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Abstract

A comprehensive study on interpolation schemes used in overset grid techniques is
here presented. Based on a literature review, numerous schemes are implemented,
and their robustness, accuracy and performance are assessed. Two code verifica-
tion exercises are performed for this purpose: a 2D analytical solution of a laminar
Poiseuille steady flow; and an intricate manufactured solution of a turbulent flow
case, characteristic of a boundary layer flow combined with an unsteady sepa-
ration bubble. For both cases the influence of grid layouts, grid refinement and
time-step is investigated. Local and global errors, convergence orders, and mass
imbalance are quantified. In terms of computational performance, strong scalabil-
ity, cpu timings, load imbalancing and DCI overhead are reported. The effect of
the overset-grid interpolation schemes on the numerical performance of the solver,
i.e. number of non-linear iterations, is also scrutinised. The results show that, for a
2nd order finite volume code, once diffusion is dominant (low Reynolds number),
interpolation schemes higher than 2nd order, e.g. Least squares of degree 2, are
needed not to increase the total discretisation errors. For convection dominated flows
(high Reynolds numbers), the results suggest that 2nd order schemes, e.g. Nearest
cell gradient, are sufficient to prevent overset grid schemes to taint the underlying
discretisation errors. In terms of performance, by single-process and parallel com-
munication optimisation, the total overset-grid overhead (with DCI done externally
to the CFD code) may be less than 4% of the total run time for 2nd order schemes and
8% for 3rd order ones, therefore empowering higher-order schemes and more accu-
rate solutions.
KEYWORDS:
Overset Grids; Interpolation; Code Verification; 3D URANSManufactured Solution; Computational Per-
formance

1 INTRODUCTION

The overset grid method, also known as the chimera or overlapping grid method, is used for a wide range of CFD applications
in aerospace, for which it was first designed1, and maritime2 fields. By enabling a priori unknown motions of an arbitrary
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number of bodies, the overset grid method allows otherwise impossible computations to be performed, for example a 6 degrees
of freedom (DOF) motion of a fully appended ship manoeuvring alongside other vessels or close to a harbour3. The overset
grid method was first used in finite-difference structured CFD codes back in 1980s1, the 1990s saw the first implementations
for structured-grid finite volume codes for maritime applications4. Currently, unstructured-grid finite volume codes5,6,7,8,9 and
higher-order finite element codes10 often have an overset grid capabilities. In the current work, the overset grid technique is
studied for face-based unstructured-grid finite volume viscous-flow codes, particularly for incompressible hydrodynamic flows
at high Reynolds numbers.
The overset grid method works by overlapping or oversetting several grids in a single simulation. Each body, or its parts, may

have one or more body-fitted meshes that will move with it, and a background grid is used for the remainder of the domain.
This also enables the use of simpler, generally higher quality and/or even Cartesian individual meshes, instead of complex
unstructured grids. Information transfer between the different independent mesh boundaries is done using interpolation at the
so-called fringe cells11. This interpolation phase has to be fast and accurate. Fast, both in terms of computational and parallel
communication performance, because it is performed for multiple cells at several iteration levels, and the geometric basis for
interpolation has to be recomputed every time one of the grids changes due to movement, deformation or grid refinement (in
CFD codes that possess these features). Accurate, so as not to distort the solution with numerical errors due to interpolation.
Theoretically, it is known that the order of convergence of any interpolation method has to be of the same or one-order

higher than related discretisation schemes, if their errors are to be of a comparatively negligible level12. Several questions arise
here: is this also true for interpolation between overset grids, for all sorts of grid layouts, cell types, orientations, convection
or diffusion dominated flows? What are the existing overset grid-enabled CFD codes using for this interpolation phase? And
for 2nd order accurate finite volume solvers, do the interpolations have to be of 3rd or even higher orders in complex situations?
Due to interpolation of field values at cell centres, rather than interpolation of locally conserved face fluxes, application of the
overset grid method may suffer from mass imbalance8. Can this mass imbalance be influenced, improved or even deteriorated
by the type of overset grid interpolation used?
It is often stated that the usage of overset grid method imposes a large computational performance overhead9,13,14. Understand-

ably so, since this potential performance penalties may have many sources: 1) the extra hole cutting and domain connectivity
information (DCI) needs to be computed, either by the CFD code itself8, or by external libraries15,16; 2) the calculation of the
interpolation itself; 3) additional parallel communication between subdomains; 4) non-ideal parallel load balancing due to non-
overset grid partitioning17, i.e. the number of communication operations, or cells needing communication, is not the same for
all parallel subdomains; 5) the structure of the discretised equations is modified when using overset grids, which may influence
the iterative performance of the preconditioners and solvers used for the solution of the linear system of equations; 6) when
using explicit interpolation techniques, the non-linear iterative performance can deteriorate and more non-linear loops may be
needed for reaching a desired level of iterative convergence per time-step. Therefore, a fast, low overhead overset grid method
is not a straightforward accomplishment.
The open literature on overset grids has some studies on the topics listed above. But these employ either simple analytical solu-

tions18,19 which are far from the desired practical applications, or use industrial cases where the emphasis is validation18,19,8,20.
Due to the inherent complexity, numerical and modelling errors are then entangled and therefore difficult to quantify. Moreover,
in these papers, a small number of interpolation techniques are studied and rarely are accuracy, convergence order, robustness,
and computational performance simultaneously and comprehensively analysed.
In the current work, after a detailed analysis of several overset grid-capable finite volume codes, a summary of all interpolation

schemes used in these tools and related DCIs is made and their theoretical properties are analysed. To completely characterise
the overset grid method, verification studies are used that capture the likely mesh overlap structures that would be used in more
complex flow features such as turbulence, transition, free-surface, and cavitation.
It should be noted that an overset grid method does not improve, nor should it degrade the modelling errors of a specific

solution but only its discretisation, therefore an overset grid method itself cannot be validated but only verified. Nevertheless,
for the solution to not be degraded by the overset method, associated numerical errors of an overset grid should be quantified,
and remain lower than the numerical errors of the transport equation discretisation.
To accomplish this objective, modern verification techniques21,22 are here used for two test cases: 1) a simple, analytical 2D

steady Poiseuille flow at low-Reynolds number23,11; and 2) amore complex 3D unsteadymanufactured solution at high-Reynolds
number24. The latter resembles a flat-plate flow together with a pulsating recirculation bubble and involves a manufactured
solution for the unsteady RANS equations, including a 1-eq turbulence model. At this stage, only static grid assemblies are con-
sidered, that is, the grids do not move. However, several meshes and cell types, background and foreground relative orientations
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are considered, always having in mind grid- and time-step refinement, as it is crucial for a proper verification study. In total,
more than 14 overset grid interpolation schemes are analysed in terms of accuracy, robustness and performance. The resulting
mass imbalance is also quantified. For computational performance, absolute timings and strong scalability are analysed. Finally,
as it is possible for the cases studied, overset-grid solutions will be compared to their non-overset counterparts.
The studies presented in this work have been performed using the community-based multi-phase viscous-flow finite volume

code ReFRESCO25,26,11 and the overset domain connectivity information (DCI) is provided by the external library Sug-
gar++27,15 via an internal coupling. This combination is characteristic of several CFD overset grid-enabled codes available
nowadays, and consequently the results presented here are expected to be relevant for all these state-of-the-art tools.
This paper is structured as follows: after this introduction, the implementation and the different interpolation schemes used

in this study are presented in section 2; the numerical setup is explained in section 3. Section 4 presents the two test cases and
focuses on the accuracy and robustness of the different interpolation schemes, while section 5 measures and discusses all the
elements impacting the performance of overset grid computations. Section 6 highlights the major conclusions of the work and
emphasises some aspects to be further investigated.

2 INTERPOLATION FOR THE OVERSET METHOD

In an overset grid computation, multiple meshes are overlapped in the same domain.Fringe cells are placed at each grid boundary
and they receive interpolated field information from donor cells on another mesh. Finally, cells that are no longer part of the
simulation due to the overlap, called hole cells, are disabled by the solver. Figure 1 summarises the different cell statuses on a
Cartesian mesh. Their definition is part of the Domain Connectivity Information (DCI). The coupling is performed bymodifying
the system of equations. When an explicit interpolation approach is used, the interpolated values corresponding to each fringe
cell are placed on the system’s right hand side, and a unitary diagonal element is used. On the other hand, with an implicit
formulation, interpolation weights associated with each donor cell are placed on the left hand side. Figure 2 describes the
solution workflow with an explicit coupling highlighting the steps specific of an overset computation.

fringe
hole
donor
interpolation

FIGURE 1 Example of overset assembly with its nomen-
clature.Donor cells for the top left fringe cell are displayed.

Mesh motion
Time step

Non-linear iteration (outer-loop)

Iterative solver (inner-loop)

Solve momentum

Solve pressure correction

Solve turbulence quantities

Hole cutting (DCI)

Compute interpolation 

Update fringe cells

Initialisation

FIGURE 2 Solution workflow with explicit overset cou-
pling. Steps marked in blue are specific to an overset
computation.

2.1 Scheme metrics
Awide variety of interpolation schemes can be and has been used for overset coupling. Comparing them, however, is not always
straightforward. This work proposes three metrics to facilitate such a comparison: accuracy, robustness and performance.
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2.1.1 Accuracy
Several factors affect the accuracy of an interpolation scheme. Most interpolation schemes’ inherent error can be modelled by
e = �ℎp + o(ℎp+1) with � and p constants and ℎ a metric of the mesh refinement. The interpolation order, p, defines the rate
at which the error decreases with mesh refinement. Since � also plays a role, the order alone does not guaranty an error level.
Contrary to the order p, � can not, in general, be computed without tests because it depends on the donor cells location or
the mesh topology. Therefore tests with multiple refinement levels are needed to assess the error levels fully. Moreover, some
interpolation schemes cannot be easily modelled by the equation presented above, requiring tests to quantify their interpolation
order which may be mesh-dependent.
Finally, in this study as well as in most overset implementation, interpolation is performed on cell centres or vertex values,

which does not guarantee the flux conservation property of the finite volume method. This is particularly important for mass
fluxes, for which lack of conservation leads to pressure fluctuations in the entire domain. Methods reconstructing fluxes passing
through an overset interface exist and ensure mass as well as momentum and energy conservation. They are, however, not
ubiquitous and won’t be tested in this study.

