

Interrupting the conversation: implications for crosstalk between viral and bacterial infections in the asthmatic airway

Jodie Ackland¹, Alastair Watson¹, Tom M. Wilkinson¹, Karl J. Staples^{1*}

¹University of Southampton, United Kingdom

Submitted to Journal: Frontiers in Allergy

Specialty Section: Asthma

Article type: Review Article

Manuscript ID: 738987

Received on: 09 Jul 2021

Revised on: 10 Sep 2021

Journal website link: www.frontiersin.org

Conflict of interest statement

The authors declare a potential conflict of interest and state it below

KS reports grants from AstraZeneca outside the conduct of the study; TW reports grants and personal fees from AstraZeneca; personal fees and other from MMH, grants and personal fees from GSK, grants and personal fees from AZ, personal fees from BI, grants and personal fees from Synairgen, outside the submitted work; AW and JA report no conflicts of interest.

Author contribution statement

JA, KS and TW conceptualized the review article, JA and KS wrote the original draft; JA performed the literature search; AW and TW reviewed and edited the manuscript; KS and TW supervised; all authors approved the final version of the manuscript.

Keywords

Asthma, Bacteria, virus, Co-infection, exacerbation, Inflammation, early-life

Abstract

Word count: 249

Asthma is a chronic heterogeneous respiratory disease affecting 300 million people and is thought to be driven by different inflammatory endotypes influenced by a myriad of genetic and environmental factors. The complexity of asthma has rendered it challenging to develop preventative and disease modifying therapies and it remains an unmet clinical need. Whilst many factors have been implicated in asthma pathogenesis and exacerbations, evidence indicates a prominent role of respiratory viruses. However, advances in culture-independent detection methods and extensive microbial profiling of the lung, have also demonstrated a role for respiratory bacteria in asthma. In particular, airway colonization by the Proteobacteria species Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk of developing recurrent wheeze and asthma in early life, poor clinical outcomes in established adult asthma and the development of more severe inflammatory phenotypes. Furthermore, emerging evidence indicates that bacterial-viral interactions may influence exacerbation risk and disease severity, highlighting the need to consider the impact chronic airway colonisation by respiratory bacteria has on influencing host responses to viral infection.

In this review, we first outline the currently understood role of viral and bacterial infections in precipitating asthma exacerbations and discuss the underappreciated potential impact of bacteria-virus crosstalk in modulating host responses. We discuss the mechanisms by which early life infection may predispose to asthma development. Finally, we consider how infection and persistent airway colonization may drive different asthma phenotypes, with a view to identifying pathophysiological mechanisms that may prove tractable to new treatment modalities.

Contribution to the field

Respiratory tract infections are the predominant trigger of asthma exacerbations, with viruses the main aetiological infective agent. However, increased abundance of potentially pathogenic bacteria has also been identified during both exacerbation and stable disease. Emerging evidence suggests that these colonising airway bacteria modulate host responses, with certain bacteria-virus interactions influencing exacerbation risk and severity. Other than a role in exacerbations, early life viral infection is a crucial risk factor for asthma development. Recent studies suggest that early life airway colonisation by potentially pathogenic bacteria are also linked to a higher risk of asthma, indicating that bacteria may play a role in predisposing individuals to asthma in later life. Moreover, the presence of bacteria is associated with more severe asthma phenotypes. In this review, we will outline the currently understood role of viral and bacterial infections in precipitating asthma exacerbations and discuss the mechanisms by which early life infection may predispose to the development of asthma. The main focus of the review concentrates on how infection and persistent colonization of the airways may drive different asthma phenotypes, with a view to identifying pathophysiological mechanisms that may prove tractable to new treatment modalities.

Funding statement

This work was funded by an Asthma UK studentship award (AUK-PHD-2016-363).

19

Interrupting the conversation: implications for crosstalk between viral 1 and bacterial infections in the asthmatic airway 2 Jodie Ackland¹, Alastair Watson^{1,3}, Tom M.A. Wilkinson^{1,2,3}, Karl J. Staples^{1,2,3*} 3 4 ¹Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, 5 UK ²Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, 6 7 Southampton General Hospital, Southampton, UK ³NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS 8 Foundation Trust, Southampton, UK 9 * Correspondence: 10 Karl J. Staples 11 K.Staples@soton.ac.uk 12 Keywords: Asthma, Bacteria, Virus, Co-infection, Exacerbation, Inflammation, Early-life, 13 (Min.5-Max. 8) 14 15 16 Abstract word count: 249 17 Main text word count: 8138 Figures: 4 18

20 Abstract (word count: 249)

- 21 Asthma is a chronic heterogeneous respiratory disease affecting 300 million people and is thought to
- be driven by different inflammatory endotypes influenced by a myriad of genetic and environmental
- factors. The complexity of asthma has rendered it challenging to develop preventative and disease
- 24 modifying therapies and it remains an unmet clinical need.
- 25 Whilst many factors have been implicated in asthma pathogenesis and exacerbations, evidence
- 26 indicates a prominent role of respiratory viruses. However, advances in culture-independent detection
- 27 methods and extensive microbial profiling of the lung, have also demonstrated a role for respiratory
- bacteria in asthma. In particular, airway colonization by the Proteobacteria species Nontypeable
- 29 Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk
- of developing recurrent wheeze and asthma in early life, poor clinical outcomes in established adult
- 31 asthma and the development of more severe inflammatory phenotypes. Furthermore, emerging
- 32 evidence indicates that bacterial-viral interactions may influence exacerbation risk and disease
- 33 severity, highlighting the need to consider the impact chronic airway colonisation by respiratory
- 34 bacteria has on influencing host responses to viral infection.
- In this review, we first outline the currently understood role of viral and bacterial infections in
- 36 precipitating asthma exacerbations and discuss the underappreciated potential impact of bacteria-
- virus crosstalk in modulating host responses. We discuss the mechanisms by which early life
- 38 infection may predispose to asthma development. Finally, we consider how infection and persistent
- 39 airway colonization may drive different asthma phenotypes, with a view to identifying
- 40 pathophysiological mechanisms that may prove tractable to new treatment modalities.

1 Introduction

41

- 42 Asthma is a complex and heterogeneous disease of the airways characterized by episodic and
- reversible airway obstruction, bronchial hyper-responsiveness and airway inflammation that affects
- over 300 million people globally¹. Asthma is diagnosed by assessment of airway reversibility
- 45 performed by spirometry before and after bronchodilator use². Allergic sensitivities are a risk factor
- 46 for asthma development and can be tested for using the skin prick test, which measures reactions to a
- 47 variety of common environmental allergens³, or measuring serum levels of IgE⁴. However, non-
- 48 allergic (or non-atopic) forms of asthma can develop following exposure to a non-allergic
- 49 environmental trigger. As such, clinically defining and treating asthma is complex due to a number of
- 50 clinical asthma phenotypes displaying different disease pathologies, which are further underpinned
- 51 by multiple inflammatory endotypes^{5,6}.
- Asthma phenotypes are broadly split into allergic and non-allergic⁵, with allergic asthma being the
- most widely recognized form and implicated in 50-80% of asthma cases⁷. Allergic asthma is induced
- by common environmental allergens including house dust mite, grass and tree pollen, mold and
- ragweed and is characterized by type 2 (T2) inflammation⁵. T2 inflammation is driven by cytokines
- such as interleukin (IL)-4, IL-5 and IL-13 released by T helper (Th) 2 cells which increase the
- 57 recruitment and survival of eosinophils (Figure 1). T2 inflammation promotes the pathophysiological
- features of eosinophilic asthma including increased basement membrane thickness and corticosteroid
- responsiveness^{5,6,8–10}. However, an increasing number of studies demonstrate evidence of T2-low
- 60 inflammation in some asthma patients^{11,12}. T2-low responses are associated with T1 or T17
- inflammation, increased inflammasome responses and corticosteroid insensitivity (Figure 1) 13 . In
- 62 contrast to T2-high and eosinophilic inflammation, a major feature of T2-low inflammation is
- 63 increased neutrophil infiltration. Neutrophils are now understood to play a significant role in asthma
- and are associated with severe asthma phenotypes, severe airflow obstruction, steroid resistance and
- 65 increased presence of potentially pathogenic bacteria 14-16. However, there are individuals who exhibit
- 66 high levels of both eosinophils and neutrophils, designated as mixed granulocytic phenotype, which
- 67 is also associated with more severe asthma and also respond poorly to current treatments, despite the
- presence of eosinophils¹⁷.
- 69 The multifactorial nature of asthma is such that therapies concentrate on decreasing symptoms rather
- than disease cure. The most commonly used therapies include inhaled/oral corticosteroids and
- 71 leukotriene modifiers to control airway inflammation and bronchodilators such as β_2 -agonists or
- anticholinergics for immediate relief of asthma symptoms 18. However, even patients with good
- 73 treatment adherence can still experience exacerbations of their asthma symptoms¹⁹. An asthma
- exacerbation is characterized by a worsening of symptoms and can be graded in severity as mild,
- 75 moderate, severe or life-threatening²⁰. Symptoms include wheeze, shortness of breath and chest
- tightness and are induced by airway inflammation, resulting in airflow obstruction and increased
- airway responsiveness^{21,22}. With approximately 65,000 hospital admissions yearly in the UK,
- 78 exacerbations contribute to the considerable financial and logistical burden of asthma on the health
- 78 Exactivations contribute to the considerable financial and logistical outden of astima on the hearth
- care system, with the added economic impact due to lost productivity of workers²³. Exacerbations
- 80 can also enhance disease progression by increasing the rate of lung function decline and thus asthma
- 81 severity^{24–26}, with some more severe forms of asthma resistant to even high doses of steroid
- 82 treatment¹⁰.
- 83 The future of asthma treatment and management is thus moving towards modulating specific
- 84 components of the immune system involved in asthma pathogenesis by use of monoclonal antibodies

- 85 targeting specific inflammatory mediators^{27,28}. As such, a number of therapeutics aim to reduce the
- 86 number of eosinophils and T2 cytokines using anti-IL5 antibodies. However, the mechanisms driving
- 87 efficacy of anti-IL5 antibodies is unclear: although blood eosinophils are reduced, the impact on
- 88 airway responses, such as sputum eosinophils, exacerbation frequency and pulmonary function is
- 89 varied²⁹. Importantly, even individuals treated with the anti-IL5R monoclonal antibody,
- 90 benralizumab have been reported to experience exacerbations that were predominantly non-
- eosinophilic in nature and associated with infection³⁰. Thus, given the mixed outcomes of targeting
- 92 IL-5/eosinophils and the potential for the involvement of other inflammatory immune cells in asthma
- pathogenesis, there remains an unmet need for better asthma treatments, particularly in terms of
- exacerbation prevention³¹. Triggers of asthma exacerbations include air pollution, cigarette smoking,
- allergens and respiratory tract infection (RTI) with virus and bacteria¹. Interactions between these
- triggers likely occur, with the underlying host susceptibility also playing a role in exacerbations,
- 97 which renders it challenging to ascertain the exact mechanisms and interplay involved in
- 98 exacerbations and develop effective therapeutics. Despite the importance of all of these triggers in
- asthma pathogenesis, in this review we focus on the role of bacteria and viruses and their cross-talk,
- with the role of other environmental factors recently reviewed elsewhere^{32,33}.
- Respiratory tract viral infections are also linked to early life asthma development. The advent of non-
- 102 culture-based methods of bacterial detection, such as 16S rRNA sequencing, has increased
- appreciation for a role for potentially pathogenic bacteria in asthma development and pathogenesis
- 104 (Figure 2). Airway colonization by potentially pathogenic bacteria within 1 month of life is suggested
- to predispose individuals to asthma³⁴, indicating that modulation of airway immunity may occur even
- prior to respiratory tract viral infections. Indeed, bacteria-virus co-infection of the airway results in
- more severe exacerbations and hospital readmission of individuals with chronic respiratory disease³⁵.
- These observations suggest an underappreciated cross-talk is occurring during bacteria-virus co-
- infections in the airway.
- Here we will review the currently understood role of infection in three aspects of asthma: i) asthma
- exacerbations, ii) early life development of asthma, and iii) established asthma and inflammatory
- phenotypes. We will discuss the emerging evidence of cross-talk between bacteria and viruses and
- the host, with a particular focus on how co-occurrence of pathogens may impact asthma pathogenesis
- and inflammatory phenotypes. Finally, we will discuss how our increasing appreciation for the co-
- occurrence of certain respiratory pathogens and their cross-talk may reveal novel treatment
- modalities to improve outcomes for individuals with asthma.

2 Asthma exacerbations: the role of infection

- The role of viral infection in asthma exacerbation has been known for decades, with early studies
- showing associations between respiratory pathogens and asthma attacks³⁶, with experimental
- rhinovirus (RV) inoculation of volunteers inducing airway hyperresponsiveness providing evidence
- for viral infection contributing to exacerbations^{37,38}. A systematic review by Papadopoulos *et al.*,
- found no less than 11 viruses associated with exacerbations of asthma, with virus prevalence
- differing between adults, children (6 17 years old) and infants $(<6 \text{ years old})^{39}$. RV is the most
- 124 common virus detected during an exacerbation in both children (55%) and adults (29%)³⁹, with
- detection of RV up to 5 days prior, being found to be significantly associated with the development
- of an exacerbation⁴⁰. However, the exact causative role of viral infection in asthma exacerbations
- remain unclear, with other studies demonstrating no changes in asthma symptoms following viral
- 128 challenge^{41,42}.

117

147

- Furthermore, the development of culture-independent methods has advanced our ability to detect
- respiratory pathogens that are difficult to culture, resulting in an expansion of our knowledge of the
- pathogens present in the airways and associated with exacerbations. For example, the presence of
- RV-C was likely previously overlooked due to difficulties in growing and culturing RV-C in vitro⁴³,
- but is now suggested to be the RV strain associated with more severe illness⁴⁴. However, the majority
- of patients presenting with asthma exacerbations are not screened using multiplex PCR viral
- detection systems meaning that the true association of different viral pathogens with asthma
- exacerbations is difficult to interpret. Numerous bacterial pathogens, other than the original atypical
- bacterial pathogens Mycoplasma pneumoniae and Chlamydia pneumoniae⁴⁵, are now implicated in
- asthma, including Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae,
- Haemophilus parainfluenzae, Klebsiella pneumoniae and Bordetella pertussis^{46–48}. Studies have
- 140 consistently identified enrichment of Proteobacteria in asthma⁴⁹ and have shown *H. influenzae* and
- 141 Moraxella catarrhalis (Mcat) to be associated with clinical outcomes. H. influenzae is associated
- with poor asthma control⁵⁰, steroid resistance^{46,51}, neutrophilic inflammation^{46,52,53} and increased
- disease severity^{16,50}. In contrast, Mcat is associated with the induction of mixed inflammatory
- phenotypes^{46,52,54}, loss of asthma control in children⁵⁵ and increased number of exacerbations in
- children⁵⁶. As such, this review will mainly focus on these two clinically important Proteobacteria, as
- well as three viruses of interest: RV, influenza and respiratory syncytial virus (RSV).

2.1 Mechanisms contributing to infection-induced asthma exacerbations

- 148 Despite epidemiological studies demonstrating associations between infection and asthma
- exacerbations, the exact mechanisms by which these different pathogenic triggers drive exacerbations
- remain unclear. As detection of pathogens during exacerbation do not prove causation, it is important
- to consider how other factors may contribute to exacerbations (Figure 3). The multifactorial nature of
- to consider now other ractors may contribute to exacerbations (Figure 3). The maturactorial nature of
- asthma is such that the underlying atopic status, timing of allergen exposure or asthma severity may
- influence the host response to infection and account for differences observed in experimental
- challenge or observational studies. For example, influenza infection causes increased epithelial cell
- lysis compared to RV infection²², but the presence of an atopic environment was shown to increase
- RV cytotoxicity⁵⁷ and be protective against influenza A infection^{58,59}. The timing of allergen
- exposure and viral challenge also appears to influence outcomes. Sensitization and exposure to high
- allergen levels followed by viral exposure increases the risk of hospital admission⁶⁰, whereas
- individuals challenged with allergen after RV infection demonstrated higher levels of allergic
- responses compared to non-allergic individuals challenged with RV⁶¹. As such, differences in clinical

- 161 or experimental study outcomes may be due to a number of host or pathogen factors including
- 162 genetics, allergen sensitization, asthma endotype, comorbidities, age, experimental timing and
- 163 dosing, seasonality and viral strain. Nonetheless, a study using omalizumab, an anti-IgE monoclonal
- antibody, was found to reduce exacerbations even during seasonal peaks⁶², providing evidence for 164
- 165 allergen-viral interactions in exacerbations.
- Different respiratory pathogens, even different strains of the same pathogen, induce distinct 166
- responses^{63–65}; however, the underlying inflammatory environment and host immune responses may 167
- further influence infection outcomes (Figure 4). Investigations building on experimental challenge 168
- 169 studies have identified a number of potential host impairments which may contribute to infection-
- 170 induced exacerbations. These include ciliary dysfunction, ciliostasis, mucus hypersecretion⁶⁶, goblet
- cell hyperplasia^{67–71}, altered and dysregulated baseline inflammatory gene expression⁷², impaired 171
- antiviral responses⁷³, delayed interferon responses⁷⁴, decreased levels of the innate immune surfactant protein (SP)-D⁷⁵, altered macrophage phenotype⁷⁶ and decreased macrophage phagocytosis^{77,78}. The 172
- 173
- exact mechanisms of how each individual pathogen contributes to an asthma exacerbation is 174
- 175 multifactorial and is likely dependent on pathogen strain/subtype and a myriad of host factors. These
- 176 factors become even more complicated when we consider the potential of bacteria-virus interactions
- 177 with the host and how these may influence the development of exacerbations. As such, we will next
- 178 consider how bacteria-virus crosstalk during co-infection may precipitate asthma exacerbations.

Double trouble? The role of co-infections in asthma exacerbations

- 180 Bacterial and viral airway co-infections in chronic respiratory disease are an important clinical
- 181 consideration due to individuals suffering from more severe illness, increased exacerbation risk and
- increased hospital readmissions 35,79,80. H. influenzae in particular has been found to be co-detected 182
- 183 with the three main etiological viral agents of asthma exacerbations, influenza, RV and RSV,
- 184 resulting in increased disease severity and likelihood of viral infection when H. influenzae is
- present^{47,56,80–84}. Notably, associations between *H. influenzae* and RV in the airway are not limited to 185
- asthma, with longitudinal studies in COPD demonstrating the presence of both NTHi and RV 186
- 187 associating with decreased lung function, increased exacerbation risk and increased airway
- inflammation^{85,86}. 188

179

196

- 189 In contrast, Kloepfer et al. analysed the impact of RV-bacteria co-infection in children and found that
- 190 H. influenzae did not associate with increased respiratory symptoms. Instead, carriage of Mcat was
- more significantly associated with increased symptoms and asthma exacerbations, with no 191
- associations between pathogen and atopic status⁷⁹. This association between Mcat and RV in 192
- 193 asthmatic children may be due to similarities in the timing of RV and Mcat circulation, as well as
- 194 age-dependent host factors. As the seasonal pattern of Mcat coincides with RV, it is possible that
- 195 RV-Mcat or RV-host interactions may promote Mcat pathogenesis in children.

2.2.1 Modulation of host cell surfaces

- 197 Several studies have attempted to elucidate the mechanisms underlying bacteria-virus cross talk
- 198 during co-infection using various combinations of model systems, respiratory pathogens and
- infection protocols. Modulation of host cellular surfaces by pathogens may increase the ability of 199
- other pathogens to adhere to airway cells and establish infection⁸⁷. *In vitro* studies have shown that 200
- 201 the main cellular receptor for RV, ICAM-1 is upregulated following infection of epithelial cells and
- monocytes by NTHi⁸⁸ and Mcat⁸⁹ and is also utilized by NTHi for adherence and invasion⁹⁰. 202
- Increased RV infection following pre-incubation of epithelial cells with NTHi, was associated with 203
- NTHi-mediated upregulation of ICAM-1⁹¹. 204

- 205 Similarly, both IAV and NTHi exploit the presence of sialic acids present on host cells to facilitate
- attachment and entry into host cells $^{92-95}$. IAV strains preferentially bind to $\alpha 2,6$ -linked sialic acid 206
- residues⁹², whilst NTHi can bind to α 2,6- or α 2,3-linked sialic acid residues depending on the 207
- differential expression of NTHi outer membrane proteins HMW1/2 or Hia^{93–97}. An intriguing concept 208
- is that the use of sialic acid by both NTHi and IAV to establish infection could in fact predispose the 209
- airway to infection by other respiratory tract pathogens such as S. pneumoniae, which can co-infect 210
- the airway with NTHi⁹⁸. Work using *in vitro* and *in vivo* infection models demonstrated that 211
- 212 desialylation of epithelial cells following IAV infection resulted in increased S. pneumoniae adhesion
- 213 to host cells⁹⁹.

