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Accurate dipole radiation model for waveguide grating couplers 
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A B S T R A C T   

An analytical theoretical model for the waveguide grating coupler is developed and applicable to practical deep 
gratings. The grating-assisted input coupling efficiency is calculated by considering the reciprocal out-coupling 
problem. The deep grating structure is modelled as an optical layer filled with polarization dipole sources, and 
the scattered fields are then calculated using the associated Green’s functions and taking into account the 
multiple reflections and interference from the adjacent layers. The joint loss between the grating region and the 
waveguide is also considered. Comparison with numerical simulations shows very good agreement and validates 
the accuracy of the analytical model. The model explicitly describes the importance of multilayer interference of 
the scattered fields and guided-mode joint loss on the total grating-assisted coupling efficiency and can be used 
for practical waveguide grating coupler design with negligible computation workload.   

Introduction 

Waveguide grating couplers (WGCs) are proving to be essential 
components for coupling light from fiber/free space into integrated 
waveguide circuits and have found increasingly widespread use in areas 
such as silicon photonics [1] and, more recently, in bio-medical sensing 
[2]. Over the years, WGCs have attracted extensive research related to 
their underlying physical mechanisms and efficiency optimization. The 
WGC input coupling efficiency (CE) is usually treated in an analytical 
manner by considering its reciprocal problem of out-coupling or output 
scattering [3–5]. However, the output scattering analytical models are 
usually based on a rather restrictive assumption that the grating depth is 
small [3], which makes the modelling inaccurate in a number of prac-
tical situations. For more accurate calculations, numerical simulation is 
the mainstream approach for WGC optimization [2,6]. 

However, full numerical models suffer from several shortcomings. 
Firstly, the WGC CE is affected by a number of factors, and a full opti-
mization taking into account all contributing parameters can result in 
prohibitively long computing times. Secondly, numerical searching for 
the most efficient solutions could converge on a local optimum, espe-
cially when the parameter space is large. Finally, important underlying 
physical mechanisms can be obscured, and significant physical insight 
can be lost. 

In this paper, an accurate theoretical model for WGCs without the 
assumption of small grating depth is developed and compared to nu-
merical simulations. The physical mechanisms defining the WGC CE are 

clarified, showing that multiple reflections from adjacent interfaces of 
each WGC layer can affect the overall CE. 

Theoretical model 

The grating is inscribed on the surface of a three-layer waveguide, 
with refractive indices na − nf − ns, and core thickness h (see Fig. 1). To 
bypass the complicated direct input-coupling problem, the model con-
siders the “reciprocal” out-coupling problem and uses a Green-function 
formalism for surface optics to calculate the strength of the various 
scattering orders [7]. 

Reciprocal approach for WGC 

Following Ref. [3–5], the “direct” grating-assisted input coupling 
problem is dealt with by considering first the “reciprocal” out-coupling 
problem. The reciprocity of WGC is shown in Fig. 1, which contains two 
aspects. The first aspect of the reciprocity is the reciprocal propagating 
guided waves and scattered orders, as shown Fig. 1(a) and (b), marked 
by solid double line in green (“reciprocal” output coupling) and red 
(“direct” input coupling). The second reciprocity is the field distribu-
tions in the input and output coupling cases, which is shown in Fig. 1(c). 

In the “reciprocal” case, as shown in Fig. 1(d), the out-coupled 
nth-scattering orders fulfill the relation: 

kz = β+ nKg(n = ±1,±2, ...), (1) 
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where kz = kasin
(
θa

n
)
= kssin

(
θs

n
)
, ka(s) = na(s)k0, Kg = 2π/d, d is the 

grating period, n is the scattered order, θa
n(θ

s
n) is the scattering angle in 

medium a(s), and β is the propagation constant in the four-layer (na- 
ng-nf -ns) waveguide. The grating period is adjusted so that there is only 
one scattered order in the substrate (s) and cover (a) layer. The “direct” 
and “reciprocal” problems are connected through the Lorentz reci-
procity theorem [5], which dictates that only waves travelling in exactly 
opposite directions should be considered. Oppositely propagating waves 
are only the incident (− 1 scattered order) wave and the coupled (inci-
dent) waveguide mode in the “direct” (“reciprocal”) cases. The corre-
sponding power pairs are denoted (P*

i ,Ps
− 1) and (P*

0, P0) (see Fig. 1 (a)- 
(c)). It can be shown that the WGC CE can be given by [5]: 

P*
0

P*
i
=

[∫

L
g(z)h(z)dz

]2Ps
− 1

P0
, (2)  

where g(z) is the normalized exponentially decaying profile of the 
output field, and h(z) is the normalized Gaussian profile of the input field 
(see Fig. 1(c)). Power conservation requires that the total power P0 is the 
summation of all the scattered powers, so Ps(a)

− 1 /P0 = αs(a)
− 1 /αtot , where 

αtot = αs
− 1 +αa

− 1 [3], and g(z) = g0exp(− αtotz). g(z) is the aperture func-
tion [5] normalized such that 

∫+∞
− ∞ [g(z)]2dz = 1. 

