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Abstract—Millimeter wave (mmWave) communication systems
using adaptive-resolution analog-to-digital converters (RADCs)
have recently drawn considerable interests from the research
community as benefit of their high energy efficiency and low
implementation cost. In this paper, we focus on the mmWave
uplink using RADCs and investigate the joint user scheduling and
resource allocation problem. Specifically, we seek to maximize the
system throughput of the scheduled users by jointly optimizing
their transmit power level and hybrid combiners as well as the
number of quantization bits, subject to practical constraints.
By relying on fractional programming (FP) techniques, we first
covert this problem into a form amenable to optimization and
exploit the specific structures in its solutions with the aid of
the so-called Ky Fan n-norm. Then, the resultant optimization
problem is solved using a penalty block successive concave
approximation (P-BSCA) algorithm. Our numerical results re-
veal that the proposed algorithm substantially enhances the
throughput of the scheduled users compared to the state-of-the-
art benchmark schemes and provides more flexible and efficient
resource allocation control.

I. INTRODUCTION

To meet the ever-increasing data rate requirements, the
amalgamation of millimeter wave (mmWave) and massive
multiple-input multiple-output (MIMO) techniques is becom-
ing an evident trend for future wireless networks. However,
the implementation of these techniques may not be practical,
because their fully digital implementation requires a dedicated
radio frequency (RF) chain relying on power-thirsty high-
resolution analog-to-digital converters (ADCs) for each an-
tenna element. Hence, utilizing hybrid combiners using low-
resolution ADCs (LADCs) is a natural technique of addressing
these power consumption concerns. Therefore substantial re-
search efforts have been invested in their channel estimation
and beamforming design [1]–[7].

However, the performance of mmWave systems with
LADCs is limited by the coarse quantization, especially in
the low signal-to-noise ratio (SNR) regime. To circumvent
this difficulty, the authors of [8] first proposed a more
energy-efficient mmWave receiver architecture using adaptive-
resolution ADCs (AR-ADCs) for massive MIMO schemes.
Moreover, a pair of ingenious quantization bit allocation
strategies were developed for minimizing the quantization
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error effects subject to a constraint on the total ADC power.
Similarly, exploring low resolution digital-to-analog converters
(DACs) at the transmitter can also help reduce the power
consumption, and the impact of AR-DACs quantization for
energy efficiency maximization were analyzed in [9], [10]. On
the other hand, user scheduling is another critical problem for
mmWave systems employing AR-ADCs, which significantly
affects the interference pattern in the uplink. Therefore, it
is desirable to take them into account when conceiving the
resource allocation strategies for data transmission, especially
when the number of potential users is huge but the available
network resources are limited. Although the authors of [11]
have developed a user scheduling algorithm for mmWave
systems using LADCs, there is a paucity of literature on the
joint user scheduling and resource allocation problem using
AR-ADCs. This is because the allocation of quantization bits
at each AR-ADC would exacerbate the final decision of user
scheduling, thereby substantially affecting the communications
between the base station (BS) and the users.

Motivated by these observations, we focus our attention on
the uplink of mmWave systems using AR-ADCs and investi-
gate the joint user scheduling and resource allocation problem.
Specifically, we seek to maximize the system throughput of
the scheduled users by jointly optimizing the transmit power
level and hybrid combiners and allocating the quantization
bits, subject to the user scheduling constraint, the transmit
power constraint, the constraints related to the quantization
bits, as well as the unit modulus constraint on the elements of
the analog combining matrix.

It is quite a challenge to globally solve the problem formu-
lated, which has a complex objective function (OF) relying on
multiple ratio terms and a combinatorial constraint. By lever-
aging sophisticated fractional programming techniques [12],
we first recast the original problem into an equivalent form
more amenable to optimization. To overcome the difficulty
arising from the combinatorial constraint, we devise a novel
sparsity-enhancing technique for its solutions with the aid of
Ky Fan n-norm [13], The benefit of this is that the choice of
the smoothening parameters in the conventional lp-norm based
heuristic algorithms is no longer critical [14]. Then we propose
an efficient penalty block successive approximation (P-BSCA)
algorithm for the resultant problem. Our numerical results
reveal that the proposed algorithm achieves a remarkable
performance gain over the relevant benchmark schemes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Let us now consider the uplink of a multiuser mmWave
system, where K single-antenna users are distributed within
a specific geographical area and the BS is equipped with a
uniform linear array (ULA) 1 of M antennas and S receive