2.1.2 Robustness
The robustness of an interpolation scheme is defined by the probability of giving low error results. Some schemes can, under
particular unfavorable circumstances, return very high errors. Depending on the scheme, donor cell locations or the number of
donor cells used can be the cause of these high errors. Such errors are often caused by a poor a conditioning of the system of
equations used to solve to perform the interpolation.

On the other hand, some schemes always return bounded quantities by design, meaning that the interpolated value will always
be within its donor cells values range, thereby guaranteeing robustness. Schemes that do not provide such a guarantee can be
made more robust by limiting the returned interpolated value to lie inside the donor cell values’ range. This ad hoc method,
however, lowers the interpolation order and can potentially decrease the accuracy. Moreover, if bounding is performed, the
interpolated value can not be expressed as a linear combination of the donor cells’ values anymore, which blocks the interpolation
scheme from use in an implicit coupling28.

2.1.3 Performance
A computation using an overset method has an additional performance overhead coming from the extra steps that are part of the
method. First of all, the computation of the DCI is often complex to accelerate via MPI (Message Passing Interface) distributed-
memory parallelisation, and needs to be redone every time a mesh is changing. Secondly, the donor search is performed every
time a mesh is changing. Finally, during the interpolation phase either interpolation weights are stored and reused within each
outer-loop, or the interpolation itself has to be computed every outer-loop.
Each of these steps requires additional computational time, both in terms of CPU operations and communication between

different MPI processes. While the performance of each of these overset phases and the overset method itself can vary substan-
tially depending on its implementation, type of discretisation, structure vs unstructured grid code, etc., in this work, we intend
to show relative trends and results.
Moreover, in addition to the turnaround time of the interpolation and DCI computation, the coupling method influences the

iterative convergence and therefore the performance. Even though an explicit coupling requires no extra parallel communication,
it can impact iterative convergence compared to an implicit coupling, leading to a higher number of outer-loops required to
obtain a similar level of iterative error. Finally, the interpolation accuracy itself can influence the iterative process.

2.2 Interpolation Methods
A detailed description of the interpolation methods used in this study is included in Appendix A and Table 1 summarises their
main characteristics. Nearest cell and Nearest cell gradient schemes only require a single donor cell and perform first or second-
order interpolation, respectively. The Inverse distance scheme can use any number of donor cells and uses a weighted average
based on the distance to the interpolation location, leading to a first-order scheme.
Next, the Polynomial, Polynomial tensor and Least squares schemes are all based on polynomial interpolation. The first two

require a fixed number of donor cells and work by finding a polynomial function that passes through all of the donor cells
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values. The Least squares approach also generates a polynomial function, but over-determining it in a least squares sense (i.e.
using more donor cells than is strictly required) makes the scheme more robust. One of the main characteristics of all these
polynomial-based schemes is that they can be designed for any interpolation order, as a polynomial function of any degree can
be generated. Higher order Polynomial schemes do require more donor cells, and tends to be less robust though. One should
note that the interpolation order of a polynomial based scheme is one higher than its degree.
Finally, in the Barycentric approach coefficients are assigned to the donor points, such that this will lead to the interpolation

location being the system’s barycentre. These coefficients are then used as the donor cells’ interpolation weights.

TABLE 1 Summary of different interpolation schemes available in ReFRESCO and their main characteristics. Since the number
of donor cells for the Barycentric interpolation depends on the mesh topology it is here given as an example for a Cartesian
mesh.

Scheme Number of donor cells Order (theoretical) Boundedness
2D 3D

Nearest cell 1 1 1 yes
Nearest cell gradient 1 1 2 no
Inverse distance N N 1 yes
Polynomial (degree = 1) 3 4 2

noPolynomial (degree = 2) 6 10 3
Polynomial (degree = 3) 10 20 4
Polynomial (degree = n) (n+1)(n+2)

2

∑n
i=0

(i+1)(i+2)
2

n + 1
Polynomial tensor (degree = 1) 4 8 2

noPolynomial tensor (degree = 2) 9 27 3
Polynomial tensor (degree = 3) 16 64 4
Polynomial tensor (degree = n) (n + 1)2 (n + 1)3 n + 1
Least squares (degree = 1) > 3 > 4 2

noLeast squares (degree = 2) > 6 > 10 3
Least squares (degree = 3) > 10 > 20 4
Least squares (degree = n) > (n+1)(n+2)

2
>
∑n
i=0

(i+1)(i+2)
2

n + 1
Barycentric (type 1) 6 18 yes
Barycentric (type 2) 6 18 no
Barycentric (type 3) 9 27 yes
Barycentric (type 4) 9 27 no

2.3 Interpolation methods used in other overset solvers
Interpolation is a core component of an overset implementation, but publications using overset meshes do not always describe in
detail the method they use. The donor cell collection method is not often mentioned, and the actual interpolation scheme is either
not mentioned, or not described in enough detail to be understood or implemented by others3,29,2,30,31,8. Table 2 summarises
the data found in the literature, and when possible, a nomenclature similar to the one used in the presented work is used.
Unstructured and structured solvers are distinguished as the donor collection can be done very easily with a structured code,
and the interpolation schemes can take advantage of this. This is the case for UP_GRID solver32, which generates a spline in
the entire domain for the interpolation. Suggar++, when used with structured codes, can use a Polynomial tensor interpolation
which needs n3 donor cells, with the search for these cells being trivial on a structured grid.
Interpolation orders higher than 2 are only achieved withOPErA library using a least squares approach. Most of the other solvers
implement a Nearest cell and an Inverse distance scheme (both 1st order). Even though the donor cells collection method is not
always described, at least 3 of the 6 solvers are using the closest cell’s direct neighbours. This means that the number of donor
cells collected for each fringe cell depends on the grid topology and can not be changed. Finally, several schemes make use of
the gradient at the donor cell centre locations to achieve 2nd order interpolations.
Detailed studies of interpolation methods for overset are not often published. Chandar, on the contrary, did several more

thorough tests of the interpolation schemes implemented in OPErA33,5,34,18. In 2012, Quon et al. also tested the use of Radial
Basis Functions (RBF) for overset interpolation35,36, and even though positive conclusions were drawn, it seems that no other
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overset library or CFD solver is using this method, possibly because most overset implementations rely on having only the direct
neighbours of the Nearest cell as donor cells. The RBF method, however, requires more donor cells, making its implementation
and parallelisation acceleration more challenging for most codes.

TABLE 2 Summary of interpolation methods used in various overset implementations.
Solver Type Scheme Number of donor cells Order

Fresco+8 Unstructured
Nearest cell 1 1
Inverse distance Neigha 1
Inverse Simplex Volumeb 4 1 or 2

StarCCM+7 Unstructured
Inverse distance 4 1
Shape Function 1
Gradien Least Squaresf Neigha 2

ANSYS-Fluent5 Unstructured
Linear d 4 1
Inverse distance 1
Gradient Least Squaresf Neigha 2

FOAM-extend9,37 Unstructured
Nearest cell 1 1
Average 1
Inverse distance 1

ISIS CFD/FINE Marine6 Unstructured Least squares Neigha 2

OPErA (openFOAM)33,5,34,18 Unstructured
Lineard 4 1
Inverse distance 1
Least squares -e 2-4

Suggar++c 38,27,15,28 Both

Nearest cell 1 1
Inverse distance Neigha 1
Laplacian Neigha 2
Least squares Neigha 2
Dual grid - 2

Structured Polynomial tensor n3 n

LAVA39 Unstructured Least squares Neigha
Structured Polynomial tensor 8 2

UP_GRID (NMRI)40,32 Structured Ferguson spline
Pusan University41 Structured Barycentric

a The donor cells are the closest cell and its direct neighbours
b Interpolation weights based on the inverse simplex volumes, it is made second order by using donor cells gradients
c Suggar++ is a library being used by several solvers like CFD-Shipflow13, OVERFLOW42 and some implementations of
OpenFOAM30,43

d Using vertices to construct a tetrahedron and perform the interpolation
e OPErA is not using a fixed number of donor cells and therefore the interpolation order is not guaranteed, a pseudo-inverse
method is used if not enough donor cells are collected and the system is under-determined

f The least squares approach is not coupled with a polynomial function here. The gradient at the donor cell centre is used to
extrapolate a field value at the interpolation location from each donor (like the Nearest cell gradient scheme), then the least
squares approach is used as an averaging method between the values
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3 NUMERICAL SETUP

3.1 CFD code
3.1.1 ReFRESCO solver
ReFRESCO (REliable & Fast Rans Equations (solver for) Ships (and) Constructions Offshore)25 is a research and commercial
CFD code that is optimised formaritime applications. It is being developed, verified and validated atMARIN (MaritimeResearch
Institute Netherlands) in collaboration with several other organisations like IST (Instituto Superior Técnico in Lisbon, Portugal),
the University of Southampton (Southampton, the UK), TU Delft (Technical University of Delft, the Netherlands) or WavEC
Offshore Renewables (Lisbon, Portugal).
ReFRESCO is a viscous-flow CFD code that solves multiphase (unsteady) incompressible flows using the Navier-Stokes

equations, complemented with turbulence models, cavitation models and volume-fraction transport equations for different
phases. The equations are discretised using a finite volume approach with cell-centered collocated variables, in strong-
conservation form, and a pressure-correction equation based on the SIMPLE algorithm is used to ensure mass conservation.
Time integration is performed implicitly with first or second-order backward schemes. At each implicit time-step, the non-linear
system for velocity and pressure is linearised with Picard’s method and either a segregated or coupled approach is used. A seg-
regated approach is always adopted for the solution of all other transport equations. The implementation is face-based, which
permits grids with elements consisting of an arbitrary number of faces (polyhedral, hexahedral, tetrahedral, prisms, pyramids,
etc.), and if needed h-refinement (hanging nodes).
Moving, sliding and deforming grids, as well automatic grid adaptation are also available. Coupling with structural

equations-of-motion (rigid-body 6DOF), and flexible-body fluid structure interaction is possible. For turbulence modelling, both
RANS/URANS and Scale-Resolving Simulations (SRS)models such as SAS, DDES/IDDES, XLES, PANS and LES approaches
can be used. Code parallelisation is done using MPI and subdomain decomposition computed by parMETIS17.