Dipole radiation in optical interfaces 

To make it applicable to “thick” gratings, we replace the grating 
region with a uniform layer with a volume-averaged refractive index ng 

and thickness that equals to the grating depth σ, following the approach 
in Ref. [8], as shown in Fig. 2. To be specific, the average index ng for the 

grating layer is calculated as ng =
( ∫

Vn2(r)/Vdr
)0.5 within a single 

period, i.e. V ∈ (0 > z > − d,0 > y > − σ), following Ref. [9]. The grating 
layer is typically much thicker than the random roughness in Ref. [8], so 

the reflection in the grating layer must be considered. We next consider 
the fields generated by infinitesimal scattering-dipole sheets within the 
“average index” layer and take into account multiple reflections from 
the adjacent layer interfaces, utilizing the transfer matrix method [10] 
(see Fig. 2 (b)), which will be detailed below. We finally integrate the 
entire “average index” grating layer thickness to obtain the total scat-
tered fields. 

To calculate the scattering coefficients αs
− 1 and αa

− 1, we consider an 
infinitesimal scattering-dipole sheet within the grating region (ng) (see 
Fig. 2). A similar approach has been adopted by Schmid et al. for 
modelling scattering loss from the rough surface of waveguides [8]. In 
this case, the wave equation takes the form: 

∇2E+ n2(y)k2
0E = 4πk2

0P, (3)  

where k0 is the wavevector in free space and n(y) is the refractive index 
in each layer shown in Fig. 2, and P is the additional polarization source 
due to the infinitesimal scattering-dipole sheet at y0. The modal field for 
the four-layer structure can be found from the homogeneous solution of 
Eq. (3). The simple transfer matrix method [10] is applied to obtain the 
propagating constant and modal field distribution in this work. Using 
the shift theorem [11], the polarization P induced by the modal electric 
field E

(
y0, z

)
= E

(
y0
)
exp(βz) at the point y0 is Fourier transformed and 

takes the form [8]: 

P(y0, kz) =

(
n2

g − n2
a

)

4πσ s̃(kz − β)

(

x̂ x̂ +
n2

a

n2
g
ŷ ŷ + ẑ ẑ

)

E(y0), (4)  

where ̃s(k) is the Fourier transform of the grating surface profile and x̂,
ŷ, ẑ are the coordinate unit vectors. This study focuses only on the TE 
mode, so only the × component of the electric field is considered. 
Fourier transforming the square-wave grating profile, ̃s is expressed as 
s̃(kz − β) = σ Σ+∞

n=− ∞cn2πδ(k − 2πn/d), where cn = Dsinc(nD) is the 

Fig. 1. Reciprocity of input/output coupling of WGC: 
propagation directions for the (a) “reciprocal” (green) 
case and (b) “direct” (red) case. The refractive indices 
of cladding, core and substrate are na, nf , and ns, 
respectively, and the etched grating depth is σ with a 
period of d; (c) field distributions for the “direct” 
(red) and “reciprocal” (green) cases. (d) Vector dia-
gram showing the scattering orders for the “recip-
rocal” (green) cases. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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Fourier coefficient for the square wave with duty cycle D. Therefore, the 
polarization in a TE mode WGC is simplified to 

P(y0, kz) =

(
n2

g − n2
a

)

2
∑+∞

n=− ∞
cnδ
(

k +
2πn

d

)

Ex(y0). (5)  

The scattered field due to the source polarization inside an optical layer 
is found with the use of surface Green’s functions, the introduction of 
vectors eq(y) =