1The ULA model is considered in the simulation since it has been widely
used. Note that the proposed algorithm can be directly applied to arbitrary
antenna arrays such as uniform circular arrays (UCA) as well as to uniform
rectangular array (URA).
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RF chains. Specifically, the BS schedules N ≤ S users for
transmission in each time slot, and the set of scheduled users
is denoted by N . For convenience, we focus our attention on
the block-fading channels model, i.e. all channels remain time-
invariant in each fading block, due to the low delay spread of
mmWave channels [15], [16]. Then the signal received at the
BS can be expressed as

y =

K
∑

k=1

√
p
k
hkxk +w = HP

1

2x+w, (1)

where H , [h1, · · · ,hK ] with hk ∈ C
M × 1 is the uplink

channel vector from user k to the BS, P , diag(p1, · · · , pK)
with pk is the transmit power level of user k, x ,

[x1, · · · , xK ]T with xk ∼ CN (0, 1) specifying the data sym-
bol of user k, and w ∈ C

M×1 is an additive white Gaussian
noise (AWGN) vector with zero mean and unit variance.

The BS implements a hybrid combiner to reap the full
benefits of massive MIMO and for mitigating the effects of
quantization errors imposed by the AR-ADC, which results
in a reduced hardware cost and power consumption. Let
Φ ∈ C

M×S denote the BS’s analog combiner, which is usually
implemented using phase shifters and its entries obey the
unit modulus constraint, i.e. we have |Φ(m, s)| = 1, ∀m, s.
Then, the signal combined by the analog combiner can be
represented by ȳ = Φ

Hy. Assuming that the coefficients of
the automatic gain control (AGC) are appropriately set, the lin-
ear additive quantization noise model (AQNM) is introduced
for characterizing the quantization process [3], [5], [6], [8],
[11], [17]2, where the imaginary or real component of the
s-th element in ȳ is quantized by each AR-ADC using ds
quantization bits. In this case, the quantized signal can be
expressed as

yq = D(y) = Dρy +wq, (2)

where D(·) refers to the element-wise quantization operation,

Dρ , diag(ρ1, · · · , ρS) with ρs = 1 − ζs is the diag-

onal matrix of quantization gains, ζs , π
√
3

2 4−ds stands
for the normalized quantization error, and ds is the number
of quantization bits associated with the s-th RF chain; wq

is the additive quantization noise independent of y, which
obeys the complex Gaussian distribution with zero mean and
covariance matrix Cq = DρDζdiag(Φ

H
HPH

H
Φ+Φ

H
Φ),

where Dζ , diag(ζ1, · · · , ζS). Note that in contrast to the
conventional fixed-resolution ADCs, AR-ADCs can adapt the
number of quantization bits to the propagation characteristics,
thereby providing additional flexibility for mmWave systems.

Then, the quantized signal yq is successively processed
by the BS’s digital combiner F ∈ C

S×S and the linear
receiver beamformer vk ∈ C

S so as to mitigate the multiuser

2In fact, having a perfect AGC is unrealisic owing to the ubiquitous
hardware impairments. In such scenarios the nonlinear quantization noise
model of [4] is more suitable, but the proposed P-BSCA algorithm can be
readily extended to such a scenario with the aid of a smooth approximation.
The sophisticated modeling of nonlinear quantization, is however beyond the
scope of this compact Letter.

interference and alleviate the quantization loss, which yields
the recovered signal of user k in the form of:

x̂k = vH
k F

H
DρΦ

H
HP

1

2xk + vH
k F

H
DρΦ

Hw + vH
k F

Hwq.

For ease of exposition, we let φ denote the phase vec-

tor of the BS’s vectorized analog combiner vec(Φ), p ,

[p1, · · · , pK ]T denote the composite transmit power vec-

tor, d , [d1, · · · , dS ]T denote the composite quantization

bit vector, v , [vT
1 , · · · ,vT

K ]T , f = vec(F), and ξ ,

[pT ,φT ,dT ,vT ,fT ]T . As such, the achievable throughput of
user k can be expressed as rk(ξ) = log2 (1 + ηk(ξ)), where
ηk(ξ) stands for the signal-to-interference-noise ratio (SINR)
of user k defined in (3) at the bottom of this page.

