumption.
At the next order of the recursive differentiation procedure, we find the equation
62777uzz(u07 07 0) =0 = ’Y,uzz(um 07 9) =0 (3.2.18)

which implies that the form of ~ .. (uo,0,0) is preserved on hypersurfaces N, for u >

ug. Since 7, (up,0,0) = 0 from (3.2.17), the outgoing wave equation is propagated into
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D*(No).

When A = 0 equation (3.2.16) implies y(up,0,0) = 0 (as we will shortly discuss in
detail in section 3.2.3), 7., = 0 for u > ug as we just discussed, and we are left with one
integration function v ,(u,0,0) = v1(u,0). (The u-derivative of) this integration function

is essentially the Bondi news.

Returning to the A # 0 case we note that the procedure of differentiation did not pro-
duce an equation for 7, (ug, 0,6), again implying the presence of an integration functions
7,2(4,0,0) = v1(u,0) (as in the A = 0 case). Finally, to determine +,, (so that we can
move to the next null hypersurface N,,1s5,) we also need to know non-trivial integration
functions (Up, fp). We will discuss in more detail (A)dS integration schemes in section
3.3.

As a final comment we note that the next non-trivial equation produced by the iterative

procedure is

Aenes = = e 2D (A8 68 ()7 — 9663 o g 0(2)? + 6627 o g,
24e70 gp(7,)? + 108> By 9 .07, — 48¢*P 7 9 07, +
1862&)’7,7,99’)’,2 + 18¢2P0 (7,:0)* — 24 cot®(6)e* (72)*+
90 cot(8)e*™ By 9(7,2)* + 24 cot(8) €™y 4(7,.)*+
30 cot(0)e*y .97,. — 24 csc?(0)e*7 (v,.)? — 8e¥ vy yzzt
€U ,...(—680,9 — 27,0 + cot()) — 12e*7 ... Ug g—
€*U 220 — 8>V 222000 —

12 cot(0)e*y,.2.Up — 2¢71,. W .....)

(3.2.19)

which shows that the evolution equation for 7 ... is coupled to v .... via the cosmological
constant A. This coupling is a general feature of this field equation at higher orders,
namely the equation for a&")mu is given in terms of 8§n+1)'y. So if we provide a new
integration function 7 .., (u,0,6)/3! = y3(u, #) then all higher order terms are determined.

A more detailed discussion will be given in section 3.3.

3.2.3 General form of the asymptotic solutions

Using the procedure of recursive differentiation we have obtained a general form for the
asymptotic solution to the field equations. The key to this structure is that v ,,(u,0,0) =0
which results in the vanishing of potential polyhomogeneous terms in the asymptotic
solution (as discussed in [34]). Note that the vanishing of this term is forced by equation

(3.2.17) rather than being assumed as it was in [1].
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In previous literature it has been found that the metric function expansions can contain
logarithmic terms of the form log’ ()r%, both for the asymptotically flat case in [168, 94]
and for arbitrary A but with matter in [48]. These cases are qualitatively different. In
the asymptotically flat case there is no analogue of (3.2.17). In the presence of a negative
cosmological constant, logarithmic terms in asymptotic expansions arise whenever the
coupled matter is of specific masses, see for example [60, 62]; such matter is associated

with matter conformal anomalies in the dual CFT.

For pure cosmological constant, the most general form of the asymptotic solutions take
the form of power series about z = 0, consistent with the boundary conditions of asymptot-
ically locally AdSs and dS, in the absence of matter. Specifically, v admits an expansion
of the form

gl "y
~v(u,r,0) nyn u,0)z Z z Yo = — (3.2.20)

|
nl,—o

and the other functions admit analogous expansions. These conditions ensure that the
metric coeflicients do not grow exponentially with r and that the metric has a pole of
order two at the conformal boundary .#; this will be discussed in greater detail in section
3.4.

We also note how the presence of the cosmological constant in the Einstein equations
modifies the solutions compared with the asymptotically flat case considered in [1], even
though the asymptotic series form of the equations initially seems to be the same. At this
point it will be helpful to consider the AdS and dS cases separately, as there are subtle

differences in the two cases.

The key assumption made in [1] which results in this discrepancy is that the vector
field 0, is everywhere timelike <= g¢,, < 0. Physically, this is a reasonable condition
to impose on asymptotic solutions for A < 0, as the neighbourhood of the conformal
boundary in these cases is exterior to any potential region where 0, ceases to be timelike
(e.g inside a horizon). We note that the leading order terms (7o, S0, Up) are not present

in the asymptotically flat case and are forced to vanish due to this condition.

These choices are overly restrictive in the AdS case as the cosmological constant allows

for freedom in these functions. To see this, consider the limit

lim Juu _ _(W0€2ﬁ0 _ U02€2%) <0 (3.2.21)

r—oo 2

where the inequality on the right hand side follows from the condition that 0, is timelike.
In the flat case, Wy = 0 and so the above equation reduces to Uy = 0. It was then argued
n [1] that Uy = 0 implies 79, = 0 (use (3.2.16) with A = 0) and this may be reduced
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further to 9 = 0 by using a coordinate transformation (for details see [1]).

In the AdS case Wy = —Ae?5%0 /3 so the inequality is different, namely

AePo A 2B0—"0
63 + UG < 0= [Up| < [ —getbo2m = ‘ l (3.2.22)

from which we see that Uy can now clearly be non-zero, implying that generically 79 # 0

also.

The integration function fFy is also set to zero in the flat case, using the freedom in the
BMS group. Since the BMS group is the asymptotic symmetry group of flat space-time
it would be premature to make the same choice before determining the AdS asymptotic

structure. For the time being we will choose 8 # 0 to retain full generality.

Turning now to the dS case of A > 0, the previously imposed condition of 9, being
timelike is unphysical in the asymptotic region. Using the Bondi gauge in a neighbourhood
of # 7, the cosmological horizon in the asymptotically locally dS spacetime must have been
crossed, and thus the vector field 0, is spacelike in the region of interest, see discussion
in [171]. Thus one should not impose this condition in the dS case, leaving (7o, B0, Uo)

generically unconstrained.

A second important difference to note, for any non-zero cosmological constant, is that
the cosmological constant couples the fourth equation at each order in z. We find equa-
tions which give één)'y,u in terms of 8§n+1)'y, e.g. (3.2.16) and (3.2.19). This coupling
of orders together with the structure of the other main equations implies that if we are
given suitable seed coefficients then we can obtain all the other expansion coefficients. The
initial coefficients are (7o, Bo, Up) together with (73, Us, W3); from these the entire solution
can be determined algebraically. We will see below that these coefficients have an impor-
tant holographic interpretation but first we analyse the remaining Einstein equations, the

so-called supplementary conditions.

3.2.4 The supplementary conditions

Although the main equations give equations for the four metric functions, they do not
form the complete set of field equations. The remaining three supplementary equations

are:

Ruw = Aguu = —AWre? — U%r2e?); (3.2.23)
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Ry = Aguw = _AUTQCQ,)/’ Ryr = Agur = —Ae?.

In the asymptotically flat case, these equations were denoted as supplementary conditions
as they are automatically satisfied provided they hold on a particular hypersurface of
constant radius and the main equations are satisfied [2]. In this section we will discuss

how this property carries over to the A # 0 case.

Following the original work, the supplementary conditions are derived from the con-

tracted Bianchi identity
14 14 1
\Y% Gz/,u =9""Vs (Ru,u - 29upR> =0. (3224)
We can expand the Bianchi identity as
ve 8 Vo 1o _
9" (Buvo = T3 Rou) = 9" Th R = 5By = 0 (3.2.25)

and using R, = V(9" Rus) = 9"V, Ry = 9" Ruoy — 2g””Fg#R5V allows us to write

the contracted Bianchi identity as

1
gyg (Ruu,a - §Rua,u - FEURﬁ’LL> =0. (3226)

To analyse the components of the contracted Bianchi identity we use the inverse metric

0 —e 28 0 0
o —e 2P We28p2 _[e28 0
7= 0 —Ue 28 e 2p2 0 (3:2.27)
0 0 0 e2r—2sin=24

where we use the coordinates (u,r, 6, ¢). The following identity is also useful:
g, =2 20r ! (3.2.28)

This identity is computed using the inverse metric above and the metric (5.1.10); the same

identity was given in [1], up to a sign change due to different signature conventions.

We will now examine the components of the contracted Bianchi identity (3.2.26) and
show that they lead to the supplementary equations. When doing this, we enforce the

main equations, expressed as
Rrr = Rrg = 0, R99 = Agag, R¢>¢ = Ag¢¢ (3.2.29)

as well as the trivial equations R,y = R,4 = Rgy = 0.
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Let us consider first the g = r component of (3.2.26)
vo 1 B
9\ Rrvo — §R,,m — Iy Rar | = 0. (3.2.30)
Using the main and trivial equations this reduces to

1
) (6”"Agoor + 9°*Ngosr) = 6" Thio Ruw = 0. (3.2.31)

The latter term can be processed using the identity (3.2.28) and after algebraic manipu-

lation we obtain
Rur = —Ae? = Agy,. (3.2.32)

which is precisely the {ur} component of the field equations. Thus we conclude that if

the main equations hold then the {ur} equation is automatically satisfied.

Next consider the p = 6 component of (3.2.26)

1
g’ (Reu,a - iRuo,Q - ngRﬁe) =0 (3.2.33)

Uising the main and trivial equations we obtain

gurRue,r - QWF%Ru9+
(3.2.34)

1 1
A <9r9999,r + 5999999,9 — 9" Gurp — §9¢¢9¢¢,9 — Qwrgggee> =0.

Applying equation (3.2.28) to the second term on the first line and using equations (5.1.10)

and (3.2.27) to write the second line in terms of metric functions we obtain
— T_2€_2ﬁ£(T2Ru9) = Ae%_wr(rU,r +2U (24 7,)) (3.2.35)
which can be integrated to give
r?Ryg = —AUr*e?" + f(u,6) (3.2.36)

where f(u,6) is an integration function. Dividing through by r? gives

0 0
Ry = —AUr?e®" + F(w.0) _ Agug + M (3.2.37)

r2 r2

which implies that the {uf} component of the Einstein equations is only satisfied if

f(u, @) = 05 this is our first supplementary condition.

Finally consider the u = u component of the contracted Bianchi identity

1
g’° (RWU — 5 Ruou — F50R5u> =} (3.2.38)
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Applying the field equations (including f(u,6) = 0), we obtain
gurRuu,r - QWF%RW-F
M9 Gursr + 9" (Guro + Guor) + 9% - -
ur,r ur,§ T Guld,r g Gub 0 2999,u (3239)

1 g g
§g¢¢g¢¢,u — 9”7 Gur — §" Fﬁggue} =0.

The structure of this equation is similar to that of (3.2.34): the first line contains the Ricci
tensor terms of interest and all other terms can be written explicitly using (5.1.10) and
(3.2.27). Doing this gives

—r 272 g(ﬁRuu) = AT[2W (2+78,) +rW | —20e¥7 2P rU [2U +7U . +rU~,] (3.2.40)
T

which can be integrated to give
1?Ryy = Ar* (= We? + U%e?) + g(u, 0) (3.2.41)

with g(u, @) an integration function. Thus

g(u,0)
7,2

0
Ruu _ A?"2(—W€2/B 4 U2627) + g(:fé) — Aguu +

(3.2.42)
implying that the second supplementary condition is g(u, ) = 0.

Explicit expressions for the supplementary conditions may be derived using the solutions
to the main equations up to O(1/r*) for (v, 3,U, W) and then inputting these into the
above equations to derive expressions for (f,g). The resulting equations take the form of
evolution equations for Us and W3 and they will be discussed further in section 3.3.2.2.
The explicit expressions for these equations can be found in appendix A.1. Here we present

the much simpler expressions for asymptotically (A)dS and flat spacetimes.

Asymptotically (A)dS spacetimes in Bondi coordinates have vy = g = Uy = 0 (this will
be shown explicitly in section 3.4) which gives ;3 = 0 by equation (3.2.16). Setting these

values in the supplementary equations gives us

—_

U3’u = 5(4/\ Cot(9)73 -+ W379 + QA’yg,g) (3.2.43&)

1
W3 = —§A(C0t(9)U3 + Ugﬂ) (3.2.43b)

For the asymptotically flat supplementary conditions, we again have v9 = 5y = Uy = 0 as
well as A = 0 but now v; # 0. Then

1
Usu = 3 (T71,071,u + 71 (371,u0 + 16 cot(0)v1,u) + Wi p) (3.2.44a)
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W37u =2 (’yLU)Q —+ 2’)/1# — Y1,u60 — 300t(0)717u9. (3.2.44b)

in agreement with the expressions given in [1].

3.3 Integration scheme

In this section we will discuss the integration scheme used in the previous section in order
to solve the Einstein equations. We will begin with a reminder of the Bondi integration
scheme in asymptotically flat spacetime before focusing specifically on the A < 0 case of
asymptotically locally AdS spacetime. We will propose two modified integration schemes
for the AdS case which will be compared and contrasted to the flat scheme. Much of
what we will discuss for the AdS case has a corresponding description in the A > 0 case
of asymptotically locally dS spacetime, a topic we will discuss briefly here and elaborate

upon in future work.

3.3.1 The flat scheme

Let us briefly review the integration scheme in the asymptotically flat case as presented in
[1]. The basic quantity necessary to solve the field equations for all u was the knowledge
of 7 on some initial null hypersurface N,,; this allows us to solve the main equations up
to the undetermined integration functions. In the Ricci flat case we can reapply the field
equations (3.2.7a-3.2.7d) although we now set A = 0 in those equations. For the remainder

of this subsection we have A = 0.

Knowledge of | N, allows us to solve for the other functions. Disregarding integration
functions, (3.2.7a) determines 8|y, ; (3.2.7b) determines Uy, , (3.2.7¢) gives Wy, and
(3.2.7d) allows us to compute our 7 at the next time step i.e | Nugts® Iterating this process
allows us to determine all metric functions at time u > wyg, i.e. the functions in the future

domain of dependence of Ny, DT (N,,), as shown below in figure 3.3.1.

Turning to the integration functions, we recall that the main equations in the flat case
admit five such functions; (Bo, Uy, Us, 1, W3). The original argument of [1] was that Uy
and [y could be set to zero. Up is set to zero to preserve the condition that the vector
field 0, is everywhere timelike and fy can be fixed to zero using the freedom of the BMS
group. These restrictions also give vy, = 0 and thus we can also set 79 = 0 by a suitable

BMS transformation.

Such considerations reduce the number of unknown functions to three: (vq,Us, W3),
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Figure3.3.1: Penrose diagram illustrating the integration scheme for asymptotically flat
space time

all of which are functions of u and #. These integration functions have well understood
physical meaning: ~; plays the role of the Bondi news function, Us the Bondi angular
momentum aspect and W3 the Bondi mass aspect [1]. If we know the values of these three
functions and we know ~| Nug then from the main equations we can obtain the full solution
to the Einstein equations in the region D (A,,). The integration scheme runs as follows

(for the no-log case with 2 = 0)

3.2.7a 3.2.7b 3.2.7c
71(“’70) gﬁl?ﬁQaﬁfu MUlaUZ QWG,W;{,WQ,WLI (41&)

so 71 gives us these functions. The rest of the scheme is
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(3.7a) (3.7h) (3.7¢) (3.7d)
Yn (o) ——— Bry1(ug) — Upt1(ug) — Wita(ug) —— Ynuluo) (4.1b)

where the subscript n > 2. The final arrow going back to the original function indicates
that we are solving for + at the next instant of time i.e. wug + dug, so iteration gives
us the future evolution. We note that if the functions Us, W3 are not specified for all
u a priori, this scheme treats them as integration functions which are constrained by
the supplementary conditions (A.1.1), (A.2) respectively. We will return to discuss these
equations in the context of the AdS integration schemes to follow but for now these steps
outline the procedure of the integration scheme in the asymptotically flat case, using some

of the simplifications that BMS originally applied (namely 9 = 0).

3.3.2 The AdS integration schemes

In order to understand how one needs to modify the specified data in the case of asymptot-
ically locally AdS spacetimes it is convenient to first observe the results when one naively
applies the flat scheme as described in the previous section to asymptotically locally AdS

spacetime.

To repeat the steps of the flat scheme we again specify v on an initial null hypersurface
N, as well as 1, Us, W3 over the whole spacetime. The issue with applying this procedure
to an asymptotically AdS spacetime is that we now have three additional integration
functions (yo(u, 8), Bo(u, 8), Us(u, #)) and in particular By, Uy will not be determined using
the Einstein equations (3.2.7a-3.2.7d) and the specified data (9 would be determined using
~o on Ny, and equation (3.2.16)). These functions will also appear in the expressions for
the higher order coefficients (e.g (3.2.11a)) and can be seen in the evolution equation for
Y0 (3.2.16). Clearly we will need an alternative integration scheme which specifies these

functions and thus generates a fully determined solution to the field equations.

This issue can also be framed in terms of a causal picture as in figure 3.2.1. In this figure
we see that specifying v on an initial null hypersurface N, and 71, Us, W3 for u > ug and
following the flat scheme will give us the solution in DT (A,,). In the AdS case (unlike
the flat case) this region is not equivalent to the causal future of the null hypersurface,
Jt(Ny) (as shown in figure 3.3.2 below). In order to solve the Einstein equations for

JT(Ny,) in asymptotically locally AdS space-time, one either has to specify extra data on
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an additional hypersurface or different data to that of  on the null slice NV,,,. We will now
present two different integration scheme for asymptotically locally AdS spacetimes which

will allow one to solve the field equations in J*(N,,).

J+(Nuo) - D+(Nu.o.;.

Figure3.3.2: Penrose diagram illustrating the difference between DT (N,,,) and JT(Ny,)
in asymptotically locally AdS spacetime.

3.3.2.1 The “boundary” scheme

The first scheme we present is one which we will refer to as the “boundary” scheme where
instead of specifying all coefficients 7; on an initial null hypersurface, one should specify
certain coefficients (of our metric functions) for all available Bondi time, and use these
coefficients in order to make the equations algebraic. The coefficients that should be

specified are

v, Bo, Uo, 73, Us, Ws. (4.2)

We will see later that these particular coefficients admit a natural holographic interpre-
tation. Even before relating them to coefficients in the Fefferman-Graham expansion, one

can note that the coefficients (7o, 8o, Uy) clearly specify the values of the metric functions
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(v, B,U) at the conformal boundary .#;

lim ~(u,r,0) = v (u,0), TILIEO Bu,r,0) = Boy(u,d), rlLIlgo U(u,r,0) = Uy(u,0) (4.3)

r—00

and thus define the boundary metric for the dual conformal field theory. We will under-
stand the precise physical meaning of the components (3, Us, W3) in section 3.4, when we
discuss the relation to the asymptotic expansion in Fefferman-Graham gauge. In partic-
ular, we will see that the (o, 8o, Up) and (73, Us, W3) are conjugate variables in a radial

Hamiltonian formalism, thus explaining why they provide a good set of initial data.

The scheme works in two parts. Given the boundary data (vo, 5o, Uy) we see that the

first part of the integration scheme is

3.2.7a 3.2.7b 3.2.7¢ 3.2.7d
Y0, Bo, Uo ( ) B1 ( ) Ui ( ) Wo, W1 M%---
 (3270) 8, (3.2.7b) 0, (3.2.7¢) W, (3:27d), . (4.4)
3.2.7a
EIONY

In words: we specify the data (7o, 8o, Uy) at .#; (shown in figure 3.3.3 below) at the 2-
surface where a particular null hypersurface N\, meets the conformal boundary. We can
solve equations (3.2.7a)-(3.2.7c) algebraically for the coefficients i, Uy, Wy, Wi. This is
indicated in the figure by the solid green arrow in the diagram which points from .# to

the timelike surface r = ry.

In order to continue the scheme, we need to know vy, as this function will allow us
to algebraically solve equation (3.2.7d) at the lowest non-trivial order for -; (equation
(3.2.16)). Since we know all values of 7y on .# and we know 7 ,. The knowledge of this
derivative is indicated in the diagram by the dotted red arrow which points into the bulk
spacetime, again ending on the timelike surface = r1. In order to implement this step
in a numerical scheme, one would want to know ~y(ug) and ~yp(ug — dup) and construct a
backward difference. This explains why the dotted red arrow starts at a different cut of
&, simply to indicate that we have used the extra information of v (ugp — dug) (and thus

~o,u discretely) in order to solve (3.2.7d).

The arrows point towards smaller values of r as we solve the Einstein equations. The
purpose of this is to show that as we solve the Einstein equations, we obtain the values
of higher order coefficients in the metric functions ~, 3, U, W. Obtaining these higher
order coefficients extends the series expansions (5.1.13) to higher powers of 1/r, hence our

solution includes contributions from smaller (but still asymptotic) values of r.

After these first steps have been performed, we solve (3.2.7a-3.2.7d) algebraically for

B, Us, Wo, v, f3 (no extra evolution equation is needed as the field equation imply v2 = 0,
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T3 T2 (S 54
sz’a {VO?ﬁ(%UO}
\J
/\%{& N /u?) . {sﬁls Ul7 VVU: I/Vl 7i/i/}
& N (3.7a-c) (3.7d)
/\‘Zf\ ;/ {BQﬁ U2/ LVQ?’YQ}
&

- {5}
N

Figure3.3.3: Penrose diagram for AdS indicating discretely how the first part of the scheme
is solved. This figure only includes one hypersurface, N\, for clarity; when solving the
equations explicitly we would consider all null surfaces N; in the foliation.

as noted earlier). Knowledge of these functions is not enough to continue the integration
scheme as the next unknown function in the field equations is Us, an integration function

which cannot be determined by the iteration process.

We now give the second piece of the scheme: now the functions ~s, Us, W3 are specified
for all Bondi time u. This allows us to compute the higher order metric function coefficients

via the following application of the Einstein equations

(3.2.7a) (3.2.7b) (3.2.7¢) (3.2.7d)

> Wy Y4 -

3.2.7d

73, Uz, W3
(3.2.7a)

Uy

B4
Bs

(3.2.7b) (3.2.7¢)

Us
(4.5)

(3.2.7a) (3.2.7b) I (3.2.7¢) W (3:2.7d)

’Bn n n n

as shown in figure 3.3.4.
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& 7 (3.7a-c)  (3.7d)
S R m— {567U67W6776}
RN AN —~
Y (3.7a-c)  (3.7d)

N
N

Figure3.3.4: Penrose diagram for AdS indicating how the second part of the scheme is
implemented. The logic for this scheme is much the same as the one presented on the
original diagram of figure 3.3.3.

Putting the two parts of the integration scheme together, we observe that knowledge of the
six functions ~g, 5o, Uo, Us, v3, W3 is sufficient to algebraically solve the Einstein equations

for all other coeflicients.

Finally, we recall the functions Us and W3 have close analogies to the angular mo-
mentum and mass aspect functions and may be thought of as representatives for these
functions. We will discuss the holographic interpretation of these functions and gain an

extra understanding using the AdS/CFT correspondence in section 3.4.

As a final comment upon this procedure, we note that this alternative scheme includes
no evolution from one null hypersurface to the next. This algebraic procedure may be
somewhat preferable when applied to a numerical scheme as one does not have to worry
about errors accumulating in a discretisation scheme when evolving from one null hyper-
surface to the next. We will now present another new scheme which is based both on null

evolution and boundary data.



78 Chapter 3. (A)dSy in Bondi gauge

3.3.2.2 The “hybrid” scheme

It has been shown that asymptotically locally AdS spacetimes admit an integration scheme
where one specifies data at the conformal boundary as opposed to an initial null hyper-
surface (as in asymptotically flat spacetime). We will now present a “hybrid” scheme
for asymptotically locally AdS spacetimes, where one specifies a mixture of data on the

conformal boundary .# and on an initial null hypersurface N, .

This scheme consists of the following data which one must specify before solving the
field equations: {v} on My, {70,Uo0,Bo} on & ¥V u > ug and {Us, W3} at the corner .7,,.
This is illustrated in the asymptotic Penrose diagram below. As we will see in the section
3.4, {v0,Uo, Bo} are related to positions and {73, W3,Us} to (radial) canonical momenta
in the covariant phase space of the theory, thus we effectively specify momenta on .#,,

and positions at the conformal boundary, as shown in figure 3.3.5.

‘]+(Nu0) {'707507[]0}

L {U:z,m/s}

Figure3.3.5: Penrose diagram for the “hybrid scheme”. The data which we specify is
indicated on the hypersurfaces N, and .# for u > ug. Specifying these coefficients allows
one to solve the field equations in the causal future of N, J T (Ny,)-

It remains to explain how this data is sufficient to solve for all coefficients of the series

expansions of the metric functions in J*(N,,). We will first show that one is able to
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obtain all coefficients of v and then use this to show that one can obtain all coefficients of

the other metric functions, including Us and Wi.

Specifying {70, Uo, So} at .# gives us these functions as well as all spatial and time
derivatives of these functions V w > ug. This information gives ~; and all spatial and time
derivatives of 1 ¥V u > ug via the Einstein equation (3.2.16). The higher order coefficients
of v are obtained by evolving from the initial null hypersurface instead. As we saw in
equation (3.2.17), 72 = 0, so the first coefficient to consider is 3. In order to do this
we apply equation (3.2.19) to obtain 73, on the null hypersurface N, (this can be done
because the scheme specifies v, Us, W3 on N,,). As was the case in asymptotically flat
spacetime, when applied to a numerical scheme this will correspond to knowing 3 on the
next null hypersurface N, +s5,. This procedure will repeat for the higher order coefficients
in 7 in that the Einstein equations will produce expressions for v, ,, on N, and thus will

determine 7y, on Ny 45, V 1 > 3.

Using the main equations (3.2.7a-3.2.7d) we know that knowledge of v(ug + du) is of
course sufficient to give us S(ug + du), as well as U(ug + ou) and W (ug + du) up to the
coefficients W3 and Us which are of course not determined by the main equations (higher
coefficients are also determined by these). To solve for these coefficients we will need to

consider the supplementary conditions (A.1.1), (A.2) which take the schematic form

U3,'u, = ]:(5/07 307 007 :70,'11,7 BO,U; 5/17 :)/1,'11,7 5/37 5/3,’11‘7 U37 W?n 5/4) (468‘)
W3 = H(F0, 80> Uos 70,us Bo.us 15 1,05 735 V3, Usy W3, A4, Us ) (4.6b)

where the tildes indicate that spatial derivatives of these functions may also be present.

These are u-evolution equations for the functions W3 and Us. Note that all of the func-
tions on the right hand side of each equation are known on N,,. Starting with equation
(4.6a): Ao, Bo, Uy, 0, us Bo7u,’yg, Us, W3, 74 are all given on N, as part of the specified data
and the remaining functions 91,41 4,73 can all be determined on N,,, by using the Ein-
stein equations (3.2.16) and (3.2.19) as discussed above. This means that we are able to
obtain Us,, on Ny, and thus Us on the next hypersurface Ny, 1s5,. An identical argument
holds for (4.6b), although now there is the extra requirement of knowing Uz, on N,

which is of course obtained from (4.6a).

Putting all of this together, we conclude that the specified data, along with iteration of
both the main equations and supplementary conditions is an alternative way of construct-
ing solutions to the field equations for asymptotically locally AdS metrics in the Bondi
gauge for JT(Ny,).
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3.3.3 dS schemes

Much of the previous discussion for asymptotically locally AdS spacetimes has a parallel
discussion in the case of asymptotically dS spacetimes. The two new integration schemes
that we have introduced are only dependent upon A # 0 in the field equations (3.2.7a-
3.2.7d), and are insensitive to the sign of A. Due to this, we will now provide a brief
description of the Bondi scheme applied to asymptotically locally dS spacetimes, as well

as an analogue of the two AdS schemes that we have introduced.

Firstly, we must mention that will restrict our attention to a retarded null foliation of
#+ when discussing the Bondi approach to dS. If we consider applying the asymptotically
flat integration scheme of specifying v on N, as well as (y1, Us, W3) for all u and 6, then
in a similar fashion to the AdS case we will not be able to construct a fully determined
solution to the field equations in a neighbourhood of .# . In the dS case (as in AdS) we
will still have the undetermined functions (5y, Uy) which will propagate into solutions at

later retarded times via the null hypersurface evolution.

In order to remedy this problem we can adjust the two AdS integration schemes that we
introduced in the previous section in order to describe asymptotically locally d.S spacetimes
and solve the field equations in precisely the same order as before. The “boundary” scheme
now consists of specifying the data {0, 0, Uo,73,Us, W3} on £ and then solving the
field equations in the same order as described in section 3.3.2.1. This scheme is displayed

pictorially in figure 3.3.6.

Y0, Bo, Uo, 3, Us, W3

j-‘r

D (o)

$ \\\Q

Figure3.3.6: Penrose diagram for the boundary scheme applied to an asymptotically locally
dS spacetime. Notice that giving the data over the whole boundary .#* gives us the
solution in D~ (#T)

The “hybrid” scheme is again a scheme which involves specifying data on .#* and N,,.
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As in the AdS hybrid scheme we specify (vo, Uy, 39) on £ for u > ug and (v, W3, Us) on
Ny, solving the field equations in the same manner as described in section 3.3.2.2 (see
figure 3.3.7 below).

707B07U0
j-l—

e

Figure3.3.7: Penrose diagram for the hybrid scheme applied to an asymptotically locally
dS spacetime. This scheme generates solutions to the field equations in JT(Ny,)

It seems that the hybrid scheme applied to dS generates a smaller portion of the space-
time when compared with the scheme applied to AdS as shown in figure 3.3.5. This
discrepancy is simply due to the causal differences between the respective cases and not
an issue with either class of spacetimes. We note that in both cases the hybrid scheme
generates the solutions to the field equations in JT(N,,) and thus the solutions in the
neighbourhood of the conformal boundary to the future of N,,. This method of specifying
data agrees with similar Bondi type integration schemes for asymptotically dS spacetimes
as discussed in [172, 171].

3.4 Holographic interpretation

In this section we will study the Bondi gauge metric from the perspective of holography,
connecting with [55, 56, 57, 58, 145, 140, 60, 61, 62, 71]. We begin with a review of
the Fefferman-Graham coordinate system before deriving the coordinate transformation
from Bondi gauge to Fefferman-Graham gauge. This would allow us to give a holographic

interpretation to the metric functions used in the integration scheme of section 3.3.
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3.4.1 Fefferman-Graham gauge

Asymptotically locally AdS spacetimes can be described in Fefferman-Graham gauge in
the neighbourhood of the conformal boundary OM = .#; see the review [62]. In this gauge
the metric can be expressed as

dp? 1 a
ds® = I? T ?(Q(O)ab + 029 + PP Y@y + - )dadal (3.4.1)

where | = /—3/A is the AdS radius. Following the discussion of section 2.1.2, p is a
coordinate which describes the location of the conformal boundary, specifically .# = {p =
0}. The lower case Roman indices (a,b) run from 1 to 3 for asymptotically locally AdS,

spacetimes.

Comparing with (2.1.2) and choosing p as the defining function, we see that the term
9g(0) in the FG expansion is a representative of the conformal class of metrics induced on .#.
If the metric g(g)qp is conformally flat i.e. the Cotton tensor vanishes, then the spacetime

is Asymptotically AdS; otherwise it is Asymptotically locally AdS.

Holographically, g(g) is viewed as the background metric for the 3-dimensional conformal
field theory dual to the 4-dimensional spacetime. The coefficients of even powers of p
in the asymptotic expansion are determined locally in terms of derivatives of g(g); see
[60] for explicit expressions. The coefficient g(3) is constrained to be divergenceless and
traceless with respect to g(g), but is otherwise undetermined. This coefficient corresponds
to the energy momentum tensor in the dual 3-dimensional field theory, which is defined

as [58, 140, 60, 62]
2 55,

\/ —detg(o) 59%))

where S, is the renormalised on-shell gravitational action. For asympotically locally AdSy

<Tab> =

(3.4.2)

spacetimes
312
(Towp) = _27529(3)‘“’ (3.4.3)
where 2x? = 167G and G is Newton’s constant. This energy momentum tensor satisfies

tracelessness and conservation properties with respect to g(q)

9oy (Tap) = 0, Vioy (Tup) = 0. (3.4.4)

Finally, we note that the pair (g(o),TZ-j) or equivalently (g(o), 9(3)) provide local coor-
dinates on the covariant phase space [158, 63| of the theory; in a radial Hamiltonian
formalism, where the radial coordinate plays the role of time, g(q) is the position and g3,

the corresponding canonical momentum [71].
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3.4.2 Coordinate transformations

In order to extract holographic data from spacetimes expressed in Bondi gauge, we need
to determine the coordinate transformation from our asymptotically locally AdS metric

in Bondi gauge

ds? = — (Wr2e2’8 — U*r?e®)du® — 2e*8 dudr—

(3.4.5)
2Ur?e?V dudf + 2 (e*dh* + e~ sin” Od¢?)

to the Fefferman-Graham form of (5.1.1). We will derive the transformation up to the

coefficient g(3), as this is the highest order term of holographic interest.

3.4.2.1 Global AdS,4

A useful first step in performing this computation is to recall the transformation of global
AdS, spacetime into Fefferman-Graham form. We begin with the metric of AdS4 in Bondi

gauge

2
ds? = — (1 i ;) du® — 2dudr + r2d92, (3.4.6)

where we have reinstated the factors of [ for clarity. In Bondi coordinates, the metric for

AdS4 corresponds to choosing functions

1 1

B=~v=U=0; W=—=+4

5t 3 (3.4.7)

so in the notation of section 3.2 this corresponds to Wy = 1/I?, W = 1, with all other

coefficients zero.

We begin by transforming from the retarded time coordinate u into the usual time
coordinate ¢t. This is achieved by
t=u+r, (3.4.8)

where the tortoise coordinate 7, is defined by

dr dr

T T T 0D

5 = T = larctan <;) +c, (3.4.9)

with ¢ is an integration constant whose value will be fixed later. Applying equations (3.4.8)
and (3.4.9) transforms (3.4.6) into the standard AdS metric of

2 2\ 1
ds? = — (1 + ;) dt? + (1 + ;) dr? + r2d0>. (3.4.10)
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The next step is to transform from our radial distance coordinate r into the tortoise
coordinate r,. The motivation for doing this is that we can fix the the conformal boundary
to be located at r, = 0, providing an immediate comparison with the FG coordinate p
as the conformal boundary in those coordinates is also located at p = 0. Choosing the
integration constant in (3.4.9) to be ¢ = —Im/2 allows us locate the conformal boundary
S at r, = 0. We implement this part of the transformation by only including the leading

order term in the large r approximation of r,

re=——+ O(r=3) (3.4.11)
which brings the line element (3.4.10) into the form

l2

d82 ==
Tk

l2

r2 2\
_ (1 + l2> dt? + (1 + ) dr? + 12dQ? | . (3.4.12)

This metric has similarities with (5.1.1); the gauge conditions of g, = g9 = gps = 0 are
all satisfied automatically if 7, = f(p) for any function f(p). We hence need to solve for
f such that g,, = 12/p?. Carrying out this procedure we derive the defining equation for

f(p)

l2f/2 1
—_— = — 4.1
P+ 7 R
which admits two solutions
2klp 2klp
fl 1_(kp)21 f2 p2—k2 ( )

where in both cases k is an integration constant. These two solutions are related via the

map k — —1/k so it is unimportant which is chosen to be f.