[
Eq+e+ikyqy, Eq− e− ikyqy]T and the use of the discontinuity- 

source vector method [12], namely: 

ea(0) = MagMg( − y0)eg
(
y+0
)

eg
(
y−0
)
= Mg(y0 + σ)Mgses( − h),

(6)  

where the vector ea(0) =
[
E+

a ,0
]T and es(− h) =

[
0,E−

s eikysh
]T, in which 

the E+
a and E−

s are the electric field in the cladding and substrate 
generated by the source polarization P(y0, kz) at point y0 (no incident 
fields from ±∞ are assumed). The matrices Mxy and Mx are the regular 
transfer matrices detailed in Ref. [10,12] and Appendix. Specifically, the 
subscript xy denotes transfer from layer x to y, while the single-lettered 
subscript indicates transfer in a specific layer, where there is only the 
phase shift due to propagation. Mgs = Mgf Mf Mfs is the composite g-s-f 
layer transfer matrix, which can also be expressed in terms of the g-f-s 
layer total reflectivities (Rgs, Rsg) and transmissivities (Tsg, Tgs) [12] (see 
also Fig. 2 (b)) The field at the upper limit eg

(
y+0
)

and lower limit eg
(
y−0
)

of the source have the relation expressed as, eg
(
y+0
)
= [v+, − v− ]T +

eg
(
y−0
)
, where v± is given as [8,12]: 

v± =
2πik2

0

kyg
⋅P(y0, kz), (7)  

where kyg is the y component of the wavevector and given as k2
yg =

k2
0n2

g − k2
z . After some simple linear algebra (see Appendix), the up and 

down going electric fields due to the infinitesimal source polarization 

sheet at y0 can be found as 

E−
s (y0, kz) =

Tgse+ikygσ ( v+rgae− iΦ0 + v− e+iΦ0
)

1 − rgaRgse+i2kygσ

E+
a (y0, kz) =

tgae+ikygσ ( v+e− ikygσe− iΦ0 + v− Rgse+ikygσe+iΦ0
)

1 − rgaRgse+i2kygσ ,

(8)  

where tga(rga) is the transmittance (reflectance) across interface ag, and 
Tgs(Rgs) is the total transmittance (reflectance) across the composite g-f-s 
layer structure (see Fig. 2 (b)). Φ0 = kygy0 is the phase shift due to 
propagation from y0 to 0. 

By substituting Eqs. (5) and (7) into (8), E+
a and E−

s can be written as 
function of modal field Ex(y0) in the wavevector domain. The scattered 
field due to source polarization at y0 can be found by Fourier trans-
forming E+

a
(
y0, kz

)
and E−

s (y0, kz) back into the real space. Similar 
approach has been followed by Payne and Lacey when modeling the 
random scattering from waveguides with rough surfaces [7]. 

The total scattered electric fields in the substrate (s) and cladding (a) 
areas are obtained by integrating the contributions of the infinitesimal 
source polarization sheet over the entire grating layer, and expressed as: 

E−
ns =

cnk2
0

(
n2

g − n2
a

)
e+ikygσ

2kyg
(
1 − rgaRgse+i2kygσ)

[ ∫ 0

− σ
fs(y0)Ex(y0)dy0

]

E+
na =

cnk2
0

(
n2

g − n2
a

)
e+ikygσ

2kyg
(
1 − rgaRgse+i2kygσ)

[ ∫ 0

− σ
fa(y0)Ex(y0)dy0

]

,

(9)  

where fs
(
y0
)
=
(
rgae+iΦ0 +eiΦ0

)
, fa
(
y0
)
=
(
e− ikygσe− iΦ0 +Rgse+ikygσe+iΦ0

)
. It 

should be stressed that the terms fs
(
y0
)
, fa

(
y0
)

and 
F(σ) =

[
1 − rgsRgsexp(i2kygσ)

]
express the effects of multiple reflections 

from the interfaces adjacent to the thick grating layer. The impact of 
multiple reflections on scattering has also been discussed in Ref. [3] 
following a different approach applicable to “shallow” gratings without 
treating the grating as a specific layer. 

Fig. 2. Dipole radiation model of WGC: (a) The grating is replaced by a special layer of average index ng filled with infinitesimal scattering-dipole sheets, with 
radiation exiting the multilayer structure after multiple reflections. (b) Illustration of multilayer reflection/transmission with the dipole source in the grating layer, in 
terms of transfer matrix method. 
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The scattered powers into the substrate and cladding can now be 
calculated from the corresponding scattered fields given by Eq. (9). The 
guided power in the grating region is calculated by P0 =

β/ωμ
∫

∞ |Ex|
2dy. Note that β and Ex refer to the propagation constant and 

the modal field distribution in the four-layer (na-ng-nf -ns) grating region. 
Calculation of the scattering coefficients and consequently of the aper-
ture function g(z) results in the calculation of the grating coupling ef-
ficiency ηg = P*