Remark 1: In practice, it is unrealisitc to have perfect chan-
nel estimation in the massive MIMO regime due to the limited
coherence time. In each coherence interval, each user transmits
its orthogonal pilot sequence used for channel estimation.
We assume furthermore that minimum mean-squared error
(MMSE) channel estimation is used at the BS for determining
the fading coefficients. In this case, the signal of user k
recovered by the BS can be expressed as

x̂k =vH
k F

H
DρΦ

H
ĤP

1

2xk + vH
k F

H
DρΦ

H
ÊP

1

2xk

+ vH
k F

H
DρΦ

Hw + vH
k F

Hwq,

where Ĥ is the MMSE estimation of H, and Ê = H − Ĥ

is the residual error after channel estimation. Following [18],

the residual error after channel estimation Ê is independent

of Ĥ and can be approximated by Gaussian noise, thereby
increasing the noise variance of the whole system. The pro-
posed P-BSCA algorithm can be readily extended to such a
scenario relying on imperfect channel state information (CSI).
However, the sophisticated modeling of the residual error after
channel estimation is beyond the scope of this compact Letter.

The key observation is that the uplink interference pattern
heavily relies on the choice of which specific users to schedule
in this time slot. To this end, we seek to maximize the system
throughput among the scheduled users by jointly optimizing
the uplink scheduling, hybrid combiner design, and quanti-
zation bits allocation under practical constraints. Instead of
directly determining the discrete scheduling variables, we treat
the uplink users in an implicit manner with the aid of power
control, depending on whether the transmit power level of user
k is positive. This optimization problem is formulated as:

P : max
ξ

K
∑

k=1

rk(ξ) (4a)

s.t. ‖p‖0 = N, (4b)

0 ≤ pk ≤ Pmax
k , ∀k, (4c)

dmin
s ≤ ds ≤ dmax

s is an integer, ∀s, (4d)

S
∑

s=1

ds ≤ Sdavg, (4e)

φ ∈ Υ , [0, 2π]MS , (4f)

ηk(ξ) =
pk|vH

k F
H
DρΦ

Hhk|2
∑

l 6=k pl|vH
k FHDρΦ

Hhl|2 + |vH
k FHDρΦ

H |2 + vH
k FHCqFvk

. (3)
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where ‖ · ‖0 refers to the l0-norm operator, Pmax
k specifies

the maximum transmit power of user k, dmin
s and dmax

s

respectively denote the minimum and maximum number of
quantization bits in the RF chain s, and davg is the average
number of quantization bits across the different RF chains. The
constraint (4b) ensures that the number of users scheduled
in each time slot is equivalent to N . The constraint (4d)
represents the limitations on the quantization bits for each AR-
ADC, while constraint (4e) provides a reference concerning
the total number of ADC quantization bits for the above opti-
mization problem [8], [24]. Finally, constraint (4f) corresponds
to the unit modulus constraint on the elements of the analog
combining matrix.

III. PENALTY BLOCK SUCCESSIVE CONCAVE

APPROXIMATION ALGORITHM

Problem P is challenging to handle because 1) the optimiza-
tion variables ξ are intricately coupled in the non-concave OF
of (4a); 2) the discrete variables involved in the quantization
bits allocation and the presence of l0-norm in (4b) make the
feasible set non-concave, which further complicates its solu-
tion. In this section, we propose a novel P-BSCA algorithm
which efficiently combines the penalty method with the block
successive concave approximation (BSCA) method [19] to find
the stationary solution of problem P .

A. Problem Reformulation

To facilitate an efficient algorithmic design, we first exploit
the complex quadratic and Lagrangian dual transform [12]
for recasting problem P into a series of simple equivalent
problems:

P1 : max
ξ,η,ν

K
∑

k=1

fk(ξ,η,ν) s.t. (4b) − (4f),

where the objective function fk(ξ,η,ν) associated with ωk(ξ)
is defined in (5)-(6) at the bottom of the next page, η =
[η1, · · · , ηK ]T stands for the auxiliary variable introduced for
the SINR within the rate expression, and ν = [ν1, · · · , νK ]T

represents the auxiliary variables introduced to achieve the
desired decoupling between the numerator and denominator
in the SINR.