3.1.2 Overset implementation
The implementation of the overset method conducted in ReFRESCO is using the two external libraries Suggar++15 and
DiRTlib38. Suggar++ computes the DCI (Domain Connectivity Information), which gives the status for each cell (either in,
hole or fringe), and DiRTlib facilitates the use of the output from Suggar++. Suggar++ also has the capability to perform the
interpolation itself. In this study, however, the interpolation is done by ReFRESCO. This means that only the so-called IBLANK
array containing cell status information is provided by Suggar++, and ReFRESCO does the donor search for each fringe cell,
as well as the interpolation using one of the methods presented in appendix A.
The coupling with the flow solver is done explicitly for all equations11,23. Interpolated values are set at the right-hand side

of the system, and a unitary diagonal is applied on the lines corresponding to fringe cells. The pressure field is also being
interpolated on fringe cells, employing a zero pressure correction on these cells. This explicit coupling means that fringe cells’
field data is being updated only every outer-loop and not within inner-loops steps. For schemes that allow it, interpolation weights
are computed and stored in memory to be re-used when grids are not moving to decrease computational cost.

3.1.3 Interpolation implementation
The donor cell search was designed and implemented to minimise the number of parallel synchronisation steps and the amount
of data being communicated between MPI processes. The algorithm is given in pseudo-code in listing 1. The general idea to
select donor cells is to first find the cell that contains the interpolation location (fringe cell centre) and then gather its neighbours,
followed by the neighbours of the neighbours etc., until enough donor cells have been gathered for the demanded scheme. The
order in which neighbours of the same layer are gathered is based on their distance to the fringe cell centre location.
First, the first donor cell is found for each point where the interpolation is needed. This is done locally on each process, facilitated
with an octree search. If no local suitable donor cell is found for a particular fringe cell, the loop continues without gathering
any donor cell. Once this is done, a parallel communication step is run to check if each interpolation point has one and only one
donor cell associated. For each local donor cell found at the previous step, its neighbours are gathered as donor cells themselves,
followed by the neighbours of the second donor cell etc. Parallel communication is needed after each set of neighbours gathered
for the search to expand to the neighbouring parallel domain when needed. Finally, once enough donor cells have been gathered
for each interpolation point, a last communication step is used to prepare future exchanges.
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Listing 1: Pseudo code representing the donor search implementation in ReFRESCO
for cell in global_fringe_cells:

find 1st donor cell

check duplicates & orphans # parallel exchange

while more donor cells needed:
for point in local_fringe_cells:

find next layer of donor cells
exchange cell information # parallel exchange

exchange info to prepare future communication # parallel exchange

This implementation minimises the amount of data being exchanged and favours a few larger parallel communications over
many small communication steps. For example, in a 3D Cartesian mesh (each cell having 6 neighbours), if 20 donor cells are
needed for each fringe cell, the while loop will be run 4 times in total, leading to 5 exchange steps. The parallel performance of
the implementation is measured and analysed in section 5.
The computation of the interpolation itself can be done in two different modes. Either by directly computing the interpolated

data for each fringe cell or, for supported schemes, by first computing interpolation weights associated with each donor cell
and from them computing the interpolated quantity. The advantage of computing interpolation weights being that they can be
reused, provided the different grids have not been modified, moved or adapted, leading computational time saving. For each
interpolation point, the interpolation is performed by the MPI process on which the first donor cell was found. This offers some
load balancing and minimises communications as donor cells mostly belong to the MPI process that computes the interpolation.

4 VERIFICATION STUDY

For the code verification study, to highlight the interpolation step behaviour on a wide range of flows, two different test cases
were chosen. First, the Poiseuille flow analytical test case is a diffusion-dominated steady pipe flow case, here run on a 2Dmesh.
Second, a more realistic and complex case, a high Reynolds number (so convection dominant) recirculation bubble RANS man-
ufactured solution is used. This is a 3D unsteady test case which includes turbulence modelling, taking it closer to applications
for which overset meshes are commonly used while still permitting an accurate assessment of the numerical errors.

4.1 Poiseuille flow test case
4.1.1 Case definition
The Poiseuille flow analytical formulation can be derived directly from the Navier-Stokes equations. Considering a 2D domain
of length L in the x direction and height ℎ in the y direction with the inlet at x = 0, outlet at x = L and walls at y = 0 and y = ℎ.
After taking into account the different boundary conditions (non slip walls, and P = 1 at the outlet), the analytical solution is
presented in Equation 1.

ux (y) =
Pℎ
2�

y
(

1 −
y
ℎ

)

, uy = 0 ,
)p
)x

= −P , p (x) = −P (x − L) + 1 . (1)
In this study, the constant pressure gradient is )p∕)x = −8�, the domain height is unity (ℎ = 1) and kinematic viscosity is

� = 0.1, resulting in a height based Reynolds number of Reℎ = 10.
In order to test the interpolation in different conditions, six overset layouts were designed. These are meant to represent

various aspects of real overset meshes, with variation in refinement, relative positioning of the meshes and grid topology. For
each layout, 5 grid assemblies were generated with different refinements. Each grid assembly is composed of two grids:

1. a Background grid which is common to all layouts, which is a Cartesian grid of ratio 2:1 (see table 3)
2. and a Foreground grid, also a 2:1 rectangular grid but four times smaller than the Background grid. Its position and type

is different for each layout:
• L1: the Foreground grid is a Cartesian grid on which the cell size is the same as the one of the Background grid, it

is also centred in both directions relative to the Background grid. In the overlap region there is a one-to-one match
between cells of both grids.
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• L2: the Foreground grid is similar to layout L1 but the global positioning of the grid is offset by about 0.694 cells
in the x-direction and 0.416 cells in the y-direction (the absolute offset depending on the grid refinement).

• L3: the Foreground grid is similar to layout L1 but it is rotated by about 18.65 degrees around the centre of the
domain (the decimals were randomly chosen in order to avoid cell alignments).

• L4: The Foreground grid is still Cartesian but the cells are 1.6 times larger in each direction compared to the
Background grid. The grid has the same offset from the centre of the domain as L2.

• L5: The Foreground grid is 1.5 times finer in both directions than the Background grid. The grid has the same offset
from the centre of the domain as L2.

• L6: The Foreground grid is unstructured composed of triangles, and its cell count is kept close to the cell count of
L1. The Foreground grid has the same offset from the centre of the domain as L2.

It can be noted that, even if some of them are structured, the CFD code considers them as unstructured and does not take
advantage of their topology.

(a) L1 (b) L2 (c) L3

(d) L4 (e) L5 (f) L6

FIGURE 3 Coarsest grid used for each layout. The Background grid is displayed in blue and the Foreground grid in green.

Background Foreground
L{1-6} L1 - L2 - L3 L4 L5 L6

Ni Ni Ni Ni Ni
G1 32 × 16 512 16 × 8 128 9 × 4 36 23 × 11 253 unstr 112
G2 64 × 32 2 048 32 × 16 512 19 × 9 171 47 × 23 1 081 unstr 518
G3 128 × 64 8 192 64 × 32 2 048 39 × 19 741 95 × 47 4 465 unstr 2 232
G4 256 × 128 32 768 128 × 64 8 192 79 × 39 3 081 191 × 95 18 145 unstr 9 234
G5 512 × 256 131 072 256 × 128 32 768 159 × 79 12 561 383 × 191 73 153 unstr 37 944

TABLE 3 Different grid sizes used in this study.

In this test case, steady computations are performed where only the momentum equation and the pressure correction (via the
SIMPLE method) are solved. At the inlet, the analytical velocity profile is set, and pressure is enforced at the outlet. The top
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(a) Background grid (b) Foreground grid

FIGURE 4 Cell status for the layout L3 and grid G3 computed by Suggar++.

and bottom of the domain use non-slip wall boundary conditions. Iterative convergence is ensured by letting the norm of the
residuals fall below 10−14 for the infinity norm. Convective and diffusive fluxes are discretised using 2nd order schemes.
Figure 4 shows the IBLANK array for the L3 layout computed by Suggar++. Two layers of fringe cells are used at each

boundary for ReFRESCO to reconstruct gradients properly on neighbouring in cells. Since the test case does not strictly require
the use of overset meshes (there is no moving body, etc.) for each refinement, a computation using only the Background grid
was additionally done for comparison purposes.
In this study, all the interpolation schemes presented in section 2.2 were tested: Nearest cell and Inverse distance using 4 and 10
donor cells as well as Barycentric interpolation of type 2. For polynomial-based interpolation, Least squares and Polynomial
interpolation of degree 1, 2 and 3, as well as Polynomial tensor interpolation of degree 1 were used.
It should be noted that since the Poiseuille flow solution is a degree 2 polynomial function, a degree 2 or higher polynomial-

based interpolation method should interpolate the field exactly.