0/P*
i , through Eq. (2). Since we consider deep gratings, 

the four-layer (na-ng-nf -ns) waveguide optical characteristics (β, Ex) can 
be substantially different to the ones of the initial three-layer (na-nf -ns) 
waveguide (β′

, E′

x). To account for the impact of the discontinuity be-
tween the grating and waveguide regions, we also consider the modal 
conversion efficiency at this joint, defined as ηj =

⃒
⃒
∫

∞ ExE′

xdy
⃒
⃒2/

(
∫

∞ |E
′

x |
2dy
∫

∞ |Ex |
2dy). In this case, the total grating/waveguide 

coupling efficiency is given by ηt
g = ηgηj =

(
P*

0/P*
i
)
ηj. The joint loss is 

given by αj = 1 − ηj. 

Results and discussion 

To validate the theoretical model, we compared it with our previ-
ously published numerical results based on vectorial 2D-Finite-Differ-
ence Time-Domain simulations using Lumerical FDTD Solutions [2]. 
The WGC is configured as follows: the grating is etched on the wave-
guide core with SiO2 substrate and air cladding. The grating profile is 
regular uniform square-wave-shaped with a 50% duty cycle and 50 μm 
length. The incident light with 785 nm wavelength is launched from the 
substrate with the angle in the substrate θsub = 5.5o. The incident light 
has a Gaussian profile with a beam width of 25 μm. The etching depth 
and period of the grating are optimized for maximum CE. In the nu-
merical model, the CE is calculated by solving the Maxwell equation for 
the whole structure when searching the optimal grating etch depth (e) 
and period (p). Particle swarm optimization, combined with a nested 
sweep of p and e, is used for this purpose. The numerical optimization is 
conducted on a supercomputer and takes hours to produce the results 
shown in Fig. 3. For the theoretical model, the running time is a few tens 

of seconds on a personal computer to produce much more data points, 
using the Brent algorithm [13] provided by the SciPy [14] package as a 
default searching method. 

To further validate the theoretical model, we have compared the 
total CE and WGC parameter variation as a function of core thickness 
and compared them again to numerical data from Ref. [2]. The grating 
configuration and beam profile remain unchanged, except for the core 
material being Si at the wavelength of 1300 nm. The results are sum-
marized in Fig. 4. Fig. 4 (a) plots the WGC etch depth (left axis-red) and 
grating period (right axis-blue), and Fig. 4 (b) plots the total CE (left axis 

Fig. 3. CE and WGC parameters for different core indices, with core thickness 
selected to maximize the surface intensity; (a) CE on the left y-axis in blue and 
joint loss on the right y-axis (b) WGC etch depth (left axis) and grating period 
(right axis). Dots: numerical from Ref. [2], solid line: theoretical, dashed line: 
theoretical without joint loss. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Total CE and WGC parameters for different Si core thicknesses; (a) WGC 
etch depth (left axis-red) and grating period (right axis-blue), (b) CE (left 
axis–blue) and joint loss (right axis-red). Solid lines: theoretical result; dots: 
numerical results from Ref. [2]. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. (a) Normalized attenuation coefficient αtot (left axis – solid lines), and 
joint loss (right axis – dashed lines) as a function of etch depth; (b) total CE as a 
function of grating depth, for different core thicknesses. 
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– solid blue line) and joint loss (right axis-red line). Also shown are the 
numerical results from Ref. [2] (dots). 

In Fig. 3, the requirement for maximum surface intensity results in 
relatively thin waveguides and a monotonic increase of total CE along 
with a monotonic decrease of grating depth with the core refractive 
index. In sharp contrast, Fig. 4 shows that both the total CE and the 
grating depth vary non-monotonically as the core thickness increases. 
This is a direct result of the multiple-scattering interference effects dis-
cussed after Eq. (9). In addition, unlike Fig. 3, there is a significant 
discrepancy of the grating depth between the numerical and theoretical 
results for a core thickness around ~390 nm, although the total CEs are 
similar. 

To clarify this discrepancy, a more detailed study on grating depth 
for core thickness around 390 nm is shown in Fig. 5. Fig. 5 (a) shows that 
the scattering strength does not increase monotonically with the etch 
depth, due to multilayer interference effects. At the same time, joint loss 
is exponentially growing. These two factors combine to “flatten” the 
total CE dependence on grating depth and make it multi-peaked around 
the core thickness of 390 nm. This renders the WGC optimization a non- 
convex problem, making the numerical calculation of the exact optimum 
grating depth very difficult. However, the “flatness” of the total CE 
dependence on grating depth around this core thickness results in 
minute differences in the returned total CE. 

