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Abstract—The Pressure Matching Method (PMM) has been
widely used in individual listening zones (ILZ) systems to create
multiple independent sound zones in the same environment. This
method aims to reproduce a set of target acoustic fields in several
control zones, using one or more loudspeaker arrays. These target
fields are parameters of the ILZ algorithm that are defined at
the design stage. In this work, we compare the effects of several
target sound field alternatives on the sound field control system
performance and robustness. The proposed target fields prevent
the ILZ system from focusing its effort on unessential tasks
such as the dereverberation of the acoustic environment. More
specifically, we compare target acoustic fields of a single active
loudspeaker, of several active and in-phase loudspeakers or of
a set of loudspeakers acting as a beamformer steered towards
one of the zones to be controlled. Results of simulations and
experiments obtained with one compact loudspeaker array in
the interior of a real car are presented as well as a study on the
robustness to perturbations of the solutions obtained with the
various choices of target acoustic fields.

Index Terms—soundfield control, sound zone systems, pressure
matching

I. INTRODUCTION

Headphones are the most popular way to enjoy our
audio-visual devices in public spaces, while limiting acoustic
interactions with the surrounding environment for privacy or
distraction reasons. However, headphones prevent the user
from communicating naturally with people around them, iso-
lating them from the environment which can be danger-
ous in the case of transport. Listening through headphones
may be tiring [1] or even lead to hygiene problems in the
case of certain public applications. For these reasons, many
research works have attempted over the past 20 years to
design loudspeaker-based systems that can create individual
listening zones (ILZ) inside public spaces, but without the
disadvantages of headphone reproduction. In a car cabin, for
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instance, the driver could use such a system to receive audio
navigation instructions, with the front passenger enjoying a
radio talk show, while the rear passenger could listen to music.
Moreover, the information desks in an international airport
could deliver the same information in different languages
simultaneously to different listeners. These loudspeaker-based
systems all aim to reproduce a certain audio content in a
certain region of space, called the bright zone, while lim-
iting the acoustic energy in another region, called the dark
zone. Both areas can be defined either geometrically or by
a discretisation of the space into control points, the pressure
at which can be measured using real or virtual microphones,
hereafter also referred to as control points. Two main strategies
are currently used to estimate the optimal signals to be fed to
these loudspeaker-based ILZ systems. The first method, called
acoustic contrast control (ACC), aims to directly maximise
the ratio of acoustic energy between bright and dark zone,
without any consideration of the phase of the reproduced audio
signal in either zone. In [2], a very slight variation consider-
ing the acoustic energy difference is presented. The second
method, called pressure matching (PM), aims to reproduce
given target sound pressures in both zones [3] and may be
considered as a sound field synthesis technique [4]. Many
examples of implementation of these two techniques can be
found in the literature, in different spaces such as a car or
aircraft cabin, a bank agency or simply a lounge in a family
home, where there is a Hi-Fi system, a television, a desktop
computer and a radio simultaneously broadcasting different
content. Some works have considered multiple configurations
for the loudspeaker-based systems, such as circular or linear
arrays and even headrest loudspeaker systems for automotive
applications [5]. Further works have also aimed at limiting
the array effort of these loudspeaker arrays by means of
regularisation techniques, at frequencies where the physical
problem is particularly ill-conditioned [6]. Finally, compara-



tive studies have been carried out between the two methods
[7], [8] with, to the best of our knowledge, only two of them
discussing the selection of the target sound pressures required
in the PM framework. [9] has shown that the PM method can
give acoustic contrast levels close to those obtained with the
ACC method, provided that appropriate target sound pressures
are used. [10] compared the contrast performance obtained
by the PM method for different targets produced by three
different combinations of loudspeakers operating in phase.
But none of these works have sought to optimise analytically
the target sound pressures according to particular criteria of
energy or acoustic contrast. Apart from these two attempts,
unitary pulses (Dirac pulses) are chosen, in most publications,
as target signals for all control points in the bright zone. This
raises two main questions which will be addressed in this
paper: first, why should an attempt be made to reproduce
a flat frequency response at the control points in the bright
zone, while being aware that reverberation exist in the acoustic
space involved and that loudspeakers have physical limits in
the extreme areas of the spectrum ? Second, why should the
system reproduce the exact same target at all control points
in the bright area (i.e. same magnitude and phase) when this
potentially requires a significant amount of energy from the
reproduction system? In this paper, these two questions are
addressed in a theoretical framework. An analytical method
is presented for calculating the target sound pressures that
minimise, under sound quality constraints, the effort expended
by the reproduction system. Then, the properties of some
usual sound pressures targets are compared with the optimal
targets, in both reverberant and free-field conditions. In section
II, the sound zoning problem is defined and the two main
control strategies defined above are reviewed. In section III
a theoretical study is presented to address the two questions
above. Finally, section IV describes the results obtained both
experimentally, in a reververant environment, and theoretically,
with free-field assumption.

