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Asthma is a heterogeneous, chronic respiratory disease affecting 300 million people and

is thought to be driven by different inflammatory endotypes influenced by a myriad of

genetic and environmental factors. The complexity of asthma has rendered it challenging

to develop preventative and disease modifying therapies and it remains an unmet

clinical need. Whilst many factors have been implicated in asthma pathogenesis and

exacerbations, evidence indicates a prominent role for respiratory viruses. However,

advances in culture-independent detection methods and extensive microbial profiling of

the lung, have also demonstrated a role for respiratory bacteria in asthma. In particular,

airway colonization by the Proteobacteria species Nontypeable Haemophilus influenzae

(NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk of developing

recurrent wheeze and asthma in early life, poor clinical outcomes in established adult

asthma and the development of more severe inflammatory phenotypes. Furthermore,

emerging evidence indicates that bacterial-viral interactions may influence exacerbation

risk and disease severity, highlighting the need to consider the impact chronic airway

colonization by respiratory bacteria has on influencing host responses to viral infection.

In this review, we first outline the currently understood role of viral and bacterial infections

in precipitating asthma exacerbations and discuss the underappreciated potential impact

of bacteria-virus crosstalk in modulating host responses. We discuss the mechanisms

by which early life infection may predispose to asthma development. Finally, we consider

how infection and persistent airway colonization may drive different asthma phenotypes,

with a view to identifying pathophysiological mechanisms that may prove tractable to

new treatment modalities.
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INTRODUCTION

Asthma is a complex and heterogeneous disease of the airways characterized by episodic and
reversible airway obstruction, bronchial hyper-responsiveness, and airway inflammation that
affects over 300 million people globally (1). Asthma is diagnosed by assessment of airway
reversibility performed by spirometry before and after bronchodilator use (2). Allergic sensitivities
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are a risk factor for asthma development and can be tested
for using the skin prick test, which measures reactions to a
variety of common environmental allergens (3), or measuring
serum levels of IgE (4). However, non-allergic (or non-atopic)
forms of asthma can develop following exposure to a non-
allergic environmental trigger. As such, clinically defining and
treating asthma is complex due to a number of clinical asthma
phenotypes displaying different disease pathologies, which are
further underpinned by multiple inflammatory endotypes (5, 6).

Asthma phenotypes are broadly split into allergic and
non-allergic (5), with allergic asthma being the most widely
recognized form and implicated in 50–80% of asthma cases
(7). Allergic asthma is induced by common environmental
allergens including house dust mite, grass and tree pollen,
mold and ragweed and is characterized by type 2 (T2)
inflammation (5). T2 inflammation is driven by cytokines
such as interleukin (IL)-4, IL-5, and IL-13 released by
T helper (Th) 2 cells which increase the recruitment
and survival of eosinophils (Figure 1). T2 inflammation
promotes the pathophysiological features of eosinophilic
asthma including increased basement membrane thickness
and corticosteroid responsiveness (5, 6, 8–10). However, an
increasing number of studies demonstrate evidence of T2-
low inflammation in some asthma patients (11, 12). T2-low
responses are associated with T1 or T17 inflammation, increased
inflammasome responses and corticosteroid insensitivity
[Figure 1; (13)]. In contrast to T2-high and eosinophilic
inflammation, a major feature of T2-low inflammation
is increased neutrophil infiltration. Neutrophils are now
understood to play a significant role in asthma and are
associated with severe asthma phenotypes, severe airflow
obstruction, steroid-resistance and increased presence of
potentially pathogenic bacteria (14–16). However, there are
individuals who exhibit high levels of both eosinophils and
neutrophils, designated as a mixed granulocytic phenotype,
which is also associated with more severe asthma and poor
responses to current treatments, despite the presence of
eosinophils (17).

The multifactorial nature of asthma is such that therapies
concentrate on decreasing symptoms rather than disease
cure. The most commonly used therapies include inhaled/oral
corticosteroids and leukotriene modifiers to control airway
inflammation and bronchodilators such as β2-agonists or
anticholinergics for immediate relief of asthma symptoms (18).
However, even patients with good treatment adherence can
still experience exacerbations of their asthma symptoms (19).
An asthma exacerbation is characterized by a worsening of
symptoms and can be graded in severity as mild, moderate,
severe or life-threatening (20). Symptoms include wheeze,
shortness of breath and chest tightness and are induced
by airway inflammation, resulting in airflow obstruction and
increased airway responsiveness (2, 21). With ∼65,000 hospital
admissions yearly in the UK, exacerbations contribute to the
considerable financial and logistical burden of asthma on the
health care system, with the added economic impact due to lost
productivity of workers (22). Exacerbations can also enhance
disease progression by increasing the rate of lung function

decline and thus asthma severity (23–25), with some more
severe forms of asthma resistant to even high doses of steroid
treatment (10).

The future of asthma treatment and management is moving
towards modulating specific components of the immune system
involved in asthma pathogenesis by use of monoclonal antibodies
targeting specific inflammatory mediators (26, 27). As such, a
number of therapeutics aim to reduce the number of eosinophils
and T2 cytokines using anti-IL5 antibodies. However, the
mechanisms driving efficacy of anti-IL5 antibodies is unclear:
although blood eosinophils are reduced, the impact on airway
responses, such as sputum eosinophils, exacerbation frequency,
and pulmonary function is varied (28). Importantly, even
individuals treated with the anti-IL5R monoclonal antibody,
benralizumab, have been reported to experience exacerbations
that were predominantly non-eosinophilic in nature and
associated with infection (29). Thus, given themixed outcomes of
targeting IL-5/eosinophils and the potential for the involvement
of other inflammatory immune cells in asthma pathogenesis,
there remains an unmet need for better asthma treatments,
particularly in terms of exacerbation prevention (30). Triggers
of asthma exacerbations include air pollution, cigarette smoking,
allergens and respiratory tract infection (RTI) with virus and
bacteria (1). Interactions between these triggers likely occur,
with the underlying host susceptibility also playing a role in
exacerbations, which renders it challenging to ascertain the exact
mechanisms and interplay involved in exacerbations and develop
effective therapeutics. Despite the importance of all of these
triggers in asthma pathogenesis, in this review we focus on
the role of bacteria and viruses and their crosstalk, with the
role of other environmental factors recently reviewed elsewhere
(31, 32).

Respiratory tract viral infections are also linked to early
life asthma development. The advent of non-culture-based
methods of bacterial detection, such as 16S rRNA sequencing,
has increased appreciation for the role of potentially pathogenic
bacteria in asthma development and pathogenesis (Figure 2).
Airway colonization by potentially pathogenic bacteria within
1 month of life is suggested to predispose individuals to
asthma (33), indicating that modulation of airway immunity may
occur even prior to respiratory tract viral infections. Indeed,
bacteria-virus co-infection of the airway results in more severe
exacerbations and hospital readmission of individuals with
chronic respiratory disease (34). These observations suggest an
underappreciated crosstalk is occurring during bacteria-virus
co-infections in the airway.

