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Abstract

The bootstrap is shown to be inconsistent in spurious regression. The failure of the
bootstrap is spectacular in that the bootstrap effectively turns a spurious regression into
a cointegrating regression. In particular, the serial correlation coeffi cient of the residuals
in the bootstrap regression does not converge to unity, so the bootstrap is not even first
order consistent. The block bootstrap serial correlation coeffi cient does converge to unity
and is therefore first order consistent, but has a slower rate of convergence and a different
limit distribution from that of the sample data serial correlation coeffi cient. The analysis
covers spurious regressions involving both deterministic trends and stochastic trends.
Methods are developed for analyzing the asymptotic behavior of bootstrap techniques
with nonstationary time series and the results reinforce longstanding warnings about
routine use of the bootstrap with dependent data.
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1. Introduction

Concerns about the potential inadequacy of asymptotic methods in applied econometric work
prompted early research at the Cowles Commission in the 1940s on the exact and approximate
finite sample properties of econometric estimators and inferential procedures, evidenced by
the work of Anderson and Rubin (1949) and several papers published in the collected volume
edited by Koopmans (1950). Research by Quenouille (1949; 1956 ) and Kendall (1954) in the

∗Thanks go to Aman Ullah, Yong Bao and earlier referees for helpful comments on the paper. The results
reported here were originally presented by the author at the York Econometrics Meeting in May, 2000 and the
Econometric Society ESAM meeting in July 2001. The paper was circulated as Cowles Foundation Discussion
Paper No. 1330 in 2001 with the title “Bootstrapping Spurious Regression”. That version of the paper was
submitted but never revised until 2021. Its methods, examples and cautionary tale may still be considered
relevant in understanding the many challenges of bootstrap inference with dependent data of uncertain degrees
of persistence. Computing and graphics were done in GAUSS.
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1950s had similar goals but focused on the use of moment expansions to elucidate estimation
bias and suggest approximate corrections. These goals became vigorously pursued in econo-
metrics following the pathbreaking work of Nagar (1959), Basmann (1961) and Bergstrom
(1962). Nagar’s paper had particular impact due to the generality of the moment expansion
approach, envisaged originally in Quenouille’s (1949, 1956) work, and his approach quickly
became known in econometrics by the eponymous description of Nagar moment expansions.1

Somewhat remarkably, such expansions maintain relevance in cases where the underlying fi-
nite sample moments may not be finite, in which case they may be interpreted as moments
of approximating distributions based on Edgeworth expansions (Phillips, 2003). Even sample
moments obtained by simulation experiments have interpretations in terms of such approxi-
mating moments with the number of replications underlying the experiments relating to the
number of terms in the approximants (Sargan, 1974, 1982; Sargan and Mikhail, 1971).

Following this foundational research, the goal of finite sample analysis was pursued with
vigor in the 1970s and early 1980s using both exact methods and asymptotic expansions
of both the distributions and the moments of econometric estimators with steadily increas-
ing degrees of generality and mathematical sophistication (Sargan, 1975, 1976, 1978, 1980;
Phillips, 1977a, 1977b, 1980a, 1980b, 1983a, 1984, 1985, 1986a). Overviews of various aspects
of this large literature are available in Phillips (1982, 1983b) and Ullah (2004). Subsequently
and concomitant with the enormous growth in computing power in the last few decades,
pure simulation methods and resampling methods like the bootstrap became popular tools
for inference in practical econometric work. Yet these methods in their turn are dependent
for their validity on first and higher order asymptotic theory.

The bootstrap, in particular, has now become a popular practical tool of inference in
econometric work. One aspect of its appeal is its wide applicability, enabling its use in many
different econometric models and allowing for both cross section and time dependent data. In
time series situations it is known to be important for the bootstrap to capture accurately the
temporal dependence properties of the original time series if it is to be a useful aid to infer-
ence. When temporal dependence and persistence characteristics of the data are unknown, as
is almost universally the case in practical work, this challenge has proved to be especially dif-
ficult because by its nature the bootstrap involves independent resampling methods. Several
approaches have been developed to address temporal dependence in bootstrap implementa-
tions: the sieve bootstrap (Kreiss, 1992, and Buhlmann, 1997, 1998, among others), where
a sequence of finite dimensional parametric models (like autoregressions) is used to remove
temporal dependence; block bootstrap methods (Carlstein, 1986, and Künsch, 1989) where
blocking techniques are used to deal with dependence; moving block and continuous block
bootstrap methods (Paparoditis and Politis, 1999, 2001, 2003, 2005; Phillips, 2010) that
re-initialize the independent moving block bootstrap draws to replicate ‘continuous’paths

1Nagar’s (1959) approach was an inspiration to the present author beginning research in econometrics in
1969. A flurry of intellectual excitement accompanied the realization that asymptotic expansions provided
a door through which to explore diffi cult finite sample problems in econometrics largely untouched in the
research of the time. Rex Bergstrom, my mentor at the University of Auckland in New Zealand, had written
his 1962 Econometrica paper on the exact distribution of the marginal propensity to consume. I had also
seen Harald Cramér’s work on Edgeworth expansions. I did not know of Denis Sargan’s work in progress on
implementing these expansions in econometrics but learnt of it in 1971 when I went to the London School
of Economics. Finite sample theory and asymptotic expansions captured my imagination and I was soon to
pick up this mantle of the pioneers. The whole field was opening up as a new beach of fascinating technical
research to young scholars.
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that accord more closely to the character of persistent time series; various frequency domain
procedures based on discrete Fourier transforms that exploit asymptotic independence in the
frequency domain (Paparoditis and Politis, 1999; Hidalgo, 2003; Kim and Nordman, 2013;
Arteche González, 2020), although such independence fails for persistent data (Phillips, 1999;
Corbae et al., 2002); and approaches to address the challenge of bootstrapping long memory
series (Kapetanious, 2010; Kapetanious et al., 2019). A short overview of some of these
bootstrap methods with a focus on long memory time series is given in Kim and Kim (2017).

If temporal dependence is poorly captured or ignored, then the bootstrap can not be
expected to perform well even asymptotically and it will often produce inconsistent estimates.
Horowitz (1999) warns of the diffi culties of using the bootstrap with dependent data and
made uninformed applications of the bootstrap with dependent data one of his bootstrap
Don’ts. The present paper highlights these problems in a context of substantial econometric
interest. We show that in spurious regressions use of the crude bootstrap (where dependence is
ignored) produces a spectacular asymptotic failure. The crude bootstrap is shown to convert
spurious regressions of full rank integrated time series into cointegrating regressions and
spurious regressions of integrated times series on deterministic trends into trend stationary
time series. The paper proves these results using almost sure invariance principles and the
Karhunen Loève (KL) representation of Brownian motion used in Phillips (1998) for studying
spurious regressions. These methods have been found to be useful in many other applications
involving nonstationary time series.

Fig. 1 Spurious regression of I(1) data on a linear trend

Figs. 1 and 2 illustrate these effects with some sample data and bootstrap sample data.
In Fig. 1 the sample data {Xt : t = 1, ...n} comprise n = 500 observations of a standard
Gaussian random walk which is shown against the fitted least squares regression line X̂t =
b̂t. The random wandering characteristics about the regression line are apparent. From
traditional limit theory (Durlauf and Phillips, 1988) it is known that the regression coeffi cient
b̂→p 0 but is statistically significant with probability one as n→∞. The bootstrap sample
{X∗t : t = 1, ...n} is generated from X∗t = b̂t + u∗t , where {u∗t : t = 1, ..., n} are random
draws with replacement from the empirical distribution of centred versions of the residuals
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{ût = Xt− b̂t : t = 1, ..., n}, that is from a crude application of the bootstrap. Fig. 2 shows a
typical set of bootstrap sample data generated in this way for the given data {Xt : t = 1, ...n}.
Included in Fig. 2 is the least squares regression line X̂∗t = b̂∗t for the bootstrap sample. The
result is strikingly apparent - the bootstrap data now appear to be stationary, albeit widely
varying, about the trend function b̂∗.

Fig. 2: Spurious Regression of Bootstrapped Sample on a Linear Trend

In a similar way, Fig. 3 shows sample data crossplots for two independent standard
Gaussian random walks {Yt, Xt : t = 1, ...n} together with the (spurious) regression line
Ŷt = b̂Xt. The random wandering behavior of the sample data around the line is clearly
evident. The bootstrap sample {Y ∗t : t = 1, ...n} is generated from Y ∗t = b̂Xt + u∗t , where
{u∗t : t = 1, ..., n} are random draws with replacement from the empirical distribution of
centred versions of the residuals {ût = Yt − b̂Xt : t = 1, ..., n}, again a crude application
of the bootstrap. Fig. 4 shows bootstrap sample data generated in this way, together with
the least squares regression line Ŷ ∗t = b̂∗Xt for this bootstrap sample. The result is again
striking. The bootstrap data {Y ∗t , Xt : t = 1, ...n} now appear to cointegrate about the fitted
regression line, albeit with wide variation.

This paper extends previous research primarily by developing methods for analyzing the
asymptotic properties of the bootstrap and block bootstrap on integrated time series. There
has been frequent speculation about the properties of such uses of the bootstrap (e.g., Li and
Maddala, 1996 & 1997, and Hinkley, 1997). Using these methods the paper shows that direct
application of the bootstrap converts integrated time series into asymptotically stationary
series, thereby fundamentally changing the nature of the series. The failure is a first order
inconsistency in that the serial correlation coeffi cients of a bootstrapped integrated process
do not tend to unity. The impact of the inconsistency is that the bootstrap converts spurious
regressions into cointegrating or trend stationary regressions. Unlike the bootstrap, the
block bootstrap is shown to be first order consistent, maintaining the feature of an integrated
process that its serial correlation coeffi cients tend to unity. However, the limit distribution of
the bootstrapped serial correlation coeffi cient differs from that of the sample serial correlation
coeffi cient, is no longer a unit root distribution and converges at a different rate.
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Fig. 3: Spurious Regression of I(1) Data on Independent I(1) Data

Fig. 4: Bootstrapped Spurious Regression of independent I(1) Data

The paper is organised as follows. Section 2 gives some preliminary theory and then
develops bootstrap asymptotics for integrated time series, including direct bootstrap and
block bootstrap approaches. Section 3 provides results for the bootstrap and block bootstrap
in the prototypical spurious regression of an integrated process on a deterministic trend
and Section 4 does the same for spurious regressions among full rank integrated time series.
Implications of the results are considered in Section 5 and proofs are given in the Appendix
in Section 6. A notational table is provided at the end of the paper.

2. Bootstrap Limit Theory for Integrated Time Series

(a) Preliminaries



6

The `− vector time series xt is a full rank unit root process assumed to be generated by

xt = xt−1 + ut, (1)

with ut a linear process that satisfies the following condition, where ||a|| = maxij |aij | for
matrix a, and with initialization x0 = Oa.s(1) although this could be considerably weakened
(e.g.,Phillips and Magdalinos, 2009) at the expense of some further complications.

Assumption L For all t > 0, ut has Wold representation

ut = C (L) εt =
∞∑
j=0

cjεt−j ,
∞∑
j=0

js||cj || <∞, s ≥ 1, C(1) 6= 0, (2)

with εt = iid (0,Σε) and with E(||εt||q) <∞, for some q > 4.

The summability condition in (2) is satisfied by a wide class of parametric and non-
parametric models for ut. In conjunction with the moment condition, (2) enables the use of
asymptotic techniques for nonstationary processes (Philllips, 1987; 1991; 1999; Phillips and
Solo, 1992) and almost sure invariance principles (IPs) for partial sums of ut. To perform the
latter, which are especially useful here, we expand the probability space as needed so that
the partial sum process Sk =

∑k
t=1 ut of ut can be represented up to a negligible error in

terms of a Brownian motion defined on the same space. An IP of this type for partial sums
of scalar linear processes was proved in Phillips (2007) and is straightforwardly extended to
the case ` ≥ 1.

2.1 Lemma Let Sk =
∑k

j=1 uj for k ≥ 1, and S0 = 0, for k = 0, where uj satisfies
Assumption L. Then, the probability space on which the uj and Sk are defined can be expanded
in such a way that there is a process distributionally equivalent to Sk and a vector Brownian
motion B(·) with variance matrix Ω = C (1) ΣεC (1)′ on the new space for which

sup
0≤k≤n

∣∣∣∣∣∣∣∣ Sk√n−B(
k

n
)

∣∣∣∣∣∣∣∣ = oa.s(
1

n
1
2
− 1
p

). (3)

provided E||ut||q <∞ for some q > 2p > 4.

Since xt = St + Oa.s.(1), it follows from (3) that, after changing the probability space as
required, we have

sup
0≤t≤n

∣∣∣∣∣∣∣∣ xt√n−B(
t

n
)

∣∣∣∣∣∣∣∣ = oa.s(
1

n
1
2
− 1
p

). (4)

We shall often proceed as if this change has been made without continually adding the
qualification and noting that in the original space this convergence translates into weak
convergence of measures.

We shall also make extensive use of the KL representation of the stochastic process B(r).
Let W (r) be `− vector standard Brownian motion. Over the interval r ∈ [0, 1], the `− vector
process W (r) has KL representation (equation (4) of Phillips, 1998)

W (r) =
√

2

∞∑
k=1

sin
[(
k − 1

2

)
πr
](

k − 1
2

)
π

ξk, ξk ≡ iidN (0, I`) ,
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which holds a.s. and uniformly in r. For B(r) = Ω
1
2W (r) we have the corresponding repre-

sentation

B (r) =
√

2

∞∑
k=1

sin
[(
k − 1

2

)
πr
](

k − 1
2

)
π

ξk, ξk ≡ iidN (0,Ω) . (5)

With this approximation in hand, we can develop some preliminary limit theory for applica-
tions of the bootstrap to integrated time series.