The robustness of polynomial-based interpolation is heavily influenced by donor cell locations and is particularly sensitive
to cell centre alignments. In this test case, Polynomial interpolation of order 3 and the Polynomial tensor interpolation lead to
diverging computations due to their high errors. Results from these computations are not shown in the following study.

4.1.2 Error level analysis
Figure 5 shows the infinity norm of the velocity field error for a selection of schemes (and the layout L3). For the no overset
computation, this error is only the space discretisation error, that, as expected with 2nd order schemes, also decreases in 2nd
order when refining the grid. On overset computations, however, the error shown is a combination of discretisation and overset
interpolation errors.With the Least squares 2 scheme (a 3rd order scheme), the error level is similar to the no overset computation,
suggesting that the interpolation error is lower than the discretisation error. Similarly, Figure 6 shows the infinity norm of the
error for each grid per scheme as well as the order of convergence. This order is computed using a linear regression of the log
of the errors for the different grid refinements.

• Layout L1: each scheme shows a converging trend with errors similar to the case run without overset except for the degree
one Least squares and Barycentric type 3, which both result in higher errors. This is because neither of them guarantee
that an interpolation computed on a cell centre returns the cell centre value. Even though only the velocity error is shown
here, the error on the pressure shows similar behaviour.

• Layouts L2 to L5 show very comparable results for each scheme, giving confidence that the conclusions drawn here are
not specific to the mesh layout. Every single scheme shows a converging trend when refining the grid with the exception
of Inverse distance and Nearest cell on layouts L3 and L4 (both of them being only 1st order). Increasing the number of
donor cells for the Inverse distance scheme slightly helps to reduce the error but not to the level of other, higher order,
interpolation schemes. Then, 2nd order schemes (Nearest cell gradient, Polynomial 1 and Least squares 1), as well as the
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FIGURE 5 Infinity norm of the velocity field error against grid refinement (G5 to G1) for the layout L3. For readability reasons,
only a selection of schemes is displayed.

Barycentric ones, show intermediate results, with proper convergence when refining the grids, but still showing errors
higher than the discretisation error alone (no overset case). The convergence order computed from this error varies between
1 and 1.5. Degree 1 Least squares computations show slightly higher errors than the degree 1 Polynomial on these layouts,
which can be explained by the fact that the Least squares approach uses more donor cells, thereby using field information
further away from the interpolation location. Finally, schemes with theoretical order of 3 or higher (Polynomial 3 and
Least squares 2 and 3) are the only one to show errors levels similar to the case without overset grids, suggesting that the
interpolation error is lower than the discretisation error.

• Layout L6 is the only case introducing an unstructured grid for the Foreground mesh. Since triangular cells reduce the
grid quality and increase the intrinsic discretisation error on in cells, the comparison with the non-overset case is harder
to make. Nevertheless, Nearest cell gradient and Least squares have similar error levels for the finest grids, though degree
2 and 3 Least squares are better for coarser grids.
The schemes showing the lowest error overall (Least squares 2 and 3) have worse convergence order on this layout. As
mentioned, this convergence order combines both discretisation errors and overset interpolation error, each of them hav-
ing their own order of convergence. On these computations, the discretisation error is likely to have a lower order than
the interpolation one, thereby lowering the overall order of convergence. However, the Nearest cell gradient computation
shows a different behaviour as the interpolation error is dominating (with an order of 1.5 like seen on the other layouts).
The combined convergence order is 1.5. Upon refining the grids, the discretisation error will likely become dominant,
lowering the combined convergence order.
As stated previously, Polynomial based interpolation schemes are sensitive to donor cells location. On this layout, both
Polynomial computations resulted in poor robustness with very high interpolation errors leading to the computation
divergence.

4.1.3 Mass imbalance study
Upon convergence of the SIMPLE/SIMPLER algorithm, mass imbalance is of the same order as the iterative error. When using
overset grids, however, the automatic global mass conservation that is inherent to the finite volume method is lost due to the
overset errors, which is mainly due to interpolation. This is because the values of the face fluxes are calculated using interpolated
values at the fringe cells. This source of mass imbalance does not depend on iterative error but rather on the interpolation error
and is here sees decreasing with grid refinement.
Figure 7 shows the mass imbalance for each scheme. It was previously seen that on layout L1, overset computations did not

show errors higher than the ones without overset. It is visible here, however, that this does not imply that the mass is fully
conserved due to numerical errors.
The L2 layout is a translation of L1. Therefore the Nearest cell scheme is computing exactly the same solution for the two

layouts since the donor and fringe cells are the same, explaining the similar mass imbalance on these two layouts. The mass
imbalance is several orders of magnitude lower than the error level shown in the previous section, which implies that schemes
with comparable error magnitudes can have a different mass imbalance. This is, for example, the case for the degree 2 Least
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FIGURE 6 Infinity norm of the error and convergence order on the velocity for the Poiseuille case. Cross marker denote the
finest grid.

squares scheme. Even if Figure 6 shows similar trends for layouts L2 and L3, the mass imbalance is three orders of magnitude
lower on L2 for the finest grids. Similarly to the error plots, it can be seen that schemes with a theoretical order strictly higher
than two behave similarly on all grid layouts.

4.1.4 Flow behaviour and errors location
In this section, only the Nearest cell, Nearest cell gradient, and degree 2 Least squares schemes will be analysed as they can be
considered representative of 1st, 2nd and 3rd order interpolation schemes respectively. Field visualisation for the degree 1 Least
squares being relatively similar to the Nearest cell gradient one. Figure 9 shows, for the layout L3 and set of grids G3, the log
of the difference between the exact solution and the overset computation for the velocity field. On these figures, only the bottom
half of the Foreground mesh solution is displayed to visualise fringe cells of the Background grid that the Foreground mesh
would otherwise overlap.
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FIGURE 7 Difference between inflow and outflow mass fluxes for the Poiseuille case.

Nearest cell and Nearest cell gradient show similar error patterns: fringe cells have higher errors and can clearly be distin-
guished from the rest of the flow. With the degree 2 Least squares scheme, on the other hand, no discontinuities are visible even
in the overlap region, and the highest errors are at the top and bottom boundaries and not in the overset region. For this scheme,
the error is quite similar in terms of magnitude and location to a computation done without overset. Note that the Nearest cell
gradient scheme has lower error levels than the Nearest cell scheme, as shown in Figure 6. The error on the pressure field, Figure
10, shows a comparable trend as degree 2 Least squares scheme does not display any artefact related to the overset process.
The Nearest cell gradient scheme pressure field is smoother than the velocity one, but a step is still present between fringe cells
and in cells, visible on both the Foreground and the Background mesh. Finally, the Nearest cell scheme shows point-to-point
oscillations on fringe cells for both grids and presents higher errors.
The Background grid data can also be directly compared to the computation done without overset as shown in Figure 11 for

the velocity field. For the Nearest cell and Nearest cell gradient, the maximum difference is similar to the error analysed above.
In contrast, the Least squares 2 figure shows differences one order of magnitude lower than the error (computed when comparing
against the analytical solution) and still has a smooth field without visible effects of the overset method. To summarise, artefacts
of the overset method, specifically of the interpolation step, are visible for interpolation schemes of order 2 or lower. When using
higher order schemes, the error made with overset grids is negligible compared to discretisation error without overset grids.
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(a) Axial velocity field (b) Pressure field

FIGURE 8 Velocity and pressure fields for the layout L3 and grid set G3, using the Nearest cell gradient interpolation scheme.

(a) Nearest cell (1st order) (b) Nearest cell gradient (2nd order)

(c) Least squares degree 2 (3rd order) (d) Computation without overset

FIGURE 9 Log of the error between overset computations and exact solution for the velocity field. Note that the scale is adapted
for each plot with the maximum error always being the upper range of the scale. The Foreground mesh is only half visible in
order to visualise fringe cells of the Background mesh.
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(a) Nearest cell (1st order) (b) Nearest cell gradient (2nd order)

(c) Least squares degree 2 (3rd order) (d) Computation without overset

FIGURE 10 Log of the error between overset computations and exact solution for the pressure field.

(a) Nearest cell (1st order) (b) Nearest cell gradient (2nd order)

(c) Least squares degree 2 (3rd order)

FIGURE 11 Log of the difference in velocity between a computation done with and without overset.
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4.2 Recirculation bubble URANS manufactured solution
4.2.1 Case definition
This test case, designed by Eça et al.44, is a 3D unsteady manufactured solution using a high Reynolds number (Re = 107)
recirculation bubble. The manufactured solution defines the velocity, pressure and �̃t turbulent eddy viscosity in the entire field.
The bubble grows and disappears periodically following a sine wave with a period T = 5. Figure 12 shows a slice of the velocity
field. The inlet is on the left of the domain and outlet on the right.
The source terms needed by the solver for this manufactured solution were computed with the library PyMMS45, which gen-

erates a Fortran source file that can be integrated in ReFRESCO (or any CFD code). A detailed description of the manufactured
solution can be found in appendix B and Eça et al.44 should be read for an explanation of the design decisions that lead to the
different fields.
The domain is an empty box of size x = [0.1; 1], y = [0; 0.4], and z = [0; 1]. The bottom boundary is a non-slip wall, the

inlet a Dirichlet boundary condition with each quantity the analytical formulation, and every other boundary uses a Neumann
boundary condition with the exact analytical gradient for each quantity. For this test case, two different overset mesh layouts were
tested. In both these layouts, the Background grid of the size of the entire domain is used together with a smaller Foreground grid.
The Foreground grid is a Cartesian mesh of size 0.3 × 0.25 × 0.8. The Background grid is a structured mesh with a refinement
towards the wall to lower y+ which was kept below 1 for all grids here. Similarly to the Poiseuille flow test case, structured
meshes are considered unstructured by the flow solver. In this study, 5 different refinements were used for both the Background
and Foreground meshes, and Table 13 summarises the different dimensions and cell counts. The name of each grid layout (Grid
n) can be seen as the number of cells in the x-direction for the Background grid, and every other dimension scales with it in
order to have a set of geometrically similar grids.
The difference between the two overset layouts is only in the rotation of the Foreground grid, on layout L1, the Foreground grid
is in the centre of the domain, and aligned with the global axis. When on layout L2, the Foreground grid is also centred in the
domain but two rotations are applied to it. First in the y-direction of 18.90 degrees and then of 12.89 degrees in the z-direction.
Both layouts are displayed in Figure 14. The DCI was computed by Suggar++ and is showed in Figure 15 for both grid layouts.
Two layers of fringe cells are present at the boundaries and the Background grid has hole cells also surrounded by two layers of
fringe cells.