Conclusion 

To summarize, an accurate analytical theoretical model for WGC is 

presented. Modelling of the grating as a modal field polarization source 
layer and the inclusion of joint loss between grating and waveguide are 
valid assumptions confirmed with numerical simulation with very good 
agreement. Important physical mechanisms of WGC operation are 
revealed with our model. The model is applicable to deep gratings and 
explicitly shows the impact of multiple reflections from adjacent layers 
in the grating region on the variation of the total CE with grating depth 
and core thickness. It also shows that the inclusion of the joint loss is 
important in calculating the total WGC CE. Such physical insights are 
lost when using numerical models for WGC optimization. Moreover, the 
analytical theoretical model is much faster than numerical models, 
requiring only a few minutes on a standard laptop to cover a much more 
extended parameter space, which makes it ideal for fast, large-scale 
WGC optimization. The model can also be extended to cover TM po-
larization operation and more general grating geometries, such as 
gratings with “non-square teeth” and tilted gratings. 
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Appendix 

Transmittance/reflectivity across the multilayer is calculated with the transfer matrix method, including the standard case that the source is 
incident from outside the optical layers and the case that the source is dipole radiation from inside the optical layers, and detailed as follows. 

Ref. [12] has given the solution for field distribution of the dipole radiated from a three-layer system, however, here, the solution for the four-layer 
system that was discussed in the main text will be found from a generalized n-layer system. 

Standard transfer matrix method for calculating the multilayer structure illustrated in Fig. 6(a) is given in Ref. [10,15]: 
Light transfer in the same layer n from yn− 1 to yn is expressed as 

[
A′

n

B′

n

]

= Mn

[
An
Bn

]

(10)  

Fig. 6. Diagram for the transfer matrix for (a) standard multilayer structure 
with input source located outside the layers (b) multilayer structure with a 
special layer with a source located inside the first layer. 
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where the transfer matrix for layer n is 

Mn =

[
eiϕn 0
0 e− iϕn

]

. (11)  

in which ϕn is the phase shift in layer n due to propagation. 
The matrix for light propagating across the interface n/n + 1 can be written as 

Mn,n+1 =
1

tn,n+1

[
rn,n+1 1

1 rn,n+1

]

(12) 

The transfer matrix describes the light transfer from layer n to n + 1 is 
[

An
Bn

]

= Mn,n+1

[
An+1
Bn+1

]

(13)  

where Mn,n+1 = MnMn,n+1. 
The transfer matrix for the whole structure is the product of all matrixes for each layer 

[
R
1

]

= M̃
[

0
T

]

(14)  

where 1 in the vector is the unit input as shown in Fig. 6(a), and 

M̃ =
∏n

i=0
Mn,n+1 (15)  

is the transfer matrix for the whole structure, i.e. 

[
R
1

]

=

⎡

⎣ M̃00 M̃01
M̃10 M̃11

⎤

⎦

[
0
T

]

(16)  

and consequently 

T =
1

M̃11
, R =

M̃01

M̃11
(17)  

R and T are the reflectivity and transmissivity for the whole structure from layer 0 to layer n. 
The transfer matrix can also be applied for the calculation of the propagating constant β of the guided mode of the surface wave in the layers simply 

by find the singular z component of the wavevector letting [10]: 

M̃11 = 0 (18) 

For the structure with the input source located inside the dipole located within the layers, the electric field in the first and the last layer are e0 =

[Er,0]T and en = [0,Et]
T, so the transfer matrix is 

e0 = M̃ en (19) 

Assuming the dipole is located at y0 in the grating layer, the electric field is not continuous and the expression connecting the lower (y−
0 ) and upper 

limits (y+
0 ) around the dipole is (similar expression in Ref. [12]): 

e1
(
y+0
)
=

[
v+
− v−

]

+ e1
(
y−0
)

(20) 

The dipole induced electric field through the multilayer after multiple reflection is, in terms of transfer matrix, following Ref. [12]: 

e0(0) = M01M1( − y0)e1
(
y+0
)

e1
(
y−0
)
= M1(y0 + y1)M1nen(yn)

(21) 

Then we can use (20) and (21) to derive the connection between the dipole generated field in the upper and lower side of the multilayer 
[