To make the problem tractable, we relax the discrete con-
straint on the number of quantization bits ds into a continuous
one, yielding

dmin
s ≤ ds ≤ dmax

s , (7)

and then round the solution d⋆s of the relaxed problem to its
nearest integer [20] as follows

d̄s(ε) =

{

⌊d⋆s⌋, if d⋆s − ⌊d⋆s⌋ ≤ ε

⌈d⋆s⌉, otherwise,
∀s, (8)

where the hyper-parameter ε ∈ [0, 1] is efficiently searched via

the bisection method, so that we have
∑S

s=1 d̄s(ε) ≤ Sdavg.

It is worth noting that solving problem P1 is still dif-
ficult due to the non-concave l0-norm constraint (4b). A
promising solution is to leverage the smoothened lp-norm [14]
followed by the iteratively reweighted l2-norm minimization
algorithm to construct a tight surrogate function for the l0-
norm, thereby inducing the sparsity structure in uplink power
control. However, the convergence properties of the lp-norm
based algorithms are crucially dependent on the specific choice
of the smoothening parameters, which may not be suitable
for practical implementations due to the associated dynamic
system requirements. To this end, we devise a novel tech-
nique of enhancing the sparsity structures in the solutions for
problem P1 with the aid of the Ky Fan n-norm of [13], [21].
Specifically, we represent the l0-norm in form of the difference
between the l1-norm and Ky Fan n-norm as follows:

‖p‖0 = min{n : ‖p‖1 − ‖p‖n = 0, ∀0 ≤ n ≤ N}, (9)

where ‖p‖1 ,
∑K

k=1 |pk| stands for the l1-norm, and ‖p‖n
represents the Ky Fan n-norm given by the sum of largest n
absolute values, i.e.,

‖p‖n =

n
∑

i=1

|pχ(i)|, (10)

where χ specifies the permutation of {1, · · · ,K} in de-
scending order such that we have |pχ(1)| ≥ · · · ≥ |pχ(K)|.
Using the above notations, the constraint (4b) reduces to
‖p‖1 − ‖p‖N = 0.

Now, we are ready to apply the penalty method to solve
problem P1. For the problem at hand, the first step is to
incorporate the penalty term associated with the equality
constraint ‖p‖1 = ‖p‖N and to obtain the penalized version
of P1 as

P2 : max
ξ,η,ν

K
∑

k=1

fk(ξ,η,ν)− λ(‖p‖1 − ‖p‖N ) (11a)

s.t. (4c) − (4f), (11b)

where λ is a positive penalty parameter that characterizes the
cost of violating the equality constraint.

B. The Algorithm Proposed for Solving Problem P2

In this subsection, we introduce the proposed P-BSCA
algorithm for solving problem P2, which relies on a pair
of encapsulated loops. Specifically, we increase the value of
the penalty parameter λ for reducing the equality constraint
violation at each outer iteration, while the BSCA method is
utilized for updating the optimization variables in different
blocks of the inner iteration. Note that the constraints in
problem P2 are separable, consequently we can partition the
design variables into six independent blocks. Hereafter, we
introduce the superscripts i and t for representing the variables
associated with the i-th inner and the t-th outer iteration,
respectively. Then we elaborate on the implementation details

fk(ξ,η,ν) = 2R{
√

pk(1 + ηk)ν
H
k vH

k F
H
DρΦ

Hhk}+ log2(1 + ηk)− ηk − νHk νkωk(ξ), (5)

ωk(ξ) =
∑

l=1

pl|vH
k F

H
DρΦ

Hhl|2 + |vH
k F

H
DρΦ

H |2 + vH
k F

H
CqFvk. (6)
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Algorithm 1 Proposed P-BSCA Algorithm for Problem (4)

Initialization: Initialize the algorithm with a feasible point ξ0. Set
the accuracy tolerance β, the maximum inner iteration number I ,
the maximum outer iteration number T , t = 0, i = 0, α > 1, and
λ0 > 0.

Repeat
Repeat

- Update ηi+1, νi+1, and f i+1 by applying its first-order

optimality condition in sequence.
- Construct a surrogate function ĝi(d) and update di+1

by solving problem (13).
- Construct a surrogate function ĝi(φ) and update φi+1

according to (14).
- Update pi+1 by solving problem (20).

