E-Textile RF Energy Harvesting and Storage using Organic-Electrolyte Carbon-Based Supercapacitors

Mahmoud Wagih, Member, IEEE, Nichols Hillier, Alex S. Weddell, Member, IEEE, and Steve Beeby, Senior Member, IEEE

School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom

Abstract—Wearable radio frequency (RF) energy harvesting is highly dependent on the distance from the source and human-caused RF shadowing. Therefore, energy storage devices integrated with rectennas are of paramount importance to overcome this intermittency. In this paper, the use of carbon-based e-textile supercapacitors for storing the RF-DC converted power for powering body area networks nodes is investigated. A voltage doubler sub-1 GHz flexible rectifier, whose peak power conversion efficiency (PCE) approaches 80% is coupled to a two-cell 15.5 mF textile-based supercapacitor operating up to 4 V DC. Owing to the rectifier’s low optimum load resistance and high DC Voltage output, the average charging PCE of the rectifier-supercapacitor module reaches 31% for a 9.5 dBm input. Time-varying s-parameter measurements are performed to compare the time-averaged matching as opposed to instantaneous measurements using a resistive load, where the textile supercapacitor exhibits a similar response to a commercial supercapacitor. Finally, the RF-charged textile supercapacitor is demonstrated, for the first time, powering a microcontroller and Bluetooth transmitter with an average power consumption of 350 µW for up to 102 s, following 40 s of charging at 9.5 dBm, demonstrating its suitability for RF-powered body area networks applications.

Index Terms—Antenna, rectifier, rectenna, supercapacitor, wireless power transmission

I. INTRODUCTION

Radio Frequency (RF)-powered body area networks (BANs) have attracted significant research interest, with several textile-based rectenna implementations based on a variety of materials and targeting different frequency bands [1]–[4]. Compared to other forms of energy harvesting, RF energy harvesting rectennas, and more generally RF passives, can be implemented using standard low-cost conductors on most substrates without the need for specific materials [5]. For instance, multi-port RF energy harvesting and communication antennas have been realized using conventional 3D printed substrates [6] as well as all-fabric antennas [7].

Despite their high efficiency, low cost, and ease of construction, wearable RF energy harvesting rectennas suffer from a high intermittency due to the mobility of the user, and body-induced shadowing. It was previously found that, when considering the average angular gain of a wearable rectenna, the harvested power could drop by at least 50% [8]. As a result, the integration of a wearable rectenna with a textile supercapacitor was proposed to overcome the transient nature of microwave power transmission to wearables [1].

Compared to previous implementations where rectennas were integrated with capacitors [9], supercapacitors [10], or batteries [11], the e-textile module in [1] achieved the highest average wireless charging power conversion efficiency (PCE) of up to 37%. While this highlights the feasibility of high-efficiency RF harvesting and storage using e-textile materials, at least three supercapacitor cells were required to reach a voltage level around 3 V, which falls below the 3.3 V threshold of several commercial devices, as well as below the maximum voltage output of voltage-multiplying rectifiers which can surpass 8 V [1]. Therefore, there is a need for improved textile-based supercapacitors, compatible with the voltage operation range of typical BAN nodes and with the output of state-of-the-art rectennas [1].

In this paper, the integration of an organic-electrolyte carbon-based e-textile supercapacitor [12] with a sub-1 GHz rectifier is investigated. Using an improved electrolyte over our previous rectenna-supercapacitor module [1], the proposed module requires fewer supercapacitor cells to reach the operational voltage of a real sensor node. In Section II, the design and characterization of the rectifier and supercapacitor are presented. We then demonstrate the integrated module and characterize it using time-varying s-parameters, in Section III, before demonstrating it, for the first time, powering a real wireless sensor node load.

II. E-TEXTILE RECTIFIER AND SUPERCAPACITOR

A. Rectifier Design and Characterization

The rectifier used in this work is a coplanar waveguide (CPW) single-stage voltage doubler based on the Infineon BAT15-04R diode, whose breakdown voltage of 4 V enables up to 8 V DC output and a high peak PCE around 10 dBm [1]. The rectifier is matched using a single 22 nH lumped inductor. Fig. 1 shows the schematic of the full system, including the inductive-matched CPW voltage doubler rectifier.

The rectifier was characterized using a Vector Network Analyzer (VNA) as a continuous wave (CW) generator to characterize its DC output, PCE, and reflection coefficient (S11). In Fig 2(a), it can be observed that the rectifier achieves a peak PCE of 80% from a 10 dBm input. Due to the relatively
Following the curing process, a 1 M organic gel electrolyte was produced by dissolving 1.63 g of tetrathyrammonium tetrafluoroborate and 0.187 g of polyacrylamide in 7.5 ml of dimethyl sulfoxide. The supercapacitors were then submerged in the electrolyte before being placed in a vacuum of 25 mbar for 30 minutes to improve the wetting of the electrodes and to remove any trapped air. Fig. 3 shows a photograph of the two-cell textile supercapacitor (a), and a scanning electron microscopy (SEM) cross-section of the individual cell (b).

III. INTEGRATED MODULE CHARACTERIZATION

The time-averaged power conversion efficiency of the rectifier-supercapacitor module is given by

\[
PCE_{\text{Average}} = \frac{CV^2}{2} \times \frac{1}{t} \times \frac{1}{P_{\text{RF}}},
\]

where \(C \) is the capacitance of the two-cell textile supercapacitor, characterized to be 15.5 mF at a charge/discharge current density of 0.5 mA cm\(^{-2}\), \(V \) is the measured DC potential, \(t \) is the charging period, and \(P_{\text{RF}} \) is the input power [14].

Based on the 4 V turn-on voltage of the system, it was found that a minimum of 4.5 dBm RF input is required. Based on the measured charging time, \(PCE_{\text{Average}} \) was calculated using (1) at 4.5 and 9.5 dBm to be 29.5 and 31%, respectively. The lower average charging efficiency than the instantaneous PCE, in Fig. 2(a), was widely reported [1], [9], [14], and is attributed to the \(S_{11} \) time variation, introduced by the varying charging current of the supercapacitor [1]. A VNA was used to measure the time-varying s-parameter of both the proposed textile supercapacitor and a commercial supercapacitor. The measured response in Fig. 4 demonstrates that while the \(S_{11} \) for the optimal load is under –30 dB, the capacitor’s charging current varies the observed \(S_{11} \). Nevertheless, the omission of a standalone power management circuit along with the designed rectifier result in a higher charging efficiency than previous systems utilizing DC-DC converters [9], [11].

As shown in Fig. 1, the textile-based rectifier and supercapacitor are used to intermittently power an example BAN node. The cold-start circuit is based on two XC61C voltage monitors and a latch switch MOSFET. This creates a hysteresis switching loop enabling the supercapacitor to discharge through the load for \(1.6 < V_C < 4.1 \) V. The load is based on a Texas Instruments CC2640R2F system-on-chip (SoC), comprising a 48 MHz Arm Cortex-M3 microcontroller.
The proposed textile-based supercapacitor was then demonstrated for the first time directly powering a wireless Bluetooth sensor node, from a minimum input of 4 dBm, and for up to 102 s from 39 s of charging at 9.5 dBm. Based on the measured results, rectennas integrated with supercapacitors are highly suitable for powering BAN nodes.

References