Here we will review the currently understood role of infection
in three aspects of asthma: (i) asthma exacerbations, (ii) early
life development of asthma, and (iii) established asthma and
inflammatory phenotypes.We will discuss the emerging evidence
of crosstalk between bacteria and viruses and the host, with a
particular focus on how co-occurrence of pathogens may impact
asthma pathogenesis and inflammatory phenotypes. Finally,
we will discuss how our increasing appreciation for the co-
occurrence of certain respiratory pathogens and their crosstalk
may reveal novel treatment modalities to improve outcomes for
individuals with asthma.
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FIGURE 1 | Overview of inflammatory pathways in asthma. Inflammation in asthma is defined as Type (T)2-high or T2-low. T2-high inflammation is characterized by T2

cytokines such as interleukin (IL)-4, IL-5, IL-9, and IL-13. These cytokines can be released by T helper (Th) 2 cells or innate lymphoid group 2 cells (ILC2s). Th2 cells

are stimulated by IL-4 whereas ILC2s are stimulated by IL-25, IL-33, or Thymic Stromal Lymphopoietin (TSLP). The T2 cytokines promote the cellular features of T2

inflammation including eosinophil recruitment and activation, B cell proliferation, IgE class switching, and mast cell activation. Although T2 inflammation is generally

responsive to steroids, it results in the classical pathophysiological features of asthma including airway hyperresponsiveness, remodeling, and eosinophilia. T2-low

responses are often associated with T1 or T17 inflammation. T1 inflammatory responses are regarded as important for defense against intracellular pathogens and are

driven by Th1 cells, which are activated upon stimulation by either IL-27 or IL-12. Th1 cells release IL-2, IFN-γ, or TNF-α which activates macrophages and promotes

microbial killing. Macrophages also participate in positive feedback through production of IL-12/IL-18, CXCL9, CXCL10, and CXCL11 to amplify T1 inflammation. T17

responses are induced through IL-23 stimulation of Th17 cells. Th17 cells release IL-21 and IL-17 which can either autoregulate Th17 cell differentiation or can act

upon epithelial cells or macrophages to release IL-1β, IL-8, CXCL1, and IL-6 to promote neutrophil recruitment and activation. T17 responses are associated with the

neutrophilic asthma phenotypes, inflammasome activation, and steroid-resistance in asthma. Created using BioRender.com.

ASTHMA EXACERBATIONS: THE ROLE OF
INFECTION

The role of viral infection in asthma exacerbations has been
known for decades, with early studies showing associations
between respiratory pathogens and asthma attacks (35), with

experimental rhinovirus (RV) inoculation of volunteers inducing
airway hyperresponsiveness providing evidence for viral
infection contributing to exacerbations (36, 37). A systematic
review by Papadopoulos et al., found 9 viruses associated with
exacerbations of asthma, with virus prevalence differing between
adults, children (6–17 years old) and infants (<6 years old) (38).
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FIGURE 2 | Overview of the impact of infection in early life asthma development, on chronic inflammation in established asthma and during asthma exacerbations. The

development and stability of the microbiome in early life is associated with allergen exposure, mode of delivery, feeding method, and antibiotic use. The composition of

the microbiome is associated with the number of RTIs during infancy, which is subsequently associated with increased risk of asthma development in later life.

Microbial dysbiosis resulting in microbiome profiles enriched in Proteobacteria particularly is associated with development of asthma and aberrant immune responses

in later life. During established asthma, chronic colonization of the airway by Proteobacteria is associated with modulation of airway inflammation. NTHi persistent

airway colonization causes inflammatory responses switching to T17, neutrophilic inflammation, increased inflammasome activation, which is linked to increased

steroid-resistance. As a possible consequence of chronic bacterial colonization, baseline immunity in asthma is altered, including decreased antiviral immunity (IFN

responses) and macrophage function (phagocytic ability). Viral infection is established due to delayed antiviral responses, which causes increased asthma symptoms,

resulting in a virally driven exacerbation. Different viruses cause different disease pathology (e.g., increased cellular cytotoxicity following IAV infection compared to RV)

and induction of T2-low (IAV) or T2-high (RV) responses. Bacterial infection also causes exacerbations and are likely contributors to exacerbation symptoms following

viral infection, as bacterial outgrowth occurs due to impaired phagocytosis and macrophage immune response sensitization induced by viral infection. Again, different

bacteria induce different responses, with Mcat reported to induce a mixed T1/2/17 response, whereas NTHi drives a T1/T17 pro-inflammatory response. Co-infection

can augment inflammation and asthma symptoms, which may impact on treatment failure/success during exacerbation. Created using BioRender.com.

RV is the most common virus detected during an exacerbation in
both children (55%) and adults (29%) (38), with detection of RV
up to 5 days prior, being found to be significantly associated with
the development of an exacerbation (39). However, the exact
causative role of viral infection in asthma exacerbations remains
unclear, with other studies demonstrating no changes in asthma
symptoms following viral challenge (40, 41).

Furthermore, the development of culture-independent
methods has advanced our ability to detect respiratory pathogens
that are difficult to culture, resulting in an expansion of
our knowledge of the pathogens present in the airways and
associated with exacerbations. For example, the presence
of RV-C was likely previously overlooked due to difficulties
in growing and culturing RV-C in vitro (42), but is now
suggested to be the RV strain associated with more severe
illness (43). However, the majority of patients presenting with
asthma exacerbations are not screened using multiplex PCR
viral detection systems meaning that the true association
of different viral pathogens with asthma exacerbations is

difficult to interpret. Numerous bacterial pathogens, other
than the original atypical bacterial pathogens Mycoplasma
pneumoniae and Chlamydia pneumoniae (44), are now
implicated in asthma, including Haemophilus influenzae,
Moraxella catarrhalis (Mcat), Streptococcus pneumoniae,
Haemophilus parainfluenzae, Klebsiella pneumonia, and
Bordetella pertussis (45–47). Studies have consistently
identified enrichment of Proteobacteria in asthma (48) and
have shown H. influenzae and Mcat to be associated with
clinical outcomes. H. influenzae is associated with poor
asthma control (49), steroid-resistance (45, 50), neutrophilic
inflammation (45, 51, 52), and increased disease severity
(16, 49). In contrast, Mcat is associated with the induction of
mixed inflammatory phenotypes (45, 51, 53), loss of asthma
control in children (54), and increased number of exacerbations
in children (55). As such, this review will mainly focus on
these two clinically important Proteobacteria, as well as three
viruses of interest: RV, influenza, and respiratory syncytial
virus (RSV).
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FIGURE 3 | Factors contributing to infection-induced exacerbations. The role of infection in exacerbations are likely to be multifactorial, with several host, pathogen,

and environmental factors impacting on the contribution of infection to an exacerbation. Each factor may be multi-directional and directly or indirectly impact on

another factor, highlighting the complex mechanisms involved in exacerbations. Created using BioRender.com.

Mechanisms Contributing to
Infection-Induced Asthma Exacerbations
Despite epidemiological studies demonstrating associations
between infection and asthma exacerbations, the exact
mechanisms by which these different pathogenic triggers
drive exacerbations remain unclear. As detection of pathogens
during exacerbation do not prove causation, it is important to
consider how other factors may contribute to exacerbations
(Figure 3). The multifactorial nature of asthma is such that
the underlying atopic status, timing of allergen exposure or
asthma severity may influence the host response to infection and
account for differences observed in experimental challenge or
observational studies. For example, influenza infection causes
increased epithelial cell lysis compared to RV infection (21), but
the presence of an atopic environment was shown to increase
RV cytotoxicity (56) and be protective against influenza A
infection (57, 58). The timing of allergen exposure and viral
challenge also appears to influence outcomes. Sensitization
and exposure to high allergen levels followed by viral exposure
increases the risk of hospital admission (59), whereas individuals
challenged with allergen after RV infection demonstrated higher
levels of allergic responses compared to non-allergic individuals
challenged with RV (60). As such, differences in clinical or
experimental study outcomes may be due to a number of host
or pathogen factors including genetics, allergen sensitization,
asthma endotype, comorbidities, age, experimental timing and

dosing, seasonality, and viral strain. Nonetheless, a study using
omalizumab, an anti-IgE monoclonal antibody, was found to
reduce exacerbations even during seasonal peaks (61), providing
evidence for allergen-viral interactions in exacerbations.