Er
0

]

= M01M1( − y0)

[
v+
− v−

]

+ M̃
[

0
Et

]

(22) 

Thus, the up and down going electric field can be easily found as 

Et =
1
t01

(
v− e− iϕ0 − r01v+eiϕ0

)
/

M̃11

Er =
1
t01

(
− r01v− e− iϕ0 + v+eiϕ0

)
+ M̃01Et

(23) 
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where ±iϕ0 is the phase shift for the up and down going wave from y0 to lower 0–1 interface. Eq. (23) is the general expression for the dipole at y0 

induced electric field at both upper and lower sides of the n-layer structure. For the four-layer structure in our main text, the solution can be simply 
found by replacing the subscripts 0–3 with a, g, f and s for the transfer matrices. Since MijMji = I, where I is the 2x2 unit diagonal matrix, Eq. (22) can 
be rewritten as 

Mg(y0)Mga

[
E+

a

0

]

=

[
v+
− v−

]

+ Mgs

[
0

E−
s

]

(24) 

By replacing the matrix element with corresponding reflectivity/transmissivity and phase shift indicated in Eqs. (12) and (17), an expression with 
clearer physical meaning is found as 

E−
s (y0, kz) =

Tgse+ikygσ ( v+rgae− iΦ0 + v− e+iΦ0
)

1 − rgaRgse+i2kygσ

E+
a (y0, kz) =

tgae+ikygσ ( v+e− ikygσe− iΦ0 + v− Rgse+ikygσe+iΦ0
)

1 − rgaRgse+i2kygσ

(25)  
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[8] Schmid JH, Delâge A, Lamontagne B, Lapointe J, Janz S, Cheben P, et al. 
Interference effect in scattering loss of high-index-contrast planar waveguides 
caused by boundary reflections. Opt Lett 2008;33(13):1479. 

[9] Tamir T, Peng ST. Analysis and Design of Grating Couplers. Appl Phys 1980;21: 
410. https://doi.org/10.1007/BF00895934. 

[10] Yeh P. Optical Waves in Layered Media. Wiley; 2005. 
[11] Bracewell RN, Bracewell RN. The Fourier transform and its applications, vol. 

31999. New York: McGraw-Hill; 1986. 
[12] Sipe JE. New Green-function formalism for surface optics. J Opt Soc Am B 1987;4: 

481. https://doi.org/10.1364/josab.4.000481. 
[13] Brent RP. Algorithms for minimization without derivatives. Courier Corporation 

2013. 
[14] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. 

SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat 
Methods 2020;17(3):261–72. 

[15] Byrnes SJ. Multilayer optical calculations. ArXiv:160302720 2016:1–20. 

Z. Liu et al.                                                                                                                                                                                                                                       

https://doi.org/10.3390/mi11070666
https://doi.org/10.3390/mi11070666
https://doi.org/10.1364/oe.410602
https://doi.org/10.1364/oe.410602
https://doi.org/10.1016/S0925-4005(97)80234-1
https://doi.org/10.1364/ao.14.002983
https://doi.org/10.1364/ao.14.002983
https://doi.org/10.1364/ol.39.003201
https://doi.org/10.1364/ol.39.003201
http://refhub.elsevier.com/S2211-3797(23)00319-4/h0035
http://refhub.elsevier.com/S2211-3797(23)00319-4/h0035
http://refhub.elsevier.com/S2211-3797(23)00319-4/h0040
http://refhub.elsevier.com/S2211-3797(23)00319-4/h0040
http://refhub.elsevier.com/S2211-3797(23)00319-4/h0040
http://refhub.elsevier.com/S2211-3797(23)00319-4/h0050
http://refhub.elsevier.com/S2211-3797(23)00319-4/h0055
http://refhub.elsevier.com/S2211-3797(23)00319-4/h0055
https://doi.org/10.1364/josab.4.000481
http://refhub.elsevier.com/S2211-3797(23)00319-4/h0065
http://refhub.elsevier.com/S2211-3797(23)00319-4/h0065
http://refhub.elsevier.com/S2211-3797(23)00319-4/h0070
http://refhub.elsevier.com/S2211-3797(23)00319-4/h0070
http://refhub.elsevier.com/S2211-3797(23)00319-4/h0070

	Accurate dipole radiation model for waveguide grating couplers
	Introduction
	Theoretical model
	Reciprocal approach for WGC
	Dipole radiation in optical interfaces

	Results and discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix Acknowledgements
	References