II. GENERAL DEFINITIONS

In this section, the sound zone problem is presented along
with the two main control strategies used for loudspeaker’s
arrays.

A. Sound zone problem definition

Fig.1 shows a specific setup with two distinct zones, A
and B, located in a car cabin. The head of the driver and that
of the front passenger are assumed to be located in these two
zone, respectively. In practice, the general problem presented
in section I can be divided into two sub-problems. The first one
is when zone A is considered as a bright zone and zone B as
a dark zone. As for the second one, the roles of the two zones
are reversed, i.e zone B becomes the bright zone and zone A
becomes the dark zone. Then, the optimal signals to be fed
to the reproduction system for each of the two sub-problems
can be added together to address the general problem, by
linear superposition. As a consequence, in this paper, only
the first sub-problem will be addressed, to avoid unnecessary

repetition. The driver’s zone will then always be the bright
one and the passenger’s zone always the dark one. Each zone
will be defined with only two control points positioned at the
entrance of each ear canal of the driver and front passenger,
as diagrammatically described in Fig.2.

Figure 1: Car cabin setup with two distinct zones.

First, a plant matrix G of transfer functions between each
of the L speakers and each of the 4 control points is defined in
the frequency domain, meaning that the problem is formulated
and solved for one frequency at a time. However, in order to
lighten the notations, any reference to the frequency index will
be omitted. Thus, for any frequency, G € C*** is expressed

as
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where g,,,; is the transfer function between the /th loudspeaker
and the mth control point. Then, the following two relation-
ships can easily be deduced as
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where q € CE*! is the column vector of complex source
strengths, p € C**! is the column vector of the reproduced
complex pressures at all control points and subscripts 4 and
indicate the quantities related to the dark and the bright zone,
respectively.

Few evaluation metrics which will be used in the rest of this
paper are defined according to [11]. First, acoustic contrast is
defined as the ratio of the spatially averaged energies between
the bright and dark zones and is expressed as

H
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where the superscript 7 is the conjugate transpose operator.
Secondly, the array effort is expressed as

H
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where qf; #Gres 18 the array effort required by a single ideal
monopole located at the centre of the array to reproduce the
same energy as the solution q in the bright area.
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Figure 2: Diagram of a car cabin setup with a L-loudspeaker
linear array in front of two listeners.

B. The Acoustic Contrast Control (ACC) method

This first technique for defining the complex source
strengths aims to maximise the contrast defined in (3). For
this purpose, Elliott et al. showed in [11] that a way to solve
this problem while avoiding any issues caused by the ill-
conditioning of the problem is to use the method of Lagrange
multipliers. The objective is to minimise the energy pXp, in
the dark zone while keeping the energy in the bright zone
pi’p, at a constant value E5. Most publications also impose
an energy constraint on the solution in various forms. This
can be on the norm of q directly or on each component of q
separately as in [6]. Then, the Lagrangian is expressed as

L=p[p;+ (P, — EB) + X2(d"q—E) (5

where \; and A\, are Lagrange multipliers and E is the array
effort limit. After nullifying the partial q-derivative of (5), the
following eigenvalue problem arises:

1
—)\*1(1 (6)

The optimal solution q,,, is the eigenvector associated with
the largest eigenvalue —1/)\; involved in (6). The solution
must be then scaled in order to meet the energy condition on
the bright zone, while not exceeding the array effort limit E.
The latter can be controlled by setting the proper parameter
A2, which plays the same role as the Tikhonov regularisation
parameter in the matrix inversion in equation (6).
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C. The Pressure-Matching (PM) method