Different respiratory pathogens, even different strains of the
same pathogen, induce distinct responses (62–64). However,
the underlying inflammatory environment and host immune
responses may further influence infection outcomes (Figure 4).
Investigations building on experimental challenge studies have
identified a number of potential host impairments which
may contribute to infection-induced exacerbations. These
include ciliary dysfunction, ciliostasis, mucus hypersecretion
(65), goblet cell hyperplasia (66–70), altered and dysregulated
baseline inflammatory gene expression (71), impaired antiviral
responses (72), delayed interferon responses (73), decreased
levels of the innate immune surfactant protein (SP)-D (74),
altered macrophage phenotype (75), and decreased macrophage
phagocytosis (76, 77). The exact mechanisms of how each
individual pathogen contributes to an asthma exacerbation is
multifactorial and is likely dependent on pathogen strain/subtype
and a myriad of host factors. These factors become even
more complicated when we consider the potential of bacteria-
virus interactions with the host and how these may influence
the development of exacerbations. We will next consider how
bacteria-virus crosstalk during co-infection may precipitate
asthma exacerbations.
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FIGURE 4 | Summary of the diverse potential mechanisms contributing to and influencing infection-induced exacerbations. (A) The role of bacteria in exacerbations

are not well-known but inflammatory profiles associated with exacerbations appear to be pathogen dependent. (i) NTHi infection results in upregulation of

pro-inflammatory mediators and is associated with persistent infection, neutrophilic inflammation and steroid-resistance. Chronic NTHi airway colonization may occur

as a result of macrophage impairment in phagocytosis. (ii) On the other hand, exacerbations with Mcat are associated with acquisition of a new Mcat strain and is

associated with both neutrophilic and eosinophilic inflammation. (B) Viral induced exacerbations can induce the hallmarks of asthma exacerbations through

upregulation of T2 responses. (iii) Epithelial cells and macrophages contribute to IL-33, IL-25, and TSLP release, resulting in ILC2 or Th2 release of IL-4, IL-5, and

IL-13 to upregulate eosinophils and B cells, which produce IgE and subsequently activate mast cells, all of which induce airway hyperresponsiveness, remodeling, and

mucus hypersecretion. (iv) Conversely, some viruses have been shown to induce IL-8, CXCL5, and CXCL1 release, resulting in neutrophilic inflammation and epithelial

damage via neutrophil production of NETs. (v) Influenza infection can impact on macrophage function or result in macrophage depletion, which along with mucus

plugging, and may render the airway susceptible to persistent bacterial infection, and may further act to exacerbate airway inflammation. Underlying host factors such

as (vi) impaired host antiviral immunity may result in an altered baseline immune profile that contributes to a dysregulated host response, whereas (vii) allergen

sensitization or exposure may synergistically augment inflammation and increase cell lysis and damage during viral infection. Created using BioRender.com.

Double Trouble? The Role of Co-infections
in Asthma Exacerbations
Bacterial and viral airway co-infections in chronic respiratory
disease are an important clinical consideration due to individuals
suffering from more severe illness, increased exacerbation risk
and increased hospital readmissions (34, 78, 79).H. influenzae in
particular has been found to be co-detected with the three main
etiological viral agents of asthma exacerbations, influenza, RV,
and RSV, resulting in increased disease severity and likelihood
of viral infection when H. influenzae is present (46, 55, 79–83).
Notably, associations betweenH. influenzae and RV in the airway
are not limited to asthma, with longitudinal studies in COPD
demonstrating the presence of both NTHi and RV associating

with decreased lung function, increased exacerbation risk and
increased airway inflammation (84, 85).

In contrast, Kloepfer et al. analyzed the impact of RV-
bacteria co-infection in children and found that H. influenzae
did not associate with increased respiratory symptoms. Instead,
carriage of Mcat was more significantly associated with increased
symptoms and asthma exacerbations, with no associations
between pathogen and atopic status (78). This association
between Mcat and RV in asthmatic children may be due to
similarities in the timing of RV and Mcat circulation, as well
as age-dependent host factors. As the seasonal pattern of Mcat
coincides with RV, it is possible that RV-Mcat or RV-host
interactions may promote Mcat pathogenesis in children.
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Modulation of Host Cell Surfaces
Several studies have attempted to elucidate the mechanisms
underlying bacteria-virus crosstalk during co-infection using
various combinations of model systems, respiratory pathogens,
and infection protocols. Modulation of host cellular surfaces
by pathogens may increase the ability of other pathogens to
adhere to airway cells and establish infection (86). In vitro studies
have shown that the main cellular receptor for RV, ICAM-1, is
upregulated following infection of epithelial cells and monocytes
by NTHi (87) and Mcat (88) and is also utilized by NTHi for
adherence and invasion (89). Increased RV infection following
pre-incubation of epithelial cells with NTHi, was associated with
NTHi-mediated upregulation of ICAM-1 (90).

Similarly, both IAV and NTHi exploit the presence of sialic
acids present on host cells to facilitate attachment and entry
into host cells (91–94). IAV strains preferentially bind to α2,6-
linked sialic acid residues (91), whilst NTHi can bind to α2,6-
or α2,3-linked sialic acid residues depending on the differential
expression of NTHi outer membrane proteins HMW1/2 or Hia
(92–96). An intriguing concept is that the use of sialic acid by
both NTHi and IAV to establish infection could in fact predispose
the airway to infection by other respiratory tract pathogens
such as S. pneumoniae, which can co-infect the airway with
NTHi (97). Work using in vitro and in vivo infection models
demonstrated that desialylation of epithelial cells following IAV
infection resulted in increased S. pneumoniae adhesion to host
cells (98).

Modulation of Host Immune Responses
As well as influencing pathogen adherence to the respiratory
tract, co-infection also modulates host responses. Viral infection
can result in a phenomenon termed immune paralysis,
characterized by immunological defects such as decreased
macrophage phagocytosis (99). Murine alveolar macrophages
(AM) display reduced phagocytosis in response to secondary
bacterial challenge a week after initial influenza virus challenge,
resulting in higher bacterial burden (100). Another study
reported sustained desensitization of AM lasting for several
months following influenza infection, resulting in reduced
chemokine production and NF-κB activation, leading to
reduced airway immune cell recruitment during secondary
bacterial challenge (101). Furthermore, influenza infection of
mice reduced the number of AM, increasing susceptibility to
secondary S. pneumoniae infection (102). These impacts are not
limited to influenza: RV infection of human AM also resulted in
impaired pro-inflammatory cytokine release and modulation of
phagocytosis capacity during subsequent AM challenge with LPS
or E. coli bioparticles (103).

