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A STUDY ON WEIGHTED AND STRUCTURED LOW RANK MATRIX

OPTIMIZATION PROBLEMS

by Jian Shen

This thesis focuses on the weighted and structured low rank approximation problem

(wSLRA). This problem arises from a wide range of applications such as signal recovery,

image processing and matrix learning. Due to the non-convexity of low rank matrix

set, this problem is NP-hard and di�cult to tackle. In this thesis we firstly focus on

weighted low rank Hankel matrix optimization problem, which has become one of the

main approaches to the signal extraction from noisy series or signals of finite rank by

selecting the suitable weight matrix.

Two guiding principles for developing an approach are (i) the Hankel matrix optimiza-

tion should be computationally tractable, and (ii) the objective in the optimization

should be a close approximation to the original weighted least-squares. In this thesis

we firstly introduce an approach that satisfies (i) and (ii) called Sequential Majorization

Method (SMM). The framework of majorization method introduces guaranteed conver-

gence by successfully solving the subproblem of each iterate, which ensures the sandwich

inequality. At the same time, the latest gradient information is used when solving the

subproblem of SMM, leading to more accurate approximations to the objective. How-

ever, the SMM scheme still has some drawbacks. The (q,p)-norm introduced by SMM
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to approximate weight norm are not mathematically equivalent, and the alternating

projection method is used when optimizing the subproblem which has no convergence

guarantees.

We further propose a new scheme as Penalised Method of Alternating Projection (pMAP).

The proposed method inherits the favourable local properties of MAP and has the same

computational complexity. Moreover, it is capable of handling a general weight matrix,

is globally convergent, and enjoys local linear convergence rate provided that the cutting

o↵ singular values are significantly smaller than the kept ones. Furthermore, the new

method also applies to complex data. Extensive numerical experiments demonstrate the

e�ciency of the proposed method against several popular variants of MAP.

This pMAP scheme is further extended to solve a wider rang of structured low rank

matrix optimization problems such as robust matrix completion and robust principal

component analysis with small noise. We use these two examples to demonstrate the

approach to extend pMAP framework while keeping its advantages in dealing with low

rank matrix approximation problems including computing e�ciency and convergence

results. Numerical experiments are conducted for both examples to illustrate the com-

petitiveness of pMAP comparing with some state-of-the-art solvers
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Chapter 1

Introduction

This thesis studies the weighted low rank with structure constraint matrix approximation

problem. We will firstly focus on approximating a low rank Hankel matrix such that

the weighted distance to the observations is minimised. This problem arise from many

areas such as signal processing, statistics, system identification and image processing, to

name just a few.

By assuming a signal can be represented using only a few coe�cients in a discrete basis

(e.g., Fourier or wavelet basis), the embedding matrix from such a signal with some

certain structures like Hankel or Toeplitz is of low rank. As a result, the structured low

rank matrix approximation approach can be employed in many applications. Comparing

with classical approaches which aim to approximate coe�cients in finite discrete bases,

this rank minimization technique enjoys various benefits such as high-resolution solution

and free of bases selection because it works on the continuous domain directly. Due to

these advantages, the rank minimization technique attracts a lot of attention in recent

researches.

However, solving this problem is not easy. The non-convexity of low rank matrix con-

straint makes this problem to be NP-hard and di�cult to solve in a tractable approach.

Convex relaxation method is widely introduced for this problem and enjoys the best

global optimal guarantee, but it also su↵ers a heavy computing cost at the same time.

1



2 Chapter 1 Introduction

There are some non-convex heuristic methods for this problem such as alternating projec-

tion and matrix factorization. However, their convergence behaviours are often uniden-

tified or influenced by the starting point.

In this study we propose several new methods for this NP-hard problem via a sequential

majorization approach. We will show that by introducing suitable majorization sur-

rogate functions, this problem can be tackled via an iterative approach while admits

some convergence results. Numerical experiments are conducted to demonstrate the

performance of our proposed method comparing with some state-of-the-art solvers. We

will also show that this majorization framework can be easily extended to other similar

problems, such as robust matrix completion (RMC) and robust principal component

analysis (RPCA) with noise.

1.1 Introduction

The low rank matrix optimization problems are widely raised in several applications

such as matrix completion (e.g. [Candès and Recht, 2009, Jain et al., 2013, Vanderey-

cken, 2013, Saeed et al., 2018]), matrix decomposition (e.g. [Mobahi et al., 2011, Shi,

2013]) and Hankel/Toeplitz matrix learning (e.g. [Usevich and Comon, 2016, Gillard

and Zhigljavsky, 2016, Guo et al., 2017]). In general, the structured low rank matrix

approximation problem can be formulated as:

min
X2Rl⇥k

f(X) (1.1)

s.t. X 2 C

where the subspace C ⇢ M corresponds to the intersection of two or more matrix subsets

while one is a low rank matrix set and others are structural constraints. M is the set

of matrix of size l ⇥ k and f(X) is a non-negative loss function that to be minimized.

Because Problem (1.1) aims to minimise the cost function with non-convex low rank

constraint, solving this problem is thought to be NP-hard and not tractable.
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In this thesis we will focus on a particular type of Problem (1.1), known as weighted low

rank Hankel matrix approximation problem (WLRH, in short). Let the cost function

f(X) to be the weighted distance between variable matrix and observed matrix as

f(X) = kX � Y k
2

W = kW � (X � Y )k2

In this formulation Y is the input Hankel matrix with observations and W stands for

the weight matrix with non-negative elements. � is used to denote the pairwise inner

product between two matrix, i.e., (A �B)ij = Ai,jBi,j . In this thesis we have

Assumption 1: W is non-negative (i.e., Wi,j � 0 for all (i, j)).

Let us introduce two specific matrix subsets widely used in this thesis:

• Hankel matrix subset, defined as

H :
n
X 2 Rl⇥k

���Xi,j = Xp,q, if i+ j = p+ q, 8 1  i, p  l and 1  j, q  k.
o

In another word, elements of a Hankel matrix at the same ascending skew-diagonal

from left to right are the same. Below is a simple 3⇥5 Hankel matrix with 7 unique

elements as an example:

2

66664

a1 a2 a3 a4 a5

a2 a3 a4 a5 a6

a3 a4 a5 a6 a7

3

77775

• r-rank matrix subset, defined as

Mr :
n
X 2 Rl⇥k

���rank(X)  r.
o

Let the subspace C be the intersection of above two subsets as C = H\Mr. For a given

Hankel matrix Y , we consider the following problem:

min
X2Rl⇥k

f(X) :=
1

2
kW � (X � Y )k2 (1.2)
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s.t. X 2 H \Mr

The objective of this optimization problem is to find X 2 Rl⇥k that closet to Y in terms

of weighted distance. X is constrained that 1) its rank should be smaller or equal to

r and 2) it should be a Hankel matrix. Throughout this thesis, we assume that both

weight matrix W and the objective rank r to be known and user-selected. Here W with

non-negative entries measures the importance or correctness of data in Y , e.g., assigning

high weights to data that are believed to be measured accurately or more important and

giving relevant low weights to data that are less important or with high noise.

1.2 Motivation and Practical Applications

1.2.1 Singular Spectrum Analysis (SSA)

Our work is greatly inspired by Spectrum Spectrum Analysis (SSA) which introduced

the low rank technique into time series analysis studies. We refer to the works by

Hassani [2007] and Golyandina and Korobeynikov [2014] that provide comprehensive

introductions on SSA. SSA aims to decompose the original time series into the sum of

independent sub-series including long-term trend, period cycles and noise. It provides a

novel and powerful approach to get insight at the each component of a time series. This

tool is widely employed in various applications such as 1) removing noise from a time

series, 2) identifying the trend or seasonal facts, 3) forecasting the future data or filling

the missing data in a series and 4) detect outlier or structure change, to name just a

few.

1.2.1.1 Basic SSA

Phase 1: Decomposition

The implementation of basic SSA includes two phases known as Decomposition and

Reconstruction. The basic idea behind decomposition is that a time series is determined
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or influenced by a set of discrete and independent variables. Following this assumption,

the original time series can be represented as the sum of independent components while

each component corresponds to a variable. To implement the decomposition, the first

step of SSA is to embed the original time series into a structured matrix using lagged

copies. Considering a real time series with n elements

a = (a1, a2, ..., an)

while its i-th lagged copies is constructed as ai = (ai, ai+1, ...ai+k�1)T . Then its trajec-

tory matrix A takes the following format

A = H(a) = [a1,a2, ...,al] =

2

66666664

a1 a2 · · · al

a2 a3 · · · al+1

...
...

...
...

ak ak+1 · · · an

3

77777775

Here H represent the embedding operator that projects a time series into a Hankel

matrix. Without loss of generality, we always assume l  k throughout this thesis.

There are also other ways to embed a time series into a structured trajectory matrix

like using Toeplitz matrix (for example, see Condat and Hirabayashi [2015]). In this

thesis we will insist on Hankel matrix since both approaches play a similar role in SSA.

The next step is to decompose the Hankel matrix A using Singular Value Decomposition

(SVD). For a real valued matrix A 2 Rl,k, we always have the following decomposition

A = U⌃V T

where U 2 Rl⇥l and V 2 Rk⇥k are unitary matrices. ⌃ = diag(�1,�2, ...,�l) is a l ⇥ k

diagonal matrix, while its {i, i}-th element correspond to the i-th singular value of A.

By default, we always arrange �i in the non-increasing order with respect to its index i,

i.e., �1 � �2 � �3 � ... � �l.



6 Chapter 1 Introduction

Using SVD, the Hankel trajectory matrix A can be decomposed as the sum of matrices

A =
lX

i=1

Ai (1.3)

where Ai =
p
�iU [i, :]V [i, :]T and U [i, :] stands for the i-th row in U . It completes the

Decomposition phase of SSA. To provide a insight analysis on the decomposition phase

of SVD, let us consider a well-known real life time series example, Australia monthly

fortified wine sales from 1980 to 1992, as plotted in Fig.1.1 with 156 observations.

Figure 1.1: Monthly Fortified Wine Sales Series from 1980 to 1992

We apply the decomposition phase of SSA on this dataset to get a set of matrices using

equation (1.3). Following suggestions by Gillard and Usevich [2018], l is set as 84. To

visualization each one-rank matrix Ai, we apply diagonal averaging which projects a

given matrix to the subspace of Hankel matrix such that a time series can be extracted.

The detailed implementation of diagonal averaging will be discussed in the following

Reconstruction phase. The visualization result of each Ai is plotted in Fig.1.2. The

first submatrix A1 can be interpreted as the long term trend of the series which has the

largest influence on the data validity. Following 11 submatrices represents the cyclical

fluctuations in the original series with di↵erent frequencies. With the decreasing of

corresponding singular value, the cyclical fluctuation admits higher frequencies and lower

amplitude.
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Figure 1.2: Singular Value Decomposition of Wines Sales Series

Phase 2: Reconstruction

The Reconstruction phase of SSA comes after Decomposition to extract a time series

from decomposed Matrix. Define the indices set I = {i1, i2, ..., ir} as the subset of

indices {1, 2, ..., l}, the reconstructed eA is obtained by

eA =
rX

j=1

Aij

following the submatrix Ai computed by SVD. This procedure is called regrouping. The

selection strategy of r depends on the purpose of SSA. For example, in de-noising or

data approximation application, the subset indices is selected as ij = j which means

SSA will keep the r-largest singular values.

The final step of SSA is to project this reconstructed eA into a Hankel matrix by diagonal

averaging. This step averages the matrix entries in eA over antidiagonals. Let gAi,j

represent the (i, j)-th element in eA, diagonal averaging will result to the following Hankel
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matrix 2

66666664

ba1 ba2 · · · ba`

ba2 ba3 · · · ba`+1

...
...

...
...

bak bak+1 · · · ban

3

77777775

where bai is computed by

bai =
1

|Ii(p, q)|

X

p+q�1=i

gAp,q

Ii(p, q) is the indices set that includes all unique combinations of {p, q} such that p +

q � 1 = i while |I| denotes the set size of I. Following the step of diagonal averaging,

SSA finally returns the approximated time series

ba = (ba1,ba2, ...,ban)

This finishes the implementation of SSA.

Let us use the Australia wine sales example again to demonstrate the reconstruction

phase of SSA. The reconstruction results of Australia wine sale series are plotted in

Fig.1.3 by keeping r largest singular values. We observed that following reconstruction

phase, SSA generates a “smoothed” series with di↵erent resolutions. The higher rank

choices on r will lead to the smoothed series closer to the observations.

1.2.1.2 SSA Related Works

SSA is believed to be a powerful tool that widely applied in many areas such as social

science, economics, physics, biological, market research and so on. One major empirical

application of SSA is to approximate the missing or future values in a series in areas

such as energy usage [Li et al., 2014], health care pressure [Gillard and Knight, 2014],

stock market [Lahmiri, 2018], climate change [Unnikrishnan and Jothiprakash, 2018] and

so on. Another popular application scenario of SSA is removing the noise component

in a signal, for example, in the work by Zabalza et al. [2015b] on hyper-spectral image

data and the work by Lari et al. [2019] on field seismic data. SSA is also widely applied
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(a) r = 1 (b) r = 2

(c) r = 3 (d) r = 5

(e) r = 10 (f) r = 15

Figure 1.3: Reconstruction result of Australian wine sales series using di↵erent sub-
matrice re-grouping choices, various from r = 1 in Fig. 1.3(a) to r = 15 in Fig. 1.3(f).

for outlier or structural change detection in a signal data. Lang [2019] applied SSA to

detect the outlier in heart rate variability data while Xu et al. [2017] and Bhowmik et al.

[2019] used this technique to identify the structural damages in a signal data.

Some researches tried to establish the relationship between SSA and popular time series
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decomposition solvers, such as Fourier or wavelet transformation. In fact, SSA gener-

alises these techniques by working on a continuous variable dictionary in the frequency

domain when assuming that a time series can have discrete representation in a specific

frequency domain. As a result of introducing rank technique, SSA enjoys a huge benefit

that it provides “high resolution solutions” comparing with classical compressed sensing

techniques such as MUSIC (Schmidt [1986]) and ESPRIT (Roy and Kailath [1989]).

Matrix rank reduction technique can e↵ectively avoid the issue of “basis mismatch”

(Chi et al. [2011]), which often occurs when the variables or coe�cients of a true time

series fail to locate on the pre-prepared discrete dictionary precisely. One most recent

research applying rank technique on compressed sensing problem with convincing results

is completed by Cai et al. [2019].

Some theoretical works are proposed at the same time to further improve the perfor-

mance of SSA via di↵erent approaches. Rahmani [2017] proposed the Bayesian SSA to

tackle the scenario when the underlying system moves from one homogeneous state to

another rapidly. The Monte Carlo SSA proposed by Groth and Ghil [2015] to avoid

taking some stochastic noise as oscillations when extracting interpretable components

in a signal. A novel augmented Lagrange multiplier algorithm-based solver is by Feng

et al. [2018] to avoid the singular value computing at the decomposition phase of SSA.

All these empirical and theoretical works drive us to further propose more robust and

e�cient schemes to handle Problem (1.2).

1.2.2 Applications

There is a long history to employ low rank matrix approximation approach to deal

with time series and signal analysis problems. Some recently researches applied this

WLRH problem to tackle spectral sparse signal processing (Condat and Hirabayashi

[2015], Cai et al. [2019]), image processing (Nguyen et al. [2013], Jin and Ye [2015]),

time series analysis (Markovsky and Usevich [2013], Gillard and Usevich [2018]) and

tensor completion (Ying et al. [2017]), to name just a few. In this section we provide

three di↵erent applications of WLRH. Also since there are several variant problems that
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can be tackled using the framework we proposed for WLRH, we introduce two further

applications for these variants.

1.2.2.1 Time Series De-noising

In this application all data in a time series are assumed to be observed with random and

coherent noise. The actual low rank structure in high dimension data can be identified

by extracting the noiseless data from noisy observations. Fig.1.4 presents the coe�-

cients of a spectral sparse signal in a discrete Fourier domain without noise. Its true

signal is plotted in Fig. 1.5 (blue solid line) 1 and as well as its noisy observations (red

dotted line). Assuming only the information of noisy observations are captured, signal

denoising aims to recover the true signal and re-establish the coe�cients. Some recent

researches includes Condat and Hirabayashi [2015] and Gillard and Zhigljavsky [2016].

More detailed information can be found in Section 4.4.1.
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Figure 1.4: Example of signal denoising: Discrete presentation of a signal with 20
coe�cients in the frequency domain.

1For the illustration convenience, only the real part of the complex-valued signal is plotted in this
figure
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Figure 1.5: Example of signal denoising: True and observed signal with 80 observa-
tions in the time domain. The coe�cients of true signal in the frequency domain is

presented in Fig.1.4.

1.2.2.2 Incomplete Signal Recovery

In some applications, the observations of a signal are not complete due to several reasons

like plotted in Fig.1.6. Incomplete Signal Recovery aims to approximate these missing

values from observed data by assuming the whole signal has sparse representation in a

specific domain (like in Fig.1.5). If the signal can be successfully recovered, its coe�cient

locations and amplitudes can be precisely established as well. Some recent works focusing

on this application can be seen in Tang et al. [2013], Chen and Chi [2014] and Cai et al.

[2019]. Furthermore, time series forecasting can be formulated as a special application

of missing data recovery by considering the future data as missing values at the end of

a signal. We refer some recent works by Butcher and Gillard [2017] and Gillard and

Usevich [2018]. Section 3.3 conduct two numerical experiments to forecast the future

data in a time series and Section 4.4.2 provides detail experiments on the sparse signal

recovery.

1.2.2.3 Image Processing: A step to high dimensional data

In many applications, the data may be collected from higher dimensions, for example, in

the applications of multi-channel time series analysis and image processing (see Huang
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Figure 1.6: Procedure of Majorization Minimization

et al. [2016], Silva et al. [2018], Lee et al. [2016] and Ying et al. [2018] ).

We show WLRH approach still works under this situation. Assume we have a ma-

trix consisted by a set of series as X = {x1,x2, ...,xm} 2 Rm⇥n and each series

xi = {xi,1, xi,2, ..., xi,n}T 2 Rn. The 2-dimension matrix X can be embedded into

the following block Hankel matrix:

H(X) =

0

BBBBBBBBBBB@

H(x1) H(x2) H(x3) . . . H(xl0)

H(x2) H(x3) H(x4) . . . H(xl0+1)

H(x3) H(x4) H(x5) . . . H(xl0+2)

. . . . . . . . . . . . . . .

H(xk0) H(xk0+1) H(xk0+2) . . . H(xm)

1

CCCCCCCCCCCA

(1.4)

where l0 and k0 is selected such that l0 + k0 � 1 = m. Each Hankel matrix H(xi) is

constructed as

H(xi) =

0

BBBBBBBBBBB@

H(xi,1) H(xi,2) H(xi,3) . . . H(xi,l)

H(xi,2) H(xi,3) H(xi,4) . . . H(xi,l+1)

H(xi,3) H(xi,4) H(xi,5) . . . H(xi,l+2)

. . . . . . . . . . . . . . .

H(xi,k) H(xi,k+1) H(xi,k+2) . . . H(xi,n)

1

CCCCCCCCCCCA

(1.5)
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There are multiple approaches to construct a block Hankel matrix from 2-dimensional

data and in (1.4) we just provide one popular approach of them. Similar constructing

approach can be extended to higher dimensional data, for example, [Cai et al., 2019,

Section 2.4] proposed the block Hankel matrix constructing method for 3-dimension

data. This embedding approach enables us to employ the low rank matrix approximation

methods for tackling multi-channel data from higher dimensions.

1.2.2.4 Movie Recommendation Engine

The main target of movie recommendation engines (MRE) is recommending suitable

movies to each movie user by approximating their potential ratings on these movies.

Assume we have a matrix Y containing the rating data from an audience to a specific

movie, i.e., Yi,j stands for rating of i-th audience to j-th movie. This dataset is usually

large scaled since there are thousands of movies and millions of audiences on the market.

Following figure provides a simple example of movie rating matrix, consisted by four

audiences and four films.

Figure 1.7: Examples of movie rating matrix by four movies and four users. 6 out of
16 ratings are known and MRE aims to find good recommendations by approximating

rest 10 ratings.

In most case the rating matrix Y is incomplete because it is impossible for each audience

to provide ratings for all movies. As a result, this film recommendation engine appli-

cation aims to recover the missing ratings and then recommand movies to audiences

accordingly. However, establishing movie recommendation engine based on the rating



Chapter 1 Introduction 15

set in real business is considered to be very challenge because normally the percentage

of known ratings are very small, thus attracts a lot of attentions. Problem formula-

tion MRE will be discussed in Section 5.1 and the application details can be seen from

Section 5.1.4.

1.2.2.5 Sparse Noise Detection

Sparse noise detection or removal problem comes from scenarios where observations are

polluted by sparse outlier noise, for example, video foreground/background decomposi-

tion and fault detection. This application assumes the observations Y 2 M is consisted

by two components as Y = L + S. L 2 M is a low rank matrix which contains useful

information. S 2 M is a sparse matrix which means most elements are zeros while a

few non-zero elements represent the noise. Hence the objective of this problem is to

recover L from given observations Y . For example in the video foreground/background

decomposition problem, the observed matrix can be decomposed in to a 1-rank matrix

representing the stable background and a sparse matrix representing the moving ob-

jects in the video (Bouwmans et al. [2017]). In Section 5.2 we will discuss our proposed

scheme to formulate and tackle this problem.

1.3 Problem Formulation and Contributions

1.3.1 Problem Formulation

It is worth noting that by applying SVD, the matrix eA obtained by SSA regrouping is

exactly of rank r if �r(A) 6= 0. Let us consider the most common situation that SSA

always selects the r largest singular values in the regrouping phase. In this case, SSA

aims to find the closest low rank Hankel matrix to A. However, it is worth noting that

in most cases, the output of SSA is quite far from r-rank matrix set unless the original

time series enjoys perfect separability (Hassani et al. [2011]).
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To improve the result of SSA, some researches (for example, see [Gillard, 2010, Sec 3.4])

proposed the following optimization problem based on the idea of SSA

min
X2Rm⇥n

kX � Y k
2 (1.6)

s.t. X 2 H \Mr

which aims to find a intersect point between Hankel and low rank matrix set while also

minimising the distance to the original Hankel matrix. To further motivate our investi-

gation on Problem (1.2), let us consider a complex-valued time series a = (a1, a2, . . . , an)

of finite rank [Golyandina et al., 2001, Chp. 5]:

at =
mX

s=1

Ps(t)�
t

s, t = 1, 2, . . . , n (1.7)

where Ps(t) is a complex polynomial of degree (⌫s � 1) (⌫s are positive integers) and

�s 2 C \ {0} are distinct. Define r := ⌫1 + . . . + ⌫m (“:=” means “define”). Then it is

known [Usevich, 2010, Prop. 2.1] that the rank of the Hankel matrix A generated by a

must be r, i.e., rank(H(a)) = r where the choice of (k, `) satisfies n = k + ` � 1 and

r  k  n� r + 1.

Suppose now that the time series a is contaminated and/or has missing values. To

reconstruct a, a natural approach is to computing its nearest time series x by the least

squares:

min
nX

i=1

wi|ai � xi|
2, s.t. rank(X)  r, X = H(x), (1.8)

where w = (w1, . . . , wn) � 0 is the corresponding weight vector emphasizing the impor-

tance of each elements of a. The equivalent reformulation of (1.8) as (1.2) is obtained

by setting

W := H(
p
v �

p
w) and vi =

8
>>>><

>>>>:

1/i for i = 1, . . . , k � 1

1/k for i = k, . . . , n� k + 1

1/(n� i+ 1) for i = n� k + 2, . . . , n,

where v is known as the averaging vector of Hankel matrix of size k⇥ ` (k  `) and
p
w
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is the elementwise square root of w. We note that the widely studied (1.2) with Wij ⌘ 1

corresponds to wi = 1/vi, which is known as the trapezoid weighting. Another popular

choice for financial time series is the exponential weights wi = exp(↵i) for some ↵ > 0.

We refer to [Gillard and Usevich, 2018, Sect. 2.4] for more comments on the choice of

weights.

A special type of the time series of (1.7) arises from the spectral compressed sensing,

which has attracted consideration attention lately (Chen and Chi [2014]). In its one

dimensional case, at is often a superposition of a few complex sinusoids:

at =
rX

s=1

ds exp {(2⇡j!s � ⌧s)t} , (1.9)

where j =
p
�1, r is the model order, !s is the frequency of each sinusoid, and ds 6= 0

is the weight of each sinusoid, and ⌧s � 0 is a damping factor. We note that (1.9) is a

special case of (1.7) with Ps(t) = ds (hence ⌫s = 1) and �s = exp(2⇡j!s � ⌧s). If at is

sampled at all integer values from 1 to n, we get a sample vector a 2 Cn. Consequently,

the rank of H(a) must be r.

However, in practice, only a subset ⌦ of the sampling points {1, . . . , n} may be observed

(possibly contaminated), leading to the question how to best reconstruct a(t) based on

its partial observation ai on ⌦. This has led to the Hankel matrix completion/approx-

imation problem of (1.2), see [Chen and Chi, 2014, Sect. II.A] and [Cai et al., 2018,

Sect. 2.1]. A popular choice of W in the spectral compressed sensing is Wi,j = 1 for

all (i, j) (uniform weighting), resulting in the distance between X and A in (1.2) being

measured by the standard Frobenius norm.

1.3.2 Contributions

The main contribution of this thesis can be summarized as following:

• Sequential Majorization Minimization:

We firstly propose a new approximation scheme via majorization, a technique that

has been widely used in dealing with hard optimization problems, to tackle the
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Problem (1.2). Rather than approximating the original hard problem, this new

scheme yields a sequential approximations which are hoped to provide more and

more an accurate approximation each step. Each approximation subproblem of our

scheme enjoys the form of SSA and hence it is relatively easy to solve. For example,

the latest gradient information was used to construct the new approximation once

a new iterate was obtained.

The approximation can be improved through a smaller (p,q) weight, which can

be refined by linear programming (cheap computational cost). The method was

guaranteed to converge if the sandwich inequality is satisfied at each iterate.

• Penalized Method of Alternating Projections:

We further propose a new penalty function and develop a penalized method to

tackle the Problem (1.2) whose main step is the alternating projections. We call

it the penalized MAP (pMAP). We establish the following convergence result of

pMAP.

– The objective function sequence F (X⌫ , ⇢) will converge and kX⌫+1
� X⌫

k

converges to 0. Moreover, any limiting point of X⌫ is an approximate KKT

point of the original problem (1) provided that the penalty parameter is above

certain threshold.

– If X is an accumulation point of the iterate sequence {X⌫
}, then the whole

sequence converges to bX at a linear rate provided that �r( bX) � �r+1( bX).