FIGURE 12 Recirculation bubble used as a manu-
factured solution, the slice is colored by the x axial
velocity.

FIGURE 13 Details of the different grids used for the recirculation
bubble test case.

Background Foreground
nx × ny × nz Ni nx × ny × nz Ni

Grid 50 50 × 80 × 55 220 000 30 × 25 × 80 60 000
Grid 60 60 × 96 × 66 380 160 36 × 30 × 96 103 680
Grid 70 70 × 112 × 77 603 680 42 × 35 × 112 164 640
Grid 80 80 × 128 × 88 901 120 47 × 40 × 128 240 640
Grid 90 90 × 144 × 100 1 296 000 53 × 45 × 144 343 440

Grid n n × 0.4n
0.25

× n
0.9

≈ 16
9
n3 0.6n × 0.5n × 1.6n ≈ 0.48n3

For this study, the Spalart-Allmaras turbulence model46 is used. Furthermore, the pressure-velocity coupling SIMPLER
algorithm is used since it showed better iterative convergence characteristics than SIMPLE. Time integration is performed by
an implicit three time level scheme (2nd order) and the 2nd order QUICK scheme is used for convective flux discretisation.
The period of the manufactured solution is set to T = 5 and the time-step is tstep = 0.01, leading to a maximum Courant

number of 0.3 for the coarsest grid (Grid 50) and 0.7 for the finest grid (Grid 90). The validity of this time-step was checked by
doing a time-step refinement study with tstep = 0.05, tstep = 0.01 and tstep = 0.001. With a time-step of tstep = 0.01, a period is
modeled by 500 time-steps.
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(a) L1 (b) L2

FIGURE 14 Coarsest grid (Grid 50) with the two different layouts used for the recirculation bubble test case.

(a) L1 (b) L2

FIGURE 15 Overset domain connectivity as computed by Suggar++ on the coarsest grid setup (Grid 50). Black cells belong
to the Foreground grid and white cells belong to the Background grid. One can see that the Foreground grid has two layers of
fringe cells on its boundaries, and the Background grid has hole cells in the middle coated also by two layers of fringe cells.

The statistical uncertainty for any measured quantity is kept below 2% by simulating 5000 time-steps (10 periods). This
uncertainty is analysed with the Transient Scanning Technique47 using pyTST48, and the first two periods of any computation
is discarded to remove the startup transient effect (according to the transient scanning technique results).
For this study, the two Layouts L1 and L2, and all the five grid setups were computed using overset. For each grid combination,

Inverse distance (using 7 donor cells), Nearest cell gradient, Least squares of degree 1, 2 and 3, and Barycentric interpolation
of type 2 were used. For comparison purposes, a set of computations was also done using only the Background grid without
overset grids.
Iterative error was controlled by performing enough outer-loops to keep the infinity norm of the residuals for all equations

below 10−6. The same computations were performed with infinity norm of residuals below 10−7 but no changes were seen on
the computed error fields, therefore 10−6 was kept for the remainder of the study.
For this test case, the error norms were calculated every time-step for each field quantity. Figure 16a shows them for the

Nearest cell gradient on layout L1. On this plot, the five different grid refinements are plotted, all showing similar behaviours.
The error is oscillating in time with a period equal to the solution (T = 5). From the time traces one can see that differences
between periods are negligible. This is also apparent in the low statistical uncertainty of the mean, of the order of 2%. The error
also decreases with grid refinement, as one can expect. It is also noticeable that for each quantity, the maximum error occurs just
after the middle of the period when the amplitude of the recirculation bubble reaches its maximum. These observations hold for
the two layouts and all the quantities as well as the set of computations done without overset meshes. When using the Inverse
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distance interpolation scheme on layout L1, however, the behaviour is less clear as seen in Figure 16b. Here grid convergence
is not clearly visible, as, for example, Grid 60 and 70 show similar errors. The amplitude is also not consistent between the
different grid refinements.
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(a) Nearest cell gradient
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(b) Inverse distance

FIGURE 16 L2 norm of the error on Ux over 5 flow periods on layout L1. In this plot, the timetrace of each grid refinement is
shown. Figure (a) shows a proper converging trend when it is not as clear when Inverse distance is used.

4.2.2 Error level analysis
Figure 17 plots the time-averaged L2 norm of the error for each quantity, each interpolation scheme, each grid setup and both
layouts. In this study, the L2 norm is used as it was found to be more representative of the situation compared to the L∞ norm
(because the maximum error was often linked to the domain boundary and not the overset assembly). Considering the error
regarding Ux for layout L1 (first column and first line), each scheme shows grid convergence, with finer grids leading to lower
errors, except for the Inverse distance scheme (in green). Computations done without overset show error levels similar to the
Nearest cell gradient, degree 2 and 3 Least squares, and Barycentric interpolation approaches. It is noticeable that the errors
without overset are even slightly higher than when using the Nearest cell gradient on layout L1. This is because the Foreground
grid is more refined than the background grid. Hence the overset computations lead to lower discretisation errors when compared
to the non overset ones. This is not as true anymore for layout L2, where the Foreground grid is rotated, resulting with part of it
within the lower boundary layer. In this region, the Background grid is more refined than the Foreground grid, leading to larger
discretisation errors. Overall, for layout L2, the two effects cancel each other out, and the error levels are similar without overset
and with a Nearest cell gradient scheme.
Consistently for each quantity and both layouts, the Nearest cell gradient and Barycentric schemes perform as well as the

non-overset computations. The degree 2 and 3 Least squares interpolation perform here, at best, as well as the Nearest cell
gradient in layout L1, but slightly worse in layout L2. As mentioned before, on layout L1, the Inverse distance scheme shows
the highest error levels and no clear grid convergence trend. This implies that the error due to the interpolation is higher than
the discretisation error. For layout L2, however, the Inverse distance scheme performs better, with lower errors and a converging
trend, suggesting that the scheme is more sensitive to the donor cells’ location than the other tested ones. The degree 1 Least
squares scheme always performsworse than the degree 2 one, and the degree 2 and 3 Least squares schemes perform comparably.
Summarising, from the error plots only, the Nearest cell gradient, degree 2 and 3 Least squares and Barycentric schemes are
the best candidates as they add no or a minimal amount of error in the field compared to the case without overset being used.
This suggests that the interpolation error is lower than the discretisation error.
Regarding the convergence order, the computations done without overset show a 2nd order convergence for each quantity, as

expected from the theoretical order of discretisation of the schemes used, and therefore verifying the non-overset solution. The
Nearest cell gradient, degree 2 and 3 Least squares and Barycentric computations also show a 2nd order convergence as well.
However, the Inverse distance scheme shows, depending on the quantity and layout, between 1st and 2nd order convergence.
Finally, the degree 1 Least squares results in 2nd order convergence for layout L1 but slightly lower order on L2.
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FIGURE 17 Comparison of error levels for each quantity depending on the interpolation scheme used for the recirculation
bubble test case. Errors plotted are the time average of theL2 norm of the error for each quantity. Convergence order is displayed
above each quantity.
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4.2.3 Mass imbalance study
Figure 18 shows the mass imbalance for the different computations. Without overset meshes, the imbalance is capped by the
iterative error and is around 10−7 for every grid. When using overset meshes, if, like in this study, no particular treatment is done
to the overset interface, interpolation errors introduce mass imbalance. Independently of the scheme being used, the relation
between cell sizes and mass imbalance is complex: finer meshes not always leading to lower errors. For the two second order
schemes (Nearest cell gradient and Least squares 1), Grid 50 to 80 shows a converging trend on layout L1, but Grid 90 has
higher mass imbalance. This trend is also not present on layout L2. None of the other schemes show monotonic convergence
trend and Inverse distance has, in general, the highest errors.
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FIGURE 18Mass imbalance for different interpolation schemes for the two tested grid layouts on the recirculation bubble test
case.

4.2.4 Flow behaviour and error location
Snapshots of the entire field solution were saved at t = 497.5when the recirculation bubble is largest and, as seen in the previous
section, when errors are also higher. In this section only the layout L2 is being analysed in detail, though similar conclusions
can be drawn from layout L1.
Figure 19 shows the velocity field when using the Inverse distance scheme, where no artefacts from the overset interpolation

are visible in the field. When looking at the error field for the velocity, however, the effects of the overset meshes become
apparent. In Figure 20, the log of the velocity error is plotted for each computation using Grid 80. The lowest errors are visible
upstream of the overset region for all of the computations. When using the Inverse distance scheme, it is particularly visible that
the error made in the overset region is being convected downstream with the flow. Some artefacts of the overset interpolation are
also visible downstream of the Foreground mesh when using the Nearest cell gradient interpolation, but less than with Inverse
distance. On the Foreground mesh itself, both the Inverse distance and Nearest cell gradient computations show a chequerboard
error pattern following the flow streamlines. This is because the interpolation error created at the upstream fringe cells of the
Foreground grid is being convected downstream. Neither scheme produces a smoothed field, meaning that two neighbouring
fringe cells can have very different interpolated data. This creates artefacts still visible downstream of the layer of fringe cells. The
Least squares, on the other hand, produces a much smoother interpolation, and higher order method makes the field smoother,
leading to less visible artefacts of the interpolation, even though the error levels are comparable with the Nearest cell gradient
scheme. When comparing the Least squares and Non overset computation, one can notice that, in the area where the Foreground
grid is, the error is lower in the overset computation, which confirms that having a finer overset mesh helps with decreasing
the discretisation error. Moreover, the fact that the inlet part of the Foreground grid is better aligned with the flow streamlines
may also help lower the errors for the overset computations in this region. Finally, even when no overset meshes are used, the
recirculation bubble region is where the highest errors are located.
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FIGURE 19 Velocity magnitude slice for the Inverse distance computation on Grid 80

(a) No overset (b) Inverse distance (1st order) (c) Nearest cell gradient (2nd order)

(d) Least squares degree 1 (2nd order) (e) Least squares degree 2 (3rd order) (f) Least squares degree 3 (4th order)

FIGURE 20 Side view of the domain (inlet on the left, wall at the bottom) showing the error made on the velocity magnitude
for layout L2. The slice is taken in the middle of the domain (z = 0.5).