(b) Direct Bootstrap Limits for Integrated Processes
We use the following scheme and notation for bootstrap samples. Suppose we are given

data (et)
n
1 or estimates of this data (e.g. from regression residuals) denoted (êt)

n
1 defined on

a probability space (Ω,F , P ). Direct random resampling from the empirical distribution of
(êt)

n
1 produces the crude bootstrap sample (e∗t )

n
1 . Here, each observation e

∗
t is drawn from

the population (êt)
n
1 and each point has equal probability,

1
n , of being drawn. If we centre

the original observations and draw from the population (êt− 1
n

∑n
s=1 ês)

n
1 , then the bootstrap

sample is denoted (ẽ∗t )
n
1 . Following convention, we let P

∗ denote probability conditional on
the realized trajectory of the orginal data (êt)

∞
1 . Expectation with respect to P

∗ is denoted
E∗, convergence in distribution (respectively, in probability) with respect to P ∗ is denoted
→d∗ (respectively, →p∗) and when convergence occurs with P probability unity (i.e. for
almost all realizations of (et)

∞
1 ), we write →d∗ a.s. (P ) and →p∗ a.s. (P ) .

Suppose we have data (xt)
n
1 generated as in (1) and let (x∗t )

n
1 and (x̃∗t )

n
1 be crude bootstrap

samples constructed as above. We can write x∗t = xj where j is a random index drawn from
{1, 2, ..., n}. That is, j is uniform over the integers {1, 2, ..., n} with mass probability 1

n on
each integer. Then, in view of Lemma 2.1 and (4), there exists a probability space in which
we can write

x∗t√
n

=
xj√
n

= B

(
j

n

)
+ oa.s

(
1

n
1
2
− 1
p

)
= B (Rnj) + oa.s

(
1

n
1
2
− 1
p

)
, (6)

where Rnj = j
n is uniformly distributed over {

1
n ,

2
n , .., 1} for each j. Now, in a slight abuse of

notation, we can write
Rnj →d∗ Rj , (7)

where Rj has an independent continuous uniform distribution over [0, 1] for each j, written
as iidU [0, 1] . The convergence (7) evidently also holds almost surely (P ) . It follows by the
continuous mapping theorem that

sin

[(
k − 1

2

)
πRnj

]
→d∗ sin

[(
k − 1

2

)
πRj

]
a.s.(P ). (8)

Moreover, for j 6= k, Rnj and Rnk are statistically independent and so the limit variates
Rj and Rk are also independent. It is therefore apparent from (5)-(8) that the standardized
bootstrap process n−

1
2x∗t has an asymptotic representation in terms of a vector Brownian

motion evaluated at a random argument Rj ∈ [0, 1], viz.,

x∗t√
n

=
√

2

∞∑
k=1

sin
[(
k − 1

2

)
πRnj

](
k − 1

2

)
π

ξk + oa.s

(
1

n
1
2
− 1
p

)
∼d∗
√

2

∞∑
k=1

sin
[(
k − 1

2

)
πRj

](
k − 1

2

)
π

ξk. (9)
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Thus, just as x∗t is a random draw from the empirical distribution of (xt)
n
1 , the large sample

behavior of the standardized process n−
1
2x∗t is analogous to that of a random draw from the

trajectory of the Brownian motion limit of n−
1
2xt. This notion is formalized in the following

lemma.

2.2 Lemma Let (x∗t )
n
1 and (x̃∗t )

n
1 be bootstrap samples from a unit root process (xt)

n
1

generated as in (1) with uj satisfying Assumption L.

(a)
x∗
[nr]√
n
→d∗ B (Rr) a.s.(P ),

(b)
x̃∗
[nr]√
n
→d∗ B (Rr)−

∫ 1
0 B (s) ds a.s.(P ),

where {Rr : r ∈ [0, 1]} is a family of independent uniform variates on [0, 1].

The bootstrapped process n−
1
2x∗[nr] converges weakly to a randomly sampled version of

the Brownian motion B to which n−
1
2x[nr] converges, and n

− 1
2 x̃∗[nr] converges to a randomly

sampled version of the corresponding demeaned Brownian motion B(r) = B (r)−
∫ 1
0 B (s) ds.

Unlike the Brownian motion process from which these draws are made, B (Rr) is not pathwise
continuous and is not a separable process.

We proceed to find distributional limits of bootstrapped statistics in regressions involving
I(1) variables like xt. These limits are useful in the regression theory of the following section.
In view of the different limit behavior of x∗t and x̃

∗
t , we continue to report results for both

versions of the bootstrap in what follows. Lemma 2.3 below gives some limit theory for
sample moments of the bootstrapped data and original sample data.

2.3 Lemma Under the same conditions as Lemma 2.2:

(a) n−
3
2
∑n

t=1 x
∗
t →d∗

∫ 1
0 B (s) ds a.s.(P ),

(b) n−
3
2
∑n

t=1 x̃
∗
t →p∗

∫ 1
0 B (s) ds = 0 a.s.(P ),

(c) n−2
∑n

t=1 x
∗
tx
∗′
t →d∗

∫ 1
0 B (s)B (s)′ ds a.s.(P ),

(d) n−2
∑n

t=1 x̃
∗
t x̃
∗′
t →d∗

∫ 1
0 B (s)B (s)′ ds a.s.(P ),

(e) n−2
∑n

t=1 x
∗
tx
′
t →d∗

(∫ 1
0 B (s) ds

)(∫ 1
0 B (s)′ ds

)
a.s.(P ),

(f) n−2
∑n

t=1 x̃
∗
tx
′
t →d∗

(∫ 1
0 B (s) ds

)(∫ 1
0 B (s)′ ds

)
= 0 a.s.(P ),

(g) n−5/2
∑n
1 x
∗
t t→d∗

(∫ 1
0 B(r)dr

)(∫ 1
0 rdr

)
a.s.(P ),

(h) n−5/2
∑n
1 x̃
∗
t t→d∗

(∫ 1
0 B (s) dr

)(∫ 1
0 rdr

)
= 0 a.s.(P ).
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Evidently, the bootstrap sample moments n−
3
2
∑n

t=1 x
∗
t and n

−2∑n
t=1 x

∗
tx
∗′
t have the same

limits as the corresponding sample averages n−
3
2
∑n

t=1 xt and n
−2∑n

t=1 xtx
′
t. Correspond-

ingly, sample moments of the centred bootstrap sample (x̃∗t )
n
1 have limits that correspond

to those of the demeaned sample data. However, sample covariances between the bootstrap
data and the original sample, n−2

∑n
t=1 x

∗
tx
′
t and n−2

∑n
t=1 x̃

∗
tx
′
t, differ from the limit of

n−2
∑n

t=1 xtx
′
t; and the bootstrap covariances n

−5/2∑n
1 x
∗
t t and n

−5/2∑n
1 x̃
∗
t t do not have the

same limits as n−5/2
∑n
1 xtt and n

−5/2∑n
1 (xt − x) t, which are

∫ 1
0 B(r)rdr and

∫ 1
0 B(r)rdr.

Next, consider the scalar case and set ` = 1 in (1). In this case we shall use ω2 to denote the
variance of the Brownian motion B. Define the h’th order serial correlation of the data ρ̂h =∑n

t=h xtxt−h/
∑n

t=h x
2
t−h, and the bootstrap serial correlations ρ̂

∗
h =

∑n
t=h x

∗
tx
∗
t−h/

∑n
t=h x

∗2
t−h,

ρ̃∗h =
∑n

t=h x̃
∗
t x̃
∗
t−h/

∑n
t=h x̃

∗2
t−h, and ρ̂

e
h =

∑n
t=h e

∗
t e
∗
t−h/

∑n
t=h e

∗2
t−h, where e

∗
t = x∗t − x∗.

2.4 Theorem Serial correlations of scalar bootstrap samples (x∗t )
n
1 and (x̃∗t )

n
1 from a unit

root process satisfying the conditions of Lemma 2.2 have the following limits for h 6= 0 as
n→∞ :

ρ̂∗h →d∗ ξρ =

[∫ 1
0 (B(r))dr

]2
∫ 1
0 B(r)2dr

a.s. (P ) , (10)

ρ̃∗h, ρ̂
e
h →p∗ 0 a.s. (P ) . (11)

The limit variate ξρ in (10) evidently satisfies 0 < ξρ < 1, a.s.(P ). Thus, the theorem
shows that the first order serial correlation coeffi cient of a crude bootstrap sample of an I(1)
process no longer has a probability limit of unity. Instead, ρ̂∗1 converges weakly to a limit
random variable that is strictly less than unity, but also strictly positive. Since ρ̂h →p 1 for
all h, the crude bootstrap ρ̂∗h is not even first order consistent. It follows that a unit root test
on the bootstrap sample (x∗t )

n
1 that is based on ρ̂

∗ will reject the null hypothesis almost surely
as n → ∞. Note that this is the case even though x∗[nr] is of order

√
n and n−

1
2x∗[nr] tends

to a limiting stochastic process that is a randomized version of Brownian motion, as shown
in Lemma 2.3 (a). Further, all serial correlations ρ̂∗h have the same limit ξρ as n → ∞ for
any h 6= 0. Thus, the bootstrap process x∗t is strongly dependent with temporal dependence
characteristics analogous to those of a time series with a random fixed effect.

The serial correlation coeffi cients ρ̃∗h for the centred bootstrap data are all zero in the limit.
Thus, differences between centred and uncentred bootstrap sampling persist in the limit
behavior of the serial correlations and the bootstrap sample (x̃∗t )

n
1 behaves asymptotically

like an uncorrelated sequence. Again, unit root tests will reject the null hypothesis with
probability one as n→∞. When the serial correlation coeffi cient ρ̂∗h is redefined in terms of
deviations from sample means, i.e. as ρ̂eh, then (11) holds rather than (10). In all these cases,
crude bootstrap resampling turns an I(1) series into one that is asymptotically stationary.

(c) Block Bootstrap Limits for Integrated Processes
A similar analysis can be performed for the block bootstrap. We will use Carlstein (1986)

blocking. Here, the data are subdivided into M successive blocks {Aj : j = 1, ..,M} of equal
size m, with n = mM. Assume 1

m + m
n → 0, so that 1

M + M
n → 0 and then the size of each
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block as well as the number of blocks tend to infinity at a rate slower than n. With this
schematic, we can write observations as xt = x(s−1)m+k, so that the t’th observation in the
sample appears as the k’th observation in the s’th block As.

Block bootstrap samples (xb∗t )n1 are constructed by randomly sampling theM blocks (with
replacement) and then arranging them end-to-end in the order in which they are sampled.
Call the sampled blocks {A∗j : j = 1, ..,M}. A typical block bootstrap observation can then
be written as xb∗t = x(j−1)m+k where j is a random index drawn from {1, 2, ...,M}. That
is, j is uniform over the integers {1, 2, ...,M} with mass probability 1

M on each integer. We
can construct centred block bootstrap samples (x̃b∗t )n1 in the same way. With some minor
changes in the proofs, all the results given below carry over to the moving block bootstrap
(Künsch, 1989). In this blocking scheme, we let N1, ..., NM be iid uniform random draws from
{0, 1, 2, ..., n−m}. Then a typical moving block bootstrap observation is xmb∗(j−1)m+k = xNj+k
for 1 ≤ j ≤M and 1 ≤ k ≤ m.

As in the previous section, it follows from Lemma 2.1 that there exists a probability space
in which we can write

xb∗t√
n

=
x(j−1)m+k√

n
= B

(
(j−1)m+k

n

)
+ oa.s

(
1

n
1
2
− 1
p

)
= B

(
RMj +

k

n

)
+ oa.s

(
1

n
1
2
− 1
p

)
, (12)

where RMj = j−1
M is uniformly distributed over {0, 1M , ..,

M−1
M } for each j. As n,M → ∞,

with a slight abuse of notation, we have

RMj →d∗ Rj , (13)

where Rj is iidU [0, 1]. Similarly, for any r ∈ [0, 1] there exist integers sr and kr for which
[nr] = (sr − 1)m+ kr and we can write

xb∗[nr]√
n

=
x(Jr−1)m+kr√

n
= B

(
(Jr−1)m+kr

n

)
+ oa.s

(
1

n
1
2
− 1
p

)
= B

(
RM,r +

kr
n

)
+ oa.s

(
1

n
1
2
− 1
p

)
,

(14)
where Jr is uniformly distributed over {1, 2, ...,M}, RM,r = Jr−1

M is uniformly distributed
over {0, 1M , ..,

M−1
M } and RM,r →d∗ Rr, where Rr is uniform over [0, 1] for each r.

Block bootstrap versions of Lemmas 2.2 and 2.3 follow in a straightforward way and we
do not repeat them here. Instead, we give the main result, a block bootstrap version of
Theorem 2.4. The serial correlation coeffi cients ρ̂b∗h , ρ̃

b∗
h , and ρ̂

be
h are defined as in Section 2

(b) above using the block bootstrap data.

2.5 Theorem Serial correlations of scalar block bootstrap samples (xb∗t )n1 and (x̃b∗t )n1 from
a unit root process satisfying the conditions of Lemma 2.2 and with 1

m + m
n → 0 have the

following limits for all fixed h 6= 0 as n→∞ :

ρ̂b∗h , ρ̃
b∗
h , ρ̂

be
h →d∗ 1 a.s. (P ) . (15)

Thus, the serial correlation coeffi cients of the block bootstrapped time series xb∗t converge
to unity, even though the standardized process n−

1
2xb∗[nr] converges weakly to a randomly
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sampled version of the Brownian motion B just as in the crude bootstrap (Lemma 2.2).
Hence, in contrast to the crude bootstrap, the block bootstrap serial correlation coeffi cients
are first order consistent.

Some further analysis reveals that the distribution of the block bootstrap serial correlation
coeffi cient ρ̂b∗1 is inconsistent for the unit root limit distribution of the first order serial
correlation coeffi cient of an integrated process. Its convergence rate O(n/M) is also slower
than the conventional order n rate for unit root distributions.

2.6 Theorem The first order serial correlation coeffi cient of a scalar block bootstrap sample
(xb∗t )n1 from a unit root process satisfying the conditions of Lemma 2.2 and with 1

m + m
n → 0

has the following limit distribution as n→∞ :

n

M

(
ρ̂b∗1 − 1

)
→d∗ −

{∫ 1
0 B(r)2dr −

(∫ 1
0 B(r)dr

)2}
∫ 1
0 B (r)2 dr

< 0 a.s. (P ) . (16)

If centred bootstrap samples (x̃b∗t )n1 are used then the corresponding limit is

n

M
(ρ̃b∗1 − 1)→p∗ −1 a.s. (P ) . (17)

The limit results (16) and (17) show that if a conventional unit root test were applied
to block bootstrapped sample data then the presence of a unit root would be rejected with
a probability approaching unity as n → ∞. Conversely, if the bootstrap distribution of ρ̂b∗1
were used to construct critical values in inference based on ρ̂1 about the presence of a unit
autoregressive coeffi cient in (1), then there would be a zero rejection rate asymptotically for
the unit root hypothesis.