In contrast, studies have demonstrated augmented pro-
inflammatory responses during co-infection, whichmay translate
to the enhanced inflammation, increased illness severity and
hospital admissions observed during asthma exacerbations
(34, 78). Co-infection of epithelial cells with RV and NTHi
increased release of neutrophil chemoattractants, CCL20 and
CXCL8/IL-8, compared to infection with either pathogen alone
(104). Frick et al. found that co-infection with NTHi and RV
resulted in increased neutrophil adherence in vitro and leukocyte

recruitment in an airway infection murine model (87). Similarly,
neutrophil infiltration was observed in a NTHi-IAV murine co-
infection model, which also demonstrated increased levels of
pro-inflammatory cytokines (105). Conversely, a recent study
utilizing an allergic airways disease murine model reported
that the microbiome structure was influenced by the allergic
inflammatory environment, which in turn reduced the impact
of influenza–S. pneumoniae co-infection (106). Consideration
of disease setting and other potential underlying host factors is
important; not only does the microbiome appear to influence
responses to infection, but murine models of allergic airways
disease have shown the presence of an atopic environment also
influences infection outcomes (58).

Does the Timing of the Immune Response During

Co-infection Influence Outcomes?
Although bacteria-virus interactions have historically been
investigated in the context of secondary bacterial infections
succeeding viral infection, our increasing knowledge of airway
microbiota presence requires careful consideration of host-
pathogen dynamics. Invasion and persistence within epithelial
and immune cells enhances survival of both NTHi and Mcat
(107–115), with airway persistence varying from days to years
(85, 116–119). This chronic airway presence may modulate host
immune responses and influence the progression of a subsequent
viral infection. A number of in vitro studies have reported
modulation of anti-viral responses by bacteria. Heinrich et al.
found that, in vitro, Mcat-mediated TLR3 downregulation led
to decreased secretion of interferons such as IFN-β and IFN-
λ, resulting in increased susceptibility of epithelial cells to a
subsequent RV infection (120). In contrast, NTHi infection
upregulated TLR3 receptor expression in airway epithelial cells
prior to RV infection. However, as NTHi also upregulated ICAM-
1 expression, levels of RV attachment to cells increased, resulting
in synergistic IL-8 release (121). In a separate study, NTHi
infection also enhanced epithelial cell TLR7 expression and type
I IFN responses. However, this study did not assess whether
this modulation of anti-viral immunity influenced a subsequent
viral response (122). Importantly, TLR7 expression by AMs
from severe asthma is reduced (123). As such, NTHi-mediated
upregulation of type I IFN responses via TLR7 may not be
recapitulated in the severe asthmatic airway.

Unraveling host-pathogen interactions outside of the lung
environment is complex and challenging, highlighting the
importance of translating in vitro and murine in vivo studies
into human disease settings. Human challenge models may
help us better reconcile observations and associations from
clinical cohort studies and experimental models. For example, a
recent eloquent study by Habibi et al., identified an association
between a neutrophil transcriptomic signature with increased
susceptibility for RSV symptomatic infection using experimental
RSV nasal inoculation of healthy volunteers (124). Thus,
the presence of bacteria such as NTHi, which is associated
with a neutrophilic phenotype, may predispose individuals to
symptomatic viral infection, which may consequently result in
development of an asthma exacerbation. Indeed, a study by De
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Steenhuijsen Piters et al., found that children with H. influenzae-
dominant microbiomes were more likely to be hospitalized with
RSV-induced bronchiolitis and was associated with neutrophil
and macrophage transcriptomic signatures (125).

However, asthma is heterogeneous and caution must be
used when interpreting results from single clinical studies
in humans. Various differences between study cohorts may
impact on conclusions, including factors such as age, underlying
inflammatory phenotype, current treatment, and microbiome
structure. For example, varying clinical cut offs for eosinophilic
and neutrophilic inflammation (126, 127), as well as the
use of molecular markers of T2 inflammation (CLCA1,
SERPINB2, and POSTN) (53) can be used to stratify patients.
The diverse nature of asthma patients may account for the
conflicting evidence of bacterial abundance and diversity in
asthma (128–131), with some studies also indicating that
microbiome diversity and abundance differs with T2-low/high or
eosinophilic/neutrophilic inflammatory phenotypes (49, 51, 53),
and steroid-responsiveness (128, 131). As such, it is important
to consider how the aforementioned factors may collectively
impact on study outcomes when considering the role of bacteria
in asthma.

Overall, the impact of bacterial pre-exposure on host
immunity and subsequent viral infection appear conflicting; the
differences in the results of these studies may be due to different
infection models, pathogen strains/combinations and infection
protocols used. It is important to determine whether bacterial
presence in the airway is a protective, causative, or contributing
agent for exacerbations, or a biomarker for exacerbation risk,
depending on underlying host factors. However, whilst the role
of RTI in causing asthma exacerbations has been known for at
least 30 years, there is now emerging evidence that RTI may also
contribute to asthma development. This emerging evidence is the
focus of the next section.

EARLY LIFE: THE ROLE OF INFECTION

Asthma is regarded as a hereditary trait and the use of genome-
wide linkage studies of twins and families have resulted in
estimates of heritability that range from 35 to 70% (132–
134). Numerous candidate genes have been suggested to
be associated with asthma, with Genome Wide Association
Studies (GWAS) identifying asthma susceptibility loci (135, 136).
However, independent GWAS do not completely overlap in their
findings, likely due to differences in environmental exposures of
individuals within study cohorts (137). Environmental factors
play a considerable role in asthma development (Figure 2),
with Thomsen et al. identifying that environmental factors
explained a higher proportion of the variation in age of onset
of asthma (66%) compared to genetic factors alone (34%)
(133). Earlier GWAS and candidate gene association studies did
not include the possibility of environmental factors interacting
with host genetics, which may explain the lack of overlap
between studies (137). Building on candidate gene associations
and GWAS, gene-environment interaction studies may unveil
novel genes that are only significant for asthma susceptibility

when combined with the appropriate environmental exposure
(138). Such environmental factors include smoking, pollution,
mold, farming-related exposures, dust, and respiratory tract
infections (134). This section will discuss the potential role
of respiratory tract infections in predisposing individuals to
asthma development.

Gene-Bacteria-Virus Interactions
Influencing Host Immunity in Early Life
Given that asthma is characterized by dysregulated and
exacerbated immune responses, as a result of genetic-epigenetic-
environmental interactions, assessing the influence of infection
on host immunity has been an important area of investigation.
It has been suggested that viral infection in combination
with genetic predisposition increases the risk for childhood
asthma development. A GWAS identified the first known
asthma susceptibility locus, 17q21 (139), which is associated
with childhood respiratory infection (140). Notably, investigation
of this locus in two cohorts—the Childhood Origins of
Asthma (COAST) birth cohort and the Copenhagen Prospective
Study on Asthma in Childhood (COPSAC) birth cohort—
found that responses to RV, but not RSV, were associated
with 17q21; RV-stimulated PBMCs expressed higher levels of
two 17q21 genes, GSDMB and ORMDL3 (141). Subsequent
in vitro investigations silencing ORMDL3 reported attenuated
pro-inflammatory responses and reduced ICAM1 expression,
providing a potential mechanistic basis for ORMDL3 and RV
susceptibility in asthma (142). Given that ICAM-1 also serves
as a receptor for NTHi and is upregulated in response to NTHi
presence (90), it is possible a complex interplay occurs between
genetic susceptibility, chronic NTHi airway colonization and RV
infection. Furthermore, recent work has identified a potential
prominent role of RV-C in childhood asthma development.
The RV-C entry receptor is CDHR3, the product of CDHR3,
which was identified by Bønnelykke et al. in a GWAS to
be an asthma susceptibility gene (143). The CDHR3 gene is
associated with increased RV-C detection and risk of respiratory
tract illness (144), further highlighting the importance of gene-
environment interactions wherein viral infection is a critical
environmental exposure.