Picking f = f; we observe that in a neighbourhood of .# we have

2kpl

Tx

The metric (3.4.12) transforms to
12 14 k2,2)2 20122 _ 1)2
ds = = 2_(+k‘p)dt2+l(kp )

Q. 4.1
2 P 4522 4522 (3.4.16)

We can now read off g(g), which is conformally equivalent to the Einstein metric on R x S 2
ds(yy = —dt* + dQ*. (3.4.17)

Notice that the leading order truncations of the Taylor series for our transformations

(3.4.11), (3.4.15) allow us to compute only g(g) correctly. To compute higher order g¢;y we
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need to include higher order terms in the transformation, giving
1
dsly) = 5(—dt"’ — df? — sin® 0d¢?) (3.4.18)

as well as g(3)qy = 0. The latter is the expected result for the energy momentum tensor of
the CFT state dual to global AdSy.

In generalising this procedure to asymptotically locally AdS, spacetimes we repeat the
steps of this procedure, namely using series expansions to transform the coordinates and

truncating at the necessary point to compute each g(;) coefficient.

3.4.2.2 Computing g(g)ab

For computational and notational simplicity we will from here onwards fix the AdS radius
Il =1 (A = —3). Factors of the radius may be reinstated using the following dimensional
considerations. The Fefferman-Graham coordinates (¢, p, 6, ¢) are dimensionless coordi-
nates, and thus the only dimensions are those of the Bondi metric functions (v, 8, U, W).
Working with dimensional conventions of [length] = +1 we first compute the dimensions
of the functions in the Bondi gauge metric (3.4.5). Using the standard definitions of the

Bondi coordinates we have
=1, [r]=1, [0]=0, [¢]=0 (3.4.19)

and the line element has dimension [ds?] = 2. Using the length dimensions of the coordi-

nates, the dimensions of the Bondi functions are
=0, []=0, [Ul=-1 [W]=-2 (3.4.20)

Each of these functions is expanded in negative powers of r in the asymptotic region of the
spacetime (5.1.13). Using this, we can determine the dimension of each of the coefficients

in the asymptotic expansions as
[vil =1, [Bi]l=1, [U]=i-1, [W;]=1i-2. (3.4.21)

To reinstate all the factors of [ in the transformation formulae one simply needs to match
the dimensions of each side of the equations by multiplying the Bondi functions by suitable

powers of [ as determined by (3.4.21).

To compute g(g) we need to impose the vacuum Einstein equations to leading order; this

corresponds to switching on the leading coefficients in the metric functions Sy, vo, Uy and
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imposing Wy = €2%). The leading order line element (3.4.5) takes the form

ds? = — (64507"2 — U02r26270) du? — 2e2%0 dudr—
(3.4.22)
2Ugr2e?10 dud + 2 (e*10dh? 4 e~ 20 sin? Hdp?).

We now carry out the coordinate transformations (3.4.8) — (3.4.11) — (3.4.15) using the
form 7, = p as we are for now only concerned about computing g(). This sequence of

transformations gives the metric components at order 1/ p? as

1
9w =3 (2620 — e 4 20p2) (3.4.23a)
1
= (e = ) (3:4230)
ey,
9o = . 0 (3.4.23¢)
1
gt = — (e20U3 — ') (3.4.23d)
p
21,
Gip = — > 0 (3.4.23e)
e270
o= (3.4.23f)
=290 i 2 9
e Sin
G0 = [)2(). (3.4.23¢)

The resulting coefficients (3.4.23a-3.4.23c) are clearly incompatible with the Fefferman-

Graham gauge. We thus carry out further transformations in 8 and ¢, namely
t—t+ai(t,0)p, 0 — 0+ as(t,0)p. (3.4.24)

where oy are functions which are fixed by setting g,, = 1/ 0%, 9ot = gpp = 0. When

considering the O(1/p?) pieces of the metric it suffices to transform the forms as
dt — dt + aq(t,0)dp+ -, df — df + as(t,0)dp + - - - (3.4.25)
as terms involving derivatives of o 2 are subleading in the radial expansion.

Under this transformation g,, is given by

1 ~ N ~ A A ~ A N A
pp = (e + P00)0} — a2 — 4 200F) + 2P0 Do) +

X R ) (3.4.26)
(26260 — e*Po 4 20 Ug + e 0ay + 6270043)]
where the hat symbol over metric functions signifies the boundary value e.g..
Ao (t,0) = lim ~o(u,0). (3.4.27)

r+«—0
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Let us now solve the equation g,, = 12/p?, which is regarded as a quadratic equation for

a1 (or equivalently ag). Solving this equation gives us two roots:

1—e2Po 00y + ey

af = - . (3.4.28a)
e'YOUO — eQﬁO
1 4+ 250 o1 o
ar = +e0 el +e 2 (3.4.28b)

e Uy + e2Po

There seems to be no particular motivation to choose one or the other so we will proceed
by choosing af; we will show below that either root could have been chosen. Notice
that (3.4.28) gives a; in terms of ag, which is viewed as a free function. Examining the

transformations of the g, g9 coefficients fixes ap and thus a; also.

Using the transformation with a; = af, gpt Teduces to

eV (Uy + e2b0 as)

9ot = e (3.4.29)
so we can set g, = 0 by choosing ap = —006*230. We thus conclude that the coordinate
transformations are given by

tot+(1—e20)p, 00— Te2p, (3.4.30)

Note that this value of ay automatically sets o = a;. We could have alternatively
started by choosing oy = a7 ; this would have resulted in the same value for as, showing
that the freedom in choosing a; was actually trivial. As a final check for this part of the
transformation, we can show that g,y = 0, verifying that the Fefferman-Graham gauge

has been reached.

This transformation illustrates the leading order part of the general procedure to trans-
form from Bondi to FG gauge. Using our solutions of the vacuum Einstein equations, we
first transform from the Bondi coordinates (u,r, 8, ¢) into coordinates (¢, 7y, 0, ¢) and then

use transformations of the form

i+1 i+1 i+1
re = Y gt 0)p7, t—t+ Y (0, 00+ 0;(t,0)p (3.4.31)
j=1 j=1 j=1

where the limit of the sum 7 + 1 indicates the order necessary to compute the coefficient
g(iy (thus we will only be concerned about summing to an upper limit of four). At each
order we need to solve for the coefficients r,;,t;,0; to preserve the FG gauge conditions
Gpp = 1/ 0%, 9tp = 9op = 0 (gpp = 0 will be satisfied automatically due to axisymmetry
and trivial ¢ — ¢ transformation). More detail and computation of the higher order

coeflicients is given in appendix A.2.
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3.4.3 Background metric

The transformation (3.4.24) gives the following results for g(g)q:
dsfy) = (205 — e*0)d2 — 26200 dtdd + 20 db? + e~ 2 sin2(0)d>. (3.4.32)

Note that the boundary is not necessarily topologically equivalent to R x S? in general;

the spacetimes are asymptotically locally AdS rather than asymptotically AdS.

When Uy vanishes, the boundary metric is topologically R x S? but the metric on the
S? is deformed by non-trivial 4. The boundary metric retains the determinant condition

on the angular part of the metric
dQ? = e270df? + e sin?(0)d¢® = || =sin? 6, (3.4.33)

which was part of the definition of the Bondi gauge. This is an unusual restriction on the
boundary metric: it is somewhat unnatural to impose a fixed determinant for the metric
on the sphere. It would thus be interesting to revisit the Bondi gauge analysis, dropping

the determinant condition on the spherical part of the metric.

3.4.4 The energy-momentum tensor

The final term of physical interest in the Fefferman-Graham expansion is g3 as this
describes the energy-momentum tensor of the dual conformal field theory (3.4.3). To

compute g(3),» We have to include terms up to O(r~3) in the metric functions

y(u,r,0) = + % + Z—g (3.4.34a)
72

B(u,r,0) = By — 4—12 (3.4.34b)
T

2
U(u,r,8) =Uy+ ;50’062(50*70)_
L o890 Us (3.4.34c)
2¢ (26007 = 290,07 + 00 + 2c0t(O)n1) + 5

1 1
W(u,r,0) =% + ;[cot(H)Uo + Upg] + =52 P710[2 — 3627042 4 4ot () o o+

2r2
2 2 Ws
8(Bo,0)” + 6 cot(6) 70,0 — 800700 — 4(70,0)" + 40,00 + 270,00] + 5
(3.4.34d)

As a brief aside, we observe that the integration functions Us and W3 enter the metric at
this order. Recall that W3 has the interpretation in asymptotically flat spacetime as the

Bondi mass aspect, W3 = —2mp [1]. If we follow [48] in defining the mass aspect function
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as the O(1/r) term in the Bondi metric component g,,, then we obtain

2mp = — e 20F0) (29, — Up(cot(0) — 270,0) + Uo o) (4€*™ (Bo,0)*—
e*0Us(—270,u0 + 470,u(70,0 — cot(8)) + Uo(4(70,6)*—
270,60 — 6 cot(0)y0,0 + cot?(0) — 1) — Uy gg — cot(8)Up 9))+
e™210(2eM0UUs — 2270 By p(—290 10 + 470,u(70,0 — cot(6))+
Uo(4(70,6)° = 270,09 — 6 cot(8)0,0 + cot®(0) — 1) — Up gp — cot(0)Upp))+ (3-4.35)

Ze21072 |6 =
3e 0 ’}’3+2€

1
ée*QﬁO(Uo,g + cot(8)Uo) (270.u — Uo(cot(8) — 270,9) + Up)? — €2P0Ws3.

=050 (2, + Up(cot(0) — 270,9) — Ung)?| +

Here we have used the Einstein equation (3.2.16) to express contributions in terms of
(70, Uo, Bo) wherever possible. In the asymptotically AdS case 79 = Sy = Uy = 0 we
obtain the same definition of the mass aspect, 2mp = —W3, as in the asymptotically flat

case [1].

In the asymptotically flat case, the Bondi mass at time u = ug is obtained by integrating
the mass aspect over the ug cut of £+ (2.2.14). It is natural to suggest that an extension
should exist for the AdS case whereby one could obtain the analogue of the Bondi mass
in asymptotically locally AdS spacetime by integrating over a cut of .# instead. We will
discuss this definition in asymptotically AdS spacetimes in section 3.4.5.5 while the more

general case of asymptotically locally AdS remains ongoing work.

Returning to the discussion of the coordinate transformation in order to obtain g(3), we
note that when performing the series transformation into the Fefferman-Graham form we

also need to extend our transformation in the coordinates to O(p?)

re = p+b1(t,0)p” + 1 (t,0)p” + dui(t,0)p"
t—t4 oy (t,0)p + ba(t,0)p° + ca(t,0)p> + da(t, 0)p* (3.4.36)
0 — 0+ as(t,0)p + b3(t,0)p> + c3(t,0)p° + ds(t,0)p?.

where «a;, b;, ¢; are the functions already obtained from previous orders (see appendix A.2
for b; and ¢;). To obtain 9(3)ab We will need to choose d1 23 suitably in order to force the
dp terms to vanish at O(1/p).

Once we have performed this transformation we have to check equations (3.4.4) are

satisfied. First we use the g(g) of equation (3.4.32) to check tracelessness

993106 = 96y 931 + 29(0) 9310 T 9(0) 93190 + 9%9(3)@ =0, (3.4.37)
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which is automatically satisfied by g(3)q;, without having to apply either the supplementary

conditions or the higher order main equations.

In order to present expressions for the g3y coefficients, we give formulae for (Us, 3, W3)
which have been obtained via rearrangement of the expressions for (g(3)u, 9(3)t6 9(3)00)-
Although there are four non-zero components of the energy-momentum tensor, the three

functions below suffice to read off all components due to the tracelessness equation (3.4.37).

[73 = e 20 (9(3)9900 + g(g)tg) + Z/[3(’A}/0, BO; UO);

A~ 3 Y . R X . .

Wy = 2¢ e (9(3)99(]02 +29(3)10U0 + 9(3)tt) + Ws(50, Bo, Uo); (3.4.38)
NS T ) N o
=g (e P (9030005 + 293000 + g(aye) — 2€ 2709(3)99) + G5(30, Bo, Uo),

where all of the metric coefficients are functions of (¢,6), defined at .#, and explicit ex-

pressions for (U3, Ws, G3) can be found in appendix A.2.3.

Verification of the conservation condition (3.4.4) is less straightforward than checking
tracelessness. The simplest component to check is the ¢ component, for which the required
result is obtained using the equations (A.2.20-A.2.22) above and the tracelessness property
(3.4.37)

V?O)Q(S)aqb = Q?S)V(o)cg(:s)w = —9?3>Tfa9(3)¢¢ - g(cé’)Félqsg(a)ad =0 (3.4.39)
where the Christoffel symbols I'j, are those associated with the metric g(g)qp-

The remaining conservation equations are harder to verify. The Einstein equations
(3.2.16), (3.2.19) for 41 and 43+ and the supplementary conditions (A.1.1-A.2) are required,
the latter giving expressions for the functions (737,5 and W&t. These equations, combined
with the relations (A.2.20-A.2.22), are sufficient to show that the ¢ and 6 components of

the conservation conditions (3.4.4) are satisfied.

3.4.5 Asymptotically AdS; examples

The first interesting example to look at is the class of asymptotically AdSs Bondi gauge
pacetimes. Recall that we defined asymptotically AdS, spacetimes as asymptotically lo-
cally AdSy spacetimes for which g is conformally flat. We can choose the representative
of this conformal class to be

A0 = fo = Uy = 0, (3.4.40)

so that the metric g(q) is the standard metric on the Einstein universe.
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Applying these values to (A.2.16a-A.2.16d) and (A.2.20-A.2.22) to compute gy we
obtain )
dsly) = —§[dt2 + dQ?] (3.4.41)

2 A 1. 1 A
dsly) = gngt2 + 2Usdtdo + (3W3 — 2@3) de* + (3 sin? 95 + 2 sin? 9%) d¢? (3.4.42)
Notice that g(p) can also be obtained from (3.4.17) using the curvature formula (A.2.12)).

The second of these two formulae gives us the energy-momentum tensor for an asymp-
totically AdS4 spacetime in terms of Bondi gauge functions. From (3.4.42) we note that
2Ws  dinp
I = "5 T g (3.4.43)
which arises from the formula (3.4.35) for the Bondi mass aspect, mp, now restricted to
the boundary, mp = mp|,. Thus, the g3y, component of the energy-momentum tensor
is determined entirely by the mass aspect function. This implies in particular that the

Bondi mass for asymptotically AdS4 spacetimes is equal to the mass computed using the

holographic energy momentum tensor. Indeed,

3 1
_ BoNey — 2 = hpg =
M= [ s e =~ /S S = 3= [, e = M (3.4.44)
where in the first equality £ is an asymptotic timelike killing vector, which we take to be
= — (%)H and we set [ = G = 1. This also implies that the Bondi mass for asymp-

totically AdS,4 spacetimes is equal with all other definitions of mass for asymptotically
AdS,4 spacetimes as all of them are known to agree with the holographic mass (as they
had to since [71] provided a first principles derivation that the conserved charges for gen-
eral A1AdS spacetimes are the holographic charges). In appendix A.4 we demonstrate the
equality between the Bondi mass and the Abbott-Deser mass.

We will now discuss interesting examples of asymptotically AdS, spacetimes.

3.4.5.1 Global AdS4

An obvious example of an asymptotically AdS, spacetime is the case of global AdSy itself.
Using the usual normalisation of [ = 1, the line-element in retarded Bondi coordinates
reads

ds®> = —(1 +r?)du® — 2dudr + r>dQ>. (3.4.45)

Clearly W3 = Us = 3 = 0. Applying this to (3.4.42) we see that g(3) vanishes and thus
the energy-momentum tensor of the CFT state (the vacuum state) dual to global AdSy is

Z€ro.
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3.4.5.2 AdS4 Schwarzschild

We now consider the AdS4-Schwarzschild black hole solution whose metric in retarded
Bondi coordinates reads

2
ds® = — (1 +7r? - m) du? — 2dudr + r2d0O>. (3.4.46)

T

This solution is an example of an asymptotically AdS4 metric and thus it automatically

has the same values for gy and g() as presented above.

This solution has metric functions § = v = U = 0 and matching (3.4.46) with the
general Bondi gauge metric (5.1.10) gives W = 1+ 1/r% — 2m/r3 i.e. W3 = —2m. Using
the relation (3.4.42) we obtain

5 2 0 0
9(3)ab = _?m 01 0 (3.4.47)
0 0 sin%6

which reduces to the case of global AdS4 when m = 0.

3.4.5.3 Flat g(O)

Let us now consider the case where the metric g(g) is flat. One can show explicitly that the

metric on the Einstein universe is conformally flat using the coordinate transformation

1
T+ y =tan [Q(t + 0)} . (3.4.48)
to obtain
1 1
ds?o) = 4 cos? [2(t + 9)} cos? [2(t - 0)} (—dr? + dy? + y2do?) (3.4.49)

which is clearly conformal to the flat metric on R*! in polar coordinates.

Under a conformal transformation gy — eQUg(O) the coefficients of the Fefferman-

Graham expansion transform as (see discussion in [61])

gEO)ab e? 9(0)ab

1
gE2)ab =9@)ab + VaVoo — Veo Vo + §(VU)29(0)ab (3.4.50)
9(3)ab = € " 9(3)ab
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and therefore

g 2)ab — 0
X ) 21, Us 0
923)ab = 2cos [2(16 + 9)} cos {2@ - 9)} Us %Wg — 293 0
0 0 sin? 0 (3Ws + 243

% { 1+ (t+vy) )(1+(T—y)2)}_5/2
x {[—48yr(1+¢* + 7°)Us + 8(y" + (1 +72)% + (1 + 47%)) Ws—
9692 7243]dT% + [24(y* + (1 + 72 + 2 (2 + 6T2))U3—
48yt (1 + 1% + T2)W3 + 96y7(1 + v + 72)43]dydr+
[—48yr(1 + 4> + 73)Us + 4(y* + (1 +7%)% + 2y%(1 4 572)) W3 —
24(1 + y? + 7%)%43)dy*+
[4y? (L + (7 + 1)) (L + (7 — 9)*) (W3 + 643)]de’}.
(3.4.51)

The equation for 920) is presented in the flat coordinates (7,y,#) and both gy and gs)

have been presented in both the old (¢,6,¢) coordinates as well as the new coordinates

(7,9, 9) (g(2) trivially so).

We observe that 923) is merely (3.4.42) multiplied by a conformal factor. (3.4.51) presents
the specific factor when we have a flat metric at the boundary g(g)sp = 7a5- We also remark
that one could immediately deduce that g(mab vanishes by applying (A.2.12) to the flat

metric.

3.4.5.4 AdS4 black brane

An example of a vacuum solution with a flat g is the AdS black brane solution. The
black brane is an asymptotically AdS solution to the vacuum Einstein equations with

planar horizon topology,

g2 A° | —fo(p)dt + dat + da}
2 )
2
folp) =1 = =5

where b is related to the temperature 7" of the brane via b = 3/(4nT).

It is straightforward to transform the black brane solution into the Fefferman-Graham
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form using a redefintion of the radial coordinate p (see for example [173]), resulting in

Fefferman-Graham expansion coeflicients:

gy = Tab;  dsfpy = —dr° + dy® + y?d¢?;

92)ab = 0;
(3.4.53)

where we use the flat coordinates (7,y, ¢) of (3.4.51).

We can calculate the relevant Bondi quantities for the AdS black brane from (3.4.51)
and (3.4.53):

R L N (P e oy
N 1 (4nT\?
Ug=—(—) my(r?+y*+1 —7)2+1)(t+y?+1
: ?(472)3 v e ) ey
Wa= -5 () V- + (4 w2+ )

x ((72 + 1)2 +yt+ (4774 2) y2> .

Note that W5 will be related to the mass aspect if we use (3.4.50) to transform the so-
lution so that to boundary metric is R x S2. The corresponding mass will then be the
conserved charge associated with time translations. However, as the coordinate transfor-
mation (3.4.48) transforms t to 7 and y, what was a mass aspect on R x S? is not a mass

aspect on RY2. Indeed, it was shown in [61] that
1
O = §(PT + K;) (3.4.55)

where P, = 0, is the generator of 7-translations and K; = x20; — 2z;27 0; the generator of
special conformal transformations (see also the discussion in [174]) . Thus, W3 is related

to a linear combination of the mass and the “special conformal” aspects on R%2. 3

3.4.5.5 Bondi mass

In our gauge the Bondi mass (2.2.14) reduces to

1
Mp = E/ / mp sin (0 (3.4.56)

30ne can explicitly confirm this using (3.4.50), (3.4.48) and K, = (y* + 72)0- + 2790,
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where mp is the mass aspect function defined in (3.4.35).

We would like to examine whether or not the Bondi mass in asymptotically locally
AdS spacetimes maintains the monotonicity property of the mass in asymptotically flat

spacetime [1, 2], namely

OMp <

0. (3.4.57)

ou
Note that for asymptotically flat spacetimes saturation of the bound corresponds to the

absence of gravitational radiation.

To examine the AdS analogue of this result, we begin by examining the case of asymp-

totically AdS space-times for which vg = Sy = Uy = 0. In this case the mass aspect

coincides with the original definition, 2mpg = —W3 and
OMp 1 [TOmp . 1 (™ oWy |
= - 0)do = —— — 0) do. .4.58
ou 2Jo Ou sin(6) 4 Jo Ou sin(6) (3 )

To analyse this, we use the supplementary condition (A.2) (evolution equation for W),
which reduces to
1
Ws =569 = 7 + 4900 + 4710 = 271,000 — 8 cot?(0)77+
Y1 (=123 + 71,09 — 15 cot(0)y1,9) — 6 cot(0)y1,u0 + 3Us,9 + 3 cot(0)Us]

(3.4.59)

in this case.

To simplify this relation further we use the Einstein equation (3.2.16), which implies
Y1 = 0 (3.4.60)

and thus 5
Wi = 5 (Usp + cot()Us) (3.4.61)

and thus substituting into equation (3.4.57) gives

8MB 3 ™ . 3 . T
ou ~ 8 (Uz gsin(0) + cos(0)Us) db = —3 [Us sin(0)]; - (3.4.62)

To evaluate the limits of this integral we use the same regularity conditions as in [1]. At

the poles of the 2-sphere,
Us

sin(6)

= f(cos(h)) (3.4.63)

where the function f is regular at the poles. Applying this condition in (3.4.62) gives

OMp 3. _
5y = —g[smg(ﬁ)f(cos(ﬁ))]o =0 (3.4.64)
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using the regularity of f.

Thus for asymptotically AdS spacetimes the Bondi mass is constant and does not vary
with respect to the Bondi time, u. This confirms earlier results in [41, 164, 46, 47, 49]
(mostly for the dS case). The result is striking and is what would be expected on physical

grounds, as we will now explain.

Firstly, let us recall the interpretation of equation (3.4.60) in the language of the original
work by BMS. Vanishing of v; implies there is no news and thus (in the asymptotically
flat case) the mass is automatically conserved. This interpretation carries over to the
asymptotically AdS case. Note however that it seems less likely that this result will extend
trivially to the broader class of asympotically locally AdS spacetimes, as it is possible to
have vanishing ~7 but non-trivial (7o, 9, Up). The latter would play a role in the equation
(A.2) for the evolution of the mass aspect and could alter the monotonicity properties of

the mass.

Another way to understand why the Bondi mass remains constant for asymptotically
AdS space-times is that the boundary metric is unchanging, indicating a lack of gravita-
tional radiation to perturb it. Any outgoing radiation would effect the boundary metric
and as the metric is unchanging with time there is no gravitational radiation. The origi-
nal motivation of BMS was to define a mass which captured radiation escaping at (null)

infinity and thus our conclusion is consistent with their approach.

3.4.6 Integration scheme

In this section we summarise the relation between the Fefferman-Graham integration
scheme, which effectively allows the spacetime to be reconstructed in the neighbourhood
of the conformal boundary in terms of CFT data, and the integration scheme in Bondi

gauge discussed in section 3.3.2. In the latter, one specifies the data
{A0(t,0), Bo(t,0), Us(t, 0),43(t, 0), Us(t,0), Ws(t,0) | t € R, 6 € (0,27)} (3.4.65)

which has the effect of reducing the Einstein equations to algebraic equations from which
one construct fully the asymptotic solutions to the Einstein equations without having to

evolve betweeen null hypersurfaces.

The holographic interpretation of (9o, Bo, Uo) is given by equation (3.4.32): these func-
tions define the metric at the conformal boundary, g()es- The commonly imposed de-
terminant constraint on the spherical part of the metric in Bondi gauge translates into a

determinant constraint on the spherical part of the boundary metric, a constraint which
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is unnatural from a CFT perspective.

The data (ﬁg,Ug,Wg) defines the energy momentum tensor of the dual theory, T,.
More precisely, equation (3.4.38) gives the relation between g()qy and Typ (~ g(3)ap) and
the coefficients (43, Us, Wg) With this holographic interpretation we can rephrase the

Bondi integration scheme in the following form:

Knowledge of the metric g)q at F and the energy momentum tensor Tup ~ g(3)ap for
the CFT dual of the Bondi gauge spacetime is sufficient to algebraically solve the vacuum

FEinstein equations in the asymptotic region.

3.5 Conclusions

The main result of this chapter is the general asymptotic solution of asymptotically local
AdS and dS spacetimes in Bondi gauge. We saw that we can use two different integration
schemes: in the boundary scheme we fix data on the conformal boundary only, while in
the hybrid scheme we give data on a null hypersurface and a portion of the conformal
boundary. We also presented the coordinate transformation to Fefferman-Graham coordi-
nates and identified how to extract the holographic data/conserved quantities directly in

Bondi gauge.

The analysis was done for vacuum Einstein gravity in four dimensions and for solutions
that are axially and reflection symmetric. It would be straightforward to relax these
conditions, i.e. to consider solutions with no axial and reflection symmetry, add matter
and generalise to higher dimensions. In odd dimensions the asymptotic expansion will
involve logarithmic terms, and so it will in any dimension with specific types of matter
(as discussed for d = 4 in appendix A.3). These logarithms are related to logarithmic

divergences in the on-shell value of the gravitational action [58, 60].

One undesirable feature of the Bondi gauge is the determinant condition on the angular
part of the metric (2.2.7). In the context of (A)dS this implies that the angular part of the
boundary metric satisfies a similar condition (3.4.33). Via gauge/gravity duality however
the boundary metric also has the interpretation of a source for the energy momentum
tensor of the dual QFT and in QFT the sources should be unconstrained. This issue
is due to the way that the Bondi gauge is defined, and should not restrict the phase
space in any way. There are a number of known approaches to relax this restriction e.g.
[87] suggests keeping the original Bondi gauge determinant condition more general by
requiring 7% det(gap) = b(u,8) where b(u,) is an arbitrary but known function. This

allows for a more general conformal factor multiplying the angular part of the metric
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in (3.4.22). Another approach would be to use gauge preserving diffeomorphisms in FG
gauge in order to attempt to remove this constraint (for related ideas, see [50]). In both
cases, the physical picture will become muddied, as the Bondi metric functions will lose
their immediate physical significance, a significance which could be recovered by use of
the linkage formulas of [175].

We have seen that the Bondi mass is constant for asymptotically (A)dS metrics, re-
flecting the fact that these boundary conditions do not allow for radiating spacetimes.
To accommodate radiating spacetimes one needs to consider asymptotically locally (A)dS
spacetimes with a time dependent boundary metric. While we now know the general
asymptotic solution for such spacetimes, we do not know yet what is the correct iden-
tification of the appropriate notion of mass that accounts for the radiation (but see
[163, 164, 48, 46, 47, 49, 165]). Physically, we expect that the mass of a compact ob-
ject radiating outgoing gravitational waves should decrease monotonically, regardless of
asymptotics. It is not yet clear whether the Bondi mass defined using (3.4.38) has this
quality. It would be interesting to investigate this candidate as well as the more general
issue regarding the required boundary conditions that one need impose for the existence
of a monotonically decreasing quantity (i.e. to exclude incoming radiation). A radiating
spacetime which is asymptotically locally AdS and possesses a “Bondi mass” with the
required properties [69] is the AdS Robinson-Trautman solution. It would thus be useful

to bring this solution to Bondi gauge and use it as a playground.

In this chapter we only touched upon the case of positive cosmological constant, only
discussing properties that can be directly inferred from those of negative A. There are
however important global differences between the two cases and it would be interesting to
completely analyse the case of positive cosmological constant in detail, especially given its

phenomenological importance. We return to this and related issues in chapter 5.

The direct analogue of the asymptotically flat case when A # 0 is the case of asymptot-
ically (A)dS spacetimes. When A # 0, however, we have seen that we can obtain asymp-
totic solutions more generally for asymptotically locally (A)dS spacetimes. It would be
interesting to revisit the case of no cosmological constant and determine the most gen-
eral boundary conditions allowed by Einstein’s equations (and the variational problem)
at null infinity and find the corresponding asymptotic solutions. This may be relevant in

understanding how holography works in asymptotically flat gravity.



CHAPTER 4

Physical applications of the Bondi gauge in Al(A)dS spacetimes

4.1 The Bondi mass in asymptotically locally AdS space-

time

As part of the pioneering work of [1], BMS proved that the Bondi mass in axisymmetric,
asymptotically flat (AF) spacetime was monotonically decreasing. It would be interesting
to see if such notions of monotonicity carry over to the AdS asymptotics and thus this
section of the thesis attempts to replicate the steps of the original proof but now in

axisymmetric, asymptotically locally AdS (AlAdS) spacetime.

By performing this anaylsis, we hope to find either a proof of monotonicity or an explicit
counter-example to monotonicity. If the monotonicity carries over, then the Bondi mass
in AdS would be a natural candidate (as in the AF case) to describe the mass loss due
gravitational radiation and thus it may help us understand gravitational waves in AdS
spacetime. If we are able to find a counter example, then we would (somewhat less
satisfactorily) be able to conclude that the Bondi mass is an unsuitable candidate for
describing the mass loss due to gravitational waves in AdS, although the definition could

potentially be modified to regain monotonicity.

Before we begin the computation, we comment that this work can be viewed as a small

contribution to of a larger problem of understanding mass in asymptotically locally AdS

99



100 Chapter 4. Physical applications of the Bondi gauge in Al(A)dS spacetimes

spacetimes [176, 177, 178, 179]. Here we are of course considering the specific case of
the Bondi mass, which is well understood in flat spacetime [32, 33] and has recently been
considered with generic A # 0 in [48].

4.1.1 Defintion and Basics

The first step in following the original monotonicity proof is to recall the definition of the

Bondi mass, Mp, as given in [1]

Mp(u, 0) = jﬂ/s s, 0) (4.1.1)

where the integrand mp is free data known as the Bondi mass aspect, and it can be
read off from the O(1/r) coefficient in the asymptotic series expansion for g, the {uu}
component of the metric in the Bondi-Sachs gauge. The geometric interpretation of the

S? which we integrate over is that it is the manifold induced at a given cut of .#+.

We will now re-use this definition for a cut of .#, where .# is the timelike boundary
of AIAdS spacetime. In equation (3.4.35) we presented the mass aspect in axisymmetric
AlAdS spacetime, m’gds . Here we re-write that formula in a slightly different form, the

advantages of which will become clearer as we move through the attempted proof.

1 2 _
2mp(u,0) 2562507%((]0,9 + cot(0)Uo) + 3¢ 210(12e*%0 B 90,071 — 670 By pv1 9~

12 COt(@)ezwoﬁoﬁfyl + 1270,07%UO€2B0+270 — 671.9m U062ﬁo+2'yo_
12 cot(0)7Upe? 01210 + 262104308 + 3e* 10Uy Us + 3e*1093U3) — 20 Wy
(4.1.2)

To get to this form of the mass aspect from (3.4.35), first reinstate A in the previous formula

((3.4.35) used A = —3) and then reinstate 7, using the following Einstein equation
1
You = 6(2/\625071 — 670,0Uo — 3Up,0 + 3 cot(6)Uy). (4.1.3)

Part of the purpose of writing down a formula which includes «; terms is that v, had the
interpretation in the original work by BMS as being the ‘news function’ which governed
the rate of mass loss. It will be of interest to see if it plays a similar role in the AIAdS

case.

To make a direct comparison between (4.1.2) and the formula for the mass aspect pre-

sented in [1], we note that in the AF case we had

Y =Bo=Uo=0 (4.1.4)
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and so if we were to switch back to Minkowskian asymptotics we would find
2mp = —Wj (4.1.5)
exactly as BMS originally had.

Now that we have the mass aspect for AIAdS spacetime, we need to define the Bondi
mass using a suitable integral. Following the argument of BMS, we want to define the
mass at a given Bondi time u as the integral of the mass aspect over the u cut of .#. (note
that future null infinity .# " in the AF case has here been replaced by timelike infinity

). Denoting this cut .#,, we write the Bondi mass as

M (u, 0) = 4;/1 ma(u, 0). (4.1.6)

We can simplify this further by considering the metric on .#,. In (3.4.32), we showed that

the metric induced at the conformal boundary .# was
ds? = (2002 — *P0)at? — 2620 Tydtdd + €2 do? + =2 sin(0) dg’ (4.1.7)

where ¢ = u| » so these coordinates can be freely interchanged here and the ~ notation
has been used to denote these functions as those evaluated on .# (again this makes no
mathematical difference here, but serves as a useful way to track the functions). We want
to integrate over given cuts of .# i.e. u = constant slices of this 3-manifold, upon which

the metric takes the form
ds?, = e*10df* + e~ 21 sin*(0)d¢”. (4.1.8)

This is clearly not the metric on the round S? unless v9 = 0, an overly restrictive as-
sumption in the AIAdS case. This difference may lead one to think that the integral one
performs differs from that in the AF case but this turns out to not be true. In a similar
fashion to the metric on S2, we have written the metric on .#, in coordinates 6 € (0, ),
¢ € [0,27) which we assume to form a one chart atlas for the manifold .#, up to a set of
zero measure (in a similar way to the the coordinates (6, ¢) on the round S? not covering
the poles). This assumption means that the only potential difference in an integral over 52
and over .#, could arise from the metric determinant, fortunately the BMS gauge choice
means

det(g,) = sin? 0 = det(gg2) (4.1.9)

which one can easily see from (4.1.8). Using this we are able to conclude that

1 1 1 /7
Mp(u,0) = E/ﬂ mp(u,d) = I Jeo mp(u,d) = 5/0 mp(u,f)sinfdf.  (4.1.10)

where in the final line we have used the axisymmetry of the spacetime to perform the ¢
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integral.