This second control method requires first of all the
choice of p;p € C**1, a vector populated with the target
sound pressures for all control points in both zones. For the
reproduction of a single monophonic signal Xp to both ears
in the bright zone and the least amount of energy possible in
the dark zone, this vector takes usually the form

dy

d
pr= || Xp ™)
0

In most papers, d; = do = 1, corresponding to two Dirac
pulses in the time domain. Once this choice is made, an op-
timisation process is run to find the complex source strengths
that best replicate the target signals at all control points. In the
general case, the PM method attempts to solve a conventional
linear system which is

Gq =pr ®)

At this stage, it is still important to remain in the general
case of a plant matrix G € CM*L_If G is fat (M < L), then
the linear problem above is underdetermined i.e many choices
of q lead to p;. Therefore, one of the common strategies is
to find the solution with minimum ¢2-norm, i.e solving the
following problem:

min [lq; st Gg=pr ©)

where ||| is the Euclidean norm. This gives the following
least-norm (LN) optimal solution:

abh”) = GM"(GGM)py (10)

In practice however, the GG matrix can become close to sin-
gular, which causes large errors in the numerical inversion as
well as impractical levels for the signals driving the speakers.
Therefore, Tikhonov regularisation is often applied through
diagonally loading the grammian GG before inversion, with
a regularisation parameter 5 [12]. Thus finally,

alt") = GGG + 1) 'py (11)

Conversely, if G is skinny (M > L), the linear problem
above is overdetermined and no exact solution can be reached.
Therefore, one of the common strategy is to find the solution
which minimises the following regularised least-squares prob-
lem:

. 2 2
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where [ is balancing in the case the error against the size

of the solution. This gives the following least-squares (LS)
solution

LS _
asy) = (GG + )G py = Glpy (13)
where GL is the regularised pseudo-inverse of G. In [13], SVD
analysis was applied to both underdetermined and overde-
termined solutions, and in the case when regularisation is
employed, it has been shown that
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Thus in the specific underdetermined problem addressed in
this paper, with L > M = 4, the LS solution will be used by
virtue of (14), for the sake of simplicity.

(14)



III. TARGET SOUND PRESSURE OPTIMIZATION

In this section, several strategies for optimising the target
sound pressures defined in (7) are presented. First, the optimi-
sation of d; and ds is presented, with the aim to spend as little
energy as possible to compensate for the inherent limitations of
the audio reproduction system including the loudspeaker array
response and the acoustic environment. Secondly, an attempt
is made to optimise the magnitude and phase relation of the
two targets, trying to minimise the energy deployed by the
system to reproduce both simultaneously.

A. Optimization of individual target sound pressures

In this subsection the optimisation of d; and d5 is studied
without analysing the effect of magnitude and phase relation
between the two target pressures, as this is the subject of the
next subsection. To that end, two bright zone’s targets are
chosen to be identical. Thus, whatever is said about the choice
of d; may also be said about ds. Following this simplification,
the vector of target signals can be expressed as

dy

d
pr= || Xp (15)
0

with X p being the input audio signal and d; X p the target for
both driver’s ears. Also, since everything is linearly dependent
on Xp, this will be omitted from the calculations in the
remainder of this paper.

To better understand the problem, the case of the most
common target signals encountered in the literature, i.e d; =
ds = 1, is considered. It is clear that imposing these targets at
the bright zone’s ears and a zero at the others requires multiple
tasks from the system, namely:

o Ensuring a maximum acoustic contrast AC;p between
the two zones.

o Compensating for the frequency responses of the loud-
speakers in the array.

o Compensating for the peaks and notches that are caused
by reverberation occurring in environments such as a car
cabin.

For instance, if the response of each loudspeaker approaches
that of a band-pass filter, then the system will have to deploy a
great amount of energy in the extreme areas of the frequency
spectrum in order to avoid spectral distortion of the signals
reproduced to both ears. Also, destructive and constructive
interferences between the different reflected acoustic waves
inside the car cabin will generate peaks and notches in the
frequency response observed at the various control points.
Thus, the system will have to compensate for them to re-
produce a flat spectrum, by creating as many notches and
peaks in the response of the signals fed to the loudspeakers.
This leads to a large array effort, which in turn reduced the
system’s robustness to perturbations since the solution will
be, in such reverberant environments, highly dependent on
the control points’ positions. Therefore, after the slightest

disturbance caused to the plant matrix G by, for example,
head’s movements or an open windows, the peaks and notches
will appear at difference frequencies in the transfer functions
and no longer correspond to those that the system would
compensate in the unperturbed scenario. As a consequence,
a significant signal colouration may be heard at the control
points.

|d1|(dB)

f(Hz)

Figure 3: Magnitude response (in dB) of an ideal target
taking into account the band-pass profile of a conventional
loudspeaker’s response.