Genetic alterations may also predispose individuals to
recurrent bacterial infections. The Toll Like Receptor (TLR)4
polymorphism, Asp299Gly, is associated with increased gram
negative bacterial infections (145), lower cell surface TLR4
expression, and impaired TLR4-mediated lipopolysaccharide
(LPS) signaling (146). Individuals carrying the Asp299Gly TLR4
polymorphism that were colonized with Mcat at 2 months or
H. influenzae at 13 months of age were at an increased risk
of asthma development (147). Stimulation of PBMCs ex vivo
found that this particular polymorphism results in decreased
LPS-induced IL-10 and IL-12 responses and was independently
associated with atopic asthma (148). However, an earlier study
did not find any associations between TLR4 polymorphisms
and asthma (149), likely due to potential differences in cohort-
specific gene-environment interactions. Indeed, Terasjarvi et al.
did not find an association between TLR4 polymorphism and
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asthma risk alone, but instead between TLR4 polymorphism, H.
influenzae colonization, and asthma risk (147), highlighting the
need to consider multiple host-environment factors to unravel
the complex and multifaceted nature of asthma.

Viral Infection
Early studies initially identified viral infection to be significantly
predictive of asthma development, resulting in a focus on early
life viral infections and asthma development (150–152). In
infancy, wheezing is one the earlier predictors of asthma, heavily
implicating viruses such as RV and RSV. Early work reported RV-
associated wheezing during infancy was the strongest predictor
for wheezing in the third year of life (151) and more severe
RV infections resulting in hospitalizations during infancy were
associated with asthma development (150). Retrospective studies
have identified children with early life RSV infection, particularly
those requiring hospitalization, to be more at risk of asthma
development (153). Children who were hospitalized as a result of
severe RSV bronchiolitis were shown to be at risk of developing
asthma by age 18 (154). Indeed, in this Swedish study, 30% of
children who developed severe bronchiolitis developed reactive
airways disease by age 7 compared to just 3% of controls.
Studies in animal models have shown that RSV infection can
upregulate IL-4, IL-5, IL-13, and the T2 chemokine CCL17 (155).
This increase in T2 cytokines was postulated by the authors to
be a result of NK cell depletion and subsequent reduction of
IFNγ expression by RSV. This RSV-induced switching to a T2-
phenotype may explain some of this susceptibility to asthma
development. Furthermore, in vitro work has shown decreased
RSV load was associated with the epigenetic regulation of RIG-
I following IFNγ priming (156). Thus, the timely development
and maturation of immune responses may depend on early life
pathogen exposure.

Synergistic interactions between virus and allergen exposure
may also contribute to asthma development. RV or RSV induced
illness in infancy is associated with subsequent wheezing, but
was found to be most significantly associated in children who
were sensitized when <2 years old (157). The importance
of age and timing of allergen sensitization was confirmed
in a separate cohort, with 65% of children sensitized by 1
year of age identified to have asthma by 13 years of age,
compared to only 17% of children sensitized by 5 years of
age (158). A synergistic effect of allergen exposure and viral
infection was proposed following inoculation of volunteers
with RV and allergen challenge, which augmented allergic
airway responses compared with RV inoculation alone (60).
Subsequent studies confirmed this observation, with increased
risk of hospitalization associated with allergen sensitization and
viral infection during exacerbations of childhood asthma (59,
159). The mechanisms underlying how virus-allergen exposure
synergistically contributes to asthma development are not
understood, however a murine model of RSV infection and
allergen sensitization found that recurrent RSV infections of
sensitized mice resulted in T2 cytokine production, increased
serum IgE and airway hyperresponsiveness (160).

Although viral infections are thought to be transient and
provoke an acute inflammatory response, associations between

viral infection and asthma development have prompted
investigations into how viruses cause chronic inflammation.
Studies have identified that, following the initial viral insult, trace
amounts of virus are detectable in the lung and are associated
with increased eosinophilic inflammation, airflow obstruction
and lower FEV1 (161). A murine model of chronic respiratory
disease demonstrated this persistent inflammation and airway
hyperresponsiveness was mediated by lung macrophages
activating invariant natural killer T (iNKT) cells to release
IL-13, a finding that, importantly, was also observed in a
human cohort (162). Thus, viral infection in early life may
initiate immunological changes that persist and precipitate
asthma development.

As most children are exposed to viruses during early life, but
not all children go on to develop asthma, it is likely that other
co-factors are involved. Intriguingly, analysis from the COPSAC
cohort found that no specific infectious trigger, but rather,
the number of respiratory episodes predisposes individuals to
asthma in later life (163). Studies have shown that in fact,
enrichment of certain bacteria in the respiratory tract during
early life is associated with recurrent RTIs and increased risk of
asthma development.

The Role of Microbial Dysbiosis in Asthma
Development
Our understanding of the role of bacteria in the airway is only
recently being advanced due to the incorrect dogma of lung
sterility, which has prevailed since the late nineteenth century.
As the study of the lung microbiome is a relatively young field,
it faces technical and methodological challenges, particularly
given the low microbial biomass of the lung environment
(164). Despite this, common lung microbiome profiles have
been successfully identified, allowing for comparisons of the
lung microbiome between health and disease (48, 164, 165).
The dynamics of early life microbiome development are
suggested to influence the maturation of host immune responses
and consequently respiratory health, with childbirth delivery
mode and breastfeeding associated with microbiome structure,
development, and temporal stability (166–169).

One theory that attempts to explain the increased incidence of
asthma during the twentieth century is the “hygiene hypothesis”
(170, 171). This theory, backed by a body of evidence, postulates
that modern day cleanliness and sterile environments have
promoted the development of allergic diseases, such as asthma, by
reducing the exposure of individuals to non-infectious organisms
during childhood (172–176). Accumulating evidence indicates
that there is a timely window of opportunity during early life
wherein disruptions in microbial colonization can increase the
risk of asthma development in later life. Indeed, Bisgaard et al.
reported that children who were colonized within 1 month of
life by potentially pathogenic bacteria, including H. influenzae
and Mcat were more likely to develop asthma by the age of
5 (165). Building on this seminal work, further analysis found
associations between microbiome stability and respiratory health
in the first 2 years of life (169). More stable microbiota profiles
were dominated by Moraxella and were associated with a lower
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number of consecutive respiratory infections (169). In contrast,
other studies have foundMoraxella-dominant microbiomes were
associated with younger age of first upper RTI (177), increased
number of RTIs (178), and increased severity of illness (177).
The timing of Moraxella colonization appears to be crucial.
In line with the original findings of Bosch et al., Moraxella
becomes the dominant microbiome community member in
healthy children much later (2–3 months) (178). Premature
microbiome maturation involving an early transition to a
Moraxella-dominant microbiome profile is associated with an
increased number of RTIs (178).