214

2.2.2 Modulation of host immune responses

- 215 As well as influencing pathogen adherence to the respiratory tract, co-infection also modulates host
- 216 responses. Viral infection can result in a phenomenon termed immune paralysis, characterized by
- immunological defects such as decreased macrophage phagocytosis 100. Murine AM display reduced 217
- phagocytosis in response to secondary bacterial challenge a week after initial influenza virus 218
- challenge, resulting in higher bacterial burden¹⁰¹. Another study reported sustained desensitization of 219
- AM lasting for several months following influenza infection, resulting in reduced chemokine 220
- 221 production and NF-κB activation, leading to reduced airway immune cell recruitment during
- 222 secondary bacterial challenge¹⁰². Furthermore, influenza infection of mice reduced the number of
- AM, increasing susceptibility to secondary S. pneumoniae infection 103. These impacts are not limited 223
- 224 to influenza: RV infection of human AM also resulted in impaired pro-inflammatory cytokine release
- 225 and modulation of phagocytosis capacity during subsequent AM challenge with LPS or E. coli
- bioparticles¹⁰⁴. 226
- 227 In contrast, studies have demonstrated augmented pro-inflammatory responses during co-infection,
- 228 which may translate to the enhanced inflammation, increased illness severity and hospital admissions
- observed during asthma exacerbations^{35,79}. Co-infection of epithelial cells with RV and NTHi 229
- increased release of neutrophil chemoattractants, CCL20 and CXCL8/IL-8, compared to infection 230
- with either pathogen alone 105. Frick and colleagues found that co-infection with NTHi and RV 231
- resulted in increased neutrophil adherence in vitro and leukocyte recruitment in an airway infection 232
- 233 murine model⁸⁸. Similarly, neutrophil infiltration was observed in a NTHi-IAV murine co-infection
- model, which also demonstrated increased levels of pro-inflammatory cytokines¹⁰⁶. Conversely, a 234
- 235 recent study utilizing an allergic airways disease murine model reported that the microbiome
- 236 structure was influenced by the allergic inflammatory environment, which in turn reduced the impact
- of influenza-S. pneumoniae co-infection¹⁰⁷. Consideration of disease setting and other potential 237
- underlying host factors is important; not only does the microbiome appear to influence responses to 238
- 239 infection, but murine models of allergic airways disease have shown the presence of an atopic
- 240 environment also influences infection outcomes⁵⁹.

241 2.2.3 Does the timing of the immune response during co-infection influence outcomes?

- 242 Although bacteria-virus interactions have historically been investigated in the context of secondary
- 243 bacterial infections succeeding viral infection, our increasing knowledge of airway microbiota
- 244 presence requires careful consideration of host-pathogen dynamics. Invasion and persistence within
- epithelial and immune cells enhances survival of both NTHi and Mcat^{108–116}, with airway persistence 245
- varying from days to years 86,117–120. This chronic airway presence may modulate host immune 246
- 247 responses and influence the progression of a subsequent viral infection. A number of in vitro studies
- 248 have reported modulation of anti-viral responses by bacteria. Heinrich et al. found that in vitro, Mcat-

- 249 mediated TLR3 downregulation led to decreased secretion of interferons such as IFN-β and IFN-λ,
- resulting in increased susceptibility of epithelial cells to a subsequent RV infection¹²¹. In contrast,
- NTHi infection upregulated TLR3 receptor expression in airway epithelial cells prior to RV
- infection. However, as NTHi also upregulated ICAM-1 expression, levels of RV attachment to cells
- increased, resulting in synergistic IL-8 release¹²². In a separate study, NTHi infection also enhanced
- epithelial cell TLR7 expression and type I IFN responses. However, this study did not assess whether
- 255 this modulation of anti-viral immunity influenced a subsequent viral response¹²³. Importantly, TLR7
- expression by AMs from severe asthma is reduced¹²⁴. As such, NTHi-mediated upregulation of type I
- 257 IFN responses via TLR7 may not be recapitulated in the severe asthmatic airway.
- 258 Unravelling host-pathogen interactions outside of the lung environment is complex and challenging,
- 259 highlighting the importance of translating *in vitro* and murine *in vivo* studies into human disease
- settings. Human challenge models may help us better reconcile observations and associations from
- 261 clinical cohort studies and experimental models. For example, a recent eloquent study by Habibi et
- 262 al., identified an association between a neutrophil transcriptomic signature with increased
- susceptibility for RSV symptomatic infection using experimental RSV nasal inoculation of healthy
- volunteers 125. Thus, the presence of bacteria such as NTHi, which is associated with a neutrophilic
- 265 phenotype, may predispose individuals to symptomatic viral infection, which may consequently
- result in development of an asthma exacerbation. Indeed, a study by Steeinhuiisen et al., found that
- 267 children with *H. influenzae*-dominant microbiomes were more likely to be hospitalized with RSV-
- 268 induced bronchiolitis and was associated with neutrophil and macrophage transcriptomic
- signatures 126.
- However, asthma is heterogenous and caution must be used when interpreting results from single
- clinical studies in humans. Various differences between study cohorts may impact on conclusions,
- including factors such as age, underlying inflammatory phenotype, current treatment and microbiome
- 273 structure. For example, varying clinical cut offs for eosinophilic and neutrophilic inflammation 127,128,
- as well as the use of molecular markers of T2 inflammation (*CLCA1*, *SERPINB2* and *POSTN*)⁵⁴ can
- be used to stratify patients. The diverse nature of asthma patients may account for the conflicting
- evidence of bacterial abundance and diversity in asthma^{129–132}, with some studies also indicating
- 277 microbiome diversity and abundance differs with T2-low/high or eosinophilic/neutrophilic
- inflammatory phenotypes^{50,52,54}, and steroid-responsiveness^{129,132}. As such, it is important to consider
- 279 how the aforementioned factors may collectively impact on study outcomes when considering the
- role of bacteria in asthma.
- Overall, the impact of bacterial pre-exposure on host immunity and subsequent viral infection appear
- conflicting; the differences in the results of these studies may be due to different infection models,
- 283 pathogen strains/combinations and infection protocol duration used. It is important to determine
- 284 whether bacteria presence in the airway is a protective, causative, or contributing agent of
- exacerbations, or a biomarker for exacerbation risk, depending on underlying host factors. However,
- 286 whilst the role of RTI in causing asthma exacerbations has been known for at least 30 years, there is
- 287 now emerging evidence that RTI may also contribute to asthma development. This emerging
- evidence is the focus of the next section.

3 Early life: the role of infection

289

306

Asthma is regarded as a hereditary trait and the use of genome-wide linkage studies of twins and 290 families have resulted in estimates of heritability that range from 35 to 70% ^{133–135}. Numerous 291 292 candidate genes have been suggested to be associated with asthma, with Genome Wide Association Studies (GWAS) identifying asthma susceptibility loci 136,137. However, independent GWAS do not 293 completely overlap in their findings, likely due to differences in environmental exposures of 294 individuals within study cohorts¹³⁸. Environmental factors play a considerable role in asthma 295 296 development (Figure 2), with Thomsen and colleagues identifying that environmental factors 297 explained a higher proportion of the variation in age of onset of asthma (66%) compared to genetic 298 factors alone (34%)¹³⁴. Earlier GWAS and candidate gene association studies did not include the possibility of environmental factors interacting with host genetics, which may explain the lack of 299 overlap between studies¹³⁸. Building on candidate gene associations and GWAS, gene-environment 300 interaction studies may unveil novel genes that are only significant for asthma susceptibility when 301 combined with the appropriate environmental exposure 139. Such environmental factors include 302 303 smoking, pollution, mold, farming-related exposures, dust and respiratory tract infections¹³⁵. This 304 section will discuss the potential role of respiratory tract infections in predisposing individuals to 305 asthma development.

3.1 Gene-bacteria-virus interactions influencing host immunity in early life

- 307 Given that asthma is characterized by dysregulated and exacerbated immune responses, as a result of genetic-epigenetic-environmental interactions, assessing the influence of infection on host immunity 308 309 has been an important area of investigation. It has been suggested that viral infection in combination 310 with genetic predisposition increases the risk for childhood asthma development. A GWAS identified the first known asthma susceptibility locus, 17q21¹⁴⁰, which is associated with childhood respiratory 311 infection¹⁴¹. Notably, investigation of this locus in two cohorts - the Childhood Origins of Asthma 312 313 (COAST) birth cohort and the Copenhagen Prospective Study on Asthma in Childhood (COPSAC) 314 birth cohort - found that responses to RV, but not RSV, were associated with 17q21; RV-stimulated PBMCs expressed higher levels of two 17q21 genes, GSDMB and ORMDL3¹⁴². Subsequent in vitro 315 316 investigations silencing ORMDL3 reported attenuated pro-inflammatory responses and reduced 317 ICAM1 expression, providing a potential mechanistic basis for ORMDL3 and RV susceptibility in asthma¹⁴³. Given that ICAM-1 also serves as a receptor for NTHi and is upregulated in response to 318 NTHi presence⁹¹, it is possible a complex interplay occurs between genetic susceptibility, chronic 319 320 NTHi airway colonization and RV infection. Furthermore, recent work has identified a potential 321 prominent role of RV-C in childhood asthma development. The RV-C entry receptor is CDHR3, the 322 product of CDHR3, which was identified by Bønnelykke and colleagues in a GWAS to be an asthma susceptibility gene¹⁴⁴. The *CDHR3* gene is associated with increased RV-C detection and risk of 323 respiratory tract illness¹⁴⁵, further highlighting the importance of gene-environment interactions 324 wherein viral infection is a critical environmental exposure. 325
- Genetic alterations may also predispose individuals to recurrent bacterial infections. The Toll Like
- Receptor (TLR)4 polymorphism, Asp299Gly, is associated with increased gram negative bacterial
- 328 infections 146, lower cell surface TLR4 expression and impaired TLR4-mediated lipopolysaccharide
- 329 (LPS) signaling¹⁴⁷. Individuals carrying the Asp299Gly TLR4 polymorphism and were colonized
- with Mcat at 2 months or *H. influenzae* at 13 months of age were at an increased risk of asthma
- development¹⁴⁸. Stimulation of PBMCs ex vivo found that this particular polymorphism results in
- decreased LPS-induced IL-10 and IL-12 responses and was independently associated with atopic

- asthma¹⁴⁹. However, an earlier study did not find any associations between TLR4 polymorphisms
- and asthma¹⁵⁰, likely due to potential differences in cohort-specific gene-environment interactions.
- Indeed, Terasjarvi et al. did not find an association between TLR4 polymorphism and asthma risk
- alone, but instead between TLR4 polymorphism, *H. influenzae* colonization and asthma risk¹⁴⁸.
- highlighting the need to consider multiple host-environment factors to unravel the complex and
- 338 multifaceted nature of asthma.

3.2 Viral infection

339

- Early studies initially identified viral infection to be significantly predictive of asthma development,
- resulting in a focus on early life viral infections and asthma development 151–153. In infancy, wheezing
- 342 is one the earlier predictors of asthma, heavily implicating viruses such as RV and RSV. Early work
- 343 reported RV-associated wheezing during infancy was the strongest predictor for wheezing in the third
- year of life¹⁵² and more severe RV infections resulting in hospitalizations during infancy were
- associated with asthma development¹⁵¹. Retrospective studies have identified children with early life
- 346 RSV infection, particularly those requiring hospitalization, to be more at risk of asthma
- development¹⁵⁴. Children who were hospitalized as a result of severe RSV bronchiolitis were shown
- to be at risk of developing asthma by age 18¹⁵⁵. Indeed, in this Swedish study, 30% of children who
- developed severe bronchiolitis developed reactive airways disease by age 7 compared to just 3% of
- 350 controls. Studies in animal models have shown that RSV infection can upregulate IL-4, IL-5, IL-13
- and the T2 chemokine CCL17¹⁵⁶. This increase in T2 cytokines was postulated by the authors to be a
- result of NK cell depletion and subsequent reduction of IFNy expression by RSV. This RSV-induced
- switching to a T2-phenotype may explain some of this susceptibility to asthma development.
- Furthermore, *in vitro* work has showed decreased RSV load was associated with the epigenetic
- regulation of RIG-I following IFNγ priming¹⁵⁷. Thus, the timely development and maturation of
- immune responses may depend on early life pathogen exposure.
- 357 Synergistic interactions between virus and allergen exposure may also contribute to asthma
- development. RV or RSV induced illness in infancy is associated with subsequent wheezing, but was
- found to be most significantly associated in children who were sensitized when <2 years old¹⁵⁸. The
- importance of age and timing of allergen sensitization was confirmed in a separate cohort, with 65%
- of children sensitized by 1 year of age identified to have asthma by 13 years of age, compared to only
- 362 17% of children sensitized by 5 years of age¹⁵⁹. A synergistic effect of allergen exposure and viral
- infection was proposed following inoculation of volunteers with RV and allergen challenge, which
- augmented allergic airway responses compared with RV inoculation alone⁶¹. Subsequent studies
- confirmed this observation, with increased risk of hospitalization associated with allergen
- sensitization and viral infection during exacerbations of childhood asthma^{60,160}. The mechanisms
- 367 underlying how virus-allergen exposure synergistically contributes to asthma development are not
- understood, however a murine model of RSV infection and allergen sensitization found that recurrent
- 369 RSV infections of sensitized mice resulted in T2 cytokine production, increased serum IgE and
- airway hyperresponsiveness¹⁶¹.
- 371 Although viral infections are thought to be transient and provoke an acute inflammatory response,
- associations between viral infection and asthma development have prompted investigations into how
- viruses cause chronic inflammation. Studies have identified that, following the initial viral insult,
- trace amounts of virus are detectable in the lung and are associated with increased eosinophilic
- inflammation, airflow obstruction and lower FEV₁¹⁶². A murine model of chronic respiratory disease
- demonstrated this persistent inflammation and airway hyperresponsiveness was mediated by lung
- macrophages activating invariant natural killer T (iNKT) cells to release IL-13, a finding that,

- importantly, was also observed in a human cohort 163. Thus, viral infection in early life may initiate 378
- 379 immunological changes that persist and precipitate asthma development.
- 380 As most children are exposed to viruses during early life, but not all children go on to develop
- 381 asthma, it is likely that other co-factors are involved. Intriguingly, analysis from the COPSAC cohort
- 382 found that no specific infectious trigger, but rather, the number of respiratory episodes predisposes
- individuals to asthma in later life¹⁶⁴. Studies have shown that in fact, enrichment of certain bacteria in 383
- the respiratory tract during early life is associated with recurrent RTIs and increased risk of asthma 384
- 385 development.

386

The role of microbial dysbiosis in asthma development

- 387 Our understanding of the role of bacteria in the airway is only recently being advanced due to the
- incorrect dogma of lung sterility, which has prevailed since the late 19th century. As the study of the 388
- 389 lung microbiome is a relatively young field, it faces technical and methodological challenges,
- 390 particularly given the low microbial biomass of the lung environment 165. Despite this, common lung
- microbiome profiles have been successfully identified, allowing for comparisons of the lung 391
- microbiome between health and disease^{49,165,166}. The dynamics of early life microbiome development 392
- 393 are suggested to influence the maturation of host immune response and consequently, respiratory
- 394 health, with childbirth delivery mode and breastfeeding associated with microbiome structure,
- 395 development and temporal stability 167–170.
- One theory that attempts to explain the increased incidence of asthma during the 20th century is the 396
- 'hygiene hypothesis' 171,172. This theory, backed by a body of evidence, postulates that modern day 397
- cleanliness and sterile environments have promoted the development of allergic diseases, such as 398
- asthma, by reducing the exposure of individuals to non-infectious organisms during childhood 173–177. 399
- 400 Accumulating evidence indicates that there is a timely window of opportunity during early life
- 401 wherein disruptions in microbial colonization can increase the risk of asthma development in later
- 402 life. Indeed, Bisgaard et al. reported that children who were colonized within 1 month of life by
- 403 potentially pathogenic bacteria, including *H. influenzae and* Mcat were more likely to develop
- asthma by the age of 5¹⁶⁶. Building on this seminal work, further analysis found associations between 404
- microbiome stability and respiratory health in the first two years of life¹⁷⁰. More stable microbiota 405
- 406 profiles were dominated by Moraxella and were associated with a lower number of consecutive
- respiratory infections¹⁷⁰. In contrast, other studies have found *Moraxella*-dominant microbiomes 407
- were associated with younger age of first upper RTI¹⁷⁸, increased number of RTIs¹⁷⁹ and increased 408
- severity of illness¹⁷⁸. The timing of *Moraxella* colonization appears to be crucial. In line with the 409
- 410 original findings of Bisgaard et al., Moraxella becomes the dominant microbiome community
- member in healthy children much later (2-3 months)¹⁷⁹. Premature microbiome maturation involving 411
- 412 an early transition to a Moraxella-dominant microbiome profile is associated with an increased
- number of RTIs¹⁷⁹. 413
- Conversely, Haemophilius-dominated microbiome profiles are less temporally stable 170,178, and 414
- emerge later than Moraxella¹⁷⁹. Characterization of the nasopharyngeal microbiome in the first five 415
- years of life found that the presence of *Haemophilus* was associated with increased respiratory tract 416
- illness symptoms, both synergistically and independently of viral presence (RSV and RV), indicating 417
- a bacteria-dependent contribution to respiratory illness 180. Furthermore, *H. influenzae* colonization 418
- 419 was more significant in an 'infection and allergy prone' subgroup of children in a retrospective
- 420 analysis investigating the relationship between bacterial colonization and respiratory illness in

- 421 children between 6 months and 5 years of age¹⁸¹. This study also found a significant association
- between *H. influenzae* and influenza infection, which was not observed for other respiratory bacteria.
- 423 It is not clear whether *Haemophilus* associations with early life asthma development is a consequence
- of altered microbiome maturation and immune training prior to the establishment of a *Haemophilus*-
- dominant microbiome. Overall, the mechanistic influence of colonizing bacteria on host responses
- prior to and during viral infection is not well understood, highlighting the need to also characterize
- 427 the functional relevance of early life bacterial colonization on immune tone, rather than just drawing
- 428 correlations between bacterial presence with respiratory health outcomes.
- Nonetheless, evidence indicates that airway bacteria modulate host immune responses. Exaggerated
- 430 responses were observed in PBMC isolated from children prior to asthma development in later life,
- including increased IL-5, IL-13, IL-17 and IL-10 when exposed to *H. influenzae* and Mcat¹⁸².
- Building on these observations, murine models of airway disease demonstrate a potential functional
- consequence of airway colonization by potentially pathogenic bacteria. Mice colonized with NTHi
- after only 3 days of life exhibited an exacerbated response when later challenged with an allergen,
- implicating NTHi in aberrant host immune development¹⁸³. Similarly, Mcat and allergen exposure
- 436 synergistically resulted in an IL-17-mediated exacerbated immune response in mice¹⁸⁴. Development
- of aberrant host immune responses following early life colonization by bacteria may influence host
- responses to infections and contribute to asthma development. For example, mucosal-associated
- invariant T (MAIT) cells are important antibacterial innate-like immune cells which depend on
- microbiota-derived signals for timely development and maturation ^{185,186}. Thus, as a healthy
- microbiome appears to be crucial for MAIT cell-mediated resistance to infection, dysbiosis of the
- airway microbiome by pathogens such as NTHi and Mcat in early life may influence MAIT cell
- development. Indeed, MAIT cells are activated upon NTHi infection of macrophages in vitro¹⁸⁷ and
- are important for host resistance to other respiratory pathogens 188,189. Thus, dysregulation of MAIT
- cell function may contribute to aberrant immune responses in asthma.
- 446 As evidence indicates that these bacteria also chronically colonize the airway of individuals with
- established asthma, we will next explore how these bacteria can contribute to the development and
- persistence of asthma inflammatory phenotypes and modulate airway immune responses.