Regarding the problem of loudspeaker limitations, the
choice is made to intuitively use the response of one of the
array’s speakers to one of the driver’s ears in the car cabin as
a target signal, instead of a perfectly flat frequency response.
This response, even if corrupted by the effect of the surround-
ing acoustics, contains the natural band-pass characteristic of
each loudspeaker’s response. The reproduction system will
therefore no longer spend energy attempting to correct the
response of the loudspeakers at the ends of the spectrum. In
fact, according to (13), the speakers’ complex strengths vector
is expressed as

qtS = GE . dy (16)
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This simplified form clearly shows that the ¢2-norm of the
solution will be directly proportional to the squared absolute
value of the target d;. Therefore, choosing the ideal frequency
response of a loudspeaker as a target, as depicted in Fig.3,
instead of a perfectly flat 0 dB response, will have the effect of
reducing the energy of the solution, without affecting neither
the contrast AC;p nor the array effort AE;p. If we now seek
to reduce the /2-norm using a strong Tikhonov regularisation
in frequency areas outside the power band of the loudspeakers,
the AC;p will also be reduced since more importance will
be given to minimising the ¢?-norm of q than to minimising
the reproduction error in (12). In conclusion, by choosing an
appropriate target signal to start with, as opposed to Tikhonov
regularisation strategy, it might be possible to limit the ¢2-
norm of the solution at the ends of the frequency spectrum
without suffering any loss of AC;p performance in those



regions. The results obtained with both free-field and real data
will demonstrate the benefits of this method in section IV.

Secondly, regarding the problem of dereverberation of the
acoustic environment, two approaches are feasible. The first
is to set the same target as before, i.e. the response of one
of the loudspeakers measured in the car cabin, as this will
contain the main acoustic features of the car cabin such as
the main resonances etc. The second is to use a frequency-
dependent windowing, or trimming, of the impulse responses
used to build the plant matrix G, as described by Ebri et al.
in [14]. This approach removes the late room reverberation
before any optimisation process. However, the comparison of
these two alternatives is beyond the scope of this study and
represents material for future work.

B. Optimisation of magnitude and phase relation between
target sound pressures

In this subsection, we return to the general case where
the two bright zone’s targets are different. We also introduce
a filter matrix W € CL*4 guch that

W= G; = [Wl Wo W3 W4] (17)

Since this section focuses on targets only, this filter matrix
will be considered unchanged for the rest of the paper. With
these notations, w; € CE*1 will create a sound beam steered
towards the first control point of the bright zone, being the
driver’s left ear, according to Fig.2. In the same manner, wy
will try to achieve the same at the driver’s right ear while
limiting as far as possible the acoustic energy at the other three
control points. Multiplying the filter matrix W by a vector d
populated with the target pressures allows the audio system to
simultaneously reproduce two different signals at both driver’s
ears. Thus the optimal speakers complex strengths vector is
expressed as
dq
da
0
0

q=Wd=W (18)

The unnormalized array effort is defined as

E, = q"q = |[wy3]d1|*+]|wal[3|d2|?
+ (wHwy)dyd + (wHwa)dod?  (19)

where ||.||, is defined as the Euclidean norm and a* denotes
the conjugate of a € C. The first two terms of (19) correspond
to the energy deployed by the beamformers w; and wsy if
they were operating separately. Thus they do not depend on
the phase or magnitude relationships between d; and dy. The
last two terms of the sum represent the cross-energy required
by the system when the two targets have to be reproduced
simultaneously. After simplification,

By = [wi|?|di[*+|[wa|?|da/?
+ 2|dy||do||Wh W1 |cos(A — ¢y)  (20)

where

A = Arg (d2dy), oéw = Arg (wfwl) 21

and where A is the interaural phase difference (IPD) between
the two ears. The objective is now to jointly optimise |d;|,|ds]
and A involved in this cost function (20) in order to minimise
E,. To avoid trivial solutions, |di| or |da| or |di|*+|da|?
has to be fixed during the optimisation process. In the rest
of this paper, the choice was made to keep d; constant
and the optimisation therefore corresponds to minimising the
following ratio :

Eq
|da[?

where I' = |d2|/|d1|. Note that different optimisation formulae
and different results would be obtained if |da| or |dy|?+]|dz|?
were chosen as a reference instead of |d;].