The convergence rate of ρ̂b∗1 is O (m) , revealing that in the block bootstrap it is the
number of consecutive observations m in each block that determines the rate of convergence
of the serial correlation coeffi cient, not the number of blocks. In effect, each block is a small-
infinity-sized trajectory of a unit root process. However, since the expression for ρ̂b∗1 involves
averages across blocks as well as within blocks, the limit of m(ρ̂b∗1 − 1) is not a conventional
unit root distribution. Instead, as the proof of theorem 2.6 reveals, a bias term involving
averages of differences of Brownian motion across randomized blocks dominates the sample
covariance 1

nM

∑n
t=1 x

∗
t−1∆x

∗
t and gives rise to the limits in (16) and (17).

Fig. 5 graphs kernel estimates of the densities of the unit root distribution of ρ̂1 against
those of the crude bootstrap estimate ρ̂∗1, the block bootstrap estimate ρ̂

b∗
1 and the centred

bootstrap estimate ρ̃∗1. The simulation estimates used 10,000 replications, a sample size of 200
and block settings m = 10, M = 20. Apparently, the block bootstrap sampling distribution
is closer to that of the unit root distribution than the other estimates but is substantially
downward biased, consonant with the results in Theorem 2.6.
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Fig. 5: Kernel Estimates of Densities of ρ̂ (mode close to unity), ρ̂∗1 (mode close to 0.4), ρ̂
b∗
1

(mode close to 0.8), and ρ̃∗1.(mode close to 0).

3. Spurious Regression on a Deterministic Trend

We consider the prototypical spurious regresion of a scalar time series xt generated as in (1)
on a linear trend

xt = b̂nt+ ût, t = 1, ..., n. (18)

Regressions on higher order polynomials and other deterministic functions produce analogous
results and the simple regression (18) is chosen simply for convenience. Let s

b̂n
be the

standard error of b̂n, t(b̂n) be the corresponding t−statistic, and set ρ̂ =
∑n
2 ûtût−1/

∑n
2 û

2
t−1

and DW =
∑n
2 (ût − ût−1)2/

∑n
2 û

2
t−1. As in Durlauf and Phillips (1988),

√
nb̂n =

n−
5
2
∑n

t=1 xtt

n−3
∑n

t=1 t
2
→d

∫ 1
0 rB(r)∫ 1
0 r

2
≡ ξ, say, (19)

1√
n
t
(
b̂n

)
=

b̂n
s
b̂n

→d

ξ
(∫ 1
0 r

2
) 1
2

(∫ 1
0 (B (r)− ξr)2

) 1
2

, (20)

and

ρ̂→p 1, nDW →d
σ2u + ξ2∫ 1

0 (B (r)− ξr)2
, (21)

where B is scalar Brownian motion with variance ω2. By changing the probability space as
discussed in the paragraph following Lemma 2.1, each of these convergences can be replaced
by a.s. convergence, and we shall commonly proceed below as if these changes have been
made.
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(a) Crude Bootstrapping of Residuals
Here bootstrap samples (u∗t )

n
1 are formed by random sampling from (ût)

n
1 and bootstrap

data (x∗∗t )n1 are generated according to

x∗∗t = b̂nt+ u∗t , t = 1, ..., n. (22)

Least squares produces the fitted regression

x∗∗t = b̂∗nt+ u∗∗t , (23)

which defines the residual process u∗∗t . Let s
∗∗2 = 1

n

∑n
t=1 u

∗∗2
t , let s

b̂∗n
and t(̂b∗n) be the

standard error and t-ratio of b̂∗n in (23), and let DW
∗∗ be the DW ratio in (23). Denote serial

correlations by the notation ρ̂∗∗h =
∑n

t=h u
∗∗
t u
∗∗
t−h/

∑n
t=1 u

∗∗2
t−h. The following results give the

limit behavior of these bootstrap statistics.

3.1 Theorem Let (x∗∗t )n1 be bootstrap data generated from (22) using (u∗t )
n
1 where the orig-

inal data (xt)
n
1 in the trend regression (18) is a unit root process (1) with ut satisfying

Assumption L.

(a)
√
nb̂∗n →d∗ ξ

∗ =
1
2

∫ 1
0 B(r)dr+

1
12
ξ∫ 1

0 r
2

a.s.(P ),

(b) 1
ns
∗∗2 →d∗ σ

2
ξ =

∫ 1
0 {Br(s) + (ξ − ξ∗) s}2 dr a.s.(P ),

(c) 1√
n
t(̂b∗n)→d∗

ξ∗(
∫ 1
0 r

2)
1
2

σξ
a.s.(P ),

(d) ρ̂∗∗h →d∗ ξ
breg
ρ ,

∣∣ξbregρ

∣∣ < 1 a.s.(P ), for all h 6= 0,

(e) DW ∗∗ →d∗ ξ
breg
DW > 0 a.s.(P ),

(f) R∗∗2 →d∗ ξ
breg
R2

< 1, a.s.(P ),

where Br(s) = B(s) − ξs is detrended Brownian motion, B∗r (s) = Br(s) + (ξ − ξ∗) s =
B(s)− ξ∗s,

ξbregρ =

(∫ 1
0 B

∗
r (s)ds

)2
∫ 1
0 B

∗
r (s)2ds

∈ (0, 1) a.s.(P )

ξbregDW =
2
∫ 1
0 Br(s)

2ds

σ2ξ

[
1− ξbρ

]
> 0 a.s.(P )

ξbρ =

(∫ 1
0 Br(s)ds

)2
∫ 1
0 Br(s)

2ds
∈ (0, 1) a.s.(P )

and

ξbreg
R2

= 1−
σ2ξ∫ 1

0 B (r)2 dr
.
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3.2 Remarks

(i) From (a), b̂∗n →p∗ 0 and so the bootstrap estimate b̂∗n is first-order consistent. By
a straightforward but lengthy calculation ξ∗ = N(0, v∗b ) with v∗b = ω2 207160 , whereas
ξ = N(0, vb) with vb = 6

5ω
2. Evidently, the bootstrap statistic

√
nb̂∗n and

√
nb̂n are not

asymptotically equivalent although the limit distribution N(0, v∗b ) is close to the correct
limit (207160 ' 1.29 versus 65 = 1.20).

(ii) The reason for the inconsistency of the bootstrap statistic
√
nb̂∗n is that in the numer-

ator of this statistic n−5/2
∑n
1 x
∗
t t �a n−5/2

∑n
1 xtt. In fact, from Lemma 2.3 (g) we

have n−5/2
∑n
1 x
∗
t t →d∗ (

∫ 1
0 B(r)dr)(

∫ 1
0 rdr) a.s.(P ), whereas by standard methods

n−5/2
∑n
1 xtt→d∗ (

∫ 1
0 B(r)rdr) as in (19).

(iii) The bootstrap t− statistic t(̂b∗n) diverges at the rate
√
n, just as the regression t−

statistic t(̂bn), but t(b̂∗n)/
√
n has a different limit distribution from t(b̂n)/

√
n, which by

standard methods is ξ(
∫ 1
0 r

2dr)
1
2 /(
∫ 1
0 Br(s)ds).

(iv) Most importantly, the bootstrap serial correlation ρ̂∗∗1 has a random limit ξbregρ which
is strictly less than unity with probability one. It follows that unit root tests on the
residuals of (23) that are based on ρ̂∗∗1 will reject the null hypothesis of a unit root
and hence the null of a spurious regression. Thus, the original regression (18) and
the bootstrap regression (23) have fundamentally different characteristics — (18) is a
fitted trend with a significant coeffi cient and diagnostics that reveal the significance is
spurious, whereas (23) is a trend regression with a similarly significant coeffi cient and
diagnostics that do not invalidate the relationship asymptotically.

3.3 Theorem Let (x∗∗t )n1 be bootstrap data generated from (22) using centred bootstrap
residuals (ũ∗t )

n
1 formed by random sampling from (ût)

n
1 , where the original data (xt)

n
1 in the

trend regression (18) is a unit root process (1) with ut satisfying Assumption L.

(a)
√
nb̂∗n →d∗ ξ a.s.(P ),

(b) 1
ns
∗∗2 →d∗

∫ 1
0 Br(s)

2dr a.s.(P ),

(c) 1√
n
t(̂b∗n)→d∗

ξ(
∫ 1
0 r

2)
1
2

(
∫ 1
0 Br(s)

2ds)
1
2

a.s.(P ),

(d) ρ̂∗∗h →p∗ 0, a.s.(P ), for all h 6= 0,

(e) DW ∗∗ →p∗ 2 a.s.(P ),

(f) R∗∗2 →d∗
ξ2
∫ 1
0 r

2dr∫ 1
0 Br(s)

2ds+ξ2
∫ 1
0 r

2dr
< 1, a.s.(P ),

where Br(s) = B(s)− ξs= Br(s)−
∫ 1
0 Br(s)ds.
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3.4 Remarks

(i) The bootstrap estimate b̂∗n is consistent and
√
nb̂∗n has the same limit distribution as√

nb̂n. Similarly, the bootstrap t− statistic t(̂b∗n) diverges at the rate
√
n, just as the

regression t− statistic t(̂bn), but the limit distribution of t(b̂∗n)/
√
n given in part (c) is

different from that of t(b̂n)/
√
n (given in Remark 3.2(iii)).

(ii) According to parts (d) and (e), the residuals in the regression (23) are asymptotically
uncorrelated. This means that bootstrap observations (x∗∗t )n1 generated from

x∗∗t = b̂nt+ ũ∗t (24)

behave in the regression (23) as trend stationary data with white noise residuals,
whereas the orginal data (xt)

n
1 is I(1). Again, the original regression (18) and the

bootstrap regression (23) have fundamentally different characteristics.

(b) Block Bootstrapping of Residuals
Block bootstrap samples of residuals (ub∗t )n1 are constructed by randomly sampling M

blocks (with replacement) of the centred residuals (ût − n−1
∑n

s=1 ûs)
n
1 from (18). A typical

block bootstrap residual can then be written as ũb∗t = û(j−1)m+k − n−1
∑n

s=1 ûs, where j is a
random index drawn from {1, 2, ...,M}. Block bootstrap data (xb∗t )n1 are generated according
to

xb∗∗t = b̂nt+ ũb∗t (25)

and least squares produces the fitted regression

xb∗∗t = b̂b∗n t+ ub∗∗t , (26)

which defines the residual process ub∗∗t . Let sb∗∗2 = 1
n

∑n
t=1 u

b∗∗2
t , let sb∗ and tb∗ be the

standard error and t− ratio of b̂b∗n in (26), and let DW b∗∗ be the DW ratio in (26). Again, we
denote serial correlations by the notation ρ̂b∗∗h . The following results give the limit behavior
of these bootstrap statistics.

As in Section 2(c) and setting t = (s− 1)m+ k, there exists a probability space in which
we can write

xb∗∗t√
n

=
√
nb̂n

t

n
+
û(js−1)m+k − n−1

∑n
s=1 ûs√

n
(27)

= [ξ + oa.s (1)]
(s− 1)m+ k

n
+Br

(
(js−1)m+k

n

)
+ oa.s

(
1

n
1
2
− 1
p

)
= ξ

[
(s− 1)

M
+
k

n

]
+Br

(
RMjs +

k

n

)
+ oa.s (1) , (28)

where RMjs = js−1
M is uniformly distributed over {0, 1M , ..,

M−1
M } for each s. As n,M → ∞,

with a slight abuse of notation, we have

RMjs →d∗ Rj ,
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where Rj is iidU [0, 1]. Similarly, for any r ∈ [0, 1] there exist integers sr and kr for which
[nr] = (sr − 1)m+ kr and we can write

xb∗∗[nr]√
n

= ξr +Br (RM,r) + oa.s (1) , (29)

where RM,r = Jr−1
M is uniformly distributed over {0, 1M , ..,

M−1
M } and RM,r →d∗ Rr, where

Rr is uniform over [0, 1] for each r.
We give a block bootstrap version of Theorem 3.3.

3.5 Theorem Let (xb∗∗t )n1 be block bootstrap data generated from (25) with 1
m + m

n → 0
and using centred block bootstrap residuals (ũb∗t )n1 where the original data (xt)

n
1 in the trend

regression (18) is a unit root process (1) with ut satisfying Assumption L. Then:

(a)
√
nb̂b∗n →d∗ ξ a.s.(P ),

(b) 1
ns

b∗∗2 →d∗
∫ 1
0 Br(s)

2dr a.s.(P ),

(c) 1√
n
tb∗ →d∗

ξ(
∫ 1
0 r

2)
1
2

(
∫ 1
0 Br(s)

2ds)
1
2

a.s.(P ),

(d) ρ̂b∗∗h →p∗ 1, a.s.(P ), for all h 6= 0,

(e) DW b∗∗ →p∗ 0 a.s.(P ),

(f) Rb∗∗2 →d∗
ξ2
∫ 1
0 r

2dr∫ 1
0 Br(s)

2ds+ξ2
∫ 1
0 r

2dr
< 1, a.s.(P ).

3.6 Remarks

(i) The block bootstrap results for the regression coeffi cient b̂b∗n , t− ratio tb∗ and R2 are
the same as those for the centred bootstrap given in Theorem 3.3.

(ii) The serial correlation properties of the residuals in the block bootstrap regression are
different from those in Theorem 3.3. Just as in block bootstrapping I(1) data (Theorem
2.5), the residual serial correlation coeffi cients ρ̂b∗∗, ρ̂b∗∗h →p∗ 1 and the Durbin Watson
statistic DW b∗∗ →p∗ 0. Thus, these diagnostics are now first order consistent in the
bootstrap regression (26). This regression is therefore spurious in the same sense as the
original trend regression (23).

