The University of Southampton
University of Southampton Institutional Repository

Optimality criteria for probabilistic numerical methods

Optimality criteria for probabilistic numerical methods
Optimality criteria for probabilistic numerical methods
De Gruyter
Oates, Chris J.
3af13c56-dc47-4d2c-867f-e4e933e74619
Cockayne, Jonathan
da87c8b2-fafb-4856-938d-50be8f0e4a5b
Prangle, Dennis
febb1efe-0939-4555-9a8b-f21c9a7a1f55
Sullivan, T.J.
1ef5be06-ad9c-44df-afdd-7b2294eb1e6b
Girolami, Mark
4feb7248-7beb-4edc-8509-139b4049d23b
Hickernell, Fred J.
Kritzer, Peter
Oates, Chris J.
3af13c56-dc47-4d2c-867f-e4e933e74619
Cockayne, Jonathan
da87c8b2-fafb-4856-938d-50be8f0e4a5b
Prangle, Dennis
febb1efe-0939-4555-9a8b-f21c9a7a1f55
Sullivan, T.J.
1ef5be06-ad9c-44df-afdd-7b2294eb1e6b
Girolami, Mark
4feb7248-7beb-4edc-8509-139b4049d23b
Hickernell, Fred J.
Kritzer, Peter

Oates, Chris J., Cockayne, Jonathan, Prangle, Dennis, Sullivan, T.J. and Girolami, Mark (2020) Optimality criteria for probabilistic numerical methods. In, Hickernell, Fred J. and Kritzer, Peter (eds.) Multivariate Algorithms and Information-Based Complexity. (Radon Series on Computational and Applied Mathematics, 27) De Gruyter. (doi:10.1515/9783110635461-005).

Record type: Book Section

This record has no associated files available for download.

More information

Published date: 8 June 2020

Identifiers

Local EPrints ID: 451591
URI: http://eprints.soton.ac.uk/id/eprint/451591
PURE UUID: 4c129a62-44d7-44d5-8a9b-ea8d7ceff902
ORCID for Jonathan Cockayne: ORCID iD orcid.org/0000-0002-3287-199X

Catalogue record

Date deposited: 12 Oct 2021 16:34
Last modified: 11 May 2024 02:06

Export record

Altmetrics

Contributors

Author: Chris J. Oates
Author: Dennis Prangle
Author: T.J. Sullivan
Author: Mark Girolami
Editor: Fred J. Hickernell
Editor: Peter Kritzer

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×