We will extend these results to the complex case, thanks to a technical result (Prop.

2) that the subdi↵erential of gr(X) in complex domain can also be computed in a

similar fashion as in the real domain. To our best knowledge, this is the first variant

of MAP that can handle general weights and enjoys both global convergence and

locally linear convergence rate under a reasonable condition (i.e., �r � �r+1)

We also show this pMAP scheme can be easily extended to handle more rank

minimization problems such as robust matrix completion and robust principal

component analysis while some of the convergence results still hold.
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Thesis work leads to the following academic papers:

• Publication entitled with: A sequential majorization method for approximating

weighted time series of finite rank. H.D.Qi, J.Shen and N.H.Xiu. Statistics and

Its Interface, 2018, 11(4): 615-630.

• Presentation and publication in the proceedings of the conference entitled with:

Daily Crude Oil Price Analysis and Forecasting Based on the Sequential Majoriza-

tion Method. J.Shen. Transforming Energy Markets, 41st IAEE International

Conference, Jun 10-13, 2018. International Association for Energy Economics,

2018.

• Paper submitted for publication entitled with: A penalized method of alternating

projections for weighted low-rank Hankel matrix optimization. J.Shen, J.S.Chen,

H.D.Qi and N.H.Xiu.

1.4 Organization of the Thesis

The rest of this thesis is organized as following.

In Chapter 2 we will set up our standard notation and some background preliminaries

for weighted matrix projection and majorization minimization framework. Recent liter-

atures focused on solving this low rank matrix learning problems will be reviewed and

discussed.

Chapter 3 develops the sequential approximation scheme based on the majorization

technique, named as SMM for Sequential Majorization Method. We will introduce

linear programming to improve our approximation. Two real-life testing problems are

conducted to compare our method with some candidate solvers.

Chapter 4 further proposes another new scheme, named as pMAP for Penalized Method

of Alternating Projection. We will establish some convergence results for pMAP and

also extend this framework to complex-valued cases. Two popular testing problems
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(time series denoising and incomplete signal recovery) will be introduced to compare

this pMAP method with some state-of-the-art methods. The comparison between SMM

and pMAP will be discussed in this chapter.

In Chapter 5, we extend our proposed scheme to deal with a wider rang of low rank

matrix learning problems. We will show that our proposed framework in Chapter 4 can

be easily extended to tackle other problems such as robust matrix completion and robust

principal component analysis. Numerical experiments and results are provided to show

the e↵ectiveness of our approaches.

The main results and conclusions will be discussed in Chapter 6.



Chapter 2

Methodology and Literature

Review

The WLRH approach has shown its great potential in tackled signal data analysis ap-

plications such as incomplete signal recovery and time series forecasting. However,

solving this problem directly is not an easy task. WLRH is highly non-convex due to

the present of non-convex rank constraint, for which reason there are no e�cient and

tractable methods to compute the global optimum solution ([Ottaviani et al., 2014]).

Following the introductions in Chapter 1, this chapter will provide some preliminaries

and also literature reviews on the existing researches to tackle this non-convex problem.

2.1 Preliminaries and Methodology

2.1.1 Notations

In this section we introduce the notation used in this thesis. We use R to denote real

numbers and C to denote complex numbers. The Euclidean space of dimension n is

denoted as Rn. A vector is denoted using bold lower-case letter, e.g., x while is i-th

element in x is denoted as xi. A matrix is denoted by capital letters, e.g., X. Xi,j stands

for its (i, j)-th element. The identity matrix with dimension n ⇥ n is denoted by In.

21
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We use 1m,n 2 Rm⇥n to denote a matrix when all of its entries equal to 1. As already

discussed, � denotes the Hadamard product, i.e., (A � B)i,j = Ai,jBi,j . The operator

diag(x) produces a diagonal matrix X with Xi,i = xi.

Throughout this thesis several entrywise matrix norms will be discussed. p-norm of a

matrix X 2 Cm⇥n is denoted by kXkp, which is calculated as

kXkp = (
mX

i=1

nX

j=1

|xi,j |
p)1/p.

In the case of p = 2, we have kXk2 = kXkF is known as Frobenius norm (or Eu-

clidean norm). In this thesis we also use kXk to denotes Frobenius norm for the sake

of simplicity. In some cases we may use the term “weighted norm”, kXkW , defined as

following:

kXkW = kW �XkF = (
mX

i=1

nX

j=1

|Wi,jXi,j |
2)1/2.

The `0-norm is used to denote the number of non-zero elements in a matrix as kXk0 =
P

i,j
I(Xi,j), where I(x) is the non-zero indicator, i.e., I(x) = 0 if and only if x = 0 and

I(x) = 1 if x is not zero.

Let X have singular value decomposition as X = U⌃V T where both U 2 Rl⇥l and

V 2 Rk⇥k are unitary matrix and ⌃ 2 Rl⇥k is a diagonal matrix. �i(X) = ⌃i,i stands

for the i-th singular value of matrix X which is arranged following the non-increasing

order with respect to i. We use kXk⇤ to denote the nuclear norm of matrix X, calculated

as

kXk⇤ =

min{l,k}X

i=1

�i(X).

For the superscripts used in this report, X�1, XT , X and XH stands for the inverse,

transpose, complex conjugate and conjugate transpose respectively. The operator H :

Cl+k�1
! Cl⇥k stands for the mapping operator from a vector to a Hankel matrix.

Consider y 2 Ct = [y1, y2, ..., yt]T given t = l + k � 1, its trajectory Hankel matrix
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Y = H(y) is constructed as

Y = H(y) :=

2

66666664

y1 y2 y3 . . . yl

y2 y3 y4 . . . yl+1

...
...

...
. . .

...

yk yk+1 yk+2 . . . yt

3

77777775

i.e., Yi,j = yi+j�1. The inverse operator of Hankel mapping is denoted by H
�1 : Cl⇥k

!

Cl+k�1, standing for the mapping from a Hankel matrix back to a vector, i.e., H�1(Y ) =

y.

Finally let us introduce the matrix projection operator which is widely used in this

thesis. We use ⇧C(Y ) to denote the optimal solution to the following constrained matrix

projection least square problem:

⇧C(Y ) = argmin
X

kX � Y k s.t X 2 C (2.1)

which tried to find the matrix X 2 C such that its distance to Y is minimised under

Frobenius norm. Problem (2.1) can be considered as a special case of the following

weighted projection problem

min
X

kW � (X � Y )k s.t X 2 C (2.2)

where W is the non-negative weight matrix. We denote the optimal solution to Problem

(2.2) as ⇧W

C
(Y ), which represents the weighted projection of Y on the matrix set C under

weight W .

2.1.2 Background on Weighted Matrix Projection

In this section we will discuss the weighted constrained least square problem with par-

ticular focus on rank constrained and Hankel structure constrained least square problem

under arbitrary weight.
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a. Weighted projection onto Hankel matrix set. Consider the weighted Hanke-

lization problem under Frobenius norm:

min
X

kW � (X � Y )k s.t X 2 H (2.3)

This problem aims to find a Hankel matrixX such that the weighted distance to observed

matrix Y can be minimised. Then for any matrix Y 2 Rl⇥k, above problem has closed

form solutions denoted as detailed in the following proposition.

Proposition 2.1. The closed form solution to (2.3) can be computed by the following

weighted diagonal averaging.

⇧W

H (Y )i,j =:

8
><

>:

P
p,q:p+q=i+j Wp,qYp,qP

p,q:p+q=i+j Wp,q
if

P
p,q:p+q=i+j

Wp,q 6= 0
P

p,q:p+q=i+j Yp,q

i+j�1
if

P
p,q:p+q=i+j

Wp,q = 0
(2.4)

for 1  i, p  l and 1  j, q  k.

Proof. Because of the Hankel structure constraint on X, it always holds that

xi,j = xp,q if i+ j = p+ q, 81  i, p  m and 1  j, q  n.

From the definition of Frobenius norm we have

kW � (X � Y )k2 =
X

i

X

j

(Wi,j(Xi,j � Yi,j))
2

=
n+m�1X

g=1

X

i+j�1=g

(Wi,j(Xi,j � Yi,j))
2

Since (2.3) is a quadratic optimization problem, it is minimised when

@kW � (X � Y )k2

@Xi,j

= 0 and
@2kW � (X � Y )k2

@2Xi,j

> 0
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Consequently we have

@kW � (X � Y )k2

@Xi,j

=
@
P

p+q=i+j
(Wp,q(Xi,j � Ylp,q))2

@Xi,j

=
X

p+q=i+j

(Wp,q(Xi,j � Yp,q))

i. If Wl,k = 0 for all p + q = i + j, then Problem (2.3) is independent to Xi,j hence

is always minimised.

ii. If there exists at least one Wp,q 6= 0 for all p + q = i + j, then the first-order

derivative of objective function is 0 only when

Xi,j =

P
p,q:p+q=i+j

Wp,qYp,qP
l,k:p+q=i+j

Wp,q

At the same time, we have

@2kW � (X � Y )k2

@2Xi,j

=
@
P

p+q=i+j
Wp,q(Xi,j � Yp,q)

@Xi,j

=
X

p+q=i+j

Wp,q

> 0

The last inequality is because the non-negativity of W . This completes our proof.

b. Weighted projection onto low rank matrix set. Now consider the weighted

r-rank nearest matrix approximation problem, formulated as following:

min
X

kW � (X � Y )k s.t X 2 Mr (2.5)

Before discussing above weighted least square problem, we firstly discuss a special case

of W . Let W = 1l,k, the projection of Y on Mr under weight 1l,k can be calculated

through the standard singular value decomposition (SVD). Assume Y 2 Rl⇥k has SVD

as

Y = UY ⌃(Y )V T

Y
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where UY 2 Rl⇥l and VY 2 Rk⇥k are unitary matrices. ⌃(Y ) is a l⇥ k diagonal matrix,

while its {i, i}-th element correspond to the i-th singular value of Y , denoted as �i(Y ).

Note that �i(Y ) is arranged in the non-increasing order with respect to its index i. Given

these information, we have the following:

Theorem 2.2. (Mazeika [2016], Thm 4.21) For any given matrix Y 2 Rl⇥k which has

the singular value decomposition as discussed above, one of its projection onto r-rank

matrix set under weight 1L,K, ⇧Mr(Y ), can be computed as

⇧Mr(Y ) := UY ⌃r(Y )V T

Y (2.6)

where ⌃r(Y ) is obtained through

⌃r(Y )i :=

8
><

>:

�i(Y ) if i  r

0 otherwise.

When �r = 0 or �r 6= �r+1, Equation (2.6) provides the unique analytical solution to

the low rank approximation problem.

However when the weight W is selected arbitrarily, there is no closed form solution for

⇧W

Mr
(Y ) unless W has some specific structure. There are some approximation methods

to estimate ⇧W

Mr
(Y ), for example, Srebro and Jaakkola [2003] proposed an EM-based
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method as Alg.1.

Algorithm 1: Algorithm: Two-Stage EM-Based Algorithm for Weighted Low Rank

Approximation

initialization X0
! 0 and the objective rank r. Set k ! 0 ;

Stage 1

while r � k + 1  k do

Xk+1 = ⇧Mr�k(W � Y + (1�W ) �Xk) ;

k = k + 1
Stage 2

while Stop condition is not satisfied do

Xk+1 = ⇧Mk(W � Y + (1�W ) �Xk) ;

k = k + 1

output: Xk

However, the iterative approach of Alg.1 will arise heavy computing costs since a partial

SVD is performed at each iterate. At the same time, its convergence result significantly

depends on the initial guess X0.

Another approach is to rewrite the objective function to keep the availability of singu-

lar value decomposition when calculating the low rank approximations. Zvonarev and

Golyandina [2015] introduced a Cadzow(C) scheme by using kX � Y k
2

C
:= kC1/2(X �

Y )k2 to approximate the objective function of Problem (1.2), where C 2 Rk⇥l is a non-

negative semidefinite diagonal matrix. Then they proposed to handle Problem (2.7):

min kX � Y k
2

C := kC1/2(X � Y )k2 = Tr
�
(X � Y )C(X � Y )T

�
(2.7)

s.t. X 2 Mr

A similar but more generalized scheme is proposed by Gillard and Zhigljavsky [2016] as

(Q,R)-norm approach by introducing kX � Y k
2

(Q,R)
:= kQ1/2(X � Y )R1/2

k
2 to approx-

imate kW � (X � Y )k2 as

kX � Y k
2

(Q,R)
:= kQ1/2(X � Y )R1/2

k
2
⇡ kW � (X � Y )k2
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where Q 2 Rl⇥l and R 2 Rk⇥k are diagonal matrices with positive diagonal elements.

Then the estimated low rank matrix is obtained through solving the following problem

instead of solving the original Problem (2.5):

min kX � Y k
2

(Q,R)
:= kQ1/2(X � Y )R1/2

k
2 = Tr

⇣
Q(X � Y )R(X � Y )T

⌘
(2.8)

s.t. X 2 Mr

Now we generally illustrate how to solve (2.8).

Proposition 2.3. [Gillard and Zhigljavsky, 2016, Theorem 2] Assume Y has the singular

value decompositions as Y = UY ⌃(Y )VY , its low rank approximation under (Q,R)-norm

is calculated as

X̂ = ⇧Q,R

Mr
(Y ) := Û ⌃̂(r)V̂ T (2.9)

where Û = (Q�1/2)eU , V̂ = (R�1/2)eV and ⌃̂(r) = e⌃(r), while eU, eV and e⌃(r) comes

from the singular value decomposition Q1/2Y R1/2 = eU e⌃eV . e⌃(r) is obtained from e⌃ by

replacing �i by 0 for i = (r + 1), ...,min{l, k}.

Problem (2.7) can be also solved through Prop.2.3, since it can be considered as a special

case of (2.8) by taking Q = 1L,K and R = C. One should note that although Prop.2.3

introduced a closed form solution to the low rank matrix projection problem under

(Q,R)-norm, both of the two problems discussed above are not equivalent to the original

problem because the objective function in (2.7) and (2.8) are just the approximations

to the original weighted norm in most cases when W is selected arbitrarily, apart from

some specific classes of W as mentioned in Gillard and Zhigljavsky [2016]. Hence, the

solutions obtained through Prop.2.3 may be far away from the optimal solutions to the

original WLRH problem depending on the {Q,R} approximation quality.

2.1.3 Majorization Minimization Method

In many optimization problems, the objective function f(x) is di�cult to tackle directly,

e.g., the objective function is not convex or not smooth. In that case, the majorization



Chapter 2 Methodology and Literature Review 29

minimization (MM) method provide a scheme to minimizing a majorization surrogate

function iteratively while keep the objective functional value non-increasing. This tech-

nique has been widely used in dealing with hard optimization problems such as missing

data filling [Simon and Abell, 2010], low-rank correlation matrix problem [Sun, 2010],

low rank matrix decomposition [Hu et al., 2012], convex semidefinite programming [Jiang

et al., 2012], the Euclidean distance matrix problem with low-embedding dimensions [Qi

and Yuan, 2014] and large scaled machine learning [Mairal, 2015]. Some applications

and examples of surrogate functions in recent research have been well summarized in

Sun et al. [2017].

Consider the constrained optimization problem

argmin f(X)

s.t.X 2 C

where C ⇢ M. Let us firstly define the surrogate majorization function for f(X):

Definition 2.4. Given the function f(X), f(X,Z) is called as the surrogate majoriza-

tion function of f(X) when the following two conditions are satisfied:

f(X,Z) � f(X) (2.10)

f(X,X) = f(X) (2.11)

For all X,Z 2 M.

As a common practice, the majorization minimization method aims to iteratively mini-

mize the surrogate function instead of minimising the original objective function f(X)

directly. At step ⌫, the current iterate X⌫ is often used to construct the objective func-

tion at the next iterate as X⌫+1 = argmin f(X,X⌫). The implementation procedure of
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majorization minimization method can be seen as Alg.2.

Algorithm 2: Algorithm: Majorization Minimization Method

initialization X0, ⌫ ! 0 ;

while Stop condition is not satisfied do

X⌫+1 = argminX f(X,X⌫) s.t.X⌫+1
2 C ;

⌫ = ⌫ + 1
output: X⌫

Clearly at each iterate this method will 1) minimise the current surrogate function and

then 2) construct the next surrogate function using the current iteration point. Then

we have the following convergence result.

Theorem 2.5. Let X⌫ be the sequence generated by Alg.2. Then the following inequality

chain holds.

f(X⌫+1)  f(X⌫+1, X⌫)  f(X⌫ , X⌫)  f(X⌫) (2.12)

This inequality chain is known as sandwich inequality. This inequality chain guarantees

that the cost function f(X⌫) monotonically decreases after each iteration when solving

hard optimization problems. Proof of above sandwich inequality is quite straightforward.

Proof. Let X⌫ be the sequence generated by Alg.2. Then the following inequality chain

holds, then proof for Theorem.2.5 can be established by the following facts:

• f(X⌫+1)  f(X⌫+1, X⌫) comes from the definition of surrogate majorization func-

tion as Equation (2.10).

• f(X⌫+1, X⌫)  f(X⌫ , X⌫) holds because X⌫+1
2 C is one of the solution that

minimise f(X,X⌫) at the current iterate.

• f(X⌫ , X⌫)  f(X⌫) also comes from the definition of surrogate majorization func-

tion as Equation (2.11).

With all three above facts holds, the Theorem.2.5 holds as a result.

Remarks
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(R.1) One can find that it is not necessary to solve the sub-problem at each iterate of MM

algorithm to guarantee inequalities chain (2.12), since in many cases the sub-problem

f(X,X⌫) is still hard to minimise. To establish the sandwich inequality, we just need

to ensure that the f(X⌫+1, X⌫)  f(X⌫ , X⌫) holds at each iterate.

(R.2) Majorization minimization technique can only guarantee the non-increasing of

objective function value sequence, and also ensure the convergence to a limit if the

objective function is bounded below. However, it is not proved whether the sequence

{f(X⌫)} can converge to a local minima or even a stationary point without any other

assumptions. Here we further introduce a convergence result for MM algorithm given

some assumptions:

Proposition 2.6 (Sun et al. [2017]). Assume the constraint set C is convex and the

objective function f(X) continuously di↵erentiable. Let function M(x) denote the pro-

jection operator in each iterate, i.e., X⌫+1 = M(X⌫). The stationary point is defined

as

C
⇤ = {X|@f(X)T (Y �X) � 0, 8Y 2 C}

We further make the following three assumptions:

1. The sublevel set levf(X0)
f := {X 2 C|f(X)  f(X0)} is compact given that

f(X0) < +1;

2. f(X,X⌫) is also continuously di↵erentiable with respect to X;

3. f(X,X⌫) is continuous in X and X⌫ .

Then we have the following results:

1. Any limit point X1 of {X⌫
}⌫2N is a stationary point of f ;

2. f(X⌫) # f⇤ monotonically and f⇤ = f(X⇤) with X⇤
2 C

⇤;

3. If f(M(X)) = f(X), then X 2 C
⇤ and X 2 argmin f(Z,X);

4. If X is a fixed point of M , then X is a convergent point of MM and belongs to C
⇤
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(R.3) Although MM majorization provides a framework to deal with some hard op-

timization problems, however, it is not easy to find a suitable surrogate majorization

function in real practice. On the one hand, the solution quality might be better when

the shape of surrogate majorization function is closer to the original objective function.

But at the same time, the surrogate function f(X,X⌫) should be easily minimised so

that we can compute the sub-problem e�ciently at each iterate of MM. As a result,

this surrogate function should has several features including separability in variables,

convexity, smoothness and the existence of a closed form minimizers [Sun et al., 2017].

Here we provide some widely used approach for majorization function constructing:

• First Order Taylor Expansion.

The first order Taylor expansion is widely used in many researches. Consider a

di↵erentiable concave function f(.), then we have the following inequality

f(x)  f(xt) + @f(xt)
T (x� xt)

Then f(xt) + @f(xt)T (x� xt) will be a natural majorization surrogate function of

f(x). For example, Sun [2010] proposed a penalization function as

p(X) := hI,Xi �

rX

i=1

�i(X), 8X 2 S
n

where �1 � �2 � .. � �n are the eigenvalues of X and S
n stands for the space of

n⇥ n symmetric matrix. Since p(X) is concave, we have

p(X)  p(X⌫) + hU⌫ , X �X⌫
i, 8U⌫

2 @p(X⌫)

Finally we can define the majorization of p(X) as mp

k
(X,X⌫) = p(X⌫)+ hU⌫ , X �

X⌫
i.

• Second Order Taylor Expansion.
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Let f(x) be a smooth convex function with Lipschitz continuous gradient, then

there exists a self-adjoint and positive semi-definite linear operators
P

f
, such that:

f(x)  f(x⌫) + hx� x⌫ , @f(x⌫)i+
1

2
kx� x⌫k2P

f

One example of using second order Taylor expansion is the research by Jiang et al.

[2012], which aims to solve the generated minimization problem

min{F (x) := f(x) + g(x) : x 2 X}

where both f(x) and g(x) are proper, lower semi-continuous convex functions (pos-

sibly nonsmooth). Assume dom(g) is closed and f is continuously di↵erentiable

on X , and its gradient is s Lipschitz continuous with modulus L on X , defined as

k@f(x)� @f(y)k  Lkx� yk, 8x, y 2 X

Then the majorization surrogate function of f(x) is defined as:

F p(x) := f(x⌫) + h@f(x), x� x⌫i+
1

2
hx� x⌫ ,H⌫(x� x⌫)i+ g(x)

where H
⌫ is a self-adjoint positive definite linear operator that is chosen by the

user.

• Other Inequalities

There are also some other inequalities used in recent researches for constructing

the majorization surrogate function. One example is proposed by Lin et al. [2017],

where the triangular inequality of norms and Cauchy-Schwartz inequality are com-

bined together when tackling the following problem:

minHk(�U,�V ) := kW � (M � (U⌫ +�U)(V ⌫ +�V )T )k1

+
�

2
kU⌫ +�Uk

2

F +
�

2
kV ⌫ +�V k

2

F
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Using triangular inequality of norms, we have

H⌫(�U,�V )  kW � (M � U⌫()V ⌫)T ��U(V ⌫)T � U⌫�V T )k1

+kW � (�U�V T )k+
�

2
kU⌫ +�Uk

2

F +
�

2
kV ⌫ +�V k

2

F

Using Cauchy-Schwartz Inequality, we further have

kW � (�U�V T )k 
�

2
kAu�Uk

2

F +
�

2
kAv�V k

2

F

where Au =
p
W(i,) + ✏ and Av =

p
W(,j) + ✏. So finally we have

H⌫(�U,�V )  kW � (M � U⌫(V ⌫)T ��U(V ⌫)T � U⌫�V T )k1

+
�

2
kAu�Uk

2

F +
�

2
kAv�V k

2

F +
�

2
kU⌫ +�Uk

2

F

+
�

2
kV ⌫ +�V k

2

F

2.2 Literature Review

2.2.1 Convex Relaxation

Many state-of-the-art methods have been proposed to deal with the non-convexity of

structured low rank matrix approximation problems. One popular and successful ap-

proach to tackle optimization problem with nonconvex objective function is to employ

the convex envelopes and relax this problem into a convex optimization one. We refer

the definition of convex envelope demonstrated in Recht et al. [2010] as

Definition 2.7. [Recht et al., 2010, Chp. 2] Let C denote a convex set and a function

f : C ! R which may be non-convex. Its convex envelope function g is defined as the

largest convex function such that g(X)  f(X) for all X 2 C.
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The optimal solution to minimise the convex envelope function over a set of constraints

can be seen as an approximation of original problem. It is also proved that the nuclear

norm is the convex envelope of rank(X).

Theorem 2.8. [Recht et al., 2010, Theo.2.2 ] The convex envelope of rank(X) on the

set X 2 Rl⇥k : kXk  1 is the nuclear norm kXk⇤.

where nuclear norm of a given matrix is defined as the sum of all its singular values.

This approach has been successfully implemented in many existing structured low rank

matrix learning researches such as active subspace selection [Hsieh and Olsen, 2014],

robust principle component analysis [Chandrasekaran et al., 2011], matrix completion

[Candès and Recht, 2009], generalized low rank matrix learning [Jawanpuria and Mishra,

2018], and also for WLRH (e.g., see [Tang et al., 2013, Usevich and Comon, 2016]).

Applying convex relaxation, one may solve the following penalised problem:

min f(X) :=
1

2
kW � (X � Y )k2 + ⇢kXk⇤ (2.13)

s.t. X 2 H

Here ⇢ is the penalty parameter that balance the weighted least square item and the

nuclear norm item. Fazel [2003] proposed that Problem (2.13) can be recast into the

following trace minimization problem:

min
1

2
kW � (X � Y )k2 + ⇢(Tr(Y ) + Tr(Z)) (2.14)

s.t. X 2 H

2

64
Y X

XT Z

3

75 � 0

where both Y 2 Rl⇥l and Z 2 Rk⇥k are symmetric matrices. (2.14) is a convex op-

timization problem with respect to three variables X, Y and Z, hence can be solved

e�ciently by some o↵-the-shelf semi-definite programming solvers such as SDPT3 (Toh

et al. [1999] and Chen and Chi [2014]), interior-point method [Liu and Vandenberghe,
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2009] or CVX toolbox ([Grant et al., 2008] and Butcher and Gillard [2017]), to name

just a few.

However, one issue caused by convex semi-definite program optimization is the high

computational complexity, especially when the dimension of input data matrix is large

[Netrapalli et al., 2014]. Another drawback of nuclear norm minimization method is the

output estimated matrix may not be strictly low rank.

2.2.2 Matrix Factorization

The second approach introduced to tackle the WLRH problem is matrix factorization,

e.g., assumingX = UV T where U 2 Rl⇥r and V 2 Rr⇥k. Then one can optimize the cost

function over two matrix variables U and V . This approach is introduced in many studies

related to low rank matrix learning, such as matrix completion [Wen et al., 2012], deep

neural network training [Sainath et al., 2013] and matrix separation [Shen et al., 2014].

Chi et al. [2018] provided a comprehensive study in using matrix factorization solving

low rank optimization problem. The global optimality of generalized low rank matrix

optimization problems using matrix factorization approach is been discussed by Zhu

et al. [2018], provided that some iterative matrix factorization optimization algorithms

can lead to the global convergence if the objective function satisfies some assumptions.

Similarly, there exists studies that implement this matrix factorization approach in solv-

ing WLRH problem. For example, Ishteva et al. [2014] approximated low rank matrix

as a product of two factors with reduced dimension and also introduced the penalty

method in the objective function to convert the original problem into a unconstrained

optimization problem. Based on the structure property of Hankel matrix, Ying et al.