Having set up the mass integral in AIAdS spacetime, we are now ready to investigate
it’s monotonicity properties. First we take the derivative of M g with respect to the Bondi

time u M . 9

B Tomp |
= — . 4.1.11
5 5 ), “ou sin 0 d6 ( )

and now we should explicitly apply (4.1.2) in the above formula. This generates a long

printout which we leave for now in ‘AdS_Bondi_Mass_Monotonicity.nb’

One thing we can notice without any explicit calculation is that the application of this
derivative will produce terms of the form ., V3,u; Us.u, W3.4. These are terms that we
already have expressions for using the Einstein equations. We derived these previously
(also included in the MATHEMATICA file for convenience) and as we are attempting to
follow the logic of the original monotonicity proof by BMS, it seems sensible to attempt
to apply Einstein’s equations in order to remove these terms. In the AF case, the only
term which arose from taking the u-derivative of the mass aspect formula was W3, which
upon application of the ‘supplementary’ Einstein equation ((35) in [1]) was shown to give

a monotonically decreasing quantity and thus a monotonically decreasing mass.

Performing these substitutions is conceptually fairly straightforward although due to the
sheer length of the expressions we leave these steps in the MATHEMATICA file. Once this
substitution has been performed we can rearrange the resulting expression by collecting

in powers of A to write the u-derivative of the mass aspect as

omp

e Ao(u, 0) + Ay (u, 0)A + As(u,0)A? (4.1.12)
u
where
L 45 3
Ay =— ¢ Oy (v — 273) (4.1.13a)

1
Ay :%6260_270(—362B07%(86260’7§79 — 16 cot(@)ew(”mﬁ—

e By g(cot(0) — 270,0) + 4@2’5058,9 + 7€%% By gg + 8 cot? () 2P 4-
126270’)/179[]0) — 247?er2(ﬁ0+7°)(50,9 — 0,0 + cot(6))+

371(€" (71,6(14B0,0 + 1470,0 — 15 cot(6)) + y1,00) + 8607303 )+
9U;3e2(H110) (25 5 + cot () + 3(—e*93 g + 3U3 ge2(Po10) 4
8U062(’30+70)(273(ﬂ0,9 — 0,0 +cot(f)) +v30) + 4105, U3) + 16e11041U2)

(4.1.13b)

while the expression for Ap is very long and is omitted here (details are again in the
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MATHEMATICA file).

4.1.2 Infinitesimal A ‘counter example’

The full expression for mp,, is very long, and it seems impossible to make any comments
about the monotonicity of the integral (4.1.11) from simply looking at these terms. To
make this problem more tractable, we will first restrict our attention to the case of the
asymptotically flat limit, i.e we look at infinitesimal A and ignore all terms in (4.1.12) of
O(A™) for n > 2. The motivation for taking this approach is twofold: Firstly, we hope that
this will simplify the expression for Omp/0u into something more manageable. Secondly,
this should relate the case we are studying here of A # 0 to that of the AF case which is

of course the building block for the calculation we are performing here.

So in this limit we have

8mB

5 = Ao(w,0) + A(u, 6)A + O(A?) (4.1.14)

which at first doesn’t seem to simplify the expression much as Ay was by far the shortest
expression of the three coefficients. However, we have so far neglected to include the
scaling of the metric functions in the asymptotically flat limit, recall the fall-off conditions
in the AF case were

Y = Po=Uo=0 (4.1.15)

so we would expect these functions to also be small in the asymptotically flat limit. This

agrees with the bound on Uy that we previously computed

| A
|Up| < —§e450*2’70 (4.1.16)

so we expect Uy to vanish as we take A — 0.

From the perspective of the Einstein equations the functions g, 8o, Ug were all free
quantities that had to be specified on .# in order to algebraically generate solutions to
the Einstein equations in the asymptotic interior of the spacetime (see section 3.3). The
fact that these quantities are free means that we can re-scale them by a constant and
still generate solutions corresponding to the new expressions. In order to look at the

asymptotically flat limit, we re-scale the functions accordingly
Jo=ew, Bo=¢ebo,  Up=elp (4.1.17)

where € is a small parameter of O(A). These rescalings mean that we can also treat ; as

a function of O(1) via the Einstein equation (4.1.3) and as such we can examine the AF
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limit by applying these rescaled functions directly to (4.1.14). When doing this we will

ignore any terms of O(A") for n > 2 which of course includes terms of the form €2, €A etc.

Applying this rescaling gives us the following formula

zagnTB = Ay + Ay + A+ O(A?) (4.1.18)

where A; are terms which we will now discuss in more detail. Firstly we have

Ag = =277, + v1u00 — 271, + 3Ot 071 up (4.1.19)

which is precisely the same term that BMS found in the AF case. The fact that this term

makes an appearance in our AF limit of AIAdS spacetimes is a reassuring sanity check.
The deviations from the AF case are encoded in the terms A, and A,

- 1
Ap = 6(71,9971 — "}/ig — 8cot?(0)yF — 15 cot(8)v1,071 + 3Uz g + 3cot(9)Us)  (4.1.20)

1
Ae :6(6U071 cot?(0) + 2471 U g cot?(8) + 21Ugy1 9 cot®(8) + 650,99 cot®(0)+

90,00 cot?(0) + 4850v1,u cot?(h) — 247071, cot?(0) 4+ 9Uy W3 cot(6) —

12 csc?(0)Ugyr cot(8) + 6 csc?(8) 8o 0 cot(6) + 1280 ¢ cot(6)+

9 csc?(0)70,0 cot(0) — 6709 cot(8) + 39Up gv1.6 cot(6) + 121U gg cot(6)+
21007196 cot(6) + 1280 age cot(8) + 1270 gga cot(0) — 457U ., cot () —
38U07171,u cot(0) + 1280,071,u cot(8) — 3670,071,u cot(#) — 1271 0,up cot(6)—
127170,u0 cot(0) + 72501 u0 cot(0) — 367971,ue cot(8) — 24507%# + 9W3Up,9—
18 CSC2(9)’)/1U079 + 10UW3 9 — 24 CSCQ(H)U()")/LQ + 67v1,0Uo,00 — 12 CSC2(9>50799+
120,06 — 18 csc?(0)v0.60 — 670,00 + 15U0.671.00 — 67100000 + 6U071.006+
60,0000 + 370,0000 + 12U3U0,, — 24v171,9Upu — 24W380. — 48 csc?(0) Boyi u+
24 esc®(0)7071,u — 671U0.071,u — 20001071, — 128000710 — 127000710+
371 Uou0 — 127107000 — 12U0M1V1,u0 — 240,071,060 + 1271 B0,up0—

127170,u60 + 248071460 — 1270771,u60)-
(4.1.21)

The Aj term comes from the O(e®) term in Aj(u,#) and the A, term comes from the
O(e) term in Ap(u,d). We have managed to write the integrand in a (somewhat) more
tractable form and we are now ready to begin removing terms by writing them as total

derivatives.
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Before we begin this analysis, we first recall the regularity conditions that BMS originally
imposed upon the metric functions at the coordinate values 8 = 0, 7. We will carry these

conditions over for the purpose of our analysis.

lim W(u,r,0) = fiy(u,r, cosb), lim B(u,r,0) = fz(u,r, cosb)
sin 6—0 sin 6—0 4.1.99
sin10Hi>0 sin @ = Jult, T, Cosb), sinIBH—1>O sin2 0 = Ty T €08

where each of the f, are functions regular at cos(¢) = 1. These regularity conditions
allow us to explicitly evaluate the integrals of the total derivative terms, for example the
Ag term of (4.1.11) is

1 /7 . 1 /7 1
1 / Apsinfdf = 1 / {—2 sin(ﬁ)'yiu + Op(y1,ucosb) + 589(71#9 sinf)| df. (4.1.23)
0 0

Now we focus on the total derivative pieces. Here and from now on we will use the notation

f; to refer to the O(r~%) component of the metric function g i.e. we have

>, fi(u,cos0)

fq(u,r, cosf) = Z o (4.1.24)
=0
Using this notation we can write the first total derivative term as
s
/ 99 (y1,u cos 0) df = 1,4 cos 0 || = sin® 0 cos 0 D[ f5 (u, cos A)]|] = 0 (4.1.25)
0

where the final equality comes from the regularity conditions and the sin?# factor. We

can apply a similar treatment to the second total derivative term

/ Dp(71,up sIn0) = 41 yp sin t9|(7)r = D,¢[sin” wal(u, cos )] sim¢9|gr
0
= {2sin? 6 cos b 8u[f71 (u,cos )] — sin’ 96%6059[]”71 (u, cos 9)]}‘70T =0 (4.1.26)

where in the final line we have again used the regularity of f%. All that remains of equation
(4.1.23) is

1 ™
-5 / fyiu sin 6 df (4.1.27)
0

which is precisely the monotonically decreasing term that BMS found in their analysis of
the asymptotically flat case. We will now apply similar considerations to the integrals of
the terms A, and A,

We can re-write the A, piece the integral (4.1.11) as

A ™
ﬂ/o [— 2sin(0)’yi€ — 8cscOyit

9o (sin(0)y171.9) — 899 (cos(0)71) + 30 (sin OU3)]d6O

(4.1.28)
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where the terms on the second line are clearly all total derivatives. By applying the
regularity conditions (4.1.22), one can easily show that these all vanish. This means that
we are left with
A ™
13 / (sin 6y ) + 4 cscOyi) do (4.1.29)
0 k)

which is positive for the AIAdS case of A < 0. Although this is clearly not the whole
expression for the u-derivative of the mass aspect, we can already begin to see how the
presence of positive terms like this one in the AIAdS case may be used to construct counter
examples to the monotonically decreasing property that BMS found in the AF setting.

We will return to this point once we have looked at the O(¢) terms in the mass integral.

To look at the O(e) terms, we need to consider A, terms in the integral (4.1.11). By
attempting to write as many terms as possible as total derivatives we can re-write the

expression as

i / [sin 9U0W379 — 24sin OW3p o, + 12sin U3 Up o, +
0

48 sin(6)v; Uo,ug + 66 sin(0)y1,671U0,u + 32sin(6)v1,u71Uoe+
26 sin(0)v1,u971Uo + sin(0)y1,0Uo.90 + 3sin(8)7v1,006U0,0 + 18sin(8)v1,671,.Uo—
9 csc(0)v1,0Uo + 24sin(6) Bo.usey1 — 24sin(8)Bo77 , + 24 sin(0) Bo,6071,u+
12 sin(0) Bo,ue1,0 + 12sin(0) Bo.ov1,u6 + 906 (sin Uy W3) — 3609 (sin(8) Bo,ov1,u)—
120y (sin(0) Bo,uov1) + 240 (sin(6)Bov1,u0) + 489 (cos(0) Boy1,u)+
605 (sin(6)B0,009) + 69p(cos(0) Bo,ag) + 60 ((2sin(8) — cse())Bo,e)+
Op(sin(0)y171,6) + 30a(sin(6)0,009) — 1206 (sin(0)v0,671,u) —
1205 (sin(0)y170.u0) — 1209 (5in(0)Y0y1.up) — 898(cos(0)73)+
905 (cos(0)70,00) — 240p(cos(0)v071,u) + 30((cos(20) — 4) ecsc(0)v0,0)+
60 (sin(0)1,6U0,0) — 609 (sin(0)y1Uo,09) + 609 (sin(0)v1,60U0) —
450y (sin(0)77Uo,u) — 389p(sin(0)7171,uU0) + 1899 (cos(0)71Uo0)+
1505(cos(0)y1,0Uo) + 605 (cos () cot(0)y1Uy)] dO
(4.1.30)

which we can simplify further by considering the total derivative terms and the regularity

conditions (4.1.22). The first step is to eliminate all total derivative piece with a sin 6
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factor, as these will vanish automatically

i/ [sin QUo W3 g — 24 sin 0W3 50 ,, + 12sin 0UsUp ,,+
0

485in(0)yiUp,up + 66 sin(0)y1 97100 + 32sin(0)y1,u71Uo o+
26 sin(0)v1.4071Uo + sin(6)v1,0Uo g0 + 3 sin(0)v1.00U0 ¢ + 18sin(0)y1.071,.Uo—
9 csc(8)v1,0Uo + 24sin(0) Bo uoey1 — 24 sin(H)ﬁofyiu + 24sin(0) Bo,0071,u+
12sin(0) Bo.uev1,0 + 125in(0) o 071,u0 + 4809 (cos(0) Boyi,u) + 69p(cos(0)5o.00)—
60y (csc 080 9) — 80 (cos(0)v?) + 99y (cos(0)0,00) — 240g(cos(0)yov1,u)+
30p((cos(20) — 4) csc(0)0,0) + 189p(cos(0)11Uo,0) + 159p(cos(0)71,0Uo)+
60y (cos(0) cot(0)y1Uyp)] db
(4.1.31)

now we can also use the regularity conditions for v, 8,U to quickly eliminate some more

of the total derivatives

i / [sin QUg W3 9 — 24 sin 0W3 5, + 12sin U3Up ,,+
0

485in(0)viUo up + 66 5in(0)y1,071Uo,u + 328in(0)y1,u71Uo 0+
26 sin(0)y1,upv1Uo + sin(0)v1,06Up g9 + 3 sin(0)y1,00U0 0 + 18sin(0)v1 9v1,.Uo—
9csc(0)v1,0Uo + 24 sin(0)Bo,useyr — 24 5in(0) B0t + 24 sin(0) Bo,0071,u+
12 sin(0) Bo,upv1,0 + 12in(0) Bo ov1,u6 + 69p(cos(8)Bo,00) — 60p(csc 050.0)+
90y (cos(6)v0,00) + 30p((cos(20) — 4) csc(0)v0,0)] db.
(4.1.32)

The final total derivative terms must be considered a little more carefully. First we start
with the Gy terms

™

i/o [0g(cos 0B.90) — Op(cscbfp )] db = i[cos 60,00 — csc 0 o] (4.1.33)

0

applying the regularity conditions to the term on the RHS

™

i[— cos? Hacosg(fg (u,cos 6)) + sin”  cos Gagosg(fg(u, cosf)) + 8cosg(fg (u,cos6))]

0
(4.1.34)
€. . 9o 0 22 2 0 "
:Z[Sm 00cos 6(f5(u, cos 0))) + sin” 0 cos 00; ¢ (f5(u, cos 0))]| =0 (4.1.35)

0

where the final equality comes from the sin?# factor and the regularity of the functions
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fg . We perform a similar analysis on the g terms

i /Oﬂ[989(cos(0)70799) + 305 ((cos(26) — 4) csc(0)y0,0)] dO

s
:i [9 cos 070,00 + 3 cos(26) csc Oyp,9 — 12 csc 07y o]
0

:i [18 cos® Hfg (u,cos §) — 18 cos ) sin® Off/) (u,cos @)+
9sin? @ cos? Hﬁcosg(fg (u,cos 0)) + 9 cos § sin eafose(fg (u, cos0))+
6 cos® Gfg (u, cos ) — 3 cos? A sin? Hacosg(fs (u,cosf)) — 6sin”  cos Gfg(u, cos )+

™

3sin? 00es 9.f (1, cos ) — 24 cos GfS(u, cos ) + 12sin® Gacosg(fg (u,cos0))]

0
T

=¢[cos® HffyJ (u, cos ) — cos Hfg(u, cos0)]| = —e[cos O sin® Hf,(y)(u, cos 0)]
0

=0.
0

(4.1.36)

So we again find that the total derivative terms cancel. We are now able to write our

expression for the u-derivative of the Bondi mass in the AF limit as

OMp
ou

17 A [T
=— f/ 72, sinfdf — —/ (sin 02 ) + 4 csc 03 do+
2 0 ’ 12 0 ’
i / [sin QU W3 g — 24 sin 0W3 50, + 12sin §UsUp o, +
0

48 5in(0)v7Up.ug + 66 sin(0)y1 971 Uo.u + 32 5in(0)v1,471 U0 0+
26 sin(0) 11,071 Uo + sin(0)v1,0Uo g9 + 3sin(6)y1,00Uo o+ (4.1.37)
18 sin(6)v1,071,u00 — 9 csc(0)y1,0Uo + 24 sin(0) Bo,user1 —

24sin(0) Bt . + 24 sin(0) Bo,0071,u+

(0)

12sin(0) Bo,upv1,0 + 12in(0)Bo ov1,u0) dO.

The first term is the standard ‘news’ term from the AF set up, the second term is pro-
portional to the cosmological constant A and the third term is due to the rescaling of the
functions Sy, Yo, Uy in the AF limit.

It still seems difficult from simply studying these terms to make a direct conclusion
about the monotonicity of M p although in the case of A < 0 (Al1AdS), we are able to use
this formula to construct an explicit counter-example. To construct this, we consider the
‘newsless’ case

Y,u = 0. (4.1.38)

The motivation for doing this when trying to construct a counter-example is that we do

not want the first term of (4.1.37) to be non-zero. It is negative and it has great size
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relative to the other two terms in the AF limit. In this case equation (4.1.37) reduces to

oM AT
8uB =" 1, (sin 07%79 + 4 cscOv?) dO+

i / [sin QUg W3 9 — 24 sin 0W3 50 ,, + 12sin 0UsUp o, + 48 sin(@)’y%Uo,ue—i-
0

66 Sin(9)717971 Uo,u + sin(0)v1,6U0,00 + 3 Sin(0)71799U079—

9csc(0)v1,0Uo + 24sin(0) Bo,ugey1 + 12sin(6) 5o wev1,6) db.
(4.1.39)

We can now finalise the construction of an increasing mass by considering the special case

of having metric functions

Bo=p5o(0), Up=0, ~#0. (4.1.40)

The first two conditions force all of the O(e) terms in (4.1.39) to vanish and the third
equation is essential in forcing that the O(A) term does not. If we were to have vo = o =0
then our spacetime would be asymptotically AdS [62, 69] and Mp would not vary with
the Bondi time u. Here we still need to have vy # 0 as otherwise the Einstein equation
(4.1.3) would give us v; = 0 and again dIMp/0u = 0.

Using the conditions for the metric functions above, equation (4.1.39) reduces to

A s
a'ng =13 (sin 07%9 + 4 cschyi) do (4.1.41)
0

an expression which is clearly positive for A < 0 as the integrand is positive over the
domain of integration. This is an explicit counter example to the AF case of the Bondi

mass being monotonically decreasing, in the case of an infinitesimal cosmological constant.

There are still issues with this construction which allow us to question the existence of
a monotonically decreasing quantity which could play the role of ‘Bondi mass’ in AIAdS
spacetimes. The main issue being that this construction is only defined in the infinitesimal
A case and enforcing this involved rescaling the metric functions by a somewhat arbitrary

factor of e.

As a piece of speculation, an approach one could use to construct a monotonically
decreasing mass is via the subtraction of terms, similar in spirit to the ideas considered
in the analysis of [46]. To do this, the first steps one may want to take would be to carry
the total u-derivative terms over the the LHS of equation (4.1.37). For example we could

redefine a ‘mass’ Mp

[4 sin 030 09y1 + 2sin08p,97v1,0 + 11 sin 0y171 pUp + 8 sin 97%} de
(4.1.42)

~ €
MB:MB—Z/O
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which would then give the following expression for the Bondi time derivative

OMp
ou

17 A7
:—7/ 'yfusinﬁde——/ (sin @43 4 + 4 csc0yi) dh+
2 Jo ’ 12 Jo ’
2—64 / [sin QU W3 g — 24 sin 0W350 , + 12 sin §U3Uy o, + 3 sin 8Up gy1 g9+ (4.1.43)
0 1.

6 sin 9’)/179 U()’g@ — 9csc 9’}/179 Uo — 48 sin 9U0’)/179’717u*
40 sin OUgv1,uey1 — 645in 0Up gy171,4 — 24 sin Qﬁgviu] de.

While this expression is somewhat simplified when compared to (4.1.37), it still doesn’t
seem clear at this point how all of these terms may be manipulated further in order to
generate a monotonically decreasing quantity. We also note that the subtraction procedure
of the type that we consider in equation (4.1.42) could be problematic as the subtracted
terms are non-local expressions on the cut of .# (they involve 7 terms, which depend
upon 7o, through the field equation (4.1.3)). Understanding the required properties for
monotonicity, as well as whether a monotonic quantity can be constructed via addition of

local counter terms is ongoing work.

4.1.3 Progress with general A case

The existence of a monotonically increasing Bondi mass in the infinitesimal A case is
encouragement that a similar example exists in the general A regime. We shall now

outline the strategy for the analysis in search of a counter example.

The first step we perform is to make explicit all A dependence in (4.1.12). This is per-
formed by applying (4.1.3) in order to remove all y; terms. The result of this substitution
s 0 1 I 1

mp -3 -2 -1
=—+-—"+—+4+1y+ LA 4.1.44
du A3 Az Tp T (4.1.44)

where the coefficients I; are functions of the metric functions g, 8o, Ug, v3, U3, W3. The

explicit forms of these are, as expected, excessively long and instead of printing them here

we confine them to the supplementary notebook ‘Mass_Integrand_Zero_Functions.nb’

Motivated by the form of the counter example that we found before we try what would
appear to be the next most straightforward case of the Bondi metric functions after the

asymptotically AdS case, namely

Bo = Bo(8), Up=7v%=73=0 (4.1.45)

with Us and W3 as yet undetermined but still forced to satisfy the supplementary field
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equations (A.1.1, A.2) respectively. With this choice of functions, (4.1.44) reduces to

ou 2
1
56650 [—16 cot(0) B g + 435 g (cot?(0) — 4B0,09) + cot*(0) Bo.00 — 455 66—

2 cot(0)Bo.000 — Bo,o(cot(0){2 + Csc2(9)} + 16 cot(0) Bo,00 + 850,000) —

) A g, (1 !
mp _ ZeAbo (2[]3 cot(6) + 5Ug,ﬂ + U350,0> -

Bo.0606]
(4.1.46)
and the supplementary equations (A.1.1, A.2) reduce nicely to
1
Us = 3¢ (Wa g+ 4Wsf0.0) (4.1.47a)

1 1
Wi, = —Ae?0 <2U3 cot(0) + §U3,9 + U3ﬁo,9) +

' [—16 cot(0) B3 g + 453 (cot?(8) — 4B0,99) + cot?(0) Bo,00 — 453 99—
2 cot(0)Bo,000 — Bo,o(cot(0){2 + CSCQ(H)} + 16 cot(0) Bo.00 + 8B0,000)—
Bo,0660]

(4.1.47b)

the second of which is equivalent to
W3, = —2¢ mp, (4.1.48)

which we would find automatically when applying (4.1.45) to the definition of the mass
aspect in (4.1.2).

4.2 Modified Bondi gauge

In order to motivate this new direction of work we first recount some of the basic results
of the previous sections. In [1], the Bondi-Metzner-Sachs (BMS) gauge is presented as the

class of metrics with the following line-element

ds® = —(Vr_lezﬁ — U2r2627)du2 —2e*8 dudr — 2Ur?e* dudf + 7"2(627d92 + e 2V gin? 9dq§2).
(4.2.1)
The four functions W, ,U,~v which appear in the line-element are all assumed to be

functions of the coordinates (u,r,6), thus making this metric axisymmetric.

The Bondi gauge conditions are g, = g9 = 0 (clear from the form of the line element
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above) as well as a determinant condition on the angular part of the metric

det (gTAQB> = sin® ¢ (4.2.2)
where the indices A, B run over the values {2,3} = {6,¢}. This condition defines the
radial coordinate r as a luminosity parameter and is also clearly implemented in equation
(4.2.1).

For the purpose of this section we will focus on the second of these two gauge conditions
with the goal of relaxing this condition in order to write a more general form of the
angular part of the metric. This gauge choice has been used in much work concerning the
Bondi gauge in asymptotically flat (AF) [2, 9, 10, 11, 7, 4, 5, 12, 24, 13, 25, 30] spacetime
and the author of this thesis has also began a programme of generalising the use of the
Bondi-gauge to asymptotically locally AdS (AlAdS) spacetimes [52], including gaining a
holographic understanding of the gauge via the AdS/CFT correspondence (as discussed

in the previous chapter).

Before we discuss the specifics of the how we will modify the Bondi gauge in order to
accommodate a larger class of spacetimes, we also note the existence of a similar gauge
often used in asymptotically flat literature: The Newman Unti (NU) gauge [180], in which
the radial coordinate r is chosen to be an affine parameter for the generators of the null
hypersurfaces. Our modified Bondi gauge will present some similarities to this gauge,
although we will not apply the NU radial coordinate definition in general. For some

recent work on asymptotic symmetries in the NU gauge, see [181].

One of the key stages in gaining a holographic understanding of a gravitational theory
in the presence of a cosmological constant A < 0 is to transform the metric of the theory
into Fefferman-Graham (FG) coordinates [59] which take the following form in spacetime
dimension d = 3 + 1

dp?> 1
ds® =17 p—[; + ?(goab + p292ab + pgggab + .. .)d:r“da:b (4.2.3)

where [ = /—3/A is the AdS radius of the spacetime and the indices a,b run over all
coordiantes other than p. Using this particular coordinate system, it has been shown
[60, 61] that one is able to extract holographic data for the conformal field theory (CFT)
dual to the gravitational theory under question. The coordinate p is analogous to a
distance coordinate in the bulk spacetime and p = 0 is the location of the 3-dimensional

conformal boundary .#, upon which the CFTj3 lives.

The background metric for the CFTj3 is given by the g, component of the FG metric

and the expectation value of the energy-momentum tensor of the CFTj is proportional to
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gs- In [52], the transformation from an AlAdS Bondi-gauged spacetime to FG coordinates
was performed, with the background metric on the CFT3 being given by

dsg = (2002 - e4BO)dt2 — 2?0 0ydtdd + e*10d6? + =270 sin?(0)dp>. (4.2.4)

Notice that this line-element seems to roughly maintain the Bondi gauge condition (4.2.2).
Stated more precisely, we found that enforcing (4.2.2) upon the original Bondi metric
results in a restriction on the angular part of the background metric for our dual theory.
This is a restrictive and somewhat unnatural property from a CFT perspective and thus
we would like to find a method of removing this property, with a natural place to start

being to remove the condition (4.2.2) on the original Bondi metric.

This section is organised as follows: First we will discuss how we break the gauge
condition upon the Bondi-Sachs spacetime and solve the vacuum Einstein equations (in
the presence of a cosmological constant A < 0) in the new gauge. We will then compute
the transformation of our solutions from the Bondi to the FG gauge before discussing
how this procedure can allow us to apply our results to the Robinson-Trautman class of
spacetimes. Finally, we will consider how to transform from our new gauge back into the

Bondi gauge, giving equations for this procedure.

4.2.1 Vacuum Einstein Equations

In this section we will discuss a method of breaking the Bondi gauge condition, before

solving the vacuum Einstein equations with the new gauge.

4.2.1.1 Breaking the Bondi Gauge

Before attempting to solve the vacuum FKEinstein equations we must first decide how we
wish to break the Bondi gauge presented in (4.2.1). To do this generically, we introduce

a 5™ unknown function &(u,r,0) into the metric

ds® = —(Vr_lew —U?r%e®)du® — 262 dudr — 2U12e®V dudf + r2(e*7df? + e~ 20 gin? 0dp?).
(4.2.5)
which clearly breaks the Bondi gauge condition (4.2.2).

We begin somewhat naively in constructing the Einstein field equations with an arbitrary
¢ and we will then pick special choices depending upon their capacity to solve the field

equations themselves. To attempt to solve the field equations we follow the scheme of [1]
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which involves writing the field equations as four ‘main equations’
Ry =Ry=0,  Rgg=Aggg=Ar’e?,  Ryy=Aggs=Ar’sin®0e 2  (4.2.6)

which we use to write the functions F;(u,r, )

E,=—-R,, =0, (4.2.7a)
Ey =2r’R, =0, (4.2.7b)
By = 2Ar%e*® — Rgpe® P — 12 R = 0, (4.2.7¢)
By = Ar?e®® —r?Rje® =0 (4.2.7d)

and thus solving the Einstein equations boils down to solving the four equations above.

Explicit computation of the component of the curvature tensor gives us the equations

B - Y2 + 27 + 182 — 20, — 2B (1 — 16 + 2) + 1Y — 760y (4.2.82)
T

Ey = 67257‘(262659(7”’)% — 71 +2) — T(—627Ur7~’l”2 + 627Ur(2rﬂr = 3ryy + 1o — 4)r—
2¢% (cot(8) — 6g)yr — 2% cot(8)d, + 222650, + 2e2° B9 — 2e256,9)))

(4.2.8b)

1
E; = 5627_25U37“4 +2e?PAr? — cot(&)UTr2 — 7pUpr? + 89U — Upgr? — 279,y +

20,7t 4 27,001 — 20,0472 — 2945 4 200,172 + VA2 + V621 4 Virypr—

Vp6pr — 2V 0, — 2Ug (1, — 176, + 2)r — 2 ¢sc(0)U (7, cos(6) — rd, cos(6)+

2 cos(0) + sin(0)vg(ryr — 1 + 2) — sin(0)dg(ry, — 16 + 2) + 7rsin(0)y,9—

rsin(0)d.9)r + VAyprr — Voppr — dyyr + 40,7 — 202827 2626—2763—1—

262872762 4+ 2e2572 cot(0) By — 2e2P72 cot(0)yp — 2727 Bgryp—

4282 cot(6)dg — 2628727 8p6p + 262078y + 262072V Bpg—

2622599 + 2V, 4 3V, — 3V 6,.)
(4.2.8¢)

Ey =e?PAr? — cot(0)U,r2 + 89Ut + 8pyur® 4 700ur? — 26,0,12 + 28,72+

V62r — Vpopr — Vopder 4 Up(rd, — 1)1 — U (1, cot(6) — 216, cot(0)+

3cot(0) + vo(1 — 16,) — 0g(ryy — 270, + 3) — 216,9)7 — VOppT — Y1 + 36,7 —

20720 1 2572162 4 22572 cot () By — 2P cot(0)yp—

2¢28-27 cot(0)dg — 26287278060 + €282 m8g — 272809 + V. + Vi, — 2V5,
(4.2.8d)

In order to solve these equations we will use the original integration scheme due to BMS,
although we will modify it slightly to include the 5% function ¢. This scheme proceeds as
follows: Starting with the values of ¢,y on some null hypersurface, NV, = {u = up}, we
solve E1 = 0 on Ny, to obtain |y, . We then solve Ey = 0 for Uy, , E3 = 0 for V|,
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and finally F4 = 0 should give us a differential equation containing -, and d,.

In the original four function scheme we could solve Ej4 in order to give v at “the next

time-step” i.e. | in terms of known quantities on N,;,. The scheme could then

be iterated to gene;(;;c:msolutions in the future domain of dependence of the initial null
hypersurface DT (N, ). With five functions it seems the most we can hope for from Ej is
to obtain a relationship between 7| N tbug and 4] N s5ug? nonetheless we will proceed with
this scheme and we will show that picking particular values of § will allow us to solve all

of the main equations directly.

As before, we are looking to solve the vacuum equations in the asymptotic region of
spacetime, thus invoking the assumption [1] that the functions ~, 5, U, ¢ all admit power

series in negative powers of the radial coordinate r

> (w0 < (w0
A 0) =30 2D gy <y Pnl0)
n=0

n=0 Un’(“u ) - 50 (4.2.9)
U(uarag):nz:%rrin’v 5('&,7“,9):7;)717“’
and V admits an expansion of the form
V(u,r,0) = i %_’39). (4.2.10)
n=0 r

In order to keep the V series consistent with the others we define the new function

W(U,T,G) _ V(Ur,;”vg) _ Z Vngjia 9) (4.2.11)
n=0

We can now solve the Einstein equations as algebraic equations order by order in powers

of r, giving us the coefficients of the power series’.

We could now give details of how to solve equations order by order and obtain solutions
but much of this procedure has already been covered in [52]. Instead, we will discuss the
two new constraint equations (equations that force dependence between v and d) that

arise as a consequence of our new function
o Constraint Equation 1

This equation arises at O(1/r) when solving Ey = 0. This constraint reads

0= — 780,60 — 27200,0 + V1,071 + V2.0 + cot(0)VF + 2 cot(8)y2 + 3150 ,9—

(4.2.12a)
28980, — 01619 + 02,9 — cot(0)d7 + 2 cot(6)ds
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e Constraint Equation 2
This equation arises at O(1/r) when solving E3 =0

1
— g A (1 + 1) (7 + 292 — 07 +28) = 0. (4.2.12b)

We focus first on (4.2.12b), finding a solution to be d; = —7;. Applying this result to
(4.2.12a) simplifies the equation to

— 27200,0 + V2,0 + 2 cot(0)y2 — 202009 + 62,9 + 2cot(0)d2 =0 (4.2.13)
which we observe to be solved when we pick do = —s.
These simple solutions lead us to conjecture that the choice of 6 = —y would be an in-

teresting function choice to make in this problem. Not only would this solve the constraint
equations but it would force the angular part of the metric to take the form e2?7dQ2, the
round S? metric multiplied by a conformal factor. This form of the metric would allow us
to apply our new Bondi-style gauge to various metrics for which the original one didn’t
easily apply, such as the AdS Robinson-Trautman metrics [167, 69, 182]. We note that in
breaking the Bondi gauge in the manner that we have followed, one loses the geometrical
definition of r as a luminosity parameter. In fact, the radial coordinate is yet unspecified
(one can perform a transformation r» — 7(r, u, #) without spoiling any of the gauge condi-
tions in (4.2.5)). We will preserve this condition for now, as at a later stage a particular

choice of definition for r may prove to be most convenient.

A final motivation for this choice is that it begins to simplify Ey. At O(r) we find the

equation
— Ae?Pry; — Ae?81 + 300 + 3004 + 370,000 + 300,600 + 3Un g — 3cot(0)Up = 0 (4.2.14)
which is first simplified using our special solution to the constraint equations (6; = —v1)
370,u + 300,u + 370,0Uo + 390 9¢Uo + 3Up 9 — 3cot(§)Up =0 (4.2.15)

now notice that picking 79 = —dg simplifies this equation to an easily solvable differential
equation for Uy
Upg — cot(0)Up =0 = Uy = c(u) sin(0) (4.2.16)

where ¢(u) is the function of integration.

Due to these promising first choices we will now solve in full the Einstein equations using
the choice §(u,r,0) = —y(u,r,0).
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4.2.1.2 Solutions

In this subsection we will present solutions to the main equations up to 4" order. This
means that we will present the solutions as the coefficients of the power series (4.2.9),(4.2.11)
up to the O(1/r*) coefficients. The equations are straightforward enough to solve to higher

order although we omit printing these solutions due to their sheer length.

We begin by solving £1 = 0 for 5 in terms of v which we assume to know at some given

retarded time ug. Using the asymptotic expansions of (4.2.9) we obtain coefficients

B1=0
L 5
Pr= (i = 2n2)
h (4.2.17)
B = 2(=71 = 671172 — 673)
Bs = é(—’ﬁl — 812 — 8y — 12m1y3 — 1274).

with By being an undetermined function of integration. Armed with these solutions, we

solve F5 =0

Uy = 26260—2%50’9
Us = —6250_2%(27150,9 —71,0)

) (4.2.18)
Uy = —g(—lﬁewoﬁoﬁ’ﬁ’ + 15e20y; gvE + 24e*0 By gyay1 — 12€*%05 gy1+

12¢°% By g3 + 6% 0371, — 6*P0 3 9 + 182109, Us).

Notice that solving this equation does not determine Uy or Us. This setup provides no
equation for Uy and instead of an equation for Us, we would arrive at constraint equation
(4.2.12a) (automatically solved due to our choice of § = —«). In the original work [1]
Uy and Us were left undetermined by the main equations, and considered as functions of

integration. Here we will see instead that both will be determined by enforcing E4 = 0.