(iii) However, neither of the limit distributions of ρ̂b∗∗h and DW b∗∗ is consistent. As in
Theorem 2.6 we find that these bootstrap diagnostic statistics have different rates of
convergence and different limits from those of the original sample data. Theorem 3.7
below gives the result for ρ̂b∗∗1 . Thus, bootstrapping these diagnostic statistics (or ver-
sions of them that are nuisance parameter free) will not produce an asymptotically
valid inference procedure.
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3.7 Theorem Under the same conditions as Theorem 3.5 , ρ̂b∗∗1 has the following limit as
n→∞ :

n

M

(
ρ̂b∗∗1 − 1

)
→p∗ −1 a.s. (P ) .

4. Spurious Regression on Stochastic Trends

Let zt be an (` + 1)− vector integrated time series generated as in (1) with ∆zt = uzt
satisfying Assumption L and zt satisfying Lemma 2.1 with limiting Brownian motion Bz
whose variance matrix is Ωzz > 0. Partition zt = (yt, x

′
t)
′ into the scalar yt and `− vector xt

and let Bz = (By, B
′
x)′ be a conformable partition of Bz. Run the (spurious) regression

yt = b̂′nxt + ût. (30)

Let si be the standard error of b̂ni, ti be the corresponding t−statistic, and set ρ̂ =
∑n
2 ûtût−1/

∑n
2 û

2
t−1

and DW =
∑n
2 (ût − ût−1)2/

∑n
2 û

2
t−1. As in Phillips (1986b),

b̂n →d A
−1
xx axy = ξyx, say, (31)

1√
n
ti =

b̂ni
si
→d

ξyxi(
ayy.x

[
A−1xx

]
ii

) 1
2

= ξti,

and

nDW →d
η′Σzzη

ayy.x
,

where, in conformable partitions, we define∫ 1

0
Bz (r)B′z (r) dr =

[
ayy a′xy
axy Axx

]
, ayy.x = ayy − a′xyA−1xx axy, η =

[
1
−A−1xx axy

]
,

and Σzz = E (uztu
′
zt) . These convergences can be replaced by a.s. convergence after appro-

priate changes in the probability space as discussed earlier.
Application of bootstrap methods to the residuals in (30) leads to results that are similar

to those of the previous section. We therefore provide the main results here in brief. Bootstrap
samples (ũ∗t )

n
1 are formed by random sampling from centred versions of the residuals (ût)

n
1 in

(30), bootstrap data (y∗∗t )n1 are generated according to

y∗∗t = b̂′nxt + ũ∗t (32)

and least squares produces the fitted regression

y∗∗t = b̂∗′n xt + u∗∗t , (33)

which defines the residual process u∗∗t . Let s
∗∗2 = 1

n

∑n
t=1 u

∗∗2
t , let s∗i and t

∗
i be the standard

error and t− ratio of b̂∗n , and let DW ∗∗ be the DW ratio. As earlier, denote serial correlations
by the notation ρ̂∗∗h =

∑n
t=h u

∗∗
t u
∗∗
t−h/

∑n
t=1 u

∗∗2
t−h. The following results give the limit behavior

of these bootstrap statistics. We confine the discussion to centred bootstrap samples.
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4.1 Theorem Let (y∗∗t )n1 be bootstrap data generated from (32) using (ũ∗t )
n
1 where the data

(yt, xt)
n
1 in the sample regression (30) is generated as in (1) with increments ∆zt = uzt

satisfying L.

(a) b̂∗n →d∗ ξyx a.s.(P ),

(b) 1
ns
∗∗2 →d∗ η

′
(∫ 1
0 BzB

′
z

)
η a.s.(P ),

(c) 1√
n
t∗i →d∗

ξyxi

{η′(∫ 10 BzB′z)η[A−1xx ]
ii
}
1
2

= ξ∗ti a.s.(P ),

(d) ρ̂∗∗h →p∗ 0, a.s.(P ), for all h 6= 0,

(e) DW ∗∗ →p∗ 2 a.s.(P ),

(f) R∗∗2 →d∗
ξ′yx(

∫ 1
0 BxB

′
x)ξyx

η′(
∫ 1
0 BzB

′
z)η+ξ′yx(

∫ 1
0 BxB

′
x)ξyx

< 1, a.s.(P ).

The bootstrap regression coeffi cient in (33) is consistent for ξyx and the t− ratio t∗i diverges
at the rate

√
n just as in the spurious regresion (30), although the limit variate ξ∗ti 6= ξti. More

importantly, however, the residuals in the regression (33) are asymptotically uncorrelated and
so the bootstrap regression is asymptotically a cointegrating regression.

Different results apply when we use the block bootstrap. Using the same notation as in
Section 3(c) with the affi x b to signify use of the block bootstrap, we find the following limit
theory.

4.2 Theorem Let (yb∗∗t )n1 be bootstrap data generated from (32) using centred block bootstrap
residuals (ũb∗t )n1 with

1
m+m

n → 0 and where the original data (yt, xt)
n
1 in the sample regression

(30) is generated as in (1) with increments ∆zt = uzt satisfying L. Then:

(a) b̂b∗n →d∗ ξyx a.s.(P ),

(b) 1
ns

b∗∗2 →d∗ η
′
(∫ 1
0 BzB

′
z

)
η a.s.(P ),

(c) 1√
n
tb∗i →d∗ ξ

∗
ti a.s.(P ),

(d) ρ̂b∗∗h →p∗ 1, a.s.(P ), for all h 6= 0,

(e) DW b∗∗ →p∗ 0 a.s.(P ),

(f) Rb∗∗2 →d∗
ξ′yx(

∫ 1
0 BxB

′
x)ξyx

η′(
∫ 1
0 BzB

′
z)η+ξ′yx(

∫ 1
0 BxB

′
x)ξyx

< 1, a.s.(P ).

4.3 Theorem Under the same conditions as Theorem 4.2 , ρ̂b∗∗1 has the following limit as
n→∞ :

n

M

(
ρ̂b∗∗1 − 1

)
→p∗ −1 a.s. (P ) .
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4.4 Final Remarks Although we have not done so, Figures similar to Figure 5 could
be produced to reveal the shape and location of the distributions of the various statistics
whose limit behavior has been reported in the theorems of Sections 3 and 4. Of particular
importance in showing the extent of the inconsistencies in the limit distributions of the
bootstrap statistics are the correlation coeffi cients and t-ratios. Such figures might be used
in conjunction with simulations designed to show the effectiveness of bootstrap tools such
as the continuous path block bootstrap (Paparoditis and Politis, 1999; Phillips, 2010) which
have been devised to treat nonstationary data and regression residuals.

5. Conclusions and Implications

This paper shows that mechanical application of both the bootstrap and block bootstrap
will give perverse results when they are used in residual based testing for unit roots to
distinguish spurious and cointegrating regressions or trend stationarity from integrated data.
Bootstrapping the residuals of such regressions turns spurious regressions into cointegrating
regressions and changes the character of the regressions in a fundamental way. While the
block bootstrap retains the I(1) feature of the regression residuals and has serial correlation
coeffi cients that tend to unity, their rate of convergence is slower than the O(n) rate of the
sample residual serial correlations. Serial correlations of the block bootstrap converge at the
rate O(m), where m is the block size and the limit is no longer of the unit root type. Thus,
the bootstrap and the block bootstrap both fail seriously in reproducing the properties of
spurious regressions and are unsuitable for residual based testing in this context.

All these findings serve to reinforce warnings given in earlier research about the diffi culties
encountered by the bootstrap with dependent data (Horowitz, 1999, among others) and with
correlation coeffi cients (Hall, 1992, p.152). It seems that bootstrapping nonstationary data
exacerbates known problems of bootstrap inconsistency in unit root inference (e.g. Basawa
et. al. 1991), producing differences not only in the limit distributions between the bootstrap
and the original statistic but first order differences in the limits of the statistics in some cases.
The block bootstrap shows some robustness to nonstationarity in this regard, but as Hinkley
(1997) remarks, it too is unable to withstand the integrated model.

The results have direct implications for the use of the bootstrap in residual based cointe-
gration testing, where the null hypothesis is that the residuals in the regression are integrated.
Routine applications of the bootstrap in such situations should obviously be avoided. Various
other methods have been explored since the original version of this paper was written. But in
each case these depend on empirically uncertain conditions that underpin the precise proper-
ties of the data and the model being estimated. One alternative under the null hypothesis of
pure I(1) time series is to difference the residuals and apply sieve bootstrap methods (Kreiss,
1992, Buhlmann, 1997, 1998) on the differenced residuals and then bootstrap invariance prin-
ciples (Bickel and Buhlmann, 1999, and Park, 2002) to bootstrap the distribution of residual
based cointegration tests. Another is to estimate the memory properties of the data or to
pretest for the presence of a unit root in the residuals prior to the use of the bootstrap by
consistent methods of model selection (e.g. Phillips and Ploberger, 1996). Yet another is to
use the continuous path block bootstrap (Paparoditis and Politis, 1999) which is known to be
consistent for I(1) data (Phillips, 2010). Other approaches like hybrid resampling (Chuang
and Lai, 2000) and subsampling (Politis, Romano and Wolf, 1999) have been found to offer
improvements in some cases where the bootstrap performs poorly. Notwithstanding these
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improvements and alternative approaches, the primary lesson of the present work is that
temporal dependence inducing persistence in the data presents many potential pitfalls for
the use of standard bootstrap methods. So these methods need to be used with care when
the persistence properties in the data and in regression residuals are unknown or of uncertain
strength.
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6. Appendix

6.1 Proof of Lemma 2.1 This is a straightforward extension of lemma 3.1 of Phillips(1999).
Under L, the BN decomposition (Phillips and Solo, 1992) C (L) = C (1) + C̃ (L) (L− 1) is
valid, where C̃ (L) =

∑∞
j=0 c̃jL

j with c̃j =
∑∞

s=j+1 cs and
∑∞

j=0 ||c̃j || <∞. Then,

ut = C (1) εt + ε̃t−1 − ε̃t = C (1) Σ
1
2 ηt + ε̃t−1 − ε̃t,

and
St = C (1) Σ

1
2Sηt + ε̃0 − ε̃t,

where ηt is iid(0, I), ε̃t = C̃ (L) εt is stationary, and Sηt =
∑t

j=1 ηj . A strong approximation
to the partial sum process Sηt of ηj may be constructed componentwise as in lemma 3.1 of
Phillips (1999) leading to

sup
0≤k≤n

∣∣Sηik −W i
(k)
∣∣ = oa.s(n

1
q ), i = 1, ..,m (34)

giving a uniform approximation to Sηk over 0 ≤ k ≤ n in terms of the vector standard

Brownian motion W = (Wi). Then, setting B (r) = C (1) Σ
1
2W (r) , we have

sup
0≤k≤n

∣∣∣∣∣∣∣∣ Sk√n−B(
k

n
)

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣C (1) Σ
1
2

∣∣∣∣∣∣max
i

sup
0≤k≤n

∣∣∣∣Sηik√n −W i(
k

n
)

∣∣∣∣+ 2 sup
0≤k≤n

||̃εk||√
n

= oa.s.

(
1

n
1
2
− 1
p

)
,

as in lemma 3.1 of Phillips (1999).

6.2 Proof of Lemma 2.2 For r ∈ [0, 1] , we can write x∗[nr] = xJr where Jr is uniform
over {1, 2, ..., n} for each r and then as in (6) we have the embedding

x∗[nr]√
n

=
xJr√
n

= B

(
Jr
n

)
+ oa.s

(
1

n
1
2
− 1
p

)
= B (Rn,r) + oa.s

(
1

n
1
2
− 1
p

)
, (35)

where Rn,r = Jr
n is uniformly distributed over {

1
n ,

2
n , .., 1} for each r. Moreover, for r 6= s and

n large enough so that n|r − s| > 1, Jr and Js are independent draws. Hence, Rn,r and Rn,s
are statistically independent for large n for all r 6= s.

Substituting the KL representation (5) for B in (35) we get

x∗[nr]√
n

=
√

2
∞∑
k=1

sin
[(
k − 1

2

)
πRn,r

](
k − 1

2

)
π

ξk + oa.s

(
1

n
1
2
− 1
p

)
. (36)

Now Rn,r →d∗ Rr, a.s (P ), where Rr has a continuous uniform distribution over [0, 1] for
each r. It follows by the continuous mapping theorem that

sin

[(
k − 1

2

)
πRn,r

]
→d∗ sin

[(
k − 1

2

)
πRr

]
, a.s.(P ). (37)
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Hence,
x∗[nr]√
n
→d∗ B (Rr) a.s.(P ). (38)

Since Rn,r and Rn,s are asymptotically independent for all r 6= s, it follows that Rr and Rs
are independent for r 6= s. Thus, {Rr : r ∈ [0, 1]} is family of independent uniform variates
on [0, 1].

In a similar way we write the centred bootstrap as x̃∗t = xj − x, and then in the same
notation as (35)

x∗[nr]√
n

=
xJr√
n

= B

(
Jr
n

)
− 1

n

n∑
t=1

B

(
t

n

)
+ oa.s

(
1

n
1
2
− 1
p

)
= B (Rn,r)−

∫ 1

0
B (s) ds+ oa.s

(
1

n
1
2
− 1
p

)
, (39)

and the stated result follows from (38) and (39).

6.3 Proof of Lemma 2.3

Part (a) Using (9) we have

1

n

n∑
t=1

x∗t√
n

=
√

2
∞∑
k=1

1
n

∑n
j=1 sin

[(
k − 1

2

)
πRnj

](
k − 1

2

)
π

ξk + oa.s

(
1

n
1
2
− 1
p

)
, (40)

and, in view of (8),

1

n

n∑
j=1

sin

[(
k − 1

2

)
πRnj

]
=

1

n

n∑
j=1

sin

[(
k − 1

2

)
πRj

]
+ op∗ (1) (41)

→ p∗ E

{
sin

[(
k − 1

2

)
πRj

]}
a.s. (P )

=

∫ 1

0
sin

[(
k − 1

2

)
πr

]
dr. (42)

It follows from (40) - (42) that

1

n
3
2

n∑
t=1

x∗t → d∗
√

2
∞∑
k=1

∫ 1
0 sin

[(
k − 1

2

)
πr
]
dr(

k − 1
2

)
π

ξk a.s. (P )

=

∫ 1

0
B (r) dr,

the last line following by virtue of the uniform integrability of the KL series in this case.