449 **4** Established asthma: the role of colonizing bacteria in shaping host immune responses and inflammatory phenotypes

4.1 Host-pathogen crosstalk during persistent airway colonization

- 452 Although the importance of lung microbiome composition differences between health and disease is
- becoming apparent, the complexities of host-microbiome interactions are only now beginning to be
- appreciated ¹⁹⁰. Increasing evidence indicates that the gut microbiome modulates the host mucosal
- defense response, however less is known about the role of the lung microbiome in regulating the host
- immune response¹⁹¹. Human lung microbiome studies have mainly consisted of using metagenomics
- on large cohorts to identify the microbiome composition. Although metagenomics is a powerful tool,
- 458 measuring the relative abundance of bacterial species does not necessarily correlate with the activity
- of the microbes present¹⁹².

451

477

- 460 As such, studies are now beginning to correlate microbial activity with host gene expression. Using a
- 461 combination of shotgun RNA sequencing for microbial identification and host differential gene
- expression analysis, Castro-Nallar *et al.*, identified a specific host gene profile associated with the
- presence of Proteobacteria¹⁹³. Expanding on this work, Perez-Losada *et al.*, used dual transcriptomic
- profiling to assess differences in the host and microbial functional properties of asthmatic children
- and healthy controls 194. They found differences in bacterial metabolism-associated genes between the
- 466 metatranscriptomes of asthmatic and non-asthmatic individuals, with host *IL1A* expression associated
- with bacterial adhesion¹⁹⁴. Further metabolic differences in the asthmatic bronchial microbiome was
- observed by Durack et al., who found enrichment of bacterial short chain fatty acid (SCFA) and
- amino acid metabolism in atopic asthmatics⁵⁴. Interestingly, this study also found functional
- differences in the microbiome were associated with ICS responsiveness, suggesting members of the
- 471 microbiome may influence treatment efficacy. Unfortunately, due to the experimental limitation of
- low bacterial biomass in the lung, sample size was too small to perform meaningful comparisons
- between T2 low/high individuals. Nonetheless, such studies demonstrate the importance of using
- 474 metatranscriptomic approaches to determine the functional impact of these altered microbiome
- 475 profiles in the development and progression of asthma and modulation of host immune responses
- 476 during stable periods of disease.

4.2 NTHi and the neutrophil inflammatory phenotype

- Numerous studies have identified associations between Proteobacteria and some of the main clinical
- features of asthma including increased bronchial hyperresponsiveness ¹³⁰ and airway
- 480 inflammation^{53,130}, such as a mixed T1/T2/T17 inflammatory response^{16,195}. Expansion of
- Proteobacteria appears to be inversely correlated with eosinophil levels but is significantly associated
- with increased neutrophil levels 16,46. In particular, NTHi is detectable during stable periods of disease
- and is associated with T2-low inflammation, increased neutrophils and steroid-resistance (Figure
- 484 4)^{46,50}. Development of steroid resistance in asthma has been linked to increased NLRP3, caspase-1
- and IL-1β responses to NTHi infection^{51,196}. Experimental models trying to reconcile the
- observations of NTHi and neutrophilic inflammation in cohort studies have shown that suppression
- of IL-1β-mediated responses prevented the development of the steroid-resistant features of asthma⁵¹.
- However, it remains unclear whether NTHi contributes to the progression of severe, neutrophilic,
- 489 steroid resistant asthma or if NTHi takes advantage of the chronically inflamed and damaged airway
- 490 that is characteristic of severe asthma to colonize the lung.

To try and untangle the complex mechanisms underlying this question, murine studies have investigated the development of neutrophilic disease following NTHi colonization. NTHi infection of ovalbumin (OVA)-sensitized mice resulted in an influx of IL-17+ macrophages, neutrophils and lymphocytes, with eosinophilic inflammation reduced¹⁹⁷. Despite an influx of immune cells, NTHi infection was sustained in mice with allergic airways disease compared to non-allergic mice¹⁹⁸. The combination of allergic airways disease and infection contributed to the emergence of a steroidresistant neutrophilic phenotype, suggesting the synergy between prior host allergic sensitization and subsequent NTHi infection promotes disease development. However, the duration of these aforementioned murine studies may be too short to ascertain whether the neutrophilic phenotype persists or if the neutrophilic inflammation was a transient event with inflammatory resolution occurring after the chosen study endpoint. Yang et al., extended the experimental endpoint to 2 months using OVA-sensitized mice and repeated low dose infections with NTHi, to model NTHi chronic colonization of the airway¹⁹⁹. As a consequence, by the 2-month (56 day) endpoint, the inflammatory profile switched from T2-associated eosinophilic inflammation to T17-associated neutrophilic inflammation, accompanied by Treg immunosuppression and impaired macrophage phagocytosis. Together, these murine studies suggest that the combination of allergic airways disease and NTHi infection drives the neutrophilic inflammation, with this inflammatory phenotype still present 2 months after the first NTHi exposure. Thus, minimizing the burden of chronic NTHi presence in asthma could reduce the development of steroid-resistance and improve outcomes for patients requiring steroids to manage their symptoms.

491

492

493

494

495 496

497

498

499

500

501

502

503

504505

506

507

508

509

510

5 Changing the trajectory: strategies to reduce the burden of pathogens in the airway

- As patients with T2-low asthma tend to respond poorly to current therapies, identifying which
- 513 components of T2-low inflammation to therapeutically target is of utmost importance. However,
- 514 current therapies targeting these alternate pathways have not shown to be effective. The IL-17 family
- of cytokines is implicated in more severe and neutrophilic forms of asthma, but a clinical trial
- 516 treating patients with brodalumab, a monoclonal antibody targeting IL-17RA, did not show any
- 517 clinical benefits for patients²⁰⁰. However, a subpopulation within the trial cohort did show a clinically
- meaningful change in bronchodilator reversibility. Similarly, as a number of clinical and
- 519 experimental studies have implicated the inflammasome and IL-1 mediated responses in neutrophilic
- asthma and steroid resistance 51,196,201,202 , the notion of the rapeutically targeting IL-1 β has progressed
- 521 to clinical trials²⁰³. Although use of an IL-1 receptor agonist reduced IL-1β, IL-6 and IL-8 sputum
- levels in healthy volunteers challenged with LPS²⁰⁴, trial outcomes in chronic respiratory disease
- have not yet been conclusive.

511

- Due to the multifaceted nature of asthma, it is likely that treatment will be more successful using a
- 525 personalized medicine approach. To achieve this, we must first understand whether the measured
- inflammation is a cause of disease or is a consequence of other underlying pathology not yet
- 527 understood. This is perhaps exemplified by trials targeting the neutrophil chemokine receptor
- 528 CXCR2. Although CXCR2 antagonists reduced neutrophil levels in sputum and blood, they did not
- reduce exacerbations, improve lung function or asthma score, and was reversible after treatment
- ceased^{205,206}. Identifying the underlying mechanisms in asthma pathogenesis will likely uncover
- treatable traits to develop novel therapeutics against or reveal stratification strategies using
- 532 phenotypic traits or biomarkers to more effectively treat patients with currently available therapies
- using a more targeted approach.
- As accumulating evidence links respiratory tract infections and asthma pathogenesis, reducing the
- burden and carriage of the implicated pathogens has been suggested as an alternate strategy. Here we
- discuss some potential alternate and novel therapeutic strategies.

5.1 Vaccination

537

- The annual influenza vaccine is available for individuals with asthma; however, no vaccine is
- currently available for RSV, RV, Mcat or NTHi. Promisingly, vaccine candidates for these pathogens
- using a variety of vaccine technologies are at various stages of development^{207–210}, but further clinical
- 541 trials are needed to assess their efficacy in reducing exacerbations in chronic respiratory disease.
- Recently, mRNA vaccines have proposed as an alternative vaccine platform to conventional
- vaccines²¹¹. The success of the SARS-CoV-2 mRNA vaccine potentially signifies the beginning of a
- new era of vaccination technology, which may allow for development of vaccines against respiratory
- pathogens previously difficult to vaccinate against²¹².
- Other alternative vaccinology methods such as Trained Immunity-based Vaccines (TIbV) have also
- been proposed. These vaccines are composed of multiple microbial components aimed at generating
- broad responses and stimulation of trained immunity to promote immunotolerant responses to live
- pathogens²¹³. Generating protective immune responses is also the aim of bacterial lysate therapy.
- Roth et al. found that treatment with bacterial lysate composition (OM-85) inhibited RV infection of
- airway epithelial cells *in vitro*, through increased anti-viral activity and upregulation of proteins
- involved in antigen presentation. A study using a murine infection model has also shown beneficial
- effects of bacterial lysate treatment on RSV and influenza infection, with inhibition of infection

- suggested to occur through TLR signaling²¹⁴. Importantly, bacterial lysate therapy was shown to 554
- reduce exacerbation frequency in individuals with asthma²¹⁵. 555

Novel antibiotics/anti-inflammatories

- Although antibiotics are commonly used to treat respiratory infections, antibiotic treatment is non-557
- 558 specific and subsequently has global, detrimental effects on microbiome community structure.
- 559 Antibiotic use in early childhood may predispose individuals to asthma development by increasing
- the abundance of bacterial species associated with asthma development 178,216,217. However, the 560
- AMAZES (Asthma and Macrolides: The Azithromycin Efficacy and Safety) trial identified that 561
- 562 azithromycin treatment reduced *H. influenzae* load and exacerbation risk. This trial demonstrated that
- long term treatment of asthmatic individuals with the macrolide, azithromycin, reduced 563
- exacerbations²¹⁸ and H. influenzae load in the airway²¹⁹. This finding was consistent with an earlier 564
- study in children with bronchiectasis treated with azithromycin²²⁰. However, both studies found 565
- increased carriage of antibiotic resistance genes, a concern given the current antimicrobial resistance 566
- crisis. As such, reducing *H. influenzae* load through macrolide therapy may prevent exacerbations 567
- 568 and the development of steroid resistance in later life, but antibiotic use in early life may cause more
- 569 detrimental effects.

556

584

- 570 Macrolide antibiotics have immunomodulatory properties, as well as antibacterial, which could
- 571 improve the ability of macrophages to respond to NTHi in the airway. Use of another macrolide
- 572 antibiotic, clarithromycin, reduced IL-17 responses in a murine model of *H. influenzae*-induced
- severe, steroid-insensitive, neutrophilic allergic airways disease²²¹. One of the suggested 573
- 574 immunomodulatory properties of macrolides is promotion of macrophage phagocytosis. Treatment of
- healthy primary human AM and THP-1 differentiated macrophages with two novel non-antibiotic 575
- 576 macrolides in vitro resulted in increased phagocytosis of NTHi and apoptotic epithelial cells,
- decreased IL-1β levels and inflammasome activation²²². However, as macrophage phagocytosis 577
- decreases with worsening disease severity⁷⁷, the mechanisms of impairment may differ between 578
- 579 disease states and phagocytosis may not be restored by macrolide treatment. Use of ex vivo models
- 580 may better recapitulate the human lung environment when assessing treatment efficacy of novel
- therapeutics²²³. Nonetheless, the benefit of reducing *Haemophilus* presence in the airway is clear, 581
- 582 highlighting the importance of discovering alternative, non-antibiotic avenues of therapy which can
- 583 enhance or restore immune cell function, minimize airway bacterial load and reduce inflammation.

5.3 **Restoring the balance of host immunity**

- 585 The soluble human lung proteins SP-A and SP-D have diverse roles against viral and bacterial
- 586
- pathogens, as well as modulating the immune system and could also be exploited as exogenous therapeutics to treat asthma exacerbations through these mechanisms^{224–227}. Recombinant versions of 587
- these proteins have been developed and could have therapeutic potential in treating asthma 588
- exacerbations^{225,228}. A recombinant fragment of SP-D is currently been taken forward to a first-in-589
- 590 human trial to prevent neonatal chronic lung disease in preterm infants²²⁴.
- 591 As mentioned previously, elevated levels of inflammasome and IL-1 responses have been detected in
- neutrophilic asthma, but have also been associated with NTHi⁵¹. Associations between NTHi and IL-592
- 1β are not limited to asthma^{51,52,198}, with higher levels of IL-1β measured in BAL samples from 593
- NTHi+ COPD patients compared to NTHi- COPD patients²²⁹, as well as increased neutrophils in the 594
- airways of COPD patients colonized with *H. influenzae*²³⁰. As such, targeting the IL-1β pathway in 595
- chronic respiratory disease could attenuate the chronic inflammation caused by persistent NTHi 596
- 597 colonization. More work is required to determine whether upregulation of inflammasome responses

- 598 and IL-1β in chronic respiratory disease is NTHi-specific or pan-bacterial, as IL-1 pathway
- 599 interventions may only benefit a subset of patients with airway inflammation associated with NTHi-
- mediated IL-1 pathway activation. Thus, future trials could benefit from stratifying patients based on 600
- 601 NTHi presence, which could improve the efficacy of IL-1 therapies that so far have shown to be
- ineffective in asthma²³¹. 602
- 603 As anti-viral immunity is impaired in asthma, restoring this immunity may reduce the risk of
- 604 infection-driven exacerbations. In particular, type I IFN responses, mediated by IFN-β has shown to
- be crucial in anti-viral immunity^{232–234}. A randomized controlled trial investigating the effect of 605
- inhaled IFN-β did not meet its primary endpoint of assessing asthma symptoms, but did find 606
- 607 improvements in morning peak flow and enhanced innate immunity, specifically ISG expression²³⁵.
- 608 The INEXAS (A Study in Asthma Patients to Evaluate Efficacy, Safety and Tolerability of 14 Days
- 609 Once Daily Inhaled Interferon Beta-1a after the Onset of Symptoms of an Upper Respiratory Tract
- 610 Infection for the Prevention of Severe Exacerbations) trial also found small improvements in
- 611 morning peak flow following use of inhaled IFN-β, but again, the primary endpoint was not met and
- the impact of inhaled IFN- β on the rate of severe asthma exacerbations was unable to be assessed²³⁶. 612
- 613 In contrast, inhaled IFN-β therapy was found to increase the odds of improvement in clinical status as
- well as time to recovery for hospitalized COVID-19 patients²³⁷. Importantly, studying the dynamics 614
- of IFN responses found that timing of IFN-β dosing is key; prophylactic IFN-β treatment reduced 615
- influenza infection of macrophage and epithelial cells, whereas this was not observed if cells were 616
- treated with IFN-β after influenza infection²³⁸. Thus, the timing of treatment initiation is crucial for 617
- disease outcomes in those with underlying dysregulated immune responses, which will undoubtedly 618
- 619 guide the development of future clinical studies and treatment guidance for individuals suffering
- 620 from viral-induced exacerbations.

621

Microbiome modulation: a feasible alternative therapeutic approach?

- 622 The accumulating number of studies demonstrating the presence of potentially pathogenic bacteria
- 623 preceding viral infection and influencing respiratory health and asthma development, indicate that
- perhaps targeting these bacteria may be an attractive alternative therapeutic approach. Conversely, 624
- the absence of commensal bacteria may contribute to impaired immune development and 625
- training^{239,240}. As such, attention turns to determining whether promoting the restoration of 626
- respiratory tract commensal species may result in more favorable outcomes, as has been observed for 627
- probiotics and the gut microbiome²⁴¹. 628
- 629 The importance of the commensal bacteria members of the microbiome for development of efficient
- 630 immune responses has been previously shown in murine models. Antibiotic-treated mice displayed
- 631 altered immune responses to respiratory viral infection following depletion of commensal
- bacteria^{239,242}. The importance of microbiome community structure for immune training and 632
- development in the airway during early life is also shown in germ-free mice, who develop an 633
- 634 exaggerated response to allergen challenge in the absence of microbial colonization²⁴³. Furthermore,
- specific lung bacteria were either protective or inductive of certain asthma features following 635
- inoculation of mice, highlighting the divergent immunostimulatory capacity of different bacteria²⁴⁴. 636
- These murine studies demonstrate the importance of the microbiome community structure in shaping 637
- appropriate immune responses to both allergen and infection. 638
- 639 Identification of the bacteria important for immune training and stable respiratory health is crucial if
- 640 modulation of the lung microbiome is to prove feasible. Bosch et al. found that certain children

- transitioned more quickly from a *Staphylococcus*-profile to a *Moraxella*-dominant profile, bypassing
- a Corynebacterium/Dolosigranulum-dominated profile. Prolonged presence of this latter profile was
- associated with fewer RTIs and timely maturation of the microbiome in healthy children¹⁷⁹. This is in
- agreement with an earlier study by Biesbroeck et al., who similarly identified
- 645 Corynebacterium/Dolosigranulum airway presence to be associated with decreased number of
- parental-reported upper RTIs¹⁷⁰. A potential mechanism was suggested following modelling work,
- which inoculated infant mice intranasally with Corynebacterium pseudodiphtheriticum. Activation of
- TLR3-mediated antiviral immunity was detected, resulting in reduced lung RSV viral titers and
- reduced susceptibility to secondary bacterial infection 245 . Importantly, non-viable C.
- 650 pseudodiphtheriticum did not induce the same protective responses, indicating the importance of live
- 651 *C. pseudodiphtheriticum* colonization for modulating host immune responses.
- Human challenge models have also shown the beneficial, protective effects of colonising commensal
- bacteria; inoculation of human volunteers with Neisseria lactamica reduced N. meningitidis
- 654 carriage²⁴⁶. It is clear that the presence or absence of certain microbial species and their functional
- microbial interactions influence disease susceptibility and trajectory and unbalance host immune
- responses. However, as a recent study by Thorsen et al. implicates potential commensal Prevotella
- with altered host responses and asthma development, it is important to first ascertain thepathogenic
- potential of microbes when considering therapeutically altering microbiome structure²⁴⁷.
- Nonetheless, unraveling the complex interplay between infection, atopy, host immunity and genetic
- factors in early life will provide novel insights and may allow advanced identification and
- stratification of individuals at risk of developing asthma, for example if they possess certain genetic
- risk factors and microbiome characteristics.
- Although the role of bacteria in asthma is only now becoming appreciated, there are even fewer
- studies investigating the role of fungi and the mycobiome in health and disease²⁴⁸. Recent inclusion
- of fungi in airway microbiome studies has revealed a distinct airway mycobiome which is altered in
- asthma²⁴⁹. A role for fungi in early life asthma development has also been suggested by Stern *et al.*,
- who found that sensitization to certain fungal species was associated with asthma in later life²⁵⁰. A
- recent study has identified associations between *Moraxella* presence and asthma-associated fungi²⁵¹.
- 669 Given the possibility for multiple microbiota-host and other environmental interactions to occur,
- future studies need to ensure that all potential contributing factors are accounted for in study design
- and conclusions, in order to develop effective therapeutics.

6 Summary

672

- Accumulating evidence indicates an important role of both bacteria and viruses in driving asthma
- pathogenesis. Although viruses have long been implicated in asthma development and exacerbations,
- 675 the enrichment of certain bacteria in the airway appears to play a more prominent role in asthma
- pathogenesis than initially believed. The composition of the microbiome in early life is crucial for
- immune training and development, which is reflected by aberrant responses in later life. Omics
- studies are beginning to reveal the extent of microbiome modulation of the host in the respiratory
- tract and understand how it influences host-bacteria-virus crosstalk and relates to disease severity and
- progression. Although current and developing therapies aim to reduce neutrophil/eosinophil
- recruitment and activation in asthma, emerging evidence indicates that the microbiome may
- contribute to chronic and dysregulated airway inflammation. As such, microbiome modulation may
- instead be an attractive alternative for managing airway inflammation and host immunity. This
- approach may rebalance and retrain appropriate host immune responses to inflammatory triggers and
- subsequently reduce the risk of asthma development in those with genetic predispositions and reduce

the risk of exacerbation and progression to more severe disease in those with asthma already established.

688 **7 Conflict of Interest**

- 689 KS reports grants from AstraZeneca outside the conduct of the study; TW reports grants and
- 690 personal fees from AstraZeneca; personal fees and other from MMH, grants and personal fees from
- 691 GSK, grants and personal fees from AZ, personal fees from BI, grants and personal fees from
- 692 Synairgen, outside the submitted work; AW and JA report no conflicts of interest.

8 Author Contributions

- 694 JA, KS and TW conceptualized the review article, JA and KS wrote the original draft; JA performed
- 695 the literature search; AW and TW reviewed and edited the manuscript; KS and TW supervised; all
- 696 authors approved the final version of the manuscript.