First we need to consider F3 = 0. As the equations are nicely nested, we can solve

this using the functions ~, 5, U which we have obtained from the previous equations. The
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solutions to this equation are

1
W[) = —56260A

1
W1 = =(3cot 0o — 2¢*% A1 + 3Uo.0 + 6Un 0.0 + 670,u)

1
Wa = —66_270(5A'y%ez’30+270 + 6Ay9e2P0T 290 1 60 05 4+ 6 cot(0)e2P0yg g—

6e2f0 — 246250ﬁ379 — 12250 ) g9 — 12 cot(0)e*7 By g—
12627090, 71 — 12627091, — 662707, Up g — 12> 50 971 Up—
1262’70’}/179(]0 - 6COt(9)62WO’Y1U0)

1
W, = ﬁe—Q'yo(_43€2,30+2’YOA,Y% + 48¢270 cot(@)Uo’Y% + 48¢270 U079’yig’+

96e° U007} + 96€27°70,475 + 122097 — 172620720 Ayprf 4
36”7 cot(6) 80,077 — 126> cot(6)y0,077 + 96€”° Uy 077+
36e2% By 9977 — 126*00 9977 + 96€* 701 7} — 24”0 Wy +
1447 cot(0)Ugyay — 120€2%0F270 Aygryy + 144€*7095Ug g1+
288¢°Ugv2y0,0711 — 12677 cot(0)y1,971 + 168¢°™ By gm1,6m1+
967 Upya,071 — 126% 41 ggy1 + 28807970071 + 96627092 71 —
52e200120 A2 4 19262707, 82 5 + 1262047 ) — 12270 cot () Us+
24€*P0y; 4 726270 cot(0)Upys — 402707200 Ay 4 726220430 o—
12¢20U3 g 4 72¢27°U380.9 + 24€2% cot(0) 280,60 — 2420 Us g, 9—
2427 cot(0)yay0,0 + 14420 Unv370,0 + 96620 Ugyay1 0+

12?70 cot(0)ya.0 + 24€2% By g2, + 4870 Uz 9 + 24704980 go—
246260")/2’)/0799 -+ 12626072,09 + 144627073’}’0#4‘

96€%70 91 4, + 487073 ,,)
(4.2.19)

where we note that no equation for W3 has been presented. The equation in it’s place is

the constraint equation (4.2.12b), again automatically solved.

The final main equation, F4 = 0, is all that now remains of the main system of equations.
As was discussed at the end of the previous subsection, the O(r) coefficient gives us an
equation which forces

Up = c(u) sin(8). (4.2.20)

As it turns out, this also forces the @7 and O(1/r) terms in the expansion of E4 to vanish.
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The next non-vanishing term is at O(1/r?). This term reads

_ _ 1 _ _
433 g7 €010 — By gyg gyieP0 10 4 5/30,99’7%250 20 — 380 971,710 720+

B 1 _ _ 1 _
Yo,01,071€2P0 720 — 571,99’7162&’ 270 _ 853,07262'80 270 57%,962&) 20 4

280672706627 72 + 380 672,620 720 — g g72,9€*P0TH0 — By ggrype?FoHI0 4 (4.2.21)

soo — Lot(0)s a2 1 L contop gt

1 1 1
cot(6)Bo pyae®P0 210 — B cot(0)y2,9e*P0 7210 — 35, gUs — §U3,9 +3 cot(0)Us,

the vanishing of which we can treat as a PDE for Us. As it turns out, this PDE is easily

integrable, giving the solution

Us = h(u)sin(f)e 0% 4 e2Po=20 (50,97% — 280,672 — Y1,0M1 + 72,9) (4.2.22)

where h(u) is the function of integration.

This solution is enough to satisfy the vanishing of E, at orders O(1/r3) and O(1/r%)
but not at O(1/r®). This order is only satisfied if we enforce

h(u) = 0. (4.2.23)

Showing this requires solving the Kinstein equations to higher order than we have dis-
played in this thesis. Due to the long expressions involved in these computations, we
relegate this to the MATHEMATICA file ‘delta=-gamma_solutions.nb’ (all references
to MATHEMATICA files in this section refer to this notebook).

4.2.1.3 Supplementary Conditions

The four ‘main equations’ that we have solved above do not constitute a full set of the
Einstein field equations. As in the AF case [1] as well as the AIAdS case [52], there will
also be extra ‘supplementary conditions’ corresponding to the {uu} and {uf} components

of the field equations (all other components automatically satisfy the field equations).

Using an identical procedure to that employed in [1, 52], one can study the contracted
Bianchi identities for the spacetime (after enforcing the main equations hold) to show that
the equations admit the following forms

Rup = Aguo + (4.2.24a)

Ry = Aguu + (4.2.24b)
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where f(u,0),g(u,0) are functions of integration which have to vanish if the vacuum field
equations are to hold. To explicitly compute f and g, we use the solutions from the
previous subsection (up to and including O(1/r*) terms is sufficient) and put them back
into the {uf} and {uu} components of the field equations. The surviving O(1/r?) terms
will now allow us to read off the functions and thus the equations we need to enforce the
full set of field equations. As was the case in the Bondi-AdS case studied previously in
this thesis, these supplementary conditions produce exceedingly long printouts for f and
g, which we leave in the MATHEMATICA file.

4.2.2 Fefferman Graham Coordinate Transformation

Now that we have solved the Einstein equations, we want to transform our AIAdS solution

to the vacuum Einstein equations into the Fefferman-Graham coordinate system
d 2 l2 dpr i c 2 c 3 c dz’d b 4.2.9
S e (9oab(2) + P79(2)ab(2°) + P°g(3)ap(x) + .. .)dzdz”| . (4.2.25)

This coordinate system is a choice of gauge for which all asymptotically locally AdS space-
times can be written in near the conformal boundary 0X = .# = {p = 0} [62]. | = \/—3/A
is the AdS radius of the spacetime, and the indicies a, b, ¢ run over all coordinates other
than p. The reason we want to transform into this gauge is it allows us to gain a holo-
graphic understanding of our “broken Bondi” spacetime via the AdS/CFT correspondence
[58, 140, 60, 62].

Here we will give a sketch of the coordinate transformation from our metric
ds® = —(Vr—te? — U%r2e®)du? — 2*P dudr — 2Ur2e? dudf + r2e® dQ3 (4.2.26)

to (4.2.25). To simplify the computation we will use the normalisation of [ =1 (A = —3)
throughout.

Conceptually, this transformation is identical to that performed in [52]. Starting with
(4.2.26) (with the metric functions being our solutions to the vacuum Einstein equations
from the previous section) we first transform into real time ¢ and tortoise radial coordinate

r+. The real time ¢ is defined by the relation
t=u—r, (4.2.27)

and 74 by
dry, = ——. (4.2.28)
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Here we choose profile function f(r) = 1 + 72, giving
r. = arctan(r) + ¢ (4.2.29)

where c is the constant of integration. To motivate our choice of the value of this constant
of integration, we use the fact that the conformal boundary of the AIAdS spacetime in
Fefferman-Graham coordinates is located at p = 0. When transforming into Fefferman-
Graham coordinates we want to roughly identify the coordinate p with r,, so it makes sense
to choose a constant of integration corresponding to the boundary condition lim, . 7y =
0. This forces ¢ = —m/2 and thus

r = tan (7“* + g) = —cot(ry). (4.2.30)

Using these explicit coordinate transformations, we can transform (4.2.26) into coordinates
(t, 74,0, ¢) and from these coordinates we are now ready to move into Fefferman-Graham

coordinates (%, p, 0, QNS) The first transformation which we note is

p=¢ (4.2.31)

which follows directly from the from the axisymmetry of the spacetime. The other coor-

dinates are all obtained by power series expansions in p

re = p+as(t,0)p° + a3(f,0)p° + au(£,0)p* + O(p°)
= T+ b1(£,0)p + ba(T,0)p% + b3(1,0)p° + ba(E,0)p* + O(p°) (4.2.32)
=9+ 1(£,0)p + ca(F,0)p* + ¢3(8,0)p° + ca(t, 0)p* + O(p%)

where the coefficients have yet to be determined. In order to determine these coefficients,
one must apply the transformation and force the resulting line-element to take the form
of (4.2.25). This procedure involves taking the series of any functions in the metric about
p = 0 and then forcing the terms proportional to dp?, dpdt, dpdé to vanish at all orders
of p (excluding, of course the dp?/p? piece). Note that it is also common practice to drop
the tildes on the Fefferman-Graham coordinates after transformation, so from here on we

will refer to the Fefferman-Graham system as (t, p, 0, ).

. O(1/p):

Requiring that the transformed system is in Fefferman-Graham coordinates at this

order in p forces us to pick coefficients

bi(t,0) =1 — e~ 2ht0) (4.2.33a)
c1(t,0) = —e= 200 (1) sin(0), (4.2.33D)
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where the function c¢(t) is the function of integration that we saw in the metric

function Up. The metric at this order in the Fefferman-Graham expansion is

ds? = p12 [alp2 — (1 + e*0c(t)? sin?(0))dt* — 2¢(t) sin(#)e*°dtdd + eQVOdQQ}
(4.2.34)

which allows us to read off g,, the metric induced at the conformal boundary
ds® = —(1 + €2¢(t)? sin?(0))dt® — 2¢(t) sin(8)e>°dtdf + 70 dQ> (4.2.35)

This is the first interesting piece of holographic data, as in the AdS/CFT corre-
spondence, this is the background metric for the CFT3 dual to our gravitational

theory.

O(1/p):

This order gives us some more of the coeflicients

as(t,0) = —e2P0(c(t) cos O + e*yy + c(t) sin 0y0,0 + 70.) (4.2.36a)
ba(t,0) = —e 0 (e?c(t) cos O + ey + c(t) sin 05 o+ (4.2.36b)
ewc(t) sin 07y 9 + Bot + ewofm,t) o
1

ea(t,0) = —e 407290 (¢ (£)2e20 cos O sin 6 + ¢ (¢)e®0 sin 6 + 27 5, g—

A (t.0)= 2 (e(t (0 0 s
2¢(t)%e*7 sin®(0) Bo,0 — 2c(t)e* sin 630,
and the Fefferman-Graham metric at this order vanishes (as expected)

ds(yy =0 (4.2.37)

O(1):

This order gives us the coefficients as, b3, c3 as well as the gy piece of the metric
(left out here due to length). This order also provides us with a consistency check

as g(2) has to satisfy the equation

1
mmz—&@+1&%@ (4.2.38)

where g, is the metric induced at the boundary (4.2.35) and R, 4, R, are respectively
the Ricci tensor and scalar of g,. This constraint has been checked in MATHEMAT-

ICA with the g(y) from the series expansion and these two expressions agree.

« O(p):
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This order gives us the coeflicients a4, by, c4 and the g(3) piece of the metric (again
these are exceedingly long formulae). The g(3) term has the holographic interpreta-

tion as being the energy momentum tensor of the dual CFT. Explicitly we have

3 3
Tab = _ﬁ <_A) 9(3)ab (4239)

where K = 87G/c? is Einstein’s constant. T, is called the holographic energy-

momentum tensor as it gives the expectation value of the energy momentum tensor

in the dual CFT

2 6Sren
(Top) = . (4.2.40)
“ V/—det g, dgab
T,p is both conserved and traceless with respect to the metric g,qs
92T =0, VT =0 (4.2.41)

which means that g(3),, should also satisfy these equations.

This has again been checked in MATHEMATICA. g(3)q, has been verified to be

traceless and conserved as all components of the divergence vanish.

4.2.3 Application to Robinson-Trautman Metrics

As well as breaking the unnatural restriction on the angular part of the metric in the CFT,
another important motivation for modifying the Bondi gauge was to be able to apply the
new gauge to spacetimes for which the original gauge seemed unnatural or difficult to

transform into.

A particular example of a spacetime for which we would like to examine in our new gauge
is the Robinson-Trautman (RT) class of metrics [68, 183, 184, 185, 186, 187, 188]. The
RT spacetimes are the unique class of solutions to the vacuum Einstein equations which
admit a null geodesic congruence with zero shear and twist and non-vanishing divergence.
These spacetimes have been a topic of interest in both the AF [189, 190] and AlAdS cases
[69, 182] although the latter case has not yet been adapted to the Bondi gauge, a task we

hope to begin to give a resolution to now.

For the purpose of this thesis we will use the coordinate system of [182] and restrict con-

sideration to AIAdS axisymmetric RT spacetimes. These are described by the spacetime
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metric

ds?> = —F(u,r,0)du?® — 2dudr + r? g dz®dz®

1
dz®dz® = ds3
YGab U(u, 9)2 k (4242)
A Oyo R 2m
F 0) = —p2 _9p¥ 4 79 2
(u,,0) 3" r -+ 5 ;
where u is a retarded time coordinate and r is the radial distance. The indices a,b run
over the angular coordinates 6, ¢ (we will drop the covariant form in order to impose
the axisymmetry) The constant m which appears in the final term of F' is a constant of

integration, associated with the physical mass of the system.

dZi describes the metric on a Riemannian 2-manifold of constant scalar curvature 2k,
k = —1 describes H?, k = 0 is either 72 or R? and k = 1 is S2. In order to connect the RT
metric with our gauge choice of (4.2.26), we will from now on set k = 1. Ry is the Ricci

scalar of gq and so choosing k = 1 means we have
Ry, =2 [02 — (090)? + o (cot(8) Do + 630)} . (4.2.43)

This form of the metric alone is not enough to solve the vacuum Einstein equations. We
also have an equation for o(u,#) which is often referred to as the Robinson-Trautman
equation. We express this equation as a Calabi-flow equation for the metric g, on a
topological 2-sphere

1
Ouab = %(szg)gab (4.2.44)

in coordinates where d¥.? = df?+sin?(6)d¢?, the 4 components of the Calabi-flow equation
only give us one equation
D0 = =L (D90 (cot (6o — o)+
o = —15—[(9p7)"(co o — 050
o {(4 — 3cosec?(8))(950)? — (B20)? + Dy (4 cot(0)920 + Ho))+  (4:2:45)

02(2 cot(6)cosec?(0)dpo — 2 cot?(0)Dza + cot(0)dio + djo)]
which we can now explicitly see to be a 4% order differential equation for o(u,d). The
general properties of this equation and it’s solutions have been analysed, most notably in

[191]. Here we will focus on selecting the functions in our broken Bondi gauge s.t. they

solve this equation.

We want to compare the RT spacetime with our “Broken Bondi” gauge. It is a helpful
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first step to write both spacetimes metrics side by side

dshy = — (/;T2 - 27“6?70 + (02 — (9g0)? + o (cot(0)go + Da0)) — 2:1) du?—
2
2dudr + — (462 + sin?(0)dg?)
(4.2.46a)
dshp = — (Wr2e2ﬁ — U27‘2627) du? — 2e* dudr — 2Ur?e? dudf+

(4.2.46b)

r2e?7 (d92 + sin2(0)d¢2) .
By direct comparison of the angular parts of the metrics, we conclude that e?VrT =
1/0? <= ~gr = —log(o). Comparing the {uf} components of the metrics now gives
us Urr = 0 and Srr = 0 follows from the {ur} components. Finally we can compare the

{uu} components to read off Wrr

A 20,0 1 2m
Wer(u,r,0) = -3 Z + 74—2((72 — (090)? + o(cot(0)dgo + D30)) — s ( )
4.2.47
A2 1 _ 2m
=~ + ~0uyrr + (1= OgyRr ot 0 — Ogyrr) — 5
3 r r r

where the second expression is consistent with the solutions to the Einstein equations that

we generated in (4.2.19).

So the RT metrics are written in the broken Bondi gauge. Due to this we can also

read off the FG expansion for axisymmetric RT metrics from the transformation that we

performed.
dsg = —dt? + €27°(df? + sin’(0)dp?) (4.2.48a)
1
dsfy = 3¢ (€798 + 9000 + 26790, + cot(0) 300 — 1) di* + 270,00t +
1 .
5 (—62707(%# — 1+ .90 + COt(G)’Y()’g) [d92 + do? Slnz(ﬁ)]

(4.2.48b)

4
ds?y) = —?mdtQ—i-
2 o9y, 2 2
—e (707999 — 20013(0)70’9 + COt(Q)’yO’gg — 70,0 (2’)/0,99 + csc ((9) - 2)) dtdo+

3
1
3 (*2m627° + Yo0,u00 — Yo,u0 (270,60 + COt(H))) do’+
1.
5 51n2(9) (70,u9 (270,90 + cot(6)) — <2m6270 + ’Vo,u%)) dgbz
(4.2.48c)
where again we've used A = —3. This result agrees with the energy-monetum tensor

for the AdS-RT spacetime as presented in [69]. To see this explicitly one simply needs

to transform from our choice of angular coordinates, (6, ¢), into the Kéhler coordinates,
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(z,z), used in [69]

0\ 0\ .
z = V/2cot <2> e?, Z=+/2cot (2> e (4.2.49)

4.2.4 Idea for transformation from Bondi to “Broken Bondi” gauge

We still wish to find a way of connecting our new choice of “broken Bondi” gauge to
the original gauge. The principal motivation for such an undertaking is that we already
understand the physical aspects of the old gauge (mass, news etc.) and we would like to

apply these new considerations to the new gauge.

In order to do this, we need to find a coordinate transformation from the Bondi gauge
(4.2.1) into the broken gauge (4.2.26). We immediately notice that the only difference
between these two gauges is in the angular part of the metric and thus to simplify the
problem we will consider maps between the 2-metrics. It is of interest to the author of
this thesis to return to this in the near future in order to explicitly perform this map.
This would allow us to further develop the notion of Bondi mass in AIAdS, spacetime by

having a concrete in the class of Robinson-Trautman spacetimes.

4.3 Conclusions and outlook

We have shown that the Bondi-Sachs gauge admits various interesting properties within the
framework of asymptotically locally AdS spacetimes, both via a careful consideration of the

asymptotics in the Fefferman-Graham gauge and utilisation of the AdS/CFT dictionary.

With regards to future progression, the first aim is to complete the ongoing work com-
prising sections 4.1 and 4.2. A greater understanding of the Bondi mass in AdS would
potentially allow us to model the effects of gravitational radiation in AdS and help to bol-
ster the understanding of mass in asymptotically hyperbolic spacetimes. We also have the
motivation to better understand the Robinson-Trautman spacetime and it’s Bondi mass
when A < 0. In [69], results were derived for Robinson-Trautman metrics using the Bondi
mass (as defined in asymptotically flat spacetime), and it would be interesting to examine
whether the same carries over using a well understood notion of ‘Bondi mass’ in AdS.
The technique of breaking the Bondi gauge that we are beginning to implement should
hopefully provide us with an avenue to do this, as well as the necessary tools to look at
the physical aspects of Bondi-Sachs spacetimes without the constraint on the angular part

of the metric.
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Finally, it is also of interest to understand the conformal field theory implications of any
result that one finds in the gravitational setup. Understanding mass loss and the new gauge
seems to have a direct meaning in the dual CFT (related to the energy momentum tensor
and the background metric respectively) and once the current work has been completed we
hope to be able to understand these equivalences more precisely. Speculatively, one could
even begin to use this work as a launch-pad in establishing a holographic understanding
of flat spacetime, as we now have both the elegant properties of the Bondi-Sachs gauge in
flat spacetime, as well as a holographic understanding via AdS/CFT. This idea remains

in it’s infancy here, but shows another direction that this research may eventually follow.
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CHAPTER b

Charges in asymptotically locally de Sitter spacetimes

5.1 Analytic continuation to asymptotically de Sitter space-

time

Now that we have seen how to extend the use of the Bondi-Sachs gauge to that of asymptot-
ically locally anti-de Sitter space time, it is a natural question to ask whether this analysis
extends to asymptotically de Sitter (dS) spacetimes. These spacetimes are of interest for
many reasons, principally because it has been experimentally verified that our universe has
a cosmological constant A > 0 [192] and although it is still debated whether this solution
is static or running, any new understanding of de Sitter physics may help us to understand
our universe. There is also interest in a holographic understanding of quantum gravity in
de Sitter spacetime, mainly via the so-called “dS/CFT" correspondence [193, 194] as well
as more recent work on holographic cosmology [72, 73, 74, 75, 195, 196, 197, 198].

For the purpose of extending our results, it was shown in an appendix of [62] that the
analysis of the near-boundary (Fefferman-Graham) expansion is remarkably similar in the
AdS and dS cases, and one can use the tools of analytic continuation to transform from
one to the other. In this section we will explain how to perform this analytic continuation
and interpret our results from the previous sections in the context of asymptotically de

Sitter spacetime.

129



130 Chapter 5. Charges in asymptotically locally de Sitter spacetimes

5.1.1 Triple Wick rotation

To move from the AdS to dS form of the Fefferman-Graham expansion, one has to Wick
rotate three of the variables, a procedure we will refer to as a triple Wick rotation. We
will explain this first through the straightforward example of Lorentzian AdS in Poincaré
coordinates (as in [62], although there the starting point was Euclidean AdS) before

moving to the more general Fefferman-Graham form

3 | d”

1
ds* = - 2t plow + PP 9@as + P93y + - - dzda (5.1.1)

and applying the rotation using our Bondi-Sachs expansion as computed in [52].

Before studying metrics explicitly, it will help to gain intuition about how to take the

rotation. We write the vacuum Einstein equations as
Rap = Agap (5.1.2)

where A < 0 for AdS and A > 0 for dS. We recall the characteristic length scales for each

3 3
Bias = 0 lis = A (5.1.3)

and thus the Einstein equations for an AdS and dS spacetime respectively read

Ry = ——l23 (AdS)
AdS
5 (5.1.4)
Rab = ZT (dS)
ds

from which we see that we can map between the two equations by taking 13,4 <> —I2.
Thus this is one of the Wick rotations we perform when analytically continuing from AdS
to dS.

To illustrate the rotations of the other variables, it will help to consider the specific
example of Lorentzian AdS. We write the metric for Lorentzian AdS in dimensionless

Poincaré coordinates (p,t,x1,x2)
l2
ds? = %(dp2 — dt* 4 da? + dx3) (5.1.5)

where we note by comparison with (5.1.1) that this metric has g(g)as = 7ap With all other
g(i) vanishing. We now perform the expected rotation upon lids as well as the following

rotations in the other coordinates

0t = —pt, P 12 (5.1.6)
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which brings the line element into the form
12 -
ds* = g—g(—d,ﬁ2 + di? 4 da? + dad). (5.1.7)

This metric is a line element for de Sitter spacetime which we will follow the conventions
of [62] in naming this the “big bang” metric. p is now a time coordinate (the conformal
time) and the surfaces of p = constant are spacelike 3-planes. These coordinates cover half
of the global geometry of dS [171] and depending upon the ranges of the coordinates one
can choose which of the two spacelike boundaries of de Sitter space is covered: Choosing
p € (—00,0) covers £ and p € (0,00) .#~ where in both cases the covered boundary is
located at p = 0. The case of covering .# 7 is displayed in the Penrose diagram of Figure
5.1.1.

JH{p=0}

Ve

Figureb.1.1: Penrose diagram for global de Sitter spacetime showing the region covered
by the “big bang” metric. The dotted line on the left hand side is a coordinate singularity
where t =21 =29 =0

This example shows that we can transform from AdS to dS by performing the triple
Wick rotation

(l/24dS7p27t2) — _(Z?ISWﬁzvfz) (518)

and the structure of the equation (5.1.7) hints at a more general relation between the

asymptotic expansion of the AdS and dS metrics. It turns out that the line element for an
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asymptotically locally dS metric can be brought into the Fefferman-Graham form [59, 62]

dp 1 ,_ 9 3.
ds® = l?zs - 52 ?(Q(O)ij + p29(2)ij + ng(s)m ..)dz’ 'dz’ (5.1.9)

where one is able to bring a metric into this form by performing the transformation (5.1.8)
upon the line element of an asymptotically AdS metric in Fefferman-Graham gauge (5.1.1).
As in the Poincaré example, the new coordinate p is now a time coordinate and thus the

metric induced at the conformal boundary §;; will be Riemannian (our convention for

]
the boundary will be to take the coordinate patch such that this is .#1).

5.1.2 Rotating the Bondi-Sachs-Fefferman-Graham metric

Now that the general machinery of the triple Wick rotation has been set up, we want to
perform this rotation upon our Bondi-Sachs-Fefferman-Graham expansion as computed in
[52]. In order to do this we must first perform dimensional analysis in order to reintroduce

the factors of [ 445 (we previously used l445 = 1).

Working in the dimensional conventions of [length] = +1 we first compute the dimen-

sions of the functions in the Bondi-Sachs metric

v
ds® = — <€26 — UQTQeQV) du? — 2e28 dudr—

r (5.1.10)
2Ur%e® dudf + 2 (e27d6? + e~ sin? 0dp?).
(5.1.10). Using the standard definitions of the Bondi-Sachs coordinates we have
W=1, (=1, [0=0, [5]=0 (5.1.11)

and of course we want to enforce [ds?] = 2. Using the length dimensions of the coordinates

as given above we find the dimensions of the Bondi functions are

=0, [fl=0, [U]=-1, [V]=1, [W]:[V]:—Z (5.1.12)

r3

We can elaborate further on these dimensions by recalling that we derived the result that
these functions admit a series expansion in negative powers of r in the asymptotic region

of the spacetime.

oy

~v(u,r,0) Zq/nUH Z’mu@ Vo =

(5.1.13)
n! z=0

Using this, we can compute the dimension of each of the functions which act as the
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coefficients in the power series
[%’] = i, [52] = i, [UZ] =1 — 1, [Wl] =1—2. (5.1.14)

With these length dimensions in mind we now want to Wick rotate the AdS Fefferman-
Graham expansion of the metric. To do this we choose the Fefferman-Graham coordinates
(t,p,0,6) to be dimensionless so that we have [g(;)qs] = 0. Enforcing this for i = 0,2,3
will involve rescaling the Bondi functions in order to make the terms containing them
dimensionless (using (5.1.14)). Once this rescaling has been performed we apply the triple

Wick rotation using the following prescription

lags — talgg, t— b, p— icp (5.1.15)

where a,b,c are all undetermined constants which satisfy a? = b® = ¢ = 1. These

constants have been included in the Wick rotation as choosing their sign allows us to specify
whether the rotations are being performed in the clockwise or anti-clockwise direction. For
now we do not know if one direction has any advantages over the other so choosing this

ansatz allows us to perform the rotation in full generality.

5.1.2.1 Rotation of g

We now give the explicit computation of the triple Wick rotation when applied to our the
9(0) term in the AdS expansion (or more precisely, the O(1/p?) terms). The O(1/p*) piece

of the expansion reads
l2
ds® = %[d;ﬁ + g(o)abdxadxb} +0(p%) (5.1.16)

where

goyapdatde’ = —(e — 005 gUF)dt? — 2e*71aqsUpdtdf) + €*7°d6 + e~ >0 sin®(9)do?
(5.1.17)
which is the same equation as given in [52] for the metric induced at the conformal bound-

ary although now the factors of [ 445 have been reinstated. We now perform the rotation
(5.1.15) and obtain

l2
d3* = gfg[*dﬁ? + J0)apd2di"] + O(p°) (5.1.18)

where the rotation of g(g), g(o), is given by

G(0)apdi*dz’ = (e + 20154 U)di? + 2abe* ™ lysUpdidf + e*°dh? + e~ 27 sin?(0)dg?.
(5.1.19)
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This Riemannian metric has the interpretation as being the induced metric on the spacelike
boundary of an asymptotically locally dS spacetime. We observe that the coefficient 9(0)io
is only determined up to a sign after performing the Wick rotation and it seems reasonable

at this point to ask whether one sign is preferred to the other.

In order to explore this further we first note that if we rotate l445 and ¢ in the same
direction (a = b) then we receive a positive sign. If instead the opposite direction is chosen
(a = —b) then the sign is negative. At this stage the only cause for concern would be if one
of the choices of sign resulted in a metric with a non-Riemannian signature, an issue which
neither of the sign choices face. We can show this first by computing the determinant of
the induced metric

G| = e*Psin?(0) >0, BeR (5.1.20)

so the signature is either the desired (+ 4 +) or the undesired (+ — —). To determine

which, we compute the eigenvalues of g(g)

A = e 20 5in?(6)

(e¥P0 4+ €210 4 202 [2) + \/(6450 — €210)% 4 eM0IG UG (2e4P0 720 + 2 + 35 U§)

Ao = 5
\ (e%P0 4 €210 4 2102 UZ) — \/(64’80 — 210)2 + eI UG (2e40 210 + 2 + I3 UF)
3 =
2

(5.1.21)

where we notice that all of the eigenvalues are independent of a, b (a strong indication that
one rotation will not be preferred to the other). A; 2 are manifestly positive and thus A3
is also positive due to the positivity of the determinant of the metric. Thus the signature
is a Riemannian (+ + +) for both choices of rotation, indicating that both directions are

fine so far and as of yet neither one is preferred.!

5.1.2.2 Rotations of g(3), g3,

In order to compute the rest of the Fefferman-Graham expansion in asymptotically dS
spacetime we simply follow the procedure that we applied above for the leading order
term of the expansion g(. As the next terms in the expansion () and g)) give much
longer printouts we leave their explicit form to appendix B.1 as well as the supplemen-
tary MATHEMATICA file (‘BS_AdS_dS_continuation_FG.nb’) and we will instead make

some basic comments about their structure here.

!The signature (+ — —) can be obtained if v € C
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Recall that in the AdS case, one could immediately derive g() from g using

1
9@ab = ~R(0)ab + 7 0)9(0)ab- (5.1.22)

In the dS case a very similar relation exists, although with a subtle difference. In asymp-

totically locally dS spacetime we have

_ 1.
9@ab = Royar = 7 R0)J(0)ab (5.1.23)

where R(O)ab and R are respectively the Ricci tensor and scalar of Jyap- The RHS of
this equation has an extra minus sign when compared with (A.2.12) which arises from
combining the rotations of 445 and p on the AdS Fefferman-Graham expansion (more
detail on this is provided in the appendix of [62]). We have checked that the g(2),, obtained
from the Wick rotation of the AdS metric agrees with (5.1.23).

With regards to the g(3),p term in the expansion, we comment that this term obeys
equivalent constraints to g(3).s, namely that it is traceless and conserved with respect to

the boundary metric g(g)qp

J®ad(0) = 0, Vi0)9@3)a =0 (5.1.24)

where once again, these properties have been sucessfully checked for the g(3),, obtained
from the triple Wick rotation. The procedure for doing this is very similar to the AdS
case discussed earlier, and these constraints are satisfied by imposing the vacuum Einstein

equations (with cosmological constant).

5.1.3 Comment on cosmological horizon and holographic interpretation

Now that we have sucessfully computed the Fefferman-Graham expansion for an asymp-
totically locally dS Bondi-Sachs metric, we wish to interpret our results. We will do this

primarily by noting the contrasts and similarities with the AdS case.

An initial observation for the asymptotically dS solution is the apparent breakdown of
the metric restrictions that BMS themselves enforced in [1]. In particular, they wanted
to enforce that d/0u be an everywhere timelike vector field and thus gy, < 0. When this
property is considered in the presence of a cosmological constant A #% 0 we can consider

the following limit

lim 2 = —— 4 U2 (5.1.25)

which of course must be negative (or zero) when applying the BMS condition. As previ-

ously discussed, considering this inequality in the AdS case gave us a bound upon Uy but
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in the dS case of A > 0 the first term is manifestly positive and the second manifestly
non-negative (as Uy can be zero). This gives us gy, > 0 as 7 — o0, a violation of the

original metric set-up.

The explanation for the change of sign in dS is due to the presence of a cosmological
horizon in the spacetime [171]. In the Bondi-Sachs spacetime this horizon is located at
some value of r = r. € (0,00), past which gy, > 0 and thus 9/0u is spacelike. The Bondi
coordinates are chosen s.t. they are smooth across the horizon and as such they cover

both regions of the spacetime.

It seems at this point there are two choices in how we can proceed with the Bondi-Sachs
gauge given the knowledge of this horizon. The first would be to keep the condition that
Jur < 0 and thus the coordinates only cover a horizon-free region of spacetime. This
means that we would be restricting our coordinates to only cover the exterior region of
the cosmological horizon and thus we would not be able to analyse the expansion in the

asymptotic region near the conformal boundary.

The other choice would be simply to relax the requirement that g,, < 0 for the dS
asymptotics, allowing us to apply our Fefferman-Graham expansion (5.1.9) and examine
the spacetime near .#*. This choice seems preferable when it comes to understanding the
solution holographically, as many of the results that one understands via the AdS/CFT
correspondence are mapped over via the analytic continuation that we performed in our
triple Wick rotation. It is in fact an active area of research to understand the cosmological
dS spacetime of our universe using similar analytic continuation techniques in tandem with
the AdS/CFT correspondence [193, 199, 200, 72, 73, 74, 201, 202, 75, 203, 195, 204, 196,
197, 198, 76]

We finish this discussion with a comment on some aspects of the analysis that transfer
directly over from the AdS case. Via the analytic continuation, g(g). acts as the back-
ground metric for the dual QFT and (34, the energy momentum tensor. We can perform
the same algebraic re-writing of the Einstein field equations as we did for AdS in [52],

where this time the necessary data to specify at the conformal boundary is {g(o)ab, g(g)ab}.

5.2 Asymptotic analysis and charge prescription

Much of this section can be read as an analytic continuation of the work in [71] in that we
will follow closely the structure of that paper but with the suitable modifications to account
for the change from ALAdS to ALdS spacetimes. We will begin with an introduction to

our theory of interest and the coordinates for the ALdS spacetimes which we will study.
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We will then give a number of our results which correspond to the ALdS equivalent of
ALAdS quantities computed in [71]. We will give the Hamiltonian equations of motion,
expressions for the momenta conjugate to the fields of the theory, an injectivity proof for
the spaces of asymptotic conformal killing vectors and asymptotic bulk killing vectors,
and finally the existence and value of the Wald Hamiltonians for the ALdS theory.

5.2.1 General setup

We will use the methods developed in [70, 71, 205] and apply a time Hamiltonian evolution
to ALdS spacetimes, specifically we will consider a theory with the following Lagrangian
D-form

L= (222(3 —2A) — V(<I>)) *x1— %GU(@)a@I A *d®7 — %U(@)F A +F (5.2.1)
which is that same as that of [71]. The only difference in the way that we write the
Lagrangian is that we have now separated the A (cosmological constant) term from that
of the scalar potential V(®) in order to show explicitly that we are considering a theory
with A # 0. As in [71], the ®' are scalars and G17(®) acts as the metric over the space of
the scalars. F = dA is the field strength spacetime 2-form and U(®) couples this field to

the scalars.