The objective is now to jointly optimise the two variables A
and I' involved in the cost function (22) in order to minimise
E, subject to a constant acoustic energy |d;|* and without
any other constraints for the moment. In (22), the normalised
energy is obviously a parabolic function of the variable I'. This
parabola has a first term that is always positive by definition
which implies that its vertex will be also its global minimum.
For a given A, the vertex coordinates will then be

= [[wi|[* + [l *T* 4 2T i wi [cos (A — gy)  (22)

—|wiwy|cos(A — ¢y,)
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Yet, (23) gives a constraint on the value of A since a ratio I' of
modulus cannot be negative, by definition. As a consequence

m 3T

-< (A- < =

< (h-gu) <2
As E,(T'°P)) will always be a positive quantity, the values
of A that minimise (24) are

A—¢y=m or A—¢y =0

(25)

(26)

However, we observe that one of the two optimal solutions
is not respecting condition (25) and is therefore discarded.
Finally,

ACP) = 7+ ¢y, 27)
and -
F(opt) _ |w2 W;‘ (28)
2[5

which gives the optimal relationship between the two targets
as

t
dé{)p ) 7 F(opt) jalert) 7W5[W1 2
(opt) € = P (29)
dl [[wall

A color map is presented in Fig.4 for a specific frequency (2
kHz), a wide range of A, admissible I" and ¢,, = 0, without
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Figure 4: 2D-plot of %I:t) in dB.

loss of generality. This confirms the presence of a single global
minimum, as predicted by the previous formula.

It should be noted that the optimal value of A given by
equation (27) always minimises the cost function (20), whereas
the optimal T" in (28) depends on the choice of di, dy or
|d1|?+]|d2|? as fixed parameter in the optimisation.

Table I: Setup distances.

Distance ‘ value (cm) ‘
Inter-ears distance 25
Array width 130
Shortest distance between heads and array 70
Inter-heads distance 110

IV. RESULTS

In this section, the strategies developed in the previous
section are evaluated using free-field acoustic models and
measurements made in a car cabin. The first two sub-sections
are concerned with the evaluation of the target pressure opti-
misation techniques defined in section III. The third subsection
is dedicated to the comparison of several usual target acoustic
fields with respect to the optimal solutions.

Measurements were made in the car cabin of a standard
modern car with exactly the same configuration as shown in
Fig.2. Two dummy heads were facing L = 16 loudspeakers
integrated into a compact array. This configuration is also the
basis for our free-field model, which does not take into account
any reflections, diffraction, head absorption or loudspeaker
limitations. The main dimensions are displayed in table I, for
both cases.

A. Optimisation of individual target sound pressures

In this subsection, all investigations are only made with
measured data since the free-field model considers the loud-
speakers as perfect source points within an infinite volume and
therefore cannot be used to validate the strategies defined in

section III-A. The stake is to demonstrate the benefits in terms
of I/, and AC for the reproduction system by using the target
proposed in section III-A and thus without compensating for
the inherent limitations of the loudspeakers. To this end, an
almost non-regularised Tikhonov solution (3 = 107°) was
first designed using the most common target sound pressures
i.e dy = dy = 1. For frequencies below 400 Hz, the observed
array effort was very large as shown by Fig.5(b) in yellow.
Beyond the pass-band behaviour of each loudspeaker in this
extreme zone, another phenomenon is responsible for the
increase of F, at low frequencies. It has in fact been shown in
[11] by means of a multipole expansion analysis that achieving
a greater directivity requires a substantial increase in array
effort, since a significant amount of destructive interferences
between loudspeakers occurs at wavelengths that are larger
than the size of the array. To counteract this problem, the
value of the regularisation parameter 3 was increased at these
extreme low frequencies in order to obtain an acceptable F,
profile, i.e. with the lowest possible range over the entire
audible frequency spectrum. Thus, a 3 = 10~ was applied
at low frequencies and Fig.5(b) shows in blue the £, graph
with this new [ profile. In parallel to this, another solution
was designed with the appropriate target defined in section
III-A, i.e. close to the frequency response of one loudspeaker
measured in the car cabin. Very little regularisation was used
(8 = 10~?) in order to ensure that the appropriate targets could
be perfectly reproduced. In order to facilitate a comparison
between results, a small amount of equalisation was applied
to this second solution in order to ensure that the two solutions
had exactly the same E, as shown in red and blue in Fig.5(b).
Fig.5(a) shows that a much higher AC score was obtained
for the second solution, designed with the optimal target.
The predictions reported in section III-A have thus been
verified by these experimental results showing that, for a given
E,, the direct choice of an appropriate target preserves the
performances in terms of AC, while Tikhonov regularisation
will strongly deteriorate them.