Part (b) In a similar fashion, we find

1

n
3
2

n∑
t=1

x̃∗t →d∗

∫ 1

0
B (r) dr = 0, a.s. (P ) .
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Part (c) Higher order sample moments are dealt with in the same way. Thus, for part (c)
we have

1

n2

n∑
t=1

x∗tx
∗′
t =

1

n

n∑
t=1

x∗t√
n

x∗t√
n

′
= 2

∞∑
k,m=1

1
n

∑n
j=1 sin

[(
k − 1

2

)
πRnj

]
sin
[(
m− 1

2

)
πRnj

](
k − 1

2

) (
m− 1

2

)
π2

ξkξ
′
m,

and

1

n

n∑
j=1

sin

[(
k − 1

2

)
πRnj

]
sin

[(
m− 1

2

)
πRnj

]

→ p∗ E

{
sin

[(
k − 1

2

)
πRj

]
sin

[(
m− 1

2

)
πRj

]}
a.s. (P )

=

∫ 1

0
sin

[(
k − 1

2

)
πr

]
sin

[(
m− 1

2

)
πr

]
dr.

Again, uniform convergence of the KL series implies that we can integrate term by term,
leading to the result

1

n2

n∑
t=1

x∗tx
∗′
t →d∗ 2

∞∑
k,m=1

∫ 1
0 sin

[(
k − 1

2

)
πr
]

sin
[(
m− 1

2

)
πr
]
dr(

k − 1
2

) (
m− 1

2

)
π2

ξkξ
′
m =

∫ 1

0
B (r)B (r)′ dr a.s. (P ) .

Alternatively, by direct calculation we have∫ 1

0
sin

[(
k − 1

2

)
πr

]
sin

[(
m− 1

2

)
πr

]
dr =

1

2

∫ 1

0
{cos [(k −m)πr]− cos [(k +m− 1)πr]} dr

=

{
0 k 6= m
1
2 k = m

and then
1

n2

n∑
t=1

x∗tx
∗′
t →d∗

∞∑
k=1

1[(
k − 1

2

)
π
]2 ξkξ′m,

which is a series representation of
∫ 1
0 B (r)B (r)′ dr. Part (d) follows by a similar calculation.

Part (e) Using (4) and (6) we can write

1

n

∑n
1

(
x∗t√
n

)(
xt√
n

)′
=

1

n

∑n
j=1

[
B(Rnj) + oa.s.

(
1

n1/2−1/p

)][
B

(
j

n

)
+ oa.s.

(
1

n1/2−1/p

)]′
=

1

n

n∑
j=1

B(Rnj)B

(
j

n

)′
+ oa.s.(1)

= 2
1

n

∑n
1

( ∞∑
k=1

sin
[(
k − 1

2

)
πRnj

](
k − 1

2

)
π

ξk

) ∞∑
`=1

sin
[(
`− 1

2

)
π jn

]
(
`− 1

2

)
π

ξ′`

+ oa.s.(1)
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= 2

∞∑
k,`=1

ξkξ
′
`(

k − 1
2

) (
`− 1

2

)
π2

1

n

n∑
j=1

sin

[(
k − 1

2

)
πRnj

]
sin

[(
`− 1

2

)
π
j

n

]
+ oa.s.(1).

(43)

As in (41),

1

n

∑n
1 sin

[(
k − 1

2

)
πRnj

]
sin

[(
`− 1

2

)
π
j

n

]
=

1

n

∑n
1 E

{
sin

[(
k − 1

2

)
πRj

]}
sin

[(
`− 1

2

)
π
j

n

]
+

1

n

∑n
1

[
sin

[(
k − 1

2

)
πRnj

]
− E sin

{[(
k − 1

2

)
πRj

]}]
sin

[(
`− 1

2

)
π
j

n

]
= E

{
sin

[(
k − 1

2

)
πR

]}
1

n

∑n
1 sin

[(
`− 1

2

)
π
j

n

]
(44)

+
1

n

∑n
1

[
sin

[(
k − 1

2

)
πRj

]
− E sin

{[(
k − 1

2

)
πRj

]}]
sin

[(
`− 1

2

)
π
j

n

]
+ op∗ (1)

= E

{
sin

[(
k − 1

2

)
πR

]}
1

n

∑n
1 sin

[(
`− 1

2

)
π
j

n

]
+

1

n

∑t
1 ηj sin

[(
`− 1

2

)
π
j

n

]
(45)

= E

(
sin

(
k − 1

2

)
πR

)[∫ 1

0
sin

(
`− 1

2

)
πs ds+ o(1)

]
+ op∗ (1) (46)

=

(∫ 1

0
sin

(
k − 1

2

)
πr dr

)(∫ 1

0
sin

(
`− 1

2

)
πs ds

)
+ op∗ (1)

=
1(

k − 1
2

)
π

1(
`− 1

2

)
π

+ op∗ (1) . (47)

In line (44) above, R is uniformly distributed on [0, 1], in line (45) ηj = sin
[(
k − 1

2

)
πRj

]
−

E sin
{[(

k − 1
2

)
πRj

]}
≡ iid(0, σ2η), with σ

2
η = E(η2j ), and line (47) follows since

∫ 1
0 sin

(
k − 1

2

)
πr dr =

1/(k − 1
2)π.

From (43) and (47) we deduce that

1

n

∑t
1

(
x∗t√
n

)(
xt√
n

)
= 2

∞∑
k,`=1

ξkξ
′
`[(

k − 1
2

)
π
(
`− 1

2

)
π
]2 + op∗ (1)

→ d∗ 2

{ ∞∑
k=1

ξk[(
k − 1

2

)
π
]2
}{ ∞∑

k=1

ξk[(
k − 1

2

)
π
]2
}′

a.s.(P )

=

{∫ 1

0
B(r)dr

}{∫ 1

0
B(r)dr

}′
,

giving result (e). Part (f) follows in a similar way.

Part (g)

1

n

∑n
1

x∗t√
n

t

n
=

1

n

n∑
j−1

[
B(Rnj) + oa.s.

(
1

n1/2−1/p

)]
j

n
+ oa.s.(1)
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=
1

n

∑n
1 B(Rnj)

j

n
+ oa.s.(1).

Set ak = E
[
sin
[(
k − 1

2

)
πR
]]

= 1/(k− 1
2)π, where R is uniformly distributed on [0, 1]. Then,

we have

1

n

∑n
1 B(Rj)

j

n
=
√

2
∞∑
k=1

ξk(
k − 1

2

)
π

1

n

n∑
j=1

sin

[(
k − 1

2

)
πRnj

]
j

n

=
√

2

∞∑
k=1

ξk(
k − 1

2

)
π

{
1

n

∑n
1 ak

j

n
+

1

n

∑n
1

[
sin

(
k − 1

2

)
πRnj − ak

]
j

n

}

=
√

2

∞∑
k=1

ξk(
k − 1

2

)
π

{
1

n

∑n
1 ak

j

n
+

1

n

∑n
1

[
sin

(
k − 1

2

)
πRj − ak

]
j

n

}
+ op∗ (1)

=
√

2

∞∑
k=1

ξk[(
k − 1

2

)
π
]2 ∫ 1

0
rdr + op∗ (1)

=
1

2

∫ 1

0
B(r)dr + op∗ (1) , (48)

giving the stated result.

6.4 Proof of Theorem 2.4

Part (a) First consider ρ̂∗ = n−2
∑n

t=1 x
∗
tx
∗
t−1/n

−2∑n
t=1 x

∗2
t−1. From Lemma 2.3 (c), the

denominator of ρ̂∗ has the following limit

1

n2
∑n
1 x
∗2
t−1 →d∗

∫ 1

0
B(r)2dr a.s. (P ) . (49)

Using (6), the numerator can be written as

1

n2
∑n
1 x
∗
tx
∗
t−1 =

1

n

∑n
1

(
x∗t√
n

)(
x∗t−1√
n

)
=

1

n

n∑
j=1

[B(Rnj) + oa.s.(1)] [B(Rnj−1) + oa.s.(1)] . (50)

Here, Rnj and Rnj−1 are independent draws from 1/n, ..., 1 and, in view of (7),

Rnj →d∗ Rj , Rnj−1 →d∗ Rj−1 a.s. (P ) ,

where Rj and Rj−1 are independent draws from U [0, 1] . Thus, (50) is asymptotically equiv-
alent to

1

n

n∑
j=1

B(Rj)B(Sj), (51)

where Rj , Sj are independent U [0, 1] . Using the KL representation of B we therefore find

1

n

n∑
j=1

B(Rj)B(Sj) = 2ω2
∞∑

k,`=1

ξk(
k − 1

2

)
π

ξ`(
`− 1

2

)
π

1

n

∑n
1 sin

[(
k − 1

2

)
πRj

]
sin
[(
`− 1

2

)
πSj

]
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→ p∗ 2ω2
∞∑

k,`=1

ξkξ`(
k − 1

2

)
π
(
`− 1

2

)
π
E
{

sin
[(
k − 1

2

)
πRj

]}
E
{

sin
[(
`− 1

2

)
πSj

]}
= 2ω2

∞∑
k,`=1

ξkξ`(
k − 1

2

)
π
(
`− 1

2

)
π

∫ 1

0
sin
[(
k − 1

2

)
πr
]
dr

∫ 1

0
sin
[(
`− 1

2

)
πs
]
ds

=

[∫ 1

0
(B(r))dr

]2
. (52)

It follows from (49)-(52) that

ρ̂∗ →d∗ ξρ =

[∫ 1
0 (B(r))dr

]2
∫ 1
0 B(r)2dr

a.s. (P ) ,

as stated.
Next consider ρ̂∗h = n−2

∑n
t=h x

∗
tx
∗
t−h/n

−2∑n
t=1 x

∗2
t−h. The denominator has the same limit

as (49). The numerator, following (50), can be written as

1

n2
∑n

h x
∗
tx
∗
t−h =

1

n

∑n
h

(
x∗t√
n

)(
x∗t−h√
n

)
=

1

n

n∑
j=h

[B(Rnj) + oa.s.(1)] [B(Rnj−h) + oa.s.(1)]

=
1

n

n∑
j=h

B(Rnj)B(Rnj−h) + oa.s.(1).

Again, Rnj and Rnj−h are independent draws from 1/n, ..., 1 and Rnj →d∗ Rj , Rnj−h →d∗

Rj−h a.s. (P ) , where Rj and Rj−h are independent U [0, 1] . Thus, (50) is asymptotically
equivalent to (51), where Rj , Sj are independent U [0, 1] and independent over j. Thus, the
limit (52) applies and we deduce the stated result.

Part (b) First consider ρ̃∗ = n−2
∑n

t=1 x̃
∗
t x̃
∗
t−1/n

−2∑n
t=1 x̃

∗2
t−1. From Lemma 2.3 (c), the

denominator of ρ̃∗ has the following limit

1

n2
∑n
1 x̃
∗2
t−1 →d∗

∫ 1

0
B(r)2dr a.s. (P ) . (53)

Proceeding as in (50) and using (39), the numerator can be written as

1

n

∑n
1

(
x̃∗t√
n

)(
x̃∗t−1√
n

)
=

1

n

n∑
j=1

[
B(Rnj)−

∫ 1

0
B(r)dr + oa.s.(1)

] [
B(Rnj−1)−

∫ 1

0
B(r)dr + oa.s.(1)

]
, (54)

which is asymptotically equivalent to

1

n

n∑
j=1

[
B(Rj)−

∫ 1

0
B(r)dr

] [
B(Sj)−

∫ 1

0
B(r)dr

]
=

1

n

n∑
j=1

B(Rj)B(Sj),
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where Rj , Sj are independent U [0, 1] . Calculations analogous to those leading to (52) show
that

1

n

n∑
j=1

B(Rj)→p∗

∫ 1

0
B(r)dr a.s. (P ) ,

which, in combination with (52), reveal that

1

n

n∑
j=1

B(Rj)B(Sj)→p∗ 0 a.s. (P ) . (55)

We deduce that ρ̃∗ →p∗ 0 a.s. (P ) and the result for ρ̃∗h follows in the same way.
Finally, if the serial correlation coeffi cient is redefined in terms of deviations from means

as ρ̂eh = n−2
∑n

t=h e
∗
t e
∗
t−h/n

−2∑n
t=1 e

∗2
t , then the numerator n

−2∑n
h e
∗
t e
∗
t−1 evidently has the

same form as (54) above. Then (55) applies and we deduce that ρ̂eh →p∗ 0 a.s. (P ) .

6.5 Proof of Theorem 2.5 Take the serial correlation ρ̂b∗ = n−2
∑n

t=1 x
b∗
t x

b∗
t−1/n

−2∑n
t=1 x

b∗2
t−1.

In a manner analogous to the proof of Lemma 2.3 (c), the denominator of ρ̂∗ can be shown
to have the following limit

1

n2
∑n
1 x

b∗2
t−1 →d∗

∫ 1

0
B(r)2dr a.s. (P ) . (56)

Using (12), the numerator can be written as

1

n

∑n
1

(
xb∗t√
n

)(
xb∗t−1√
n

)

=
1

mM

M∑
j=1

m∑
k=2

[
B(RMj +

k

n
) + oa.s.(1)

] [
B(RMj +

k − 1

n
) + oa.s.(1)

]

+
1

mM

M∑
j=1

[
B

(
RMj +

1

n

)
+ oa.s.(1)

] [
B
(
RMj−1 +

m

n

)
+ oa.s.(1)

]
. (57)

In (57), RMj and RMj−1 are independent draws from 0, 1M , ...,
M−1
M and, in view of (13),

RMj →d∗ Rj , RMj−1 →d∗ Rj−1 a.s. (P ) ,

where Rj and Rj−1 are independent draws from U [0, 1] . Thus, (57) is asymptotically equiv-
alent to

1

M

M∑
j=1

1

m

m∑
k=2

[
B(RMj +

k

n
) + oa.s.(1)

] [
B(RMj +

k − 1

n
) + oa.s.(1)

]
+ oa.s.

(
1

m

)

=

M∑
j=1

∫ RMj+
m
n

RMj+
1
n

B (r)2 dr + oa.s. (1) . (58)
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By virtue of the continuity of Brownian motion and the fact that m
n = 1

M → 0, (58) is
asymptotically equivalent to

1

M

M∑
j=1

B (RMj)
2 .