[2018] further extended this scheme to solve a specific incomplete exponential signal re-

covery problem. Considering for any matrix A 2 M, its nuclear norm can be computed

through

kAk⇤ = min
U2RL⇥r,V 2RK⇥r

1

2
(kUk

2

F + kV k
2

F ) s.t. A = UV T
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As a result, the WLRH problem can be reformulated in the following way:

min
U2RL⇥r,V 2RK⇥r,X2H

f(X) :=
1

2
kW � (X � Y )k2 +

�

2
(kUk

2

F + kV k
2

F ) (2.15)

s.t. UV T = X

It worth noting that Problem (2.15) is still non-convex because of the bilinear nature

of the parametrizations, so there are still challenges to tackle this problem. A popu-

lar approach is to introduce the alternating directions method of multiples (ADMM)

framework. The augmented Lagrangian of (2.15) is

L(X,U, V,D) :=
1

2
kW � (X � Y )k2 +

�

2
(kUk

2

F + kV k
2

F ) + hD,X � UV T
i

+
�

2
kX � UV T

k
2

F (2.16)

where D 2 M is the dual variable. The implementation of ADMM to solve (2.16) is

proposed in the following Alg.3

The convergence property of ADMM is well studied in many researches when the opti-

mization is convex. However in this case, the objective function is non-convex due to

the product of two variables. So the convergence results of ADMM can not be extended

to Alg.3, although it works fine in the numerical experiments.

Algorithm 3: Algorithm: Matrix Factorization via ADMM approach

Result: Approximated low rank matrix X̂

Initialization: Given time series x 2 Rn and the weight vector w 2 Rn. Choose the

window length l. Compute Y := H(x) and matrix W by weight vector w. Start

with X0 = Y and set ⌫ := 0;

while certain stopping criterion is not met do

Solve X⌫+1 = argminX2H L(X,U⌫ , V ⌫ , D⌫) ;

Solve U⌫+1 = argminU L(X⌫+1, U, V ⌫ , D⌫) ;

Solve V ⌫+1 = argminV L(X⌫+1, U⌫ , V,D⌫) ;

Solve D⌫+1 = D⌫ + (X⌫+1
� U⌫+1(V ⌫+1)T );

⌫ = ⌫ + 1 ;
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2.2.3 Alternating Projection Based Methods

Finally we discuss the alternating projection (AP) technique, which has many successful

implementations such as matrix completion [Jain et al., 2013], tensor decompositions

[Huang et al., 2015] and robust principle analysis [Netrapalli et al., 2014]. The motiva-

tion of using the alternating projection technique is the fact that the analytical solution

exists for both of the low rank least square problem and some structure constrained

least square problems [Eckart and Young, 1936, Golyandina and Korobeynikov, 2014].

As a result, this approach enjoys low computation cost and thus has the potential to

deal with large scale optimization problems comparing with convex relaxation or ma-

trix factorization. This approach has been introduced to solve unweighted low rank

Hankel matrix approximation problem (e.g., Condat and Hirabayashi [2015]), and its

performance has been tested in several empirical studies [e.g. Zabalza et al., 2015a, Xu

et al., 2018, Shukla and Yadav, 2017]. Here we summarized the methods of alternating

projection in Alg.4.

Algorithm 4: Algorithm: Alternating Projection Method(AP)

Result: Approximated low rank matrix X̂

Initialization: Given time series x 2 Rn and the weight matrix W . Choose the

window length L. Compute Y := T (x). Start with X0 = Y and set ⌫ := 0;

while certain stopping criterion is not met do

Compute the weighted projection on r-rank matrix set

cX⌫ := ⇧W

Mr
(X⌫)

Compute the weighted projection on Hankel matrix set

X⌫+1 = ⇧W

H (cX⌫)

⌫ = ⌫ + 1;

The convergence behaviour of alternating minimization method has been well established

when both subset are convex. If two convex sets have intersections, then the alternating

projection method will converge to a point in the intersection sets. If the intersection
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is empty between two convex sets, the sequence will converge to the periodic iteration

between two points where the distance between two points are the minimal distance

between two sets [Fazel, 2003]. However, it would be a challenge to build similar results

when non-convex subset exists. For the basically alternating projection (Alg.4), we have

the following property:

Theorem 2.9. [Zvonarev and Golyandina, 2015, Theorem 1]

Let the sequence X⌫ generated by the Alg.4. Then we have

kX⌫
� cX⌫k ! 0 and kX⌫+1

� cX⌫k ! 0, as ⌫ ! 0.

Also, there exists a convergent subsequence of points such that its limits X⇤ belongs to

M \H.

Although this AP method provide a framework which is easy to implement and has some

convergence property, we have several question to tackle when employing it to tackle

the WLRH problems:

• Theorem 2.9 demonstrates that alternating projection between Hankel matrix and

low rank matrix set will converge to a point that belong to the intersections of two

sets. However, there is no theoretical guarantee that whether this point is a global

or local optimal point, or even just a stationary point to the original problem.

• When more generalised norm is used in the objective function rather than the

Frobenius norm, such as in Problem (1.2), the low rank approximation operator

has no closed form solution as we already discussed in Chapter 1. In fact it

doesn’t exist an e�cient and provable solver for weighted low rank approximation

problem. In this case, it is not easy to implement Alg.4 unless some approximation

approaches are used [Gillard and Zhigljavsky, 2016].

• As a result of the second point, the Theorem 2.9 may not hold any more in tack-

ling WLRH because it requires both projection to be exactly orthogonal at each

iteration.



40 Chapter 2 Methodology and Literature Review

Another most recent and powerful solver was proposed by Cai et al. [2019], known as

fast iterative hard thresholding (FIHT). This solver is enhanced by subspace of r-rank

matrix manifold optimization techniques as demonstrated in Alg.5

FIHT admits a computational complexity of O(r3) which is much smaller than the SVD

based AP methods. It also guarantees the exact recovery of incomplete signal with

probability once there are enough observations. However, there are two drawbacks for

FIHT. One is that FHIT may fail to converge (an example can be seen in [Ying et al.,

2018, Fig.3]) if some assumption are not satisfied. At the same time, it does not allow

arbitrary weight matrix choice.

Algorithm 5: Algorithm: Fast Iterative Hard Thresholding(FIHT)

Result: Approximated low rank matrix X̂

Initialization: X0 and set x0 = H
�1(X0). p is the percentage of known values in a

signal.

Set ⌫ := 0 ;

while certain stopping criterion is not met do

1. g⌫ = ⇧⌦(x� x⌫) ;

2. W ⌫ = ⇧S⌫H(x⌫ + p�1g⌫) ;

3. X⌫+1 = ⇧Mr(W
⌫) ;

4. x⌫+1 = H
�1X⌫+1 ;

5. ⌫ ! ⌫ + 1

Operator ⇧⌦ and ⇧S⌫ in Alg.5 are defined in [Cai et al., 2019, Equation (3) and Equation

(7)], denote projection to signal completion and subspace respectively.

To tackle this NP-hard problem, many other methods are proposed in latest researches,

for example, variable projection method [Usevich and Markovsky, 2014], alternating

direction method of multipliers [Ying et al., 2018], fast iterative hard thresholding [Cai

et al., 2019], projected gradient descent [Cai et al., 2018] and Gauss-Newton method

[Zvonarev and Golyandina, 2018]. Although there are still some issues to be tackled

such as optimality and convergence results, all these works inspired us to employ non-

convex techniques for WLRH problem.



Chapter 3

A Sequential Majorization

Method

In Chapter 1 we have reviewed the weighted Hankel structured low rank problems and

their applications. Existing algorithms are discussed in the second chapter including

both advantages and drawbacks. Our purpose of this study is to investigate reliable

algorithms which can tackle the weighted Hankel structured low rank problem (1.2). Two

guiding principles for developing such an approach are (i) the Hankel matrix optimization

should be computationally tractable, and (ii) the objective in the optimization should

be a close approximation to the original weighted least-squares.

In this chapter we tackle this non-convex optimization problem via a sequential ma-

jorization approach. Rather than approximating the hard problem (1.2) once like done

in [Gillard and Zhigljavsky, 2016, Zvonarev and Golyandina, 2015], the new scheme

yields a sequential approximation, which are hoped to provide more and more accurate

approximation each step. Each approximation subproblem of our scheme enjoys the

form of (2.8) and hence it is relatively easier to solve.

This chapter is arranged as following. In Section 3.1 we will firstly discuss the approach

of sequential majorization minimization method to solve the weighted low rank Hankel

matrix optimization problem and the main solver. Then in Section 3.2 we will further

41
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introduce some techniques to improve the performance of the weighted norm approxima-

tion. Numerical results will be shown in Section 3.3 where we conduct several real-life

time series analysis and forecasting problems to compare the performance of our pro-

posed solver with some state-of-the-art solvers. Conclusions can be found in Section

3.4.

3.1 Sequential Majorization Method

In this section, we will describe our new approximation scheme and draw connections

whenever possible to that studied in [Zvonarev and Golyandina, 2015, Gillard and Zhigl-

javsky, 2016], which also handle arbitrarily given weights in (1.2).

3.1.1 Framework of Sequential Majorization Method

For a given weight vector w 2 RN with wt � 0, denote
p
w = (

p
w1,

p
w2, ..,

p
wN ). We

also define vector v 2 RN by

vt :=

8
>>>><

>>>>:

1/t for t = 1, . . . , l � 1

1/l for t = l, . . . , k

1/(N � t+ 1) for t = k + 1, . . . , N.

where N = l + k � 1. The Hadamard product between two matrices of same size is

defined similarly. Let

W := H(
p
v �

p
w). (3.1)

Recall the WLRH problem we aims to solve is

min f(X) :=
1

2
kW � (X � Y )k2, s.t. X 2 H \Mr. (3.2)



Chapter 3 A Sequential Majorization Method 43

The first step is to propose a suitable surrogate function for f(X). Define the new

function fm(X,Z) as

fm(X,Z) := f(Z)+hrf(Z), X�Zi+
1

2
k(
p
p
p
q
T )�(X�Z)k2, 8 Z,X 2 M. (3.3)

where we choose p and q such that

kW �Xk  k(
p
p
p
q
T ) �Xk for all X 2 M. (3.4)

We have the following properties

Proposition 3.1. It holds that

fm(X,X) = f(X) 8 X 2 M (3.5)

and

f(X)  fm(X,Z) 8 X,Z 2 M. (3.6)

Moreover, we have for any given Z 2 M

arg min
X2M

fm(X,Z) = arg min
X2M

1

2
kP (X ��Z)Qk

2, (3.7)

where P := diag(
p
p) and Q := diag(

p
q), and the matrix �Z 2 M is given by

�Z := Z � P�2(W �W � (Z � Y ))Q�2. (3.8)

Proof.

fm(X,X) = f(X) + hrf(X), X �Xi+
1

2
k(
p
p
p
q
T ) � (X �X)k2

= f(X)
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The equality (3.5) holds. As for the inequality (3.6), we have

fm(X,Z) = f(Z) + hrf(Z), X � Zi+
1

2
kW � (X � Z)k2

+
1

2
k(
p
p
p
q
T ) � (X � Z)k2 �

1

2
kW � (X � Z)k2

| {z }
�0 because of (3.4)

� f(Z) + hrf(Z), X � Zi+
1

2
kW � (X � Z)k2

= f(X).

The last equality holds because f(·) is quadratic and its second order Taylor expansion

is exact.

We now prove (3.7). We note that

k(
p
p
p
q
T ) �Xk = kPXQk, 8 X 2 M,

Using this observation, we have

argmin fm(X,Z) = argmin hrf(Z), X � Zi+
1

2
k(
p
p
p
q
T ) � (X � Z)k2

= argminhW �W � (Z � Y ), X � Zi+
1

2
kP (X � Z)Qk

2

= argmin
1

2
kP (X � Z)Q+ P�1(W �W � (Z � Y ))Q�1

k
2

= argmin
1

2

�������
P
⇣
X � [Z � P�2(W �W � (Z � Y ))Q�2]| {z }

=:�Z

⌘
Q

�������

2

= argmin
1

2
kP (X ��Z)Qk

2.

This proved the claim in (3.7).

Because of the properties in Proposition 3.1, fm(Z,X) is known as a majorization of

f(X). This new function provides a rather accurate (local) approximation of f(·) at

any given point X. The computational implication is that we may minimize this new

function instead of the original function provided that the new function is easier to
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minimize. This approximation procedure can be repeated until convergence is observed.

We formally state this computational procedure below.

Let X⌫ be the current iterate. We try to find the next iterate by

X⌫+1
2 argmin fm(X,X⌫), s.t. X 2 H \Mr. (3.9)

We note that the problem may have multiple solutions. Suppose X⌫
2 H \ Mr. We

immediately have

f(X⌫+1)  fm(X⌫+1, X⌫)  fm(X⌫ , X⌫) = f(X⌫), (3.10)

where the first inequality follows from (3.6); the second inequality is because of (3.9);

and the last equality follows from (3.5). This means that the majorization procedure

generates a sequence {X⌫
} with decreasing objective function values in the original

function f(X). The inequality in (3.10) is known as the Sandwich inequality in using

the majorization technique [De Leeuw, 1993].

It is di�cult to obtain the optimal solution for the optimization problem (3.9) because

it is nonconvex. Fortunately, it is enough to just compute a point X⌫+1 such that

fm(X⌫+1, X⌫)  fm(X⌫ , X⌫). (3.11)

As long as this condition holds, the sandwich inequality will hold and the functional

value sequence {f(X⌫)} will be nonincreasing. This property provides a justification for

using the method of SSA or the Cadzow method, which do not enforce the constraint

be strictly satisfied.

3.1.2 Relationship with Previous Research

In fact problem (2.7) and (2.8) that we mentioned before are also included in our ap-

proximation. Our approximation is equivalent to problems when choosing M = E (the

matrix of all ones) and p = 1 2 Rl, q = 1 2 Rk. This immediately suggests that we
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may use the diagonally weighted version of the SSA method or Cadzow’s method to

solve the subproblem (3.12) . Moreover, if we choose W = pq
T , then the subproblem

(3.12) reduces to

min
1

2
kP (X � Y )Qk

2, s.t. X 2 H \Mr,

which is exactly the approximation problem of (2.8) considered by Gillard and Zhigl-

javsky [2016].

At the same time, our subproblem (3.9) is the type of (Q,R)-norm problem (2.8) studied

by Gillard and Zhigljavsky [2016]. It follows from (3.7) that the optimization problem

(3.9) is equivalent to

min f⌫(X) :=
1

2
kP (X ��⌫)Qk

2, s.t. X 2 H \Mr, (3.12)

where �⌫ is obtained from (3.8) by replacing Z by X⌫ :

�⌫ := X⌫
� P�2(W �W � (X⌫

� Y ))Q�2.

We further note that

kP (X ��⌫)Qk
2 = Tr

⇣
P (X ��⌫)QQ(X⌫

�)
TP

⌘

= Tr
⇣
P 2(X ��⌫)Q2(X ��⌫)T

⌘

= kX ��⌫
k
2

(P 2,Q2)
,

which is exactly the type of the (Q,R)-norm defined by [Gillard and Zhigljavsky, 2016,

Eq. (9)] (see also (2.8)). Therefore, our subproblem is the type of the approximation

problem considered by Gillard and Zhigljavsky [2016]. Consequently, the method of

alternating projection proposed by Gillard and Zhigljavsky [2016] can be used to solve

(3.12). The essential di↵erence from Gillard and Zhigljavsky [2016] is how we have

derived the sequential approximations by defining �⌫ .

In summary, we developed a computational scheme for arbitrarily weighted problem
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(1.2). The scheme amounts to solving a sequence of approximation problems of (3.12).

It includes both (2.7) and (2.8) as special cases and it is essentially di↵erent from that

of [Gillard and Zhigljavsky, 2016, Zvonarev and Golyandina, 2015] in the way how �⌫

is being defined. We put the scheme in the following algorithm framework. We call it

Sequential Majorization Method (SMM).

Algorithm 6: Algorithm: Sequential Majorization Method (SMM)

Result: Approximated low rank matrix X̂

Initialization: Given time series x 2 RN and the weight vector w 2 RN . Choose

the window length l. Compute Y := H(x) and matrix W by weight vector w.

Start with X0 = Y and set ⌫ := 0;

while certain stopping criterion is not met do

Computing the vectors (p,q) to satisfy the inequality (3.4) ;

Computing the next iterate X⌫+1 as an approximate solution of the problem

(3.9) with �⌫ defined by

�⌫ := X⌫
� P�2

⇣
W �W � (X⌫

� Y )
⌘
Q�2,

where P := diag(
p
p) and Q := diag(

p
q) ;

⌫ = ⌫ + 1 ;

We already mentioned that X⌫+1 can be computed by the diagonally weighted SSA or

the diagonally weighted Cadzow’s method in the remark above. We will address how

to compute (p,q) in the next section. We apply the method of alternating projection

proposed in Gillard and Zhigljavsky [2016]) to solve (3.12), so the algorithm applied in

numerical part is defined as SMM-Cadzow method. We will leave it to our numerical

part.

3.2 Improving the Approximation

The quality of our approximation is governed by the inequality (3.4), which replies on the

two vectors p and q. A measurement of quality of the approximation is that the tighter
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the inequality is, the better the approximation would be. In this section, we propose

two schemes for generating a pair of (p,q). The rationale behind the two schemes is

that the computation should be very fast. As a matter of fact, both can be done by

solving a linear programming problem.

3.2.1 A simple choice of (p, q) and its improvement

A particular choice of the pair (p,q) satisfying (3.4) is as follows. We denote the pair

by (p,q): 8
><

>:

pi := max{wi,j | j = 1, . . . , k}, i = 1, . . . , l

qj := max{wi,j | i = 1, . . . , l}, j = 1, . . . , k.

(3.13)

It is easy to check that the choice of (p,q) satisfies (3.4) by referring to the W matrix

(3.1).

Our purpose below is to reduce (p,q) as much as we can under the constraint that it

still satisfies (3.4). We note that a necessary and su�cient condition for (p,q) to satisfy

(3.4) is
lX

i=1

kX

j=1: i+j=t+1

(piqj) � wt, t = 1, . . . , N. (3.14)

Suppose (p,q) takes the following form:

p := p� s, q := q� t, 0  s  p, 0  t  q. (3.15)

From all such representations, we would like to find a best pair that minimizes the

following problem:

min
P

l

i=1

P
k

j=1
piqj

s.t. Constraints in (3.14).
(3.16)

It follows from (3.15) that

piqj = (pi � si)(qj � tj)

= piqj � (pitj + qjsi) + sitj
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� piqj � (pitj + qjsi),

which implies

X

i+j=t+1

(piqj)� wt �

X

i+j=t+1

piqj �
X

i+j=t+1

(pitj + qjsi)� wt.

Hence, the constraints in (3.16) are satisfied if

X

i+j=t+1

(pitj + qjsi) 
X

i+j=t+1

piqj � wt, t = 1, . . . , N. (3.17)

On the other hand, we have for the objective that

lX

i=1

kX

j=1

piqj = 1
T

l
(pqT )1k

= 1
T

l
((p� s)(q� t)T )1k

= (1T
l
s)(1T

k
t)�

⇥
(1T

l
s)(1T

k
q) + (1T

l
p)(1T

k
t)
⇤

+(1T
l
p)(1T

k
q). (3.18)

Define

↵ := 1
T

l
s, � := 1

T

k
t, � := 1

T

l
p, � := 1

K

k
q.

The objective becomes

lX

i=1

kX

j=1

piqj = ↵� � (↵� + ��) + �� = (�� ↵)(� � �),

and because of (3.15)

0  ↵  � and 0  �  �.

It is easy to verify that

↵� � (↵� + ��) + �� 

✓p
�� �

1

2
p
��

(↵� + ��)

◆
2

. (3.19)
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We replace the objective function by the right hand quantity of (4.38) and replace the

constraints in (3.16) by (3.17) to derive a new optimization problem:

min↵,�
⇣
p
�� �

1

2
p
��

(↵� + ��)
⌘
2

s.t.
P

i+j=t+1
(pitj + qjsi) 

P
i+j=t+1

piqj � wt, t = 1, . . . , N.

0  s  p, 0  t  q.

(3.20)

It follows from the inequality

p
�� �

1

2
p
��

(↵� + ��)

that the problem (3.20) is equivalent to

maxs,t ↵� + �� = (1T
L
s)(1T

K
q) + (1T

L
p)(1T

K
t)

s.t.
P

i+j=t+1
(pitj + qjsi) 

P
i+j=t+1

piqj � wt, t = 1, . . . , N.

0  s  p, 0  t  q.

(3.21)

The benefit of all those calculations is that the problem (3.21) is a linear programming

problem and it can be e�ciently solved by any standard linear programming solver.

A side note is that the above technique leading to (3.21) is known as relaxation in

optimization. We now formally state our algorithm for improving the pair (p,q).

Algorithm 7: Algorithm: LP(p,q)

Result: Approximated (p,q)

[S.1]:Input a pair of positive vectors (p,q) satisfying (3.4); weight vector w 2 RN

and the widow length l and k = N � l + 1;

[S.2] Use any standard Linear Programming solver to the problem (3.21) for the

optimal (s, t).

[S.3] Output: Let

p := p� s and q := q� t.
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3.2.2 Quality of the Approximation of the Weight Vector

In this part, we demonstrate how good is the (p,q)-approximation to a given weight vec-

tor w 2 RN . We consider the following type of the weight vector, which was extensively

used by Gillard and Zhigljavsky [2016]:

w = (w1, w2, . . . , wN�l, wN�l+1, . . . , wN ),

where l � 0 is a given integer and for a given � � 1,

wt := �t, t = 1, . . . , N � l.

and

wt := wN�l �
wN�l

l + 1
(t� (N � l)), for t = N � l + 1, . . . , N.

Two particular choices of � that were used in Gillard and Zhigljavsky [2016] are � = 1

and � = 1.01. To follow the reference in Gillard and Zhigljavsky [2016], we label the

weight vector w from � = 1 by w1 and w2 for � = 1.01.

For a given pair (p,q), the corresponding weight vector ew 2 RN is given by

ewt :=
lX

i=1

kX

j=1: i+j=t+1

(pipj), t = 1, . . . , N.

Because of the majorization inequality (3.4), we must have

ewi � wi, i = 1, . . . , N. (3.22)

We consider the following pairs of (p,q).

Case 1: (p,q) by (3.13)
Case 2: (p,q) by LP(p,q)
Case 3: (1,bc) with bc given by (3.13)
Case 4: (1, c) with c given by LP(bc)

Table 3.1: Choices of (p,q)
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We also consider the choice (1,bc) with bc given by used in Zvonarev and Golyandina

[2015]. The corresponding weights with the original ones are plotted in Fig. 3.1.
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Figure 3.1: Five approximations of the weight vector w1 in Fig. 3.1(a) and of w2 in
Fig. 3.1(b).

It is not surprising to see that all approximations from our 4 cases are above the original

weights. In other words, the inequality (3.22) holds. However, for the choice of Zvonarev

and Golyandina [2015], the weights on both ends are below the original weights and the

weights in the middle part are above the original weights. Hence, the choice does not give

a majorized weight approximation. We would also like to point out the approximation

by LP(p,q) closely follows the original weights. In theory, the closer the approximation

is, the better the numerical performance should be for SMM provided that its subproblems

can be solved globally. However, the subproblems are of nonconvex nature. This echoes

the need of global techniques in low-rank matrix approximation through optimization

raised in a recent paper [Chu et al., 2014]. Therefore, di↵erent choice of (p,q) may have

its own advantages depending on the actual applications. We will see the dependence

in our numerical experiments below.

We finish this section by pointing out that there are other ways to generate (p,q).

For example, the inequality (3.4) that (p,q) has to satisfy can be cast as a rank-one

nonnegative matrix factorization such that

W ⇡
p
p
p
q
T
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and (p,q) satisfies the inequalities in (3.14). Nonnegative matrix factorization has many

applications and hence has many algorithms, depending on the problem in hand, see and

the references therein.

3.3 Numerical Experiments

In this part, we report our preliminary numerical results on a widely researched real life

example. We first describe the implementation issues of our Alg. 6.

3.3.1 Solving the Subproblem

The major computational part in Alg. 6 is on solving its subproblem (3.12) in (S.3). We

propose to use the Cadzow method for the subproblem. For easy reference, we name the

resulting method as SMM-Cadzow method, which runs as follows: Start with X0, ⌫ := 0,

compute the next iterate X⌫+1 as the final iterate if the following iterative procedure

(Cadzow’s method applied to the subproblem (3.12)):

eXj+1 = ⇧(p,q)
H

⇣
⇧(p,q)

Mr
( eXj)

⌘
, eX0 := �⌫ , j = 0, 1, (3.23)

We terminate (3.23) if the following conditions are met

|f⌫( eXj+1)� f⌫( eXj)|

max{1, f⌫( eXj}

 tol or
k eXj+1

� eXj
k

k eXjk

 tol,

where tol is the tolerance level set by the user. In this part, we used tol = 10�3. We

terminate Alg. 6 if

|f(X⌫+1)� f(X⌫)|

max{1, f(X⌫)}
 tol or

kX⌫+1
�X⌫

k

kX⌫k
 tol.

The convergence of Alg. 6 relies on the sandwich inequality (3.10), which essentially

requires computing X⌫+1
2 H that satisfies (3.11). However, the subproblem (3.12)

is non-convex and Cadzow’s method is not of global method, the su�cient condition

(3.11) is not theoretically guaranteed. Surprisingly, when Cadzow’s method is used to
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the subproblem (3.12), the inequality (3.11) is often observed. We will demonstrate this

feature when we come to reporting the numerical results.

3.3.2 USA Death Time Series

This is a widely used test data Golyandina et al. [2001] and comprehensive results based

on the two weight vectors w1 and w2 in Subsect. 3.2.2 were reported in Gillard and

Zhigljavsky [2016], which provides a basis for our comparison. The data set can be easily

obtained online and contains the monthly accidental deaths in the USA between 1973 and

1978. The time series contains a total of N = 78 observations. Our task is to use the first

72 data points to forecast the remaining 6 observations (hence m = 6 in defining w1 and

w2 in Subsect. 3.2.2). We will use the same parameters as those given in Hassani [2007],

Gillard and Zhigljavsky [2016] and follow the suggestion in Gillard and Zhigljavsky [2016]

that there are several forecasting available to start with for further improvement. Those

forecasts (for the last 6 data points) as well as their corresponding methods are included

in Table 3.2, where 5 forecasting methods are included. In particular, Model I and Model

II are examples of SARIMA models as described in Box et al. [2015]. HWS represents

the model as fitted by the Holt-Winter seasonal algorithm. ARAR represent the model

as fitted by transforming the data prior to fitting an autoregressive model. Forecaster

values by SSA is taken from Hassani [2007]. More details about those 5 methods can be

found in [Gillard and Zhigljavsky, 2016, Sect. 7.3].