We will look for solutions to the equations of motion for this theory where the spacetime
metric g, admits ALdS solutions and thus we will consider solutions where A < 0. We
want to choose coordinates which are most suitable to be used in a neighbourhood of the
conformal boundary .# . It is well known from [59] (see also an appendix of [62]) that in a
neighbourhood of the conformal boundary, one can write the metric of an ALdS spacetime

in the Fefferman-Graham coordinate system
dp? y S
ds® = 3g |-+ Lﬁ’p)dﬂdw] (5.2.2)
p P
where l4g is the dS radius of the spacetime, given by

2 = (D= 12)/(\1) —2) (5.2.3)

and p = 0 is the location of the conformal boundary. As ALdS spacetimes have two
boundaries (future spacelike infinity, .#*, and past spacelike infinity, .# ~) one will need
two sets of such coordinates, one to cover the neighbourhood of each boundary. We will

fix lgs (and A via (5.2.3)) by choosing the normalisation {45 = 1 (the length factors can
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always be reinstated via dimensional analysis) and consider the coordinate transformation
p=e" (5.2.4)

where ¢t = oo corresponds to .# ", the boundary which we will restrict our attention to.

This transformation brings the line element into the form
ds? = —dt* + v;; (v, t)da' dx? (5.2.5)

where 7;;(z,t) = e*g;;(z,e”") and 7;;(z,to) is the induced metric on the hypersurface
Y, of constant time tg. This is the line element for which we now want to perform a
time evolution Hamiltonian analysis on, a contrast to [71] where a similar analysis was

performed but for a radial evolution in ALAdS spacetime.

We return to our theory (5.2.1) and write down the equations of motion by considering
variations of the Lagrangian. The general form of such variations takes the form given by
(2.4.3), (2.4.4) which for our theory is

OL = E)0gay + By 04, + B 60! + dO(1, 0). (5.2.6)

As in [71] the forms are given by

1 1 ~

E‘(zf) =52 (R“b - §Rgab + Ag™ — K2T“b> *1

Efy = V(U(®)F*) x 1 (5.2.7)
®) _ (wa g L0GIK o cjoazkx OV 10U ab)

E;” = (v (Gr(2)0,®7) 5 07 0,97 0"® 501 48@1FabF

where again we have the matter stress energy tensor given by
Top = G15(2)0,2" 0,7 + U(®)FueF}, — gabLom (5.2.8)
where L, accounts for the the matter part of the Lagrangian. Explicitly, we have
Ly =V(®) + %Gu@)aaqﬂaaqﬂ + iU(@)F“bFab. (5.2.9)

These results are all equivalent to those of [71] although we have highlighted the A term
as a method of explicitly keeping track of the cosmological constant. Also computed in

[71] was the symplectic potential (D — 1)-form, given by?

(¢, 6¢p) = (—1)” xv(v, 6¢)) (5.2.10)

>This expression differs from that of [71] by the factor of (—1)”, due to a difference in convention
regarding the definition of the Hodge dual. In this work we use the convention that for a p-form X,
(*X)al...aD,p = %Val.“al),pbl...prblmbp
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where

1
v = =5 (9" Vg — gV Ogie) + Gra(@)5RTVIRT + U()FPIA,  (5.211)

5.2.2 Equations of motion

We will perform the asymptotic analysis in the same style as [71], namely by applying a
Hamiltonian evolution. The key difference between the analysis in ALdS and ALAdS is

in the character of the evolution, i.e. time vs radial evolution.

In the ALdS case we evolve with respect to time and thus we can consider the equations
of motion as equations relating data on a spacelike constant ¢ hypersurface, ;,, to data on

the next constant ¢ hypersurface, ¥, This is the more familiar Hamiltonian evolution

i+1°
from the perspective of classical relativity [77], but differs from the standard technique in
ALAdS spacetimes [70, 71] which evolves data from one timelike hypersurface of constant
radius, 3,,, to the next, 3, [141, 206, 207]. The important mathematical difference
between these approaches is that the induced metric, 43, on the ¥ hypersurfaces is given
by

Yab = Yab + Ng My (5212)

where the + corresponds to time evolution (ALdS) and the — to radial evolution (ALdS).
In both cases n® is an outward pointing unit normal vector to ¥ so we have n*n, = F1

and the sign in (5.2.12) is chosen such that y,,n® = 0.

In order to implement the time evolution we will use the Gauss-Codacci equations to
write the equations of motion (5.2.7) in terms of quantities defined on the hypersurfaces
Y¢. We will use the gauge fixing that we introduced in (5.2.5) for the gravity, thus inducing
the metric ~;; on the ¥; hypersurfaces. We also follow [71] in choosing the gauge for the
gauge field as A; = 0 and we will now give the equations of motion for the gravity, ;;,
the gauge field, A;, and the scalars, ®!

Gravity:
KijK7 — K? = R — 2k%T}; — 2A
. S iy 1 - C/ 9A
2
where K;; = %ﬁn%-j = %%'yij = %"yij and R are respectively the extrinsic curvature and
scalar curvature of the hypersurfaces ;. Note that these formulae differ in certain signs

when compared with the Gauss-Codacci equations in [71], this is entirely due to the change
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in Hamiltonian evolution as described by equation (5.2.12). In order to give the equations
for the gauge field and scalars we first present the Christoffel symbols of the spacetime

metric
UG =Ky,  Ty=K,  Tilgd =T (5.2.14)

with all other symbols vanishing. We again note that Fﬁj has the opposite sign to [71].

Gauge field:

D;(U(®)F*") =0

. . g (5.2.15)
O((U(®)FY) + KU(®)FY + D;(U(®)FY) =0

where D; is the covariant derivative operator associated with the hypersurface ¥; (these

equations agree with [71]).

Scalar:

— 8t(G1J(<I>)<I>J) — KG]J(@)‘I)J + DZ(G[J(CI))QI‘I)J)—F

10G K oV 10U _ i & i (5.2.16)
2 0®! oI +43<I>1(2’Y AiAj — FiFV) = 0.

(@7 DK — 9,070 K —

This equation specifically uses the gauge fixing condition of A; = 0 and again takes a
very similar form to [71], with suitable sign changes which account for the new evolution

scheme.

5.2.3 Momenta

Now that we have computed the equations of motion in terms of quantities defined on
the hypersurfaces X;, we note that these can equally be written as Hamiltonian equations
of motion for the ‘time canonical momenta’. These momenta are defined by the usual

equations
oL oL oL

Wijzwa Wz—ﬁv 71'[:@

where L = Lg;. (p—1). It is a straightforward calculation to take our Lagrangian (5.2.1)

(5.2.17)

and compute these momenta

1 .. .
Tij = @ﬁ([(u — Kvi5), m=U(®)A", m= \ﬁGU(CI))CI)J (5.2.18)

which can now be reinserted into the equations of motion (5.2.13)-(5.2.16) in order to

write the equations of motion in the explicit Hamiltonian form
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Gravity:
0H ) 0H

Yij = 5o Tij = T

(5.2.19)

(note that this is not all of (5.2.13) as the first two equations of (5.2.13) are constraint

equations arising from the variation of H with respect to the lapse and shift).

Gauge field:
. 0H . 0H
Scalar: SIT SIT
(p[ = W7 T = —W (5221)

where the Hamiltonian H is given by

H:/(M%+H&+ZH®—Q. (5.2.22)
N T

For now, this use of Hamiltonian language is simply an alternative method of writing
the equations of motion for the fields. We will return later to look at the Hamiltonian
of timelike hypersurfaces using the covariant phase space language that we introduced in

section 2.4.

5.2.4 Asymptotic symmetries

In [71], one of the significant steps in defining the Wald Hamiltonians in ALAdS spacetime
was to prove injectivity between asymptotic conformal Killing vectors of the spacetime and
asymptotic bulk killing vectors of the spacetime. We will now recreate the main steps of
this proof for ALdS spacetime, showing that the main features of the proof carry over,

with some small differences which we will note.

First we give asymptotic scaling properties of the fields from [71] but adapted to ALdS
spacetimes. The key fact to note is that the linearised supergravity equations of motion
admit two linearly independent solutions, the normalisable and non-normalisable modes,

—s_t

given by e *+! and e respectively. The values of s+ for each field are as follows

Yij: s+ =D—-3, s_=-2
Ai: sy =D-3, s_-=0 (5.2.23)
(I)I: S+:A], S_:D—l—A[

Where A; can be thought of as the analytic continuation of the scaling dimension a
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corresponding scalar field in AdS. Explicitly

D-1 D —1)2
ar=2 +\/( P (5.2.24)

where my is the mass of the scalar field ®;. This result follows from the usual analytic
continuation l3g = —1% ¢ (for a review of the scalar in an AdS background, see e.g. [208]).

We note that this function is only real when the mass lies in the range

(D=1 _ (D=1

2.2

which we will enforce in order to ensure reality of A;. We also note that (5.2.24) ensures
that s, > s_ for the case of the scalar fields ®/. The falloff conditions given in (5.2.23)

will be used in the result we are about to prove.

Definition: In ALdS spacetime, an asymptotic conformal Killing vector, &, is a bulk

vector field which satisfies the following properties
=0, Gat) = Ca)(1+ 0 PHY) (5.2.26)

where ¢’ is a conformal Killing vector of the metric induced at the conformal boundary

I, 9o0yij = imy—soe(e™745).

Theorem: If £ is an asymptotic conformal killing vector, then it is in 1-1 correspondence

with an asymptotic bulk killing vector. i.e. there exists vector fields é , & such that
L. g =datp +O(e**) (5.2.27)

which is precisely the equation for an asymptotic bulk killing vector, up to the gauge
transformation given by d4. We can use the linearity of the Lie derivative to rewrite this
equation as

Lep = Lap+datp + Oe™*+). (5.2.28)

Proof: In order to prove this, we will attempt to find the values of the vectors é
and & which satisfy the equation above. We follow the guidance of [71] by noting that
both L¢1 and Eéw + 049 will solve the linearised equations of motion as they are on
shell perturbations to solutions to the background field equations. This means that we
can invoke the asymptotic scaling properties as given in the paragraph above equation

(5.2.23) and note that they must be formed of a linear combination of normalisable and
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non-normalisable modes. As (5.2.28) only requires equality up to the normalisable mode,
all we will need to show is that the non-normalisable mode terms (i.e. the leading order)
between the L9 and [,51/) + 041 agree.

To show equality of the leading order terms we work in the usual gauge
ds? = —dt® + ~;;(t, v)dz'da? A=0 (5.2.29)
which allows us to compute the Lie derivatives of the various fields

Legn = —¢
Lege = %’j(fj — 8j§t) (5.2.30)
Legij = Levyij + 2K;5¢"

LeAy = A€
, (5.2.31)
Le®! = Led! 419! (5.2.32)

where L¢ represents the Lie derivative in the direction of &' (i.e. it is just the ordinary Lie
derivative with &' set to zero). We recall that £ is an asymptotic conformal Killing vector
and now use the first property of (5.2.26) together with the scaling properties of the fields

in (5.2.23) in order to write these Lie derivatives together as
Lep = Leyp + O(e*H). (5.2.33)

Which is a simple power counting exercise for all fields except the scalar which requires

use of a slightly nuanced consideration. When we apply the power counting to (5.2.32) we

find
L = Ll 4 €1 = L@l 4 O(el220+200) (5230

so for this field to satisfy (5.2.33) we need to satisfy the inequality
2-2D+A;<-A; = D—1>A (5.2.35)

and such a consideration of operator weights to those precisely restricts to those which
are relevant or marginal [70]. This is something which is automatically enforced by the
fact that Ay is real (see (5.2.24)) and hence equation (5.2.33) holds for all of the fields.

We now want to use the second condition of (5.2.26) to arrive at an expression for L¢).
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We write
Lt = Ly ope- iyt = Lep(1+ O(ePTIY) (5.2.36)

and we also recall that ¢ is a boundary conformal killing vector. To illustrate how this

acts on the fields we will consider the metric
2t t
Yij = € goyi; + O(€") (5.2.37)

and use the fact that ¢ is a conformal Killing vector of 9(0)is:

2 2 _

We will now show that one can identify the time derivative operator d; with an operator
which we will refer to as the ‘time dilatation’ operator dp. To see this, we consider the

following variational chain rule

B A B
_ D—1 . I
O = /d T (7”5%j + AZMi + @ 5<1>1> (5.2.39)

and apply the asymptotic behaviour of the fields (v;;, Ai, 1) as given in (5.2.23)

Op ~ /delx <2fyz-j£ +(Ar =D+ 1)@1(5;0 =dp (5.2.40)
iJ

where we have used ~ to indicate that we only kept the leading order terms in the asymp-
totic behaviours of the fields. Having provided the specific example of how L¢7;; is com-

puted, we note that due to the fact that ¢ is a conformal Killing vector of g(q)

Loy = ﬁ(chk)éDz/). (5.2.41)

In order to complete this proof we now need to pick a vector field é and a gauge vector

G os.t. X
L+ darh ~ m(DkaﬁDib (5.2.42)

as we recall that we want to match the leading order terms in (5.2.28). As it turns
out, such a transformation is readily available to us, namely the ‘PBH transformation’
[80, 146, 209, 71]. This transformation induces a Weyl transformation on the spacetime

and in ALdS spacetime this takes the form

£ = 6o (x) + O(e~ (P71

§ = —9;50(2) /t A (t z) + O(e= P+ (5.2.43)

& = 080 (x) / At AV (1 ) + Oe (DAY
t
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where we pick .
§o(x) = ——D;¢’ 2.44
o(w) = - Dié (5.2.44)
in order to match the leading order behaviour with (5.2.42). It is now a simple exercise

to check this, using the identification of 9; and dp as outlined in (5.2.40)

We finish this section with a comment upon the falloff in the second condition of (5.2.26).
In order to preserve the gauge given in equation (5.2.29) we must have L¢gy; = 0 from the

middle equation in (5.2.30) this gives us
E -t =0 = & =0(e”(PH (5.2.45)

where the fall-off condition simply arises from the power counting of the ¢! falloff given in

(5.2.26) as well as the scaling behaviour of the metric given in (5.2.23).

5.2.5 Wald Hamiltonians

In this subsection we will first discuss the differences in definition of the pre-symplectic
form (and thus Wald Hamiltonians) in ALdS and ALAdS spacetimes, providing an alter-
native definition to that of [210]. We will then write down the Wald Hamiltonians H, He¢
for ALdS spacetime corresponding to the symmetries of an asymptotically constant gauge
transformation, «, and an asymptotic conformal Killing vector, £&. We will show that for
the asymptotic CKV Hamiltonian, the existence criterion (2.4.24) is equivalent to having
a pre-symplectic form ¢ which is independent of the slice C. As before many of these

results follow from the ALAdS setup of [71] and we will comment upon their similarities.

5.2.5.1 Pre-symplectic form in AldS spacetime

Before explicitly writing down the Wald Hamiltonians for AldS spacetimes we will return
to the pre-symplectic form, Q¢, which we first defined for generic spacetime in (2.4.12).
As was mentioned earlier, the “slice” of spacetime C' is typically taken to be a Cauchy
surface in the spacetime (or at least a spacelike hypersurface in the ALAdS case) but in the
near-boundary region of ALdS spacetime it will make more sense to treat C' as a timelike
hypersurface due to the time-evolution Hamiltonian procedure that we have employed, as
well as the spacelike character of .# . We will argue our case with an example taken from
[71] which we modify for ALdS spacetime.

First we consider an asymptotic region as shown below.
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g+ Ac st

TY R AT

Figure5.2.1: Penrose diagram showing the asymptotic region R of an ALdS spacetime
bounded by A C .7 and two timelike hypersurfaces T and T’

We now consider dw (1), 011, d21)) where 9 satisfies the equations of motion and §11), d21)
satisfy the linearised equations of motion. As this quantity is identically zero by (2.4.11)

obviously the integral of this quantity over the spacetime region R also vanishes

/R dew (i), 6140, 5) = 0. (5.2.46)

This seems like a trivial equation until we realise that we can apply Stokes’ theorem to

the integral to rewrite the equation as
[wwbwbn) = [ wwsie o) - [ wwawae =0 (5.247)
T ACI+ T
which we see is

Qr (¥, 014, 6910) — Qi (Y, 619, 62¢0) = QA (¥, 619, 529)) (5.2.48)

and thus we see that the pre-symplectic form is independent of the surface T iff Qa

vanishes.

To compute 2, we first need to compute the pullback of ® to a constant ¢ hypersurface
¥¢ (T can then be thought of as ¥). This pull back is relatively straightforward as
the map between the manifolds is simply the inclusion map i : 3; < M. This means that

the pullback, i*®, is given by
(i"©)iyip_y = ©iyip, (5.2.49)

where the indices are now restricted to run over the spatial values only. We apply (5.2.10)

and write

L — g t_ 5 t_ Hry o — H
®Zl~--7fD71 = Vty.ip U = Vi ip U = MU Vigip_ = TV (*Etl) (5-2'50)
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where 7 and *y,, are respectively the volume form and Hodge star of ¥;. n* is the future-

pointing unit normal to ¥; and hence we have n, = (-1,0,...,0).

We will now write down the pullback in terms of the canonical momenta that we derived
in section 5.2.3. The first step in doing this is to consider the regulated on shell action
(with Gibbons-Hawking term) as in [70, 71]. Note that the sign of Lgy has been adapted

in order to accommodate the spacelike character of the boundary ¥,

1
Sto = Lon shell — 7/ K*gt 1 (5.2.51)
Mg R %5

now we of course have dLgy shen = dO® so taking the variation of the above equation gives

55, :/ 10 — = [ 5(K x5, 1). (5.2.52)
My, K 3tg

At this point we will introduce an alternative definition of the time canonical momenta

(see [70, 71]). To derive this condition we consider a generic action

S = / L(¢, ) dt
— 5= [ (g0’ + (%IW) “
_ / ((%IM n 87513 (5¢1)) dt (5.2.53)

= [ Lo’ < (Gt) 200 (55

(i) o1+ ' (1 -2 (55)

but the second term on the right hand side is precisely the Euler-Lagrange equation, and

thus on shell we find
58011 shell aL

sl a4l

This proof carries through identically for all fields (not just scalars) and thus we also use

=Ty. (5.2.54)

the following definition for the canonical momenta

i 0S5y 05y .05}
V==, =7 t= 0 5.2.55
" 07ij = sal T A ( )
and thus by the variational chain rule we have
08y = [ AP a (75 + wr6®! + 76 A, (5.2.56)

DI
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These formulae allow us to rearrange (5.2.52) and apply Stokes theorem in order to write

. ) 1
/ ©=[ d° 'z [w”é%j + 6! + wlaAZ} +— | (K xg, 1) (5.2.57)
Eto Z750 K E750
which gives
- . 1
e = {Trw(s%j b0l 4 migA; + KQ&(KW)} du (5.2.58)

where we have followed [70, 71] in writing \/7dp = xs1. As in [71], we remark that the
form of the pullback gives us the expected property [146] that the Gibbons-Hawking term
is all one needs to have a well-defined variational problem when the fields at the boundary
are kept fixed

6% =0, §A4;=0, B =0 on %y (5.2.59)

However, these boundary conditions will only be suitable when the boundary ¥, is located
at a finite proper distance (i.e. to finite). Since we want to look at the conformal boundary
# which is located tg = oo (in contrast to a ty being finite for a physical boundary) of

an ALAdS spacetime, we are restricted to the weaker boundary conditions
0vij = 2vij00,  0A; =0, 60 = (A;—d)®'5o on s (5.2.60)

which only determine to boundary values of the fields up to a Weyl transformation. As
an extra remark, we note that comparison of (5.2.58) and (5.2.50) allows us to read off v?,
namely
1 g , 1
ot = . 7965 + mro®! 4wl A; + 0K V)| (5.2.61)

Now that we have obtained the pullback of ® on X;, we are easily able to obtain the
pullback of the symplectic current, w, using the definition (2.4.7). Explicitly we have

i*w(v, 011, 62v)) = 01(i" O (1, d210)) — (1 4 2)

y I ; (5.2.62)
= {517‘( J(Sz’yij + 01 09P" + 01 o0 A; — (1 ~ 2)}

where in the second line we have used the fact that the field variations commute: §109 —
0201 = 0. We will now focus on the momenta and following [71], expand them in eigen-

functions of the dilatation operator dp

T = Ay + T+ ATy + R loge T 4,

7_‘_1

] ~1 —2t

(> Tertma T Aagrloge™ 4.0
d7A1§5<AI

I
5

where the non-normalisable terms in the expansions will turn out to be related to the

counter term action required to remormalise the action [62]. It was shown explicitly in
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[71] that these expansions allow us to write the pullback of the symplectic current form as

i*w(1p, 019, 029)) = {51(\ﬁ7721))52%'j + 51(WW(A,)1)52<1>I+

. (5.2.64)
61(v/Amig) )02 A; — (1 ¢ 2)}.

We can now substitute the boundary conditions (5.2.60) in order to write this as

W (1), 819, 6210) = {61 (VAT ())2715020 + S (VAT(A (AL — )PS50 — (145 2)}

= {(6: (VA2 + T2 (A — d)@'])a0 — (1 5 2)}
(5.2.65)

which at first looks like an unremarkable rearrangement until one uses the result for the

trace anomaly, A [58, 71]
A= 27r::(d) + W(A[)I(AI - d)(I)I (5266)
which allows us to write the symplectic current as

i*w(t, 019, 699) = {01(v/7A) 020 — (1 > 2)} (5.2.67)

and thus we observe that if the trace anomaly vanishes then so does the pullback of the
symplectic current form to the conformal boundary .# . This in turn implies that Qa = 0
and finally gives us the desired result that the presymplectic 2-form is independent of the
‘slice’ upon which it is integrated over. If the trace anomaly is non-vanishing, then one has
to impose the stronger boundary conditions (5.2.59) which again enforce the independence

of Q¢ upon C.

5.2.5.2 Computation of H,

We will now explicitly compute the Hamiltonians on the covariant phase space [158, 211,
63, 67] for the theory (5.2.1) and show that their existence is guaranteed by the fact that
the pre-symplectic 2-form, ¢, is independent of the slice C' in ALdS spacetime. We will
begin by computing H,, the Hamiltonian associated with asymptotically constant gauge
transformations (without loss of generality, we will take @ — 1 asymptotically). These

gauge transformations also satisfy
Sath = O(e 5+ (5.2.68)

where s, is given in equation (5.2.23). The U(1) current associated with these gauge

transformations is given by

Jo = O, 5a1) (5.2.60)
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which is closed on shell and thus we can locally write

Qo = Jo = O, 6,) (5.2.70)

where Q, is the U(1) Noether charge (D — 2)-form, which integrates over a (D — 2)

manifold in order to give the Noether charge.

In order to associate the Hamiltonian with the Noether charges, we recall equation
(2.4.19) which gave the definition of the Hamiltonian, and adapt it suitably for the asymp-

totically constant gauge transformation «
SHy = Q0 (), 50, 501b) = /C (W), 5, 5a1b) (5.2.71)

where as before we are restricting our consideration to on shell fields i) (E = 0). In order

to explicitly compute H,, we first write

w(1), 0, 6at)) = 0O(¢), 6at)) — 5o O (Y, 0¢)) (5.2.72)

and then we can use the gauge invariance of the Lagrangian (d,L = 0) in order to conclude
that © is also gauge invariant (6,® = 0). This means that the second term on the right

hand side vanishes and on shell we can write

w(t, 81, 0a1)) = 0O (1, 6a1p) = doQq (5.2.73)

and thus we have

SH, = / 46Q., = / 5Qu (5.2.74)
C cns+

and so up to addition of a constant we have
H, :/ Qo (5.2.75)
cngs+
which is precisely the Noether charge.

We can derive the explicit expression for the Noether charge using the equations (5.2.10)

and (5.2.11) as well as identities for differential forms. We start by noticing
Va (1, 6a10) = U(®)F Vo (5.2.76)
and then applying the equation of motion V,(U(®)F®*) = 0 gives

Va(1, 641p) = V(U (®)Epar) = —(xd (U(P)Fa))g (5.2.77)
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where we have used the identity (xd  X), = —V°X, for any two-form X. We now find
(=1)P71O@ = —xv = *(xd % (U(®)Fa)) = —(-1)P1d « (U(®)Fa) (5.2.78)

where again we have used an identity for differential forms, this time x(xY') = —(—1)P(P=P)y
for any p form on a D-dimensional Lorentzian manifold. With these rearrangements per-

formed, we conclude that the Noether charge form is given by
Qu=—axF (5.2.79)

where ]:ab = U((I))Fab.

5.2.5.3 Computation and existence of H¢

We will now turn our attention to the more interesting Wald Hamiltonian, namely that of
H¢, the Hamiltonian associated with diffeomorphisms induced by asymptotically conformal

Killing vectors £ (as defined in (5.2.26)). As before, Hamilton’s equations of motion read

5He = Qo (6,00, Lev) = |

(0Q[¢] — i¢®) (5.2.80)
cns+

where we have used the identity (2.4.18) which we proved earlier. We will derive a neces-
sary and sufficient condition for existence of H¢ by considering the integrability condition
described in (2.4.24)

[ el 620,60) =0 (5.2.81)
cns+

now recall that £ is asymptotically tangent to the constant time hypersurfaces and thus

we have £ s+ = 0. We can expand the integrand as
i§°~’|y+ = {"Wap.pp s |y+ =& Wrpypp o + 51‘“%’#1..#1372 (5.2.82)
and pulling this form back to the constant r slice C' gives
i§w|CmJ+ =& "Wrpypp s (5.2.83)

where all of the terms on the far right of equation (5.2.82) vanish as they will all necessarily
have two of their antisymmetric form indices taking the same value. Using the explicit

form of the pullback of a tensor allows us to write the integrability condition as

/ P20 €7 (61(FA)0 — 1 43 2} = 0 (5.2.84)
cns+

and we see that the condition is satisfied in two possible cases:
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1. The trace anomaly vanishes: A =0
2. £ is an asymptotic Killing vector: o =0

We note that these are the very same conditions which were required for ¢ to be inde-
pendent of the slice C. We conclude, as in the ALAdS case, that the existence of a H is
equivalent to (¢ being independent of C.

As this integrability condition is both necessary and sufficient for existence of He¢, we

are able to write the Hamiltonian as

He= [ (Ql)-icB) (5.2.85)

where

i® =35 icB. 5.2.86
/C'ﬁ]7L ¢ cns+ ¢ ( )

All that now remains is to explicitly compute Q[¢] and B for the class of theories given
by (5.2.1) which we will do now.

First we compute Q[¢] using dQ[{] = O(1), L¢v)) — i¢L and we use a similar method to
that which we applied for the U(1) charge: First we want to compute © (v, L¢1)) which will
involve analysis of the vector field v,(v, L¢1p) which was first given in equation (5.2.10).

After some rearrangement and applying the equations of motion (5.2.7) we obtain

1 i
vat), Let) = = 5,5 [ = 2V Ve + (R = 20)8 + 26T, ]+ (5.2.87)

Gr1(®)EV, IV &7 + U(®)Foy FOE. + VO (U (D) Fop ALE)

which is useful but not quite in the required form for us to extract ® from. In order
to compute © we first introduce the two form E which satisfies Eqp = V[, and use

equation (5.2.87) to write

oW, L 1 5
((_wl’)lfff) = — % v(¢, Leah) =53 [2(-=1)P(dx E) + x((R — 2A)&, + 2k%T26)]
— Gy (V@) (igprv) + (—1)Pdx (U(®)F AL
- *(U((I))FabFCbgc)
(5.2.88)
which upon applying equation for (5.2.8) for T? becomes
O, Leth) = —%d (B + K2U(®)F ALY +icL (5.2.89)

and so we can conclude

Q[¢] = —% * E[¢] (5.2.90)
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where E is a 2-form whose components are
Eab = Vialy + KU (@) FupAcL’ (5.2.91)

Computing B is in many ways more straightforward than Q[¢]. First we follow the steps
of equations (5.2.81)-(5.2.83) in order to write

Z.5®|ij+ =" (Orpypp_s) (5.2.92)

where i* denotes the pullback onto the hypersurface ;. To explicitly evaluate this term,

we follow [71] and write the pullback of the symplectic potential form on ¥; as

i@ = {5 (;W[K — (K + )\)ct]) -

\ﬁ(ﬂ&)é’yw + W%d)(sAZ‘ + W(AI)I5\I/I) + .. .}d,u

(5.2.93)

a procedure which involves substituting the mode expansion (5.2.63) for the momenta and
then identifying the modes which contribute to the counterterms required to renormalise
the theory. The differences in sign relative to [71] are purely due to the now spacelike
character of .# T, which suitably adjusts the signs of terms involving the extrinsic curvature

K. In this expression, A is defined as the X;-covariant variable which satisfies

1
Lonshell = —— | dz A\ 5.2.94
M, on-shell 2 /Eto 515'\/’7 ( )

which again admits an expansion in eigenfunctions of the dilatation operator
A= Aoy +A@) + -+ Ao+ Agyloge ™ + ... (5.2.95)
and the notation “(f)¢” indicates the “counter term” part of the argument when expanded
in dilatation weight, i.e.
d—1 B _
(K 4+ Net = Z(K(n) + )‘(n)) + (K(d) + )\(d)) log e 2o (5.2.96)
n=0

To expression (5.2.93) we then apply the usual boundary conditions (5.2.60) which allows

us to write

10 = {5 (5 vAlK = (K +X)al ) +

\/’?(71'22)(2%]‘50') + TF(AI)[(A[ — d)\I/I&J') + .. .}d,u.

(5.2.97)
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We now apply the formula (5.2.66) for the trace anomaly and find

e — {5 (;W[K (K + A)Ct]) + S A+ ... }dﬂ (5.2.98)

which together with (5.2.92) allows us to write the overall integral as

1
/ i® = do,&" Ador + 6 / do, €7 [K — (K + A)et] (5.2.99)
cns+ cnst+ R cnst

where the volume element do; is defined via ¢ido; = VYige. €is an (d — 1)-form on the
hypersurface 3;, defined as to have orientation €4, ;, , = 1. This choice of orientation is

opposite to that of [71] and thus our integral expressions are modified accordingly.

Comparison of equations (5.2.86) and (5.2.99) shows us again that the Hamiltonian
exists when either the trace anomaly vanishes or the vector £ is an asymptotic Killing
vector, in perfect agreement with our conclusion from earlier. This comparison also allows
us to read off B as

1
B = S[K — (K + Mo %5, 1 (5.2.100)

5.2.5.4 An explicit expression for H;

Now that we have proven existence of H¢ under suitable conditions, we will manipulate
the generic formula of (5.2.85) in order to give us an expression from which we can easily
start to compute charges (see section 5.3). We will do this for the case of pure gravity
(A, = ® = 0) in even spacetime dimension (D € 27Z) as this will be the case for the
example we describe in detail in section 5.3. The reimplementation of the extra fields is

straightforward and is covered in [71].

We start with the generic expression for the Wald Hamiltonians

He= [ (@) -icB)

1 . i (5.2.101)
= - (*E[é] + [Z Ky — Z(K(n) + A(n))] iﬁ(*&l))
n=0

K2 Jons+ =

where in the second line we have used (5.2.90) and (5.2.100), as well as expanding the
coefficient of B in terms of eigenfunctions of the time dilatation operator dp. Explicit

evaluation of the first term (in the gauge (5.2.29)) gives

*E[E] = vjy i tiZ0 = etigy. gy, VEED (5.2.102)

now recall that ¢! is an asymptotic conformal Killing vector and thus it satisfies (5.2.28),
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which in this case reduces to
Leguy = Leguw + Oe™*H). (5.2.103)

where £ is given in (5.2.43). Using this and the fact that £ preserves the gauge (5.2.29),

we can write

vitel = vigi
- gtt(_‘?tgi friﬂgu) (5.2.104)
= —(&+T5¢")
= _Kig 4 O(e (2
which allows us to rewrite (5.2.101) as
He— -~ o <_Kz:5j n [K — df A ] gi) (5.2.105)
K2 Jorgt " j (d) ~ (n)

where the O(e~(42%) /7 ~ O(e™?) term gets removed as t — co. We now recall the
definition of the momenta in equation (5.2.18) as well as their expansion in eigenfunctions

of the time dilatation operator (5.2.63), allowing us to write

T = 5,2 (KG) = Kayy?) (5.2.106)
and thus
. ) 1 d—1 ' . ‘
He=2 doimj@¢’ */ doi | 3 (Kjay + Amdj) | & 5.2.107
: /ij+ oimj@S + w2 Jongr 0 Lgo( im) T Am) J)]f ( )

where we have now separated the expression for the Hamiltonian into two explicit terms,
one with the integrand of dilatation weight d and the other of all weights n < d. We will
now show that the second term is identically zero and thus only the highest order term

contributes to the overall expression for the charge.

The first step is to recall the on-shell expression

dQ[é] + igLon—shell = 6(97559) (5.2.108)

which for our case of pure gravity becomes

4A

— %d* 2]+ (d—l) ie x 1= (=1)P % v(g, Leg) (5.2.109)



156 Chapter 5. Charges in asymptotically locally de Sitter spacetimes

and upon taking the Hodge star we obtain

4A

V2 = k2 (1 — d) — K" (g, Leg). (5.2.110)

The next thing that we want to do is to find a way to introduce A in the above equation,
as this will bring us closer to the second term in (5.2.107). In order to do this, we recall

the definition of A as given in (5.2.94) and take the t-derivative of each side, giving us

J

where we used 0;(,/7) = /7K. Comparing the integrands above and applying this to
(5.2.110) gives

& /7 (;_AJ = [ gy (34 KD (5.2.111)

k2 Jx,

VB = ¢ (A4 KX) = k20"(g, Leg), (5.2.112)
Now we take the v = ¢ component of this equation and use the result that VMEW =
0, (v/—gZ"")/\/—g (as E* is antisymmetric) to write
1
V=

i L

val

and of course using the gauge (5.2.29) we have \/—g = /7. This fact allows us to rearrange

Op(V=g=") = &—0(v7A) — K0’ (g, Leg) (5.2.113)

the expression above as

O[VAE" = EN)] = —0;(VAEY) — K2\ /v (g, Leg) + Oe™™) (5.2.114)

where we also used /yA9¢" = O(e™%). Recalling (5.2.104), we can write this as

V(=K = A&} = —0;(AEY) — k20 (g, Leg) + O(e™) (5.2.115)

and now we note that the term under the LHS above is closely related to the integrand
of the second term on the RHS of (5.2.107). We will shortly make this relation more
precise but first we will show that v falls off as O(e™2!) as t — co (under mild symmetry

assumptions).
First we have
(g, Leg) = v (g, Leg + O(e™)) = 0" (g, Leg) + O(e™ 472 (5.2.116)

by using (5.2.103) together with sy = D — 3 = d — 2 for the metric 7;;. Using the explicit
form of v as given in (5.2.11) and the gauge (5.2.29), we now find

r 1 rj . ki T, J £ 1 rj . ki ri £
V= (I ) ViV Gy = = (0 =) Di(D iy —2K00) (5.2.117)

where we have used (5.2.14) and do is given in (5.2.44). Now we use the second equation
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of motion for the metric in (5.2.13) in order to write

1 - o R
v = —?(’}/m’ykl - ")/”")/Jk)(DZ‘D(jfk) - QKjkDi(SO'). (5.2.118)
The expression above will vanish if we take an assumption from [71] and modify it for
AldS spacetime. The assumption is that our spacetime contains an asymptotic killing
vector 0, as well as some other commuting isometries dgo (hence the asymptotic metric is

independent of x* = {r, »*}) and thus we can write the asymptotic form of the metric as
ds? = vyidatda? = 1,(%, t)dxda’ + 0, (%, t)dE" di’. (5.2.119)

This equation is important for a number of reasons: Since we want our conformal rescalings
of the metric to preserve this generic form we must have do(z) = do(Z), and thus £4(x) =
E1(%), as well as & = 0 from (5.2.43). The Christoffel symbols and extrinsic curvature for
the metric must satisfy

. =T% =T" = Kg =0 (5.2.120)

and applying all of these to (5.2.118), we see that the right hand side now vanishes and
we are left with
V' (g, Leg) = Oe” 472 (5.2.121)

which gives us

O {VA(K] + A5)E} = 0;(AE) (5.2.122)

as we take the limit ¢ — oo.