From (13), we have

sin

[(
k − 1

2

)
πRMj

]
→d∗ sin

[(
k − 1

2

)
πRj

]
a.s.(P ),

as in (8), and

1

M

M∑
j=1

sin

[(
k − 1

2

)
πRj

]
sin

[(
`− 1

2

)
πRj

]
→p∗ E

{
sin

[(
k − 1

2

)
πRj

]
sin

[(
`− 1

2

)
πRj

]}
.

Then, as in the proof of Lemma 2.3 (c) we find that

1

M

M∑
j=1

B (RMj)
2 → d∗ 2ω2

∞∑
k,`=1

ξkξ`(
k − 1

2

)
π
(
`− 1

2

)
π

∫ 1

0
sin
[(
k − 1

2

)
πr
]

sin
[(
`− 1

2

)
πr
]
dr

=

∫ 1

0
B(r)2dr. (59)

Combining (56)-(59) we deduce that

ρ̂b∗ →d∗

∫ 1
0 B(r)2dr∫ 1
0 B(r)2dr

= 1 a.s. (P ) ,

as stated. Proofs for ρ̃b∗h and ρ̂beh follow in a similar fashion.

6.6 Proof of Theorem 2.6 Write

n

M
(ρ̂∗1 − 1) =

1

nM

n∑
t=1

∆x∗tx
∗
t−1/

1

n2

n∑
t=1

x∗2t−1. (60)

The limit of the denominator is given in (56). For the numerator, the identity

∆
n∑
t=1

x∗2t =
n∑
t=1

∆x∗tx
∗
t +

n∑
t=1

x∗t−1∆x
∗
t = 2

n∑
t=1

x∗t−1∆x
∗
t +

n∑
t=1

(∆x∗t )
2

leads to

1

nM

n∑
t=1

x∗t−1∆x
∗
t

=
1

2M

{(
x∗n√
n

)2
− 1

n

n∑
t=1

(∆x∗t )
2

}
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=
1

2M

{(
x∗n√
n

)2
− 1

mM

M∑
s=1

m∑
k=2

(
x(js−1)m+k − x(js−1)m+k−1

)2 − 1

n

M∑
s=1

(
x(js−1)m+1 − x(js−1−1)m+m

)2}

=
1

2M

{(
x(jM−1)m+m√

n

)2
− 1

mM

M∑
s=1

m∑
k=2

u2(js−1)m+k −
M∑
s=1

(
x(js−1)m+1 − x(js−1−1)m+m√

n

)2}
(61)

where {js : s = 1, ...,M} are independent uniform draws from 1, ...,M, and j0 = 0. From (14)
and a block bootstrap version of Lemma 2.2, we find that

x(jM−1)m+m√
n

→d∗ B (R) a.s. (P ) , (62)

where R is uniform over [0, 1]. Next, for all s

1

m

m∑
k=2

u2(js−1)m+k →p∗ σ
2
u a.s. (P ) (63)

where σ2u = E
(
u2t
)
. Finally

1

M

M∑
s=1

(
x(js−1)m+1 − xjs−1m√

n

)2
=

1

M

M∑
s=1

[
B(RMjs +

1

n
)−B(RMjs−1 +

m

n
) + oa.s.(1)

]2

=
1

M

M∑
s=1

[
B(RMjs)−B(RMjs−1)

]2
+ oa.s.(1)

→ d∗

∫ 1

0

∫ 1

0
[B(r)−B(s)]2 drds a.s. (P ) (64)

where R and S are independent uniform variates on [0, 1]. Combining (61) - (64), we obtain
the following limit for the numerator of (60)

1

nM

n∑
t=1

x∗t−1∆x
∗
t → d∗ −

1

2

∫ 1

0

∫ 1

0
[B(r)−B(s)]2 drds a.s. (P )

= −
{∫ 1

0
B(r)2dr −

(∫ 1

0
B(r)dr

)2}

and the stated result follows. If centred bootstrap resampling is used, then small modifications
to the above argument reveal that

1

nM

n∑
t=1

x̃∗t−1∆x̃
∗
t → d∗ −

1

2

∫ 1

0

∫ 1

0
[B(r)−B(s)]2 drds a.s. (P )

= −
∫ 1

0
B(r)2dr,

and then n
M (ρ̂∗1 − 1)→p∗ −1.

6.7 Proof of Theorem 3.1
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Part (a) Since b̂∗n = b̂n +
∑n

t=1 tu
∗
t /
∑n

t=1 t
2,

√
n
(
b̂∗n − b̂n

)
=
n−

5
2
∑n

t=1 u
∗
t t

n−3
∑n

t=1 t
2
.

The bootstrap sample (u∗t )
n
1 is drawn randomly from the residuals (ût = xt− b̂nt)n1 . From (4)

and (19) we can write

ût√
n

=
xt√
n
−
√
nb̂n

t

n
= B

(
t

n

)
− (ξ + oa.s.(1))

t

n
+ oa.s.(1),

which leads to the following representation for the bootstrap process u∗t

û∗t√
n

= B(Rnj)− ξRnj + oa.s.(1), (65)

as in (6), where Rnj is uniformly distributed over { 1n ,
2
n , .., 1} for each j and satisfies (7). In

(65)

B(Rnj)− ξRnj = B(Rnj)−
(∫ 1

0
rB(r)

)(∫ 1

0
r2
)−1

Rnj = Br (Rnj) , (66)

where Br(s) = B(s)− (
∫ 1
0 rB(r)dr)(

∫ 1
0 r

2)−1s is detrended Brownian motion. Then

√
n
(
b̂∗n − b̂n

)
=

n−
5
2
∑n

t=1 u
∗
t t

n−3
∑n

t=1 t
2

=

1
n

∑n
j=1 [B(Rnj)− ξRnj + oa.s.(1)]

(
j
n

)
n−3

∑n
t=1 t

2

=

1
n

∑n
j=1 [B(Rnj)− ξRnj + oa.s.(1)]

(
j
n

)
n−3

∑n
t=1 t

2
.

As in (48)

1

n

n∑
j=1

B(Rnj)

(
j

n

)
→d∗

∫ 1

0
B(r)dr

∫ 1

0
rdr =

1

2

∫ 1

0
B(r)dr a.s.(P ),

and
1

n

n∑
j=1

Rnj

(
j

n

)
→p∗ E (Rj)

∫ 1

0
rdr =

(∫ 1

0
rdr

)2
=

1

4
.

It follows that

√
n
(
b̂∗n − b̂n

)
→d∗

∫ 1
0 Br(s)ds

∫ 1
0 sds∫ 1

0 r
2dr

=
1
2

∫ 1
0 B(r)dr − 1

4ξ
1
3

a.s.(P ),

and so

√
nb̂∗n → d∗ ξ∗ = ξ +

∫ 1
0 Br(s)ds

∫ 1
0 sds∫ 1

0 r
2dr

a.s.(P ) (67)

=
3

2

∫ 1

0
B(r)dr +

1

4
ξ,

as required.
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Part (b) The standardized residual from the bootstrap regression (23) is

u∗∗t√
n

=
x∗∗t√
n
−
√
nb̂∗n

t

n
=
b̂nt+ u∗t√

n
−
√
nb̂∗n

t

n

=
u∗t√
n
−
√
n
(
b̂∗n − b̂n

) t
n
. (68)

From (65), u
∗
t√
n

= B(Rnj)−ξRnj+oa.s.(1), and from part (a) and (67)
√
n
(
b̂∗n − b̂n

)
→d∗ ξ

∗−
ξ, a.s.(P ). It follows from (65)-(68) that the limit distribution of n−1s∗∗2 = n−2

∑n
t=1 u

∗∗2
t

is the same as that of

1

n

n∑
j=1

{
Br (Rnj) + (ξ − ξ∗) j

n

}2
=

1

n

n∑
j=1

Br (Rnj)
2+2 (ξ − ξ∗) 1

n

n∑
j=1

Br (Rnj)
j

n
+(ξ∗ − ξ)2 1

n

n∑
j=1

(
j

n

)2
.

(69)
As in Lemma 2.3 (c) and (g) we have

1

n

n∑
j=1

Br (Rnj)
2 → d∗

∫ 1

0
Br(s)

2ds a.s.(P ), (70)

1

n

n∑
j=1

Br (Rnj)
j

n
→ d∗

1

2

∫ 1

0
Br(r)dr =

∫ 1

0
Br(s)ds

∫ 1

0
sds a.s.(P ). (71)

It follows that

1

n
s∗∗2 → d∗

∫ 1

0
Br(s)

2ds+ (ξ − ξ∗)
∫ 1

0
Br(s)ds

∫ 1

0
sds+ (ξ − ξ∗)2

∫ 1

0
sds a.s.(P )

=

∫ 1

0
{Br(s) + (ξ − ξ∗) s}2 dr = σ2ξ , say, (72)

giving the stated result.

Part (c) The bootstrap regression t-ratio is

t(b̂∗n) =
b̂∗n
sb̂∗

=
b̂∗n

[s∗∗2/
∑n
1 t
2]1/2

=
√
n

√
nb̂∗n

[ 1ns
∗∗2/ 1

n3
∑n
1 t
2]1/2

and then

1√
n
t(b̂∗n)→d∗

ξ∗
(∫ 1
0 r

2
) 1
2

σξ
=

ξ∗√
3σξ

a.s.(P ).

Part (d) Write ρ̂∗∗ = n−2
∑n

t=1 u
∗∗
t u
∗∗
t−1/n

−2∑n
t=1 u

∗∗2
t−1. As in (68)-(69) above, n

− 1
2u∗∗t

behaves asymptotically like Br (Rnj) + (ξ − ξ∗) j
n . It follows that n

−2∑n
t=1 u

∗∗
t u
∗∗
t−1 is asymp-

totically equivalent to

1

n

n∑
j=1

{
Br (Rnj) + (ξ − ξ∗) j

n

}{
Br (Rnj−1) + (ξ − ξ∗) j − 1

n

}
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=
1

n

n∑
j=1

Br (Rnj)Br (Rnj−1) + (ξ − ξ∗) 1

n

n∑
j=1

j

n
Br (Rnj−1) + (ξ − ξ∗) 1

n

n∑
j=1

j − 1

n
Br (Rnj)

+ (ξ − ξ∗)2 1

n

n∑
j=1

j

n

j − 1

n
.

Proceeding as in (50)-(52) we find

1

n

n∑
j=1

Br (Rnj)Br (Rnj−1) → d∗

(∫ 1

0
Br(s)ds

)2
a.s.(P ), (73)

1

n

n∑
j=1

j

n
Br (Rnj−1) → d∗

(∫ 1

0
sds

)(∫ 1

0
Br(s)ds

)
, (74)

and then

n−2
n∑
t=1

u∗∗t u
∗∗
t−1 →d∗

(∫ 1

0
Br(s)ds+ (ξ − ξ∗)

∫ 1

0
sds

)2
a.s.(P ).

As in (72)

n−2
n∑
t=1

u∗∗2t−1 →d∗

∫ 1

0
{Br(s) + (ξ − ξ∗) s}2 ds = σ2ξ a.s.(P ). (75)

It follows that

ρ̂∗∗ →d∗ ξ
breg
ρ =

(∫ 1
0 [Br(s) + (ξ − ξ∗) s] ds

)2
∫ 1
0 {Br(s) + (ξ − ξ∗) s}2 ds

,

as given in the theorem. The result for ρ̂∗∗h follows in precisely the same manner (c.f. the
proof of part (a) of Theorem 2.4).

Part (e) Write DW ∗∗ = n−2
∑n
2 (∆û∗∗t )2/n−2

∑n
1 û
∗∗2
t where ∆û∗∗t = ∆x∗∗t − b̂∗n = b̂n −

b̂∗n + ∆û∗t from (22) and (23). Hence

1

n2

n∑
t=2

(∆u∗∗t )2 =
1

n

∑[
u∗t√
n
−
u∗t−1√
n

+ op∗(1)

]2
=

1

n

n∑
j=1

[(B(Rnj)− ξRnj)− (B(Rnj−1)− ξ(Rnj−1))]2 + op∗(1),

whose asymptotic behavior is the same as

1

n

n∑
j=1

[{B(Rj)− ξ(Rj)} − {B(Sj)− ξSj}]2 =
1

n

n∑
j=1

[Br(Rj)−Br(Sj)]2

=
1

n

n∑
j=1

Br(Rj)
2 +

1

n

n∑
j=1

Br(Sj)
2 − 2

n

n∑
j=1

Br(Rj)Br(Sj),
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where Rj , Sj are independent iidU [0, 1] . As in (70) and (73) above

1

n

n∑
j=1

Br(Rj)
2,

1

n

n∑
j=1

Br(Sj)
2 → d∗

∫ 1

0
Br(s)

2ds a.s.(P ),

1

n

n∑
j=1

Br(Rj)Br(Sj) → d∗

(∫ 1

0
Br(s)ds

)2
a.s.(P ),

so that
1

n2

n∑
t=2

(∆u∗∗t )2 →d∗ 2

∫ 1

0
Br(s)

2ds− 2

(∫ 1

0
Br(s)ds

)2
a.s.(P ),

which can be written in the form

2

∫ 1

0
Br(s)

2ds

1−

(∫ 1
0 Br(s)ds

)2
∫ 1
0 Br(s)

2ds

 = 2

∫ 1

0
Br(s)

2ds
[
1− ξbρ

]
,

where

ξbρ =

(∫ 1
0 Br(s)ds

)2
∫ 1
0 Br(s)

2ds
.

From (75), the limit of the denominator of DW ∗∗ is

n−2
n∑
t=1

u∗∗2t →d∗

∫ 1

0
{Br(s) + (ξ − ξ∗) s}2 ds = σ2ξ a.s.(P ),

and so

DW ∗∗ →d∗
2
∫ 1
0 Br(s)

2ds

σ2ξ

[
1− ξbρ

]
a.s.(P ).