Models 1 2 3 4 5 6

Original data 7798 7406 8363 8460 9217 9316
Model I 8441 7704 8549 8885 9843 10279
Model II 8345 7619 8356 8742 9795 10179
HWS 8039 7077 7750 7941 8824 9329
ARAR 8168 7196 7982 8284 9144 9465
SSA 7782 7428 7804 8081 9302 9333

Table 3.2: Forecasts from five di↵erent models.

In our experiments below, we will use them as our initial guess for the last 6 data points.

In other words, we have a data series y 2 RN with the first 72 data being the first 72

data in the USA time series, which is denoted as x
⇤ and the last 6 points in y being
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one of the forecast values in Table 3.2. We use x to denote the obtained time series by

Alg. 6. The root of squared mean error is then defined as

RMSE :=

vuut
6X

i=1

(x72+i � x⇤
72+i

)2,

which is often used to quantify how good the estimated values are to the original data.

Obviously, the smaller is the RMSE, the better the forecasting is.

(a) Demonstration of convergence. We implemented Alg. 6 in Matlab and run it in

Matlab 2015b. We would like to take this opportunity to demonstrate the convergence

of Alg. 6 in terms of the objective values. For this experiments, we set tol = 10�5 and

the maximum number of iterations allowed for the subproblem is 100. The choice of

this higher accuracy allows us to observe the trend of the objective values in many steps

(lower accuracy would require a less number of iterations).

(a) Convergence in the objective of SMM-Cadzow (b) Convergence in the objective of SMM-Cadzow

Figure 3.2: Similar convergence was observed in both Fig. 3.2(a) and Fig. 3.2(b), in
terms of functional values respectively starting from ARAR and SSA point in Table 3.2.

The functional sequence generated by our method are plotted in Fig. 3.2 from two start-

ing points (ARAR and SSA respectively). SMM-Cadzow solved the subproblem iteratively

by (3.23) and it can be observed in in both figures in Fig. 3.2 that the functional sequence

is decreasing and converges. This is because that the su�cient condition (3.11) is more

often to be met than otherwise in SMM-Cadzow. This behaviour of convergence appears

consistence for other test problems. Hence, we will not repeat the demonstration for
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other examples.

(b) RMSE comparison. We will report the RMSE obtained by SMM-Cadzow with

the 5 starting points from Table 3.2. The approximation weights (p,q) used are from

Table 3.1. We will compare the obtained RMSE with those by the 5 starting points, the

(Q,R)-norm approximation Gillard and Zhigljavsky [2016] and the Cadzow- bC method

in Zvonarev and Golyandina [2015] (based on our own implementation).

The RMSE results are reported in Table 3.3 for the two weight vectors w1 (� = 1) and

w2 (� = 1.01). The first row (Initial RMSE) of the table includes the RMSE from the 5

initial points in Table 3.2. We first note that for many cases, there have been significant

reductions in RMSE from each of the starting point. The numbers in bold indicate they

are the best RMSE obtained by all the methods for w1 and w2 respectively, from a

given starting point. It can be observed that for both weighting schemes, the Cadzow- bC

method of Zvonarev and Golyandina [2015] worked very well. In particular, the Cadzow-

bC achieved the 2 best RMSE for w1 and 3 best RMSE for w2. The SMM-Cadzow with

(1,bc) closely followed the Cadzow- bC and achieved the overall best RMSE (217.40). This

trend can be clearly seen in the Fig. 3.3, where we only plotted SMM-Cadzow with (p,q)

and LP(p,q) for the case w1, and SMM-Cadzow with (1,bc) and LP(1,bc) for the case w2

for a better visualization. It can also be seen that the (Q,R) approximation method of

Gillard and Zhigljavsky [2016] did well for the ARAR starting point. For both w1 and

w2, it achieved the best RMSE (247.56 and 244.61 respectively). Therefore, our purpose

below is to improve SMM-Cadzow to outperform both (Q,R) method and the Cadzow- bC

method.

The number of iterations are reported in Table 3.4, where It is the number of subprob-

lems solved in SMM and Iter is the total number of Cadzow iterations. For example,

the first pair 4(126) in Table 3.4 means that for w1 and (p,q), SMM-Cadzow solved 4

subproblems by a total of 126 iterations of (3.23). In this experiment, the computing

cost for both SMM and Cadzow- bC is around 1.2 milliseconds per Iter on a 16GB-ram

laptop. In our experiments, we set the maximum number of subproblems to be solved to
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20. As we can see, there are a few cases where the maximum number (20) was reached

and the numbers for Iter in some cases are large. Below we propose a strategy that

would improve SMM-Cadzow both in quality of RMSE and in the number of total Iter.

� (p,q) 5 starting points
Model I Model II HWS ARAR SSA

Initial RMSE 582.63 500.5 401.26 253.20 278.20

(p,q) 508.83 413.73 234.25 253.45 302.72
LP(p,q) 512.15 414.02 347.09 271.70 278.24

� = 1 (1, ĉ) 497.46 402.13 410.61 252.27 313.71
(w1) LP(ĉ) 495.26 400.36 347.27 282.22 283.82

(Q,R) 582.20 486.03 385.81 247.56 276.28

Cadzow- bC 557.92 374.32 234.63 257.09 220.11

(p,q) 492.38 427.66 252.02 260.65 218.17
� = 1.01 LP(p,q) 493.60 426.94 354.83 250.48 280.99
(w2) (1, ĉ) 492.60 427.46 251.95 259.50 217.40

LP(ĉ) 475.43 426.95 350.02 258.20 279.45
(Q,R) 559.55 481.91 380.79 244.61 275.68

Cadzow- bC 461.48 404.78 249.75 267.71 227.56

Table 3.3: RSME comparison between the method SMM-Cadzow and (Q,R)-

approximation Gillard and Zhigljavsky [2016], Cadzow- bC method in Zvonarev and
Golyandina [2015]

� (p,q) 5 starting points
Model I Model II HWS ARAR SSA
It (iter) It (iter) It (iter) It (iter) It (iter)

(p,q) 4(126) 5(166) 4(72) 4(68) 8(724)
LP(p,q) 20(343) 20(352) 5(81) 20(343) 6(104)

� = 1 (1, ĉ) 5(130) 7(183) 4(281) 5(89) 4(186)
(w1) LP(ĉ) 20(422) 20(433) 5(121) 20(403) 5(123)

(p,q) 4(60) 4(61) 4(71) 4(68) 4(68)
� = 1.01 LP(p,q) 5(85) 5(86) 9(121) 5(101) 3(49)
(w2) (1, ĉ) 5(82) 5(82) 5(91) 5(86) 5(86)

LP(ĉ) 20(385) 20(392) 4(75) 20(381) 3(63)

Table 3.4: Number of iterations used by SMM-Cadzow starting with the 5 points from
Table 3.2.

(c) Improving SMM-Cadzow via warmstart. It follows from both Table 3.3 and

Table 3.4 that the SMM-Cadozwmethod has already shown its potential in finding the best

RMSE (217.40) among all the method tested. In this part, we will show that its quality

and e�ciency can be further improved by incorporating a warm start strategy, which

is often used in a sequential optimization setting. For example, it has been successfully
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(a) RMSE: (p,q) = (p,q) or LP(p,q) (b) RMSE: (p,q) = (1,bc) or LP(bc)

Figure 3.3: RMSE comparison in Fig. 3.3(a) for w1 and Fig. 3.3(b) for w2. Data
were obtained by SMM-Cadzow with the 5 initial points given in Table 3.2.

used in the sequential matrix optimization for computing a low-rank correlation matrix

Sun [2010], Li et al. [2016]. We describe this simple strategy below.

At the ⌫th iteration with X⌫ obtained, we compute

ex⌫ := H
�1(X⌫)

and we replace the first 72 data points of ex⌫ by the original ones in y to get bx⌫ :

bx⌫ := ex⌫ , bxk(1 : 72) = y(1 : 72).

Finally, we replace X⌫ by bX⌫ :

bX⌫ := H(bx⌫).

This warm start strategy uses the original 72 data (known) and the latest prediction

for the last 6 missing values in y to define bX⌫ . The subproblem is still solved by the

Cadzow’s method (3.23). Hence, it is still convergent with this choice.

Under our stopping criterion (see Subsect. 3.3.1), only 2 subproblems were solved for

each case. The results on RMSE and the iteration information are reported in Table 3.5

and Table 3.6, where It = 2 for all cases. It can be observed that not only the number

of iterations (iter) has been reduced, the RMSE has also seen significant reduction.

Moreover, 4 out of 5 best cases were obtained by our method for w2. The remaining
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� (p,q) 5 starting points
Model I Model II HWS ARAR SSA

Initial RMSE 582.63 500.5 401.26 253.20 278.20

(p,q) 469.15 359.47 226.50 247.60 296.33
LP(p,q) 454.72 398.84 362.96 253.60 292.74

� = 1 (1, ĉ) 466.84 344.75 354.38 231.21 317.39
(w1) LP(ĉ) 490.74 375.18 345.66 243.68 295.72

(Q,R) 582.20 486.03 385.81 247.56 276.28

Cadzow- bC 557.92 374.32 234.63 257.09 220.11

(p,q) 433.37 381.81 238.70 257.48 219.31
� = 1.01 LP(p,q) 482.98 422.39 256.95 269.15 227.29
(w2) (1, ĉ) 408.76 360.75 238.08 247.98 218.89

LP(ĉ) 506.88 404.73 346.59 255.93 285.34
(Q,R) 559.55 481.91 380.79 244.61 275.68

Cadzow- bC 461.48 404.78 249.75 267.71 227.56

Table 3.5: RSME comparison between the method SMM-Cadzow with the warm-

start and (Q,R)-approximation [Gillard and Zhigljavsky, 2016], Cadzow- bC method in
[Zvonarev and Golyandina, 2015]

RMSE (247.98 for ARAR starting point) is not far from the best RMSE (244.61 for

ARAR starting point). This is clearly demonstrated in Fig. 3.4(a), where the both lines

for SMM-Cadzow with (p,q) and (1,bc) are below the others.

� (p,q) 5 starting points
Model I Model II HWS ARAR SSA
It (iter) It (iter) It (iter) It (iter) It (iter)

(p,q) 2(38) 2(36) 2(36) 2(34) 2(46)
LP(p,q) 2(44) 2(44) 2(40) 2(48) 2(44)

� = 1 (1, ĉ) 2(38) 2(30) 2(34) 2(42) 2(40)
(w1) LP(ĉ) 2(50) 2(48) 2(64) 2(48) 2(62)

(p,q) 2(30) 2(32) 2(34) 2(34) 2(34)
� = 1.01 LP(p,q) 2(42) 2(44) 2(52) 2(50) 2(50)
(w2) (1, ĉ) 2(36) 2(36) 2(38) 2(36) 2(36)

LP(ĉ) 2(46) 2(44) 2(48) 2(46) 2(50)

Table 3.6: Number of iterations used by SMM-Cadzow starting with the 5 points from
Table 3.2.

If we were even more “aggressive” in the sense that we apply the warm start strategy at

every iteration. That is, we replace eXj+1 in (3.23) by
beX

j+1

, we may achieve even more

reduction RMSE. Fig. 3.4(b) plotted two cases of SMM-Cadzow with LP(p,q) and LP(bc).

It is observed that the line for LP(bc) is well below all other lines and in fact achieved
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(a) RMSE: (p,q) = (p,q) or LP(p,q) (b) RMSE: (p,q) = (1,bc) or LP(bc)

Figure 3.4: RMSE comparison in Fig. 3.4(a) for w2 with the warm-start once and
Fig. 3.4(b) for w1 with the warm-start always. Data were obtained by SMM-Cadzow

with the 5 initial points given in Table 3.2.

the best RMSE for all 5 starting points. The corresponding values of RMSE are:

(175.53, 175.47, 182.13, 180.68, 187.47).

While we note that it may yield better RMSE in some cases, however, the big question

for this “aggressive” use of the warm start strategy is that the resulting algorithm may

su↵er non-convergence. Hence, we choose not to report any further result for this choice

and leave it to our future research.

3.3.3 Energy Prices Forecasting

a. Introduction. This experiment uses the daily price series of crude and several

petroleum products including conventional gasoline, No.2 heating oil, ultra-low-sulfur

(ULS) No.2 diesel fuel and Kerosene-type jet fuel. The price series of crude oil is chosen

as the daily contract price of West Texas Intermediate (WTI) from Cushing, Oklahoma.

Daily price series of conventional gasoline, No.2 heating oil and ultra-low-sulfur No.2

diesel fuel is obtained from New York Harbor. Daily trading prices of kerosene-type jet

fuel is collected from U.S. Gulf Coast 1. Time period for each price series is from 16th

May, 2016 to 19th May, 2017 so that we have total 252 observations for each series.

1All the data used in this paper can be found from https://www.eia.gov/dnav/pet/pet_pri_spt_
s1_d.htm

https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
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We plot the daily price series of these products in Figure 3.5 and summarize descriptive

statistics for these five time series in Table 3.7. The skewness and kurtosis statistic

indicates the distributions of all five time series of daily spot price are left-skewed and

platykurtic. We further note that price volatilities of No.2 heating oil, ultra-low-sulfur

No.2 diesel fuel and Kerosene-type jet fuel were consistent during this period. By con-

trast, the probabilities of extreme value in the price series of conventional gasoline and

crude oil were comparably high with a smaller Kurtosis value. This phenomenon can be

observed from Figure. 3.5(b) as well.
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(a) Daily spot price series of crude oil
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(b) Daily spot price series of four petroleum prod-

ucts

Figure 3.5: The actual spot price series of crude oil in Figure. 3.5(a) and four
petroleum products in Figure. 3.5(b), from 16th May 2016 to 19th May 2017.

Table 3.7: Descriptive Statistics: Daily prices of crude oil and petroleum products,
from 16th May 2016 to 19th May 2017

Series Mean Median Min. Max. Std.Dev Skew. Kurtosis

Crude Oil 48.66 48.78 39.50 54.48 3.38 -0.27 2.34

Conventional Gasoline 1.51 1.51 1.28 1.74 0.10 -0.10 2.33

No.2 Heating Oil 1.44 1.45 1.15 1.62 0.10 -0.59 2.92

Ultra-Low-Sulfur
No.2 Diesel Fuel 1.51 1.51 1.23 1.71 0.10 -0.43 2.75

Kerosene-Type Jet Fuel 1.41 1.41 1.13 1.59 0.10 -0.48 2.81

b. Parameter Selection. Two important parameters need to be determined before the

implementation of Alg.6 are the window length l and the rank of objective Hankel matrix

r. In this experiment we follow the suggestions by [Hassani et al., 2011, Section 2.3]

through introducing the concept of separability to determine the choices of parameters.
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Setting window length l = N/2, results of parameter selections for all five time series

are listed in Table 3.8.

Table 3.8: Parameter Choices for Window Length l and Objective Rank r for the
daily price series of crude oil and petroleum products.

Crude Oil Conventional No.2 ULS No.2 Kerosene Type
Series Crude Oil Gasoline Heating Oil Diesel Fuel Jet Fuel

m 100 100 100 100 100
r 12 25 11 9 7

c. Numerical Result. The estimating components of crude oil daily prices are plotted

in Figure 3.6 as well as the actual observed data.

Wi,j =
1

i+ j � 1
for 1  i  l and 1  j  k (3.24)
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Figure 3.6: Decomposition Result of Crude Oil WTI Daily Prices Series by SMM
Algorithm.

The trend series in Figure. 3.6(b) is constructed by the first and second singular values

and this series the largest part of crude oil daily price volatility, as we can observed

from the vertical axis of this figure. This trend decreased from the beginning to the end
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of July 2016, then inverted to be increasing for the rest of the period. The 10 weeks

seasonal component (Figure. 3.6(c)) is constructed by the 3rd to 5th singular values and

it fluctuates between within (-2.5 , 2.5). The 5, 2.5 and 1.5 weeks seasonal components

are constructed by 7th to 8th (Figure. 3.6(d)), 9th to 10th (Figure. 3.6(e)) and 11th to

12th (Figure. 3.6(f)) singular values respectively.
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Figure 3.7: Estimated series comparison between iterative Cadzow method and SMM.

Figure.3.7(a) and 3.7(c) compare the estimation result between Cadzow method and

SMM. At both ends of time series, it is easily observed that SMM provides better data

approximations compared with Cadzow method by fitting the input observed time series

better.

We further include five candidate models are in forecasting the future energy prices in-

cluding SMM, Cadzow, SSA and other two benchmarking models, ARIMA and GARCH.

We will consider three forecasting scenarios as 10 steps forecasting (h = 10), 15 steps

forecasting (h = 15) and 20 steps forecasting (h = 20). Root mean square error (RMSE)



64 Chapter 3 A Sequential Majorization Method

is again introduced to measure the forecasting accuracy. We further apply Diebold-

Mariano tests to examine if SMM outperforms other models at a certain significant

level. The weight matrox W used in SMM is defined as Equation (3.25) so that training

set data has equal weights and the starting value of forecasted data are assigned by lin-

early decreasing weights because we have less information to forecast the long-step-ahead

future data:

Wi,j :=

8
><

>:

1

i+j�1
for (i+ j � 1)  N

1� i�N

(h+1)(i+j�1)
for N + 1  (i+ j � 1)  N + h

(3.25)

Stopping criteria for iterative Cadzow method and SMM are defined as:

• Iteration stops when

tol =
kX⌫+1

�X⌫
k

kX⌫k
 10�3

• The maximum step of iterations is set as 100.

Iteration algorithms stop when any one of above two criteria is met. Forecasting results

by five candidate models are listed in Table 3.9. For comparison purpose, the RMSE

ratios (RRMSE) of SMM to other four models are presented in Table 3.9, while RRMSE

smaller than 1 indicates that SMM algorithm provide better forecasting data compared

with candidate model.

Table 3.9 shows that SMM outperforms all other four models in 8 cases over 15, as

indicated by the result of Diebold-Mariano test at 5% significant level. There are three

scenarios that ARIMA or Cadzow provides a slightly better forecasting results comparing

with SMM, however, the improvement is not significant at 5% level. There is only 1 case

that candidate models generating more accurate forecasting data significantly, which is

the 10-step conventional gasoline prices forecasting by ARIMA and GARCH.

We further note from Table 3.9 that with longer forecasting steps, RMSE ratios of SMM

to ARIMA or GARCH become smaller in most cases. For example in the Kerosene-

Type Jet Fuel forecasting, 10-step prediction errors between of ARIMA and SMM are
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Table 3.9: RSME comparison of estimation result by five di↵erent models

Price Forecasting
SMM SMM

ARIMA
SMM

GARCH
SMM
SSA

SMM
CadzowSeries Steps

Crude h = 10 2.4177 1.01 0.99 0.60** 0.63**
Oil h = 15 2.5399 0.83** 0.82** 0.45** 0.90**

h = 20 2.4600 0.72** 0.70** 0.35** 0.86**

Conventional h = 10 0.0999 1.55 1.53 0.89** 0.66**
Gasoline h = 15 0.0853 0.97 0.95 0.48** 1.03

h = 20 0.0947 0.92** 0.85** 0.51** 1.00

No.2 h = 10 0.0631 1.03 1.00 0.59** 0.86**
Heating h = 15 0.0666 0.87* 0.84* 0.51** 0.87**
Oil h = 20 0.0724 0.86* 0.82** 0.51** 0.97**

Ultra-Low- h = 10 0.0496 0.87* 0.87 0.40** 0.78**
Sulfur No. 2 h = 15 0.0529 0.69** 0.68** 0.33** 0.75**
Diesel Fuel h = 20 0.0612 0.72** 0.69** 0.33** 0.82**

Kerosene- h = 10 0.0637 0.95 0.92 0.40** 0.75**
Type h = 15 0.0682 0.80* 0.77** 0.38** 0.75**
Jet Fuel h = 20 0.0757 0.79** 0.76** 0.41** 0.78**

Notes: **/* represents the results of Diebold-Mariano test. ** indicates SMM provides
more accurate results than another model at 5% significant level. * indicates SMM pro-
vides more accurate results than another model at 10% significant level.

not significant since the RMSE ratio is just 0.95. While in the 15-step forecasting

experiment, SMM generates more accurate forecasting result at 10% significant level

than ARIMA model. Then in the 20-step ahead forecasting, RMSE ratio of SMM to

ARIMA decreased continuously to 0.79 and forecasting date estimated by SMM is more

accurate than data estimated by ARIMA at even 5% significant level. We can observe

this phenomenon for other time series cases as well.

On the other hand, although Cadzow failed to generate better predictions than SMM,

its forecasting result do not get worse when the forecasting steps extended from 10 steps

to 20 steps. For all five daily price series used in this paper, RMSE ratio of SMM

to Cadzow actually imporved from 10 steps forecasting to 20 steps forecasting, e.g.,

increased from 0.63 to 0.86 in the case of crude oil daily prices forecasting. This result

shows the advantage of the rank-minimization based methods in capturing both short

term cyclical fluctuations and long term trend of a series.
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3.4 Conclusions

In this chapter, we proposed a method to tackle the weighted low rank Hankel ma-

trix approximation problem. We demonstrated the advantages of the proposed method,

named as SMM-Cadzow due to the fact that the subproblem is solved by the Cadzow

method by [Gillard, 2010]. For example, the latest gradient information was used to

construct the new approximation once a new iterate was obtained. The approximation

can be improved through a smaller (p,q) weights, which can be refined by linear pro-

gramming (cheap computational cost). The method was guaranteed to converge if the

sandwich inequality is satisfied at each iterate. Moreover, its numerical performance was

demonstrated against several popular test problem and a thorough comparison with the

two existing methods were conducted to show its improvement. We also introduce a

real life time series as oil price forecasting to compare the performance of our proposed

SMM with several classical time series models.



Chapter 4

A Majorization Penalty Method

In this chapter, we still target to solve the low rank Hankel matrix approximation prob-

lem under weighted norm. A majorized penalty method is proposed to tackle this

problem so that it enjoys the advantage of majorization minimization. This chapter is

arranged as follows. Section 4.1 provides a very brief motivation for this new scheme.

In Section 4.2 we introduce the majorized penalty method to tackle the WLRH problem

and provide our main convergence result. Then we will further prove that the properties

of our approach can be further extended to the case of complex valued matrix in Section

4.3. The performances of majorized penalty method in time series analysis and signal

completions are compared with other WLRH solvers in Section 4.4 by conducting some

synthetic numerical experiments. In Section 4.5, we will compare the di↵erence between

SMM-Cadzow and the solver proposed in this chapter and discuss the improvement

we achieved by introducing the majorized penalty approach. Finally in Section 4.6 we

summarize the conclusions of this chapter.

4.1 Introduction

In the last chapter we have introduced the Sequential Majorization Method (SMM) to

tackle the weighted low rank Hankel matrix approximation problem. Several numeri-

cal experiments are conducted to show that SMM outperforms some of the state-of-art

67
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solvers. However, it is worth noting that the framework of SMM still has some draw-

backs. In SMM we introduced the inequality (3.4) to obtain the surrogate majorization

of original objective function. As a result, the weight matrix introduced in SMM via the

approximation approach would be slightly di↵erent from the original weight matrix W .

At the same time, we notice that SMM still implements alternating projection method

at each iteration to get the next iterate X⌫+1. It may lead to 1) heavy computational

cost and 2) the convergence framework may not hold because the inequalities (3.11) may

not hold.

In this chapter, we try to tackle the weighted low rank Hankel matrix approximation

problem from a new approach which is known as the penalty approach. This approach

has been widely employed to tackle non-convex rank constraint minimization problem

because it turns out that the penalty approach can help to develop the globally conver-

gence algorithms for such problems. For example, Yan [2010] and Sun [2010] used this

approach to solve the calibrating rank constrained correlation matrix problems. They

established the following corresponding relationship that:

rank(X)  r ()

X

i=r+1

�i(X) = 0

Liu et al. [2018] also applied the similar penalty approach to solve the semidefinite-

box constrained low-rank matrix optimization problems, provided that the established

algorithm will converge to a first order stationary point. Some other recent relevant

publications including Shen and Mitchell [2018] and Lu et al. [2015]. However, these

introduced methods have nothing to do with MAP and their implementations are not

trivial.
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4.2 A Majorized Penalty Method

4.2.1 A Majorized Surrogate Function

Recall the weighted low rank Hankel matrix approximation problem:

min
1

2
kX � Y k

2

W (4.1)

s.t.X 2 H \Mr

We now introduce a majorization approach to handle the low rank constraint in (4.1).

Firstly we define the quadratic function hr(A) as the squared sum of first r singular

values of A:

hr(A) =
1

2
k⇧Mr(A)k2

=
1

2
kUA⌃r(A)V

T

A k
2

=
1

2

rX

i=1

�2i (A), 8A 2 M (4.2)

where A has the singular value decomposition A = UA⌃(A)V T

A
and �i(A) in the non-

increasing order denotes the singular value of A, i.e., �i(A) = ⌃(A)i,i. ⌃r(A) is defined

as following:

⌃r(A)i,j =

8
><

>:

⌃(A)i,j if i = j  r

0 otherwise.

⇧Mr(A) is computed through (2.6) as an analytical solution to the unweighted low

rank approximations of matrix A. The third equality in (4.2) holds because we have

UUT = Il⇥l and V TV = Ik⇥k, while In⇥n is the n⇥ n identity matrix. We further note

that hr(A) is a di↵erentiable quadratic function, therefore for all A,Z 2 M we have

hr(A) = hr(Z)+ < @hr(Z), A� Z >

+(A� Z)T@2hr(Z)(A� Z)

� hr(Z)+ < @hr(Z), A� Z >
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= hr(Z)+ < ⇧Mr(Z), A� Z > (4.3)

The last equality holds because ⇧Mr(A) 2 @hr(A). To show this, we introduce the

following proposition:

Proposition 4.1. [Yan, 2010, Proposition 2.16] Let matrix A 2 Rl⇥k has above singular

value decomposition. Define the function hr(A) as Equation (4.2). Then we have that

hr(A) is convex and subdi↵erentials of hr(A) is given as:

⇧Mr(A) 2 @hr(A). (4.4)

We further note that by computing ⇧Mr(A) through (2.6), the Euclidean distance be-

tween A and its projection on r-rank matrix set Mr, denoted as gr(A), can be computed

as

gr(A) =
1

2
kA�⇧Mr(A)k2

=
1

2
kUA[⌃(A)� ⌃r(A)]V

T

A k
2

=
lX

i=r+1

�2i (A)

=
lX

i=1

�2i (A)�
rX

i=1

�2i (A)

=
1

2
kAk

2
� hr(A) (4.5)

Given the fact that for any A 2 M, rank(A)  r if and only if �i+1(A) = ... = �L(A) = 0,

we rewrite Problem (4.1) by replacing the rank constraint (X 2 Mr):

min f(X) :=
1

2
kW � (X � Y )k2 (4.6)

s.t. X 2 H

gr(X) = 0
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In fact, Problem (4.6) is equivalent to (4.1) because when rank(X)  r, we have gr(X) =
P

l

i=r+1
�2
i
(X) = 0. For any A,Z 2 M, defining gmr (A,Z) as

gmr (A,Z) :=
1

2
kAk

2
� hr(Z)� < ⇧Mr(Z), A� Z > (4.7)

then we have following properties.