697 9 Funding

699

698 This work was funded by an Asthma UK studentship award (AUK-PHD-2016-363).

20

700 **10 References**

- 701 1. Jackson, D. J., Sykes, A., Mallia, P. & Johnston, S. L. (2011). Asthma exacerbations: Origin, effect, and prevention. *J Allergy Clin Immunol*. 128, 1165–1174
- 703 2. GINA. (2021). Global Strategy For Asthma Management and Prevention Updated 2021.
- 704 3. Pearce, N., Pekkanen, J. & Beasley, R. (1999). How much asthma is really attributable to atopy? *Thorax*. 54, 268–272
- Ahmad Al Obaidi, A. H., Mohamed Al Samarai, A. G., Yahya Al Samarai, A. K. & Al Janabi,
 J. M. (2008). The predictive value of IgE as biomarker in asthma. *J Asthma*. 45, 654–663
- Kim, H. Y., Dekruyff, R. H. & Umetsu, D. T. (2010). The many paths to asthma: Phenotype shaped by innate and adaptive immunity. *Nat Immunol*. 11, 577–584
- 710 6. Pembrey, L., Barreto, M. L., Douwes, J., Cooper, P., Henderson, J., Mpairwe, H., Ardura-711 Garcia, C., Chico, M., Brooks, C., Cruz, A. A., Elliott, A. M., Figueiredo, C. A., Langan, S.
- M., Nassanga, B., Ring, S., Rodrigues, L. & Pearce, N. (2018). Understanding asthma
- 713 phenotypes: the World Asthma Phenotypes (WASP) international collaboration. ERJ Open
- 714 *Res.* 4, 00013–02018
- 715 7. Baos, S., Calzada, D., Cremades-Jimeno, L., Sastre, J., Picado, C., Quiralte, J., Florido, F.,
- Lahoz, C. & Cárdaba, B. (2018). Nonallergic asthma and its severity: Biomarkers for its
- 717 discrimination in peripheral samples. Front Immunol. 9, 1416
- 718 8. Ishmael, F. T. (2011). The inflammatory response in the pathogenesis of asthma. *J Am Osteopath Assoc*. 111, S11-7
- 720 9. Deckers, J., Branco Madeira, F. & Hammad, H. (2013). Innate immune cells in asthma. *Trends Immunol*. 34, 540–547
- 722 10. Wadhwa, R., Dua, K., Adcock, I. M., Horvat, J. C., Kim, R. Y. & Hansbro, P. M. (2019).
- 723 Cellular mechanisms underlying steroid-resistant asthma. Eur Respir Rev. 28, 190096
- 724 11. Fahy, J. V. (2015). Type 2 inflammation in asthma--present in most, absent in many. *Nat Rev Immunol*. 15, 57–65
- 726 12. Douwes, J., Gibson, P., Pekkanen, J. & Pearce, N. (2002). *Non-eosinophilic asthma:*727 *Importance and possible mechanisms. Thorax.* 57,
- 728 13. Kuo, C. H. S., Pavlidis, S., Loza, M., Baribaud, F., Rowe, A., Pandis, I., Sousa, A., Corfield,
- J., Djukanovic, R., Lutter, R., Sterk, P. J., Auffray, C., Guo, Y., Adcock, I. M. & Chung, K. F.
- 730 (2017). T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum
- transcriptomics in U-BIOPRED. Eur Respir J. 49,
- 732 14. Ordoñez, C. L., Shaughnessy, T. E., Matthay, M. A. & Fahy, J. V. (2000). Increased
- neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma: Clinical and
- biologic significance. *Am J Respir Crit Care Med.* 161, 1185–90

- 735 15. Yang, X., Li, H., Ma, Q., Zhang, Q. & Wang, C. (2018). Neutrophilic Asthma Is Associated
- with Increased Airway Bacterial Burden and Disordered Community Composition. *Biomed*
- 737 *Res Int.* 2018, 1–11
- Huang, Y. J., Nariya, S., Harris, J. M., Lynch, S. V., Choy, D. F., Arron, J. R. & Boushey, H.
- 739 (2015). The airway microbiome in patients with severe asthma: Associations with disease
- features and severity. J Allergy Clin Immunol. 136, 874–884
- 741 17. Moore, W. C., Hastie, A. T., Li, X., Li, H., Busse, W. W., Jarjour, N. N., Wenzel, S. E., Peters,
- S. P., Meyers, D. A. & Bleecker, E. R. (2014). Sputum neutrophil counts are associated with
- more severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol. 133, 1557-
- 744 1563.e5
- 745 18. Bosnjak, B., Stelzmueller, B., Erb, K. J. & Epstein, M. M. (2011). Treatment of allergic
- asthma: Modulation of Th2 cells and their responses. Respir Res. 12, 114
- 747 19. Reddel, H., Ware, S., Marks, G., Salome, C., Jenkins, C. & Woolcock, A. (1999). Differences
- between asthma exacerbations and poor asthma control. *Lancet*. 353, 364–369
- 749 20. Sears, M. R. (2008). Epidemiology of asthma exacerbations. J Allergy Clin Immunol. 122,
- 750 662–668
- 751 21. Global Initiative for Asthma. (2020). Global Strategy for Asthma Management and Prevention
- 752 Updated 2020. Global Initiative for Asthma.
- 753 22. Wark, P. A. B. & Gibson, P. G. (2006). Asthma exacerbations. 3: Pathogenesis. *Thorax*. 61,
- 754 909–15
- 755 23. Bloom, C. I., Nissen, F., Douglas, I. J., Smeeth, L., Cullinan, P. & Quint, J. K. (2018).
- Exacerbation risk and characterisation of the UK's asthma population from infants to old age.
- 757 *Thorax.* 73, 313–320
- 758 24. Bai, T. R., Vonk, J. M., Postma, D. S. & Boezen, H. M. (2007). Severe exacerbations predict
- excess lung function decline in asthma. Eur Respir J. 30, 452–456
- 760 25. Ortega, H., Yancey, S. W., Keene, O. N., Gunsoy, N. B., Albers, F. C. & Howarth, P. H.
- 761 (2018). Asthma Exacerbations Associated with Lung Function Decline in Patients with Severe
- Eosinophilic Asthma. J Allergy Clin Immunol Pract. 6, 980-986.e1
- 763 26. O'Byrne, P. M., Pedersen, S., Lamm, C. J., Tan, W. C. & Busse, W. W. (2009). Severe
- exacerbations and decline in lung function in asthma. Am J Respir Crit Care Med. 179, 19–24
- 765 27. Wenzel, S. E. (2012). Asthma phenotypes: The evolution from clinical to molecular
- 766 approaches. *Nat Med.* 18, 716–725
- 767 28. O'Byrne, P. M. (2013). Role of monoclonal antibodies in the treatment of asthma. Can Respir
- 768 *J.* 20, 23–25
- 769 29. Garcia, G., Taillé, C., Laveneziana, P., Bourdin, A., Chanez, P. & Humbert, M. (2013). Anti-
- interleukin-5 therapy in severe asthma. Eur Respir Rev. 22, 251–257

- 771 30. Poznanski, S. M., Mukherjee, M., Zhao, N., Huang, C., Radford, K., Ashkar, A. A. & Nair, P. (2021). Asthma exacerbations on benralizumab are largely non-eosinophilic. *Allergy*. 76, 375–379
- Edwards, M. R., Saglani, S., Schwarze, J., Skevaki, C., Smith, J. A., Ainsworth, B., Almond,
 M., Andreakos, E., Belvisi, M. G., Chung, K. F., Cookson, W., Cullinan, P., Hawrylowicz, C.,
 Lommatzsch, M., Jackson, D., Lutter, R., Marsland, B., Moffatt, M., Thomas, M., Virchow, J.
- C., Xanthou, G., Edwards, J., Walker, S. & Johnston, S. L. (2017). Addressing unmet needs in
- understanding asthma mechanisms: From the European Asthma Research and Innovation Partnership (EARIP) Work Package (WP) 2 collaborators. *Eur Respir J.* 49, 1602448
- 780 32. Baldacci, S., Maio, S., Cerrai, S., Sarno, G., Baïz, N., Simoni, M., Annesi-Maesano, I. & Viegi, G. (2015). Allergy and asthma: Effects of the exposure to particulate matter and biological allergens. *Respir Med.* 109, 1089–1104
- 783 33. Cecchi, L., D'Amato, G. & Annesi-Maesano, I. (2018). External exposome and allergic respiratory and skin diseases. *J Allergy Clin Immunol*. 141, 846–857
- 785 34. Bisgaard, H., Hermansen, M. N., Bønnelykke, K., Stokholm, J., Baty, F., Skytt, N. L.,
 786 Aniscenko, J., Kebadze, T. & Johnston, S. L. (2010). Association of bacteria and viruses with
 787 wheezy episodes in young children: Prospective birth cohort study. *BMJ*. 341, 770
- Wark, P. A. B., Tooze, M., Powell, H. & Parsons, K. (2013). Viral and bacterial infection in acute asthma and chronic obstructive pulmonary disease increases the risk of readmission.
 Respirology. 18, 996–1002
- Minor, T. E., Dick, E. C., DeMeo, A. N., Ouellette, J. J., Cohen, M. & Reed, C. E. (1974).
 Viruses as Precipitants of Asthmatic Attacks in Children. *JAMA*. 227, 292–298
- 793 37. Lemanske, R. F., Dick, E. C., Swenson, C. A., Vrtis, R. F. & Busse, W. W. (1989). Rhinovirus upper respiratory infection increases airway hyperreactivity and late asthmatic reactions. *J Clin Invest.* 83, 1–10
- 796 38. Bardin, P. G., Fraenkel, D. J., Sanderson, G., Dorward, M., Lau, L. C. K., Johnston, S. L. &
 797 Holgate, S. T. (1994). Amplified rhinovirus colds in atopic subjects. *Clin Exp Allergy*. 24,
 798 457–464
- 799 39. Papadopoulos, N. G., Christodoulou, I., Rohde, G., Agache, I., Almqvist, C., Bruno, A., Bonini, S., Bont, L., Bossios, A., Bousquet, J., Braido, F., Brusselle, G., Canonica, G. W.,
- Carlsen, K. H., Chanez, P., Fokkens, W. J., Garcia-Garcia, M., Gjomarkaj, M., Haahtela, T., Holgate, S. T., Johnston, S. L., Konstantinou, G., Kowalski, M., Lewandowska-Polak, A.,
- 803 Lødrup-Carlsen, K., Mäkelä, M., Malkusova, I., Mullol, J., Nieto, A., Eller, E., Ozdemir, C.,
- Panzner, P., Popov, T., Psarras, S., Roumpedaki, E., Rukhadze, M., Stipic-Markovic, A., Todo
- Bom, A., Toskala, E., van Cauwenberge, P., van Drunen, C., Watelet, J. B., Xatzipsalti, M.,
- Xepapadaki, P. & Zuberbier, T. (2011). Viruses and bacteria in acute asthma exacerbations A GA2LEN-DARE* systematic review. *Allergy*. 66, 458–468
- 40. Denlinger, L. C., Sorkness, R. L., Lee, W. M., Evans, M. D., Wolff, M. J., Mathur, S. K.,
 809 Crisafi, G. M., Gaworski, K. L., Pappas, T. E., Vrtis, R. F., Kelly, E. A., Gern, J. E. & Jarjour,

- N. N. (2011). Lower airway rhinovirus burden and the seasonal risk of asthma exacerbation.
- 811 *Am J Respir Crit Care Med.* 184, 1007–1014
- 812 41. Fleming, H. E., Little, F. F., Schnurr, D., Avila, P. C., Wong, H., Liu, J., Yagi, S. & Boushey,
- H. A. (1999). Rhinovirus-16 colds in healthy and in asthmatic subjects: Similar changes in
- upper and lower airways. Am J Respir Crit Care Med. 160, 100–108
- 815 42. DeMore, J. P., Weisshaar, E. H., Vrtis, R. F., Swenson, C. A., Evans, M. D., Morin, A., Hazel,
- E., Bork, J. A., Kakumanu, S., Sorkness, R., Busse, W. W. & Gern, J. E. (2009). Similar colds
- in subjects with allergic asthma and nonatopic subjects after inoculation with rhinovirus-16. *J*
- 818 Allergy Clin Immunol. 124,
- 43. Lamson, D., Renwick, N., Kapoor, V., Liu, Z., Palacios, G., Ju, J., Dean, A., St. George, K.,
- Briese, T. & Lipkin, W. I. (2006). Masstag polymerase-chain-reaction detection of respiratory
- pathogens, including a new rhinovirus genotype, that caused influenza-like illness in New
- 822 York State during 2004-2005. *J Infect Dis.* 194, 1398–1402
- 823 44. Bizzintino, J., Lee, W. M., Laing, I. A., Vang, F., Pappas, T., Zhang, G., Martin, A. C., Khoo,
- S. K., Cox, D. W., Geelhoed, G. C., McMinne, P. C., Goldblatt, J., Gern, J. E. & Le Souëf, P.
- N. (2011). Association between human rhinovirus C and severity of acute asthma in children.
- 826 Eur Respir J. 37, 1037–1042
- 827 45. Sutherland, E. R. & Martin, R. J. (2007). Asthma and atypical bacterial infection. Chest. 132,
- 828 1962–1966
- 829 46. Green, B. J., Wiriyachaiporn, S., Grainge, C., Rogers, G. B., Kehagia, V., Lau, R., Carroll, M.
- P., Bruce, K. D. & Howarth, P. H. (2014). Potentially pathogenic airway bacteria and
- neutrophilic inflammation in treatment resistant severe asthma. *PLoS One*. 9, e100645
- 832 47. Iikura, M., Hojo, M., Koketsu, R., Watanabe, S., Sato, A., Chino, H., Ro, S., Masaki, H.,
- Hirashima, J., Ishii, S., Naka, G., Takasaki, J., Izumi, S., Kobayashi, N., Yamaguchi, S.,
- Nakae, S. & Sugivama, H. (2015). The importance of bacterial and viral infections associated
- with adult asthma exacerbations in clinical practice. *PLoS One.* 10, e0123584
- 836 48. Zhang, Q., Cox, M., Liang, Z., Brinkmann, F., Cardenas, P. A., Duff, R., Bhavsar, P.,
- Cookson, W., Moffatt, M. & Chung, K. F. (2016). Airway microbiota in severe asthma and
- relationship to asthma severity and phenotypes. *PLoS One*. 11, 1–16
- 49. Hilty, M., Burke, C., Pedro, H., Cardenas, P., Bush, A., Bossley, C., Davies, J., Ervine, A.,
- Poulter, L., Pachter, L., Moffatt, M. F. & Cookson, W. O. C. (2010). Disordered microbial
- communities in asthmatic airways. *PLoS One*. 5, e8578
- 842 50. Simpson, J. L., Daly, J., Baines, K. J., Yang, I. A., Upham, J. W., Reynolds, P. N., Hodge, S.,
- James, A. L., Hugenholtz, P., Willner, D. & Gibson, P. G. (2016). Airway dysbiosis:
- Haemophilus influenzae and Tropheryma in poorly controlled asthma. Eur Respir J. 47, 792–
- 845 800
- 846 51. Kim, R. Y., Pinkerton, J. W., Essilfie, A. T., Robertson, A. A. B., Baines, K. J., Brown, A. C.,
- Mayall, J. R., Ali, M. K., Starkey, M. R., Hansbro, N. G., Hirota, J. A., Wood, L. G., Simpson,
- J. L., Knight, D. A., Wark, P. A., Gibson, P. G., O'Neill, L. A. J., Cooper, M. A., Horvat, J. C.

- & Hansbro, P. M. (2017). Role for NLRP3 inflammasome-mediated, IL-1β-dependent responses in severe, steroid-resistant asthma. *Am J Respir Crit Care Med.* 196, 283–297
- 52. Taylor, S. L., Leong, L. E. X., Choo, J. M., Wesselingh, S., Yang, I. A., Upham, J. W.,
- Reynolds, P. N., Hodge, S., James, A. L., Jenkins, C., Peters, M. J., Baraket, M., Marks, G. B.,
- Gibson, P. G., Simpson, J. L. & Rogers, G. B. (2018). Inflammatory phenotypes in patients
- with severe asthma are associated with distinct airway microbiology. *J Allergy Clin Immunol*.
- 855 141, 94-103.e15
- 856 53. Wood, L. G., Simpson, J. L., Hansbro, P. M. & Gibson, P. G. (2010). Potentially pathogenic
- bacteria cultured from the sputum of stable asthmatics are associated with increased 8-
- isoprostane and airway neutrophilia. Free Radic Res. 44, 146–154
- 54. Durack, J., Lynch, S. V., Nariya, S., Bhakta, N. R., Beigelman, A., Castro, M., Dyer, A. M.,
- Israel, E., Kraft, M., Martin, R. J., Mauger, D. T., Rosenberg, S. R., Sharp-King, T., White, S.
- R., Woodruff, P. G., Avila, P. C., Denlinger, L. C., Holguin, F., Lazarus, S. C., Lugogo, N.,
- Moore, W. C., Peters, S. P., Que, L., Smith, L. J., Sorkness, C. A., Wechsler, M. E., Wenzel,
- S. E., Boushey, H. A. & Huang, Y. J. (2017). Features of the bronchial bacterial microbiome
- associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J
- 865 *Allergy Clin Immunol.* 140, 63–75
- 866 55. Zhou, Y., Jackson, D., Bacharier, L. B., Mauger, D., Boushey, H., Castro, M., Durack, J.,
- Huang, Y., Lemanske, R. F., Storch, G. A., Weinstock, G. M., Wylie, K., Covar, R.,
- Fitzpatrick, A. M., Phipatanakul, W., Robison, R. G. & Beigelman, A. (2019). The upper-
- airway microbiota and loss of asthma control among asthmatic children. *Nat Commun.* 10, 1–
- 870 10
- 871 56. McCauley, K., Durack, J., Valladares, R., Fadrosh, D. W., Lin, D. L., Calatroni, A., LeBeau,
- P. K., Tran, H. T., Fujimura, K. E., LaMere, B., Merana, G., Lynch, K., Cohen, R. T.,
- Pongracic, J., Khurana Hershey, G. K., Kercsmar, C. M., Gill, M., Liu, A. H., Kim, H., Kattan,
- 874 M., Teach, S. J., Togias, A., Boushey, H. A., Gern, J. E., Jackson, D. J. & Lynch, S. V. (2019).
- Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric
- patients with asthma. J Allergy Clin Immunol. 144, 1187–1197
- 877 57. Xatzipsalti, M., Psarros, F., Konstantinou, G., Gaga, M., Gourgiotis, D., Saxoni-Papageorgiou,
- P. & Papadopoulos, N. G. (2008). Modulation of the epithelial inflammatory response to
- 879 rhinovirus in an atopic environment. *Clin Exp Allergy*. 38, 466–472
- 58. Tiwary, M., Rooney, R. J., Liedmann, S., LeMessurier, K. S. & Samarasinghe, A. E. (2021).
- 881 Eosinophil Responses at the Airway Epithelial Barrier during the Early Phase of Influenza A
- Virus Infection in C57BL/6 Mice. *Cells*. 10,
- 883 59. Samarasinghe, A. E., Woolard, S. N., Boyd, K. L., Hoselton, S. A., Schuh, J. M. & McCullers,
- J. A. (2014). The immune profile associated with acute allergic asthma accelerates clearance
- of influenza virus. *Immunol Cell Biol.* 92, 449
- 60. Green, R. M., Custovic, A., Sanderson, G., Hunter, J., Johnston, S. L. & Woodcock, A. (2002).
- Synergism between allergens and viruses and risk of hospital admission with asthma: Case-
- 888 control study. *Br Med J.* 324, 763–766