Part (f) Write R∗∗2 = 1− n−2
∑n
1 û
∗∗2
t /n−2

∑n
1 x
∗∗2
t . We have x∗∗t = b̂nt+ u∗t and so

1

n

n∑
t=1

(
x∗∗t√
n

)2
=

1

n

n∑
t=1

(√
nb̂n

t

n
+

u∗t√
n

)2
,

whose asymptotic behavior is the same as

1

n

n∑
j=1

(
ξ
j

n
+B(Rj)− ξRj

)2
= ξ2

1

n

n∑
j=1

(
j

n

)2
+

1

n

n∑
j=1

B(Rj)
2 + ξ2

1

n

n∑
j=1

R2j

+2ξ
1

n

n∑
j=1

B(Rj)
j

n
− 2ξ2

1

n

n∑
j=1

Rj
j

n
− 2ξ

1

n

n∑
j=1

B(Rj)Rj

→ d∗ξ
2

∫ 1

0
r2dr +

∫ 1

0
B (r)2 dr + ξ2

∫ 1

0
r2dr a.s.(P )
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+2ξ

∫ 1

0
B (r) dr

∫ 1

0
rdr − 2ξ2

∫ 1

0
r2dr − 2ξ

∫ 1

0
B (r) dr

∫ 1

0
rdr a.s.(P )

=

∫ 1

0
B (r)2 dr.

It follows that

R2 →d∗ 1−
σ2ξ∫ 1

0 B (r)2 dr
= 1−

∫ 1
0 {B(s)− ξ∗s}2 ds∫ 1

0 B (r)2 dr
a.s.(P ).

6.8 Proof of Theorem 3.3 The proofs here and in later arguments are similar to what
has come before and so derivations henceforth are simply sketched.

Part (a) Since b̂∗n = b̂n +
∑n

t=1 tũ
∗
t /
∑n

t=1 t
2,

√
n
(
b̂∗n − b̂n

)
=
n−

5
2
∑n

t=1 ũ
∗
t t

n−3
∑n

t=1 t
2
.

The bootstrap sample (ũ∗t )
n
1 is drawn randomly from the centred residuals (ût−n−1

∑n
t=1 ût =

xt − x− b̂n(t− t))n1 . From (4) and (19) we can write

ût√
n
− 1

n
3
2

n∑
t=1

ût = B

(
t

n

)
−
∫ 1

0
B (r) dr − (ξ + oa.s.(1))

(
t

n
−
∫ 1

0
rdr

)
+ oa.s.(1),

which leads to the following representation for the bootstrap process ũ∗t

ũ∗t√
n

= B(Rnj)− ξRnj + oa.s.(1) = Br(Rnj) + oa.s.(1), (76)

where r = r −
∫ 1
0 rdr. Then, just as in part (a) of Theorem 3.1 we find that

√
n
(
b̂∗n − b̂n

)
→d∗

∫ 1
0 Br(s)ds

∫ 1
0 sds∫ 1

0 r
2dr

= 0 a.s.(P ), (77)

and so √
nb̂∗n →d∗ ξ a.s.(P ).

Parts (b) & (c) The standardized residual from the bootstrap regression (23) is

u∗∗t√
n

=
x∗∗t√
n
−
√
nb̂∗n

t

n
=
b̂nt+ ũ∗t√

n
−
√
nb̂∗n

t

n

=
ũ∗t√
n
−
√
n
(
b̂∗n − b̂n

) t
n
.

It follows from (76) and (77) that the limit distribution of n−1s∗∗2 = n−2
∑n

t=1 u
∗∗2
t is the

same as that of
1

n

n∑
j=1

Br(Rnj)
2 →d∗

∫ 1

0
Br(s)

2ds a.s.(P ),
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using the same arguments as those in Lemma 2.3 (c). The bootstrap regression t-ratio is

t(b̂∗n) =
b̂∗n
sb̂∗

=
b̂∗n

[s∗∗2/
∑n
1 t
2]1/2

=
√
n

√
nb̂∗n

[ 1ns
∗∗2/ 1

n3
∑n
1 t
2]1/2

and then

1√
n
t(b̂∗n)→d∗

ξ
(∫ 1
0 r

2
) 1
2

(∫ 1
0 Br(s)

2ds
) 1
2

a.s.(P ).

Part (d) Write ρ̂∗∗ = n−2
∑n

t=1 u
∗∗
t u
∗∗
t−1/n

−2∑n
t=1 u

∗∗2
t−1. As in (68)-(69) above, n

− 1
2u∗∗t be-

haves asymptotically like Br (Rnj) = Br(Rnj)−
∫ 1
0 Br(s)ds. It follows that n

−2∑n
t=1 u

∗∗
t u
∗∗
t−1

is asymptotically equivalent to

1

n

n∑
j=1

Br (Rnj)Br (Rnj−1)

=
1

n

n∑
j=1

Br (Rnj)Br (Rnj−1)−
∫ 1

0
Br(s)ds

1

n

n∑
j=1

Br (Rnj−1)

−
∫ 1

0
Br(s)ds

1

n

n∑
j=1

Br (Rnj) +

(∫ 1

0
Br(s)ds

)2
.

As in (73) we find

1

n

n∑
j=1

Br (Rnj)Br (Rnj−1) → d∗

(∫ 1

0
Br(s)ds

)2
a.s.(P ),

1

n

n∑
j=1

Br (Rnj−1) → d∗

∫ 1

0
Br(s)ds,

and then

n−2
n∑
t=1

u∗∗t u
∗∗
t−1 →p∗ 0 a.s.(P ),

from which the result for ρ̂∗∗ follows. The result for ρ̂∗∗h follows in the same way.

Part (e) Write DW ∗∗ = n−2
∑n
2 (∆û∗∗t )2/n−2

∑n
1 û
∗∗2
t where ∆û∗∗t = ∆x∗∗t − b̂∗n = b̂n −

b̂∗n + ∆ũ∗t from (22) and (23). Hence

1

n2

n∑
t=2

(∆u∗∗t )2 =
1

n

∑[
ũ∗t√
n
−
ũ∗t−1√
n

+ op∗(1)

]2
=

1

n

n∑
j=1

[Br(Rnj)−Br(Rnj−1)]
2 + op∗(1),
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whose asymptotic behavior is the same as

1

n

n∑
j=1

[Br(Rj)−Br(Sj)]
2 =

1

n

n∑
j=1

Br(Rj)
2 +

1

n

n∑
j=1

Br(Sj)
2 − 2

n

n∑
j=1

Br(Rj)Br(Sj),

where Rj , Sj are independent iidU [0, 1] . As in (70) and (73) above

1

n

n∑
j=1

Br(Rj)
2,

1

n

n∑
j=1

Br(Sj)
2 → d∗

∫ 1

0
Br(s)

2ds a.s.(P ),

1

n

n∑
j=1

Br(Rj)Br(Sj) → d∗

(∫ 1

0
Br(s)ds

)2
= 0 a.s.(P ),

so that
1

n2

n∑
t=2

(∆u∗∗t )2 →d∗ 2

∫ 1

0
Br(s)

2ds a.s.(P ).

From this result and part (b) we deduce that DW ∗∗ →p∗ 2 a.s.(P ), as stated.

Part (f) Write R∗∗2 = 1− n−2
∑n
1 û
∗∗2
t /n−2

∑n
1 x
∗∗2
t . We have x∗∗t = b̂nt+ ũ∗t and so

1

n

n∑
t=1

(
x∗∗t√
n

)2
=

1

n

n∑
t=1

(√
nb̂n

t

n
+

ũ∗t√
n

)2
,

whose asymptotic behavior is the same as

1

n

n∑
j=1

(
ξ
j

n
+Br(Rj)

)2
= ξ2

1

n

n∑
j=1

(
j

n

)2
+

1

n

n∑
j=1

Br(Rj)
2 + 2ξ

1

n

n∑
j=1

Br(Rj)
j

n

→ d∗ξ
2

∫ 1

0
r2dr +

∫ 1

0
Br (s)2 ds+ 2ξ

(∫ 1

0
Br (r) dr

)(∫ 1

0
rdr

)
a.s.(P )

=

∫ 1

0
Br (s)2 ds+ ξ2

∫ 1

0
r2dr.

It follows from this result and part (b) that

R2 →d∗ 1−
∫ 1
0 Br(s)

2ds∫ 1
0 Br (s)2 ds+ ξ2

∫ 1
0 r

2dr
=

ξ2
∫ 1
0 r

2dr∫ 1
0 Br (s)2 ds+ ξ2

∫ 1
0 r

2dr
a.s.(P ).

6.8 Proof of Theorem 3.5

Part (a) Start with the formula

√
n
(
b̂b∗n − b̂n

)
=
n−

5
2
∑n

t=1 ũ
b∗
t t

n−3
∑n

t=1 t
2
,

and, as in (27)-27, for t = (s− 1)m+ k we can write

ũb∗t√
n

=
û(js−1)m+k − n−1

∑n
s=1 ûs√

n
= Br

(
RMjs +

k

n

)
+ oa.s (1) . (78)
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Then, as in part (a) of Theorems 3.1 and 3.3 we find that

√
n
(
b̂b∗n − b̂n

)
→d∗

∫ 1
0 Br(s)ds

∫ 1
0 sds∫ 1

0 r
2dr

= 0 a.s.(P ), (79)

and so
√
nb̂∗n →d∗ ξ a.s.(P ).

Parts (b) & (c) The standardized residual from the regression (26) is

ub∗∗t√
n

=
xb∗∗t√
n
−
√
nb̂b∗n

t

n
=
b̂nt+ ũb∗t√

n
−
√
nb̂b∗n

t

n
=
ũb∗t√
n
−
√
n
(
b̂b∗n − b̂n

) t
n
. (80)

It follows from (79) that n−
1
2ub∗∗t is asymptotically equivalent to n−

1
2 ũb∗t . Then, from (78)

and the continuity of Br(s), the limit distribution of n
−1sb∗∗2 = n−2

∑n
t=1 u

b∗∗2
t is the same

as that of
1

M

M∑
s=1

Br(RMjs)
2 →d∗

∫ 1

0
Br(s)

2ds a.s.(P ), (81)

- compare the argument leading to (84) below. Part (c) follows directly.

Part (d) Take the serial correlation ρ̂b∗∗1 = n−2
∑n

t=1 u
b∗∗
t ub∗∗t−1/n

−2∑n
t=1 u

b∗∗2
t−1 . The denom-

inator of ρ̂b∗∗ is covered in part (b). In view of (80) and (79), the numerator is asymptotically
equivalent to

1

n

∑n
1

(
ũb∗t√
n

)(
ũb∗t−1√
n

)

=
1

mM

M∑
s=1

m∑
k=2

[
Br(RMjs +

k

n
) + oa.s.(1)

] [
Br(RMjs +

k − 1

n
) + oa.s.(1)

]

+
1

mM

M∑
s=1

[
Br

(
RMjs +

1

n

)
+ oa.s.(1)

] [
Br

(
RMjs−1 +

m

n

)
+ oa.s.(1)

]
. (82)

In (82), RMjs and RMjs−1 are independent draws from 0, 1M , ...,
M−1
M and, in view of (13),

RMjs →d∗ Rj , RMjs−1 →d∗ Rj−1 a.s. (P ) ,

where Rj and Rj−1 are independent draws from U [0, 1] . Thus, (82) is asymptotically equiv-
alent to

1

M

M∑
s=1

1

m

m∑
k=2

[
Br(RMjs +

k

n
) + oa.s.(1)

] [
Br(RMjs +

k − 1

n
) + oa.s.(1)

]
+ oa.s.

(
1

m

)

=

M∑
s=1

∫ RMjs+
m
n

RMjs+
2
n

Br (r)2 dr + oa.s. (1) =

M∑
s=1

∫ RMjs+
m
n

RMjs+
1
n

Br (r)2 dr + oa.s. (1) . (83)
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By virtue of the continuity of Br(s) and the fact that
m
n = 1

M → 0, (83) is asymptotically
equivalent to M−1

∑M
s=1Br (RMjs)

2 . Then, just as in the proof of Theorem 2.3, we find that

1

M

M∑
s=1

Br (RMjs)
2 →d∗

∫ 1

0
Br(r)

2dr. (84)

Combining these results for the numerator and denominator, we deduce that

ρ̂b∗∗1 →d∗

∫ 1
0 Br(r)

2dr∫ 1
0 Br(r)

2dr
= 1 a.s. (P ) ,

as stated. The proof for ρ̂b∗∗h follows in a similar fashion.

Part (e) Write DW b∗∗ = n−2
∑n
2 (∆ub∗∗t )2/n−2

∑n
1 u

b∗∗2
t where ∆ub∗∗t = ∆xb∗∗t − b̂b∗n =

b̂n − b̂b∗n + ∆ũb∗t . Using part (a) we have

1

n2

n∑
t=2

(∆ub∗∗t )2

=
1

n

n∑
t=2

[
ũb∗t√
n
−
ũb∗t−1√
n

+ op∗(1)

]2

=
1

n

M∑
s=1

m∑
k=2

[Br(RMjs +
k

n
)−Br(RMjs +

k − 1

n
) + oa.s.(1)]2

+
1

mM

M∑
s=1

[
Br

(
RMjs +

1

n

)
−Br

(
RMjs−1 +

m

n

)
+ oa.s.(1)

]2
+ op∗(1). (85)

Now
1

n

M∑
s=1

m∑
k=2

[Br(RMjs +
k

n
)−Br(RMjs +

k − 1

n
)]2 = op∗(

1

n1−δ
), δ > 0, (86)

by virtue of the Hölder continuity of Br and, as in (64) above,

1

M

M∑
s=1

[
Br

(
RMjs +

1

n

)
−Br

(
RMjs−1 +

m

n

)]2
→d∗

∫ 1

0

∫ 1

0
[Br(r)−Br(s)]

2 drds a.s. (P )

(87)
Thus,

1

n2

n∑
t=2

(∆u∗∗t )2 →p∗ 0 a.s.(P ).

It follows directly that DW b∗∗ →p∗ 0 a.s.(P ), as stated.

Part (f) Write Rb∗∗2 = 1−n−2
∑n
1 u

b∗∗2
t /n−2

∑n
1 x

b∗∗2
t .We have xb∗∗t = b̂nt+ ũb∗t and from

(29), n−
1
2xb∗∗[nr] = ξr +Br (RM,r) + oa.s (1) . Then,

1

n

n∑
t=1

(
xb∗∗t√
n

)2
=

1

n

n∑
t=1

(√
nb̂n

t

n
+
ũb∗t√
n

)2
,
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whose asymptotic behavior is the same as

1

n

M∑
s=1

m∑
k=1

(
ξ

(s− 1)m+ k

n
+Br(RMjs +

k

n
)

)2
→ d∗ ξ2

∫ 1

0
r2dr +

∫ 1

0
Br (s)2 ds+ 2ξ

(∫ 1

0
Br (r) dr

)(∫ 1

0
rdr

)
a.s.(P )

=

∫ 1

0
Br (s)2 ds+ ξ2

∫ 1

0
r2dr.