Conversely, Haemophilus-dominated microbiome profiles are
less temporally stable (169, 177), and emerge later thanMoraxella
(178). Characterization of the nasopharyngeal microbiome in the
first 5 years of life found that the presence of Haemophilus was
associated with increased respiratory tract illness symptoms, both
synergistically and independently of viral presence (RSV and
RV), indicating a bacteria-dependent contribution to respiratory
illness (179). Furthermore, H. influenzae colonization was more
significant in an “infection and allergy prone” subgroup of
children in a retrospective analysis investigating the relationship
between bacterial colonization and respiratory illness in children
between 6 months and 5 years of age (180). This study also found
a significant association between H. influenzae and influenza
infection, which was not observed for other respiratory bacteria.
It is not clear whether Haemophilus associations with early life
asthma development is a consequence of altered microbiome
maturation and immune training prior to the establishment of
a Haemophilus-dominant microbiome. Overall, the mechanistic
influence of colonizing bacteria on host responses prior to
and during viral infection is not well-understood, highlighting
the need to also characterize the functional relevance of early
life bacterial colonization on immune tone, rather than just
drawing correlations between bacterial presence with respiratory
health outcomes.

Nonetheless, evidence indicates that airway bacteria modulate
host immune responses. Exaggerated responses were observed
in PBMC isolated from children prior to asthma development
in later life, including increased IL-5, IL-13, IL-17, and IL-10
when exposed to H. influenzae and Mcat (181). Building on
these observations, murine models of airway disease demonstrate
a potential functional consequence of airway colonization by
potentially pathogenic bacteria. Mice colonized with NTHi
after only 3 days of life exhibited an exacerbated response
when later challenged with an allergen, implicating NTHi in
aberrant host immune development (182). Similarly, Mcat and
allergen exposure synergistically resulted in an IL-17-mediated
exacerbated immune response in mice (183). Development of
aberrant host immune responses following early life colonization
by bacteria may influence host responses to infections and
contribute to asthma development. For example, mucosal-
associated invariant T (MAIT) cells are important antibacterial
innate-like immune cells which depend on microbiota-derived
signals for timely development and maturation (184, 185).
Thus, as a healthy microbiome appears to be crucial for MAIT
cell-mediated resistance to infection, dysbiosis of the airway
microbiome by pathogens such as NTHi and Mcat in early life

may influence MAIT cell development. Indeed, MAIT cells are
activated upon NTHi infection of macrophages in vitro (186) and
are important for host resistance to other respiratory pathogens
(187, 188). Thus, dysregulation of MAIT cell function may
contribute to aberrant immune responses in asthma.

As evidence indicates that these bacteria also chronically
colonize the airway of individuals with established asthma,
we will next explore how these bacteria can contribute to
the development and persistence of asthma inflammatory
phenotypes and modulate airway immune responses.

ESTABLISHED ASTHMA: THE ROLE OF
COLONIZING BACTERIA IN SHAPING
HOST IMMUNE RESPONSES AND
INFLAMMATORY PHENOTYPES

Host-Pathogen Crosstalk During
Persistent Airway Colonization
Although the importance of lung microbiome composition
differences between health and disease is becoming apparent,
the complexities of host-microbiome interactions are only
now beginning to be appreciated (189). Increasing evidence
indicates that the gut microbiome modulates the host mucosal
defense response. However, less is known about the role of
the lung microbiome in regulating the host immune response
(190). Human lung microbiome studies have mainly consisted
of using metagenomics on large cohorts to identify the
microbiome composition. Although metagenomics is a powerful
tool, measuring the relative abundance of bacterial species
does not necessarily correlate with the activity of the microbes
present (191).

As such, studies are now beginning to correlate microbial
activity with host gene expression. Using a combination of
shotgun RNA sequencing for microbial identification and
host differential gene expression analysis, Castro-Nallar et al.,
identified a specific host gene profile associated with the
presence of Proteobacteria (192). Expanding on this work,
Perez-Losada et al., used dual transcriptomic profiling to assess
differences in the host and microbial functional properties of
asthmatic children and healthy controls (193). They found
differences in bacterial metabolism-associated genes between the
metatranscriptomes of asthmatic and non-asthmatic individuals,
with host IL1A expression associated with bacterial adhesion
(193). Further metabolic differences in the asthmatic bronchial
microbiome was observed by Durack et al., who found
enrichment of bacterial short chain fatty acid (SCFA) and amino
acid metabolism in atopic asthmatics (53). Interestingly, this
study also found functional differences in the microbiome were
associated with ICS responsiveness, suggesting members of the
microbiome may influence treatment efficacy. Unfortunately,
due to the experimental limitation of low bacterial biomass in
the lung, the sample size was too small to perform meaningful
comparisons between T2 low/high individuals. Nonetheless, such
studies demonstrate the importance of using metatranscriptomic
approaches to determine the functional impact of these altered
microbiome profiles in the development and progression of
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asthma and modulation of host immune responses during stable
periods of disease.

NTHi and the Neutrophil Inflammatory
Phenotype
Numerous studies have identified associations between
Proteobacteria and some of the main clinical features of
asthma including increased bronchial hyperresponsiveness
(129) and airway inflammation (52, 129), such as a mixed
T1/T2/T17 inflammatory response (16, 194). Expansion of
Proteobacteria appears to be inversely correlated with eosinophil
levels but is significantly associated with increased neutrophil
levels (16, 45). In particular, NTHi is detectable during stable
periods of disease and is associated with T2-low inflammation,
increased neutrophils and steroid-resistance [Figure 4; (45, 49)].
Development of steroid-resistance in asthma has been linked
to increased NLRP3, caspase-1, and IL-1β responses to NTHi
infection (50, 195). Experimental models trying to reconcile
the observations of NTHi and neutrophilic inflammation in
cohort studies have shown that suppression of IL-1β-mediated
responses prevented the development of the steroid-resistant
features of asthma (50). However, it remains unclear whether
NTHi contributes to the progression of severe, neutrophilic,
steroid-resistant asthma, or if NTHi takes advantage of the
chronically inflamed and damaged airway that is characteristic
of severe asthma to colonize the lung.

To try and untangle the complex mechanisms underlying
this question, murine studies have investigated the development
of neutrophilic disease following NTHi colonization. NTHi
infection of ovalbumin (OVA)-sensitized mice resulted in an
influx of IL-17+ macrophages, neutrophils, and lymphocytes,
with eosinophilic inflammation reduced (196). Despite an influx
of immune cells, NTHi infection was sustained in mice with
allergic airways disease compared to non-allergic mice (197). The
combination of allergic airways disease and infection contributed
to the emergence of a steroid-resistant neutrophilic phenotype,
suggesting the synergy between prior host allergic sensitization
and subsequent NTHi infection promotes disease development.
However, the duration of these aforementioned murine studies
may be too short to ascertain whether the neutrophilic phenotype
persists or if the neutrophilic inflammation was a transient event
with inflammatory resolution occurring after the chosen study
endpoint. Yang et al., extended the experimental endpoint to
2 months using OVA-sensitized mice and repeated low dose
infections with NTHi to model NTHi chronic colonization of
the airway (198). As a consequence, by the 2-month (56 day)
endpoint, the inflammatory profile switched from T2-associated
eosinophilic inflammation to T17-associated neutrophilic
inflammation, accompanied by Treg immunosuppression and
impaired macrophage phagocytosis. Together, these murine
studies suggest that the combination of allergic airways disease
and NTHi infection drives the neutrophilic inflammation, with
this inflammatory phenotype still present 2 months after the
first NTHi exposure. Thus, minimizing the burden of chronic
NTHi presence in asthma could reduce the development of

steroid-resistance and improve outcomes for patients requiring
steroids to manage their symptoms.