Until the value of (11a) converges or reaching the maximum

inner iteration number I . Otherwise, let i← i+ 1.
Update the penalty parameter: λt+1 = αλt.

Until the value of the penalty term is less than β or t ≥ T .
Otherwise, let t← t+ 1.

of the proposed P-BSCA algorithm at the i-th inner iteration
within the t-th outer iteration.

1) Optimization of η: When fixing the other variables, the
optimal η⋆ can be uniquely determined by examining the first-
order optimality condition, which is defined in (3).

2) Optimization of ν: The subproblem w.r.t. ν can be
further decoupled on a per-user basis, and each one is an
unconstrained quadratic optimization problem, which can be
efficiently solved by setting ∂fk/∂νk = 0, that is

ν⋆k = ω−1
k (ξ)

√

pk(1 + ηk)v
H
k F

H
DρΦ

Hhk. (12)

3) Optimization of f : Similar to the subproblem w.r.t.
ν, the subproblem w.r.t. f is also unconstrained as well
as quadratic, and can be solved by checking its first-order
optimality condition. The details are omitted due to the limited
space.

4) Optimization of d: Now we turn attention to the sub-
problem w.r.t. d, which features a non-concave OF subject to
the linearly coupled constraint (4e). To handle this complex
problem, we resort to the SCA method for approximating the
OF as a sequence of concave surrogate functions, which is
given by

ĝi(d) =

K
∑

k=1

(

fk(d
i) +∇T

d fk(d
i)(d− di)

)

− τd‖d− di‖2,

where ∇dfk(d
i) is the partial derivative of fk(d) w.r.t. d

at the current point di, and τd is a positive constant. Note
that the term τd‖d − di‖2 is added to ensure that ĝik(d) is a
lower bound of the original objective function, which plays
a crucial role in guaranteeing the algorithm’s convergence.
Thus, finding the optimal d⋆ amounts to solving the following
linearly constrained quadratic problem:

max
d

ĝi(d) s.t. (4e) and (7), (13)

which can be efficiently solved by the generic interior-point
method using off-the-shelf solvers, such as CVX.

5) Optimization of φ: Let us now consider the subproblem

w.r.t. φ, which can be formulated as maxφ∈Υ

∑K
k=1 fk(φ).

Following the same approach as used for updating d, a
concave surrogate function ĝi(φ) is judiciously constructed to

circumvent the difficulty arising from the non-concave nature
of the OF, which can be expressed as

ĝi(φ) =
K
∑

k=1

(

fk(φ
i) +∇T

φfk(φ
i)(φ− φi)

)

− τφ‖φ− φi‖2,

where τφ is a positive constant and ∇φfk(φ
i) is the partial

derivative of fk(φ) w.r.t. φ at the current point φi.
Consequently, the optimal solution φ⋆ of the approximated

problem maxφ∈Υ ĝi(φ) is equivalent to the projection of
the gradient φi +∇T

φfk(φ
i)/τφ onto the box feasible region

Υ, which yields a closed-form solution as

φ⋆ = PΥ[φi +∇T
φfk(φ

i)/τφ], (14)

where PΥ[·] refers to the projection over the feasible set Υ.
6) Optimization of p: To fully exploit the intrinsic structure

of the subproblem w.r.t. p, we first rewrite its non-concave OF
into a difference-of-concave (DC) form, i.e.,

K
∑

k=1

fk(p)− λ(‖p‖1 − ‖p‖N ) = g(p)− h(p), (15)

where g(p) and h(p) respectively are strongly concave func-
tions given by

g(p) =

K
∑

k=1

fk(p)− λ‖p‖1 − τp‖p‖2, (16)

h(p) = −λ‖p‖N − τp‖p‖2. (17)

By linearizing the strongly concave function h(p) based on
the first-order Taylor expansion and the current point pi, we
can obtain

ĥi(p) = h(pi) + ∂Tp h(p
i)(p− pi), (18)

where ∂ph(p
i) stands for the subgradient of h(p) w.r.t. p at

the current point pi. Specifically, the subgradient of h(p) w.r.t.
p can be analytically computed as

∂ph(p) = −τpp− λ∂‖p‖N , (19)

where ∂‖p‖N is the subgradient of ‖p‖N calculated as

j-th entry of ∂‖p‖N =

{

sgn(pj), if |pj | ≥ |pχ(N)|
0, otherwise.