Proposition 4.2. Given gr(A) and gmr (A,Z) defined in (4.5) and (4.7), we have

gmr (A,A) = gr(A) (4.8)

gmr (A,Z) � gr(A) (4.9)

Proof. Equality (4.8) holds because we have

gmr (A,A) =
1

2
kAk2 � hr(A)� < ⇧Mr(A), A�A >

=
1

2
kAk2 � hr(A)

= gr(A)

Using Equation (4.3) and (4.5), it is enough to prove (4.9):

gmr (A,Z) =
1

2
kAk

2
� hr(Z)� < ⇧Mr(Z), A� Z >

�
1

2
kAk

2
� hr(A)

= gr(A)

This completes our proof.

When Proposition 4.2 holds, gmr (A,Z) is known as a majorization function of gr(A).
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4.2.2 The Majorized Penalty Method

In previous discussion we mentioned that the rank constraint in (4.1) causes the dif-

ficulties in handling these problems through alternating projection method. Now we

consider to use the penalty method to rewrite (4.6) by taking the trade-o↵ between the

rank constraint and weighted least square distance as

min f⇢(X) :=
1

2
kW � (X � Y )k2 + ⇢gr(X) (4.10)

s.t. X 2 H

where ⇢ > 0 is the penalty parameter. A larger choice of ⇢ means we penalise the rank

constraint violations with more severity. We note that Problem (4.10) is not equivalent

to Problem (4.6) because the rank of optimal solution to (4.10) may not be smaller than

r, especially when the penalty parameters ⇢ is not large enough. Here we illustrate the

relationship between the global optimal solutions to (4.6) and (4.10) by introducing two

propositions.

Proposition 4.3. Let X⇤
r 2 M be the global solution to problem (4.10). If the rank of

X⇤
r is not larger than r, then X⇤

r is a global optimal solution to problem (4.6).

Proof. Let Xr 2 M to be any feasible solution to problem (4.6). Because X⇤
r is the

global solution to (4.10) and its rank is not larger than r, we have gr(X⇤
r ) = 0 and

f(X⇤

r ) = f(X⇤

r ) + ⇢gr(X
⇤

r )

= f⇢(X
⇤

r )  f(Xr) + ⇢gr(Xr) = f(Xr)

So X⇤
r is also the global optimal solution to (4.6).

Proposition 4.4. Let " > 0 be a given positive number and X⇤
2 M a optimal solution

to least square problem:

min
1

2
kW � (X � Y )k2

s.t. X 2 H



Chapter 4 A Majorization Penalty Method 73

Assume ⇢ > 0 is chosen such that (f(Xr)�f(X⇤
r ))/⇢  " and let Xr be a global optimal

solution to (4.6). Then we have

gr(X
⇤

r )  " and f(X⇤

r )  f(Xr)� ⇢gr(X
⇤

r )  f(Xr) (4.11)

Proof. From the proof of Proposition (4.3) we have

f(Xr) � f(X⇤

r ) + ⇢gr(X
⇤

r ) � f(X⇤) + ⇢gr(X
⇤

r )

It indicates

gr(X
⇤

r ) 
f(Xr)� f(X⇤)

⇢
 "

Because Xr is a global optimal solution to (4.6), then we have gr(Xr) = 0. So at the

same time, the following inequality holds:

f(Xr) + ⇢gr(Xr) = f⇢(Xr) � f⇢(X
⇤

r ) = f(X⇤

r ) + ⇢gr(X
⇤

r )

As a result,

f(X⇤

r )  f(Xr)� ⇢gr(X
⇤

r )  f(Xr)

Proposition 4.3 and 4.4 has also been proved in a similar case by Sun [2010]. These

two propositions support us to solve the penalized problem (4.10) instead of (4.6). Next

we consider to tackle (4.10) by introducing the majorization approaches since we have

found a majorization function gmr (X,Z). Define the new function:

fm

⇢ (X,Z) :=
1

2
kW � (X � Y )k2 + ⇢gmr (X,Z) (4.12)

we have the following lemma:
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Lemma 4.5. Given f⇢(X) and fm
⇢ (X,Z) defined in (4.10) and (4.12), we have

fm

⇢ (X,X) = f⇢(X)

fm

⇢ (X,Z) � f⇢(X)

The proof of Lemma 4.5 is straightforward using Proposition 4.2. In this case fm
⇢ (X,Z)

is thought to be the majorization function of f⇢(X) as well. We now consider solving the

following majorization problem so that it enjoys the properties of majorization scheme

min fm

⇢ (X,Z) =
1

2
kW � (X � Y )k2 + ⇢gmr (X,Z) (4.13)

s.t. X 2 H

Set X0 = Y and suppose we have current iterate X⌫ , the next iterate X⌫+1 is computed

by solving the minimization problem:

X⌫+1
2 argmin fm

⇢ (X,X⌫) s.t. X 2 H (4.14)

Note when Lemma 4.5 holds, we have the following proposition for the sequence {X⌫
}

generated through (4.14).

Proposition 4.6. Let the sequence {X⌫
} be the iterate computed through (4.14), we

have

f⇢(X
⌫+1)  f⇢(X

⌫) for ⌫ = 0, 1, ... (4.15)

That is to say, the function value f⇢(X⌫) is non-increasing to ⌫.

Proof. From Proposition 4.5 we easily have

f⇢(X
⌫) = fm

⇢ (X⌫ , X⌫) (4.16)

f⇢(X
⌫+1)  fm

⇢ (X⌫+1, X⌫) (4.17)
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Then by solving Problem (4.14) , we have

fm

⇢ (X⌫+1, X⌫)  fm

⇢ (X⌫ , X⌫) (4.18)

As a result,

f⇢(X
⌫+1)  fm

⇢ (X⌫+1, X⌫)  fm

⇢ (X⌫ , X⌫) = f⇢(X
⌫) (4.19)

4.2.3 Convergence of quadratic penalty approach

The classical quadratic penalty methods try to solve a sequence of penalty problems:

X⌫ = argmin F⇢⌫ (X), s.t. X 2 H, (4.20)

where the sequence ⇢⌫ > 0 is increasing and goes to 1. By following the standard

argument (e.g., [Nocedal and Wright, 2006, Thm. 17.1]), one can establish that every

limit of {X⌫
} is also a global solution of (1.2). However, in practice, it is probably as

di�cult to find a global solution for (4.20) as for the original problem (1.2). Therefore,

only an approximate solution of (4.20) is possible. To quantify the approximation, we

recall the optimality conditions relating to both the original and penalized problems.

It follows from the optimality theorem [Rockafellar and Wets, 2009, Thm. 8.15] that we

say bX 2 H satisfies the first-order optimality condition of (1.2) if

0 2 rf( bX) + b�@dMr( bX) +H
?, (4.21)

where b� is the Lagrangian multiplier and dMr denotes the distance function to low rank

space, i.e., dMr = min {kX � Zk | Z 2 Mr}. Similarly, we say X⌫
2 H satisfies the

first-order optimality condition of the penalty problem (4.10) if

0 2 rf(X⌫) + ⇢⌫ @gr(X
⌫) +H

?. (4.22)
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We generate X⌫
2 H such that the condition (4.22) is approximately satisfied:

kPH(rf(X⌫) + ⇢⌫(X
⌫
�⇧Mr(X

⌫)))k  ✏⌫ , (4.23)

where ✏⌫ # 0. We can establish the following convergence result.

Theorem 4.7. We assume the sequence {⇢⌫} goes to 1 and {✏⌫} decreases to 0. Sup-

pose each approximate solution X⌫ is generated to satisfy (4.23). Let bX be an accumu-

lation point of {X⌫
} and we assume

@dMr( bX) \H
? = ;. (4.24)

Then bX satisfies the first-order optimality condition (4.21).

Proof. Suppose bX is the limiting point of the subsequence {X⌫
}K. We consider the

following two cases.

Case 1. There exists an infinite subsequence K1 of K such that rank(X⌫)  r for ⌫ 2 K1.

This would imply @gr(X⌫) = {0}, which with (4.23) implies kPH(rf(X⌫))k ! 0. Hence

(4.21) holds at bX with the choice b� = 0.

Case 2. There exists an index ⌫0 such that X⌫
62 Mr for all ⌫0  ⌫ 2 K. In this case, we

assume that there exists an infinite subsequenceK2 ofK such that {(X⌫
�⇧Mr(X

⌫))/dMr(X
⌫)}

has the limit v. We note that (X⌫
� ⇧Mr(X

⌫))/dMr(X
⌫) 2 @dMr(X

⌫) for ⌫ � ⌫0 by

[Rockafellar and Wets, 2009, (8.53)]. Therefore, its limit v 2 @dMr( bX) by the upper

semicontinuity. By the assumption (4.24), we have v 62 H
?. Since H is a subspace,

PH(·) is a linear operator. It follows from (4.23) that

⇢⌫kPH(X
⌫
�⇧Mr(X

⌫))k�kPH(rf(X⌫))k  kPH(rf(X⌫)+⇢⌫(X
⌫
�⇧Mr(X

⌫))k  ✏⌫ .

Hence

kPH(X
⌫
�⇧Mr(X

⌫))k 
1

⇢⌫

⇣
✏⌫ + kPH(rf(X⌫))k

⌘
,
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which, for ⌫ � ⌫0, is equivalent to

dMr(X
⌫)kPH(X

⌫
�X⌫

r )/dMr(X
⌫)k 

1

⇢⌫

⇣
✏⌫ + kPH(rf(X⌫))k

⌘
.

Taking limits on {X⌫
}⌫2K2 and using the fact ⇢⌫ ! 1 leads to dMr(X

⇤)kPH(v)k = 0.

Since v 62 H
?, we have kPH(v)k > 0, which implies dMr(X

⇤) = 0. That is, X⇤ is a

feasible point of (1.2). Now let �⌫ := ⇢⌫dMr(X
⌫), we then have

�⌫
X⌫

�⇧Mr(X
⌫)

dMr(X
⌫)

= �rf(X⌫) + ⇠⌫ , ⇠⌫ := rf(X⌫) + ⇢⌫(X
⌫
�⇧Mr(X

⌫)).

Projecting on both sides to H yields

�⌫PH

✓
X⌫

�⇧Mr(X
⌫)

dMr(X
⌫)

◆
= PH(�rf(X⌫)) + PH(⇠

⌫). (4.25)

Computing the inner product on both sides with PH((X⌫
�⇧Mr(X

⌫))/dMr(X
⌫)), taking

limits on on the sequence indexed by K2, and using the fact PH(⇠⌫) ! 0 due to (4.23),

we obtain

lim
⌫2K2

�⌫kvk
2 = hv, PH(rf( bX))i.

We then have

b� = lim
⌫2K2

�⌫ =
1

kvk2
hv, PH(rf( bX))i.

Taking limits on both sides of (4.25) yields

PH(rf( bX) + b�v) = 0,

which is su�cient for

0 2 rf( bX) + b�@dMr( bX) +H
?.

This completes our result.

Remark 1. Condition (4.24) can be equivalently interpreted as that any 0 6= v 2

@dMr( bX) is linearly independent of any set of basis of H?. Therefore, (4.24) can be

seen as a generalization of the linear independence assumption required in the classical
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quadratic penalty method for a similar convergence result with all the functions involved

being assumed continuously di↵erentiable, see [Nocedal and Wright, 2006, Thm. 17.2].

In fact, what we really needed in our proof is that there exists a subsequence {(X⌫
�

⇧Mr(X
⌫))/dMr(X

⌫)} in Case (ii) such that its limit v does not belong to H
?. That

could be much weaker than the su�cient condition (4.24).

Thm. 4.7 establishes the global convergence of quadratic penalty method when the

penalty parameter approaches infinity, which drives gr(X⌫) to become smaller and

smaller. In practice, however, we often fix ⇢ and solve for X⌫ . We are interested how

far X⌫ is from being a first-order optimal point of the original problem. For this pur-

pose, we introduce the approximate KKT point, which keeps in the first-order optimality

condition (4.22) with an additional requirement that gr(X) is small enough.

Definition 4.8. (✏-approximate KKT point) Consider the penalty problem (4.10) and

✏ > 0 is given. We say a point bX 2 H is an ✏-approximate KKT point of (1.2) if

0 2 rf( bX) + ⇢ @gr( bX) +H
? and gr( bX)  ✏.

4.2.4 Solving the Subproblem

Until now we proposed the framework of majorized penalty method that approximating

the result of Problem (4.1) sequentially with convergent results. One remaining question

is how to solve the Sub-Problem (4.14) to make sure the inequalities (4.19) holds. Firstly

we have following proposition:

Proposition 4.9. We have the following equivalent minimization problem to Problem

(4.14)

argmin
X

fm

⇢ (X,X⌫

⇢ ) = argmin
X

1

2
kW⇢ � (X �X⌫

⇢ )k
2 (4.26)

where W⇢ :=
p
⇢E +W �W and matrix E = 1m,n with all entities equal to 1; “p ”

represents the componentwise root, e.g., (
p
A)i,j =

p
Ai,j for i = 1, ...,m and j = 1, ..., n.

X⌫
⇢ is computed by:

X⌫

⇢ := W (�1)

⇢ � (W �W � Y + ⇢⇧Mr(X
⌫)) (4.27)
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Proof. Taking Equation (4.7) into the objective function of Problem (4.14) we can easily

get

fm

⇢ (X,X⌫) =
1

2
kW � (X � Y )k2 + ⇢gmr (X,X⌫)

=
1

2
kW � (X � Y )k2 +

⇢

2
kXk

2
� ⇢hr(X

⌫)� ⇢ < ⇧Mr(X
⌫), X �X⌫ >

=
⇢

2
kXk

2 +
1

2
kW �Xk

2
� < X,W �W � Y > � < X, ⇢⇧Mr(X

⌫) >

+
1

2
kW � Y k

2
� ⇢hr(X

⌫) + ⇢ < X⌫ ,⇧Mr(X
⌫) >

| {z }
:=�1

=
1

2
k

p
⇢E +W �W| {z }

=:W⇢

�Xk
2
� hX,W �W � Y + ⇢⇧Mr(X

⌫)i+�1

=
1

2
kW⇢ �Xk

2
� hW⇢ �X,W (�1)

⇢ � (W �W � Y + ⇢⇧Mr(X
⌫))i+�1

=
1

2
kW⇢ � (X �W (�1)

⇢ � (W �W � Y + ⇢⇧Mr(X
⌫)))k2

�
1

2
kW (�1)

⇢ � (W �W � Y + ⇢⇧Mr(X
⌫))k2 +�1

| {z }
:=�2

=
1

2
kW⇢ � (X �W (�1)

⇢ � (W �W � Y + ⇢⇧Mr(X
⌫)

| {z }
:=X⌫

⇢

))k2 +�2

=
1

2
kW⇢ � (X �X⌫

⇢ )k
2 +�2

(4.28)

where we define �1,�2 and X⌫
⇢ as following

�1 =
1

2
kW � Y k

2
� ⇢hr(X

⌫) + ⇢ < Xk,⇧Mr(X
k) >

�2 =
1

2
kW (�1)

⇢ � (W �W � Y + ⇢⇧Mr(X
⌫))k2 +�1

X⌫

⇢ = W (�1)

⇢ � (W �W � Y + ⇢⇧Mr(X
⌫)

Then the Proposition 4.9 is proved because �2 is a constant item that is independent

with variable X.
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According to Proposition 4.5 and 4.9, we compute X⌫+1 iteratively by solving the fol-

lowing problem to get the estimated low rank Hankel matrix:

X⌫+1
2 argmin

1

2
kW⇢ � (X �X⌫

⇢ )k
2 s.t. X 2 H (4.29)

while Problem (4.29) can be easily solved through the weighted diagonal averaging (2.4).

The algorithm of majorized penalty method to solving Problem (4.1) is summarized as

following:

Algorithm 8: Algorithm: Penalised Method of Alternating Projection (pMAP)

Result: Approximated low rank Hankel matrix X̂ and estimated finite rank time

series bx = H
�1(X⌫+1)

Initialization: Trajectory matrix Y , rank constraint r, penalty parameter ⇢,

W⇢ =
p
⇢E +W �W and stop criterion STOP . Construct X0 = Y and set ⌫ = 0.;

while The stop condition STOP is not met do

Compute X⌫
⇢

X⌫

⇢ := W�1

⇢ � (W �W � Y + ⇢⇧Mr(X
⌫))

Compute X⌫+1 by solving Problem (4.29)

X⌫+1
2 argmin

1

2
kW⇢ � (X �X⌫

⇢ )k
2 s.t. X 2 H

⌫ ! ⌫ + 1

Alg.8 indicates at each iterate of pMAP, the current solution X⌫+1 is in fact obtained

by the following update:

X⌫+1 =
W (2)

⇢+W (2)
�A+

⇢

⇢+W (2)
�⇧H(⇧Mr(X

⌫)), (4.30)

where W (2) := W �W and the division W (2)/(⇢+W (2)) is taken componentwise. Com-

pared with the method of alternating projection, this update is just a convex combination

of the observation matrix A and the MAP iterate in the method of alternating projec-

tion. In the special case that W = 0 (which completely ignores the objective in Problem

(4.1)) or ⇢ = 1, (4.30) reduces to MAP.
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4.2.5 Convergence Analysis

Proposition.4.6 shows that the functional value f⇢(X⌫+1) is non-increasing to ⌫. In this

section we establish the convergence for pMAP.

Theorem 4.10. Let the function f⇢(X) be defined in (4.10) and {X⌫
} be the sequence

generated by Alg.8.

1. We have

f⇢(X
⌫+1)� f⇢(X

⌫)  �
⇢

2
kX⌫+1

�X⌫
k
2, ⌫ = 1, 2, ...

2. Let bX be ab accumulation point of {X⌫
}, then for any X 2 H, we have

hrf( bX) + ⇢ bX + ⇢⇧Mr(� bX), X � bXi � 0

That is, bX is a stationary point of the problem (4.10). Moreover, for a given ✏ > 0,

if X0
2 Mr \H and

⇢ � ⇢✏ :=
f(X0)

✏
,

then bX is an ✏-approximate KKT point of (4.1).

Proof. 1. Firstly we have

f(X⌫)� f(X⌫+1) � hrf(X⌫+1), X⌫
�X⌫+1

i (4.31)

This is because the convexity of cost function f(X). The second fact is

kX⌫+1
k
2
� kX⌫

k
2 = 2hX⌫+1

�X⌫ , X⌫+1
i � kX⌫+1

�X⌫
k
2 (4.32)

Let A = X⌫+1 and Z = X⌫ , from (4.3) we have

hr(X
⌫+1)� hr(X

⌫) � h⇧Mr(X
⌫), X⌫+1

�X⌫
i (4.33)
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The last fact is the optimality condition of problem (4.29) that, 8X 2 H we have

hrf(X⌫+1) + ⇢(X⌫+1
�⇧Mr(X

⌫)), X �X⌫+1
i � 0 (4.34)

Combining all facts discussed above, we can deduce the upper bond of functional

error for f⇢(X⌫) as

f⇢(X
⌫+1)� f⇢(X

⌫)

= f(X⌫+1)� f(X⌫) + ⇢gr(X
⌫+1)� ⇢gr(X

⌫)

(4.31)

 hrf(X⌫+1), X⌫+1
�X⌫

i+ ⇢gr(X
⌫+1)� ⇢gr(X

⌫)

= hr(X⌫+1), X⌫+1
�X⌫

i

+
⇢

2
(kX⌫+1

k
2
� kX⌫

k
2)� ⇢(hr(X

⌫+1)� hr(X
⌫))

(4.32)

= hr(X⌫+1) + ⇢X⌫+1, X⌫+1
�X⌫

i

�
⇢

2
(kX⌫+1

�X⌫
k
2)� ⇢(hr(X

⌫+1)� hr(X
⌫))

(4.33)

 hr(X⌫+1) + ⇢X⌫+1
�⇢⇧Mr(X

⌫), X⌫+1
�X⌫

i

�
⇢

2
kX⌫+1

�X⌫
k
2

(4.34)

 �
⇢

2
kX⌫+1

�X⌫
k
2

From Proposition 4.6 we have the sequence {f⇢(X⌫)} converges to a unknown

constant, hence we have kX⌫+1
�X⌫

k
2
! 0 and (X⌫+1

�X⌫) ! 0 as well.

2. Let bX be the accumulation point of {X⌫
}. From (i) we have (X⌫+1

�X⌫) ! 0 ,

which means bX is the accumulation point of sequence {X⌫+1
} as well. Then by

taking the limits on the both side of inequality (4.34), we have

hrf( bX) + ⇢ bX + ⇢⇧Mr(� bX), X � bXi � 0

The condition of ✏-approximate KKT point is proposed in [Zhou et al., 2018,

Definition 3.1]. For a given point bX and the Lagrangian function f⇢(X), bX is said

to be the ✏-approximate KKT point if bX 2 H, gr( bX)  ✏ and
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h@f⇢(X), X � bXi � 0 (4.35)

It is straightforward that bX 2 H because each entry in sequence {X⌫
} is calculated

through weighted Hankel projection, so any X⌫ is a Hankel matrix. (4.35) also

holds because we have rf( bX)+⇢ bX+⇢⇧Mr(� bX) 2 @f⇢(X). From Proposition.4.6

we have f⇢(X0) � f⇢(X1) � ... � f⇢( bX), which means

f(X0) = f(X0) + ⇢gr(X
0) = f⇢(X

0)

� f⇢( bX) = f( bX) + ⇢gr( bX) � ⇢gr( bX)

The first equality holds because gr(X0) = 0 when X0
2 Mr. As a result,

gr( bX) 
f(X0)

⇢


f(X0)

⇢✏
= ✏. (4.36)

With all three condition being satisfied, bX is an ✏-approximate KKT point of (4.6).

4.2.6 Final rank and linear convergence

This part reports two results. One is on the final rank of the output of pMAP and the

rank is always bigger than the desired rank r unless A is already an optimal solution of

(1.2). The other is on the conditions that ensure a linear convergence rate of pMAP.

For this purpose, we need the following result.

Proposition 4.11. [Feppon and Lermusiaux, 2018, Thm. 25] Given the integer r > 0

and consider bX 2 IRk⇥` of rank (r+p) with p � 0. Suppose the SVD of bX is represented

as bX =
P

r+p

i=1
�iuiv

T

i
, where �1( bX) � �2( bX) � · · · � �r+p( bX) are the singular values

of bX and ui,vi, i = 1, . . . , r + p are the left and right (normalized) eigenvectors. We

assume �r( bX) > �r+1( bX) so that the projection operator ⇧Mr(X) is uniquely defined in

a neighbourhood of bX. Then ⇧Mr(X) is di↵erentiable at bX and the directional derivative
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along the direction Y is given by

r⇧Mr( bX)(Y ) = ⇧
TMr (

bX)
(Y ) +

X

1ir
1jp


�r+j

�i � �r+j

hY, �+

i,r+j
i�+

i,r+j

�
�r+j

�i � �r+j

hY, ��

i,r+j
i��

i,r+j

�

where TMr( bX) is the tangent subspace of Mr at bX and

�±

i,r+j
=

1
p
2

�
ur+jv

T

i ± uiv
T

r+j

�
.

Theorem 4.12. Assume that W > 0 and bX be an accumulation point of {X⌫
}. The

following hold.

(i) rank( bX) > r unless A is already the optimal solution of (1.2).

(ii) Suppose bX has rank (r + p) with p > 0. Let �1 � �2 � · · · � �k be the singular

values of bX. Define

w0 := min{Wij} > 0, ✏0 :=
w0

⇢
, ✏1 :=

✏0
4 + 3✏0

, c :=
1

1 + ✏1
< 1.

Under the condition

�r
�r+1

�
8p

✏0
+ 1,

it holds

kX⌫+1
� bXk  ckX⌫

� bXk for ⌫ su�ciently large.

Consequently, the whole sequence {X⌫
} converges linearly to bX.

Proof. (i) Suppose bX is the limit of the subsequence {X⌫
}k2K. We assume rank( bX)  r.

It follows from Thm. 4.10 that

{X⌫+1
}k2K ! bX and lim

k2K

⇧Mr(X
⌫) = ⇧Mr( bX) = bX.
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Taking limits on both sides of (4.30) and using the fact that bX is Hankel, we get

bX =
W (2)

⇢+W (2)
�A+

⇢

⇢+W (2)
�⇧H(⇧Mr( bX)) =

W (2)

⇢+W (2)
�A+

⇢

⇢+W (2)
� bX.

Under the assumption W > 0, we have bX = A. Consequently, rank(A)  r, implying

that A is the optimal solution of (1.2). Therefore, we must have rank( bX) > r.

(ii) Let �(X) := ⇧H(⇧Mr(X)). Since ⇧Mr(X) is di↵erentiable at bX, so is �(X).

Moreover, the directional derivative of �(X) at bX along the direction Y is given by

r�( bX)Y = ⇧H(r⇧Mr( bX)Y ) and kr�( bX)Y k  kr⇧Mr( bX)Y k. (4.37)

The inequality above holds because ⇧H(·) is an orthogonal projection operation to a

subspace and its operator norm is 1. The matrix in Prop. 4.11 have the following

bounds.

k�±

i,r+j
k 

1
p
2

⇣
kur+jv

T

i k+ kuiv
T

r+jk

⌘


1
p
2
(1 + 1) =

p

2,

khY, �±

i,r+j
i�±

i,r+j
k  k�±

i,r+j
k
2
kY k  2kY k.

Therefore,

��������

X

1ir
1jp


�r+j

�i � �r+j

hY, �+

i,r+j
i�+

i,r+j
�

�r+j

�i � �r+j

hY, ��

i,r+j
i��

i,r+j

�
��������

 4
X

1ir
1jp

�r+j

�i � �r+j

kY k  4p
�r+1

�r � �r+1

=
w0

2⇢
=

1

2
✏0kY k. (4.38)

In the above, we used the fact that  (t) := t/(�r � t) is an increasing function of t for

t < �r. Prop. 4.11, (4.37) and (4.38) imply

kr�( bX)Y k  k⇧
TMr (

bX)
(Y )k+ ✏0/2kY k  kY k+ ✏0/2kY k  (1 + ✏0/2)kY k.

The second equality above used the fact that the operator norm of ⇧
TMr (

bX)
is not greater

than 1 due to TMr( bX) being a subspace. Since �(·) is di↵erentiable at bX, there exists
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✏ > 0 such that

k�(X)� �( bX)�r�( bX)(X � bX)k 
1

4
✏0kX � bXk, 8 X 2 B✏( bX).