- Calhoun, W. J., Dick, E. C., Schwartz, L. B. & Busse, W. W. (1994). A common cold virus, rhinovirus 16, potentiates airway inflammation after segmental antigen bronchoprovocation in
- allergic subjects. J Clin Invest. 94, 2200–2208
- 892 62. Busse, W. W., Morgan, W. J., Gergen, P. J., Mitchell, H. E., Gern, J. E., Liu, A. H., Gruchalla,
- R. S., Kattan, M., Teach, S. J., Pongracic, J. A., Chmiel, J. F., Steinbach, S. F., Calatroni, A.,
- Togias, A., Thompson, K. M., Szefler, S. J. & Sorkness, C. A. (2011). Randomized Trial of
- Omalizumab (Anti-IgE) for Asthma in Inner-City Children. *N Engl J Med.* 364, 1005–1015
- 896 63. WARK, P. A. B., GRISSELL, T., DAVIES, B., SEE, H. & GIBSON, P. G. (2009). Diversity
- in the bronchial epithelial cell response to infection with different rhinovirus strains.
- 898 *Respirology*. 14, 180–186
- 899 64. Lee, S. M. Y., Gardy, J. L., Cheung, C. Y., Cheung, T. K. W., Hui, K. P. Y., Ip, N. Y., Guan,
- 900 Y., Hancock, R. E. W. & Malik Peiris, J. S. (2009). Systems-level comparison of host-
- responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human
- macrophages. *PLoS One*. 4, e8072
- 903 65. Friesenhagen, J., Boergeling, Y., Hrincius, E., Ludwig, S., Roth, J. & Viemann, D. (2012).
- Highly pathogenic avian influenza viruses inhibit effective immune responses of human
- 905 blood-derived macrophages. *J Leukoc Biol*. 92, 11–20
- 906 66. Hewson, C. A., Haas, J. J., Bartlett, N. W., Message, S. D., Laza-Stanca, V., Kebadze, T.,
- Caramori, G., Zhu, J., Edbrooke, M. R., Stanciu, L. A., Kon, O. M., Papi, A., Jeffery, P. K.,
- Edwards, M. R. & Johnston, S. L. Rhinovirus induces MUC5AC in a human infection model
- and in vitro via NF-kB and EGFR pathways. doi:10.1183/09031936.00026910
- 910 67. Thomas, B., Rutman, A., Hirst, R. A., Haldar, P., Wardlaw, A. J., Bankart, J., Brightling, C. E.
- & O'Callaghan, C. (2010). Ciliary dysfunction and ultrastructural abnormalities are features of
- 912 severe asthma. J Allergy Clin Immunol. 126, 722-729.e2
- 913 68. Tristram, D. A., Hicks, W. & Hard, R. (1998). Respiratory syncytial virus and human
- bronchial epithelium. Arch Otolaryngol Head Neck Surg. 124, 777–783
- 915 69. Rogers, D. F. (2004). Airway mucus hypersecretion in asthma: An undervalued Pathology?
- 916 *Current Opinion in Pharmacology*. 4, 241–250
- 917 70. Ordoñez, C. L., Khashayar, R., Wong, H. H., Ferrando, R., Wu, R., Hyde, D. M., Hotchkiss, J.
- A., Zhang, Y., Novikov, A., Dolganov, G. & Fahy, J. V. (2001). Mild and moderate asthma is
- associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression.
- 920 *Am J Respir Crit Care Med.* 163, 517–523
- 921 71. Aikawa, T., Shimura, S., Sasaki, H., Ebina, M. & Takishima, T. (1992). Marked goblet cell
- hyperplasia with mucus accumulation in the airways of patients who died of severe acute
- 923 asthma attack. *Chest.* 101, 916–921
- 924 72. Heymann, P. W., Nguyen, H. T., Steinke, J. W., Turner, R. B., Woodfolk, J. A., Platts-Mills,
- T. A. E., Martin, L., He, H., Myers, J. B., Lindsey, M., Sivaprasad, U., Medvedovic, M., Mahi,
- N., Carper, H., Murphy, D. D., Patrie, J. & Hershey, G. K. K. (2017). Rhinovirus infection
- results in stronger and more persistent genomic dysregulation: Evidence for altered innate

- immune response in asthmatics at baseline, early in infection, and during convalescence. *PLoS One.* 12, e0178096
- 930 73. Wark, P. A. B., Johnston, S. L., Bucchieri, F., Powell, R., Puddicombe, S., Laza-Stanca, V.,
- Holgate, S. T. & Davies, D. E. (2005). Asthmatic bronchial epithelial cells have a deficient
- innate immune response to infection with rhinovirus. *J Exp Med*. 201, 937–947
- 933 74. Sykes, A., Edwards, M. R., MacIntyre, J., Del Rosario, A., Bakhsoliani, E., Trujillo-Torralbo,
- M. B., Kon, O. M., Mallia, P., McHale, M. & Johnston, S. L. (2012). Rhinovirus 16-induced
- IFN- α and IFN- β are deficient in bronchoalveolar lavage cells in asthmatic patients. J Allergy
- 936 *Clin Immunol.* 129, 1506-1514.e6
- 937 75. RM, M., CL, G., LC, L., C, B., HW, C. & PH, H. (2016). Airway Surfactant Protein D
- Deficiency in Adults With Severe Asthma. *Chest.* 149, 1165–1172
- 939 76. Staples, K. J., Hinks, T. S. C., Ward, J. A., Gunn, V., Smith, C. & Djukanović, R. (2012).
- Phenotypic characterization of lung macrophages in asthmatic patients: Overexpression of
- 941 CCL17. J Allergy Clin Immunol. 130, 1404-1412.e7
- 942 77. Liang, Z., Zhang, Q., Thomas, C. M. R., Chana, K. K., Gibeon, D., Barnes, P. J., Chung, K. F.,
- 943 Bhavsar, P. K. & Donnelly, L. E. (2014). Impaired macrophage phagocytosis of bacteria in
- severe asthma. Respir Res. 15, 72
- 945 78. Huynh, M. L. N., Malcolm, K. C., Kotaru, C., Tilstra, J. A., Westcott, J. Y., Fadok, V. A. &
- Wenzel, S. E. (2005). Defective apoptotic cell phagocytosis attenuates prostaglandin E 2 and
- 947 15-hydroxyeicosatetraenoic acid in severe asthma alveolar macrophages. *Am J Respir Crit*
- 948 *Care Med.* 172, 972–979
- 949 79. Kloepfer, K. M., Lee, W. M., Pappas, T. E., Kang, T. J., Vrtis, R. F., Evans, M. D., Gangnon,
- 950 R. E., Bochkov, Y. A., Jackson, D. J., Lemanske, R. F. & Gern, J. E. (2014). Detection of
- pathogenic bacteria during rhinovirus infection is associated with increased respiratory
- 952 symptoms and asthma exacerbations. J Allergy Clin Immunol. 133, 1301-1307.e3
- 953 80. Bashir, H., Grindle, K., Vrtis, R., Vang, F., Kang, T., Salazar, L., Anderson, E., Pappas, T.,
- Gangnon, R., Evans, M. D., Jackson, D. J., Lemanske, R. F., Bochkov, Y. A. & Gern, J. E.
- 955 (2018). Association of rhinovirus species with common cold and asthma symptoms and
- 956 bacterial pathogens. J Allergy Clin Immunol. 141, 822-824.e9
- 957 81. Yoshii, Y., Shimizu, K., Morozumi, M., Chiba, N., Ubukata, K., Uruga, H., Hanada, S.,
- Wakui, H., Minagawa, S., Hara, H., Numata, T., Saito, K., Araya, J., Nakayama, K., Kishi, K.
- & Kuwano, K. (2017). Detection of pathogens by real-time PCR in adult patients with acute
- 960 exacerbation of bronchial asthma. *BMC Pulm Med.* 17, 1–8
- 961 82. Blyth, C. C., Webb, S. A. R., Kok, J., Dwyer, D. E., van Hal, S. J., Foo, H., Ginn, A. N.,
- Kesson, A. M., Seppelt, I., Iredell, J. R., Bennett, G., Ong, L., Nand, K., Reece, G., Sara, T.,
- Bishop, G., Festa, M., Li, F., Blythe, D., Palermo, A., Parr, M., Micallef, S., Hoyling, L.,
- Weisbrodt, L., Shehabi, Y., Campbell, M., Stockdale, V., Erickson, S., Chamberlain, J.,
- Gould, A., McEntaggart, G., Webb, S., Inskip, D., Lamb, D., Myburgh, J., Sidoli, R., Numa,
- A., Williams, G., Young, J., Boyd, R., Nayyar, V., Skelly, C., Stachowski, E., Sterba, M.,

- Johnson, B., van Hal, S. J., Branley, J., Rawlinson, W. D., Outhred, A., Flexman, J., Dwyer,
- D. E., Foo, H., Kok, J., McPhie, K., Patterson, J. & Foo, H. (2013). The impact of bacterial
- and viral co-infection in severe influenza. *Influenza Other Respi Viruses*. 7, 168–176
- 970 83. Klein, E. Y., Monteforte, B., Gupta, A., Jiang, W., May, L., Hsieh, Y. H. & Dugas, A. (2016).
- The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis.
- 972 Influenza Other Respi Viruses. 10, 394–403
- 973 84. Dao, C. N., Kamimoto, L., Nowell, M., Reingold, A., Gershman, K., Meek, J., Arnold, K. E.,
- Farley, M., Ryan, P., Lynfield, R., Morin, C., Baumbach, J., Hancock, E., Zansky, S., Bennett,
- N. M., Thomas, A., Vandermeer, M., Kirschke, D. L., Schaffner, W. & Finelli, L. (2010).
- Adult hospitalizations for laboratory-positive influenza during the 2005-2006 through 2007-
- 977 2008 seasons in the United States. *J Infect Dis*. 202, 881–888
- 978 85. Wilkinson, T. M. A., Hurst, J. R., Perera, W. R., Wilks, M., Donaldson, G. C. & Wedzicha, J.
- A. (2006). Effect of interactions between lower airway bacterial and rhinoviral infection in
- 980 exacerbations of COPD. Chest. 129, 317–324
- 981 86. Wilkinson, T. M. A., Aris, E., Bourne, S., Clarke, S. C., Peeters, M., Pascal, T. G.,
- Schoonbroodt, S., Tuck, A. C., Kim, V., Ostridge, K., Staples, K. J., Williams, N., Williams,
- A., Wootton, S. & Devaster, J. M. (2017). A prospective, observational cohort study of the
- seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD. *Thorax*.
- 985 72, 919–927
- 986 87. Avadhanula, V., Rodriguez, C. A., DeVincenzo, J. P., Wang, Y., Webby, R. J., Ulett, G. C. &
- Adderson, E. E. (2006). Respiratory Viruses Augment the Adhesion of Bacterial Pathogens to
- Respiratory Epithelium in a Viral Species- and Cell Type-Dependent Manner. J Virol. 80,
- 989 1629–1636
- 990 88. Frick, A. G., Joseph, T. D., Pang, L., Rabe, A. M., St. Geme, J. W. & Look, D. C. (2000).
- 991 Haemophilus influenzae Stimulates ICAM-1 Expression on Respiratory Epithelial Cells . J
- 992 *Immunol*. 164, 4185–4196
- 993 89. Xie, H. & Gu, X. X. (2008). Moraxella catarrhalis lipooligosaccharide selectively upregulates
- 994 ICAM-1 expression on human monocytes and stimulates adjacent naïve monocytes to produce
- 995 TNF-α through cellular cross-talk. *Cell Microbiol*. 10, 1453–1467
- 996 90. Avadhanula, V., Rodriguez, C. A., Ulett, G. C., Bakaletz, L. O. & Adderson, E. E. (2006).
- Nontypeable Haemophilus influenzae adheres to intercellular adhesion molecule 1 (ICAM-1)
- on respiratory epithelial cells and upregulates ICAM-1 expression. *Infect Immun*. 74, 830–838
- 999 91. Gulraiz, F., Bellinghausen, C., Bruggeman, C. A. & Stassen, F. R. (2015). Haemophilus
- influenzae increases the susceptibility and inflammatory response of airway epithelial cells to
- 1001 viral infections. *FASEB J.* 29, 849–858
- 1002 92. Edinger, T. O., Pohl, M. O. & Stertz, S. (2014). Entry of influenza A virus: Host factors and
- antiviral targets. J Gen Virol. 95, 263–277
- 1004 93. St Geme, J. W., Falkow, S. & Barenkamp, S. J. (1993). High-molecular-weight proteins of
- nontypable Haemophilus influenzae mediate attachment to human epithelial cells. *Proc Natl*

- 1006 Acad Sci U S A. 90, 2875–9
- 1007 94. Ng, P. S. K., Day, C. J., Atack, J. M., Hartley-Tassell, L. E., Winter, L. E., Marshanski, T.,
- Padler-Karavani, V., Varki, A., Barenkamp, S. J., Apicella, M. A. & Jennings, M. P. (2019).
- Nontypeable Haemophilus influenzae Has Evolved Preferential Use of N-Acetylneuraminic
- 1010 Acid as a Host Adaptation. MBio. 10,
- Heise, T., Langereis, J. D., Rossing, E., de Jonge, M. I., Adema, G. J., Büll, C. & Boltje, T. J.
- 1012 (2018). Selective Inhibition of Sialic Acid-Based Molecular Mimicry in Haemophilus
- influenzae Abrogates Serum Resistance. Cell Chem Biol. 25, 1279-1285.e8
- 1014 96. Atack, J. M., Day, C. J., Poole, J., Brockman, K. L., Timms, J. R. L., Winter, L. E.,
- Haselhorst, T., Bakaletz, L. O., Barenkamp, S. J. & Jennings, M. P. (2020). The nontypeable
- haemophilus influenzae major adhesin hia is a dual-function lectin that binds to human-
- specific respiratory tract sialic acid glycan receptors. *MBio*. 11, 1–15
- 1018 97. St. Geme, J. W. (1994). The HMW1 adhesin of nontypeable Haemophilus influenzae
- recognizes sialylated glycoprotein receptors on cultured human epithelial cells. *Infect Immun*.
- 1020 62, 3881–3889
- 1021 98. Damasio, G. A. C., Pereira, L. A., Moreira, S. D. R., Duarte dos Santos, C. N., Dalla-Costa, L.
- M. & Raboni, S. M. (2015). Does virus-bacteria coinfection increase the clinical severity of
- acute respiratory infection? *J Med Virol*. 87, 1456–1461
- 1024 99. Nita-Lazar, M., Banerjee, A., Feng, C., Amin, M. N., Frieman, M. B., Chen, W. H., Cross, A.
- 1025 S., Wang, L. X. & Vasta, G. R. (2015). Desialylation of airway epithelial cells during
- influenza virus infection enhances pneumococcal adhesion via galectin binding. *Mol Immunol*.
- 1027 65, 1–16
- 1028 100. Cooper, G. E., Pounce, Z. C., Wallington, J. C., Bastidas-Legarda, L. Y., Nicholas, B.,
- 1029 Chidomere, C., Robinson, E. C., Martin, K., Tocheva, A. S., Christodoulides, M., Djukanovic,
- 1030 R., Wilkinson, T. M. A. & Staples, K. J. (2016). Viral inhibition of bacterial phagocytosis by
- human macrophages: Redundant role of CD36. *PLoS One*. 11, e0163889
- 1032 101. Roquilly, A., Jacqueline, C., Davieau, M., Mollé, A., Sadek, A., Fourgeux, C., Rooze, P.,
- Broquet, A., Misme-Aucouturier, B., Chaumette, T., Vourc'h, M., Cinotti, R., Marec, N.,
- Gauttier, V., McWilliam, H. E. G., Altare, F., Poschmann, J., Villadangos, J. A. & Asehnoune,
- 1035 K. (2020). Alveolar macrophages are epigenetically altered after inflammation, leading to
- long-term lung immunoparalysis. *Nat Immunol*. 21, 636–648
- 1037 102. Didierlaurent, A., Goulding, J., Patel, S., Snelgrove, R., Low, L., Bebien, M., Lawrence, T.,
- Van Rijt, L. S., Lambrecht, B. N., Sirard, J. C. & Hussell, T. (2008). Sustained desensitization
- to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. *J Exp*
- 1040 *Med.* 205, 323–329
- 1041 103. Ghoneim, H. E., Thomas, P. G. & McCullers, J. A. (2013). Depletion of Alveolar
- Macrophages during Influenza Infection Facilitates Bacterial Superinfections. *J Immunol.* 191,
- 1043 1250–1259

- 1044 104. Oliver, B. G. G., Lim, S., Wark, P., Laza-Stanca, V., King, N., Black, J. L., Burgess, J. K.,
- Roth, M. & Johnston, S. L. (2008). Rhinovirus exposure impairs immune responses to
- bacterial products in human alveolar macrophages. *Thorax*. 63, 519–525
- 1047 105. Maciejewski, B. A., Jamieson, K. C., Arnason, J. W., Kooi, C., Wiehler, S., Traves, S. L.,
- Leigh, R. & Proud, D. (2017). Rhinovirus-bacteria coexposure synergistically induces CCL20
- production from human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 312,
- 1050 L731–L740
- 1051 106. Wu, X., Li, R., Weng, Y., Zhou, H., Jiang, H., Zhao, J., Liu, B., Chen, R., Chen, X., Yang, W.,
- Yang, Z. & Wang, X. (2021). Correlation of adhesion molecules and non-typeable
- haemophilus influenzae growth in a mice coinfected model of acute inflammation. *Microbes*
- 1054 Infect. 104839 doi:10.1016/j.micinf.2021.104839
- 1055 107. LeMessurier, K. S., Iverson, A. R., Chang, T. C., Palipane, M., Vogel, P., Rosch, J. W. &
- Samarasinghe, A. E. (2019). Allergic inflammation alters the lung microbiome and hinders
- synergistic co-infection with H1N1 influenza virus and Streptococcus pneumoniae in C57BL/6
- 1058 mice. Sci Rep. 9, 1–15
- 1059 108. Morey, P., Cano, V., Martí-Lliteras, P., López-Gómez, A., Regueiro, V., Saus, C.,
- Bengoechea, J. A. & Garmendia, J. (2011). Evidence for a non-replicative intracellular stage
- of nontypable Haemophilus influenzae in epithelial cells. *Microbiology*. 157, 234–250
- 1062 109. Ahrén, I. L., Williams, D. L., Rice, P. J., Forsgren, A. & Riesbeck, K. (2001). The importance
- of a β-glucan receptor in the nonopsonic entry of nontypeable Haemophilus influenzae into
- human monocytic and epithelial cells. *J Infect Dis.* 184, 150–158
- 1065 110. Craig, J. E., Cliffe, A., Garnett, K. & High, N. J. (2001). Survival of nontypeable Haemophilus
- influenzae in macrophages. FEMS Microbiol Lett. 203, 55–61
- 1067 111. Craig, J. E., Nobbs, A. & High, N. J. (2002). The extracytoplasmic sigma factor, σE, is
- required for intracellular survival of nontypeable Haemophilus influenzae in J774
- macrophages. Infect Immun. 70, 708–715
- 1070 112. King, P., Ngui, J., Oppedisano, F., Robins-Browne, R., Holmes, P. & Holdsworth, S. (2008).
- Effect of interferon gamma and CD40 ligation on intracellular monocyte survival of
- nontypeable Haemophilus influenzae. *APMIS*. 116, 1043–9
- 1073 113. Hutton, A. J., Polak, M. E., Spalluto, C. M., Wallington, J. C., Pickard, C., Staples, K. J.,
- Warner, J. A. & Wilkinson, T. M. A. (2017). Human Lung Fibroblasts Present Bacterial
- Antigens to Autologous Lung Th Cells. *J Immunol*. 198, 110–118
- 1076 114. Slevogt, H., Seybold, J., Tiwari, K. N., Hocke, A. C., Jonatat, C., Dietel, S., Hippenstiel, S.,
- Singer, B. B., Bachmann, S., Suttorp, N. & Opitz, B. (2007). Moraxella catarrhalis is
- internalized in respiratory epithelial cells by a trigger-like mechanism and initiates a TLR2-
- and partly NOD1-dependent inflammatory immune response. *Cell Microbiol.* 9, 694–707
- 1080 115. Spaniol, V., Heiniger, N., Troller, R. & Aebi, C. (2008). Outer membrane protein UspA1 and
- lipooligosaccharide are involved in invasion of human epithelial cells by Moraxella
- catarrhalis. *Microbes Infect*. 10, 3–11