Hence, in the i-th iteration of the proposed P-BSCA algo-
rithm, we have the following approximated convex problem:

max
p

g(p)− ĥi(p) s.t. (4c), (20)

which can be uniquely determined by standard convex opti-
mization methods.

C. Complete Algorithm

According to the above derivations, we summarize the
proposed P-BSCA procedure in Algorithm 1. Here, we remark
that by appropriately tuning the penalty parameter in each
outer iteration, the limiting point ξ⋆ generated by the pro-
posed P-BSCA algorithm would essentially meet the equality
constraint (4b). As such, we can show that the proposed P-
BSCA algorithm converges to a stationary solution of problem
P . The proof is similar to that of [19], [22], and we hence
omit the details for simplicity. Three schemes are included as
benchmarks: 1) the smooth lp/l2 approximation (SA) scheme
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of [21], which adopts the quadratic form of the weighted
mixed lp/l2-norm for inducing the sparsity in user scheduling
and jointly optimizes the other variables by maximizing the
system throughput. 2) the uniform allocation (UA) scheme
of [11], where LADCs relying on uniform quantization are
implemented and all variables are jointly optimized for maxi-
mizing the system’s throughput. 3) random scheduling (RS)
scheme, where the scheduled users are randomly selected
and the other variables are optimized for maximizing the
system throughput. 4) zero-forcing (ZF) scheme, where the
ZF combiner is employed at the BS and the other variables
are optimized for maximizing the system throughput.

Let us now proceed by analyzing the computational com-
plexity. In each iteration of the proposed P-BSCA algorithm,
we solve the subproblems for the six blocks of variables
sequentially. Then, the overall computational complexity of
the proposed algorithm is dominated by updating {f ,φ} and
is given by O(T1I1(S

6 + S2M + KM2)), where I1 and
T1 respectively denote the maximum number of inner and
outer iterations. The complexity order of other schemes can be
obtained similarly. In Table I, we summarize the complexity
orders of all schemes.

TABLE I: Complexity Orders for Different Schemes.

Scheme Complexity

P-BSCA O(T1I1(S6 + S2M +KM2))
SA O(T2I2(S6 + S2M + SM2 +KM2))
UA O(T3I3(S6 + S2M +KM2))
RS O(T4I4(S6 + S2M +KM2))
ZF O(T5I5(S3 + S2M +KM2))

IV. NUMERICAL RESULTS

This section presents our numerical results for quantifying
the performance of the proposed algorithm, whilst providing
essential insights. For all simulations, unless otherwise speci-
fied, we consider a single-cell network configuration of radius
r = 500 m, where a total of K = 40 candidate users are
randomly distributed and the BS is equipped with M = 96
antennas and S = 32 RF chains to schedule N = 16 users
for their uplink transmission. We adopt the extended Saleh-
Valenzuela geometric model for our mmWave channels [23],
where the channel vector between the BS and the k-th user can

be expressed as hk =
√

Mγk

L

∑L

l=1 c
k
l a(q

k
l ), ∀k ∈ K, where

L is the number of resolvable paths, ckl ∼ CN (0, 1) and qkl
respectively are the complex gain and angle of arrival for the l-
th path of user k, a(q) = 1

M
[1, ejπsin(q), · · · , ejπ(M−1)sin(q)]

is the receiver array’s response vector, and γk[dB] = 72 +
29.2 log10 µk + ψ, µk stands for the corresponding distance.
Finally, ψ ∼ CN (0, 1) represents the log-normal shadowing.
The channel bandwidth is 10 MHz, and the background noise
is −174 dBm/Hz. Furthermore, we set Pmax

k = 10 dBm,
dmax
s = 83, dmin

s = 1, and davg = 3 [24]. For the proposed
P-BSCA algorithm, we choose λ0 = 10−3 and α = 1.8.

We commence by examining the convergence behavior
of the proposed P-BSCA algorithm. Fig. 1 (L) and (R)
respectively indicate an instance of the average sum rate
and the value of penalty versus the number of iterations. It
is observed that the proposed P-BSCA promptly converges

3According to [5], [24], we set the maximum number of the quantization
bits to 8 for representing the full-resolution ADC.
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Fig. 1: Convergence performance of the proposed P-BSCA
algorithm: (L) average sum rate; (R) the value of penalty.
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Fig. 2: Average sum rate versus (L) maximum transmit power
Pmax and (R) the number of average quantization bits davg.

to a stationary solution within a few iterations, while the
penalty value reduces below a threshold of 10−3 at the same
time. These results demonstrate the ability of the proposed
P-BSCA algorithm to efficiently handle the combinatorial
constraint (4b) of problem P .