Therefore,

k�(X)� �( bX)k  k�(X)� �( bX)�r�( bX)(X � bX)k+ kr�( bX)(X � bX)


1

4
✏kX � bXk+ (1 + ✏0/2)kX � bXk = (1 + 3✏/4)kX � bXk.

Now we are ready to quantify the error between X⌫ and bX whenever X⌫
2 B✏( bX).

kX⌫+1
� bXk =

����
⇢

⇢+W (2)
� (�(X⌫)� �( bX))

���� 
⇢

⇢+ w0

k�(X⌫)� �( bX)k


1 + 3✏0/4

1 + ✏0
kX⌫

� bXk = ckX⌫
� bXk.

Consequently, X⌫+1
2 B✏( bX). Since {X⌫

}⌫2K converges to bX, X⌫ will eventually falls in

B✏( bX), which implies that the whole sequence {X⌫
} will converge to bX and eventually

converges at a linear rate.

Remark 3. (Implication on MAP) When the weight matrix W = 0, pMAP reduces to

MAP according to (4.30). Thm. 4.10(i) implies

kX⌫+1
�⇧Mr(X

⌫+1)k2 � kX⌫
�⇧Mr(X

⌫)k2  �kX⌫+1
�X⌫

k
2, (4.39)

which obviously implies

kX⌫+1
�⇧Mr(X

⌫+1)k  kX⌫
�⇧Mr(X

⌫)k. (4.40)

The decrease property (4.40) was known in [Chu et al., 2003, Eq.(4.1)] and was used

there to ascertain that MAP is a descent algorithm. Our improvement bound (4.39) says

a lightly more that the decrease each step in the function kX�⇧Mr(X)k is strict unless

the update becomes unchanged. In this case (W = 0), the penalty parameter is just

a scaling factor in the objective, hence the approximation KKT result in Thm. 4.10(ii)
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does not apply to MAP. This probably explains why it is di�cult to establish similar

results for MAP.

Remark 4. (On linear convergence) In the general context of matrix completion, Lai

and Varghese [2017] established a local linear convergence of MAP under the following

two assumptions. We describe them in terms of the Hankel matrix completion. (i)

The partially observed data a can be completed to a rank r Hankel matrix M . (ii)

A transversality condition (see [Lai and Varghese, 2017, Thm. 2]) holds at M . We

emphasize that the result of Lai and Varghese [2017] is a local result that requires the

initial point of MAP is close enough to M and the rank r assumption of M is also crucial

to their analysis, which also motivated our proof. In contrast, our result is a global one

and enjoys a linear convergence rate near the limit under a more realistic assumption

�r � �r+1. One may have noticed that the convergence rate c though strictly less than

1 may be close to 1. This is also practically expected as MAP often converges slowly.

But the more important point here is that in such a situation it ensures that the whole

sequence converges. This global convergence justifies the widely used stopping criterion

kX⌫+1
�X⌫

k  ✏.

4.3 Extension to complex-valued matrix

The results obtained in the previous sections are for real-valued matrix and they can be

extended to complex-valued matrix by employing what is known as the Wirtinger cal-

culus Wirtinger [1927]. We note that not all algorithms for Hankel matrix optimization

have a straightforward extension from the real case to the complex case, see Condat and

Hirabayashi [2015] for comments on some algorithms. We explain our extension below.

Suppose f : Cn
7! IR is a real-valued function in the complex domain. We write z 2 Cn

as z = x + jy with x,y 2 IRn. The conjugate z̄ := x � jy. Then we can write the

function f(z) in terms of its real variables x and y. With a slight abuse of notation, we

still denote it as f(x,y). In the case where the optimization of f(z) can be equivalently

represented as optimization of f in terms of its real variables, the partial derivatives

@f(x,y)/@x and @f(x,y)/@y would be su�cient. For other cases where algorithms are
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preferred to be executed in the complex domain, then the Wirtinger calculus Wirtinger

[1927] is more convenient to use and it is well explained (and derived) in Kreutz-Delgado

[2009]. The R-derivative and the conjugate R-derivative of f in the complex domain are

defined respectively by

@f

@z
=

1

2

✓
@f

@x
� j

@f

@y

◆
,

@f

@z̄
=

1

2

✓
@f

@x
+ j

@f

@y

◆
.

The R-derivatives in the complex domain play the same role as the derivatives in the

real domain because the following two first-order expansions are equivalent:

f(x+�x,y +�y) = f(x,y) + h@f/@x, �xi+ h@f/@y, �yi+ o(k�xk+�yk)

f(z+�z) = f(z) + 2Re(h@f/@z̄, �zi) + o(k�zk). (4.41)

Here, we treat the partial derivatives as column vectors and Re(x) is the real part of

x. Note that in the first-order expansion in f(z+�z) used the conjugate R-derivative.

Hence, we define the complex gradient to be rf(z) := 2@f/@z̄, when it exists. When

f is not di↵erentiable, we can extend the subdi↵erntial of f from the real case to the

complex case by generalizing (4.41).

In order to extend Thm. 4.7, we need to characterize @dMr(X) in the complex do-

main. We may follow the route of Rockafellar and Wets [2009] to conduct the extension.

For example, we may define the regular subgradient of dMr(X) [Rockafellar and Wets,

2009, Def. 8.3] to its complex counterpart by replacing the conjugate-gradient in the

first-order expansion in (4.41) by a regular subgradient. We then define subdi↵erential

through regular subgradients. With this definition in the complex domain, we may ex-

tend [Rockafellar and Wets, 2009, (8.53]) to derive formulae for @dMr(X). What we

needed in the proof of Thm. 4.7 is (X �⇧Mr(X))/dMr(X) 2 @dMr(X) when X 62 Mr.

The proof of this result follows a straightforward extension of the corresponding part in

[Rockafellar and Wets, 2009, (8.53]) and if reproduced here would take up much space.

Hence we omit it.
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In order to extend the results in Sect. 4.2, we need the subdi↵erential of hr(X) in order

to majorize gr(X). Since hr(X) is convex, its subdi↵erenial is easy to define.

Definition 4.13. The subdi↵erential @hr(X) is defined as

@hr(X) =
n
S 2 Ck⇥`

| hr(Z) � hr(X) +Re

⇣
hS, Z�Xi

⌘o
.

The following result is really what we needed in order to extend the results in Sect. 4.2

to the complex domain.

Proposition 4.14. For any X 2 Ck⇥`, we have PMr(X) ⇢ @hr(X).

Proof. Let ⇧Mr(X) stand for any element in PMr(X). It is easy to verify the following

identities:

kX � Zk
2 = kXk

2 + kZk
2
� 2Re

⇣
hX, Zi

⌘
= kXk

2 + kZk2 � 2Re

⇣
hZ, Xi

⌘
. (4.42)

We use (4.42) to compute

hr(Z)� hr(X)�Re

⇣
⇧Mr(X), Z�X

⌘

=
1

2
k⇧Mr(Z)k2 �

1

2
k⇧Mr(X)k2 +

1

2
k⇧Mr(X)� Zk

2
�

1

2
k⇧Mr(X)k2 �

1

2
kZk

2

| {z }
Re(h⇧Mr (X), Zi)

+
1

2
k⇧Mr(X)k2 +

1

2
kXk

2
�

1

2
k⇧Mr(X)�Xk

2

| {z }
Re(h⇧Mr (X), Xi)

=
1

2
k⇧Mr(Z)k2 �

1

2
kZk

2 +
1

2
k⇧Mr(X)� Zk

2

�

✓
1

2
k⇧Mr(X)k2 �

1

2
kXk

2 +
1

2
k⇧Mr(X)�Xk

2

◆

| {z }
=0

=
1

2
k⇧Mr(Z)k2 �

1

2
kZk

2 +
1

2
k⇧Mr(X)� Zk

2

�
1

2
k⇧Mr(Z)k2 �

1

2
kZk

2 +
1

2
k⇧Mr(Z)� Zk

2 = 0.

This proves the claim.
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A direct consequence is that

@gr(X) = X � @hr(X) � PMr(X)

and the majorization gr(X) through the subdi↵erential of hr(X) holds. The rest of the

extension is straightforward and we do not repeat it here.

4.4 Numerical experiments

In this section we conduct two popular test problems, time series denoising and incom-

plete signal completion, to demonstrate the numerical performance of pMAP. The time

series denoising problem aims to extract the noiseless data from polluted observations

by removing the noise component, while incomplete signal completion problem tries to

approximate the missing data in a incomplete complex valued signal.

In both numerical experiments, a solver is terminated when any of the following condi-

tions is met

|F⇢(X⌫+1)� F⇢(X⌫)|

max{1, F⇢(X⌫)}
 ftol, gr(X

⌫+1)  gtol or
kX⌫+1

�X⌫
k

kX⌫k
 tol.

here tol, ftol, gtol are set as 1.0e � 5, 1.0e � 7 and 1.0e � 8 in both experiments. A

solver will also be terminated if it reaches the maximum iteration steps upper-bound,

which is set as 200. All codes used in below test are written in MATLAB and run on a

laptop with a 16GB memory card, equipped with MATLAB 2019a.

4.4.1 Time Series Denoising

4.4.1.1 Experiment Introduction

In the first experiment we implement the proposed pMAP and some leading solvers in-

cluding Structured Low Rank Approximation (SLRA, Usevich and Markovsky [2014]),
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Cadzow iterations (Cadzow, Gillard [2010]) and Douglas-Rachford iterations (DRI, Con-

dat and Hirabayashi [2015]) for real-valued time series de-noising. In this test we ran-

domly generate noiseless time series a = (a1, a2, ..., an) via the following process:

at =
rX

s=1

ds(1 + ↵s)
tcos(

2⇡t

�s
� ⌧s), for t = 1, 2, ..., n

where all ds, ↵s, �s and ⌧s follow uniform distribution as ds ⇠ U [0, 103), ↵s ⇠ U [�10�3, 10�3),

�s ⇠ U [6, 18) and ⌧s ⇠ U [�⇡,⇡). It is known that for any {l, k} such that l+ k� 1 = n,

the rank of Hankel matrix A = T (a) 2 Rl⇥k must be 2r when both l and k are no

smaller than 2r. We then construct the noisy time series y by adding the noise series ✏

to a as y = a+ ✏, where ✏ = {✏1, ✏2, ..., ✏n} is the noise component and ✏t = ✓ et
kek2

kak.

Here et is the white noise with mean 0 and variance 1. In this test, two scenarios are

considered as {n, r} = {1000, 10} and {2000, 20} respectively. For each scenario we test

three noise levels as ✓ = 0.1, 0.2 and 0.5.

We further consider two weight choices in this experiment as:

1. {W1}i,j = 1, for i = 1, ..., l and j = 1, ..., k;

2. {W2}i,j =
1

i+j�1
, for i = 1, ..., l and j = 1, ..., k.

Both weights are standardised for comparison purpose. Note that Cadzow method do

not allow the weight matrix to be selected flexibly rather than the default W1.

4.4.1.2 Demonstration of convergence

Before coming to the numerical results, we firstly use this test to demonstrate the con-

vergence of Alg.8 and also the updating strategy of penalty parameter ⇢. The sequences

of F⇢(X⌫) at each iterate are plotted in Fig.4.1(a) for both W1 and W2. It can be ob-

served that in both cases, the functional value F⇢(X⌫) at each iterate kept decreasing

and converged. This result is achieved by solving the subproblem at each iterate with

the help of closed form solution (see equation chain (4.30)), hence the decreasing prop-

erty (see Remark 2) always holds. We further plotted the value of kX⌫+1
�X⌫

k at each
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Figure 4.1: Plot of F⇢(X⌫) and kX⌫+1
�Xv

k at each iterate by pMAP. In this test
we keep ⇢ as fixed.

iterate in Fig.4.1(b). We can find that sequence of kX⌫+1
�X⌫

k is also decreasing and

converges to zero, which is consistent with our proof in Theorem.4.10.

The behaviours of �r+1

�r
are shown in Fig.4.2 with respect to di↵erent ⇢ choices. In this

and later experiments, ⇢ is initialised as ⇢0 = 1.0e�2⇥m/n2 where n denotes the length

of a time series or a signal andm denotes the amount of known observations which equals

to n in this test. As we mentioned in Remark 1, the global convergence of quadratic

penalty method can be established when ⇢ approaches infinity with �r+1

�r
approaches

zero as shown in Fig.4.2(a), which means gr(X⌫) will go to zero. However in this case,

we may lose information from input matrix A because a much higher weight is given

to the penalised item gr(X⌫). By contrast if ⇢ is kept fixed as ⇢⌫ = ⇢0 at each iterate,

it can be seen from Fig.4.2(b) that �r+1

�r
fails to approach zero, which leads to output

matrix with higher distances to the r-rank matrix set. Hence for all experiments in this

paper, we will only update ⇢ by ⇢⌫+1 = 1.1⇢⌫ at each iterate when ⇢⌫  n ⇥min(W ),

where min(W ) returns the minimal weights in W . The behaviour of convergence of

Alg.8 appears consistence for other tests, so we will not repeat this demonstration for

the rest experiments.

4.4.1.3 Numerical results

The numerical results are reported in Table.4.1 including the number of iterations (Iter),

cpu time for computation (Time) and root of mean square error (RMSE) for each solver
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Figure 4.2: Plot of �r+1

�r
at each iterate by pMAP. ⇢ is updated by ⇢⌫+1 = 1.1⇢⌫ in

Fig.4.2(a) and fixed without updating in Fig.4.2(b).

which is calculated as

RMSE :=

sX

i2I

(x̂i � ai)2/|I|.

where x̂ = {x̂1, ..., x̂n} is obtained as x̂ = H
�1( bX) and bX is the estimated result from

a certain solver. I denotes the index set of all data to be predicted while |I| stands for

the size of set I. Apparently smaller RMSEs indicate better solution qualities. Because

Cadzow do not allow users to select arbitrary weights apart from W1, we will not report

the numerical results of Cadzow underW2. For any combinations of {n/r/✓}, we conduct

50 random test and all numerical results reported in Table.4.1 are the mean values over

50 tests.

Our first observation on Table.4.1 is that SLRA always performs worse than other three

solvers in terms of estimation accuracy (RMSE). This is partly because SLRA is e�cient

only when the inverse of W is banded ([Usevich and Markovsky, 2014, Theorem 1]),

which may not hold in this test. When applying W = W1, we found that pMAP

reports the best results in 3 examples out of 6 while DRI performs the best in the

rest 3 examples. In general, Cadzow, DRI and pMAP have very closed performance

on estimation accuracy under W1 because they are Method of Alternating Projections

based algorithms.

When the weight matrix is set as W2, a significant improvement on the estimation

accuracy can be observed for SLRA, DRI and pMAP comparing using W = W1. This



94 Chapter 4 A Majorization Penalty Method

result matches our expectation because W2 assumes that all data have equal importance

by sharing the same weight, while using W1 implies that data in the middle of a time

series are more accurately measured than the data at both ends by having higher weights.

For all {n/r/✓} combinations, our proposed solver with W2 can always generate the

estimation results with lowest RMSEs. It is also important to mention that our pMAP

algorithm enjoys the most robust convergence result among all candidate solvers. As a

result, we conclude that our propose pMAP algorithm is very competitive and powerful

in solving real-valued time series denosing problems.

4.4.2 Spectral Sparse Signal Recovery

4.4.2.1 Experiment Introduction

In this experiment, we consider the problem of recovering missing values in an incomplete

spectral sparse signal. We refer to Cai et al. [2018, 2019] and the references therein for its

background in recovering signals which are spectrally sparse via o↵-grid methodologies.

We follow the suggestions in Cai et al. [2019] to generate the experiment data a =

{a1, a2, ...an} where

at =
rX

s=1

dse
2⇡j!st, for t 2 {0, 1, , ..., n}

where j =
p
�1, r is the model order, !s is the frequency of each sinusoid and ds 6= 0

is the weight of each sinusoid. Both !s and ds are randomly sampled following uniform

distributions, as !s ⇠ U [0, 1) and ds ⇠ U [0, 2⇡). Indexes of missing data are randomly

sampled following uniform distribution. In this experiment we introduce three sub-tests

with di↵erent targets.

test.a) Incomplete signal recovery without noise. In this sub-test we assume only a

subset ⌦ of the sampling points {1, ..., n} are observed and we aim to recovery the signal

by estimating the missing data. Here all observed data are noiseless. We use success rate

(SR) to measure the performance of candidate methods in incomplete signal recovery.
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Parameters W Cadzow SLRA DRI pMAP

1000/10/0.1 W1

Iter 7.86 136.86 115.64 60.50
Time 0.11 14.92 4.70 1.21
RMSE 19.81 520.21 19.81 19.80

1000/10/0.1 W2

Iter 146.84 200 70.90

Time 15.95 7.88 1.18

RMSE 455.85 19.70 17.10

1000/10/0.2 W1

Iter 9.30 151.28 200 65.90
Time 0.11 16.40 7.83 1.30
RMSE 26.68 325.94 26.67 26.62

1000/10/0.2 W2

Iter 148.74 200 78.64

Time 16.06 7.88 1.28

RMSE 305.27 26.47 22.42

1000/10/0.5 W1

Iter 12.50 107.78 200 79.94
Time 0.15 11.65 7.61 1.53
RMSE 83.97 160.84 83.81 84.49

1000/10/0.5 W2

Iter 115.98 200 88.80

Time 12.64 7.50 1.39

RMSE 117.02 83.37 73.68

2000/20/0.1 W1

Iter 10.16 163.30 200 58
Time 0.97 192.74 51.87 6.80
RMSE 89.85 1685.07 89.60 90.90

2000/20/0.1 W2

Iter 135.56 132.88 59.14

Time 160.17 35.93 6.32

RMSE 1033.91 78.27 76.30

2000/20/0.2 W1

Iter 10.28 165.94 200 74.00
Time 0.96 194.05 47.19 9.61
RMSE 139.31 942.41 139.03 140.96

2000/20/0.2 W2

Iter 185.64 200 81.24

Time 218.95 48.00 8.25

RMSE 671.99 138.64 122.19

2000/20/0.2 W1

Iter 14.58 166.00 200 70.14
Time 1.32 196.08 53.63 7.15
RMSE 654.92 2149.37 650.22 641.95

2000/20/0.2 W2

Iter 176.02 200 78.64

Time 207.31 53.53 7.99

RMSE 1926.84 649.56 622.45

Table 4.1: Experiment Results for Cadzow iteration, SLRA(structured low rank ap-
proximation), DRI(Douglas-Rachford iterations) and our proposed pMAP, including
iterations (Iter), CPU time in seconds (Time) and Root of mean square error (RMSE).
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We say the signal is successfully recovered if

kx̂� ak

kak
 1.0e� 3

where x̂ is the estimated signal.

In this test, signal length n is set to 499, 999 or 1999, respectively. The percentage of

known observations m

n
is set to 30% or 60% where m stands for the amount of known

observations. All combinations of {n/m/r} used in this test can be found in Table.4.2.

To compare the performance of our proposed method, we further introduce three state-

of-art solvers in spectral sparse signal recovery including Atomic Norm Minimization

(ANM Tang et al. [2013]), Fast Iterative Hard Thresholding (FIHT Cai et al. [2018])

and Projected Gradient Descent (PGD Cai et al. [2018]). W for each solver is defined

as

Wi,j =

8
>>>><

>>>>:

1/
p
i+ j � 1 for i+ j � 1 = 1, . . . , k � 1

1/
p
k for i+ j � 1 = k, . . . , n� k + 1

1/
p
(n� i� j + 2) for i+ j � 1 = n� k + 2, . . . , n,

if ai+j�1 is observed, and Wi,j = 0 if it is missing.

test.b) Incomplete signal recovery with noise. This sub-test still aims to recover an

incomplete spectral sparse signal, but some observed data are noisy while others are

noiseless. Here we follow the signal generating process the same as it in test.a, however,

1

3
m observations are polluted by random noise, as yi = ai+✏i where ✏i = ✓ et

kek2
kak. Here

et is a complex stranded normal random variable and the noise level ✓ is set as 0.2. We

assume the index set of polluted observations is known in advance.

The weight matrix W is set as follows. We give polluted observations very small weights

(say 1) and noiseless observations are assigned to much larger wights such as 100. The

missing data in the signal are still given zero weight. It is worth noting that this

weight matrix setting is for pMAP only because FIHT and PGD do not support flexible

weight choices. The rest settings of this sub-test such as the definition of {n,m, r} are

consistences with test.a.
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test.c) Recover missing data with inaccurately estimated rank. In test.a and test.b,

we assume the objective rank r to be a known parameter. However, obtaining the

true information of objective rank is quite challenging in many real applications. So in

this sub-test we will examine the performances of candidate solvers in recovering the

incomplete spectral sparse signals while the objective rank r is incorrectly estimated.

Signal length n is set as 3999 and we assume that 30% data in a signal are randomly and

accurately observed without noise. True rank r is set as 15 but assumed to be unknown

in this test. It means for each solver, we will try di↵erent estimated rank r̂ ranges from

6 to 30. Success rates (SR) over 50 instances are reported to measure the performance

of each solver.

4.4.2.2 Numerical Results

test.a) The numerical results of this test are listed in Table 4.2 including total iterations

(Iter), CPU time cost in seconds (Time), RMSE and success rate (SR) for each candidate

solver. Among all solvers, ANM enjoys the best global convergence result because of its

convex relaxation. However, the computational cost of ANM is much heavier than the

rest solvers and it runs out of memories when n is larger than 500. At the same time,

it fails to generate better results comparing with our proposed solver. Hence we do not

report its performances in the rest part of this test problem. Although DRI performs

slightly better than Cadzow in terms of accuracy, both of these two solvers can not

successfully recovery any incomplete signals.

We further note the fact that in some cases FIHT stops within a few iteration step and

this behaviour may lead to inferior solutions. Similar behaviours were also reported in

another recent research (Fig. 3, Ying et al. [2018]). Also with the increasing of r, the

performance of PGD declines when the ratio between m and r keeps fixed. It is because

PGD has some assumptions on the lower bond of m with respected to r (Theorem 2.1,

Cai et al. [2018]), which may not hold in some cases. On the other hand, pMAP performs

the best in 11 cases out of 12 in terms of SR.
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n/m/r Cadzow DRI ANM FIHT PGD pMAP

m/n = 30%

499/150/10

Iter 10.36 200 - 27.96 54.66 46.90
Time 9.2e-2 2.84 9.0e2 0.01 0.17 0.58
RMSE 1.01 0.27 1.1e-4 3.3e-6 1.1e-3 1.1e-2
SR 0.0 0.0 0.9 1.0 0.9 0.96

499/150/20

Iter 13.42 200 - 24.12 123.14 107.22

Time 0.18 2.82 1.3e3 0.17 0.58 1.75

RMSE 1.02 0.52 1.4e-3 4.9e-1 3.2e-3 1.3e-1

SR 0.0 0.0 0.6 0.06 0.68 0.68

999/300/30

Iter 11.76 200 84.54 105.94 85.12

Time 0.67 15.85 0.69 0.93 5.55

RMSE 1.01 0.43 1.4e-2 1.5e-3 4.9e-4

SR 0.0 0.0 0.94 0.76 1.0

999/300/40

Iter 14.18 200 9.92 161.20 141.82

Time 1.06 15.81 1.9e-1 1.75 12.40

RMSE 1.02 0.54 0.54 7.1e-3 1.5e-1

SR 0.0 0.0 0.0 0.48 0.56

1999/600/60

Iter 13.06 200 98.24 155.06 103.78

Time 7.39 140.94 2.18 3.80 60.29

RMSE 1.02 0.45 1.2e-2 4.8e-3 5.6e-4

SR 0.0 0.0 0.96 0.50 1.0

1999/600/80

Iter 14.38 200 2 191.16 180.62

Time 11.32 140.44 3.6e-1 6.19 147.11

RMSE 1.02 0.57 0.57 9.7e-3 2.0e-1

SR 0.0 0.0 0.0 0.16 0.40

m/n = 60%

499/300/20

Iter 11.02 200 - 14.42 76.56 24.22

Time 0.15 2.82 8.4e2 9.4e-2 3.7e-1 4.1e-1

RMSE 0.97 7.4e-2 1.4e-5 8.5e-6 1.2e-3 3.9e-4

SR 0.0 0.0 1.0 1.0 0.8 1.0

499/300/40

Iter 14.98 200 - 27.12 180.56 41.36

Time 0.39 2.79 1.6e3 0.29 1.34 1.20

RMSE 0.95 0.22 4.9e-4 2.7e-5 8.3e-3 5.2e-4

SR 0.0 0.0 0.8 1.0 0.18 1.0

999/600/60

Iter 13.42 200 20.88 172.22 40.72

Time 1.71 15.84 0.42 2.51 5.63

RMSE 0.96 0.17 1.7e-5 4.6e-3 5.6e-4

SR 0.0 0.0 1.0 0.42 1.0

999/600/80

Iter 15.22 200 27.14 198.30 52.58

Time 2.87 15.80 0.66 3.81 11.07

RMSE 0.94 0.24 2.5e-5 9.6e-3 6.3e-4

SR 0.0 0.0 1.0 0.06 1.0

1999/1200/120

Iter 14.10 200 21.30 195.94 41.50

Time 18.12 190.52 1.25 9.72 54.39

RMSE 0.96 0.19 2.7e-5 6.2e-3 5.4e-4

SR 0.0 0.0 1.0 0.08 1.0

1999/1200/160

Iter 16.54 200 27.52 200 52.74

Time 31.03 140.80 2.47 13.52 101.57

RMSE 0.95 0.27 2.7e-5 1.2e-2 6.3e-4

SR 0.0 0.0 1.0 0.0 1.0

Table 4.2: Numerical results for six di↵erent solvers on the incomplete signal recovery
experiment including iterations (Iter), computational time (Time), estimation error
(RMSE) and success recovery rate (SR). Results in this table are the average value of
50 trials. *Experiment results ANM when n � 999 are not available because they run

out of memory.
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We find that FIHT is more computational e�cient than pMAP. This is the result of

using the subspace technique in FIHT (Alg.2 in Cai et al. [2019]), which is designed to

approximate the matrix projections on low rank subspace and reduces the computational

time from O(n3) (SVD) to O(nr2). Although this technique can be applied in our

framework to reduce the computational cost as well, it will break our convergence results.

We leave this potential improvement for future researches.

In many real world applications, it is required to estimate the coe�cients of a spectral

sparse signal including amplitude ds and frequency !s for all s 2 [1, 2, ..., r]. After getting

recovered spectral sparse signals by a specific solver, we use the method suggested by

Condat and Hirabayashi [2015] to reconstruct their coe�cients. We plot the coe�cient

reconstruction results in Fig.4.4 over two instances. It is easy to observe that In terms

of r = 20, FIHT incorrectly estimated most of coe�cients with significant errors while

both PGD and FIHT can successfully recover most of them. On the other hand when r

increases to 40, PGD works worse than FIHT and pMAP. There are 5 to 6 coe�cients

can be accurately estimated by FIHT and pMPA, but not PGD.