In order to analyse only the overset method error, Figure 21 shows the difference between overset and non overset computa-
tions on the Background grid. Compared to previous error plots, what stands out is that, even with the degree 2 Least squares
interpolation, interpolation errors are being convected. Even though the Least squares produces a smoother field compared to
the Nearest cell gradient one, errors are still present. Interpolation artefacts are also visible on the fringe cells upstream of the
Foreground mesh.



22 Lemaire ET AL

(a) Inverse distance (1st order) (b) Nearest cell gradient (2nd order) (c) Barycentric type 2

(d) Least squares degree 1 (2nd order) (e) Least squares degree 2 (3rd order) (f) Least squares degree 3 (4th order)

FIGURE 21 Top view of the domain (inlet on the left) showing the difference between overset and non overset computations
on the velocity for layout L2. The slice is taken in the middle of the domain (y = 0.2).

5 PERFORMANCE ANALYSIS

The overset method has several sources of performance overhead arising from the new routines (DCI and interpolation), addi-
tional parallel communication and from deterioration of the iterative convergence.
Both the DCI and interpolation information have to be updated every time the meshes move, deform or are refined. Additionally,
each outer-loop, the interpolation requires parallel MPI communication to perform the mesh coupling. In this work, the DCI is
computed by the external library Suggar++, and the interpolation, as well as donor search, are done by the CFD solver. Due
to the modification of the discretisation and the matrices that the overset method requires, especially when explicit coupling is
used, the non-linear iterative convergence is influenced. This translates into slower iterative convergence, increasing the number
of outer-loops to reach a similar level of iterative error.
This section analyses these three sources of overhead.

5.1 Interpolation performance
5.1.1 Methodology and setup
Every scheme available in ReFRESCO and presented in section 2.2 is tested here, as well as the donor searching method.
Computations were run on MARIN’s cluster Marclus4, a 4200 cores cluster hosted inside Marin facilities. Each computational
node includes a dual-socket Intel Xeon (E5-2660 v3 @ 2.60GHz) 10 cores CPU, leading to 20 cores per node and Infiniband
HBA is used for inter-node communications. The code is compiled using Intel compiler and Intel MPI for the parallelisation
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(2018.4). For each computation, the time of each routine was recorded using PETSc49 solver logging capabilities, and, on parallel
runs, the time of the slowest process was used.
Interpolation methods and donor searching algorithms are tested on Grid 160 for the recirculation bubble test case (presented

in section 4.2.1). To have sufficient statistical convergence on the timing results, each function was run at least 500 times and
the timing includes the computation itself as well as all the parallel communication required. To prevent data caching between
consecutive runs, functions are not run in isolation inside a real CFD computation (of the recirculation bubble test case). Table
4 shows the interpolation schemes, and parameters examined. The setup reflects a computation that requires a new donor search
and interpolation every time-step (due to mesh movement, for example) and an update of the interpolation every outer-loop.
90 outer-loops are used per time-step. Least squares, Inverse distance and Nearest cell interpolation use interpolation weights
that are computed once per time-step and reused within each outer-loop, while other schemes need the interpolation to be fully
recomputed every outer-loop (note that the donor search is done only once per time step).
Each computation is repeated using 1-1000 processes, as summarised in Table 5.

TABLE 4 Interpolation schemes and parameter tested in
this study

Scheme Nb donor cells
Nearest cell 1
Nearest cell gradient 1
Inverse distance 7

15
Least squares degree 1 6
Least squares degree 2 20
Least squares degree 3 34
Barycentric type 2 1

TABLE 5 Average number of cells and fringe cells per
process. Computations up to 20 cores are run on a single
node.

Nproc Ni∕Nproc Nfringe∕Nproc
1 9 216 000 259 837
2 4 608 000 129 918
10 921 600 25 983
20 460 800 12 991
40 230 400 6 495
80 115 200 3 247
160 57 600 1 623
300 30 720 866
460 20 034 564
620 14 864 419
800 11 520 324
1000 9 216 259

For comparison purposes, individual timings of functions are expressed as a percentage of a baseline set of computations for
which the timing of overset and interpolation methods has been subtracted. The ratio between the interpolation time (Tinterpolation)
and the time taken by the rest of the computation (Ttotal − Tinterpolation) is used. This means that this number could be higher
than 100 if the time taken by the interpolation is higher than the time taken by the rest of the computation. Similar measures are
computed for the donor searching method.

% of total time = 100 ×
Tinterpolation

Ttotal − Tinterpolation
(2)

5.1.2 Results
Figure 22a shows the strong scalability of interpolation schemes. The wall clock time is scaled based on the serial computation
(using a single core). Apart from the scalability of the different schemes, the Total time line shows the scaling of the rest of the
code. As the solid line denotes ideal scalability, the CFD code is seen to degrade slightly faster after 600 cores.
Amongst the schemes tested, the Barycentric interpolation is the one that scales the best, with constant scalability even at a

high core count. All the other schemes show similar levels of poor parallel scalability. This scalability behaviour is explained
by the way the parallelisation is implemented. Most finite volume method CFD codes use domain decomposition, where each
core gets only a part of the full grid. In the current implementation, when using overset meshes, the interpolation is computed
by the processor that stores the domain where the first donor cell is located. Since the donor cells are not scattered evenly in
the entire domain, different loads are experienced on different cores, thereby affecting the scalability. This is shown in Figure
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FIGURE 22 Scalability and timing of different interpolation schemes compared to ReFRESCO computation without overset
(dashed line on scalability plot). The solid black line on shows ideal scalability.

23 where the most loaded core (in number of interpolations to perform) scalability is plotted against the number of cores. This
number depends only on the mesh, the layout and the domain decomposition but not on anything hardware specific. From this
plot, the close relation between the most loaded core and the scalability of the interpolation is seen, suggesting that the poor
scalability is only related to the load balancing of the interpolation but not on parallel communication, for example. This means
that distributing the load over a wider range of cores will improve the scalability. One should also note that the scalability is still
quite consistent because of this behaviour, forming an almost straight line on this plot.
On the other hand, the Barycentric interpolation is using a slightly different parallelisation method compared to the other

schemes, which makes it scale very well, but it also makes it more time-consuming. Figure 22b shows the relative time each
interpolation takes compared to the full CFD computation. The Barycentric interpolation is seen to be the most expensive out
of all the tested schemes, especially at low core counts. It can also be seen that the poor scalability of all the other schemes does
not impact their timing. Overall, except for the Barycentric interpolation, the interpolation does not need more than 8% of the
total time, with a minimum of 2% for the Nearest cell gradient. This makes using 2nd and 3rd order schemes affordable.
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FIGURE 23 Scalability of the Least squares interpolation and of the number of interpolation computed by the most loaded
core. Due to imperfect load balancing, all the cores are not loaded similarly. The interpolation computations the most loaded
core has to perform scales very similarly to the timing of the interpolation. This means that the load balancing can be improved
in this implementation.

The computation of the interpolation is only possible if donor cells have been collected. Figure 24a shows the scalability of
the donor searching algorithm. Similarly to the interpolation, the actual time taken by the algorithm is almost negligible, as
shown in Figure 24b with a maximum below 3% of the total CFD computation time. Furthermore, once the first donor cell is
gathered, the subsequent donor cells are a lot cheaper to gather. For example, requesting 15 donor cells is only about 20% more
expensive than requesting a single donor cell. This again makes schemes that need more donor cells affordable.
Finally, Figure 25 shows the combined time taken by both the donor searching and the interpolation itself. Overall, the fastest

scheme is the Nearest cell gradient since it needs only a single donor cell and is trivially easy to compute, i.e. no system to solve
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FIGURE 24 Scalability and timing of the donor searching methods to ReFRESCO computation without overset (dashed line
on scalability plot). The solid black line on shows ideal scalability.
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FIGURE 25 Time taken by both the donor searching and interpolation for all the tested schemes.

as with polynomial based interpolation. More complex schemes like Least squares, however, only take 8% of the total time at
most for a degree 2 (3rd order scheme).

5.2 DCI computation
The DCI is computed by the serial external library Suggar++. In the computations presented in section 4, Suggar++ was only
run as a preprocessing step. Figure 26 shows the time taken if it were run every time-step as a percentage of the CFD computation,
similar to what was presented in the previous section. Even if Suggar++ can work with both structured and unstructured meshes,
in this section, structured meshes are treated as unstructured by the library. The lack of scalability is apparent from increasing
relative time compared to the CFD computation, and goes up to 30% when 1000 cores are used. Figure 27 displays Suggar++
runtime per grid with different refinements, making it clear that it scales linearly with the cell count.
Several methods can be employed to reduce the time taken by the computation of the DCI. Primarily, if the motion is predefined,
the DCI can be computed in a preprocessing step since it only depends on the relative location of the different meshes. Otherwise,
methods like the one presented by Martin et al.50 can be implemented, where a couple of processing cores are dedicated to the
computation of the DCI. Each time-step, an estimate of the mesh position is made, and a DCI is computed. That way, the CFD
solver does not wait for the serial computation of the DCI.