- 1083 116. Heiniger, N., Spaniol, V., Troller, R., Vischer, M. & Aebi, C. (2007). A reservoir of Moraxella
- 1084 catarrhalis in human pharyngeal lymphoid tissue. Journal of Infectious Diseases. 196, 1080–
- 1085 1087
- 1086 117. Gallo, M. C., Kirkham, C., Eng, S., Bebawee, R. S., Kong, Y., Pettigrew, M. M., Tettelin, H.
- & Murphy, T. F. (2018). Changes in IgA protease expression are conferred by changes in
- genomes during persistent infection by nontypeable Haemophilus influenzae in chronic
- obstructive pulmonary disease. *Infect Immun*. 86, e00313-18
- 1090 118. Pettigrew, M. M., Ahearn, C. P., Gent, J. F., Kong, Y., Gallo, M. C., Munro, J. B., D'Mello,
- 1091 A., Sethi, S., Tettelin, H. & Murphy, T. F. (2018). Haemophilus influenzae genome evolution
- during persistence in the human airways in chronic obstructive pulmonary disease. *Proc Natl*
- 1093 *Acad Sci U S A*. 115, E3256–E3265
- 1094 119. Murphy, T. F., Brauer, A. L., Schiffmacher, A. T. & Sethi, S. (2004). Persistent colonization
- by haemophilus influenzae in chronic obstructive pulmonary disease. Am J Respir Crit Care
- 1096 *Med.* 170, 266–272
- 1097 120. Yano, H., Suetake, M., Kuga, A., Irinoda, K., Okamoto, R., Kobayashi, T. & Inoue, M.
- 1098 (2000). Pulsed-field gel electrophoresis analysis of nasopharyngeal flora in children attending
- a day care center. J Clin Microbiol. 38, 625–629
- 1100 121. Heinrich, A., Haarmann, H., Zahradnik, S., Frenzel, K., Schreiber, F., Klassert, T. E., Heyl, K.
- 1101 A., Endres, A. S., Schmidtke, M., Hofmann, J. & Slevogt, H. (2016). Moraxella catarrhalis
- decreases antiviral innate immune responses by down-regulation of TLR3 via inhibition of p53
- in human bronchial epithelial cells. FASEB J. 30, 2426–2434
- 1104 122. Sajjan, U. S., Jia, Y., Newcomb, D. C., Bentley, J. K., Lukacs, N. W., LiPuma, J. J.,
- Hershenson, M. B., Sajjan, U. S., Jia, Y., Newcomb, D. C., Bentley, J. K., Lukacs, N. W.,
- LiPuma, J. J. & Hershenson, M. B. (2006). H. influenzae potentiates airway epithelial cell
- responses to rhinovirus by increasing ICAM-1 and TLR3 expression. FASEB J. 20, 2121–
- 1108 2123
- 1109 123. Sakai, A., Koga, T., Lim, J. H., Jono, H., Harada, K., Szymanski, E., Xu, H., Kai, H. & Li, J.
- D. (2007). The bacterium, nontypeable Haemophilus influenzae, enhances host antiviral
- response by inducing Toll-like receptor 7 expression: Evidence for negative regulation of host
- antiviral response by CYLD. *FEBS J.* 274, 3655–3668
- 1113 124. Rupani, H., Martinez-Nunez, R. T., Dennison, P., Lau, L. C. K., Jayasekera, N., Havelock, T.,
- Francisco-Garcia, A. S., Grainge, C., Howarth, P. H. & Sanchez-Elsner, T. (2016). Toll-like
- Receptor 7 Is reduced in severe asthma and linked to an altered MicroRNA Profile. Am J
- 1116 Respir Crit Care Med. 194, 26–37
- 1117 125. Habibi, M. S., Thwaites, R. S., Chang, M., Jozwik, A., Paras, A., Kirsebom, F., Varese, A.,
- Owen, A., Cuthbertson, L., James, P., Tunstall, T., Nickle, D., Hansel, T. T., Moffatt, M. F.,
- Johansson, C., Chiu, C. & Openshaw, P. J. M. (2020). Neutrophilic inflammation in the
- respiratory mucosa predisposes to RSV infection. *Science*. 370,
- 1121 126. De Steenhuijsen Piters, W. A. A., Heinonen, S., Hasrat, R., Bunsow, E., Smith, B., Suarez-

- Arrabal, M. C., Chaussabel, D., Cohen, D. M., Sanders, E. A. M., Ramilo, O., Bogaert, D. &
- Mejias, A. (2016). Nasopharyngeal microbiota, host transcriptome, and disease severity in
- children with respiratory syncytial virus infection. Am J Respir Crit Care Med. 194, 1104–
- 1125 1115
- 1126 127. Barber, C., Ward, J., Elliott, S., Lau, L., Azim, A., Gove, K., Rupani, H., Brown, T., Chauhan,
- A., Staples, K. J. & Howarth, P. H. (European Respiratory Society (ERS)., 2020). Comparison
- of two published definitions of sputum neutrophilia show clinical measures of disease are
- more severe in neutrophilic asthma (NA) than non-neutrophilic asthma (NNA) using >40%
- sputum neutrophils as the definition of disease. in European Respiratory Journal. 56, 1255
- 1131 128. Arron, J. R., Choy, D. F., Laviolette, M., Kelsen, S. G., Hatab, A., Leigh, R., Thomson, N. C.,
- Bleecker, E. R., Olivenstein, R., Avila, P. C., Jarjour, N. N., Castro, M., Gauvreau, G. M.,
- Good, J. T., Kline, J. N., Mansur, A., Mayers, I., Heaney, L. G., Hamid, Q. & Harris, J. M.
- 1134 (2014). Disconnect between sputum neutrophils and other measures of airway inflammation in
- asthma. *Eur Respir J.* 43, 627–629
- 1136 129. Goleva, E., Jackson, L. P., Harris, J. K., Robertson, C. E., Sutherland, E. R., Hall, C. F., Good,
- J. T., Gelfand, E. W., Martin, R. J. & Leung, D. Y. M. (2013). The effects of airway
- microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med. 188,
- 1139 1193–1201
- 1140 130. Huang, Y. J., Nelson, C. E., Brodie, E. L., Desantis, T. Z., Baek, M. S., Liu, J., Woyke, T.,
- Allgaier, M., Bristow, J., Wiener-Kronish, J. P., Sutherland, E. R., King, T. S., Icitovic, N.,
- Martin, R. J., Calhoun, W. J., Castro, M., Denlinger, L. C., Dimango, E., Kraft, M., Peters, S.
- P., Wasserman, S. I., Wechsler, M. E., Boushey, H. A., Lynch, S. V. & National Heart, Lung,
- and B. I. A. C. R. N. (2011). Airway microbiota and bronchial hyperresponsiveness in patients
- with suboptimally controlled asthma. *J Allergy Clin Immunol*. 127, 372-381.e1–3
- 1146 131. Marri, P. R., Stern, D. A., Wright, A. L., Billheimer, D. & Martinez, F. D. (2013). Asthma-
- associated differences in microbial composition of induced sputum. *J Allergy Clin Immunol*.
- 1148 131, 346-352.e3
- 1149 132. Denner, D. R., Sangwan, N., Becker, J. B., Hogarth, D. K., Oldham, J., Castillo, J., Sperling,
- A. I., Solway, J., Naureckas, E. T., Gilbert, J. A. & White, S. R. (2016). Corticosteroid therapy
- and airflow obstruction influence the bronchial microbiome, which is distinct from that of
- bronchoalveolar lavage in asthmatic airways. *J Allergy Clin Immunol*. 137, 1398-1405.e3
- 1153 133. Polderman, T. J. C., Benyamin, B., De Leeuw, C. A., Sullivan, P. F., Van Bochoven, A.,
- 1154 Visscher, P. M. & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based
- on fifty years of twin studies. *Nat Genet*. 47, 702–709
- 1156 134. Thomsen, S. F., Duffy, D. L., Kyvik, K. O. & Backer, V. (2010). Genetic influence on the age
- at onset of asthma: A twin study. J Allergy Clin Immunol. 126, 626–630
- 1158 135. Morales, E. & Duffy, D. (2019). Genetics and Gene-Environment Interactions in Childhood
- and Adult Onset Asthma. Frontiers in Pediatrics. 7, 499
- 1160 136. Vercelli, D. (2008). Discovering susceptibility genes for asthma and allergy. *Nat Rev*
- 1161 *Immunol.* 8, 169–182

- 137. Vicente, C. T., Revez, J. A. & Ferreira, M. A. R. (2017). Lessons from ten years of genomewide association studies of asthma. *Clinical and Translational Immunology*. 6, e165
- 138. Lockett, G. A. & Holloway, J. W. (2013). Genome-wide association studies in asthma;
- perhaps, the end of the beginning. Current Opinion in Allergy and Clinical Immunology. 13,
- 1166 463–469
- 139. Rava, M., Smit, L. A. M. & Nadif, R. (2015). Gene-environment interactions in the study of
- asthma in the postgenomewide association studies era. Current Opinion in Allergy and
- 1169 *Clinical Immunology*. 15, 70–78
- 1170 140. Moffatt, M. F., Kabesch, M., Liang, L., Dixon, A. L., Strachan, D., Heath, S., Depner, M.,
- 1171 Von Berg, A., Bufe, A., Rietschel, E., Heinzmann, A., Simma, B., Frischer, T., Willis-Owen,
- 1172 S. A. G., Wong, K. C. C., Illig, T., Vogelberg, C., Weiland, S. K., Von Mutius, E., Abecasis,
- G. R., Farrall, M., Gut, I. G., Lathrop, G. M. & Cookson, W. O. C. (2007). Genetic variants
- regulating ORMDL3 expression contribute to the risk of childhood asthma. *Nature*. 448, 470–
- 1175 473
- 1176 141. Smit, L. A. M., Bouzigon, E., Pin, I., Siroux, V., Monier, F., Aschard, H., Bousquet, J.,
- Gormand, F., Just, J., Le Moual, N., Nadif, R., Scheinmann, P., Vervloet, D., Lathrop, M.,
- Demenais, F., Kauffmann, F., Korobaeff, M., Neukirch, F., Annesi-Maesano, I., Oryszczyn,
- M. P., Feingold, J., Dizier, M. H., Gut, I., Pison, C., Ecochard, D., Pacheco, Y., Charpin, D.,
- Lockhart, A., Matran, R., Paty, E., Grimfeld, A., Hochez, J., Ravault, C., Chateigner, N. &
- Ferran, J. (2010). 17Q21 Variants Modify the Association Between Early Respiratory
- Infections and Asthma. Eur Respir J. 36, 57–64
- 1183 142. Çalışkan, M., Bochkov, Y. A., Kreiner-Møller, E., Bønnelykke, K., Stein, M. M., Du, G.,
- Bisgaard, H., Jackson, D. J., Gern, J. E., Lemanske, R. F., Nicolae, D. L. & Ober, C. (2013).
- 1185 Rhinovirus Wheezing Illness and Genetic Risk of Childhood-Onset Asthma. *N Engl J Med*.
- 1186 368, 1398–1407
- 1187 143. Zhang, Y., Willis-Owen, S. A. G., Spiegel, S., Lloyd, C. M., Moffatt, M. F. & Cookson, W. O.
- 1188 C. M. (2019). The ORMDL3 asthma gene regulates ICAM1 and has multiple effects on
- cellular inflammation. Am J Respir Crit Care Med. 199, 478–488
- 1190 144. Bønnelykke, K., Sleiman, P., Nielsen, K., Kreiner-Møller, E., Mercader, J. M., Belgrave, D.,
- Den Dekker, H. T., Husby, A., Sevelsted, A., Faura-Tellez, G., Mortensen, L. J., Paternoster,
- L., Flaaten, R., Mølgaard, A., Smart, D. E., Thomsen, P. F., Rasmussen, M. A., Bonàs-Guarch,
- S., Holst, C., Nohr, E. A., Yadav, R., March, M. E., Blicher, T., Lackie, P. M., Jaddoe, V. W.
- 1194 V., Simpson, A., Holloway, J. W., Duijts, L., Custovic, A., Davies, D. E., Torrents, D., Gupta,
- R., Hollegaard, M. V., Hougaard, D. M., Hakonarson, H. & Bisgaard, H. (2014). A genome-
- wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma
- with severe exacerbations. *Nat Genet*. 46, 51–55
- 1198 145. Bønnelykke, K., Coleman, A. T., Evans, M. D., Thorsen, J., Waage, J., Vissing, N. H.,
- 1199 Carlsson, C. J., Stokholm, J., Chawes, B. L., Jessen, L. E., Fischer, T. K., Bochkov, Y. A.,
- Ober, C., Lemanske, R. F., Jackson, D. J., Gern, J. E. & Bisgaard, H. (2018). Cadherin-related
- family member 3 genetics and rhinovirus c respiratory Illnesses. *Am J Respir Crit Care Med*.
- 1202 197, 589–594

- 1203 146. Lorenz, E., Mira, J. P., Frees, K. L. & Schwartz, D. A. (2002). Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. *Arch Intern Med.* 162, 1028–1032
- 1205 147. Arbour, N. C., Lorenz, E., Schutte, B. C., Zabner, J., Kline, J. N., Jones, M., Frees, K., Watt, J.
- 1206 L. & Schwartz, D. A. (2000). TLR4 mutations are associated with endotoxin
- hyporesponsiveness in humans. *Nat Genet*. 25, 187–191
- 1208 148. Teräsjärvi, J. T., Toivonen, L., Vuononvirta, J., Mertsola, J., Peltola, V. & He, Q. (2020).
- TLR4 polymorphism, nasopharyngeal bacterial colonization, and the development of
- 1210 childhood asthma: A prospective birth-cohort study in finnish children. *Genes (Basel)*. 11, 1–8
- 1211 149. Fagerås Böttcher, M., Hmani-Aifa, M., Lindström, A., Jenmalm, M. C., Mai, X. M., Nilsson,
- L., Zdolsek, H. A., Björkstén, B., Söderkvist, P. & Vaarala, O. (2004). A TLR4 polymorphism
- is associated with asthma and reduced lipopolysaccharide-induced interleukin-12(p70)
- responses in Swedish children. J Allergy Clin Immunol. 114, 561–567
- 1215 150. Raby, B. A., Klimecki, W. T., Laprise, C., Renaud, Y., Faith, J., Lemire, M., Greenwood, C.,
- Weiland, K. M., Lange, C., Palmer, L. J., Lazarus, R., Vercelli, D., Kwiatkowski, D. J.,
- 1217 Silverman, E. K., Martinez, F. D., Hudson, T. J. & Weiss, S. T. (2002). Polymorphisms in toll-
- like receptor 4 are not associated with asthma or atopy-related phenotypes. Am J Respir Crit
- 1219 *Care Med.* 166, 1449–1456
- 1220 151. Kotaniemi-Syrjänen, A., Vainionpää, R., Reijonen, T. M., Waris, M., Korhonen, K. & Korppi,
- M. (2003). Rhinovirus-induced wheezing in infancy The first sign of childhood asthma? J
- 1222 *Allergy Clin Immunol.* 111, 66–71
- 1223 152. Lemanske, R. F., Jackson, D. J., Gangnon, R. E., Evans, M. D., Li, Z., Shult, P. A., Kirk, C. J.,
- Reisdorf, E., Roberg, K. A., Anderson, E. L., Carlson-Dakes, K. T., Adler, K. J., Gilbertson-
- White, S., Pappas, T. E., DaSilva, D. F., Tisler, C. J. & Gern, J. E. (2005). Rhinovirus illnesses
- during infancy predict subsequent childhood wheezing. J Allergy Clin Immunol. 116, 571–577
- 1227 153. Jackson, D. J., Gangnon, R. E., Evans, M. D., Roberg, K. A., Anderson, E. L., Pappas, T. E.,
- Printz, M. C., Lee, W. M., Shult, P. A., Reisdorf, E., Carlson-Dakes, K. T., Salazar, L. P.,
- DaSilva, D. F., Tisler, C. J., Gern, J. E. & Lemanske, R. F. (2008). Wheezing rhinovirus
- illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care
- 1231 *Med.* 178, 667–672
- 1232 154. Wu, P. & Hartert, T. V. (2011). Evidence for a causal relationship between respiratory
- syncytial virus infection and asthma. Expert Rev Anti Infect Ther. 9, 731–745
- 1234 155. Sigurs, N., Aljassim, F., Kjellman, B., Robinson, P. D., Sigurbergsson, F., Bjarnason, R. &
- Gustafsson, P. M. (2010). Asthma and allergy patterns over 18 years after severe RSV
- bronchiolitis in the first year of life. *Thorax*. 65, 1045–1052
- 1237 156. Kaiko, G. E., Phipps, S., Angkasekwinai, P., Dong, C. & Foster, P. S. (2010). NK Cell
- Deficiency Predisposes to Viral-Induced Th2-Type Allergic Inflammation via Epithelial-
- 1239 Derived IL-25. *J Immunol*. 185, 4681–4690
- 1240 157. Spalluto, C. M., Singhania, A., Cellura, D., Woelk, C. H., Sanchez-Elsner, T., Staples, K. J. &
- Wilkinson, T. M. A. (2017). IFN-g influences epithelial antiviral responses via histone

- methylation of the RIG-I promoter. *Am J Respir Cell Mol Biol*. 57, 428–438
- 1243 158. Kusel, M. M. H., de Klerk, N. H., Kebadze, T., Vohma, V., Holt, P. G., Johnston, S. L. & Sly,
- P. D. (2007). Early-life respiratory viral infections, atopic sensitization, and risk of subsequent
- development of persistent asthma. J Allergy Clin Immunol. 119, 1105–1110
- 1246 159. Rubner, F. J., Jackson, D. J., Evans, M. D., Gangnon, R. E., Tisler, C. J., Pappas, T. E., Gern,
- J. E. & Lemanske, R. F. (2017). Early life rhinovirus wheezing, allergic sensitization, and
- asthma risk at adolescence. J Allergy Clin Immunol. 139, 501–507
- 1249 160. Murray, C. S., Poletti, G., Kebadze, T., Morris, J., Woodcock, A., Johnston, S. L. & Custovic,
- 1250 A. (2006). Study of modifiable risk factors for asthma exacerbations: Virus infection and
- allergen exposure increase the risk of asthma hospital admissions in children. *Thorax.* 61, 376–
- 1252 382
- 1253 161. Matsuse, H., Behera, A. K., Kumar, M., Rabb, H., Lockey, R. F. & Mohapatra, S. S. (2000).
- Recurrent Respiratory Syncytial Virus Infections in Allergen-Sensitized Mice Lead to
- Persistent Airway Inflammation and Hyperresponsiveness. *J Immunol*. 164, 6583–6592
- 1256 162. Woś, M., Sanak, M., Soja, J., Olechnowicz, H., Busse, W. W. & Szczeklik, A. (2008). The
- presence of rhinovirus in lower airways of patients with bronchial asthma. Am J Respir Crit
- 1258 *Care Med.* 177, 1082–1089
- 1259 163. Kim, E. Y., Battaile, J. T., Patel, A. C., You, Y., Agapov, E., Grayson, M. H., Benoit, L. A.,
- Byers, D. E., Alevy, Y., Tucker, J., Swanson, S., Tidwell, R., Tyner, J. W., Morton, J. D.,
- 1261 Castro, M., Polineni, D., Patterson, G. A., Schwendener, R. A., Allard, J. D., Peltz, G. &
- Holtzman, M. J. (2008). Persistent activation of an innate immune response translates
- respiratory viral infection into chronic lung disease. *Nat Med.* 14, 633–640
- 1264 164. Bønnelykke, K., Vissing, N. H., Sevelsted, A., Johnston, S. L. & Bisgaard, H. (2015).
- Association between respiratory infections in early life and later asthma is independent of
- virus type. J Allergy Clin Immunol. 136, 81-86.e4
- 1267 165. Beck, J. M., Young, V. B. & Huffnagle, G. B. (2012). The microbiome of the lung. *Transl*
- 1268 Res. 160, 258–266
- 1269 166. Bisgaard, H., Hermansen, M. N., Buchvald, F., Loland, L., Halkjaer, L. B., Bønnelykke, K.,
- Brasholt, M., Heltberg, A., Vissing, N. H., Thorsen, S. V., Stage, M. & Pipper, C. B. (2007).
- 1271 Childhood Asthma after Bacterial Colonization of the Airway in Neonates. *N Engl J Med*. 357,
- 1272 1487–1495
- 1273 167. Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N. &
- Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota
- across multiple body habitats in newborns. *Proc Natl Acad Sci U S A*. 107, 11971–11975
- 1276 168. Reyman, M., van Houten, M. A., van Baarle, D., Bosch, A. A. T. M., Man, W. H., Chu, M. L.
- J. N., Arp, K., Watson, R. L., Sanders, E. A. M., Fuentes, S. & Bogaert, D. (2019). Impact of
- delivery mode-associated gut microbiota dynamics on health in the first year of life. *Nat*
- 1279 *Commun.* 10, 1–12