CHANGING THE TRAJECTORY:
STRATEGIES TO REDUCE THE BURDEN
OF PATHOGENS IN THE AIRWAY

As patients with T2-low asthma tend to respond poorly to current
therapies, identifying which components of T2-low inflammation
to therapeutically target is of utmost importance. However,
current therapies targeting these alternate pathways have not
shown to be effective. The IL-17 family of cytokines is implicated
in more severe and neutrophilic forms of asthma, but a clinical
trial treating patients with brodalumab, a monoclonal antibody
targeting IL-17RA, did not show any clinical benefits for patients
(199). However, a subpopulation within the trial cohort did show
a clinically meaningful change in bronchodilator reversibility.
Similarly, as a number of clinical and experimental studies have
implicated the inflammasome and IL-1 mediated responses in
neutrophilic asthma and steroid-resistance (50, 195, 200, 201),
the notion of therapeutically targeting IL-1β has progressed to
clinical trials (202). Although use of an IL-1 receptor agonist
reduced IL-1β, IL-6, and IL-8 sputum levels in healthy volunteers
challenged with LPS (203), trial outcomes in chronic respiratory
disease have not yet been conclusive.

Due to the multifaceted nature of asthma, it is likely that
treatment will be more successful using a personalized medicine
approach. To achieve this, we must first understand whether the
measured inflammation is a cause of disease or is a consequence
of other underlying pathology not yet understood. This is perhaps
exemplified by trials targeting the neutrophil chemokine receptor
CXCR2. Although CXCR2 antagonists reduced neutrophil levels
in sputum and blood, they did not reduce exacerbations,
improve lung function or asthma score. Furthermore, neutrophil
levels were reversible and was reversible after treatment ceased
(204, 205). Identifying the underlying mechanisms in asthma
pathogenesis will likely uncover treatable traits to develop novel
therapeutics or reveal stratification strategies using phenotypic
traits or biomarkers to more effectively treat patients with
currently available therapies using a more targeted approach.

As accumulating evidence links respiratory tract infections
and asthma pathogenesis, reducing the burden and carriage of
the implicated pathogens has been suggested as an alternate
strategy. Here we discuss some potential alternate and novel
therapeutic strategies.

Vaccination
The annual influenza vaccine is available for individuals with
asthma; however, no vaccine is currently available for RSV,
RV, Mcat, or NTHi. Promisingly, vaccine candidates for these
pathogens using a variety of vaccine technologies are at various
stages of development (206–209), but further clinical trials
are needed to assess their efficacy in reducing exacerbations
in chronic respiratory disease. Recently, mRNA vaccines have
proposed as an alternative vaccine platform to conventional
vaccines (210). The success of the SARS-CoV-2 mRNA vaccine
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potentially signifies the beginning of a new era of vaccination
technology, which may allow for development of vaccines
against respiratory pathogens previously difficult to vaccinate
against (211).

Other alternative vaccinology methods such as Trained
Immunity-based Vaccines (TIbV) have also been proposed.
These vaccines are composed of multiple microbial components
aimed at generating broad responses and stimulation of
trained immunity to promote immunotolerant responses to live
pathogens (212). Generating protective immune responses is also
the aim of bacterial lysate therapy. Roth et al. (213) found that
treatment with bacterial lysate components (OM-85) inhibited
RV infection of airway epithelial cells in vitro, through increased
anti-viral activity and upregulation of proteins involved in
antigen presentation. A study using a murine infectionmodel has
also shown beneficial effects of bacterial lysate treatment on RSV
and influenza infection, with inhibition of infection suggested
to occur through TLR signaling (214). Importantly, bacterial
lysate therapy was shown to reduce exacerbation frequency in
individuals with asthma (215).

Novel Antibiotics/Anti-Inflammatories
Although antibiotics are commonly used to treat respiratory
infections, antibiotic treatment is non-specific and subsequently
has global, detrimental effects on microbiome community
structure. Antibiotic use in early childhood may predispose
individuals to asthma development by increasing the abundance
of bacterial species associated with asthma development
(177, 216, 217). However, the AMAZES (Asthma and
Macrolides: The Azithromycin Efficacy and Safety) trial
identified that azithromycin treatment reduced H. influenzae
load and exacerbation risk. This trial demonstrated that long
term treatment of asthmatic individuals with the macrolide,
azithromycin, reduced exacerbations (218), and H. influenzae
load in the airway (219). This finding was consistent with
an earlier study in children with bronchiectasis treated with
azithromycin (220). However, both studies found increased
carriage of antibiotic resistance genes, a concern given the
current antimicrobial resistance crisis. As such, reducing
H. influenzae load through macrolide therapy may prevent
exacerbations and the development of steroid-resistance in
later life, but antibiotic use in early life may cause more
detrimental effects.

Macrolide antibiotics have immunomodulatory properties,
as well as antibacterial, which could improve the ability of
macrophages to respond to NTHi in the airway. Use of another
macrolide antibiotic, clarithromycin, reduced IL-17 responses
in a murine model of H. influenzae-induced severe, steroid-
insensitive, neutrophilic allergic airways disease (221). One of
the suggested immunomodulatory properties of macrolides is
promotion of macrophage phagocytosis. Treatment of healthy
primary human AM and THP-1 differentiated macrophages with
two novel non-antibiotic macrolides in vitro resulted in increased
phagocytosis of NTHi and apoptotic epithelial cells, decreased
IL-1β levels and inflammasome activation (222). However,
as macrophage phagocytosis decreases with worsening disease
severity (76), the mechanisms of impairment may differ between

disease states and phagocytosis may not be restored by macrolide
treatment. Use of ex vivo models may better recapitulate the
human lung environment when assessing treatment efficacy of
novel therapeutics (223). Nonetheless, the benefit of reducing
Haemophilus presence in the airway is clear, highlighting the
importance of discovering alternative, non-antibiotic avenues of
therapy which can enhance or restore immune cell function,
minimize airway bacterial load, and reduce inflammation.

Restoring the Balance of Host Immunity
The soluble human lung proteins SP-A and SP-D have diverse
roles against viral and bacterial pathogens, as well as modulating
the immune system and could also be exploited as exogenous
therapeutics to treat asthma exacerbations through these
mechanisms (224–227). Recombinant versions of these proteins
have been developed and could have therapeutic potential
in treating asthma exacerbations (225, 228). A recombinant
fragment of SP-D is currently been taken forward to a first-in-
human trial to prevent neonatal chronic lung disease in preterm
infants (224).