Finally, we have to use this equation to show that the second term on the right hand
side of (5.2.107) vanishes. In order to do this, we will expand each side of the equation
in eigenfunctions of dp, the time dilatation operator. We have already seen that the time
derivative is very closely related to this operator (5.2.40) and following [70, 71] we can

formally expand this operator as

O =6p+ 03 (5.2.123)

=1

where §(;) are covariant operators of time dilatation weight ¢ which satisfy [6p,d(;] = 0.
To shorten notation we will write 7" = (K7 + Aé;)gj and using our previous expansion

(5.2.95) as well as the expansion for K} as given in [70] we have
T:T(ro) +T(7“2) +-..+T(rd) + oo (5.2.124)
as well as the generic expansion
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Using these expansions and matching terms of the same dilatation weight we find

Ty =0
1 s
VT = 7—50i(VI1E )
1 i 1 i
WT(3) = maj < 'Y:a(é) - Hé(l)ﬁa(%)) (5.2.126)

VITa-1) = 5j(ﬁ52§—1) +...)

which is finally evidence that the second integral on the right hand side of (5.2.107)
vanishes. We observe that the integrand there can be rewritten as Y ¢_} 1) and thus

every term is a total derivative which vanishes when integrated over C N .# 7.

This gives us a final expression for the charges in an AldS spacetime, namely
_ " J

and noting that 2m;; = Tj; [70], we can alternatively write this equation as

H :/ d o/ g© gri T, & 5.2.128
e= |1V i) ( )

which makes apparent the extent to which the “locally dS” boundary conditions (g(o))
enter the expression for the Hamiltonian, as well as providing an agreement with the

recent work [51]. We will now make a number of comments upon this important result

e This expression can be considered to be the A > 0 version of the corresponding
A < 0 formula in [71].

o This expression is finite, due to the cancellation of the potentially divergent terms in
(5.2.107) under mild symmetry assumptions. Such a formula can also be obtained

from a renormalisation at the level of the symplectic structure as in [51].

o As first observed in [71], these Hamiltonians are precisely the Noether charges of
the theory. They are integrable due to our imposition of the boundary conditions
(5.2.60) and they are conserved with respect to radial translations (as opposed to

time translations in the A < 0 case).

e Due to the integrability of these charges, note that our Hamiltonians do not contain
the “heat term”, Z¢[0¢; ¢], in [51]. This is due to our boundary conditions (5.2.60) as

well our choice of field independent asymptotic conformal Killing vectors, 6§y = 0.
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In order to get a better understanding of these charges, we will now show that one can
construct a variety of non-trivial charges in the simple case of linearised perturbations of
dSy.

5.3 An example: Charges of perturbed dS,

5.3.1 General setup

In this section, we will consider an example of an ALdS spacetime and compute the Wald
Hamiltonian corresponding to the asymptotic conformal Killing vectors of the spacetime
in question. We will study the case of perturbed dS4 (D = 4) spacetime in the inflationary
patch coupled to a single minimally coupled scalar field, following the style of [73]. We

choose the following ansatz for the metric and scalar
ds? = —dt* + a*(t)6;jdx"da? O = (1) (5.3.1)

where the indices 4, j run from 1 to 3. This metric ansatz is closely related to the picture
of dS4 in the inflationary patch. a(t) = exp(t/lys) reproduces the metric for dS4 in
coordinates which cover half of the global spacetime [171]. These coordinates are related
to the “big-bang” coordinates that we gave earlier in equation (5.1.7) by the coordinate
transformation

t T

x -
ﬁ:—exp(—), x1—>—1, x2—>—2, t—
las las las las

3 (5.3.2)

and thus we see that they cover the same region of the global spacetime as displayed in
figure 5.1.1.

More generally, we will consider the action
1
5= @/ d'av/=g[(R — 20) — 26"V (®) — (9,9)(0"®)] (5.3.3)

which is clearly an example of the class of theories described by (5.2.1), with the only
(cosmetic) difference here being that the scalar field ® is chosen to be dimensionless
(instead of having mass dimension +1). If we first restrict to our ansatz (5.3.1), the
equations of motion for the metric and the scalar field take the following form

a 1

- = —§W; (P = W,cp; _2’%2‘/ —2A = (VV#P)
a

3
2w, (5.3.4)
2
where W () is a function known as the ‘fake superpotential’ [73]. The name superpoten-

tial comes from supergravity, namely in that if the theory (5.3.3) may be obtained from
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a consistent truncation of supergravity, such a supergravity theory will contain a super-
potential, W (), which determines the potential V() (via the third equation of (5.3.4)
above). However, we cannot generally expect that the theory (5.3.3) is obtained from any
consistent truncation of supergravity, and thus we refer to the superpotential W(y) as
fake. For a greater discussion of fake supersymmetry, including applications to domain
wall and cosmological solutions see [212, 213, 214]. These equations of motion can be
derived directly via the variational principle (varying S with respect to g?° and ®) or we

can read them off by comparison with (5.2.7).

In order to compute non trivial values for the Wald Hamiltonians, we want to apply
linear perturbations to the background given by the solutions to these equations. We will
follow the generic perturbation ansatz for cosmology [215] and write the linearly perturbed

metric as

ds? = — [1 4 2¢(t, )] dt?> 4+ 2> () [0 (t, 27) + v4(t, 27)|dtda’ +

. (5.3.5)
a®(t)[8;5 — 29(t, 2%)8;5 + 20;0;x(t, 2%) + 20wj) (¢, %) + Xy5(t, 2*)]da’da?

and the linearly perturbed scalar
® =+ dp(t,z") (5.3.6)

This metric perturbation ansatz is the standard cosmological choice in that it is parametrised
by four scalars: ¢, v, 1, x, two transverse vectors: v;,w;, and a transverse-traceless rank-2
tensor: X;;. When considering the equations of motion for the perturbations, it is helpful

to express the perturbations as gauge invariant combinations as in [73]
H
C=1¢+ —0p
¥

b=¢- (6;»)' (5.3.7)

where in writing these equations we have introduced the Hubble rate H = a/a. These
combinations of perturbations can be checked to be invariant under simultaneous small

changes in the metric (6¢gqp = Legap) and scalar fields (5:® = LD = ¢Lo).

The equations of motion for the perturbations are also given in [215] and they decouple
nicely into Hamiltonian and momentum constraints
$:_£7 D=2+ 2 ;=0 (5.3.8)
H a’H = ¢2
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where €(z) is given by

H We\?

and ¢; is the comoving wavevector of the perturbations which in momentum space acts by
multiplication and we use the notation ¢? = 5Z-jqiqj . On the note of momentum space, we
will also consider the remaining equations of motion in momentum space as it will make
them easier to solve explicity, at which point we are free to Fourier transform back into

position space. The remaining equations of motion are for the independent perturbations
C(t,q%) and X;;(t, ¢%):

0=C+ <3H + Z) (+a2¢%¢ (5.3.10a)
0= X” + 3HXZ‘]‘ + a*2q2X¢j (5.3.10b)

where we notice that these equations are linear second order ODEs with non-constant

coefficients.

5.3.2 Solving the equations of motion

We have now introduced all of the important points of the theory under consideration
and now we want to compute the charges for a specific example. First we will restrict our

attention to a simple example of this theory: ALdS solutions with no coupled scalar.
1
S=573 /d4x\/—g(R —2A) (5.3.11)

First we solve the background field equations (5.3.4), the second of which gives us W = ¢

with ¢ a constant. We then look at the third equation which gives

3 [A 2
QC ¢ 3 las ( )

where we choose the minus sign for reason which will become clear shortly. Finally the

first equation in (5.3.4) gives

a 1 t

“_ 1 e <> (5.3.13)
a las las

which agrees precisely with inflationary patch coordinates of dS, spacetime. We now look

to solve the equations of motion for perturbations of this spacetime (5.3.8) and (5.3.10b)

although we first restrict our consideration to perturbations which do not perturb either

gt or the off-diagonal terms in the metric, i.e. those with ¢ = v = v; = 0. This restriction
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immediately forces the final relation of (5.3.7) to become
w; =0 (5.3.14)

and we will further restrict this by choosing the solution w; = 0. We have now switched off
six of the degrees of freedom in the perturbations, although we will still show that one is
able to compute interesting gravitational charges. The remaining equations for the gauge

invariant perturbations are

(=1, $=¢=0, =¥ (5.3.15)

so we can move freely between gauge invariant perturbations ((, QAS, ») and physical per-

turbations (v, x, Xij). Applying first the ‘constraint’ equations of motion (5.3.8) we find

¢ - —ldslb - w = 0, —)'( = lds¢ exp (—i;) (5316)

and thus solving for ¢ will give us the perturbations ¢ and x (up to a function of inte-
gration) directly. The remaining three degrees of freedom can all be solved for by looking
at the same ODEs, namely equation (5.3.10b), which now becomes the same equation for
both 1 and Xj;

. . 2t
0=1+ (3) Y + exp (—) L (5.3.17a)
las las
hgd 3 * 2t 2
0=X;;+|+— )X +exp|—+—)qX;. (5.3.17Db)
las las

Equation (5.3.17a) is simplified by using the first equation of (5.3.16), upon which it
reduces to ¥(t,q) = 0. Now the second equation of (5.3.16) givesus x =0 = x = x(q).
In this work we will restrict our attention to pure tensor perturbations and thus we will

only consider the solution x = 0.

No such simplifications are available for equation (5.3.17b) so we will consider the general

solution for such an equation
& _t _t
Xij = Aij (q )exp (ildsqe ldS) <1 —ilgsqe lds) —

exp <—ild5qe_ldts> (ldsqe_ldts _ Z) (5318)
k
)

3
lisq®

Bij(q
which produces the following expression for the line element of the perturbed metric
ds* = —dt* + 2las (5, + Xi(t, x))dax' da? (5.3.19)

where the = dependence in the perturbation terms is to be understood as the inverse
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Fourier transform of our solutions to the problem in momentum space. The tensors of
integration A;;, B;; will soon be seen to be related to the gravitational charges of the
setup. We note that although this expression is not manifestly real in momentum space,
it will reduce to a real function in position space (each of the ¢’s provide an imaginary
contribution). Now that we have a solution to the equations of motion, we are ready to

compute the Wald Hamiltonians of such a solution.

5.3.3 Charge integrand

We will compute the Wald Hamiltonians, H¢, as given by (5.2.85) for our perturbed
inflationary patch metric of (5.3.19). The vectors £ which we will compute the charges for
will be the Killing vectors of the unperturbed inflationary patch spacetime. Following the
notation of [41, 44] we recall that the inflationary patch of dSs has seven Killing vector
fields given by three translations, T;

T, = 0; (5.3.20)
three rotations, R;;
Rij = ﬂiiaj — ﬂijai (5.3.21)
and a scaling transformation )
D =——(20,) (5.3.22)
las

which we note is referred to as a ‘time translation’ in [44] because it is the limit of the
Schwarzchild-de Sitter spacetime as the Schwarzchild mass goes to zero. We will denote a
member of this set of Killing fields generically as & until we refer to the individual fields

later.

We will now evaluate (5.2.128) for our example. The first step of this will be to transform
the coordinates of the perturbed metric into Fefferman-Graham coordinates, as these will
be most convenient to examine the divergences of the metric near .# . The transformation
is

p=—e s (5.3.23)

where the sign above is chosen so that p increases from —oo (at the past coordinate
horizon) to p = 0 (at .#*). We use this convention as it ensures that p increases in the
forward time direction. At this point, we will also introduce the notation ¥, to denote

p = constant hypersurfaces in the spacetime and of course we have Xy = #T.
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g+ cCnNngt

Figure5.3.1: Penrose diagram for a perturbation of the inflationary patch. The shaded
region represents the patch covered by the coordinates of (5.3.19). The blue timelike
hypersurface C is a ‘slice’ of the spacetime which intersects .# " as shown. The red null
hypersurface H is the cosmological horizon present in the spacetime. The brown spacelike

hypersurfaces >, is a p = constant (< 0) hypersurface.

The transformation (5.3.23) brings the metric into the form

l2

1.
ds? = —Z—stpZ + ?gijdarldx]

where

Gij = 0ij + hij = 6ij + Xij = 9(0yi + P2 9(23i; + P 9(3)ij + - -

and recalling the relationship [69, 60]

3
T = 2,2 93)ij

we can write (5.2.128) as

3 ki j
He=53 /m . 471/30)90)9(3)13€(0)

where we have used the notation doj, = d?z nj, where n*

toCNn.st.

(5.3.24)

(5.3.25)

(5.3.26)

(5.3.27)

is a spacelike unit normal vector
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5.3.4 Inflationary patch charges

Now that we have successfully implemented the holographic renormalisation scheme in
order to derive the charges of perturbed dSy, it remains to provide the explicit expressions
for the charges when we consider the Killing vectors given in equations (5.3.20)-(5.3.22).
The first quantity to identify is g(3);;, which we will need in coordinate space. In order to
compute this, we first write our momentum space expression for X;; (5.3.18) in Fefferman-

Graham coordinates by using transformation (5.3.23) with lgg = 13

(i + gp)[cos(gp) + isin(gp)]

Xij = Aij(q")(1 +igp)[cos(qp) — isin(gp)] + Bi;(¢*) = (5.3.28)
and perform the following change of basis on the functions of integration
1 Gij(g¥ 1 .
Aij(q") = 3 [Fz'j(qk) - qu(:a)] . Bij(q") = §[Gz‘j(qk) —iqFi;(¢")], (5.3.29)
upon which (5.3.28) becomes
B : Gij :
Xij = Fyjlcos(gp) + gpsin(gp)] + qu[qp cos(gp) — sin(qp)] (5.3.30)
and the expansion of the perturbation about .#* = {p = 0} is
1 1
Xij = Fij + 50°¢" Fij — §p3Gz’j +0(p"). (5.3.31)

This rewriting shows explicitly the Fefferman-Graham result that the metric is asymptot-

ically constructed from two pieces of independent data {g(o),9(3)} ~ {F, G} [59, 60].

Aside from this, the main purpose of writing (5.3.31) is to make the inverse Fourier

transform easier to compute. Defining

_ d3q oz -

FUR) = [, s ™ Fisla) = By(a)

s (2m) (5.3.32)

d3q . ~ ..
-1 _ QT (kY Ak
F(Gij) _/R3 Weq Gij(q°) = Gij(z7)
we can compute the position space form of the perturbation, Xij (xk, p), given by
5 - 1 . 1 5=~
Xij = Fij = 5" 060" Fij = 2p°Gij + O(p"). (5.3.33)

Using this expansion, we can read off the terms in the Fefferman-Graham coefficients,

3we use the notation ¢ = 7= /¢> + ¢ + 42




166 Chapter 5. Charges in asymptotically locally de Sitter spacetimes

namely

90yi; = 0ij + Fij
1

1 3
9(2)ij = —§5k3kg(o)ij = _iakakFij (5.3.34)

93y = —3Gis-

where g(3);; is the object we will use in order to compute the charges for our spacetime.
Applying this to the generic expression for the charges (5.3.27) and only keeping terms up

to linear order we find )

He=—t 3 Eind 3.
” /Crwc;jgn (5.3.35)

where n/ is a spacelike unit normal vector to the surface C' N .#*. If we pick some coor-
dinates on C'N.# 7 such that n’ = (1,0,0) then the charges take the following forms

Spatial translations:

1 _
HéT = —271%2 /Gzl d$2d.%’3, 1= 1,2,3 (5.3.36)
Spatial rotations:
1 ~ . ~ .
HgR = —w ‘/(Gﬂl’Z - Gﬂl']) dl’Qd!Eg i,j = 1, 2, 3 1 75] (5.3.37)
‘Time dilatations’: .
HﬁD = ﬁ/Gﬂxl dx2d373 (5338)

where here summation over ¢ is now implied.

5.3.4.1 Independence of the slice

Before we proceed in computing the charges for some explicit perturbations, we will first
show that the charges are conserved i.e. that they are independent of the ‘slice’ of space-
time characterised by the x; coordinate. Our starting point is the generic expression for

the charges given by (5.3.35) which we write as

H= —2%2 / Gi1 ()€ (x) drodrs (5.3.39)
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in order to make the functional dependencies explicit. To show that this expression is

slice-independent, we differentiate with respect to x;

1 o 5 ,
-01H = 22 /(g’@lGﬂ + Gilalfl) drodxs
1

T 22

1 o
_ 272/%-6351 dasdas

/[éilalgi — £(02Gi2 + 03Gli3)] dwadas
(5.3.40)

1 o
= / G169 0" dadas = 0

where in moving to the second line we used the conservation of éij. In moving to the third
we have used integration by parts and discarded the total derivative term (this requires
assuming suitably fast fall offs of the perturbation). In the final line we have used the
fact that ¢ is a conformal Killing vector of our flat .#* as well as the fact that Gij is
traceless. This shows that the Hamiltonians are independent of the slice and thus are

explicitly conserved quantities.

5.3.5 Examples of finite charges

Now that we have computed the generic expression for the charges, we would like to find
some examples of examples of spacetimes which have finite, non-trivial charges. To do
this, we will consider which values of Gij give rise to finite integrals (5.3.35). We will

begin by considering the spatial translation charges (5.3.36) which we can write as
1 ~ .
HgT = —ﬁ/Gil dl‘le‘g, 1= 1,2,3 (5.3.41)
where the independence of the slice is now manifest purely due to the conservation of éij.

At this point, we can start to guess choices for the integration tensors which give a finite

charge. An example of which would be

Ga = Pi(z2,23) (5.3.42)

where P; is a conserved covector. We will now discuss a number of examples of this form

which possess different conserved charges.
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5.3.5.1 Rotational charges

In order to construct finite charges, we can consider a covector with a Gaussian-type

component, for example

1 1
P, = (:L‘g exp <—(x% + x%)) ,0, 0) (5.3.43)
27 2

which is clearly conserved and the first component integrates to zero over C N .#+. As a

result all of the translational charges vanish for this perturbation.

For completeness, we will now obtain the other components of the perturbation C?ij.

For the Gaussian-type component (5.3.43), we have

%e_%(xgﬂﬁg) 0 0
éij = 0 GQQ égg (5.3.44)
0 Gas G

and we will assume, as in the case of G;1, that all components are independent of ;. The

traceless and remaining conservation constraints are
GQQ + égg = —Eefé(x%er%)
2
02Gaz + 953Gz = 0 (5.3.45)
9oGas + 03Giz3 = 0

a system which admits an example solution of

wae”3(58H9) (24 (a3 — 1) + 243 (2 + 23 — 1) + 23 («} + 323 + 6))
2m (23 + x%)g

622 =

. a2 (3475) (0§ 4 a8 (203 + 3) + a3 (2 + 203 + 6) — a2 (23 + 2)) (5.3.46)

23 — o
2 (3 + $§)3

woe”2(B3H) (0§ 4 2d (203 + 1) + 23 () — 203 + 2) — 323 (23 + 2))

2 (23 + m§)3

Gz = —

where we have set all of the integration functions arising from solving this system to zero,
a choice motivated by the fact that we are just looking for one solution with non-vanishing

charges, not necessarily the most general solution.

In order to show that this solution does admit non-zero charges, we study the rotational
charges corresponding to (5.3.43)
1 5 i A . .
He, = /(ij — Gja?) dxodxs ,7=1,2,3 1< j. (5.3.47)

R 2K2
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Clearly the i = 2, 7 = 3 charge vanishes, but the others require a little more examination.
For i =1, =2 we find

1 2 L oo o 1
(Hep)i2 = T /3:2 exp (—2(562 + $3)> dxodxs = By (5.3.48)
as well as ) )
(Hep)1z = o /ZEQZL’g exp (—2(1‘3 + x§)> dzxodxs =0 (5.3.49)

for i = 1,5 = 3. Although two of these charges vanish, the third is non-trivial. We have
thus found a non-zero, finite charge corresponding to perturbations of the inflationary
patch. One can also check that the time dilatation charge vanishes for this perturbation,

which follows directly from applying the perturbation (5.3.43) to equation (5.3.38).

5.3.5.2 Distributional solutions

It is reasonable to ask why we chose P in (5.3.43) to take the “expectation” of a Gaussian,

rather than just a pure Gaussian of the form

1 1
<va2ﬂexp(—2tﬁ—%x@). (5.3.50)

The reasoning behind this is due to the subtleties involved in the slice-independence for
this perturbation, which makes it more difficult to compute the charges. If one naively

computes the time dilatation charge using (5.3.38), then the charge is

1 1 T
Hep, = 13 /:cl exp (—2(1’% + x§)> dxodxs = 22 (5.3.51)

which seems to be in contradiction with the result proven in subsection 5.3.4.1.

As it turns out, the issue is not with the slice independence proof but rather the fact
that a solution of the form of (5.3.50) needs a distributional correction in order to satisfy
the conservation and tracelessness equations. Indeed, if we begin with the aim of solving

the system of partial differential equations

622 + Ggg = —iefé(ngrwg)
21
82Gaz + 853Gz = 0 (5.3.52)
DoGlas + 03G33 = 0
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then using the usual methods for solving first order systems we find

e~ 2(B3+98) (22 (22 — 1) + af + a3)

G = —
2 2m (23 + x§)2

(5.3.53)

GQ3 =

where G33 can just be read off from the tracelessness constraint. Upon careful checking
of the solution, we find that the third equation of (5.3.52) gives

62623 + 83@33 = —83 [52($2,$3)67%(5Eg+m§)} s (5.3.54)

a result which can be derived by recalling the following Green’s function equation for the

two dimensional Laplacian A = 95 + 03

Alog(x3 + 23) = 416° (9, 3). (5.3.55)

In order to correct this inconsistency it is natural to absorb the distributional term
into G33 as both are exact derivatives of z:3. This then forces a change in Gh; in order
to preserve tracelessness (égg is left alone in order to preserve the middle equation of
(5.3.52)). Putting this together, we find a suitable solution of the form

Gy =P = (<217T — 52(:52,563)) exp <_;(x§ + xg)) 0, 0) (5.3.56)

which now has a zero “time dilatation” charge (in fact all seven charges are zero). We note
that the distributional correction was not necessary in the “expectation” case because of
the different source term. In that example we would have found a correction of the form
~ 220%(x9, w3) exp(...), which would not have contributed anything under integration due

to the extra factor of xs.

Even though we found vanishing charges for our second example above, the distributional
perturbations remain an interesting class of solutions, principally because they are related
to the gravitational memory effect in cosmological spacetimes [216]. If we choose the
solution

G = Qi(r2,73) (5.3.57)

where
Qi($27$3) = (1'252(1'2,1’3),0,0) (5358)

then we find distributional solutions with all zero charges. It is not clear whether these
solutions have a non-trivial memory by the definition of [216] because there the memory

effect was defined by the d-function singularities which appeared in the {g(y, g(2)} terms
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in the metric expansion. Our finite charges have singular gy but other terms are not
specified in this prescription. We also note that we can combine the solutions of (5.3.42)

and (5.3.57) in the solution given by

- 1
G11 = f(za,x3;v) = L2 exp (—(:r% + x%)) , v>0 (5.3.59)

2Ty 2v

where we note that

hir(l) f = ZEQCSQ(ZEQ, ZL'3)
(5.3.60)

. 1 L o o
lim f = 5@z exp (—2(332 +x3)) :

Also note that there is also a discontinuity in the charge as we take this limit. The non-zero
rotational charge given by (5.3.48) is a finite constant of the Gaussian solution (v > 0)

but vanishes for the distributional perturbation.

We conclude this section by noting that this example is simply one example of a pertur-
bation which gives a finite charge. There may be an interesting mathematical structure in
underlying tensors of integration Gij which give finite, non-zero charges. It would also be
of interest to consider more general solutions to the equations of motion (i.e. those with
non-zero scalar and vector perturbations) and see if they also admit finite charges, as well
as considering which choices of integration functions Fij, G‘ij give rise to regular solutions

in the bulk spacetime.

5.3.5.3 ‘Time dilatation’ charge

We will finish our list of examples with a perturbation which gives a non-zero time dilata-

tion charge as given by (5.3.38). An example of such a perturbation is given by
€2
P = (o, —e (1 — 222) / et dt,xgewéw%) (5.3.61)
0

where we have chosen to set the component P; = 0 in order to avoid having to modify the

solution due to the contribution of distributional terms.

Given (5.3.61), we can compute all charges using (5.3.36)-(5.3.38) and in particular we
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find for the dilatation charge

1
He = — Prxoy + P
ép 242 /ij_'_( 2Z9 3.’E3)

_ 1 li @ @ 7:133 1 9 2 2 —¢2 dt 2 7:1337.%% drod
_ﬁabnc}o/_a/_a —XI9e ( — 1’3)/0 e +$3€ ToaX3

2
) e 2 .y (3362
= —— lim (—4(2a2+1>6_“ a/ e dt — 4e720 a2—|—8</ et ) )
8K4 a—o0 0 0
_ T
4K2

which is clearly non-zero. One finds all other charges vanish for this perturbation.

In order to extend this to a full solution, we have to fill in the components Gag, A, B €

{2,3} which are subject to the usual tracelessness and conservation constraints

GA=0

- (5.3.63)
8AG,§ =0

where indices have been raised and lowered with the two-dimensional flat metric 4p. Any
solution to these equations will do as these components do not affect the charges of the

spacetime and thus we may choose our perturbation

0 P, Py
Gij=|P 0 0 (5.3.64)
P; 0 0

with P; given in (5.3.61).

5.3.6 Connection with global coordinates

All of the analysis of the current section has been performed with the background metric

being the dS inflationary patch metric (again, we set lgg = 1 for convenience)
ds? = —dt® + e (da® + dy? + d=?), (5.3.65)
the coordinates of which only cover half of the total space time (as shown in figure 5.1.1).

We would like to understand the implications of our charges in a global dS4 background
spacetime. In order to do this, we will extend our solutions (5.3.30) across the coordinate
horizon ({t = —oo}) of the inflationary patch, a procedure which will involve performing
the Bogoliubov transformation of the tensor perturbation from the Fefferman-Graham

coordinates into global coordinates on dSy spacetime.
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Before giving the details of the transformation, we will begin with a review of solving
the wave equation on dS backgrounds in different coordinates, closely following [217]. Our
starting point is the dS; metric in global coordinates (7,1, 6, ¢), where the line element

takes the form
ds®> = —d7? 4 cosh?(7)[d)* 4 sin® (1) (d#* + sin?(0)d¢?)] (5.3.66)

and the coordinate ranges are —co < 7 < 00, 0 <Y <7, 0< 0 <71, 0< ¢ <2m. We
now want to solve the equation of motion for the tensor perturbation X;; in these global

coordinates, which can be written covariantly as
(0X);; = 0. (5.3.67)

This equation tells us that each component of the tensor X;; solves the wave equation
with respect to the background metric and due to this we can consider the scalar wave
equation (JX = 0. We have already solved the equation for the background metric being
(5.3.65) but now we want replace this with (5.3.66) and look for solutions to this equation.

Following [217], we first transform the global time coordinate 7 into the conformal time
coordinate 7, given by
n = 2arctan(e’) (5.3.68)

upon which the line element (5.3.66) becomes

1
sin?(n)

ds? = [—dn? + dyp* 4 sin® (1) (d6? + sin? Odp?)] (5.3.69)
which is a Robertson-Walker spacetime with a closed slicing, a type of spacetime for

which the solutions to the wave equation are well known. Quoting [217], and following
their notation of @ = (¢, 0, ¢), k = (k,J, M), we find the solution is given by [218]

oo k-1 J
Xg = Z Z Z Apwi(z) + Apwy,(x) (5.3.70)
k=1J=0 M=—J
where
, 1 3 i 3
wy () = sin®?(n) <2Pk_;(— cosn) — K1) k_%(— cos 77)) Vi (x) (5:3.71)

fork > 2

where P, (@ are Legendre functions and V() are eigenfunctions of the Laplacian on the
unit round S3:
Ogs V(@) = (1 = k) Ve(), (5.3.72)
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which are given by

Vele) = I ()Y (6,9) (5.3.73)
where
- -1/2 14+J
W5 = [FR0-1)F =) ) (7o) eost)
(5.3.74)

and Y (0, $) are the usual spherical harmonics. We note [219, 217] that one can also

expand Vg (x) in terms of Gegenbauer functions Cg, using the relationship

LRI (ks — ] — Dk[D(J + D)2
al'(k+J+1) )

I () = i(—1)7 ¢t 1<cos<w>>sinf<w>\/ (5.3.75)

Finally, we note that the normalisation of (5.3.71) is not suitable for the choice of k =

1(= J =M =0). For this case, the suitably normalised solution to (5.3.67) is

~ —2(i+mn) +sin(2n)
W(1,0,0) = 12

(5.3.76)
an example we will refer to later when we compute Bogoliubov coefficients.

In order to expand the inflationary patch solution in terms of these modes, we need to
define an inner product on the global coordinates. Again, we take the standard result for

inner products of modes on curved backgrounds from [217], which in this case reduces to

i

(or.02)6 =~ 5 [ W(er.63)

; T T 2
— o [ [ [ @0065 - 630,00 sin ) sin(6) dudvds

sin“n Jo

(5.3.77)

with W (-,-) denoting the Wronskian with respect to 7. We note that the modes wy, as
defined in (5.3.71), (5.3.76) satisfy the normalisation conditions

(wg, wir ) = 0(k, k), (wi, wi ) = —0(k, k"), (wg,wi)g =0 (5.3.78)

where d(k, k') is the Dirac delta function for the measure given in (5.3.70) over which we

sum the modes, i.e.
o k—1

SN Z 5(k,K) f(k) = f(K). (5.3.79)

k=1J=0 M=
This normalisation was ensured by our choice of coefficients for the Legendre P and @
functions in (5.3.71). We also note that these normalisation conditions can be recast as

normalising the Wronskian between solutions, for more details on this see [217].

Now that we have the generic expansion for the components of our perturbation in

global coordinates, we wish to compare this with the Fefferman-Graham coordinates of
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(5.3.30) and find a relationship between the global mode coefficients A, A}, and the mode
coefficients for the inflationary patch expansion. To make a direct comparison with the
global mode expansion of (5.3.70), we first express our FG solution in position space as

the Fourier transform of our solution (5.3.30)

Gqlap cos(qp) — Sin(‘m)]> d9T (5.3.80)

3
Xp = / (dq3 (Fq[COS(qp) +gpsin(gp)] + 7

2m)
where in order to avoid confusing notation, we write ¢ = (q1, ¢2,43), & = (z1, %2, x3) and
q =||q||. We also follow [42] in noting that since Xp¢ is real, the coefficients Fy, G4 obey

the following equations
(Fg)"=F-q, (Gg)" =G4 (5.3.81)

In order to obtain expressions for the global coefficients Ay, A}, in terms of Fy, G4, we use
the inner product (5.3.77) and note

(Xra,wi)e = (Xg,wk)a = Ak, (Xrg,wp)e = (Xa,wp)a = —Ap, (5.3.82)

hence we will need to compute the integral corresponding to (Xpg, wg). In order to do
this, we first need transform the coordinates of X ¢ into the ‘conformal global coordinates’
of (5.3.69), with the transformation being

P =" osl sin(n) O CO(S(‘?) Sinw())
cos(1)) — cos(n)’ cos(¢p) — cos(n)’
_ cos(¢) sin(6) sin(v)) _ sin(g) sin(0) sin(w)' (5.3.83)

cos(¥) —cos(y) 0T cos(¢) — cos(n)

Working in these coordinates, we are now able to write down the integral expression
corresponding to the global mode coefficients
i

Ap = ————
k sin?(n) Jss

W(Xpa,wy,) (5.3.84)
which allows one to read off the expansion coefficients in the global coordinates given the

Fefferman-Graham data.

5.3.6.1 Computing A(l,o,o)

As an example, we will now compute the coefficient A o) for an asymptotically dS
solution with g3y perturbations (i.e. (5.3.80) with Fy = 0, G4 = 1). We note that we
will need to pick a suitable tensorial factor in order to ensure that Gj; (¢*) is transverse
traceless. The building block for such a tensor will be
q:q;
¢

s = 6ij — (5.3.85)
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which is clearly symmetric (m;; = m;;) and transverse (¢'m;; = 0) but not traceless (7 =

7! = 2). We also note that the Fourier transform of 7 is

1
T = (65 — AT19;0;)6%(%) = 6;;0° (%) + 0;0; (4”> . (5.3.86)
In order to construct a traceless tensor, we introduce the three dimensional transverse

traceless projection operator [73]

1
Hz‘jkl = 5(77ik7"'lj -+ Tk — 7Tij77kl) (5387)

and use this to construct transverse traceless symmetric polarisation tensors, see [220, 195]
for the relevant expressions. We will focus for now on the transformation of the scalar
factor, as the tensorial contribution can always be accounted for via convolution of Fourier

transforms as discussed below.

This construction gives us a momentum space solution of the form

(XFra)ij = Py (qp COS(qp;g Sin(qp)) (5.3.88)

which we now need to Fourier transform into position space before computing the global
expansion coefficients Ag. In order to compute this Fourier transform we use the convo-

lution theorem

/ (3:33 P <qp COS(qp;?)— Sin(qp)> v _

/d:’»x“/ (573:)13 (QPCOS(qp;?’— Sin(qp)) eiq'wl [/ (;ljf;gP,-jei(yf”)'PH (5.3.89)

the transform of the first term is

/ d®q gpcos(gp) —sin(ap) iq.z

(2” )3 q3 ‘
simcl\qxr p COS\qp Simiqp d .9
2 2 0 q q q q q q

_ ﬁ@(—(p +1)) = %9 (COt <77J;1#>)

where © denotes the Heaviside step function. We note that the location of the cosmological
horizon, Hc, in the inflationary patch is at #2 = p? and thus the physical interpretation
of this solution is of a perturbation which vanishes outside the cosmological horizon,(i.e.
when 72 > p?> = p+ > 0) and takes a constant value inside (72 < p?> = p+7 < 0).

We also have

o 2(i —n) +sin(2n)
(1,0,0) 4\/§7r .

(5.3.91)
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Which is all we need in order to compute the integrand in equation (5.3.84).

We will now perform the naive computation of the mode coefficients, treating Xrg as
the scalar solution, without for now including the contribution from the tensorial term F;;.
This will serve as a computation of the mode coefficients for the Bogoliubov transformation
of a scalar field minimally coupled to de Sitter space, and will give us a hint as to the
solution for the tensorial perturbation (whose components satisfy the same equation as
the scalar field).