- 1280 169. Duijts, L., Jaddoe, V. W. V., Hofman, A. & Moll, H. A. (2010). Prolonged and exclusive breastfeeding reduces the risk of infectious diseases in infancy. *Pediatrics*. 126, e18–e25
- 1282 170. Biesbroek, G., Tsivtsivadze, E., Sanders, E. A. M., Montijn, R., Veenhoven, R. H., Keijser, B.
- J. F. & Bogaert, D. (2014). Early respiratory microbiota composition determines bacterial
- succession patterns and respiratory health in children. Am J Respir Crit Care Med. 190, 1283–
- 1285 1292
- 1286 171. Eder, W., Ege, M. J. & von Mutius, E. (2006). The Asthma Epidemic. N Engl J Med. 355,
- 1287 2226–2235
- 1288 172. Adami, A. J. & Bracken, S. J. (2016). Breathing better through bugs: Asthma and the
- 1289 microbiome. *Yale J Biol Med.* 89, 309–324
- 1290 173. Strachan, D. P. (2000). Family size, infection and atopy: the first decade of the 'hygiene
- 1291 hypothesis'. *Thorax*. 55 Suppl 1, S2-10
- 1292 174. Von Ehrenstein, O. S., Von Mutius, E., Illi, S., Baumann, L., Böhm, O. & Von Kries, R.
- 1293 (2000). Reduced risk of hay fever and asthma among children of farmers. *Clin Exp Allergy*.
- 1294 30, 187–193
- 1295 175. Ege, M. J., Mayer, M., Normand, A.-C., Genuneit, J., Cookson, W. O. C. M., Braun-
- Fahrländer, C., Heederik, D., Piarroux, R. & von Mutius, E. (2011). Exposure to
- Environmental Microorganisms and Childhood Asthma. *N Engl J Med.* 364, 701–709
- 1298 176. Holgate, S. T. (2012). Innate and adaptive immune responses in asthma. *Nat Med.* 18, 673–
- 1299 683
- 1300 177. Von Mutius, E. (2014). Environmental microorganisms and lung health. *Ann Am Thorac Soc*.
- 1301 11, S13–S15
- 1302 178. Teo, S. M., Mok, D., Pham, K., Kusel, M., Serralha, M., Troy, N., Holt, B. J., Hales, B. J.,
- Walker, M. L., Hollams, E., Bochkov, Y. A., Grindle, K., Johnston, S. L., Gern, J. E., Sly, P.
- D., Holt, P. G., Holt, K. E. & Inouye, M. (2015). The infant nasopharyngeal microbiome
- impacts severity of lower respiratory infection and risk of asthma development. *Cell Host*
- 1306 *Microbe*. 17, 704–715
- 1307 179. Bosch, A. A. T. M., De Steenhuijsen Piters, W. A. A., Van Houten, M. A., Chu, M. L. J. N.,
- Biesbroek, G., Kool, J., Pernet, P., De Groot, P. K. C. M., Eijkemans, M. J. C., Keijser, B. J.
- F., Sanders, E. A. M. & Bogaert, D. (2017). Maturation of the infant respiratory microbiota,
- environmental drivers, and health consequences. Am J Respir Crit Care Med. 196, 1582–1590
- 1311 180. Teo, S. M., Tang, H. H. F., Mok, D., Judd, L. M., Watts, S. C., Pham, K., Holt, B. J., Kusel,
- M., Serralha, M., Troy, N., Bochkov, Y. A., Grindle, K., Lemanske, R. F., Johnston, S. L.,
- Gern, J. E., Sly, P. D., Holt, P. G., Holt, K. E. & Inouye, M. (2018). Airway Microbiota
- Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in
- 1315 Childhood Respiratory Disease. *Cell Host Microbe*. 24, 341-352.e5
- 1316 181. Chapman, T. J., Morris, M. C., Xu, L. & Pichichero, M. E. (2020). Nasopharyngeal
- colonization with pathobionts is associated with susceptibility to respiratory illnesses in young

- 1318 children. *PLoS One*. 15, e0243942
- 1319 182. Larsen, J. M., Brix, S., Thysen, A. H., Birch, S., Rasmussen, M. A. & Bisgaard, H. (2014).
- 1320 Children with asthma by school age display aberrant immune responses to pathogenic airway
- bacteria as infants. J Allergy Clin Immunol. 133, 1008-1013.e4
- 1322 183. McCann, J. R., Mason, S. N., Auten, R. L., St. Geme, J. W. & Seed, P. C. (2016). Early-life
- intranasal colonization with nontypeable Haemophilus influenzae exacerbates juvenile airway
- disease in mice. *Infect Immun*. 84, 2022–2030
- 1325 184. Alnahas, S., Hagner, S., Raifer, H., Kilic, A., Gasteiger, G., Mutters, R., Hellhund, A., Prinz,
- I., Pinkenburg, O., Visekruna, A., Garn, H. & Steinhoff, U. (2017). IL-17 and TNF-α are key
- mediators of Moraxella catarrhalis triggered exacerbation of allergic airway inflammation.
- 1328 Front Immunol. 8, 1562
- 1329 185. Martin, E., Treiner, E., Duban, L., Guerri, L., Laude, H., Toly, C., Premel, V., Devys, A.,
- Moura, I. C., Tilloy, F., Cherif, S., Vera, G., Latour, S., Soudais, C. & Lantz, O. (2009).
- Stepwise Development of MAIT Cells in Mouse and Human. *PLOS Biol.* 7, e1000054
- 1332 186. Treiner, E., Duban, L., Bahram, S., Radosavljevic, M., Wanner, V., Tilloy, F., Affaticati, P.,
- Gilfillan, S. & Lantz, O. (2003). Selection of evolutionarily conserved mucosal-associated
- invariant T cells by MR1. *Nat 2003 4226928*. 422, 164–169
- 1335 187. Wallington, J. C., Williams, A. P., Staples, K. J. & Wilkinson, T. M. A. (2018). IL-12 and IL-
- 7 synergize to control mucosal-associated invariant T-cell cytotoxic responses to bacterial
- infection. Journal of Allergy and Clinical Immunology. 141, 2182-2195.e6
- 1338 188. Dumas, A., Corral, D., Colom, A., Levillain, F., Peixoto, A., Hudrisier, D., Poquet, Y. &
- Neyrolles, O. (2018). The Host Microbiota Contributes to Early Protection Against Lung
- 1340 Colonization by Mycobacterium tuberculosis. Front Immunol. 0, 2656
- 1341 189. Meierovics, A., Yankelevich, W.-J. C. & Cowley, S. C. (2013). MAIT cells are critical for
- optimal mucosal immune responses during in vivo pulmonary bacterial infection. *Proc Natl*
- 1343 Acad Sci. 110, E3119–E3128
- 1344 190. Mayhew, D., Devos, N., Lambert, C., Brown, J. R., Clarke, S. C., Kim, V. L., Magid-Slav, M.,
- Miller, B. E., Ostridge, K. K., Patel, R., Sathe, G., Simola, D. F., Staples, K. J., Sung, R., Tal-
- Singer, R., Tuck, A. C., Van Horn, S., Weynants, V., Williams, N. P., Devaster, J. M. &
- Wilkinson, T. M. A. (2018). Longitudinal profiling of the lung microbiome in the AERIS
- study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. *Thorax*.
- 1349 73, 422–430
- 1350 191. Rooks, M. G. & Garrett, W. S. (2016). Gut microbiota, metabolites and host immunity. *Nat*
- 1351 Rev Immunol. 16, 341–352
- 1352 192. Franzosa, E. A., Morgan, X. C., Segata, N., Waldron, L., Reyes, J., Earl, A. M., Giannoukos,
- G., Boylan, M. R., Ciulla, D., Gevers, D., Izard, J., Garrett, W. S., Chan, A. T. &
- Huttenhower, C. (2014). Relating the metatranscriptome and metagenome of the human gut.
- 1355 *Proc Natl Acad Sci U S A.* 111, E2329-38

- 1356 193. Castro-Nallar, E., Shen, Y., Freishtat, R. J., Pérez-Losada, M., Manimaran, S., Liu, G.,
- Johnson, W. E. & Crandall, K. A. (2015). Integrating microbial and host transcriptomics to
- characterize asthma-associated microbial communities. *BMC Med Genomics*. 8, 50
- 1359 194. Pérez-Losada, M., Castro-Nallar, E., Bendall, M. L., Freishtat, R. J. & Crandall, K. A. (2015).
- Dual transcriptomic profiling of host and microbiota during health and disease in pediatric
- 1361 asthma. *PLoS One*. 10, e0131819
- 1362 195. Følsgaard, N. V., Schjørring, S., Chawes, B. L., Rasmussen, M. A., Krogfelt, K. A., Brix, S. &
- Bisgaard, H. (2013). Pathogenic bacteria colonizing the airways in asymptomatic neonates
- stimulates topical inflammatory mediator release. *Am J Respir Crit Care Med.* 187, 589–595
- 1365 196. Simpson, J. L., Phipps, S., Baines, K. J., Oreo, K. M., Gunawardhana, L. & Gibson, P. G.
- 1366 (2014). Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. *Eur Respir*
- 1367 J. 43, 1067–76
- 1368 197. Essilfie, A. T., Simpson, J. L., Horvat, J. C., Preston, J. A., Dunkley, M. L., Foster, P. S.,
- Gibson, P. G. & Hansbro, P. M. (2011). Haemophilus influenzae infection drives IL-17-
- mediated neutrophilic Allergic airways disease. *PLoS Pathog.* 7, e1002244
- 1371 198. Essilfie, A. T., Simpson, J. L., Dunkley, M. L., Morgan, L. C., Oliver, B. G., Gibson, P. G.,
- Foster, P. S. & Hansbro, P. M. (2012). Combined Haemophilus influenzae respiratory
- infection and allergic airways disease drives chronic infection and features of neutrophilic
- 1374 asthma. *Thorax*. 67, 588–599
- 1375 199. Yang, X., Wang, Y., Zhao, S., Wang, R. & Wang, C. (2018). Long-term exposure to low-dose
- Haemophilus influenzae during allergic airway disease drives a steroid-resistant neutrophilic
- inflammation and promotes airway remodeling. *Oncotarget*. 9, 24898–24913
- 1378 200. Busse, W. W., Holgate, S., Kerwin, E., Chon, Y., Feng, J., Lin, J. & Lin, S.-L. (2013).
- Randomized, Double-Blind, Placebo-controlled Study of Brodalumab, a Human Anti–IL-17
- 1380 Receptor Monoclonal Antibody, in Moderate to Severe Asthma.
- 1381 https://doi.org/101164/rccm201212-23180C. 188, 1294–1302
- 1382 201. Baines, K. J., Simpson, J. L., Wood, L. G., Scott, R. J. & Gibson, P. G. (2011). Transcriptional
- phenotypes of asthma defined by gene expression profiling of induced sputum samples. J
- 1384 *Allergy Clin Immunol.* 127, 153-160.e9
- Hastie, A. T., Moore, W. C., Meyers, D. A., Vestal, P. L., Li, H., Peters, S. P. & Bleecker, E.
- 1386 R. (2010). Analyses of asthma severity phenotypes and inflammatory proteins in subjects
- stratified by sputum granulocytes. *J Allergy Clin Immunol*. 125, 1028-1036.e13
- 1388 203. Hernandez, M. L., Mills, K., Almond, M., Todoric, K., Aleman, M. M., Zhang, H., Zhou, H. &
- Peden, D. B. (2015). IL-1 receptor antagonist reduces endotoxin-induced airway inflammation
- in healthy volunteers. J Allergy Clin Immunol. 135, 379–385
- 1391 204. Kalchiem-Dekel, O., Yao, X. & Levine, S. J. (2020). Meeting the Challenge of Identifying
- New Treatments for Type 2-Low Neutrophilic Asthma. *Chest.* 157, 26–33
- 1393 205. Nair, P., Gaga, M., Zervas, E., Alagha, K., Hargreave, F. E., O'Byrne, P. M., Stryszak, P.,

- Gann, L., Sadeh, J. & Chanez, P. (2012). Safety and efficacy of a CXCR2 antagonist in
- patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical
- 1396 trial. Clin Exp Allergy. 42, 1097–1103
- 1397 206. O'Byrne, P. M., Metev, H., Puu, M., Richter, K., Keen, C., Uddin, M., Larsson, B., Cullberg,
- M. & Nair, P. (2016). Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with
- uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. *Lancet*
- 1400 Respir Med. 4, 797–806
- 1401 207. Higgins, D., Trujillo, C. & Keech, C. (2016). Advances in RSV vaccine research and
- development A global agenda. *Vaccine*. 34, 2870–2875
- 1403 208. Wilkinson, T. M. A., Schembri, S., Brightling, C., Bakerly, N. D., Lewis, K., MacNee, W.,
- Rombo, L., Hedner, J., Allen, M., Walker, P. P., De Ryck, I., Tasciotti, A., Casula, D., Moris,
- P., Testa, M. & Arora, A. K. (2019). Non-typeable Haemophilus influenzae protein vaccine in
- adults with COPD: A phase 2 clinical trial. *Vaccine*. 37, 6102–6111
- 1407 209. Van Damme, P., Leroux-Roels, G., Vandermeulen, C., De Ryck, I., Tasciotti, A., Dozot, M.,
- Moraschini, L., Testa, M. & Arora, A. K. (2019). Safety and immunogenicity of non-typeable
- Haemophilus influenzae-Moraxella catarrhalis vaccine. *Vaccine*. 37, 3113–3122
- 1410 210. Watson, A. & Wilkinson, T. M. A. (2021). Respiratory viral infections in the elderly.
- 1411 Therapeutic Advances in Respiratory Disease. 15,
- 1412 211. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. (2018). mRNA vaccines a new era
- in vaccinology. *Nat Rev Drug Discov 2018 174*. 17, 261–279
- 1414 212. Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L.,
- Marc, G. P., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S.,
- Koury, K., Li, P., Kalina, W. V., Cooper, D., Robert W. Frenck, J., Hammitt, L. L., Türeci,
- Ö., Nell, H., Schaefer, A., Ünal, S., Tresnan, D. B., Mather, S., Dormitzer, P. R., Şahin, U.,
- Jansen, K. U. & Gruber, W. C. (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-
- 1419 19 Vaccine. https://doi.org/101056/NEJMoa2034577. 383, 2603–2615
- 1420 213. Sánchez-Ramón, S., Conejero, L., Netea, M. G., Sancho, D., Palomares, Ó. & Subiza, J. L.
- 1421 (2018). Trained Immunity-Based Vaccines: A New Paradigm for the Development of Broad-
- Spectrum Anti-infectious Formulations. *Frontiers in immunology*. 9, 2936
- 1423 214. Coviello, S., Wimmenauer, V., Polack, F. P. & Irusta, P. M. (2014). Bacterial lysates improve
- the protective antibody response against respiratory viruses through Toll-like receptor 4. *Hum*
- 1425 *Vaccines Immunother*. 10, 2896–2902
- 1426 215. de Boer, G. M., Żółkiewicz, J., Strzelec, K. P., Ruszczyński, M., Hendriks, R. W., Braunstahl,
- 1427 G. J., Feleszko, W. & Tramper-Stranders, G. A. (2020). Bacterial lysate therapy for the
- prevention of wheezing episodes and asthma exacerbations: A systematic review and meta-
- 1429 analysis. European Respiratory Review. 29, 1–13
- 1430 216. Ahmadizar, F., Vijverberg, S. J. H., Arets, H. G. M., de Boer, A., Turner, S., Devereux, G.,
- 1431 Arabkhazaeli, A., Soares, P., Mukhopadhyay, S., Garssen, J., Palmer, C. N. A., de Jongste, J.

- 1432 C., Jaddoe, V. W. V., Duijts, L., van Meel, E. R., Kraneveld, A. D. & Maitland-van der Zee,
- 1433 A. H. (2017). Early life antibiotic use and the risk of asthma and asthma exacerbations in
- 1434 children. *Pediatr Allergy Immunol*. 28, 430–437
- 1435 217. Toivonen, L., Schuez-Havupalo, L., Karppinen, S., Waris, M., Hoffman, K. L., Camargo, C.
- 1436 A., Hasegawa, K. & Peltola, V. (2021). Antibiotic Treatments During Infancy, Changes in
- Nasal Microbiota, and Asthma Development: Population-based Cohort Study. Clin Infect Dis.
- 1438 72, 1546–1554
- 1439 218. Gibson, P. G., Yang, I. A., Upham, J. W., Reynolds, P. N., Hodge, S., James, A. L., Jenkins,
- 1440 C., Peters, M. J., Marks, G. B., Baraket, M., Powell, H. & Simpson, J. L. (2019). Efficacy of
- azithromycin in severe asthma from the AMAZES randomised trial. ERJ Open Res. 5, 00056–
- 1442 02019
- 1443 219. Taylor, S. L., Leong, L. E. X., Mobegi, F. M., Choo, J. M., Wesselingh, S., Yang, I. A.,
- 1444 Upham, J. W., Reynolds, P. N., Hodge, S., James, A. L., Jenkins, C., Peters, M. J., Baraket,
- 1445 M., Marks, G. B., Gibson, P. G., Rogers, G. B. & Simpson, J. L. (2019). Long-Term
- Azithromycin Reduces Haemophilus influenzae and Increases Antibiotic Resistance in Severe
- 1447 Asthma. *Am J Respir Crit Care Med*. 200, 309–317
- 1448 220. Valery, P. C., Morris, P. S., Byrnes, C. A., Grimwood, K., Torzillo, P. J., Bauert, P. A.,
- Masters, B., Diaz, A., Mccallum, G. B., Mobberley, C., Tjhung, I., Hare, K. M., Ware, R. S. &
- 1450 Chang, A. B. (2013). Long-term azithromycin for Indigenous children with non-cystic-fi
- brosis bronchiectasis or chronic suppurative lung disease (Bronchiectasis Intervention Study):
- a multicentre, double-blind, randomised controlled trial. *Lancet Respir.* 1, 610–620
- 1453 221. Essilfie, A.-T., Horvat, J. C., Kim, R. Y., Mayall, J. R., Pinkerton, J. W., Beckett, E. L.,
- 1454 Starkey, M. R., Simpson, J. L., Foster, P. S., Gibson, P. G. & Hansbro, P. M. (2015).
- Macrolide therapy suppresses key features of experimental steroid-sensitive and steroid-
- insensitive asthma. *Thorax*. 70, 458–467
- 1457 222. Hodge, S., Tran, H. B., Hamon, R., Roscioli, E., Hodge, G., Jersmann, H., Ween, M.,
- Reynolds, P. N., Yeung, A., Treiberg, J. & Wilbert, S. (2017). Nonantibiotic macrolides
- restore airway macrophage phagocytic function with potential anti-inflammatory effects in
- 1460 chronic lung diseases. *Am J Physiol Lung Cell Mol Physiol*. 312, L678–L687
- 1461 223. Nicholas, B., Staples, K. J., Moese, S., Meldrum, E., Ward, J., Dennison, P., Havelock, T.,
- Hinks, T. S. C., Amer, K., Woo, E., Chamberlain, M., Singh, N., North, M., Pink, S.,
- Wilkinson, T. M. A. & Djukanović, R. (2015). A Novel Lung Explant Model for the Ex Vivo
- Study of Efficacy and Mechanisms of Anti-Influenza Drugs. *J Immunol*. 194, 6144–6154
- 1465 224. Watson, A., Madsen, J. & Clark, H. W. (2021). SP-A and SP-D: Dual Functioning Immune
- Molecules With Antiviral and Immunomodulatory Properties. *Front Immunol*. 11, 3692
- 1467 225. Littlejohn, J. R., Silva, R. F. da, Neale, W. A., Smallcombe, C. C., Clark, H. W., Mackay, R.-
- 1468 M. A., Watson, A. S., Madsen, J., Hood, D. W., Burns, I., Greenhough, T. J. & Shrive, A. K.
- 1469 (2018). Structural definition of hSP-D recognition of Salmonella enterica LPS inner core
- oligosaccharides reveals alternative binding modes for the same LPS. *PLoS One*. 13,
- 1471 e0199175