As mentioned previously, elevated levels of inflammasome
and IL-1 responses have been detected in neutrophilic asthma,
but have also been associated with NTHi (50). Associations
between NTHi and IL-1β are not limited to asthma (50, 51, 197),
with higher levels of IL-1β measured in BAL samples from
NTHi+ COPD patients compared to NTHi- COPD patients
(229), as well as increased neutrophils in the airways of COPD
patients colonized withH. influenzae (230). As such, targeting the
IL-1β pathway in chronic respiratory disease could attenuate the
chronic inflammation caused by persistent NTHi colonization.
More work is required to determine whether upregulation
of inflammasome responses and IL-1β in chronic respiratory
disease is NTHi-specific or pan-bacterial, as IL-1 pathway
interventions may only benefit a subset of patients with airway
inflammation associated with NTHi-mediated IL-1 pathway
activation. Thus, future trials could benefit from stratifying
patients based on NTHi presence, which could improve the
efficacy of IL-1 therapies that so far have shown to be ineffective
in asthma (231).

As anti-viral immunity is impaired in asthma, restoring this
immunity may reduce the risk of infection-driven exacerbations.
In particular, type I IFN responses, mediated by IFN-β has shown
to be crucial in anti-viral immunity (232–234). A randomized
controlled trial investigating the effect of inhaled IFN-β did not
meet its primary endpoint of assessing asthma symptoms, but
did find improvements in morning peak flow and enhanced
innate immunity, specifically ISG expression (235). The INEXAS
(A Study in Asthma Patients to Evaluate Efficacy, Safety, and
Tolerability of 14 Days Once Daily Inhaled Interferon Beta-1a
after the Onset of Symptoms of an Upper Respiratory Tract
Infection for the Prevention of Severe Exacerbations) trial also
found small improvements in morning peak flow following use
of inhaled IFN-β, but again, the primary endpoint was not
met and the impact of inhaled IFN-β on the rate of severe
asthma exacerbations was unable to be assessed (236). In contrast,
inhaled IFN-β therapy was found to increase the odds of
improvement in clinical status as well as time to recovery for

Frontiers in Allergy | www.frontiersin.org 12 October 2021 | Volume 2 | Article 738987

https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org
https://www.frontiersin.org/journals/allergy#articles


Ackland et al. Virus-Bacteria Crosstalk in Asthma

hospitalized COVID-19 patients (237). Importantly, studying
the dynamics of IFN responses found that timing of IFN-β
dosing is key; prophylactic IFN-β treatment reduced influenza
infection of macrophage and epithelial cells, whereas this was not
observed if cells were treated with IFN-β after influenza infection
(238). Thus, the timing of treatment initiation is crucial for
disease outcomes in those with underlying dysregulated immune
responses, which will undoubtedly guide the development of
future clinical studies and treatment guidance for individuals
suffering from viral-induced exacerbations.

Microbiome Modulation: A Feasible
Alternative Therapeutic Approach?
The accumulating number of studies demonstrating the
presence of potentially pathogenic bacteria preceding
viral infection and influencing respiratory health and
asthma development, indicate that perhaps targeting
these bacteria may be an attractive alternative therapeutic
approach. Conversely, the absence of commensal bacteria
may contribute to impaired immune development
and training (239, 240). As such, attention turns to
determining whether promoting the restoration of respiratory
tract commensal species may result in more favorable
outcomes, as has been observed for probiotics and the gut
microbiome (241).

The importance of the commensal bacteria members
of the microbiome for development of efficient immune
responses has been previously shown in murine models.
Antibiotic-treated mice displayed altered immune responses
to respiratory viral infection following depletion of commensal
bacteria (239, 240). The importance of microbiome community
structure for immune training and development in the
airway during early life is also shown in germ-free mice,
who develop an exaggerated response to allergen challenge
in the absence of microbial colonization (242). Furthermore,
specific lung bacteria were either protective or inductive
of certain asthma features following inoculation of mice,
highlighting the divergent immunostimulatory capacity of
different bacteria (243). These murine studies demonstrate
the importance of the microbiome community structure in
shaping appropriate immune responses to both allergens
and infection.

Identification of the bacteria important for immune
training and stable respiratory health is crucial if modulation
of the lung microbiome is to prove feasible. Bosch et al.
found that certain children transitioned more quickly
from a Staphylococcus-profile to a Moraxella-dominant
profile, bypassing a Corynebacterium/Dolosigranulum-
dominated profile. Prolonged presence of this latter profile
was associated with fewer RTIs and timely maturation
of the microbiome in healthy children (178). This is
in agreement with an earlier study by Biesbroek et al.,
who similarly identified Corynebacterium/Dolosigranulum
airway presence to be associated with decreased number
of parental-reported upper RTIs (169). A potential
mechanism was suggested following modeling work, which

inoculated infant mice intranasally with Corynebacterium
pseudodiphtheriticum. Activation of TLR3-mediated
antiviral immunity was detected, resulting in reduced
lung RSV viral titers and reduced susceptibility to
secondary bacterial infection (244). Importantly, non-
viable C. pseudodiphtheriticum did not induce the same
protective responses, indicating the importance of live
C. pseudodiphtheriticum colonization for modulating host
immune responses.

Human challenge models have also shown the beneficial,
protective effects of colonizing commensal bacteria; inoculation
of human volunteers with Neisseria lactamica reduced N.
meningitidis carriage (245). It is clear that the presence or absence
of certain microbial species and their functional microbial
interactions influence disease susceptibility and trajectory and
unbalance host immune responses. However, as a recent study
by Thorsen et al. implicates potential commensal Prevotella with
altered host responses and asthma development, it is important
to first ascertain the pathogenic potential of microbes when
considering therapeutically altering microbiome structure (246).
Nonetheless, unraveling the complex interplay between infection,
atopy, host immunity, and genetic factors in early life will
provide novel insights and may allow advanced identification
and stratification of individuals at risk of developing asthma,
for example if they possess certain genetic risk factors and
microbiome characteristics.

Although the role of bacteria in asthma is only now becoming
appreciated, there are even fewer studies investigating the role
of fungi and the mycobiome in health and disease (247). Recent
inclusion of fungi in airway microbiome studies has revealed
a distinct airway mycobiome which is altered in asthma (248).
A role for fungi in early life asthma development has also
been suggested by Stern et al., who found that sensitization
to certain fungal species was associated with asthma in later
life (249). A recent study has identified associations between
Moraxella presence and asthma-associated fungi (250). Given the
possibility for multiple microbiota-host and other environmental
interactions to occur, future studies need to ensure that all
potential contributing factors are accounted for in study design
and conclusions, in order to develop effective therapeutics.

SUMMARY

Accumulating evidence indicates an important role of both
bacteria and viruses in driving asthma pathogenesis. Although
viruses have long been implicated in asthma development
and exacerbations, the enrichment of certain bacteria in the
airway appears to play a more prominent role in asthma
pathogenesis than initially believed. The composition of the
microbiome in early life is crucial for immune training and
development, which is reflected by aberrant responses in later
life. Omics technologies are beginning to reveal the extent of
microbiome modulation of the host in the respiratory tract and
understand how it influences host-bacteria-virus crosstalk and
relates to disease severity and progression. Although current
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and developing therapies aim to reduce neutrophil/eosinophil
recruitment and activation in asthma, emerging evidence
indicates that the microbiome may contribute to chronic
and dysregulated airway inflammation. As such, microbiome
modulationmay instead be an attractive alternative for managing
airway inflammation and host immunity. This approach may
rebalance and retrain appropriate host immune responses to
inflammatory triggers and subsequently reduce the risk of
asthma development in those with genetic predispositions.
Furthermore, it may reduce the risk of exacerbation and
progression to more severe disease in those with asthma
already established.
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