Fig. 2 (L) depicts the average sum rate versus the maximum
transmit power Pmax for different schemes. We observe that
the average sum rate achieved by all schemes is monotonically
increasing with the maximum transmit power. Furthermore, it
is observed that the proposed P-BSCA scheme outperforms all
the other competing schemes, and its improvement becomes
more significant as the maximum transmit power increases.
The reason for this trend is that the proposed P-BSCA scheme
can exploit the distinctive channel characteristics of different
candidate users for facilitating more efficient user scheduling
and resource allocation, which also demonstrates the impor-
tance of our joint optimization based design. In a nutshell, our
proposed P-BSCA scheme is particularly attractive from an
optimum resource allocation perspective for mmWave systems
having ample transmit power.

In Fig. 2 (R), we plot the average sum rate versus the
average number of quantization bits davg for different schemes.
It is interesting to note that the average sum rates of the
proposed P-BSCA, SA, and UA schemes nearly coincide both
at low and high average number of quantization bits. This is
due to the following reasons: 1) For a low average number of
quantization bits there is no additional freedom for adapting



6

the allocation of quantization bits depending on the specific
propagation conditions of the different users. 2) When the
average number of quantization bits is sufficiently high, the
quantization errors due to ADCs can be neglected and thus
it is no longer the primary bottleneck of mmWave systems.
Additionally, we observe that the proposed P-BSCA scheme
generally attains a higher average sum rate than the SA/UA/ZF
scheme for a moderate average number of quantization bits,
thanks to our novel sparsity enhancement approach based on
the Ky Fan n-norm, as well as to the more flexible quantization
bit allocation, and to the favorable combiner design. On the
other hand, it can be seen that the performance of the RS
scheme is much worse than that of all the other schemes, due
to the lack of an efficient user scheduling strategy.

70 80 90

The Number of Antennas

5

10

15

20

25

30

35

A
v
er

ag
e 

S
u
m

 R
at

e 
(b

p
s/

H
z)

Proposed

SA

UA

RS

ZF

1 2 3 4 5

Average Quantization Bits

0

2

4

6

8

10

12

14

A
v
er

ag
e 

E
n
er

g
y
 E

ff
ic

ie
n
cy

 (
b
p
s/

H
z/

J)

Proposed

SA

UA

RS

ZF

Fig. 3: (L) Average sum rate versus the number of antennas M
and (R) Energy efficiency comparisons for different schemes.

In Fig. 3 (L), we illustrate the average sum rate versus
the number of antennas M at the BS for different schemes.
Observe that the performance of all schemes is monotonically
increasing with the number of antennas at the BS; the growth
rate tapers off as the number of antennas increases. Moreover,
we observe that the benefit of increasing the number of
BS antennas is more pronounced for our proposed scheme.
The reason is that our proposed scheme can exploit the
difference in channel quality among the links for mitigating
the multiuser interference, thereby supporting more favorable
uplink transmission in a cost-effective manner. Fig. 3 (R)
compares the energy efficiency of the different schemes in

terms of
∑

K

k=1
rk

Ptot

, where Ptot denotes the system’s power
consumption. For details concerning Ptot please refer to [24],
which have to be omitted here due to space limitations. In this
case, the average energy efficiency of the proposed P-BSCA
is much better than that of all the other competing schemes,
which indicates that the proposed P-BSCA strikes an improved
throughput vs. power consumption trade-off.

V. CONCLUSION

In this contribution, we have investigated the joint user
scheduling and resource allocation problem of mmWave sys-
tems using AR-ADCs. Specifically, we maximized the system
throughput of the scheduled users by jointly optimizing the
transmit power level and hybrid combiners as well as allo-
cating the quantization bits under some practical constraints.
optimized to maximize the sum throughput of the scheduled
users under some practical constraints. To solve such a non-
convex combinational problem efficiently, we conceived a

novel P-BSCA iterative algorithm. Finally, our numerical
results demonstrate the efficiency of the proposed algorithm.
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