Because a spectrally sparse signal can be represented by a few non-zero coe�cients in

finite discrete bases or dictionaries, in this experiment we aim to estimate the locations

and amplitude of these coe�cients. Apparently the accuracy of signal coe�cients es-

timation from incomplete observations is highly related to the accuracy of incomplete

signal recovery. We follow the parameter reconstruction procedure given in [Condat and

Hirabayashi, 2015, Fig.2, Step4 - Step 5] to generate our coe�cients estimation results,

which can reconstruct coe�cients exactly for noiseless observations. Using the simulated

signals and setting N = 499, we plot the coe�cient estimation results for four methods

in Fig.4.3 (� = 30%) and 4.4 (� = 60%) using some randomly selected sample.

• Fig.4.3 In these figures we observe ANM, pMAP and PGD can all estimate the

true coe�cients accurately. However in this case, only 7 out of 20 coe�cients can

be approximated successfully by FIHT (see Fig.4.3(b)).
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Figure 4.3: Spectral sparse signal coe�cients reconstruction results by FIHT, PGD
and pMAP, setting {n/m/r} = {499/150/20}. Black circles stand for the true locations

of coe�cients while red stars stand for the estimated locations of coe�cients.

• Fig.4.4 In this figure all these four algorithms failed to recover every coe�cient

exactly. But in this example, ANM, FIHT and pMAP generates very close co-

e�cient estimation results and these results are better than the results obtained

through PGD. In Fig.4.4(c) some coe�cients are pointed out by arrows. These

coe�cients can not be accurately estimated by PGD but can be recovery through

other three methods.

test.b) Table.4.3 lists the numerical results of this test including Iter, Time, RMSE and

SR for five solvers. Due to the interference of noise, we arise the threshold of success

rate to 1.0e� 2 to make sure the numerical results are comparable and meaningful.

Experimental results show that our proposed pMAP significantly outperforms the rest

four candidate solvers in all tests. All the rest solvers fail to recover any signals success-

fully while in all cases, while the SR of pMAP is at least 0.94 in all cases. It is because
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n/r Cadzow FIHT PGD DRI pMAP

499/5

Iter 7.8 7.86 21.56 200 20.88

Time 6.4e-2 2.5e-2 4.8e-2 2.84 0.23

RMSE 1.00 2.5e-2 2.5e-2 2.5e-2 2.1e-3

SR 0.0 0.0 0.0 0.0 1.0

499/10

Iter 8.92 17.32 32.64 200 27.94

Time 7.9e-2 6.6e-2 0.10 2.82 0.36

RMSE 0.98 3.6e-2 3.6e-2 4.4e-2 3.2e-3

SR 0.0 0.0 0.0 0.0 1.0

499/20

Iter 10.82 30.74 79.34 200 42.94

Time 7.9e-2 0.17 0.36 2.81 0.72

RMSE 0.98 5.6e-2 5.6e-2 9.9e-2 6.5e-3

SR 0.0 0.0 0.0 0.0 0.96

999/10

Iter 8.22 8.98 28.29 200 29.58

Time 0.19 4.9e-2 0.12 15.89 1.01

RMSE 1.00 2.6e-2 2.6e-2 3.5e-2 1.4e-3

SR 0.0 0.0 0.0 0.0 1.0

999/20

Iter 9.26 15.76 46.70 200 39.32

Time 0.35 0.11 3.1e-1 15.85 1.82

RMSE 0.99 3.7e-2 3.7e-2 6.0e-2 2.1e-3

SR 0.0 0.0 0.0 0.0 1.0

999/40

Iter 11.60 52.78 142.16 200 60.48

Time 0.93 0.56 1.49 15.93 5.29

RMSE 0.97 5.7e-2 5.7e-2 0.13 4.4e-3

SR 0.0 0.0 0.0 0.0 0.94

1999/20

Iter 8.36 12.70 34.36 200 44.86

Time 1.60 0.12 0.37 141.04 9.40

RMSE 0.99 2.6e-2 2.6e-2 4.2e-2 9.6e-4

SR 0.0 0.0 0.0 0.0 1.0

1999/40

Iter 9.68 19.96 69.72 200 58.72

Time 3.53 0.32 1.21 140.48 22.80

RMSE 0.98 3.8e-2 3.8e-2 7.2e-2 1.6e-3

SR 0.0 0.0 0.0 0.0 1.0

1999/80

Iter 11.80 70.18 185.26 200 86.16

Time 9.26 2.06 5.88 138.65 67.73

RMSE 0.97 5.8e-2 5.8e-2 0.14 3.6e-3

SR 0.0 0.0 0.0 0.0 0.98

Table 4.3: Numerical results for Cadzow, FIHT, PGD, DRI and our proposed pMAP
on the noisy signal recovery experiment, including iterations (Iter), CPU time in seconds

(Time), root of mean square error (RMSE) and success rate (SR).
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Figure 4.4: Spectral sparse signal coe�cients reconstruction results by FIHT, PGD
and pMAP, setting {n/m/r} = {499/300/40}. Black circles stand for the true locations

of coe�cients while red stars stand for the estimated locations of coe�cients.

in DRI, FIHT and PGD, the weight of each observations can not be customised, which

means these two solvers have to give equal weights to both noisy observations and noise-

less observations. As a result, their estimation results are significantly a↵ected by noisy

observations.

test.c) The numerical results of recovering missing data with inaccurately estimated

rank experiment are plotted in Fig.4.5 for each solver. When r̂ is smaller than 15,

success rate for all solvers are zero. It indicates that none of these solvers can recover

the incomplete signal successfully when there is a lack of coe�cients information. With

r̂ exactly equals to 15, all three methods including FIHT, PGD and pMAP can achieve

100% recovery rate. However when r̂ > 15, one can expect various performances of three

solvers. The success rates of both PGD and FIHT gradually decline with the increasing

of r̂ and they finally reach 35% and 25% respectively when r̂ = 30. One the other hand,



Chapter 4 A Majorization Penalty Method 103

6 9 12 15 18 21 24 27 30

Approximated Input Rank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
cc

e
ss

 R
e
co

ve
ry

 R
a
te

Figure 4.5: SR when the input rank is misappropriated for FIHT, PGD and pMAP.
n is set as 3999 and 30% observations are known. True rank r is set as15.
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Figure 4.6: Performance comparison for candidate solvers in incomplete signal recov-
ering when the input rank is incorrectly estimated. True rank is 15 and input rank
is 21. Fig.4.6(a) plots the relative gap between x⌫ and x⌫+1 for each solver at each
iteration, while Fig.4.6(b) plots the singular values of final solution by each solver.

SR of our proposed pMAP stays at 100% for any r̂ no smaller than 15, which indicates

that pMAP is more robust to the overestimation of objective rank than the rest two

solvers.

Fig.4.6 compares the PGD, FIHT and pMAP using a random incomplete signal recovery

example, which helps explain the performance di↵erence. Fig.4.6(a) shows that the

failures of both FIHT and PGD in recovering incomplete signal are caused by the non-

convergence behaviours, which lead to inferior results as displayed in Fig.4.6(b).
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4.5 Comparisons between pMAP and SMM

4.5.1 Di↵erences between pMAP and SMM

In previous chapter we have proposed SMM to tackle the same weighted low rank Hankel

matrix optimization problem. Both SMM and pMAP framework are based on the alter-

nating minimization technique and also both implement the majorization minimization

method. However, pMAP is superior than SMM in the following aspects.

1. (Weight matrix) The approach to deal with the weight matrix W is the first

di↵erence between SMM and pMAP. Since it is quite di�cult to compute the low

rank projection of a matrix under weighted norm, in SMM we introduced the

(p,q)-norm, where we need to find a set of {p,q} such that

1

2
k(
p
p
p
q
T ) �Xk �

1

2
kW �Xk 8X 2 M

In this way we construct the majorization surrogate function for the original ob-

jective function. However in pMAP, we kept the weight matrix W accurately. The

pMAP solver can benefit from this improvement in at least two aspect. Firstly,

computing the suitable {p,q} to ensure the above inequality will lead to some ex-

tra computing cost. At the same time, introducing (p,q)-norm changes the weight

matrix W , which leads to the fact that final solution by SMM may not be a good

approximation for the original matrix optimization problem.

2. (Sub-problem solving) The second important di↵erence between SMM and

pMAP is the sub-problem solving phase. In SMM, we introduce the alternat-

ing projection proposed in Gillard and Zhigljavsky [2016] to solve its sub-problem,

i.e., Alg. (4). However, the alternating projection method is a heuristic algorithm

so its solution can only be used as an approximated solution to the sub-problem.
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In pMAP, by contrast, we have the closed form solution for its sub-problem. The

solution updating at each iterate takes the following forms:

Xk+1 = ⇧W

H (W�1

⇢ � (W �W � Y + ⇢⇧Mr(X
k)))

As we can see, the above solution updating process implement both Hankel matrix

projection operator and low rank matrix projection operator by only once. This

improvement 1) can ensure that the sandwich inequalities hold at each iterate

because we solved the sub-problem using closed form solution and 2) reduce the

computing cost because the alternating projection is implemented by only once.

3. (Convergence result) SMM and pMAP also have di↵erent convergence result.

By introducing the majorization minimization framework, SMM can ensure the

non-increasing of its objective function value at each iterate. Since this objective

function is blow bounded by zero, we can guarantee that SMM will converge if the

sandwich inequality always holds. However, majorization minimization framework

can not guarantee any further convergence result, e.g., whether SMM will converge

to a stationary point.

This issue is been considered in this pMAP work. In Theorem 4.10 we proved

that, if ⇢ is below bounded by some value then pMAP will converge to an ✏-

approximate KKT point. Then in Theorem 4.12 we further proved that, given

some conditions the solution sequence generated by Alg.8 will converges linearly

to the accumulation point.

4.5.2 Numerical Experiment Comparison

This section implements a synthetic incomplete spectral sparse signal recovery experi-

ment to illustrate the performance di↵erences between pMAP and SMM. We implement

the experiment in Section.4.4.2 for both SMM and pMAPand the experimental result is

shown in the following table.
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n/m/r SMM pMAP

Iter(TotalIter)/Time/RMSE/SR Iter/Time/RMSE/SR

m/n = 30%

499/150/10 149.8(1837)/15.4/1.00/0 46.90/0.58/1.1e-2/0.96

499/150/20 182.9(3465)/46.4/1.02/0 107.22/1.75/1.3e-1/0.68

999/300/30 188.7(2321)/31.54/1.00/0 85.12/5.55/4.9e-4/1

999/300/40 173.1(6916)/184.85/1.01/0 141.82/12.40//1.5e-1/0.56

m/n= 60%

499/300/20 193.4(2147)/34.0/1.03/0 24.22/4.1e-1/3.9e-4/1

499/300/40 183.2(7694)/227.3/0.95/0 41.36/1.20/5.2e-4/1

999/600/60 197.8(6645)/906.7/1.00/0 40.72/5.63/5.6e-4/1

999/600/80 187.0(9008)/1891/0.99/0 52.58/11.07/6.3e-4/1

Table 4.4: The numerical experiment comparison between SMM and pMAP, in the
experiment of incomplete spectral spare signal recovery. Iter of SMM denotes the total
number of outer iterations implemented in SMM, while TotalIter in the bracket stands

for the total number of alternating projection implemented in SMM.

We have several observations from this numerical result. First of all, we may found that

SMM can not recover any incomplete signal since its success rates in all instances are

zeros and its RMSE is close to 1. The reason behind this result is quite straightforward.

In SMM we introduce the (p,q)-norm to approximate the weighted norm in objective

function. As a result, the weight of unknown observations are not strictly zero, which

means the result of SMM is significantly influenced by the initial guess of unobserved

data.

The second observation is SMM requires much more computing cost than pMAP. The

extra computational cost of SMM comes from the multiple time implementation of

alternating projection at each iteration. We conclude that the pMAP scheme is superior

to SMM in both approximation accuracy and computing e�ciency.

4.6 Conclusions

In this section we keep focusing on the weighted low rank Hankel matrix optimization

problem. Based on the SMM, we further introduced the penalised method to deal with

the rank constraint, and then introduce the majorization minimization scheme so that

the problem can be tackled iteratively with non-increasing objective function values.
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We further showed that the subproblem enjoys a closed form solution, which can be

e�ciently computed. We demonstrated the global optimal convergence property of our

approach pMAP by assuming that the penalty parameter goes to infinity. We also

showed that this method will at least converge to an ✏-approximate KKT point linearly

if the penalty parameter ⇢ is above a threshold. This method can be extended to tackle

complex-valued matrix because the majorization gr(X) through the subdi↵erential of

hr(X) holds in the complex-valued case. In the computational experiments for both

series denoising and signal completion problems, pMAP usually outperforms other state-

of-the-art solvers in terms of approximation accuracy within reasonable computing times.





Chapter 5

Extensions of Majorized Penalty

Scheme

Chapter 3 and 4 have introduced the weighted low rank Hankel matrix approxima-

tion problem and two solvers (SMM and pMAP) were proposed to tackle this NP-hard

problem. In fact this problem can be considered as a specific case of low rank matrix

learning which aims to find a low rank matrix while some structural constraints are sat-

isfied. There are some other applications falling into this category, for example, matrix

completion (Keshavan et al. [2010]), robust principal component analysis (Wright et al.

[2009]) and multi-task feature learning (Su et al. [2015]), to name just a few. Solving

these problems often faces the same di�cult, i.e., they are all formulated as NP-hard

optimization problem because of the low rank constraint.

A natural question is whether we can extend our proposed framework like pMAP to

tackle these problems, because we have seen its outstanding performances in tackling low

rank constraint in both theoretical results and numerical experiments. In this chapter

we try to achieve this target by tackling another two popular problems as robust matrix

completion and principle component pursuit. We will demonstrate the approach to

fit pMAP in these problems and also conduct numerical experiments to illustrate the

performances of pMAP when comparing with some state-of-the-art solvers.

109
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5.1 Robust Matrix Completion

5.1.1 Introduction and Literature Review

In many practical applications, it is believed that the observed data comes from a low

dimension space together with some noise. Consider a movie rating data matrix which

each column represents a selected movie and each row contains the ratings from one

movie customer to each movie. It is assumed that only limited factors can influence a

customer’s ratings on a specific movie. Also all customers can be categorised into lim-

ited sub-groups where customers in the same sub-group have similar movie preferences.

These assumptions leads to the fact that this movie rating data matrix is the sum of a

low rank matrix and a noise matrix (Jawanpuria and Mishra [2018]). However in real

practices, it is often di�cult or even impossible to get all values of a data matrix. In

some circumstances one can only observe very limited data, for example in some popular

movie rating dataset, the sparsity of known observations is less than 5% (e.g., in the

well known Netflix database, more than 98.8% ratings are unknown).

Many researches employed low rank matrix completion techniques to recover the missing

values in a low rank matrix. This problem has a variety of real applications such as

video denoising [Ji et al., 2010], phase retrieval [Candes et al., 2015], image classification

[Cabral et al., 2015] and wireless sensor network localization [Saeed et al., 2018]. Another

famous application of matrix completion is recovering missing values in a movie rating

matrix as discussed earlier such that one can make recommendations accordingly.

Consider an uncompleted matrix Y 2 Rl⇥k and a index set ⌦ including indices of all

observed data, e.g., {i, j} 2 ⌦ if Yi,j is observed and {i, j} /2 ⌦ if it is unknown. The

basic low rank matrix completion problem tries to find X by solving:

min rank(X) (5.1)

s.t. Xij = Yij for all {i, j} 2 ⌦
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The constraint of Problem (5.1) can be equivalently written as P⌦(X) = P⌦(Y ), where

P⌦(X)i,j equals to Xi,j if {i, j} 2 ⌦ and 0 otherwise. This problem is highly non-

convex and di�cult to solve [Wright et al., 2009]. Several di↵erent approaches have

been employed to tackle this problem and a popular practice is to rewrite the Problem

(5.1) by replacing the non-convex rank objective function by the nuclear norm (see Liu

and Vandenberghe [2009] and Toh and Yun [2010]) and solve the following problem:

min
X

kXk⇤ (5.2)

s.t. Xij = Yij for all {i, j} 2 ⌦

By introducing the convex relaxation, Problem (5.2) becomes a convex optimization

problem and its global optimal solution can be guaranteed by some developed semi-

definite programming solvers such as CXV (Grant et al. [2008]).

Note that Problem (5.1) and (5.2) assumes the observed data is noiseless. However, this

assumption is quite strict for many real-life applications and when the observations are

polluted by noise, it is often di�cult to recover the matrix via these formulations. So it

is important to ensure that the proposed low rank matrix recovery technique is robust

to noise. Assume the object rank or its upper-bound is known, a widely considered

approach (see Ngo and Saad [2012], Jiang et al. [2017]) is formulating the problem as

min kP⌦(X)� P⌦(Y )k2 (5.3)

s.t. rank(X)  r

This problem is known as Robust Matrix Completion (RMC) which allows the observa-

tions to be noisy. One approach to solve Problem (5.3) is to introduce the nuclear norm

again and rewrite the problem using penalised method:

min kP⌦(X)� P⌦(Y )k2 + ⇢kXk⇤ (5.4)

such that the global optimal solution can be guaranteed, for example, in the work by

Hsieh and Olsen [2014]. However, nuclear norm minimization technique often su↵ers
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from heavy computational costs despite its advantage in theoretical convergence. Con-

sidering that matrix recovery is often employed in dealing with large and complex data

set, a good solver should be computationally e�cient as well.

Non-convex techniques such as Riemannian optimization (see Vandereycken [2013], Wei

et al. [2016], Cambier and Absil [2016]) and alternating projection (Jain et al. [2010],

Jiang et al. [2017]) are also introduced to tackle this problem. The numerical results

show that these non-convex techniques can recover the incomplete matrix quite well

in both accuracy and computing e�ciency. These facts drive us to explore the poten-

tial application of our proposed non-convex framework in tackling this robust matrix

completion problem.

5.1.2 The Majorization Penalty Approach

In this section we extend the pAMP framework to solve Problem (5.3). It is straight-

forward that (5.3) can be equivalently rewritten as:

min kW � (X � Y )k2 (5.5)

s.t. rank(X)  r

where the weight matrix W is introduced to replace the fidelity projection, defined as:

Wi,j :=

8
><

>:

1 if Yi,j is known

0 if Yi,j is unknown.

Taking the advantage of pMAP framework, (5.5) can be reformulated as

min f⇢(X) :=
1

2
kW � (X � Y )k2 + ⇢gr(X) (5.6)

where gr(A) is already defined in (4.5):

gr(A) =
1

2
kA�⇧Mr(A)k2 =

1

2
kAk

2
� hr(A), 8A 2 M



Chapter 5 Extensions of Majorized Penalty Scheme 113

and hr(A) is defined in (4.3):

hr(A) =
1

2
k⇧Mr(A)k2 =

1

2

rX

i=1

�ri (A), 8A 2 M

Similarly with previous section, we have the following propositions to show that solving

Problem (5.6) is equivalent to solving the original completion problem (5.5):

Proposition 5.1. Let X⇤
r 2 M be the global solution to problem (5.6). If the rank of

X⇤
r is not larger than r, then X⇤

r is a global optimal solution to problem (5.5).

Proposition 5.2. Let " > 0 be a given positive number and X⇤
2 M an optimal solution

to the following least square problem

min
1

2
kW � (X � Y )k2

Assume ⇢ > 0 is chosen such that (f(Xr)� f(X⇤))/⇢  " and let X be a global optimal

solution to (5.5). Then we have

gr(X
⇤

r )  " and f(X⇤

r )  f(X)� ⇢gr(X
⇤

r )  f(X) (5.7)

Proofs of Prop.5.1 and 5.2 can be easily driven from proofs of Prop.4.3 and 4.4 so we

do not repeat them here. Now let’s introduce the majorization minimization framework

to tackled penalised problem (5.6). Let gmr (A,Z) and fm
⇢ (A,Z) be defined the same as

in (4.7) and (4.10):

gmr (A,Z) :=
1

2
kAk2 � hr(Z)� < ⇧Mr(Z), A� Z >, 8A,Z 2 M

fm

⇢ (A,Z) :=
1

2
kM � (A� Y )k2 + ⇢gmr (A,Z), 8A,Z 2 M

Lemma 4.5 provided that fm
⇢ (X,Z) is a majorization function of f⇢(X) according to

Definition 2.4. This means we can introduce the majorization minimization framework

to tackle (5.6). Suppose X0 = Y and we have current iterate X⌫ , the majorization mini-

mization framework suggested to find the next iterate X⌫+1 by solving the minimization
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problem:

X⌫+1
2 argmin fm

⇢ (X,X⌫), for ⌫ = 0, 1, ... (5.8)

As a result the sandwich inequalities must hold here:

f⇢(X
⌫+1)  f⇢(X

⌫) for ⌫ = 0, 1, ... (5.9)

Inequality (5.9) can be easily driven from Theorem.2.5 and Lemma.4.5. This inequality

(5.9) guarantees that the objective function value of Problem (5.6) is non-increasing

at each iterate using majorization minimization framework. Because fm
⇢ (X) is founded

below by zero, the sequence of fm
⇢ (X⌫) will be guaranteed to converge to a certain point.

At the same time, the sub-problem (5.8) can be easily solved according to Prop. (4.9)

by taking the following updating at each iterate:

X⌫+1 = W (�1)

⇢ � (W �W � Y + ⇢⇧Mr(X
⌫)) (5.10)

Following we summarise the algorithm of pMAP to tackle the Robust Matrix Completion

problem.

Algorithm 9: Algorithm: pMAP for Robust Matrix Completion

Result: Approximated low rank matrix X̂ ;

initialization: Observed incomplete matrix Y , rank constraint r, penalty parameter

⇢, W⇢ =
p
⇢E +W �W , stop criterion STOP and initial guess X0. Set ⌫ = 0 ;

while The stop condition STOP is not met do

Compute X⌫+1 as

X⌫+1 = W (�1)

⇢ � (W �W � Y + ⇢⇧Mr(X
⌫))

⌫ ! ⌫ + 1

5.1.3 Convergence Properties

In previous section we have established the non-increasing behaviour of objective func-

tion value of f⇢(X⌫) at each iterate using majorization minimization framework. This
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section reports two more results.

Proposition 5.3. Given X0 and let X⌫ be the sequence generated by solving Problem

(5.8) iteratively. Then the following holds.

1. We have

f⇢(X
⌫+1)� f⇢(X

⌫)  �
⇢

2
kX⌫+1

�X⌫
k
2, ⌫ = 1, 2, ...

Furthermore, kX⌫+1
�X⌫

k ! 0.

2. Let bX be ab accumulation point of {X⌫
}, then for any X we have

hrf( bX) + ⇢ bX + ⇢⇧Mr(� bX), X � bXi � 0

That is, bX is a stationary point of the problem (5.6). Moreover, for a given ✏ > 0,

if X0
2 Mr and

⇢ � ⇢✏ :=
f(X0)

✏
,

then bX is an ✏-approximate KKT point of (5.6).

Theorem 5.4. Assume that M > 0 and bX be an accumulation point of {X⌫
}. The

following hold.

(i) rank( bX) > r unless A is already the optimal solution of (5.5).

(ii) Suppose bX has rank (r + p) with p > 0. Let �1 � �2 � · · · � �k be the singular

values of bX. Define

w0 := min{Wi,j} > 0, ✏0 :=
w0

⇢
, ✏1 :=

✏0
4 + 3✏0

, c :=
1

1 + ✏1
< 1.

Under the condition

�r
�r+1

�
8p

✏0
+ 1,

it holds

kX⌫+1
� bXk  ckX⌫

� bXk for ⌫ su�ciently large.
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Consequently, the whole sequence {X⌫
} converges linearly to bX.

Proofs of Theorem 5.3 and 5.4 can be easily obtained from the proofs of Theorem

4.10 and 4.12 because WLRH problem can be seen as an extension of robust matrix

completion by adding a Hankel structural constraint.

5.1.4 Numerical Experiment

In this section several experiments are conducted to demonstrate the performance of

pMAP in robust matrix completion. In the first experiment, we use some synthetic

dataset to check its convergence behaviour and computing e�ciency. Then in the second

experiment, we introduce the well-known real-life application, movie recommendation

engines, which has been discussed in a lot of most recent papers (Jain et al. [2010],

Ngo and Saad [2012]). We use this experiment to evaluate the performance of our

proposed algorithm against several state-of-the-art solvers. All the experiments in this

and following sections are implemented with Matlab 2019b, equipped with a 2.6 GHz

Intel Core i7 processor with a 8 GB memory card.

5.1.4.1 Start Study

In this start study we generate r-rank matrix X 2 Rl⇥k by X = AB, where A 2 Rl⇥r

and B 2 Rr⇥k are randomly generated real-valued matrices where all the elements

follows independent uniform distributions U [0, 1). The randomly populated locations of

unknown observations in X also follow the uniform distributions to construct the initial

observation matrix Y . Then we implement pMAP to recover X from Y . The parameter

� is introduce to represent the percentage of unknown observations over total amount

of data in X. All unknown data will be set to zero at initial. In the following Table.5.1

we firstly list the numerical result of pMAP in this incomplete matrix recovery problem.

We have several basic observations from above table. Firstly our proposed algorithm can

successfully recover the incomplete low rank matrix in most cases because most RMSEs

in Table.5.1 are close to zero. However, in the case of � = 95% (which means only 5%
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Dimension � r = 5 r = 10 r = 15

RMSE/TIME RMSE/TIME RMSE/TIME

500 ⇥ 500 50% 5.39e-7/0.70 4.31e-7/1.85 2.82e-7/5.81
80% 3.05e-6 /2.81 1.99e-6/6.38 1.52e-6/18.89
90% 2.14e-5/11.62 6.34e-6/18.41 4.22e-6/46.10
95% 6.16e-2/9.71 1.7e-3/30.82 2.57e-5/109.33

1000 ⇥ 1000 50% 9.68e-7/0.92 7.25e-7/2.38 6.24e-7/6.80
80% 6.60e-6/4.67 3.54e-6/8.89 2.43e-6/23.88
90% 2.50e-3/11.47 1.32e-5/28.16 7.47e-6/60.62
95% 1.68/11.49 3.48e-2/35.92 6.06e-4/123.49

2000 ⇥ 2000 50% 1.50e-6/1.10 1.02e-6/2.72 6.79e-7/7.69
80% 1.14e-5/6.93 5.41e-6/11.51 3.43e-6/27.54
90% 6.05e-2/12.16 6.45e-5/39.44 1.11e-5/75.25
95% 4.20/12.35 2.58e-1/38.67 5.30e-3/129.71

Table 5.1: Numerical results of synthetic incomplete low rank matrix recovery experi-
ment for our proposed pMAP including RMSE (root mean square error) and computing

time.

real observations are given in the incomplete matrix), pMAP may fail to approximate

the missing values in some cases (e.g., in case {l, k} = {1000, 1000} and {2000, 2000},

setting r = 5) because the amount of given observations are not su�cient.