5.3 Iterative convergence
Using overset meshes modifies the discretisation and inherently the matrices, both left and right hand sides, of the linear system
of equations. This has an impact on the performance of the iterative solvers used and also in the non-linear iterative convergence.
In this section, the number of outer-loops for reaching a L∞ norm of 10−6 for the recirculation bubble test case is analysed. In
this work, the momentum and turbulence equations were solved using the GMRES algorithm, and the pressure correction was
solved with a CG solver. A block Jacobi pre-conditioner was used in all cases. It has to be noted that every computation done
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FIGURE 26 Time taken by Suggar++ when computing
the DCI at every time-step in percentage of ReFRESCO
computational time when running the recirculation bubble
test case on Grid 160.
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FIGURE 27 Wall clock time taken by Suggar++ to com-
pute the DCI depending on the grid cell count. This plot is
using layout L2 of the recirculation bubble test case set of
grid.

here uses the same under-relaxation parameters which may not be optimal, and individual runs could potentially be tweaked to
have better convergence behaviours. Also, one should note that this implementation uses an explicit coupling, meaning that the
fringe cell values are being updated only every outer-loop, and do not directly depend on the donor cells values. This is known
to impact the iterative behaviour compared to an implicit coupling as the different meshes are not coupled as tightly.
Figure 28 shows the average number of outer-loops needed for each computation as well as the difference with the non-

overset run. Overall, layout L1 has better iterative convergence as, consistently, the different schemes need fewer outer-loops
to converge than on layout L2. Based on these results though, it is hard to draw a clear conclusion for each scheme. It seems
that the convergence order or accuracy of the scheme does not play a significant role in the iterative convergence as the Inverse
distance scheme converges as well as a degree 2 Least squares. The degree 1 Least squares on layout L2 here shows a poorer
convergence though. It was also shown to have higher errors in section 4. Tests done with different under-relaxation coefficients
show different trends, with Inverse distance and Nearest cell gradient performing better than the Least squares approach. It is
therefore hard to conclude in a general way for each interpolation scheme, but it is clear that the overhead in performance due
to the iterative error is not negligible.

0 50 100 150 200
% relative to No overset

0 20 40 60 80
Number of outer-loops

Barycentric 2

Least squares 3

Least squares 2

Least squares 1

Nearest cell gradient

Inverse distance 7

No overset

L1

L2

FIGURE 28 Average number of outer-loops needed to converge each time-step to L∞ residuals of 10−6 for each equation.
Results are presented for layout L1 and L2 of the recirculation bubble manufactured solution on Grid 80.
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6 CONCLUSIONS

In this work, a wide range of overset-grid interpolation schemes were studied, in the context of unstructured grid discretisation,
2nd order accurate in space and time, finite volume CFD codes. Accuracy, robustness and computational performance have
been investigated and quantified by means of code verification exercises. Schemes widely used in the open literature of the
subject, and others, ranging from 1st to 4th order were tested. Two test cases have been considered: a low Reynolds number 2D
steady Poiseuille laminar flow and a 3D unsteady high Reynolds number manufactured solution of a boundary layer including
a recirculation bubble.
For both cases the influence of grid layouts (background and foreground grids), grid refinement, time-step has been inves-

tigated. Local and global errors, convergence orders and mass imbalance have been quantified, and a comparison between
solutions with and without overset grids was also made. In terms of computational performance, strong scalability, cpu timings,
donor search and interpolation operations, parallel load unbalancing studies and DCI overhead were reported. Additionally, the
effect of the overset-grid interpolation schemes on the numerical performance of the solver, i.e. number of non-linear iterations
to achieve convergence, has been also comprehensively analysed.
The following detailed conclusions regarding accuracy and robustness can be drawn:
• Overall, higher order schemes produce lower interpolation errors than lower order ones, as expected. 1st order schemes,

like Inverse distance, generate errors that affect considerably the underlying discretisation schemes of the flow solver. On
the other end of the spectrum, 3rd order schemes, in this study, were always enough to maintain the 2nd order convergence
of the global discretisation.

• The interpolation schemes behave differently depending on the flow field smoothness. This is due to the number and
location of donor cells and the interpolation scheme itself. For example, Nearest cell gradient or Barycentric interpola-
tion only use local information, whereas a similar order Least squares interpolation can use more than 10 donor cells.
Therefore, the Least squares approach was found to produce the smoothest field among all schemes tested. Its robustness,
which can be controlled by increasing the number of donor cells used, and its accuracy, makes it an ideal candidate for
interpolation in an overset context.

• The two test cases were designed to study different features and test the overset implementation and interpolation schemes
under different conditions. First, the recirculation bubble manufactured solution is a high Reynolds test case (Re = 107)
compared to the Poiseuille flow one (Re = 10). As a result, convection plays a predominant role in the recirculation bubble
case, and interpolation errors produced by the overlap are convected downstream. However, on diffusion dominant flows,
like the Poiseuille test case, the overset assembly perturbed the entire domain (even upstream of overlap). This difference
in the transport of the errors also impacts the smoothness of the field. Indeed, a low Reynolds number leads to a smooth
field regardless of the interpolation scheme. However, at high Reynolds number, the wake of the overset meshes is as
smooth as the interpolation on fringe cells.

• The two test cases also differentiate in how 2nd order interpolation scheme perform. With the recirculation bubble test
case, 2nd order interpolation results in interpolation errors lower than the discretisation ones. However, on the Poiseuille
flow test case, a 3rd order or higher interpolation scheme is required to achieve accurate results.

Regarding computational performance the following remarks can be made:
• Amongs the different components affecting the performance of an overset computation, in the tested implementation (DCI

done externally), the lack of parallel performance of the DCI computation is likely to become the bottleneck on larger
grids and more complex grid assemblies.

• The donor search and interpolation itself use at most 8% of the computational time for a 3rd order interpolation scheme
(Least squares of degree 2). And, if a 2nd order interpolation is enough, the Nearest cell gradient scheme can be
used as it halves the computational cost (3-4% of the total runtime). This makes higher order schemes affordable and
recommendable.

• The use of an explicit coupling for the overset assembly degrades the iterative convergence, increasing the number of
outer-loops required to reach the desired residuals level. On the recirculation bubble test case, 1.5 to 2 timesmore nonlinear
outer-loops were needed compared to a non overset computation. This performance overhead is significant, and has to be
addressed in the short term.
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We emphasise that in this work pure code verification exercises have been done since an overset grid method does not improve,
nor should it degrade, the modelling errors of a specific solution. Therefore the overset grid method cannot be validated in
isolation but only verified. For this purpose, close-to-real applicationmanufactured solutions are essential to quantitatively assess
an overset grid implementation prior to perform complex validation exercises. Finally, while this paper focused on non-moving
overset meshes, for future work a similar study should be done to expand the conclusions for cases with grid and bodies having
predefined and/or arbitrary motions.
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APPENDIX

A INTERPOLATION SCHEMES PRESENTATION

In this study, seven different interpolation schemes are tested. For consistency, the location of the interpolation is denoted by
x = (x, y, z), the cell centre of a fringe cell. N is the number of cloud points needed by the scheme, in an overset context, a
cloud point is a donor cell centre. The cloud point locations are xi with 1 ≤ i ≤ N . Finally, � is the field to be interpolated and
the interpolated field is named �̃. The goal of the interpolation is to get �̃(x) using xi and �(xi) for 1 ≤ i ≤ N .

A.1 Nearest cell
This scheme has only one donor cell and the interpolated value is equal to the donor cell centre value. It is a first order scheme.

�̃(x) = �(x1). (A1)

A.2 Nearest cell gradient
This scheme also has only one cell in its cloud point, but it also uses the gradient at the donor cell centre to correct the interpolated
value. The gradient used here comes from the Gauss method, and does not need to be computed specifically for the interpolation
as it already computed by the flow solver. The use of the gradient makes it a second order scheme.

�̃(x) = �(x1) + ∇�(x1) ⋅ (x − x1). (A2)

A.3 Inverse distance
The Inverse distance interpolation scheme is sometimes called weighted average method. The number of donorN can be freely
chosen and the interpolation is defined as follow:

�̃(x) =
∑N
i=1 !i�(xi)
∑N
i=1 !i

. (A3)

!i =
1

||x − xi||
p . (A4)

The weights !i decay with the inverse of the distance to the interpolation location x (||.|| being the 2-norm), and this decay
is controlled by the power p. In other words, p controls the smoothness of the resulting field, a lower p-value will produce a
smoother field as it decreases the relative difference between each weights. The extreme being with p = 0 where the Inverse
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distance scheme is equivalent to a geometric average. A p value of 3.5 is used in this study. This is a first order scheme, and
as the weights (!i∕∑N

i=1 !i) are bounded between 0 and 1, the interpolated value will be bounded between the minimum and
maximum field value of its donor cells.