B. Optimisation of target sound pressure ratio

In this second subsection, we first consider the special
case where only A is considered as a variable in the cost
function (20). Besides, the optimal solution A will be sys-
tematically compared with the usual target sound pressures
(dy = da = 1), corresponding to A = (. The two targets
compared in this section will therefore initially be

d 1 d(OPt) 1

B =[] o [g] < [aste]
Thus, the amplitude of the targets at both ears is the same in
both cases, with only the phase of one of the targets being
altered. This means that the desired acoustic energy in the
bright area will be identical and therefore only the numerator
E, of the AE as defined in (4) will differ between the two.

Therefore, a reduction of the AE is expected because of the
definition of A(°P?),
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Figure 5: (a) AC (dB) (b) E, (dB) for PM solution with optimised target signals (red line), with usual Dirac pulse targets and
a frequency-dependent 3 (blue line), with usual Dirac pulse targets and a very low 3 (yellow line).

AE plots of the two different sets of targets are presented in
Fig.6(a) and Fig.6(c) , in both free-field and real conditions.
First, low frequencies i.e below 100 Hz in free-field and 300
Hz with real data, are apparently not subject to a gain in terms
of array effort. This shows that at these frequencies, a zero A
between the pressures reproduced at the two ears is the most
efficient solution. Yet, for wavelengths much greater than the
head diameter, any plane wave reaching one of the two ears
will show naturally little phase shift at the other ear, i.e a
natural zero A, which proves that the optimal IPD derived is
simply the natural one.

Referring now to Fig.4, it can be seen that this A-
optimization is equivalent to moving on an horizontal line,
with a static I'. And even though it has the advantage of staying
on an iso-energy line in the bright zone since |d§0p t)| and
|d{°""| remain constant according to (30), the global minimum
is not necessarily reached.

Therefore, the optimal parameters for I' and A are now
applied simultaneously, so as to reach the bluest point in Fig.4.
The two targets compared in this section will therefore be

d 1 d(opt) 1

{dj - H and [ diopt)‘| = [p@m)emww} G
The amplitude as well as the phase are now modified for the
second control point, thus preventing the optimisation to be
constrained on an iso-energy line in the bright area. Also, the
desired acoustic energy in the bright area, i.e the denominator
in (4), might therefore fluctuate between the two solutions,
by a factor of (1 + (I'°P"))2) where 0 < T'°PY) < 1 as
observed in practice. Thus, within a few dB of accuracy, the
AE will be once again similar to the unnormalised effort
E,. AE plots regarding the two different sets of targets are
presented in Fig.6(b) and Fig.6(d), for both free-field and real
conditions. An even greater reduction of AE is observed over
the entire audible frequency spectrum, but at a potentially
higher cost for the general audio quality perceived in the

bright zone, since ILD and IPD are both modified inside the
optimised targets. Besides, for the same reasons as before,
no additional gain is obtained in the low frequencies region,
i.e below 100Hz in free-field and 200Hz with measured data.
Regarding the AC performances of both solutions, Fig.7 shows
a significant gain of almost 10 dB in average between 200 Hz
and approximately 3 kHz, with both free-field and real data.
In conclusion, selecting optimum values for both IPD and ILD
will result in better acoustic contrast between the two zones
for lower AE, except for low frequencies and for frequencies
above 4kHz in both free-field and real cases.