§ sin?n n+v
W(XFG,w(l,O,O)) 4[772@ < (2)) *

e (1520 (45

which needs to be integrated over a unit S2. We first perform the 6 and ¢ integrals trivially

(5.3.92)

and then the v integral as follows

A1,00) = \/;ﬂ/oﬂ@ (cot (77 5 ¢)> sin? o) dip—

D [ (152025

= ﬁ /07”7 sin® 1) dip+ (5.3.93)
i 2(i—mn)+sin(2n) [eot(T)
sin? n 427 /cot(g) sin” ¢ 0(u) du

2\[(1 + i).

This computation also gives us

) 1
Ao = 5 50— (5.3.94)

which can also be checked by performing the inner product (Xrg, wy,)q.

5.3.6.2 Computing Ag

The previously performed calculation allowed us to identify the first coefficient of the global
mode expansion for a perturbation which was previously specified in terms of Fefferman-
Graham data. It has also given us a strategy to compute generic coefficients Ag for a
perturbation which only transformed g(3). The strategy would be to replace the expression
(5.3.76) for the lowest mode in (5.3.92) with the expression (5.3.71) for a generic mode.
We would also like to extend the computation of these coefficients to encompass generic

perturbations in Fefferman-Graham coordinates, the main issue with such a computation
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is the difficulty in performing the Fourier transform for the Fj term.

In order to extend our computation of (5.3.84) to all k, we first note that we can simplify
the problem by setting 7 to a constant value (because Ag is 1 independent). A particularly
convenient choice is 7 = /2, and this is the value we will use from here on. We note the

following values of the functions in the integrand of (5.3.84) at n = m/2:

Wkl=z = il L/%Sln( 2)+k2—1 2008( 2 ﬂ
1 k k
37]107;‘77:% = y,:(m)m [k‘(k;Q —1)cos <27T) — 47 sin <27T)]

where the only pieces of these which contribute non-trivially to the S? integral in (5.3.84)

(5.3.95)

are the harmonics )V (x). We also observe that the k£ dependence in (5.3.95) results in a

neat bifurcation of the cases when k is an even or odd integer. For k = 2n (n € Z) we find

even N 2m(—1)™
(wilyos )™ = - 22y )
8n” =2 (5.3.96)
* even (_1)n (4n2 — 1) * -
(Oywily=z) " = e Yi@)
and for k =2n+1(n € Z)
Loedd  (=1)M2n+1),
(wk|n:£> — _Myk(m)
V2T
. (5.3.97)
* odd Z\/g(_l)n *
(Owili—g)" =~ =5, Vila)

We also need to understand the contribution of Xrg term to the S integral. In order to
avoid printing out the cumbersome expressions for Xpg(6, ¢,w)|n:%, we will simply list

the terms which will contribute non-trivially to the S% integral.

Xrcl=3 - "% sin(pq), €97 cos(pq), €' psin(pq), €' pcos(pq)
iq-T 3 o; iq& 3 61’1 « " (5398)
6nXFG!n:g 1 "7 p” sin(pq), €T p” cos(pq), 8577( terms from XFG|77:g )

and thus in order to fully compute the integral over the S® we need to compute the
integrals of YV} (x) multiplied by the terms in (5.3.98) e.g.

. Vie(@)e' ¥ sin(pq) = f, (5.3.99)
where
oo k—1
€' sin(pq) ZZ Z feVe(x (5.3.100)
k=1J=0 M=

i.e. computing these integrals is equivalent to computing the expansion coefficients for the
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integrand when expanded in S? harmonics. In coordinates this integral is explicitly
* i(cos(0)q1+sin(6) [cos(¢)ga+sin()gs]) tan(y) o
/53 Vi (0, 0,9)e sin(sec(¥)q)+/ggs dOdody  (5.3.101)
and one finds similar integrals in order to compute the other terms in (5.3.98).

As a first example of computing the coefficients Ay, we will return to the class of
conditions that we discussed in 5.3.6.1, namely Fy = 0, G4 = 1 and we will again consider
only the solution to the scalar wave equation. These again seem reasonable conditions to
consider for linear perturbations because all of the information regarding the conserved
quantities is contained in the G4 term (see equation (5.3.35)). This means that even
though the resulting coefficients will not be related to the expansion of the most general
solution in global coordinates, they will contain all of the important information regarding

the charges. Once again, we have Xp¢ taking the same value as (5.3.90) and thus

1 T+ 2
XFG‘?]:% = E@ (cot < 1 ¢>)

0, Xpel s = ——— csc? <7r+2¢> 5( t (WJF%)) (5.3.102)
nAFGly=5 = — g CSC 1 co _
and now performing the integral (5.3.84) becomes a case of evaluating
Ap = —i /53 W(Xpa, wg)lp=z = _'/SB(XFGaan — O Xpcwi) =z (5.3.103)

where we have all of the necessary information in equations (5.3.95) and (5.3.102) in order
to compute these integrals. We will now go through some of the steps of computing these

integrals and discuss the resulting expressions.

The first integral we want to compute is
1

iz v () rn ()] Lo (on ()

ignoring (for now) the prefactor we have

I = /S o (cot (7’ 221”)) Vi(@) = /S i (0, 6) /0 D" () sin2 ey (5.3.105)

and evaluating the S? integral we obtain

I = 210050 /0 "I () sin g dy = 2¢/70ar0 /0 "1 () sin® Y dy. (5.3.106)

In order to perform this II-function integral we use the Gegenbauer representation (5.3.75)
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and we obtain

I = —2V2idar0 / ® Oy (cos ) sin2 o dyp = —2&@5M70% cos B(k — 2)} (5.3.107)
0 _

where we used the integral identity

/(1 — 230N (2) dz = —%Cﬁ}(z) (5.3.108)

to reach the right hand side of (5.3.107). Putting everything together, and noting that
only even k terms contribute to the integral, we find the contribution of (5.3.104) is the

remarkably simple

k

2

S0 (5.3.10)

3
2

where k € 2N.

Now for the second term we have to evaluate

() (5) e (5)

(5.3.110)
o (T4 29 T+ 29 N
X /53 cse <4 )5 (cot( 1 Vi (x)
and (again) ignoring the prefactor for now, the integral we want to compute is
I, = / csc? (Tr * 2¢> o (cot (7r + 2¢>> Vi (x) (5.3.111)
g3 4 4
1
N / () sin? (4 (w) T (4 (w)) du (5.3.112)
-1

where we have used the substitution u = cot((2¢ + 7)/4), which means that when we

evaluate this integral we will need to use ¢)(u = 0) = /2. Using this we find

™

Iy = 4y/mop ol (2> = —4i\/2657 0 cos (g(k: - 1)) (5.3.113)

and thus this term is only non-vanishing for odd k. Putting the prefactor back in, we find

the contribution from the second term is

k

2T

SO0 (5.3.114)
2

now k € 2N — 1.

This gives us a remarkably short expression for the coefficients of the expansion for
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k > 1 in global coordinates, namely

A = iéaM,OéJ,O. (5.3.115)

272

which is valid V k£ € N.

The next step in this computation is to compute the explicit form of P;; in (5.3.88) and
then include this in the computation of mode coefficients (5.3.90). This will give us Bo-
goliubov transformation from FG to global coordinates for the full tensorial perturbation,
as opposed to that of the background scalar (which we expect to act as a proxy). This is

ongoing work and we hope to complete this soon.

5.4 Conclusions

In this chapter we have further developed the understanding of a number of asymptotic
aspects of AldS spacetimes, most often using analytic continuation of the already well-
understood results in AIAdS spacetimes. This leads to results which, while mathematically

consistent, require a careful approach to be understood physically.

The first main result is the map between the Starobinksky/Fefferman-Graham [166, 59]
and Bondi coordinates in dS, a result which is obtained quickly via an analytic contin-
uation of the AdS result discussed in chapter 3. A potential shortcoming of the Bondi
coordinates in the (future) near boundary region of an AldS spacetime is that the Bondi
time coordinate becomes spacelike due to the presence of a cosmological horizon in the
spacetime. This issue leads us to consider how best to extract the physical interpretation
of the Bondi coordinates in AldS spacetime. One promising proposal to approach this
procedure [42, 45] is to perform the Bondi analysis (no-ingoing radiation condition etc)
upon H¢ rather than .# T, preserving the timelike property of the Bondi time. From our
perspective of comparing the asymptotic structure of the Bondi and Fefferman-Graham
gauges, this is somewhat unsatisfactory as the FG gauge will not generally be applicable
in the near H¢ region of the spacetime. It seems that the best way to directly compare
these gauges is by relaxing the restriction upon the Bondi time coordinate, now the radia-
tion will be encoded in the asymptotic structure due to the 7 dependence of the boundary

metric.

This “radial” dependence seems to indicate the property that radiation in AldS space-
time is now described by a conservation law in space rather than time. This is confirmed
by our charge prescription for AldS spacetimes, the second main result of the chapter. The

important distinction between this prescription and previous discussions of charges in dS
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(e.g. [221, 210]) is that the slices of spacetime are now timelike hypersurfaces, and thus
the charges are conserved with respect to translations in a spacelike direction. We found
that for an asymptotic symmetry group consisting of asymptotic conformal Killing vectors
of #+, the Wald Hamiltonians of AldS, spacetimes with no matter always exist and thus
one finds no symplectic flux at # . We note that the recent work [51] does consider the
possibility of flux at #* by considering asymptotic symmetries consisting of diffeomor-
phisms of .#*. However, these boundary conditions are somewhat difficult to interpret,
both for physical and mathematical reasons: Physically, the intuition from AdS/CFT of
only being able to specify the conformal class of a boundary field given the bulk field is
now lost. Mathematically, as was shown in [71], the conformal boundary conditions give
rise to a well-posed variational problem, something the analysis of [51] gives up. It would
be interesting to further examine the classes of boundary conditions which give rise to flux
terms at ..

Our final results in this chapter discuss the charge prescription applied to the straight-
forward example of a linear perturbation of dS4. We chose this basic example with the aim
of gaining a greater physical insight into our charges, in particular the unfamiliar process
of spatial conservation. This lead to a number of examples of non-trivial charges, with
a possible interesting future direction being a more detailed analysis of the relationship
between the singular solutions and the gravitational memory effect in cosmological back-
grounds [216]. The perturbations diverge as one moves towards the coordinate horizon of
the inflationary patch of pure dS4, and thus in order to obtain a solution suitably regular
at the horizon we need to transform the mode coefficients in the style of Unruh [222, 217]
(see also [223, 224] for applications to AdS). This computation is ongoing, but we would
expect to find a regular solution consisting of a specific combination of singular modes.
We hope to gain a greater insight into the global nature of the charges when armed with

this solution.



CHAPTER 0

Summary and outlook

We conclude this thesis with an overall summary of the work performed and some outlook
on work which could be performed as next steps of the material discussed in this thesis.
In order to avoid repetition of previous chapters in the thesis, we point the reader to the

more detailed concluding sections 3.5, 4.3, 5.4 at the end of their respective chapters.

The main purpose of this thesis was to investigate the physics of gravitational radiation
in A1(A)dS spacetimes using a marriage of techniques from the literature on asymptotically
flat spacetimes and holographic results from the AdS/CFT correspondence. In chapter
3 we have obtained a comprehensive understanding of the Bondi gauge when applied
to Al(A)dS spacetimes, including the most general form of the asymptotic solution to
the field equations, various integration schemes in order to solve such equations as well
as a holographic understanding of all Bondi quantities via an explicit map from Bondi
to Fefferman-Graham gauges. This analysis leads to a time-dependent conformal class
of of metrics at .# which capture the radiative nature of spacetimes which are merely

asymptotically locally (A)dS.

In chapter 4 we extend these ideas to consider how the physics of gravitational radiation
in AIAdS spacetime is encoded in the metric quantities, in particular when we attempt to
understand the nature of Bondi mass and news. We were able to find an explicit counter
example to the Bondi mass loss property in AIAdS spacetimes, showing that the energy

associated with A < 0 is important, and thus the definition of a radiative mass may require
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modification. We also work on a method of modifying the Bondi gauge by removing the
restrictive determinant condition of the original choice (unnatural from the perspective of
AdS/CFT). This procedure should allow us to apply the gauge to additional metrics, in
particular the Robinson-Trautman class of solutions which should act as a testing ground

for gravitational radiation in A1AdS spacetimes.

In chapter 5 we have honed the focus on de Sitter spacetime in order to obtain a new
asymptotic charge prescription, much of which is based upon analytic continuation of
results in AIAdS spacetimes. These charges have the unusual feature of being conserved
with spatial rather than time translations, and as such we provide a number of simple
examples in order to understand the physics of such a prescription. A computation in
order to understand the global mode expansion of the perturbations is under way and we

hope that this will illuminate the global nature of the charge carried by the perturbation.

This work has a number of interesting potential future directions, some of which simply
require continuation of computations that have been discussed in this thesis. In order
to better understand the monotonicity properties of Bondi mass in AIAdS spacetimes,
one needs to work beyond the small A limit, a procedure which may require a modifica-
tion of the definition of mass aspect as one encounters A-dependent terms which break
monotonicity. If this procedure is able to yield interesting results, then an illustrative
example should be that of the Robinson-Trautman class of spacetimes. Understanding
this example fully would first require a further understanding of the computation that we
started in attempting to relate the RT spacetimes with the Bondi gauge. We also note
that it would be of interest to attempt to derive such a mass from covariant phase space
techniques as discussed in this thesis, although at this point in time there is a less obvious
route to performing this computation. Finally, the global understanding of the charges in
perturbed dS, spacetime is not yet obtained, we hope to complete this shortly in order to

give a more complete picture of charges in AldS spacetimes.

In addition to these concrete computations, there are also some new topics in which this
work could be applied. The first of these would be to use the new understanding of AIAdS
spacetimes in Bondi gauge order to describe more advanced gravitational wave phenomena
such as the gravitational memory effect. The effort to understand how memory can be
described in curved backgrounds is an active research topic (see e.g. [216]), although
none of the current work takes into account the subtle details of the “asymptotically
locally” structure of the spacetime. By using the asymptotic comparison of the Bondi and
Fefferman-Graham gauges, one could hope to analyse the geodesic deviation equations
and understand how the distinction between radiation and background curvature play a
role in the deviation of test particles. This work could also help illuminate the concept of
Bondi news (and thus mass) in AIAdS spacetimes, as well as asymptotic symmetries and

physical motivation for certain choices of boundary conditions [50, 51].
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Finally, there is the potential for this work to be applied in the other direction, namely
in using the holographic understanding of the Bondi gauge as presented in this thesis in
order to gain an insight into the holography in asymptotically flat spacetimes. This is a
procedure which would require use of the comparison between the Bondi and Fefferman-
Graham gauges as presented here, together with a suitable flat limit of A — 0. There
are many subtleties associated with this limit which have not yet been fully addressed,
although it seems that a further level of renormalisation may be required in order for this
limit to exist [51]. We note that this is a somewhat different approach to understanding
holography in asymptotically flat spacetimes than the ‘celestial holography’ approach of
[88, 8, 87, 7,97, 95, 127, 225, 226, 227] which conjectures that holography in asymptotically
flat spacetime is described via an identification of a 2d CFT living on a cut of .#* of an
asymptotically flat spacetime. The approach that we have sketched in terms of taking the
flat limit would be an attempt to gain an understanding of flat holography directly from
a 3d CFT instead, although it is expected that these CFTs of different dimensions would
be related [228]. In any case, it is useful to have multiple approaches to the important

unsolved problem of asymptotically flat holography.
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APPENDIX A

Appendices for chapter 3

A.1 Supplementary conditions

In section 3.2.4, we explained how the {uf} and {uwu} Einstein equations can be reduced
to f = 0 and g = 0 where f, g are functions of (u, ). Here we present these equations
in the A < 0 case as constraints upon the derivatives of the functions Uz, and W3,. We
have used the normalisation of [ = \/=3/A = 1. The formulae for A > 0 can be obtained

by using dimensional analysis (see section 3.4.2.2) to reinstate [ and then A.

187



188 Appendiz A. Appendices for chapter 3

f=0:

Usy = §73((2’}/079 — 4cot(0))(Up)? + 2(6260’71 — Uo,0 + Y0,u)Uo—
3e*0720 (cot () + Bo.0 — Y0.0)) + %(2862[30 Uo(m)*~
30677270 (cot(6) — Bo.o — v0,0)(11)* — 14(Uo)*(cot(6) — 270,0) (11)*+
14U5(Uo,p + 270,u)(11)? + 3e*07270 (U 6(7 cot(8) + 8B0.0 — 870,6)+
%19 — Ug,g9 + 4(—4 cot(0) + Bo,g + 470,0)Y0,u + 3Bo,us — 870,u0) (71)*—
6UuWay1 + 360741020 (—4(v9,9)® + 6 cot(6) (10,6)°+
(3csc®(0) + 480,00 + 670,00 + 2)70,0 + 8(Bo,0) (2 cot(6) — 70,0)+
2 cot(6) Bo,00 — 3 cot(8)70,09 — 2B0,0(csc*(8) — 4(y0,6)* + 8 cot(8)y0,6+
480,00 + 270,00 + 2(—2B0,000 — Y0,000) + €7 (471,0(Uo,0 — 270,u) +
2(8 cot () + 3600 — 870,0)1,u + 371,u8) )11 — 2462 Uprs — 12UpUs 9+
320201y o + 12270 20W3 8y o — 12U Us(cot(8) + 7o,9)—
184702103 o — 24(Up)?y3,0+
126907410 (v 4(260,0(cot(0) + 36,0 — 270,0) + Bo,oo) + Bo.or1,00)+
3627072100 ((csc?(0) + 16(70,0)* + 8B0,0(2 cot(8) + Bo,e)—
4(7 cot () + 3B0,0)70,0 + 480,00 — 12(v0,00 + 1)) (71)*+
2((15 cot(6) + 120,90 — 1670,0)71,0 + 371.00)71 + 10(71,6)*)+
6U3 (201 — 2Ug.9 + 3Bo,u — Yo,u) + 21207210y gy o, — 24Upy3,4)

(A.1.1)

g=20:
1
W3 = 3’)6450’yil + 567270(6270 Ug’g — ¢t (8ct?(h) — 1670,0ct(6) + 46(2)79 + 87(2)’94-

TB0.6(ct(0) — 270,0) + TBo00)) (11)* + %672%(—126450”%73—

2Up 0 (4> ct?(0) — 9> gct (0) — 3e2% csc?(6) + 662&)5(2)79 + Gewo’yag—i-
20y o (11ct(0) — 1670,9) + 3¢ By g9 — 5e*%70 99 — 2627071 )+

270 (—e*P (15¢t(0) — 14809 — 1470,0)71,0 + 4(—ct(6) + Boo + 70,0)Uo,00+
P01 9o + 2Uy gp0 + 32¢t(0) B0.670.u — 32B0.070.0Y0,u — 12¢t(6)Bo.uo—
160,080,u6 + 1670,080,u6 + 4ct(8)70,u0 + 2450,670,u0 — 870,070,u6 — 4B0,u60+
450,u00) )71 + 8600 (79 9)* — 16e*0710¢t(0)(B,0)° + (— 140 0ct(0)—

_ 1 _ 7 B
8et07410 35 ) (v0,9)° — 564&) 210(y19)% + (U())S(geh0 20 (ct(0) — 270,0) (1) +

1630250 (34 (264(8) — 100) + 130) + 4630 63 (et (6) — 2604
26270 csc? (0) — 4625"&),99 + 2625070,99 + 627071,u) + ’)/379(—3264’80_4%68794‘
281010t (0) By g — 2040 (—3e2P0ct2(0) 4 4e*P0 + 9?0 csc?(0)+
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1
16e270 By gy + 186270 g9 + 42071 ) + (Uo)Q(g(—M)eZ%ﬁ—
7 1
56270_250((]079 + 270#)(71)3 + 5(—190‘52(0) + 6070,0ct(0) + 10 csc2(0)—
8566 — 32759 + Bo,6(870,0 — 17ct(0)) — 70,99 + 2070, + 8)(71)*+

1
56_%0 (2627°W3 — 2P0 (862%")/3 + (51ct(0) + 30809 — 5670,0)71,0 + 971.00) )71+

1
567250(—136250 (’)/179)2 + 862(50+70)’Y4) + 86270’)/3[]079 + 76270 U3,9+

3e¢*10U3(3ct(0) — 20,0 + 270,0) — 8¢*°Y370,u + 8673, ))+

B 1 o5
T,0(—26°%72 50 4(3U0.9 — 470,u) — 56250 210 (13¢t(6)Uo 0 + 2Up 00+
860.u0 — 470.u8)) + 626074705079(_6250@(0) CSCQ(H) — 262'60Ct(0) 4 30y,
16¢*%¢t(0) 50,09 — 106> ct(0)70,00 — 86> 50,006 — 2677 70,609~ (A-2)
10€*70¢t (8) 11,0 — 4€°771,up) +70,0(326 07410 (By 0)° + 8e P10t (9) 55 o+
262007470 (—2e2P0ct2(0) + 627 + 3e2% csc? () + 24€* By gg + 6°770 99+

1

46201 ) B, + 8e2OT20U oy1 g + 56250_4%(—362%0'5(9) csc?(6) + 2¢°Pct(6)+

8e2™ct(6) Bo,00 + 30e*ct(0)70,00 + 1667 By 999 + 10e2% 0 g+
126”7°t(0) 71,0 + 86* 71 up)) + Uo (106> (ct(8) — Bo.g — 70.0) (1) *+
(Uoo(—6ct(6) — 80,0 + 8700) — €710 + Uo g0 + 16¢t(6)70.u — 480,670,u—
1670,070,u — 3B0,u0 + 870,u0) (11)* + €270 (=Pt (0) + 32700 get? (0)+
2290 csc?(0)ct(0) — 1462’80’}/3’9Ct(9) — 92 34 pgct () + 9e2P0g gact(0) —
1462071 ,¢t(0) + 8% (70,9)* — 4€"70Uy — 4€*%070 g — 10> csc? (0) 70,0~
2¢°% 35 5(15¢t(0) — 870,0) — 267U gm0 — 166*™50,970,00 + 26*7 5o 00+
4e*50,999 + 8> 71 970.u + 1667990, 671,u + Fo,0(—13e*0ct?(0)+

60600 get(6) + 8e* + 12> csc®(0) — 32¢*P 73 o + 8¢ By go+
2062903 g5 — 6621071.) — 37071 o) + %efz(ﬁoﬂo)(_764,8071’9“2(9)_
48e*7 By gy1,9ct(0) + 16€*%0y0 g1 gct(0) — Te*Pyy goct(0) + 80U Uy g—
462(ﬁo+vo)W3,9 — 2P0t W5 (3¢t () + 4B0.0)+

24 902905 (ct(6) + Bo.o — Y0,0) + 8 esc?(0) 1,9 — 40e*7 B3 gy1,0—
8846073,@71,9 + 647 By 970.071,0 + 1207205 5 — 1240, o3, 9o+

801 970,00 — 16€*% By 971,00 + 870v0,071.00 — 2601 999 + 6€*7°U3 ,,—
12e410U3 80 ,, + 4€X0Usy0,, — 662P0H70) 4, 097 ) + %e*‘”o(—264'60/30,99%2(9)—
300,09t (0) — 4e”P0 10 et () + 3e>PT0Uzet () — 4™ By gagct (6)—
4e* P00 ggact (0) — 620100y, oct(0) — 8e* (8o 00)2 + 61 (70,00) -+

4eM0 (71,4,)? + 3e?0TN0U g — 4?0 By gy + 4™ esc?(0) Bo00 + 267070 00+

6% csc?(0) 70,00 + 8¢ Bo 660,00 — 5> PTG gv1.00 — 260 B0 60—
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P00 go0g — €O W3(3Ug 0 — 4B0.0) + 4€250H0) esc?(0)yy o+

42(Po+10) + 4e2(Bot0) _ 92(Bot+10)

0,0071,u 0,0071,u Y1,u60)

where we have used the abbreviations ‘ct(0)’ to refer to the cotangent function and ‘csc(f)’
for cosecant. These two equations are essential to check that g(3),s satisfies the conservation

property (3.4.4).

The supplementary conditions are enormously complicated by the presence of A # 0
with non-trivial coefficients g, 8o, Ug. These formulae simplify significantly in the asymp-

totically (A)dS and asymptotically flat cases.

Asymptotically (A)dS spacetimes in Bondi coordinates have vy = Sy = Up = 0 which
gives 71 = 0 by equation (3.2.16). Setting these values in the supplementary equations

above gives us
Usu = é(‘l/\ cot(0)ys + Wa g + 2A739) (A.3a)
Wy, = —%A(Cot(G)Ug + Usy) (A.3b)
where we have reinstated the factors of A using dimensional analysis.

For the asymptotically flat supplementary conditions, we again have vg = g = Uy =0
as well as A = 0 but now v; # 0. As given in [1], the asymptotically flat supplementary

conditions are

1
Usu = 3 (Tv1,071,u + 71 (3Y1,u0 + 16 cot(0)y1,4) + W3 p) (A.4a)
W3,u =2 (71,u)2 + 271,u — V1,u00 — 3C0t(9>71,u9- (A4b>

A.2 Intermediate pieces of the Fefferman-Graham transfor-

mation

In this appendix we provide formulae for transforming the Bondi gauge metric into the
Fefferman-Graham form. Expressions for the intermediate metric tensors are omitted for

brevity.

A.2.1 Vanishing of g

In this section we demonstrate explicitly that g(;) vanishes. Note first that the Bondi

metric (3.4.22) used to compute g(g) is insufficient for computing g(;): it only includes
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the solution to Einstein’s equations at leading order but for g(;) we require 1 /T~ p
contributions to the metric. To compute g(;) we therefore need to retain the following

contributions to the metric functions

Y(u, 7, 60) = v0(u, 0) + 71(7;’ ‘) (A.2.1a)
B(Ua r, 9) = 50 (U, 0) (AQ].b)
Ulu,r,0) = Up(u, ) + %e%ﬂo(uﬂ)—%(uﬂ)) Bo.o(u, 0) (A.2.1¢c)
W (u,r,6) = 2006 4 cot(6)Uo(u. 6) + Yoo, (A.2.1d)

r

which are the solutions to the field equations (3.2.7a-3.2.7d) up to O(1/r). Note also that

we use the normalisation [ = 1.

As before, we begin with the Bondi metric in the form (3.4.5) and transform into the

coordinates (t, 7,0, ¢) using transformations (3.4.8) and (3.4.11)

u=t-—r, (A.2.2a)

r = tan (r* + ;T) (A.2.2b)
where we have written the transformation (3.4.11) in exact form.

Next we extend the transformations (3.4.15, 3.4.24) to one order higher in p

e — p+ bi(t,0)p (A.2.3a)
t—t+ai(t,0)p+ b(t,0)p (A.2.3b)
0 — 0+ as(t,0)p + bs(t,0)p (A.2.3c)

where o 2 are given in (3.4.30) and by 2,3 are to be determined. When considering how the
differentials transform it will again be sufficient to consider the pieces which contribute to
the metric at O(1/p)

dr. — dp + 2bypdp (A.2.4a)
dt — dt + ardp + (Opar) pdt + (Oparr) pdf + 2pbadp (A.2.4Db)
df — db + asdp + (O pdt + (Dga) pdd + 2pbsdp. (A.2.4c)

i.e. we do not need to include terms of O(p?) or higher.

The final subtlety when applying this procedure is to take into account that the metric

functions (v, B, U, W) are all functions of (t—r,, #) prior to applying these transformations.
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Terms up to O(p) need to be included in these arguments, i.e.
t—r, = t+pa; —p+Op®) =t+ plag — 1) + O(p?) (A.2.5)

and

0 — 0+ asp+ O(p?), (A.2.6)
to calculate all terms contributing at O(1/p).
At order 1/p we are initially left with a seemingly non-zero term with dependence upon

our three undetermined transformation coefficients b123. To fix b1 23 we enforce the

following
9(1)pp(b1,b2,b3) = (1)t (b1, b2, b3) = g(1)p0(b1, b2, b3) =0 (A.2.7)

which gives us three equations for the three unknowns b1 23 (g(1),¢ vanishes automatically

by the axi and reflection symmetry). It turns out that the g,, term is given by
= (b1) = 2b1 + e~2%0 cot(8) T + e =200 (A.2.8)
9(1)pp = 9(1)pp\ 01 1t+e co ot+e 0,0 -4

so we can solve g(1),, = 0 for by and then we will be left with two equations for the other

two unknowns bg 3. Solving g(1),, = 0 gives us

1 A A~ A~
by = —56_260 (U(),g + COt(Q)Uo) (A.2.9a)

using by it is straightforward to now solve the remaining equations of (A.2.7), with solutions

1 5 A oA ~ ~ A A
bQ = —56_460 (6250((]079 + COt(@)U()) + Q(ﬁoyt + 5079[]0)) (A.2.9b)
—940 A 1 45 =~ PN A~ A A
by = e Bog + ;e 40 (Uo s + Uo(Uo, — 2(Bost + Boel))).- (A.2.9¢)

where all function arguments are (¢, 6).

Enforcing equations (A.2.9a-A.2.9¢) in the transformation should make all other coeffi-
cients at O(1/p) vanish. To check this we input the values of by 23 in (A.2.9a-A.2.9¢c). At
O(1/p), the line element reduces to

ds(y) = —56_2(6“70)(2(175264“’0 U3 — 4dtdoe* Uy + 2d0%e*0 — 25in?(0)dp*) x

. (A.2.10)
(Uo.o + 2904 — cot(8)Uo + 290,600 + 2e2704,).
From equation (3.2.16)
1 _
n=ge 250 (cot(8)Un — U, — 2Uo 0,0 — 270,u) (A.2.11)

and thus the second line of (A.2.10) is precisely this Einstein equation (at the boundary),
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forcing equation (A.2.10) to vanish, as required.

A.2.2 Checking g

The g(z) term in the Fefferman-Graham expansion is a useful consistency check as it must
take the form [145, 60]

1
9@ab = ~Lo)ab + T L0)9(0)at (A.2.12)

where Rg), and R are respectively the Ricci tensor and scalar of the boundary metric

tensor g(g)qp-

We now proceed to compute g(9) from the Fefferman-Graham expansion and check it via
use of the formula above. The procedure for this step is the same as before with a term of
one order higher added in each step. We impose the solutions to the Einstein equations

as terms up to O(1/r?). This procedure gives us the functions

Y(u,r,0) =0 + % (A.2.13a)
"

2
U(u,r,0) = Uy + =B ge*Po=70) -
L (A.2.13¢)
T—2625O_27° (260,671 — 270,671 + V1,0 + 2 cot(0)71)

1
W(u,r,0) = > + ;[cot(@)Uo + Up o]+

1 _
53¢ T2 = 36307 4 dcot(8) fog +8(Bo)” + 6 eot(B)yne— (A-2.13d)

860.670.0 — 4(70,0)* + 480,60 + 270.06]

where, as usual, all of the coefficient functions are taken to be functions of (u, ). We will

also make use of (3.2.16) throughout.