We further conduct this experiment to illustrate the convergence behaviour of pMAP.

Fig.5.1 plots the functional value of pMAP at each iterate using this synthetic exper-

iment, setting rank = 10. It can be easily observed that f⇢(X⌫) is non-increasing in

all cases and converges to zero gradually. Of course the empirical convergence rate of

pMAP depends on various factors, e.g., the objective rank and percentage of known

observations.

Fig.5.2 further plots
kX

⌫+1
�X

⌫
k
2
F

kX⌫k2F
, the relative gap between X⌫ and X⌫+1 at each iterate

by setting rank = 10. It shows that in this experiment, the sequencing of kX⌫+1
�X⌫

kF

converges to zero gradually as proved in Prop.5.3. It also shows that the sequence of

kX
⌫+1

�X
⌫
k
2
F

kX⌫k2F
also converges to zero in all cases.

5.1.4.2 Movie Recommendation Engines

a. Experiment Introduction This experiment conduct a popular real-life application
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Figure 5.1: Plot of functional value f⇢(X⌫) at each iterate by pMAP in robust matrix
completion experiments, setting r = 10.
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of robust matrix completion problem, known as movie recommendation engines (MRE).

This application has been briefly introduced in Section 1.2.2.4. Many existing researches

focused on proposed on this movie recommendation engine problem by employing low

rank matrix optimization methods. In this experiment we introduce several leading

algorithms for benchmarking:

• Nonlinear geometric conjugate gradients (LRGeomCG, Vandereycken [2013]) tack-

led robust matrix completion problem (5.3). It used geometric conjugate gradients

in the Riemannian manifold optimization techniques because both objective func-

tion and constraint of the problem is smooth.

• Scaled conjugate gradients on Grassmann manifolds (ScGrassMC, Ngo and Saad

[2012]) also solved the robust matrix completion problem. It proved that if its

initial solution is close enough to the minimal, then this method can ensure the

convergence to the minimal solution and achieve exact incomplete matrix recovery.

• Combination of spectral and manifold optimization technique (OptSpace, Kesha-

van et al. [2010]) combined both spectral techniques and Grassman manifold op-

timization methods to tackle robust matrix completion problem.

• Nuclear norm minimization via active subspace selection (Active ALT, Hsieh and

Olsen [2014]) tackled the nuclear norm optimization problem which tries to min-

imise the objective function F (X)+�kXk⇤ where F (X) is the twice di↵erentiable

convex function, for example, F (X) = 1

2
k⇧⌦(X)�⇧⌦(A)k2

F
in matrix completion

problem. It provided the numerical evidences that it is superior to other state-of-

art nuclear norm minimization solvers in the case of Movie recommendation engine

problem.

• Accelerated proximal gradient algorithm for nuclear norm regularized linear least

squares (NNLS, Toh and Yun [2010]) developed an gradient method for the general

unconstrained nonsmooth convex minimization problem

min
X2RL⇥K

F (X) := f(X) + P (X)
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where both f(X)and P (X) are convex functions. In specific, f(X) should be

smooth while P (X) should be proper and semi-continuous at the same time. In

this matrix completion case, P (X) = µkXk⇤ and f(X) = kA(X)� bk2
2
.

• Guaranteed singular value projection (SVP, Jain et al. [2010]) tried to solve the

robust formulation of general a�ne rank minimization problem as

min kA(X)� bk22, s.t. rank(X)  r

using hard singular value thresholding interatively.

There are also many novel solvers which were tested in above researches, e.g., ADMiRA

(Lee and Bresler [2010]), LMAFit (Wen et al. [2012]) and RTRMC (Boumal and Absil

[2011])). We will not conduct these solvers in our experiment since they have proved

to be inferior than one or several solvers in the candidate solver list. We compare the

performance of our proposed pMAP solver with these candidate algorithm on several

movie rating data sets obtained from MovieLens 1. Three di↵erent data set are used in

this experiments as MovieLens 100K Dataset, MovieLens 1M Database and MovieLens

Latest Datasets (Harper and Konstan [2016]). The detailed information for all dataset

including the number of movie users, number of movies and amount of known ratings

can be found in Table 5.2:

Dataset Number of Number of Known Sparsity
Movie Users Moives Ratings

ML 100K 943 1 682 100 000 6.30 %
ML 1M 6 040 3 952 1 000 209 4.19 %

ML Latest 610 9 742 100 836 1.70 %

Table 5.2: Statistics of MovieLens rating dataset.

Ratings in these database scale from 1 star (very dissatisfied) to 5 stars (very satisfied).

For all the dataset, we randomly create five di↵erent 80/20 training/testing splits. That

is to say, we randomly keep 80% of known ratings for model training and left 20% known

ratings for out-of-sample-testing. Some solvers may require a starting value for missing

1https://movielens.org/
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data in the rating matrix. In these cases we will assign 3 to all unknown ratings at

initial.

The stop conditions, including the maximum iterate step and stopping tolerances, are

set the same as we used in the experiments of Chapter 4. Then we perform these 7

di↵erent methods to estimate the ratings in test set. For each data set, we validate

the performances of all solvers by considering three rank choices as rank = 2, 3 and 5,

respectively.

b. Experiment Result

Main numerical results of movie recommendation engines are detailed in Table.5.3. Each

result in Table.5.3 is the average value over five testing instances. In this experiment

we use RMSE to measure the approximation accuracy of each solver. It can be seen

that pMAP performs the best in terms of estimation accuracy because it provides the

smallest mean error in all experiments. To further analyse the performance of each

solver in detail, the distributions of estimation errors for testing dataset is plotted in

Fig.5.3. One can find that the median forecasting error of pMAP is just above zero

(which is better than ALT, LRGemoCG and NNLS). At the same time, pMAP also

performs better in terms of estimation variance because its first quartile, third quartile,

minimum and maximum point are closer to zero comparing with other solvers.

Fig.5.4 displays the RMSE against computing time using the MovieLens 100K and 1M

datasets for each solver, setting the rank as 2 and 5 respectively. We can observe

that pMAP is one of the most e�cient methods among all solvers since it reaches the

best estimation performances using reasonable computing time. Although RMSEs of

LRGeomCG and ScGrassMC decreased faster than pMAP at beginning phase in some

cases, they converged to inferior results quickly. In conclusion, we observe that our

proposed pMAP method enjoys competitive performance among all solvers.
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Figure 5.3: Distribution of estimations errors for all solvers based on the MovieLens
1M dataset, the rank is set as 5.
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5.2 Extension 2: Robust Principal Component Pursuit

5.2.1 Introduction and Literature Review

Principal Component Analysis (PCA) is a popular data dimensional reduction tech-

nique which is frequently employed in many areas such as video processing and data

compression. This technique assumes that the high dimensional data often comes from

a low dimension space with some noise, i.e., the observed data matrix M 2 Rl⇥k can

be decomposed into two sub-matrix as M = L + N . Here the rank of L 2 M is much

smaller than min{l, k} and N 2 M represent the noise component. To recover the

low dimension subspace from high dimensional data, PCA aims to solve the following

optimization problem

min kNk
2

F , s.t. rank(L)  r, M = L+N

However, it is widely believed that PCA works well only when the noise level is small and

follows some certain kinds of distribution like Gaussian. In cases like video processing,

there are large scaled and limited corruptions or outliers, which will lead to inferior

results when using PCA. Low rank and sparse matrix decomposition (LRSMD, see

[Yuan and Yang, 2009]), also known as Robust Principal Component Analysis (RPCA)

is further proposed to deal with sparse and high level noise. It aims to recover a low rank

matrix L from input matrix M while the noise matrix S 2 M is sparse. This matrix

separation approach has been widely employed in many applications such as subspace

recovery [Liu et al., 2013], clustering [Shahid et al., 2015] and video processing [Huan

et al., 2016], to name just a few. The problem of RPCA is often formulated as

min
L,S

rank(L) + �kSk0 (5.11)

s.t. L+ S = M

where � is a trade-o↵ parameter to balance the sparse and low rank components and

k · k0 is `0-norm which stands for the total amount of non-zero element in a matrix.
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One popular approach to solve this non-convex optimization problem is introducing the

convex relaxation technique. Some researches such as Chandrasekaran et al. [2011], Lin

et al. [2010] used nuclear norm as the convex relaxation of rank constraint and the `1

norm as the convex relaxation of `0-norm as

min
L,S

kLk⇤ + �kSk1 (5.12)

s.t. L+ S = M

Then (5.12) can be solved by semi-definite programming solvers and a global optimal

solution can be guaranteed, although the computing cost would be relatively high ([Ne-

trapalli et al., 2014] ). A more robust formulating is to taking both outliers and regular

noise into consideration as

min
L

kM � L� Sk2 (5.13)

s.t. kSk0  ✏

rank(L)  r

assuming that the rank of matrix L and the sparsity of S are both known. To tackle

the computing cost of convex relaxation, many powerful and novel non-convex methods

are introduced. For example, Rodriguez and Wohlberg [2013] employed the alternat-

ing projection method which was proved to be more e�ciently than convex relaxation

methods. However, this method is lacking of convergence results and it only provides

computational evidences to show its convergence behaviour. The matrix factorization

approach was introduced by Zhou and Tao [2013], provided that the approximation re-

sults of their proposed solver is not far away to optimum. Alternating minimization

over low rank and sparse constraints iteratively was used by Zhou and Tao [2011] and

Netrapalli et al. [2014]. Zhou and Tao [2011] proved that the alternating projection

method local minimal convergence result at linear rate, given the assumption that the

initial guess is close to the optimal solution, which may be quite strict in practice. All

these researches on non-convex solvers inspired us to employ the pMAP scheme for this

RPCA problem.
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5.2.2 The Majorization Penalty Approach

In this section we demonstrate how Problem (5.13) can be tackled via the penalty

majorization method framework. Firstly we introduce the penalization function gr(L)

of pMAP as defined in last chapter:

gr(L) =
1

2
kL�⇧Mr(L)k

2 =
1

2
kLk2 � hr(L), 8L 2 M

Here hr(L) is defined the same as (4.3). Then according to the pMAP scheme, we can

rewrite (5.13) into the following equivalent formulation:

min ✓⇢(L, S) := kM � L� Sk2 + gr(L) (5.14)

s.t. kSk0  ✏

One may note that Problem (5.14) has binary variables, so a natural approach to deal

with (5.14) is to alternatively minimise the objective function over two variables. How-

ever, minimising ✓⇢(L) over L is not a easy task and another iteratively framework may

be required. Our proposed approach is to combine the alternating projection method

together with the penalty majorization approach. Considering the surrogate function

gmr (L,Z) defined as

gmr (L,Z) :=
1

2
kLk2 � hr(Z)� < ⇧Mr(Z), L� Z >, 8L,Z 2 M

We further define ✓m⇢ (L,Z, S) = kM �L�Sk2 + gmr (L,Z), then it is straightforward to

have the following property:

Lemma 5.5. Consider the function gmr (L,Z) defined in 4.7. According to Prop.4.2,

gmr (L,Z) can be seen as the surrogate function of ✓⇢(L) by satisfying the following con-

ditions:

✓m⇢ (L,L, S) = ✓⇢(L, S) (5.15)

✓m⇢ (L,Z, S) � ✓⇢(L, S) (5.16)
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for all L,Z, S 2 Rl⇥k.

We propose our pMAP method for RPCA problem as following:

Algorithm 10: Algorithm: pMAP for Stable Principle Component Pursuit

Result: Approximated low rank matrix L̂ and the sparse noise matrix Ŝ.

Initialization observed incomplete matrix M , rank constraint r, sparsity ✏, penalty

parameter ⇢ and stop criterion STOP , initial guess L0 and S0. Set ⌫ = 0 ;

while The stop condition STOP is not met do

Compute L⌫+1

L⌫+1 = argmin
L

✓m⇢ (L,L⌫ , S⌫) (5.17)

Compute S⌫+1

S⌫+1 = argmin
S

✓m⇢ (L⌫+1, L⌫+1, S) s.t. kSk0  ✏ (5.18)

⌫ ! ⌫ + 1

At each iteration of Alg.10, the penalised problem is minimised over two variables se-

quentially. Then the following lemma holds.

Lemma 5.6. Let the sequence {L⌫ , S⌫
} be the ⌫-th iterate computed through Alg.10, we

have

✓⇢(L
⌫ , S⌫) � ✓⇢(L

⌫+1, S⌫+1) for k = 0, 1, ... (5.19)

That is to say, the function value ✓⇢(L⌫ , S⌫) is non-increasing to ⌫.

Proof. From Prop.5.5 we have

✓⇢(L
⌫+1, S⌫)  ✓m⇢ (L⌫+1, L⌫ , S⌫) and ✓⇢(L

⌫) = ✓m⇢ (L⌫ , L⌫ , S⌫)

We further note that ✓m⇢ (L⌫+1, L⌫ , S⌫)  ✓m⇢ (L⌫ , L⌫ , S⌫) because L⌫+1 is the optimal

solution to (5.17). As a result we have

✓⇢(L
⌫+1, S⌫)  ✓m⇢ (L⌫+1, L⌫ , S⌫)  ✓m⇢ (L⌫ , L⌫ , S⌫) = ✓⇢(L

⌫)

The proof completes.
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Now we solve two sub-problems (5.17) and (5.18). We will show that both sub-problems

have closed form solution hence they can be solved easily. Firstly we have the following

proposition.

Proposition 5.7. We have the following equivalent minimization problem to Problem

(5.17)

argmin
L

✓m⇢ (L,L⌫ , S⌫) = argmin
L

1

2
k

p
⇢+ 1(L� L⌫

⇢)k
2 (5.20)

where L⌫
⇢ is computed by:

L⌫

⇢ :=
1

⇢+ 1
((M � S⌫) + ⇢⇧Mr(L

⌫)) (5.21)

Apparently (5.17) is solved by taken L = L⌫
⇢.

Proof. We can easily get

✓m⇢ (X,X⌫ , S⌫) =
1

2
kL+ S⌫

�Mk
2 + ⇢gmr (L,L⌫)

=
1

2
kL+ S⌫

�Mk
2 +

⇢

2
kLk2 � ⇢hr(L

⌫)� ⇢ < ⇧Mr(L
⌫), L� L⌫ >

=
⇢+ 1

2
kLk2� < L,M � S⌫ > � < L, ⇢⇧Mr(L

⌫) >

+
1

2
kM � S⌫

k
2
� ⇢hr(L

⌫) + ⇢ < L⌫ ,⇧Mr(L
⌫) >

| {z }
:=�1

=
1

2
k

p
⇢+ 1Lk2 � hL,M � S⌫ + ⇢⇧Mr(L

⌫)i+�1

=
1

2
k

p
⇢+ 1Lk2 � h

p
⇢+ 1L,

1
p
⇢+ 1

((M � S⌫) + ⇢⇧Mr(L
⌫))i

+�1

=
1

2
k

p
⇢+ 1(L�

1

⇢+ 1
((M � S⌫) + ⇢⇧Mr(L

⌫)))k2

�
1

2
k

1
p
⇢+ 1

((M � S⌫) + ⇢⇧Mr(L
⌫))k2 +�1

| {z }
:=�2

=
1

2
k

p
⇢+ 1(L�

1

⇢+ 1
((M � S⌫) + ⇢⇧Mr(L

⌫)
| {z }

:=L⌫
⇢

))k2 +�2

=
1

2
k

p
⇢+ 1(L� L⌫

⇢)k
2 +�2

(5.22)
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where we define �1,�2 and L⌫
⇢ as following

�1 =
1

2
kM � S⌫

k
2
� ⇢hr(L

⌫) + ⇢ < L⌫ ,⇧Mr(L
⌫) >

�2 = �
1

2
k

1
p
⇢+ 1

((M � S⌫) + ⇢⇧Mr(L
⌫))k2 +�1

L⌫

⇢ =
1

⇢+ 1
((M � S⌫) + ⇢⇧Mr(L

⌫))

Then the Proposition 5.7 is proved because �2 is a constant item that independent with

variable L. This completes our proof.

Now we focus on the second sub-problem (5.18). The following proposition shows it also

enjoys closed form solution.

Proposition 5.8. Given the next iterate L⌫+1, the solution to problem (5.18) can be

computed as

S⌫+1 = HT⇣(M � L⌫+1) (5.23)

where HT⇣(A) is denoted as the hard-thresholding operate on known matrix A, i.e.

(HT⇣(A))i,j = Ai,j if |Ai,j | � ⇣ and 0 otherwise. Here ⇣ is selected as the ✏-th largest

element in M � L⌫+1 in terms of absolute value.

Proof. It is straightforward that

argmin
S

✓⇢(L
⌫+1, L⌫+1, S) = argmin

S

1

2
kM � L⌫+1

� Sk2 + gmr (L⌫+1, L⌫+1)

= argmin
S

1

2
kM � L⌫+1

� Sk2 (5.24)

then Problem (5.18) can be equivalently written as

S⌫+1 = argmin
S

1

2
kM � L⌫+1

� Sk2 s.t. kSk0  ✏ (5.25)

One optimal solution to (5.25) can be obtained as M �HT⇣(M � L⌫+1).

Remarks.
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1. Given the current iterate L⌫ , the next iterate L⌫+1 is obtained via the following

update:

L⌫+1 = M �HT⇣(M �
1

⇢+ 1
((M � S⌫) + ⇢⇧Mr(L

⌫)))

And it is worth noting that if ⇢ approaches infinity, above update will be degen-

erated to the basic alternating projection which is exactly the same as GoDec. In

this case the Problem (5.14) will also be degenerated to the basic robust principle

component analysis problem (5.11). Prop.5.6 will still hold in this case, which

implies that the basic alternating projection enjoys the non-increasing objective

function value sequence.

2. Apart from the basic non-increasing sequence of objective function values, it is

not an easy task to establish other convergence results without making additional

assumptions, e.g., the quality of initial gauss. Since both original objective function

and surrogate function is bounded below by zero, we can only say the solution at

each iterate will converge to a certain point. However, it might be a local optimal

point or just a stationary point.

5.2.3 Numerical Experiment

5.2.3.1 Start Study

We firstly conduct a synthetic experiment to analyse the behaviour of proposed pMAP

in tackling robust principal component analysis problem. Following experiments in Yuan

and Yang [2009], the low rank matrix L and the noise matrix S are generated randomly

by the MATLAB scripts as

• L = randn(m,r)*randn(r,n); mgL = max(abs(L(:)));

• S = zeros(m,n); p = randperm(m*n); K = round(spr*m*n);

– Impulsive sparse matrix: S(p(1:K)) = mgL .* sign(randn(L,1));

– Gaussian sparse matrix: S(p(1:K)) = randn(K, 1)
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• M = L + S.

Here r and spr represent matrix rank and sparsity ratio respectively. Alg.10 is imple-

mented to approximate low rank matrix L̂ and sparse noise matrix Ŝ from observed

matrix M . We introduce three di↵erent errors to demonstrate the result quality. The

relative error of estimated sparse matrix Ŝ to the original sparse matrix S is calculated

as

ErrSP = kŜ � SkF /kSkF

The error of estimated low rank matrix L̂ to the original matrix L is calculated as

ErrLR = kL̂� LkF /kLkF

Finally the quality of recovery is measured by

RelErr = k(L̂, Ŝ)� (L, S)kF /k(L, S)kF

The numerical results are listed in Table 5.4 and 5.5. Each result in these two tables is

the average value of 100 instances. It can be seen that in these two tables, the errors

(including ErrSP, ErrLR, RelErr) are close to zero. It means the approximating results

obtained by pMAP are very close to the optimal result (input L and S).

m = n r spr ErrSP ErrLR RelErr Iter

100 10 5% 5.8e-5 6.4e-5 6.1e-5 10.7
10% 1.9e-3 3.7e-3 2.4e-3 15.2

500 10 5% 5.1e-6 7.0e-6 5.8e-6 6.0
10% 9.1e-6 1.8e-5 1.1e-5 7.0

50 5% 5.1e-5 5.8e-5 5.4e-5 9.0
10% 4.8e-5 7.6e-5 5.7e-5 11.8

1000 50 5% 1.7e-5 2.0e-5 1.8e-5 7.0
10% 3.5e-5 6.1e-5 4.3e-5 8.0

100 5% 4.2e-5 4.9e-5 4.5e-5 9.0
10% 6.3e-5 1.0e-4 7.6e-5 11.0

Table 5.4: Results of low rank and sparse matrix decomposition experiment for the
method of pMAP, by assuming the noise is impulsive sparse.
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m = n r spr ErrSP ErrLR RelErr Iter

100 10 5% 8.2e-4 5.8e-5 8.1e-5 14.7
10% 9.2e-3 9.3e-4 1.3e-3 19.9

500 10 5% 1.4e-3 9.7e-5 1.3e-4 5.7
10% 2.5e-3 2.5e-4 3.6e-4 8.7

50 5% 1.5e-3 4.8e-5 6.8e-5 7.0
10% 2.2e-3 9.8e-5 1.4e-4 9.1

1000 50 5% 9.6e-4 3.0e-5 4.3e-5 5.0
10% 1.1e-3 4.8e-5 6.8e-5 7.0

100 5% 7.8e-4 1.7e-5 2.5e-5 7.0
10% 1.8e-3 5.7e-5 8.0e-5 8.0

Table 5.5: Results of low rank and sparse matrix decomposition experiment for the
method of pMAP, by assuming the noise is Gaussian sparse.

Similarly we also use this experiment to demonstrate the convergence behaviour of

pMAP. Fig.5.5 shows the functional value ✓⇢(L⌫ , S⌫) at each iterate under di↵erent

cases. The computing results show that the functional value converges to zero and thus

the approximation result converges to global optimal e�ciently, although we can not

guarantee this behaviour theoretically.
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Figure 5.5: Function values of ✓⇢(L⌫ , S⌫) in each iteration using Alternating Projec-
tion Method based on simulated data

5.2.3.2 Comparison between solvers

In this experiment the performance of our proposed method will be compared with

some state-of-the-art solvers using this randomly generated synthetic dataset. Can-

didate solvers introduced in this experiment includes Augmented Lagrange Multiplier
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Method (ALM, Lin et al. [2010]), Fast Principle Component Pursuit (FPCP, Rodriguez

and Wohlberg [2013]), GreGoDec (Greedy Semi-Soft GoDec Algotithm, Zhou and Tao

[2013]), Block Lanczos with Warm Start (IALM BLWS, Lin and Wei [2010]), Fast Alter-

nating Linearization Methods (FALM, Goldfarb et al. [2013]), Non-smooth Augmented

Lagrangian Algorithm (NSA, Aybat et al. [2011]), Principal Component Pursuit (PCP,

Candès et al. [2011]) and Singular Value Thresholding (SVT, Cai et al. [2010]). All these

solvers share the same stopping condition such that the results are comparable.

In this experiment we will consider two di↵erent cases to test all solvers. In the first

case M is constructed by L and S only and no extra noise component is added. In the

second case the observations are polluted by both impulsive sparse noise and Gaussian

noise as M = L+ S +N , where N is generated by:

• N = 0.2 * randn(m,n)

The numerical results of both case for all solvers are listed in Table.5.6 and 5.7. Here

we fix the objective rank to 50. We test all solvers over two spr instances as 0.05 and

0.1, which means the sparsity of S is 0.05 and 0.1 respectively. In Table.5.6 where only

sparse noise are introduced, our first observation is that proposed pMAP always provide

the most accuracy approximation results with lowest ErrLRs and ErrSPs among all

solvers. At the same time, we note that pMAP is also the most e�cient solver because

it costs the shortest computing time in almost all instances. The only exception happens

in the 1000/50/0.05 case where NSA is 0.1 seconds faster than pMAP but with much

inferior results. We observed very similar behaviour in Table. 5.7 where pMAP always

provides the best approximations on both low rank matrix L and sparse noise matrix

S. Although only one solver (GreGoDec) spent lower computing cost than pMAP, its

approximation accuracy is much worse than our proposed solver in terms of RMSE.

5.3 Conclusion

In this chapter we extend our proposed pMAP framework to solving two rank mini-

mization problems as robust matrix completion and stable principal component pursuit.
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We demonstrate our non-convex approach to tackle these two problems, which can be

considered as a special weighted alternating projection method.

Several experiments based on both synthetic and real-life datasets are conducted to

measure the performance of pMAP in tackling these two problems. Both theoretical and

empirical results show that pMAP outperforms most state-of-the-art solvers in terms of

computing time and approximation accuracy.



Chapter 6

Conclusion

Weighted Hankel structured low rank matrix approximation problem arises from many

applications of time series study and signal processing. This optimization problem aims

to find a Hankel matrix X such that rank(X)  r while weighted distance to observed

Hankel matrix Y is minimised. In this thesis, we introduced the majorization minimiza-

tion framework and penalty method together to tackle this problem via some non-convex

methods.

In Chapter 3, we proposed a sequential majorization method to tackle this NP-hard

optimization problem. The (p,q)-norm is introduced such that a majorization surro-

gate function is proposed and then the majorization minimization framework can be

employed. As a result, SMM guarantees the functional value at each iterate will be

non-increasing. The subproblem of SMM at each iteration step is well defined and can

be solved by the Cadzow method. We use numerical examples to demonstrate the supe-

riority of SMM based on several dataset. But one may note by introducing majorization

surrogate function, the problem SMM aim to solve is di↵erent from the original one

because the weights matrix has been changed.

In Chapter 4 we further proposed another new approach to solve Problem (1.2) as

penalised method of alternating projection method. Di↵erent from SMM, we apply

both majorization minimization and penalization technique to tackle the rank constraint

such that it enjoys two advantages as (i) the subproblem of pMAP at each iteration has

137
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analytical solutions which are easily computed and (ii) pMAP keeps the original weight

matrix so that it has better performance in some specific applications like spectrally

signal recovery. We further propose some theoretical result showing that pMAP will

converge to at least a ✏-KKT point at a linear rate. Numerical experiments are conducted

to test pMAP against some state-of-the-art solvers. Promising results are provided to

support that pMAP is a competitive solver in both recovering accuracy and computing

cost.

Chapter 5 extended the application of pMAP framework into a wider range of rank min-

imization problems including robust matrix completion and stable principal component

pursuit. We show that once the sandwich inequalities chain can be satisfied, the class

of rank minimization problem can be easily tackled by our proposed framework. Fur-

ther convergence result may depend on the convexity of extra constraints and objective

functions. Numerical results show that the performance of pMAP in these applications

are also competitive comparing with some state-of-the-art solvers.
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