It follows from this result and part (b) that

R2 →d∗ 1−
∫ 1
0 Br(s)

2ds∫ 1
0 Br (s)2 ds+ ξ2

∫ 1
0 r

2dr
=

ξ2
∫ 1
0 r

2dr∫ 1
0 Br (s)2 ds+ ξ2

∫ 1
0 r

2dr
a.s.(P ).

6.9 Proof of Theorem 3.7 Write

n

M
(ρ̂b∗∗1 − 1) =

1

nM

n∑
t=1

∆ub∗∗t ub∗∗t−1/
1

n2

n∑
t=1

ub∗∗2t−1 .

The limit of the denominator is given in (81). Next, in view of (79) and (80), for t =
(s− 1)m+ k, we can write

n−
1
2ub∗∗t = n−

1
2 ũb∗t + op∗(1) = n−

1
2 û(js−1)m+k + op∗(1),

and, as in (85),

∆ũb∗t√
n

= Br(RMjs +
k

n
)−Br(RMjs +

k − 1

n
) + oa.s.(1),

where {js : s = 1, ...,M} are independent uniform draws from 1, ...,M, and j0 = 0. The
identity

∆
n∑
t=1

ub∗∗2t =
n∑
t=1

∆ub∗∗t ub∗∗t +
n∑
t=1

ub∗∗t−1∆u
b∗∗
t = 2

n∑
t=1

ub∗∗t−1∆u
b∗∗
t +

n∑
t=1

(
∆ub∗∗t

)2
then leads to the representation

1

nM

n∑
t=1

ub∗∗t−1∆u
b∗∗
t =

1

2M

{(
ub∗∗n√
n

)2
−

n∑
t=1

(
∆ub∗∗t√

n

)2}
.

From (85)-(86) we have

1

nM

n∑
t=1

(∆ub∗∗t )2 =
1

M

n∑
t=1

[
ũb∗t√
n
−
ũb∗t−1√
n

+ op∗(1)

]2

=
1

M

M∑
s=1

m∑
k=2

[Br(RMjs +
k

n
)−Br(RMjs +

k − 1

n
) + oa.s.(1)]2
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+
1

M

M∑
s=1

[
Br

(
RMjs +

1

n

)
−Br

(
RMjs−1 +

m

n

)
+ oa.s.(1)

]2
+ op∗(1),

and
1

M

M∑
s=1

m∑
k=2

[Br(RMjs +
k

n
)−Br(RMjs +

k − 1

n
)]2 = op∗(

m

n1−δ
), δ > 0.

As in (87),

1

M

M∑
s=1

[
Br

(
RMjs +

1

n

)
−Br

(
RMjs−1 +

m

n

)]2
→d∗

∫ 1

0

∫ 1

0
[Br(r)−Br(s)]

2 drds a.s. (P ) ,

from which we deduce that

1

nM

n∑
t=1

ub∗∗t−1∆u
b∗∗
t → d∗ −

1

2

∫ 1

0

∫ 1

0
[Br(r)−Br(s)]

2 drds a.s. (P )

= −
∫ 1

0
Br(r)

2dr.

It follows that
n

M
(ρ̂b∗∗1 − 1)→d∗ −

∫ 1
0 Br(r)

2dr∫ 1
0 Br(r)

2dr
= −1 a.s.(P )

giving the stated result.

6.10 Proof of Theorem 4.1

Part (a) The estimation error is

b̂∗n − b̂n =

(
1

n2

n∑
t=1

xtx
′
t

)−1(
1

n2

n∑
t=1

xtũ
∗
t

)
.

The bootstrap sample (ũ∗t )
n
1 is drawn randomly from the centred residuals (ût−n−1

∑n
t=1 ût =

yt − y − b̂n(xt − x))n1 and from (4) and (31) we can write (after appropriate redefinition of
the probability space)

ût√
n
− 1

n
3
2

n∑
t=1

ût = By

(
t

n

)
−
∫ 1

0
By (r) dr −

(
ξyx + oa.s.(1)

)′(
Bx

(
t

n

)
−
∫ 1

0
Bx (r) dr

)
+ oa.s.(1)

= η′Bz

(
t

n

)
+ oa.s.(1), (88)

which leads to the following representation for the bootstrap process ũ∗t

ũ∗t√
n

= η′Bz (Rnjt) + oa.s.(1), (89)
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where Bz = Bz −
∫ 1
0 Bz and Rnjt is uniform over 1

n ,
2
n , ..., 1. Then, as in earlier derivations

we find

1

n

n∑
t=1

sin

[(
k − 1

2

)
π
t

n

]
sin

[(
m− 1

2

)
πRnjt

]
→ d∗

∫ 1

0
sin

[(
k − 1

2

)
πs

]
ds

∫ 1

0
sin

[(
m− 1

2

)
πr

]
dr a.s.(P ),

which in conjunction with the KL representation of Bz leads to the following

b̂∗n − b̂n →d∗

(∫ 1

0
BxB

′
x

)−1(∫ 1

0
Bx

)(∫ 1

0
B′z

)
η = 0 a.s.(P ). (90)

Thus, b̂∗n →d∗ ξyx a.s.(P ), as stated.

Parts (b) & (c) The standardized residual from the bootstrap regression (33) is y∗∗t =
b̂∗′n xt + u∗∗t

u∗∗t√
n

=
y∗∗t√
n
− b̂∗′n

xt√
n

=
ũ∗t√
n
−
(
b̂∗n − b̂n

) xt√
n
.

It follows from (89) and (90) that

u∗∗t√
n

= η′Bz (Rnjt) + oa.s.(1), (91)

and then the limit distribution of n−1s∗∗2 = n−2
∑n

t=1 u
∗∗2
t is the same as that of

1

n

n∑
j=1

η′Bz(Rnj)Bz(Rnj)
′η →d∗ η′

(∫ 1

0
BzB

′
z

)
η a.s.(P ),

using arguments like those in Lemma 2.3 (c). Similarly, we find that the bootstrap regression
t-ratio is

t∗i =
b̂∗ni
s∗i

=
b̂∗n{

s∗∗2
[
(
∑n
1 xtx

′
t)
−1
]
ii

}1/2 =

√
nb̂∗n{

1
ns
∗∗2
[(

1
n2
∑n
1 xtx

′
t

)−1]
ii

}1/2
and then

1√
n
t∗i →d∗

ξyxi{
η′
(∫ 1
0 BzB

′
z

)
η

[(∫ 1
0 BxB

′
x

)−1]
ii

} 1
2

a.s.(P ).

Parts (d) & (e) Write ρ̂∗∗ = n−2
∑n

t=1 u
∗∗
t u
∗∗
t−1/n

−2∑n
t=1 u

∗∗2
t−1.Using (91) n

−2∑n
t=1 u

∗∗
t u
∗∗
t−1

is asymptotically equivalent to

1

n

n∑
j=1

η′Bz (Rnj)Bz (Rnj−1)
′ η →d∗

(∫ 1

0
Bz(s)ds

)(∫ 1

0
Bz(s)

′ds

)
= 0 a.s.(P ),

and then n−2
∑n

t=1 u
∗∗
t u
∗∗
t−1 →p∗ 0 a.s.(P ), from which the result for ρ̂∗∗ follows. The result

for ρ̂∗∗h follows in the same way. The result for DW ∗∗ = n−2
∑n
2 (∆û∗∗t )2/n−2

∑n
1 û
∗∗2
t follows

as in Theorem 3.3 (e).
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Part (f) Write R2 = 1− n−2
∑n
1 û
∗∗2
t /n−2

∑n
1 y
∗∗2
t . We have y∗∗t = b̂′nxt + ũ∗t and so

1

n

n∑
t=1

(
y∗∗t√
n

)2
=

1

n

n∑
t=1

(
b̂′n

xt√
n

+
ũ∗t√
n

)2
,

whose asymptotic behavior is the same as

1

n

n∑
j=1

(
ξ′yxBx

(
j

n

)
+ η′Bz (Rnj)

)2
→d∗ η′

(∫ 1

0
BzB

′
z

)
η + ξ′yx

(∫ 1

0
BxB

′
x

)
ξyx a.s.(P ).

It follows from this result and part (b) that

R2 →d∗

ξ′yx

(∫ 1
0 BxB

′
x

)
ξyx

η′
(∫ 1
0 BzB

′
z

)
η + ξ′yx

(∫ 1
0 BxB

′
x

)
ξyx

a.s.(P ).

6.11 Proof of Theorem 4.2

Parts (a), (b) & (c) Start with the formula

b̂b∗n − b̂n =

(
1

n2

n∑
t=1

xtx
′
t

)−1(
1

n2

n∑
t=1

xtũ
b∗
t

)
.

The block bootstrap sample (ũb∗t )n1 is drawn by randomly selecting blocks from the centred
residuals (ût − n−1

∑n
t=1 ût = yt − y − b̂n(xt − x))n1 . Setting t = (s− 1)m+ k and using the

representation (88) above, we can write

ũb∗t√
n

=
û(js−1)m+k − n−1

∑n
s=1 ûs√

n
= η′Bz

(
RMjs +

k

n

)
+ oa.s (1) (92)

where RMjs is uniform over 0, 1M , ...,
M−1
M . Then, as in earlier derivations, we find

1

n

n∑
t=1

sin

[(
k − 1

2

)
π
t

n

]
sin

[(
m− 1

2

)
πRMjs

]
→ d∗

∫ 1

0
sin

[(
k − 1

2

)
πs

]
ds

∫ 1

0
sin

[(
m− 1

2

)
πr

]
dr a.s.(P ),

which leads to b̂∗n →d∗ ξyx a.s.(P ), just as in part (a) of Theorem 4.1. Next,

ub∗∗t√
n

=
yb∗∗t√
n
− b̂b∗′n

xt√
n

=
ũb∗t√
n
−
(
b̂b∗n − b̂n

) xt√
n

=
ũb∗t√
n

+ op∗ (1) , (93)

so the limit distribution of n−1sb∗∗2 = n−2
∑n

t=1 u
b∗∗2
t is the same as that of

1

M

M∑
s=1

η′Bz(RMjs)
2 →d∗ η′

(∫ 1

0
BzB

′
z

)
η a.s.(P ). (94)

Parts (b) and (c) follow in a straightforward way.
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Parts (d) and (e) The denominator of ρ̂b∗∗ = n−2
∑n

t=1 u
b∗∗
t ub∗∗t−1/n

−2∑n
t=1 u

b∗∗2
t−1 is covered

by (93) and (94). The numerator is asymptotically equivalent to

1

n

∑n
1

(
ũb∗t√
n

)(
ũb∗t−1√
n

)

=
1

mM

M∑
s=1

m∑
k=2

[
η′Bz(RMjs +

k

n
) + oa.s.(1)

] [
Bz(RMjs +

k − 1

n
)′η + oa.s.(1)

]

+
1

mM

M∑
s=1

[
η′Bz

(
RMjs +

1

n

)
+ oa.s.(1)

] [
Bz

(
RMjs−1 +

m

n

)′
η + oa.s.(1)

]
→ d∗ η′

(∫ 1

0
BzB

′
z

)
η a.s. (P ) , (95)

using the same arguments as those in the proof of Theorem 3.5. Combining (94) and (95) we
get

ρ̂b∗∗ →d∗

η′
(∫ 1
0 BzB

′
z

)
η

η′
(∫ 1
0 BzB

′
z

)
η

= 1 a.s. (P ) ,

as stated. The proofs for ρ̂b∗∗h , DW b∗∗ and Rb∗∗2 follow in a related fashion.

6.12 Proof of Theorem 4.3. Write

n

M
(ρ̂b∗∗1 − 1) =

1

nM

n∑
t=1

∆ub∗∗t ub∗∗t−1/
1

n2

n∑
t=1

ub∗∗2t−1 .

The limit of the denominator is given in (94). Next, using (92) and (88) and setting t =
(s− 1)m+ k, we can write

n−
1
2ub∗∗t = n−

1
2 ũb∗t + op∗(1) = n−

1
2 û(js−1)m+k + op∗(1) = η′Bz

(
RMjs +

k

n

)
+ op∗(1),

and then
∆ũb∗t√
n

= η′
{
Bz(RMjs +

k

n
)−Bz(RMjs +

k − 1

n
)

}
+ op∗(1),

where {js : s = 1, ...,M} are independent uniform draws from 1, ...,M, and j0 = 0. Proceeding
as in the proof of Theorem 3.7, we find that

1

nM

n∑
t=1

ub∗∗t−1∆u
b∗∗
t =

1

2M

{(
ub∗∗n√
n

)2
−

n∑
t=1

(
∆ub∗∗t√

n

)2}
,

and

1

M

n∑
t=1

(
∆ub∗∗t√

n
)2 → d∗ η′

(∫ 1

0

∫ 1

0
[Bz(r)−Bz(s)] [Bz(r)−Bz(s)]

′ drds

)
η a.s. (P )

= 2η′
(∫ 1

0
Bz(r)Bz(r)

′dr

)
η,
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from which we deduce that

1

nM

n∑
t=1

ub∗∗t−1∆u
b∗∗
t →d∗ − η′

(∫ 1

0
Bz(r)Bz(r)

′dr

)
η a.s. (P ) .

It follows that

n

M
(ρ̂b∗∗1 − 1)→d∗ −

η′
(∫ 1
0 Bz(r)Bz(r)

′dr
)
η

η′
(∫ 1
0 Bz(r)Bz(r)

′dr
)
η

= −1 a.s.(P ),

giving the stated result.

7. Notation
oa.s.(1) tends to zero almost surely (P ) �a not asymptotically equivalent to
Oa.s(1) bounded almost surely (P ) (e∗t )

n
1 direct bootstrap sample

→p∗ convergence in P ∗ probability (ẽ∗t )
n
1 centred bootstrap sample

→d∗ weak convergence (P ∗) (ẽb∗t )n1 centred block bootstrap sample
→d∗ a.s. weak convergence (P ∗), almost surely (P ) (eb∗t )n1 block bootstrap sample
→p∗ a.s. convergence in P ∗ probability, almost surely (P ) [·] integer part
∼d∗ asymptotically distributed as
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