The full transformation is again performed by first using the transformations of (A.2.2)
to move into real time ¢ and tortoise coordinate r, before expanding our coordinates
(ry,t,0) in a series in powers of p. In order to correctly compute 9g(2) these power series
will include terms up to O(p3). We use the choices of o; and 3; as before and introduce

new unknown coefficients c;(t,6) at the next order

e = p+bi(t, 0)p” + er(t,0)p°
t—t4+ay(t,0)p + ba(t,0)p* + ca(t,0)p° (A.2.14)
0 — 0+ as(t,0)p + b3(t,0)p* + c3(t,0)p°.
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The procedure for obtaining the ¢; is very similar to that for b;: we fix them by setting

92)pp = 9(2)pt = 9(2)p0 = 0. This gives

8o (1, 6) = e =20 (—geHri2io 196490 (30,)? — 2440 By 10
664/30’3/0,99 + 18 cot(&)e‘lﬁo%,g + 6200 + 946450 (3079)2 + 126460307994—
12 COt(9)64B°Bo,0 — 6270 (40.4)% — 1280, 6€27° Uy Uo — 1250,1¢>7° U g—
12 cot(8) 300> (Up)? — 12 cot(8) Bo 1210 Uy — 6270 (Uy)? —
6270 (30,0)%(Un)? — 627940 9Up o Up + 6€210U ppUp—
1262%’70,9’7071:(:70 + 362%(670,0)2 - 662%%71:(70,9 + 6ei0 UO,tG_
3cot?(0)e270(Uh)% + 6 60‘5(0)62%%,9((A]())2 + 18 cot()e270 UO,(;UO-F
6 cot(0)e*1040 Uy 4 6 cot(8)e>10 Uy 1)
(A.2.15a)

8ca(t,0) = — %6_6/;0_2%(262%((70)2 + 66204230 (01)2 4 4¢270 cot®(0) (U)>+
3¢2Po+2% cot2(0)(Up)? — 4e*70 csc?(0)(Uy)? + 3270 (30,9)2(00)2"‘
66270 (40,0)2(U0)? + 6200+210 (3,6)(U)? — 4210 cot(8) Bo.0(Uo) >+
1262507230 ot (6) 50,0 (U0)? — 66270 cot(6)30,0(Un)* -
662001290 cot(8)40. (To)? — 8270 Bo.09(T0) 2 —
18¢280+2% cot(8)Up,oUo — 12¢270T 900U + 1262’é°+2%ﬁ0,930,9(70+
627Uy o50,0U0 + 6e200+2%0 Uo,690,0U0 + 2e27°Up g9 Up—
G20 +270 Uo,0000 — 4e7° cot(0)30:Up + 12¢200+2%0 cot () Bo,:Up+
64e270 By 950+ Un — 6270 cot(0)A0,.Uo — Ge2fo+20 cot(6)50,:U00+
122704 g50.:Up + 1262&]*2%%,9%¢U0 — 16e7° By 49Uy — 2eth
6550 + 8ebho+2%0 + 262%(00,6)2 - 36230“%([70,9)2 — 24¢%%0 (30,9)2_
246570 (B0.)? + 4" (30 9)? + 12655 (30 )2 + 32620 (B 1) >+
66270 (40,0)% + 6250270 (39 )2 — 4e450 cot(9) fo.p — 12¢5% cot(9) fo o
Geto cot(0)50.0 — 1855 cot(6)%0,9 + 864303079%79 - 24663050,9’70,0*
460 .69 — 12655 B, gg — 2¢*%040,99 — 665050 g5 + 2627 cot(8) U~
6e2Pot2%0 cot(@)Uo,t - 862%30791?0775 — 420 UO,OBO,H‘
126200200 0B, + 62100 g0 1 + 662702900 40,4 + 26700 45—
Ge2Pot2i0 Uo.to — 8¢ Bo,ut)

(A.2.15b)
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2 A A oA N A~ N A~
8cs(t,0) = — 56_650_270 (e20(Ty)? 4 2e27° cot? () (Up)? — 2e27° csc?(0) (Up)3+

166”70 (f30,0)*(T0)? + 3¢ (50.0)* (Uo)* — 2¢*7° cot(6) Bo,0 (To)*—

3¢ cot(0)0,6(Un)* — 4e>7° By,09(T0)?* — 18¢*70T5,9/30,0(T)*+

327000 690,6(Uo)* + 3210 Up g9 (U)* — 2*7° cot(8) Bo(Uo)*+

3267 0.0B0,+(U)? — 3¢*¥ cot(8)40,4(To)* + 6671940990, (Uo)*—
862%80,156(00)2 — 4o cot2(9)ﬁo + 4o CSCQ(G)UO + 362%(0079)2ﬁ0_
126450 (50,0)200 — 66450 (30,6)200 + 16627 (B0.0) 200 + 3¢2% (30.1)2Uo—
%017 + 66470 cot(6) 80,6 U + 9¢*%0 cot(6)50.0T0 — 1267 3 930 oo+
6643030,99(70 + 3¢*%050,05 U + €210 cot(0) U 1Ulo — 16627 39,9 U 1 Up—
14e*7T5,950,:Uo + 3¢ U 6904 U + 5> U 1900 — 4€*7° 30 1 Up+
1245 Uo,0B0.0 + 2¢71°U0 U0 — 126*7°T5 1501 + 8¢4%0 cot(6)30,—

167 By g40.+ — 8¢*™40 90,4 + 8¢ By 49 + 464%30 49 + 2eX10T 41)
(A.2.15¢)

Using the ¢; coeflicients above, we obtain the following components for g(y):

92)tt

1 o5 4B/ /a . A . R
56270 0 ((40.6)% — 3 cot(8)A0,9 — 260.6(cot(8) — 290.0) — 250,00 —

D(0o)* + 362%_450((70,9(230,9 — 3%0.0) — Un.go — 2 cot(8)Bo.++
440,060+ — 3 cot(8)F0, + 4Bo.090. + 290,090 — 430,10) (To)>+
%6’430(—62%(%,9)2 +e210(280,4 — 40,)Unp + 2¢4%0 4 440 (Bos)?—
8" (50.0)? + €70 (50.)” + 6% cot(8) 0.0 + 4" By p(cot (6) — 290.0)+
2@43030,99 + 3e4f30%,99 + 20 cot(0)Up ¢ — 2€27040 gUo ¢ + 46270 By 40,4~
2005 19 — 26279404 (U0)? + %(ﬁo,e(?f%,e —260,0) + Up po—

2 cot(6) Bot + 5 cot(8)40. — 80,090, — 240,690, + 490.10)Uo+

L ) = (2, — B30 — e — 4

26450 (30.6) + 3¢210(30,1)? — 3¢ cot(8)30,0 — 2617 By 6 (cot(6) — 250,0)

2e4% 3y g9 — ¥4 gp + €210 cot(0)Up + + 210U 19)
(A.2.16a)
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920 =290, (Bo, + F0,0 — cot(8)) — A0 + %(00)362%_4%(230,9(0013(9)—
240,0) — (Y0,6)° + 290,00 + 3 cot(6)F0,0 + 1) + %(%)262%_43“(—430,%,9—
450,690, + 2 cot(0) Bo s — 230,090, + 40,10 + 3 ot (8)A0,: + Uo 0(390,0—
260.0) + Uo,e0) + %6_4&) Uo(2¢* (50,0)% — 6430’70 00 — 4B0,.¢27%0 1—
3cot(f)e 4ﬁo’Yoe 264B°Bo,9(00t(9) — 240,9) — " — 4t (Bo)*—

2¢*%0 3o 99 — €¥10(30.4)% + 2627990 41 — 27U 0(2B0.4 — Ao.) + €210 (Un )2+
2¢1040 601 + €U 49 — cot(8)e*°Up )
(A.2.16D)

1 - Y 5 . . .
9200 = §(U0)2€27° 450(—285,6(cot(8) — 290,0) + (F0,0)* — 240,00 —
) P PO .
3cot(0)F0,0 — 1) + §U062V° 50 (480 150.6 + 480,650, — 2 cot(8) Bo 1+
290,690,t — 490,00 — 3 cot(8)%0,c + [70,9(230,0 —350,0) — Uo 00)+
4B°(2€4B° (50.0)2 — €*™40.60 + 450,.¢27°40 4 — 3 cot (6) 45070 o — ot
450 (B )% + 2646030,99 —2cot(0)e™® By 6 4 €27 (50,4) — 2627090 4+
20U 0(2Bos — Fo4) — €270 (Up 0)*—
262%%79(?07,5 — 20 (Afow + cot(@)emo UO,t)
(A.2.16¢)

9(2)60 = % sin(6)(Un)2e250490) (23, g (cos(8) — 2sin(0)70,0) + sin(8) (o) +
2sin(6)40,00 + cos(6)30,9 + sin(9))—

% sin(@)ﬁoe”@éo*%) (4 Sin(a)BOJ’A}/(]’Q +4 sin(&)ﬂAo,g%’t -2 cos(é’)ﬁA07t—

2in(60)40,090, — 45in(60)30,0 — cos(8)0,t + Un,o(25in(6) Bo.o—

5sin(0)A0,9 + 2 cos(8)) — sin(0) U gp)+

1 .
§Sin(9)€_4(ﬁo+%)(2 sin(6) 450(70 p)® — sin(0)e 4ﬂ°’70 06—

4sin(0)Bo 21040, — 3cos(0)e04 o — 4sin(0)e*% By 9)% — sin(0)e*Po—
25in(0)e*% By g + 2 cos(8)e*% By o + sin(8)e210 (40,,)2+

2sin(f)e? Fo.++ — sin(f)e 2%[7079(2307,5 —3%,) + sm(&)ez%(Ug,g)Q—F
2sin(f)e 27070 9U0t + sm(é’)eﬁ0 Uo’tg — cos(@)e%m (A]o’t).

(A.2.16d)

Given these g(o coefficients, we can use formula (A.2.12) as a consistency check, using the

non-zero coefficients of the Ricci tensor, Rg)qp, and the Ricci scalar, R(q), of the boundary
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metric, given below.

Ricci Tensor

Ry = 6_2(2B0+%)(64%(U0)4(’70,0(00t(9) —280,0) + H0,00)+
e (Uo)*(—2B0450,0 — 280,690, + 2900 + cot(0)F0, + Un,o(—250,0+
240,0 + cot(6)) + Uo,g0) + €70 (U)2(—e*%40,09 — 28006370~
cot(8)e*03g,5 — 264 By g(cot(8) — 330,0) — 4¢% (Bo )% — 2¢%%0 By o+
21040 44 — 21U 9(2B0, — Ao0,t) + €20 (Uo,0)* + €21090,0U0 1 + €210Ty 1) —
Doe 00210 (2(30,4(cot(0) — 260.6) — cot(8) Boc + Ao,0)+
Oo0(~2B0.0 + 20,0 + cot(6)) + U gg) — €*% (=270 3y y(cot(6)—
240,9) — 4250 (By 6)2 — 26%%0 By gy + 26270 (0.1)% — 2600 5(Bos — Ao.e)+
62%([7079)2 + 0 Uo’tg + cot(#)e* 0Ty 1))
(A.2.17a)

Royie = Rioyer = (" (290,4(—Bo,o — A0,0 + cot(8)) + Ho.10) —
e*1(Un)* (Jo,0(cot(0) — 2B0,0) + Ao,00)—
62%(670)2(—230,{70,0 — 2B0.690 + 290.40 + cot(0)F0 4+
Uo’e(—230,9 + 2’3/0,9 + COt(G)) + 00799) — ﬁo(—QﬂAQ,teQ%’%,t— (A.2.17b)
2e4% 3 g(cot(6) — 290,0) — 4€*(Bo.0)* — 26" By go+
2040 1+ — €200 9(260.4 — Jo.t) + €27 (U 9) 2+

i oA e
e %0 gUo,t + e °Up0))

Royp0 = e~ 40 (et (F0,0)* + 2¢4h0 Bo,690,0 + %040 g5 — 280 1210404+
3 COt(g)emo%,e + o _ getho (Bo)? — 2@43030,09 + 21040 44—
e?0U,6(2B0.0 — 40.2) + €27 (T0)* (Fo.6(cot () — 250,6) + Fo.00) +
210 Uo(—2B0,:90,0 — 250,690, + 230,00 + cot(0)30,.+
Uoo(—260,6 + 20,6 + cot(8)) + Up.ee)+

e (Up 0)* + €140 9Up .t + €100 19)

(A.2.17¢c)
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Rig)gp = sin(@)e~ 0 190) (~25in(0)*™ (50,0)” + sin(6)e* 50,00+
2sin(0) 5o 12740, + 3 cos(@)emo%,a + 264303079(@11(9)%79 — cos(#))+
sin(8)e* — sin(6)e¥ 3, + €20 (Uy)2(2o (sin(8) 300 — co3(6))—
sin(0) (Jo,00 + 1) — cos(0)50,0) — €*7°Un(—2sin(8) Bo,050,+
260.+(cos(6) — sin(6)50.6) + 2sin(6)Fo.10 + cos(6)Fo..+
200,9(sin(6)50.0 — cos(6))) — sin(60)e*7* 409U 1 —
sin(8)e21040 :Up g + cos(8)e>0Up ;)

(A.2.17d)
Ricci Scalar
Ry =2e~2200+90) (_9e% (5, 0)2 + 4" By 4709 + €740 99+
3 cot(@)e‘lﬁo%,g + 64/30 — 464'@0(3079)2 — 264'@050799 -2 cot(9)643030’9+
€20 (30.4)% — 210U (2804 — Ao.) — €27 (Up)2(2 cot(8) Bo.p — (B0.0)°+ (A.2.18)

cot(0)0,0 + 1) + €*10Uy(—2 cot(0) Bo,c + 240,690, — cot(8)Fo.+
[70,0(—230,9 + 40,0 + 2cot(0)) + U0,99)+
e20 ((A]079)2 + 20 ontg + cot(@)eﬁo ont).

A.2.3 Explicit expressions for g3

Finally, we want to obtain g(3). To do this we extend our transformation in the coordinates
to O(p?)

re = p+bi(t,0)p + 1 (t,0)p° + di(t,0)p’
t—t+ai(t,0)p+ ba(t,0)p* + co(t,0)p® + da(t, 0)p* (A.2.19)
0 — 04 as(t,0)p + b3(t,0)p* + c3(t,0)p° + ds(t,0)p?,

where «;, b;, ¢; are the functions already obtained from previous orders. As in the previous
orders, we obtain dy 23 by forcing the vanishing of the dp terms, now at O(1/p). The
expressions for d; are too long to be reported here but they can be found in Mathematica

file included in the arXiv submission of [52]. Using this transformation we can finally
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extract g(3)qp, Which may be manipulated to the form (3.4.38) with Us, Ws, G3 given by

Us

:%efﬂﬁﬁ%) [—12cot®(#) + 15 csc?(6) cot () + 72’78’9 cot(0)—
80,90 cot(0) — 304,69 cot(6) — 24 cot(8) — 3245 o+

323879(00“9) — 290.0) + F0.0(—2(13 cos(26) + 2) csc(8) + 1650 9o+
36490,00) + Bo,o(—T7 cot?(8) + 9246 cot(8) — 6042 5 + 480,00 + 24)—

~ 1 A A ~ ~
890.000) U2 + 56—2(50+’70>[—16ﬁ07t cot?(0) — 1690, cot>(8) — 9T gg cot(6)+

32/30,060,15 cot(0) + 48%79[%,1& cot(0) + 76,30,9%7,5 cot(0) + 10450,690, cot () —
830,10 cot(8) — 464049 cot(6) + 2430,6Un 90 + 690,0U0,00—

Up.o(cot®(0) + 12509 cot(8) + 5 csc?(6) + 323(2)79 — 12%379—1—

2B0.0(cot (0) — 1890.0) — 8B0.00 + 1890.00 + 2) — 4U.999 + S csc?(0) o —
3248 480, — 64B0,0%0,680, + 1690,0050,4 — 10 esc? ()0, —

64533 g0t — 6443 pF0,e — 88B0,090,0%0, + 16B0,00%0, + 2090,0050.,¢ + 24904+

1640,080,:0 + 805069040 + 52%0.090.0 — 1690 100)Uo+
1
12

e*7° (300,00 — 2(4(cot(0) — 4B0.0) o1 + (5 cot(B) + 20,0 — 250,0)30.0+

4Bo 19 — 590.0)) U0 + 2(8e*043 o+

(8eX100y 4 — 12¢%%0 cot(6))45.9 — 2(36430 csc?(0) + 2¢4h0 862%’3’(2)7,54—

e~ 2(Bo+290) 36290 (cot (0) + 3.9 — 290,0)Ug 6~

8¢4% By 9o + 667940,99 + 66270 cot(8) U ¢ + 86270 Bo Ao.e — 4621040 1) 0.0+
16627 cot(8)32, + 166470 52 5 (cot(0) — 230,0) + 4¢*% cot(8) o gp-+

6470 cot(8)40,00 + 4% Bo ga8 + 247030 ggg + 46770 cot? ()T —

2270 csc?(0)Up ¢ — 421040 99Ut + 427Uy 9050+ + 327U go70.4+

16e270 cot(8) Bo 1504 — 26270 cot (0) U 4o + 8¢*7040.4 B0 10 + 827 Bo 0.0+
1062%"3/07{3/0’159 — 2¢270 ﬁong — 820 cot(0)Ao,ut — 2/30’9(26%0 csc?(6) — 464B0+
762%%71& — 8643030799 + 4e%10 Cot(O)Uo,t — 8%, (6430 cot(6) + ¢*1° UO,t)"‘
167 B0 140, — 427 T0,19 — 86%10%0,41) — 4€*7°50 0]

(A.2.20)
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1 ~
Ws = — §6_4B0(C0t(9) — 250,0)[— cot?() + 450 ¢ cot(0) + 3esc?(6)+
830,0(cot(0) — 290,0) + 840,00 + UG+
1 5 A
16_450 [T0.6(2 cot?(6) — 840.6 cot(8) + csc?(6) + 12&379—1-
80,0(cot(0) — 290,0) + 440,60 + 1) + 2{2(—240,10(cot(8) — 240,9)—
(cot(B) — 240.9)%Bo.t + (2 cot(8)A0,0 + 4500 (cot(8) — 290,0)+
250,00 + 1)50.¢) — (cot(6) — 290,6) U0 60 }1 U5+
1 - . R .
16_2(250+70)[—e270 (3cot(0) + 4509 — 8’3/079)[]&94‘
2210 (Up g9 + 4(cot(8) — 290,0)Bo,c — 2 cot(8)30+ — 850050t + 850,690, +
B0,.40)Uo,0 + 2{8e™™ (cot(0) — 240,0) 35 6 —
2(64BO cot2(9) — 126430:}’079 cot(6) — 364B0 + 6430 CSCQ(H) + 86430’3/3794—

(A.2.21)

462%’7(2)715 — 46430’70’99)3079 + €210 (Up (cot(8) — 240,0)% + 2 cot(&)’y&t—k
200.6690.¢ + 8 cot(8) 5o 150+ — 1690,680.450. — cot(8)Uo.e0 + 250,600 10+
8%0.40.40 — 2 cot(8)0, + 450.690,4) U0 + 36_2(2[;“%) 2008 —
4e¥0 (B — %,t)Ugﬁ + 2(—864303379 1 4e4P0 cot(@)Bo,e + 62%(2’73,1&_
850,450+ — (cot(8) — 290,0)Uo.t + Uo.uo + 290,4¢)) U o —

4{86430%,&3,9 - 26460((70,90 +2(2(cot(8) — Ho,0)0,¢ + H0.10)) Bo,o+
62%’70,75((00'6(9) - 2’70,0)U0,t + 430,153’0,1& - UO,tG — 2% ,4¢) }]
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Gs :%6_630[—19 cot®(0) + 18 csc?(0) cot(6) + 36’7&9 cot(6) + 160 g9 cot(8)+
244,99 cot(0) — 18 cot(6) — 2443 4 — 6433 5(cot(6) — 290,0)—
240,0(7 cot?(0) + 2 csc?(6) + 160,00 + 2) — 80,0(cot?(8) + 85,9 cot(0)+
csc®(6) + 1290,00 + 5) + 1690,000) U5 +

1 4 A
&6_660 [To.6(—T cot?(6) + 8449 ¢ cot(8) + 10 csc?(0)+

64132 5 — 3643 o + 6450 (cot(8) — 330.0) — 160,00 + 723000 + 22)+
2(—4307,5 cot?(0) — Ao, cot®(6) + 1630,1%9 cot(6) + 2450 +9 cot(8) + 4&0,999—
desc?(0)Bos — 4890,0050, — 2080, — 2 esc?(0)A0,¢ + 6452 60,4~
364¢ o%0.t — 16800090, — 230, + 490,0(3U0 00 — 8 cot(8) Bo¢ + 9 cot(8) 7o, —
860.10) — 850,6(3U0 00 + 4(2(cot(0) — 240,0)Fo.t + cot(0)Ao.s + 330.0))+
2440.490)| Ug+

1

@6_2(3804_%)[—362%(00'5((9) + 1650,0 — 1090,0)Ud g + 4€*7° (600 g9+

A(3 cot(0) + 80,0 — 1090,0) Bo,e + 15 cot(0)40.0 — 24B0,050, — 1850650, —
850,10 + 24%0.10) U6 — 4(864’30?3,9 — 12¢*%0 cot(0)45 g+
2(26430 cot?(h) — 420Uy 4 cot(h) — 5etho csc?(0) — 1662%337t+
962%’?8,7: - 864&)30,99 - 664/30%,09 — 52100 49 + 462%30,#)’3’0,94-
166270 cot(8) 32, — 96270 cot(8)42, + 1667 32  (cot(8) — 240.0)+
4etho cot(0)Bo,00 + 6400 cot(0)%0,00 + 440 Bo.600 + 2e430%,999 — 5100 4~
g2 cotQ(G)Uojt — 20 CSC2(0)U()¢ — 1262%’3/079900,75 + 12270 Uoﬁgﬁo’t—
2¢270 [70799:)/0715 + 16270 cot(@)ﬁo,t%,t + 2¢%%0 cot(@)ffo,te + 1662%:)/0715307t0+
4862%,30,{3’07t9 — 4e270 U(),tgg — 4e20 Cot(9)Bo,tt — e0 cot(0)Ao.1—
2,@0,9(76430 cot?() + 8e210Uy 4 cot() + 3¢t _ petho csc?(0) — 8643030799—
8’3’079(6430 cot(0) + 2¢27%0 Uo,t) + 3262%30,{3/0,75 — Be2i0 Uo’tg — 1262%%7%)—
1262%’70,&9)][704-
%6—2@30”@)[62&0(0& — 2(1680, + 590, ) U g — 4(—16/33 ,+
1690450, + 998+ + 2(2 cot(8) + 250,09 — 590,6) Vo, — 40040 + 4B0,—
GﬁO,tt)UO,G + 8(_3Ag,t + 163(2),{3’071: + ﬁo,te’AYo,t - 430,tt’3’0,t+
Uo.0000.+ — 650.+Uo,40 + Uo.(6(cot(8) — 250.0)B0.4+
(cot(8) — 4B0.0)50.1 + 690.40) — cot(8) o4t + 290.000.4t — 12804504 + Uo 10+
20.1)) — 4" {=2(4(esc>(9) + 45 g — 48 — 2cot(8)Foo+
cot(6)30,0 + 250,00 + F0,00) 70, + 2(cot(0) — 4B0.0)Bo,.t0—

A0.20 + 290,090,40 — 280,100 — Fo,e60) ]

)
cot(0)
(A.2.22)
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where all of the metric coefficients are functions of (¢, 0) (as indicated by the hats over the

functions).

A.3 Logarithmic terms in the presence of matter

In this appendix we explore how matter can affect the asymptotic expansions, inducing
logarithmic terms that are related to conformal anomalies. The latter is well-understood
within the context of holography (see [60]). When logarithmic terms in the asymptotic
solutions appear then the on-shell gravitational action also has closely logarithmic diver-
gences'. The presence of such divergences implies that the theory depends not only on
the conformal class fixed at the conformal boundary but also on the specific representa-
tive picked: there is a conformal anomaly. Via AdS/CFT this anomaly should match a
corresponding quantum anomaly in the dual QFT (and it does [58, 60]). In the context
of Bondi gauge analysis for A # 0, it was noted in [48] that the metric functions acquire
logarithmic contributions given specific fall-off conditions on the bulk stress energy tensor,

and we now explain how such terms emerge.

Using the Fefferman-Graham gauge (5.1.1), the fall-off conditions on the bulk stress

energy tensor that lead to logarithmic terms in the metric expansions in [48] are
Top ~ P Tap ~ p. (A.3.1)

This can be understood easily from the Einstein equations in this gauge. The (pp) equation

is

Py — Py — Lo -
- ZTT(Q lg,p)2 + §Tr(g 1g,pp) - iTr(g lg,p) = :07;;7 (A-3-2)

where 7, is the trace adjusted bulk stress tensor and the subscript denotes a derivative;

the trace is over the indices (a,b). The (ab) equations are

1 _
=5 (97" 9.0)9ab = (9ab) o (A.3.3)
1 1, R 1 _
0 5(9ab).op = 59,097 9p)ab = Bap + = Tr(97"9,0)(9ab) o | = PTabs

where Ry is the Ricci curvature of gq,. We do not give the (pa) equations as we will not

need them below.

IThe logarithmic terms both in the on-shell action and the asymptotic solution are local functions of
the fields specifying the boundary conditions for gravity coupled to matter. The logarithmic term in the
asymptotic solution of a given field is given by the functional derivative of the on-shell logarithmic term
w.r.t. the corresponding boundary condition [60].
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In the absence of a bulk stress tensor these equations admit asymptotic solutions with

Jab = 9(0)ab + 92)abP” + I3)abP” + (A.3.4)

where g(o) is determined by the curvature of g() and g(3) is traceless and divergenceless.
(The tracelessness of g(3) follows from differentiating (A.3.2) and (A.3.3) with respect to

p and then setting p — 0.) If we now impose the falloff conditions above:
72pp = 7_El)ppp + e 7_:1b = ﬁl)abp + e (A35)

then the asymptotic expansion is modified to

Jab = 9(0)ab T 9@)abP” + (9(3)ab + h(3)an 10g p)p° + -+ (A.3.6)
with ,
Tr(g(z)%h(g)) =0; Tr(g(z]%g(3)) = gﬁl)pp (A.3.7)
and ) ,
h@yan = 3T pp90)a0 + 3T(0)ab- (A.3.8)

Note that self consistency requires that

1 -
ﬁl)pp + 59?5)721)@ = 0. (A39)

The (pa) equations determine the divergence of g3) and hz); apart from the trace and
divergence constraints, g(3) remains undetermined by the field equations and describes the

energy momentum tensor of the dual theory.

Thus the falloff conditions (A.3.5) imposed on the bulk stress tensor induce logarithmic
terms in the asymptotic expansion, along with non-zero trace and divergence of g(3). Such

effects are associated with conformal anomalies.

An explicit example of bulk matter that induces such a conformal anomaly is the follow-
ing. Consider a bulk scalar field ¢ of mass m? = —2, corresponding to a scalar operator
of dimension two in the conformal field theory, and let the field have a cubic interaction
i.e. the field equation is

(O42)¢p = \p? (A.3.10)
where X is the cubic coupling. The asymptotic expansion of the field ¢ is of the form

¢=¢mp+--- (A.3.11)

where ¢(1)(z) is the source for the dual operator in the field theory. The cubic interaction

induces terms of the form (A.3.5) in the bulk stress tensor, and hence logarithmic terms
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h3) and non-zero trace and divergence of g3). These are associated with a conformal

anomaly in the dual stress energy tensor of the form
90y (Tap) ~ Adyy- (A.3.12)

It follows that there is a conformal anomaly associated with the 3-point function of the

operator of dimension 2, in agreement with the QFT analysis in [229].

A.4 Equivalence of Bondi and Abbott-Deser masses in asymp-

totically AdS spacetimes

In this appendix we will show that our candidate for the Bondi mass (3.4.56) agrees with
the well-known Abbott-Deser mass [230] in asymptotically AdS spacetime. We recall that
the Abbott-Deser mass is defined relative to a reference background spacetimes which
for asymptotically AdS spacetimes is taken to be pure AdS. Specifically, we write the
spacetime metric g, as

G = Guv + Iy (A.4.1)

where g,,,, is the metric of pure AdS, and h, is a perturbation chosen such that g, solves
(2.1.4) and hy,, vanishes at .#. Note that the vanishing condition at .# ensures that g,
is asymptotically AdS as it has the same conformal structure induced at .# as g,,, the
metric for pure AdS,. In this appendix we will restrict our attention to A < 0 and 7}, = 0.
We will use the normalisation of [ =1 (A = —3) which can of course be reintroduced via

dimensional analysis.

We first recall the definition of the Abbott-Deser energy-momentum for asymptotically

AdS spacetimes as given in [230] (using units where G = 1):

Bl = — lim f dSar/=GIDs K™ — K™ Dylé, (A.4.2)
8T Sa—Sa

where the integral is taken over a spacelike 2-surface at the conformal boundary .#. € is a

Killing vector associated with the background metric g, (which is also used to raise and

lower indices) and Du its associated covariant derivative operator. In the equation above

we continue to use the convention that Greek indices ,v run over all spacetime values

and Roman indices a, b over spatial values (the index ¢ is of course the time coordinate).

The rank four tensor K is known as the superpotential and is given by

1
Krev? = S[g" Y + g HM — g HP — g ] (A.4.3)
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where

1
HW = 1 — 2 g™ 1, (A.4.4)

In order to compute the Abbott-Deser mass we follow the prescription of [230] and

evaluate (A.4.2) when ¢ is a timelike Killing vector, namely

= — (;)“ _ (=1,0). (A.4.5)

To evaluate this integrand (and to make connection with our earlier discussion of the

Bondi mass) we will work in the Fefferman-Graham gauge. We note that we have

7 d“d”—d—pZ L 2 4 dz*dz? A.4.6
Guax”ax” = pe +p2 (g(O)ab+P 9(2)ab + P g(4)ab) Trar (A.4.6)

where the terms in the expansion on the RHS have the line-elements

ds(yy = —dt* + d©?

1

dsy) = 5(—dt2 — dQ?) (A.4.7)
1

dsfyy = E(—alt2 + dQ?)

(9(0) and g(2) were already given in equations (3.4.17) and (3.4.18) respectively). Enforcing
the requirements that g, solves the field equations and h,, vanishes at .#, the most

general form for h,, is
hapdatda’ = pg(3)abdxadxb + O(p?) (A.4.8)

where g3y is given by (3.4.42) and we note that the Fefferman-Graham gauge forces
hpu = 0. The higher order terms do not contribute to the Abbott-Deser mass (they

vanish in the limit to .#), so we focus on the g(3) term.

With the coordinates, timelike Killing vector and perturbation specified, we are ready
to compute the Abbott-Deser mass. In Fefferman-Graham coordinates the limit in (A.4.2)
simply becomes p — 0 (recall .# = {p = 0}) and we can apply formulae (A.4.6)-(A.4.7) for
the background metric and (A.4.8) for the perturbation in order to write the superpotential
(A.4.3) and thus the Abbott-Deser mass. Explicitly the Abbott-Deser mass, M 4p, is given
by

1
= — i W A4
Map = g g8y, f S (A:49)
with
m? = /—g[DsgK'™P — K"™aDy)¢,. (A.4.10)

Given that we are working in the Fefferman-Graham gauge, the only component which we
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will need in order to compute M 4p is m”:

(p* + 48) sin OTW3(t, )

b= 1 A4.11
m Bl (100 (A411)
Taking the limit to & gives
Map = —1i }( dS,m”
AD = 8 pl—rR) Pt
1 2T ™ .
- ——/ d¢/ d0 (1, ) sin 0 (A.4.12)
8 Jo 0
1
== t,0) =
A g2 mB(? ) MB

where in going from the second to the third line we have used the relationship (3.4.43)
to rewrite the integral in terms of the Bondi mass aspect. Thus we have shown that the

Bondi and Abbott-Deser masses are the same for asymptotically AdS spacetimes.



APPENDIX B

Appendices for chapter 5

B.1 Fefferman-Graham terms in de-Sitter

In this appendix we present the long expressions which result in the Fefferman-Graham
expansion of an asymptotically locally dS Bondi-Sachs metric. For the duration of this

section we have used the normalisation of I;g = 1.
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B.1.1 o

Here we present the g(s) term in the expansion component by component

1 _ 1 _ _
Gy = — 3¢ UG + 5 e TV UG — €107 cot(6) B4 Ug —
3
562%—460 cot(6)70,0U5 + 267070 5. 50,0U — €207 405069 U5 +
- 3 _ 1 —
270 4BOUO,9BO,6U(§) _ 56270 4ﬂ°Uo,mo,eU§’ _ 56270 4,30[]0799[]3—}—
abe® =4 cot(9) By ;UG — 2abe* 10~ 00,980 ;UG +

3
iabew’_‘m0 cot(0)707gUg’ - 2&1)6270_4605079’}’0,{[]3 — ab€270_4ﬁ0’70,9’707{U3+

1
2ab6270_43070750Ug + cot?(0)UE — csc?(0)US — 56270_4’80U0279U02 — 2ﬁ§79U3+

3 1o,

5%2),9[]5 + 56270 Worg UG — 2 cot(8)B0,0Us — 3 cot(6)70,0U5 + 4B0.670,6U5 —
3 1

Bo.00UE — 70,00U8 — ~abe?0~45 cot(0)Uy ;U + abe270*4ﬁ070,9U07t~U§—

2 2
— 1 - -
abe210—450 UO,@»BO,EUOQ + §abe27° 480 Uo,e%gUg + 2¢270 45050,570,£U(?+

1 _ _ 3

iabe270 4Bo UO’%,U(? — 20 4ﬂ070’5gU§ + Uo,050,0U0 — §Uo,070,6U0—
1

§U0799U0 —ab COt(@)ﬁo’gUo + 8abe_2ﬁ°+2(50_70)+27060795075U0—

)
8abB0,08 :Uo + abcot(0)y, Uo — 4abBo,00,;Uo — abyo,evo iUo+
; 2 : ’ ’
1 4,— 1 - - k
5 ¢TI0 — SUGy — 200 5] g - MO0 — Do

3
e*Bo—27 COt(Q)B(]’g _ 56450*2’70 COt(g)’YO,G + 264&)7270&],9’}/0’9 _ €4ﬁ0*2’yo/30799_

2abyo 79Uo —

1 1
56450*2’70,},0’90 + iab COt(G)UOf _ 4ab€*250+2(50*’70)+270BOﬁUO’f_,_

3 1
4ab,3079U0’{ — aon,gﬁoyg + iabUO,G’VO,f + §abU07t~9
(B.1.1a)
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29(2)t0 =

9(2)00 =

— abe?0 4Py 4 abeQVO*wofyg’gUg — 2abe®0 450 cot(0) By o US —
3abe10 4% cot(0)y0,0Us + 4abe® ™% By g0 g Ui — 2abe®0 ™70y oUg +
2abeY0 400 U0,95079U§ — 3abe*10—4Po U07970,9U02 — abe*ro—4bo U0,99U§+
26270740 cot(6) By ;UG — 4e*107 W0 98, ;UG + 3e*107 40 cot(6)y ;UG —
4e2707450 B gy ;UG — 2627070y gy UG + 4e* 100y, 1 Ug+
2ab cot?(0) Uy — 2ab csc?(0)Uy — abe?Y0 450 U&gUo—i-
8abe_250+2(60_”’0)+2%53,9UO — 12ab5§’9Uo + 2ab7§79Uo + abe%“_wovngo-i-
abUy — 2ab cot(0) Bo,0Uo — 3ab cot(0)y0,06Uo + 4abBo ov0,06U0 — 2abSBo goUo—
abyo,00Uo — e2v0—4bo cot(8)Uy :Uo + 26270_450’)/0,9[]075[]0—
2¢%70—4Po Uo,080 U0 + e210—4Bo Uo,070:Uo + 4abe27°_450ﬁ07t~70’t~U0+
2040, 15Uy — 2abe®0 ™0y Uy + dabe™ 2P0 T2 m10) 201 0, o —
4abUy o Bo,p — 8e~ 2P0 20101290 3, 3 - + 84 98y 5+
4cot(0)vo,z — 4B0,070,F — 410,070, + 270,06

(B.1.1b)

_ %ezwo—% U2 + 36270—4507379(]3 _ 207450 ot(9) By 6 U2 —

3
56270*4/3’0 Cot(g)fyO,eUg + 262’7074’80ﬂ0’9’yo’9Ug - 62707450'70,99[]024-

3 1
2040, 080.0Uo — 562%74&’ Uo,070,0U0 — 562%74% Uo,00Uo+
3
abe?v0—40 cot(@)ﬁO’gUo — 2ab6270_450’yo’9f6’075U0 + 5@()6270_460 cot(9)7075U0—
2&[)627074505079’7075[]0 - ab€270*4507079,},07£[]0 + 2ab627°*450707t~9U0—

%(3270—460 Uy — e~ 200+2h—1004200 2 4 G52 2 ¢ 26270—4,30,73 +
1 1

3 _
cot(0)Bo,0 + 3 cot(0)0,0 — Bo,00 + 570,00 — iabe“’ 450 cot (0) Uy 1+

1
ab6270_450 7079U0’£ _ ab6270_4ﬁ0 U079607£ —|— §Gb€270_450 U0,9707£+

_ 1 _ _ 1
2¢270 4/5050757075 + 5abeZ’Yo 4BOUO,56 — 20 450,},075 + 5

(B.1.1¢)
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1 1 1
9@)00 =5¢ 0 sin?(0) + je HTIOUT sin® (0) + Je P THOU  sin(60)+

1
2¢ 058 g sin?(8) — €9 g sin® (9) + S O TEOTFAG  sin®(6)+

1
€ TG psin® (6) — e 20Ul oo g sin®(0)+

5
56_460‘270 UoUn g0, sin*(6) — 2¢~ 020U By g0, sin” (8) +

1 1

5(3*450*270 UoUp g sin?(0) + e 410 By pg sin®(0) + 567470’)’0,90 sin®(6)+
e~ TE0UT0,9 sin* (0) — abe™ P 7H0 gl 5 sin® (0)+

abe™ 720U o8 7 sin® (0) + 2abe” 070Uy o5 7 sin® (0)—

3

§abe’450*270 Uo,070,75in%(0) + 2abe™ 702101 By gy, £ sin® (0) — (B-L.1d)
abe™ 10720 Uy g7 7 5in? (6) — 2¢ 70720 G gy 7sin® (6)

1

§abe—4,30—270 UO,f@ sin2 (0) _ 2abe—4ﬂo—270 UO’VO,f@ Sin2 (9)4—
0 () — =0 cos(0) ol sin(0) +

e~ 0720 cos(6) U3 Bo, sin(6) — e*7° cos(6) 8o, sin(6)+

1 3
56_4’30_270 cos(0) U0 sin(0) + 56_4% cos(6)vo,0 sin(8)+

1

§abe_4ﬁ0_270 cos(0)Uy ;sin(0) — abe~4Po=20 cos(0)Uo By s sin(0)—
1
iabe*‘ww?w cos(0) Uy 7sin(0)

with all other components zero.

B.1.2 @y

The printout for the g3y component is excessively long and the formulae span several

pages of this document. Instead of printing them here we refer the reader to the supple-
mentary MATHEMATICA file (‘BS_AdS_dS_continuatiuon_FG.nb’), which contains the

full expressions for g(s)
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