A.4 Polynomial
Polynomial interpolation schemes generate a polynomial function that will pass through all the donor cells values. The evaluation
of this polynomial function at the interpolation location (x) is the interpolated value. A polynomial function can be expressed
in the form,

P (x) = P (x, y, z) =
N
∑

k=1
�kFk(x), (A5)

whereN is the number of coefficients �k, and Fk are the polynomial basis functions. Two different sets of basis functions are
presented in the following sections. The first one named Complete Polynomial will simply be called Polynomial interpolation
in the rest of the paper, and the second one is called Polynomial tensor interpolation.
Complete Polynomial
This type of Polynomial interpolation, creates a degree n polynomial function that has all the terms of degree n and below, hence
the adjective complete. Threfore, in 2D, for a polynomial of degree n, the basis functions will be all F = xiyj , i + j ≤ n with
i, j ∈ ℕ. Similarly, in 3D, F = xiyjzl, i + j + l ≤ n with i, j, l ∈ ℕ
To find the polynomial function that passes through all of the donor cells, �k that solves the system needs to be found:

N
∑

k=1
�kFk(xi) = �(xi), 1 ≤ i ≤ N. (A6)

Which can be rewritten as:
[Ak,m][�k] = [rℎsk], 1 ≤ k, m ≤ N. (A7)

With
[Ak,m] = Fk(xm) (A8)

[rℎsk] = �(xk) (A9)
Once the system is solved and the �k are obtained, the interpolated value is given by:

�̃(x) =
N
∑

k=1
�kFk(x) (A10)

Dimension N (number of donor cells)
n (degree) n = 1 n = 2 n = 3

2D (n+1)(n+2)
2

3 6 10
3D ∑n

i=0
(i+1)(i+2)

2
4 10 20

TABLE A1 Number of donor cellsN depending on the dimension of the problem and the degree of the polynomial function n.

For a polynomial of degree n, the convergence order of its interpolation is n + 1. Table A1 shows the number of donor cells
needed for the Polynomial interpolation.
Polynomial tensor
The Polynomial tensor interpolation is similar to the previously presented complete polynomial interpolation; the only difference
lies in the basis functions.
The basis functions used by the Polynomial tensor interpolation of degree n will be, in 2D, all the terms of the product:

(
∑n
i=0 x

i)(
∑n
i=0 y

i), and in 3D, the terms of (∑n
i=0 x

i)(
∑n
i=0 y

i)(
∑n
i=0 z

i). In other words, the basis functions in 2D are F = xiyj
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with 0 ≤ i, j ≤ n and in 3D F = xiyjzk with 0 ≤ i, j, k ≤ n. Compared with the complete polynomial basis functions of the
same degree, the Polynomial tensor adds some crossterms of degree higher than n.

Dimension N (number of donor cells)
n (degree) n = 1 n = 2 n = 3

2D (n + 1)2 4 9 16
3D (n + 1)3 8 27 64

TABLE A2 Number of donor cells N depending on the dimension of the problem and the degree for the Polynomial tensor
interpolation.

In 2D and 3D the Polynomial tensor interpolation is sometimes called bi-linear (2D degree 1), bi-cubic (2D degree 2), or tri-
linear (3D degree 1), tri-cubic (3D degree 2), etc. This kind of interpolation is often used in finite element methods. In general, to
interpolate inside a square in 2D or a cube in 3D, the bi-linear or tri-linear interpolations offer the possibility to use the vertices
as cloud points.

A.5 Least squares
The Least squares interpolation also relies on complete polynomial functions, where more donor cells than the number of
unknown coefficients �k are collected. The system is solved by minimising the sum of the squares of the errors at each donor
cells location. By increasing the number of donor points, the method become more robust.
The polynomial function to be found is then:

P (x) =
Nterms
∑

k=1
�kFk(x). (A11)

The Least squares approach is to find �k that minimise:

S =
Ncloud
∑

i=1

(

�(xi) −
Nterms
∑

k=1
�kFk(xi)

)2
. (A12)

The minimisation of S is computed by finding the roots of its derivative regarding each �l
)S
)�l

= −2
Ncloud
∑

i=1
Fl(xi)

(

�(xi) −
Nterms
∑

k=1
�kFk(xi)

)

= 0 (A13)

Which is equivalent to theNterms ×Nterms system:
[Al,m][�l] = [rℎsl], 1 ≤ l, m ≤ Nterms (A14)

With:
Al,m =

Ncloud
∑

i=1
Fl(xi)Fm(xi) (A15)

rℎsl =
Ncloud
∑

i=1
Fl(xi)�(xi) (A16)

A.6 Barycentric
The Barycentric interpolation goal is to assign to each cloud point a weight that would make the interpolation location the
centre of gravity of the system and then use these weights as interpolation weights. However, such weights can be found only if
the interpolation location is inside the convex polyhedron made by all the cloud points. In order to make sure the interpolation
location is inside this polyhedron, cloud points are not cell centres but cell vertices.
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First, the cell that contains the interpolation location is found. This cell is subdivided into tetrahedrons formed by the cell
centre and one triangulated face and the tetrahedron sub cell that contains the interpolation location is selected. Barycentric
weights are computed for the vertices of this sub cell. The Barycentric interpolation finds weightswi associated with the vertices
vi that will lead to the interpolation location x being the barycentre or centre of mass of the system. With �̄verti the value at onevertex of the sub-cell one can compute the value at the interpolation location with:

�̃(x) =
∑N
i=1wi�̄verti
∑N
i=1wi

(A17)

In order to get the values at the vertices of the sub-cell 4 different methods can be used. First, the values at the vertices of the
cell can be obtained in two different ways:

�̄vert =
1

Nadj

Nadj
∑

j=1
�(xj), (type 1 and 3) (A18)

�̄vert =
1

Nadj

Nadj
∑

j=1
�(xj) + ∇�(xj) ⋅ (xj − xvert), (type 2 and 4) (A19)

WithNadj the number of cells adjacent to the vertex and xj the cell centre location of an adjacent cell.
The value at the cell centre (which is the last vertex of the sub-cell) is already known, and can be used directly (type 1 and

2), or it can be reconstructed by taking the arithmetic average of the cell vertex values (type 3 and 4). Table A3 summarises the
different Barycentric interpolation types.

Face vertices
cell centre only cell centre + gradient

Cell centre cell centre type 1 type 2
reconstructed type 3 type 4

TABLE A3 Summary of the different ways to get the values at the vertices of the sub-cell.

B RECIRCULATION BUBBLE MANUFACTURED SOLUTION EQUATIONS

The domain is an empty box, with a wall at the bottom (y = 0) and the flow going in the x direction. The inlet is at x = 0.1 and
outlet at x = 1. The domain expands in the z direction from z = 0 to z = 1. Each quantity is composed of two parts, a base
flow, and a perturbation flow. The base flow defines a typical turbulent boundary layer flow and stays constant over time and
throughout the domain in the z direction while the perturbation flow represents the recirculation bubble, and evolves in time
and in the z-direction.
ftime defines the time variation of each quantity. As presented in Equation B20, it is a sine wave oscillating between 0.2 and

1 with a period T .

ftime (t) = 0.2 + 0.4
(

1 + sin
(

�
(2t
T

− 0.5
)))

. (B20)
The base flow for the x component of the velocity is defined in ubx (Equation B21) and represents a boundary layer flow. Theshape of the recirculation bubble itself is defined using three parameters, a1, a2 and a3 describing respectively the magnitude of

the bubble, the location of centre of the bubble (x = 0.5, y = 1∕a2) and finally the decay of the bubble with distance to x = 0.5.
upx (Equation B22) defines this 2D recirculation bubble.

ubx (x, y) =
3
∑

i=1
�ui ⋅ tanℎ

(

aui yx
−buiRe1−b

u
i
) (B21)

upx (x, y) =
(

1 − tanℎ
(

a3
(

x2 − x + 0.25
)))

a1ye
−a2y (B22)
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The x component of the velocity ux is defined in Equation B23. uz is defined in Equation B24. And finally, uy (Equation B25)
is defined from ux and uz to satisfy the continuity equation.

ux(x, y, z, t) = ubx(x, y) + u
p
x(x, y) ⋅ sin

2(�z) ⋅ ftime(t) (B23)

uz(x, y, z, t) =
)upx
)x

⋅
sin2(2�z)

4�
⋅ ftime(t) (B24)

uy(x, y, z, t) = −

y

∫
0

)ux
)x

+
)uz
)z
dy (B25)

The pressure field is defined in order to have a zero gradient normal to each domain boundary, and a pressure of 0 at the
outlet (x = xmax). Equation B28 defines Cp, similarly to ux, a base flow is added to a fluctuating in time and in the z direction
component.

Px(x) = x
(

x
(

x
3
−
xmin + xmax

2

)

+ xminxmax

)

+ 1 +
x3max
6

−
xminx2max

2
(B26)

Py(y) = y2
(y
3
−
ymax
2

)

+ 1 +
y3max
6

(B27)

Cp (x, y, z, t) = P ⋅ log
(

Px
)

⋅ log
(

Py
)

+

Pb ⋅ cos
(

3�
2

⋅
x − xmin
xmax − xmin

)2

⋅ cos2
(

�
2
⋅
y
ymax

)

⋅ sin2(�z) ⋅ ftime(t) (B28)
Finally, the eddy viscosity is defined to have a near wall behaviour close to the wall (y = 0) and decays exponentially in the

outer region as defined in Equation B31.

pptm =
(

1 +
(

ad1 + a
d
2 ⋅ tanℎ

(

ad3
(

x2 − x + 0.25
))

− 1
)) sin2(� ⋅ z)

x0.8
ftime (t) (B29)

y+(x, y, z, t) =

√

Re ⋅
)ux
)y

|

|

|y=0
⋅ y (B30)

�̃t(x, y, z, t) =
((

�y+ − �̃out
)

+ �̃out
) e−y⋅p

p
tm⋅Re

0.2

Re
(B31)

The different variables being used in the current study are shown in Table B4, they follow case A from44.

Variable Value
T 5
Re 107

P 500
Pb 0.25
xmin 0.1
xmax 1
ymin 0
ymax 0.4
�̃out 1
� 0.41

i 1 2 3
ai -140 40 16
�ui 0.35 0.4 0.25
aui 0.0792 0.000063 0.005
bui 0.2 0.2 0.2
adi 0.4 0.6 10

TABLE B4 Variables being used in the recirculation bubble manufactured solution (case A from44)
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