- 1472 226. Nayak, A., Dodagatta-Marri, E., Tsolaki, A. G. & Kishore, U. P. (2012). An Insight into the
- Diverse Roles of Surfactant Proteins, SP-A and SP-D in Innate and Adaptive Immunity. *Front*
- 1474 *Immunol.* 3, 131
- 1475 227. D, F., B, P., A, S., CS, J., LK, T., M, O., A, W., J, M., HW, C., KK, B., S, H., N, M., R, J., S,
- C., U, H. & GL, S. (2015). Protective effects of surfactant protein D treatment in 1,3-β-glucan-
- modulated allergic inflammation. *Am J Physiol Lung Cell Mol Physiol*. 309, L1333–L1343
- 1478 228. Watson, A., Sørensen, G. L., Holmskov, U., Whitwell, H. J., Madsen, J. & Clark, H. (2020).
- Generation of novel trimeric fragments of human SP-A and SP-D after recombinant soluble
- 1480 expression in E. coli. *Immunobiology*. 225, 151953
- 1481 229. Staples, K. J., Taylor, S., Thomas, S., Leung, S., Cox, K., Pascal, T. G., Ostridge, K., Welch,
- L., Tuck, A. C., Clarke, S. C., Gorringe, A. & Wilkinson, T. M. A. (2016). Relationships
- between mucosal antibodies, non-typeable Haemophilus influenzae (NTHi) infection and
- 1484 airway inflammation in COPD. *PLoS One*. 11, e0167250
- 1485 230. Beech, A. S., Lea, S., Kolsum, U., Wang, Z., Miller, B. E., Donaldson, G. C., Wedzicha, J. A.,
- Brightling, C. E. & Singh, D. (2020). Bacteria and sputum inflammatory cell counts; a COPD
- 1487 cohort analysis. Respir Res. 21, 289
- 1488 231. Osei, E. T., Brandsma, C., Timens, W., Heijink, I. H. & Hackett, T. (2020). Current
- perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD.
- 1490 Eur Respir J. 55, 1900563
- 1491 232. R, D., A, A., M, A., MJ, D., DR, G. & AC, P. (2000). Impaired antiviral response and
- alpha/beta interferon induction in mice lacking beta interferon. J Virol. 74, 3404–3409
- 1493 233. Koerner, I., Kochs, G., Kalinke, U., Weiss, S. & Staeheli, P. (2007). Protective Role of Beta
- Interferon in Host Defense against Influenza A Virus. *J Virol.* 81, 2025–2030
- 1495 234. Staples, K. J., Nicholas, B., McKendry, R. T., Spalluto, C. M., Wallington, J. C., Bragg, C.
- 1496 W., Robinson, E. C., Martin, K., Djukanović, R. & Wilkinson, T. M. A. (2015). Viral infection
- of human lung macrophages increases PDL1 expression via IFNβ. *PLoS One*. 10, e0121527
- 1498 235. Djukanović, R., Harrison, T., Johnston, S. L., Gabbay, F., Wark, P., Thomson, N. C., Niven,
- 1499 R., Singh, D., Reddel, H. K., Davies, D. E., Marsden, R., Boxall, C., Dudley, S., Plagnol, V.,
- Holgate, S. T. & Monk, P. (2014). The effect of inhaled IFN-b on worsening of asthma
- symptoms caused by viral infections a randomized trial. Am J Respir Crit Care Med. 190,
- 1502 145–154
- 1503 236. McCrae, C., Olsson, M., Aurell, M., Lundin, C., Paraskos, J., Cavallin, A., Kjerrulf, M.,
- Karlsson, K., Marsden, R., Malmgren, A. and Gustafson, P. (2018). On-Demand Inhaled
- 1505 Interferon-Beta 1a for the Prevention of Severa Asthma Exacerbations: Results of the
- 1506 INEXAS Phase 2a Study | D12. IMMUNOTHERAPY IN LUNG DISEASE. D12 Immunother
- 1507 *LUNG Dis (pp A6165-A6165) Am Thorac Soc.*
- 1508 237. PD, M., RJ, M., VJ, T., J, B., TN, B., M, M., FJ, G., DE, D., ST, H., LP, H., T, C., R, D. &
- 1509 TMA, W. (2021). Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for

1510	treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2

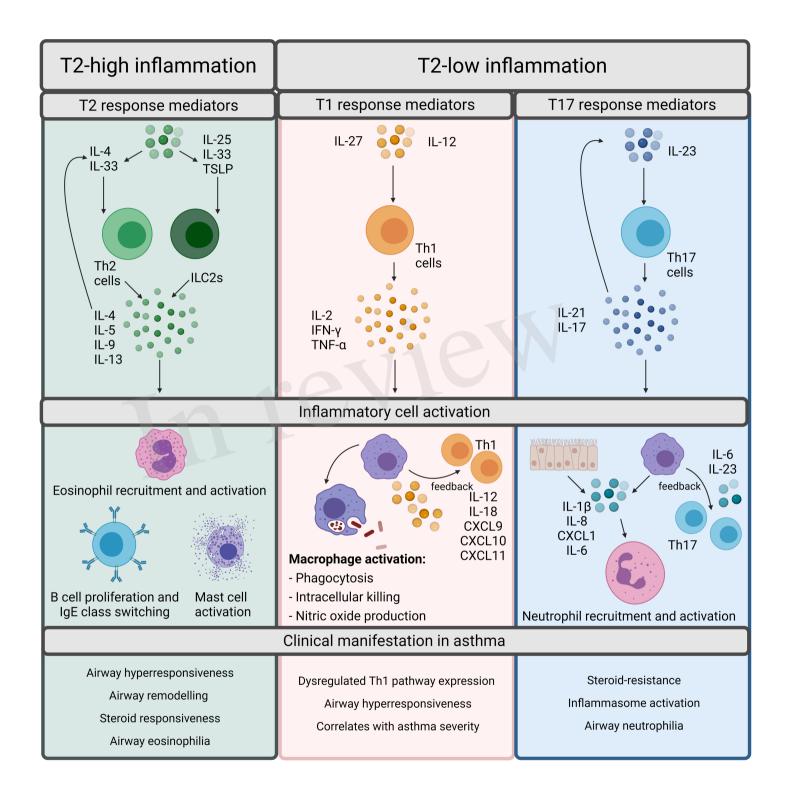
- 1511 trial. *Lancet Respir Med*. 9, 196–206
- 1512 238. Watson, A., Spalluto, C. M., McCrae, C., Cellura, D., Burke, H., Cunoosamy, D., Freeman,
- 1513 A., Hicks, A., Hühn, M., Ostridge, K., Staples, K. J., Vaarala, O. & Wilkinson, T. (2020).
- Dynamics of IFN-β responses during respiratory viral infection insights for therapeutic
- strategies. Am J Respir Crit Care Med. 201, 83–94
- 1516 239. Ichinohe, T., Pang, I. K., Kumamoto, Y., Peaper, D. R., Ho, J. H., Murray, T. S. & Iwasaki, A.
- 1517 (2011). Microbiota regulates immune defense against respiratory tract influenza a virus
- 1518 infection. *Proc Natl Acad Sci U S A*. 108, 5354–5359
- 1519 240. Abt, M. C., Osborne, L. C., Monticelli, L. A., Doering, T. A., Alenghat, T., Sonnenberg, G. F.,
- 1520 Paley, M. A., Antenus, M., Williams, K. L., Erikson, J., Wherry, E. J. & Artis, D. (2012).
- 1521 Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity.
- 1522 *Immunity*. 37, 158–170
- 1523 241. Preidis, G. A. & Versalovic, J. (2009). Targeting the Human Microbiome With Antibiotics,
- Probiotics, and Prebiotics: Gastroenterology Enters the Metagenomics Era. *Gastroenterology*.
- 1525 136, 2015–2031
- 1526 242. Abt, M. C., Osborne, L. C., Monticelli, L. A., Doering, T. A., Alenghat, T., Sonnenberg, G. F.,
- Paley, M. A., Antenus, M., Williams, K. L., Erikson, J., Wherry, E. J. & Artis, D. (2012).
- 1528 Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity.
- 1529 *Immunity*. 37, 158–170
- 1530 243. Herbst, T., Sichelstiel, A., Schär, C., Yadava, K., Bürki, K., Cahenzli, J., McCoy, K.,
- Marsland, B. J. & Harris, N. L. (2011). Dysregulation of allergic airway inflammation in the
- absence of microbial colonization. Am J Respir Crit Care Med. 184, 198–205
- 1533 244. Remot, A., Descamps, D., Noordine, M. L., Boukadiri, A., Mathieu, E., Robert, V., Riffault,
- 1534 S., Lambrecht, B., Langella, P., Hammad, H. & Thomas, M. (2017). Bacteria isolated from
- lung modulate asthma susceptibility in mice. ISME J. 11, 1061–1074
- 1536 245. Kanmani, P., Clua, P., Vizoso-Pinto, M. G., Rodriguez, C., Alvarez, S., Melnikov, V.,
- Takahashi, H., Kitazawa, H. & Villena, J. (2017). Respiratory commensal bacteria
- 1538 Corynebacterium pseudodiphtheriticum improves resistance of infant mice to respiratory
- syncytial virus and Streptococcus pneumoniae superinfection. Front Microbiol. 8, 1613
- 1540 246. Deasy, A. M., Guccione, E., Dale, A. P., Andrews, N., Evans, C. M., Bennett, J. S., Bratcher,
- H. B., Maiden, M. C. J., Gorringe, A. R. & Read, R. C. (2015). Nasal inoculation of the
- 1542 commensal neisseria lactamica inhibits carriage of neisseria meningitidis by young adults: A
- 1543 controlled human infection study. Clin Infect Dis. 60, 1512–1520
- 1544 247. Thorsen, J., Rasmussen, M. A., Waage, J., Mortensen, M., Brejnrod, A., Bønnelykke, K.,
- 1545 Chawes, B. L., Brix, S., Sørensen, S. J., Stokholm, J. & Bisgaard, H. (2019). Infant airway
- microbiota and topical immune perturbations in the origins of childhood asthma. *Nat Commun*.
- 1547 10, 1–8
- 1548 248. van Tilburg Bernardes, E., Gutierrez, M. W. & Arrieta, M. C. (2020). The Fungal Microbiome

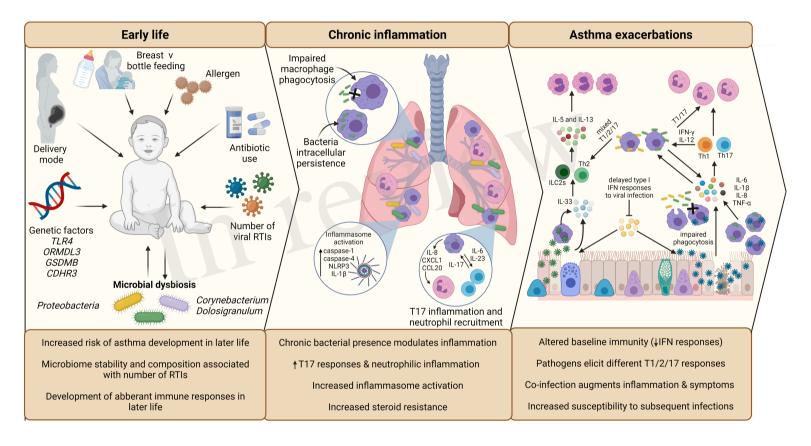
1549		and Asthma. Frontiers in Cellular and Infection Microbiology. 10, 736
1550 1551 1552	249.	Sharma, A., Laxman, B., Naureckas, E. T., Hogarth, D. K., Sperling, A. I., Solway, J., Ober, C., Gilbert, J. A. & White, S. R. (2019). Associations between fungal and bacterial microbiota of airways and asthma endotypes. <i>J Allergy Clin Immunol</i> . 144, 1214-1227.e7
1553 1554 1555	250.	Stern, D. A., Morgan, W. J., Halonen, M., Wright, A. L. & Martinez, F. D. (2008). Wheezing and bronchial hyper-responsiveness in early childhood as predictors of newly diagnosed asthma in early adulthood: a longitudinal birth-cohort study. <i>Lancet</i> . 372, 1058–1064
1556 1557 1558	251.	Liu, H. Y., Li, C. X., Liang, Z. Y., Zhang, S. Y., Yang, W. Y., Ye, Y. M., Lin, Y. X., Chen, R. C., Zhou, H. W. & Su, J. (2020). The Interactions of Airway Bacterial and Fungal Communities in Clinically Stable Asthma. <i>Front Microbiol.</i> 11, 1647
1559		
1560		

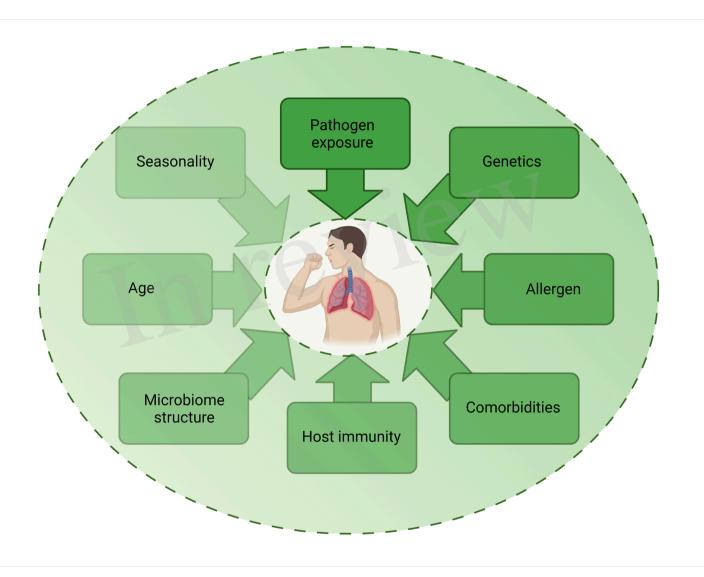
11 Figure legends

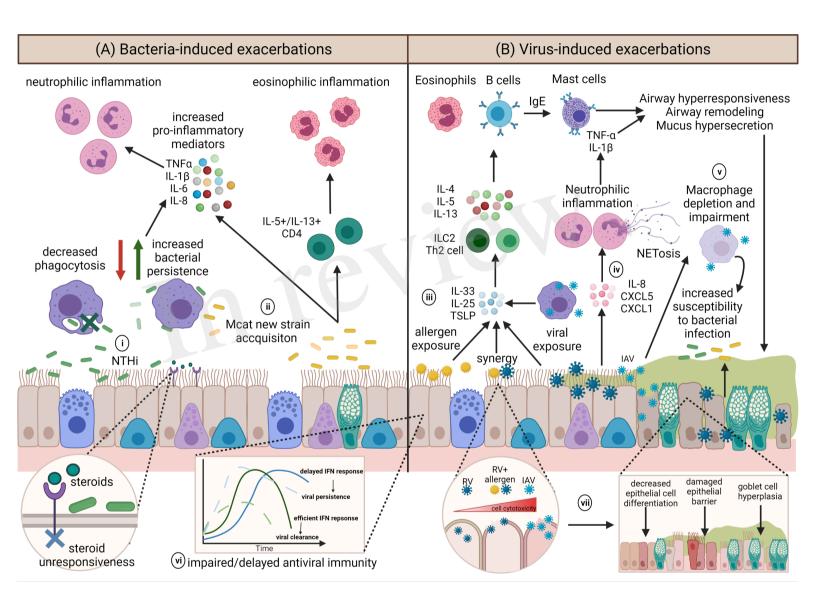
1562 Figure 1. Overview of inflammatory pathways in asthma. Inflammation in asthma is defined as 1563 Type (T)2-high or T2-low. T2-high inflammation is characterized by T2 cytokines such as 1564 interleukin (IL)-4, IL-5, IL-9 and IL-13. These cytokines can be released by T helper (Th) 2 cells or 1565 innate lymphoid group 2 cells (ILC2s). Th2 cells are stimulated by IL-4 whereas ILC2s are stimulated by IL-25, IL-33 or Thymic Stromal Lymphopoietin (TSLP). The T2 cytokines promote 1566 1567 the cellular features of T2 inflammation including eosinophil recruitment and activation, B cell 1568 proliferation, IgE class switching and mast cell activation. Although T2 inflammation is generally 1569 responsive to steroids, it results in the classical pathophysiological features of asthma including 1570 airway hyperresponsiveness, remodelling and eosinophilia. T2-low responses are often associated 1571 with T1 or T17 inflammation. T1 inflammatory responses are regarded as important for defence 1572 against intracellular pathogens and are driven by Th1 cells, which are activated upon stimulation by 1573 either IL-27 or IL-12. Th1 cells release IL-2, IFN-γ or TNF-α which activates macrophages and 1574 promotes microbial killing. Macrophages also participate in positive feedback through production of 1575 IL-12/IL-18, CXCL9, CXCL10 and CXCL11 to amplify T1 inflammation. T17 responses are 1576 induced through IL-23 stimulation of Th17 cells. Th17 cells release IL-21 and IL-17 which can either 1577 autoregulate Th17 cell differentiation or can act upon epithelial cells or macrophages to release IL-1578 1\(\beta\), IL-8, CXCL1 and IL-6 to promote neutrophil recruitment and activation. T17 responses are 1579 associated with the neutrophilic asthma phenotypes, inflammasome activation and steroid resistance 1580 in asthma. Created using BioRender.com

1581


1561


1582 Figure 2. Overview of the impact of infection in early life asthma development, on chronic 1583 inflammation in established asthma and during asthma exacerbations. The development and 1584 stability of the microbiome in early life is associated with allergen exposure, mode of delivery, 1585 feeding method and antibiotic use. The composition of the microbiome is associated with the number 1586 of RTIs during infancy, which is subsequently associated with increased risk of asthma development 1587 in later life. Microbial dysbiosis resulting in microbiome profiles enriched in Proteobacteria 1588 particularly associated with development of asthma and aberrant immune responses in later life. 1589 During established asthma, chronic colonisation of the airway by Proteobacteria is associated with 1590 modulation of airway inflammation. NTHi persistent airway colonisation causes inflammatory 1591 responses switching to T17, neutrophilic inflammation, increased inflammasome activation, which is 1592 linked to increased steroid resistance. As a possible consequence of chronic bacterial colonisation, 1593 baseline immunity in asthma is altered, including decreased antiviral immunity (IFN responses) and 1594 macrophage function (phagocytic ability). Viral infection is established due to delayed antiviral 1595 responses, which causes increased asthma symptoms, resulting in a virally driven exacerbation. Different viruses cause different disease pathology (e.g. increased cellular cytotoxicity following 1596 1597 IAV infection compared to RV) and induction of T2-low (IAV) or T2-high (RV) responses. Bacterial 1598 infection also causes exacerbations and are likely contributors to exacerbation symptoms following 1599 viral infection, as bacterial outgrowth occurs due to impaired phagocytosis and macrophage immune 1600 response sensitisation induced by viral infection. Again, different bacteria induce different responses, 1601 with Mcat reported to induce a mixed T1/2/17 response, whereas NTHi drives a T1/T17 pro-1602 inflammatory response. Co-infection can augment inflammation and asthma symptoms, which may 1603 impact on treatment failure/success during exacerbation. Created using BioRender.com


1604


1605 1606 Figure 3. Factors contributing to infection-induced exacerbations. The role of infection in exacerbations are likely to be multifactorial, with several host, pathogen and environmental factors 1607 1608 impacting on the contribution of infection to an exacerbation. Each factor may be multi-directional 1609 and directly or indirectly impact on another factor, highlighting the complex mechanisms involved in 1610 exacerbations. Created using BioRender.com 1611 Figure 4. Summary of the diverse potential mechanisms contributing to and influencing 1612 1613 infection-induced exacerbations. (A) The role of bacteria in exacerbations are not well known but 1614 inflammatory profiles associated with exacerbations appear to be pathogen dependent. (i) NTHi 1615 infection results in upregulation of pro-inflammatory mediators and is associated with persistent infection, neutrophilic inflammation and steroid-resistance. Chronic NTHi airway colonisation may 1616 1617 occur as a result of macrophage impairment in phagocytosis. (ii) On the other hand, exacerbations 1618 with Mcat are associated with acquisition of a new Mcat strain and is associated with both 1619 neutrophilic and eosinophilic inflammation. (B) Viral induced exacerbations can induce the 1620 hallmarks of asthma exacerbations through upregulation of T2 responses. (iii) Epithelial cells and 1621 macrophages contribute to IL-33, IL-25 and TSLP release, resulting in ILC2 or Th2 release of IL-4, 1622 IL-5 and IL-13 to upregulate eosinophils and B cells, which produce IgE and subsequently activate 1623 mast cells, all of which induces airway hyperresponsiveness, remodelling and mucus hypersecretion. 1624 (iv) Conversely, some viruses have shown to induce IL-8, CXCL5 and CXCL1 release, resulting in 1625 neutrophilic inflammation and epithelial damage via neutrophil production of NETs. (v) Influenza 1626 infection can impact on macrophage function or result in macrophage depletion, with along with 1627 mucus plugging, may render the airway susceptible to persistent bacterial viral infection, which may 1628 further act to exacerbate airway inflammation. Underlying host factors such as (vi) impaired host antiviral immunity may result in an altered baseline immune profile that contributes to a dysregulated 1629 1630 host response, whereas (vii) allergen sensitization or exposure may synergistically augment 1631 inflammation and increase cell lysis and damage during viral infection. Created using 1632 BioRender.com

1633