Fig.8 shows a diagram of IPD versus ILD for three
different solutions, for all frequencies. The first one, drawn in
red, is simply the PM solution using the optimal target sound
pressures. The second, drawn in yellow, is the PM solution
considering only three control points, still two in the dark zone
but only the first one in the bright zone, i.e with a target field
reduced to pr = [d; 0 0]. Finally, the third, drawn in blue,
is the solution obtained using the ACC method described in
section II, with also only the first control point retained in the
bright area. Thanks to the two equalities this figure highlights,
two strong results can be inferred. First, the optimal ILD and
IPD values derived in section III are identical to those observed
naturally when a PM solution imposing no constraint on one
of the two bright zone’s control points is considered. In other
words, we observe that the best target field at the driver’s right
ear (the second control point) is the one naturally reproduced
when focusing only on the left ear. Although very intuitive,
this result still requires an analytical proof, which may be the
object of future work. The second result is that, as long as
only one point is considered in the bright area, the PM and
ACC solutions lead to the same ILD and IPD. It can in fact be
shown that, subject to a condition on the energy reproduced in
the bright zone, the two solutions are exactly the same. Indeed,
it is sufficient to demonstrate that the three-points PM solution
satisfies the eigenvalue problem that defines the three-points
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ACC solution.

Yet, PM solutions are often preferred in most publications
to ACC solutions for their improved phase control at each
control point thus leading to better perceived audio quality, as
indicated in [7]. Therefore, given the first equality shown in
Fig.8, the PM solution using the optimised target will most
likely lead to a degradation in the perceived audio quality
similar to those observed for ACC solutions that consider only
one bright control point. In practice, the system designer may
want to define a solution that is psychoacoustically acceptable
in terms of audio quality, but keeping the global minimum
defined in Fig.4 as a reference. For this purpose, a new
cost function is proposed, incorporating constraints on the
admissible T" and A, resulting in a limited search space in
Fig.4. Using the same notations as in (20), this gives

min

mip st {Te¥pr & Ae€Up}

q
i 2
where W and W 5 are the sets containing the admissible values
for I and A. If these sets are infinitely narrow, there is no room
to optimise the solution. This gives the usual PM solutions
which may provide optimal theoretical performance in terms
of audio quality, but prevents any reduction of the array effort
and any consequent improvement of robustness. Conversely,
if these sets are infinitely large, the freedom of movement
is total, which means reaching the overall minimum while
risking a significant degradation of the audio quality. The
system designer can therefore choose, under real conditions
and according to their own preferences, the optimal width of
the two sets, in order to obtain the best trade-off between the
reduction of the array effort and the fidelity to the original
target chosen for the bright zone. An algorithm looking for
the minimum of this new constrained optimisation problem
has been implemented but experiments have yet to be carried
out under real conditions with different audio quality metrics,
considering different width for ¥ and Wa.

40 w
— Alop)
—Single speaker|
— Dirac pulses )
T 300 |- peamiormer j
g - ?n—p]\elie
a
2 20
—
o]
2.
& 10
-
z
=
2 0
-10 I I I
107 10° 10*

Frequency (Hz)

Figure 9: Unwraped A for the five cases with G designed in
free-field.

C. Comparison of various physical target fields

In this last subsection, the IPD and ILD are compared
and analysed for several target sound pressures that corre-
spond to physical sound field obtained with one or more
loudspeakers. These are then compared with the optial IPD
and ILD derived in this paper. Firstly, we consider the usual
case used throughout this paper, i.e d; = dy = 1. Secondly,
the pressure signals that are naturally reproduced by one of
the array’s loudspeakers, at both ears. Thirdly, the pressure
signals that are reproduced by four speakers driven in phase.
Finally, we investigate the case of the pressures reproduced
at both ears by a beamformer steered towards the driver’s
left ear. Fig.10 and Fig.9 show respectively the ILD and IPD
for the five target sound pressures considered. With regard to
the IPD results, the beamformer is shown as being close to
the optimal solution, across the whole spectrum. Indeed, the
previous section demonstrated that the optimal IPD is also the
one naturally reproduced by a three-point ACC solution. It is
in fact to be expected that, in free field and when the dark
and bright zone are far apart, the ACC will naturally create a
beam of sound in the direction of the bright zone.

Secondly, the IPD reproduced by only one speaker carefully
chosen in the array so as to match the blue curve, comes close
to the optimal solution across the whole spectrum.

Regarding the ILD, the sound pressures reproduced by a
beamformer at both ears are the only targets amongst this set
that give an ILD close to the optimum. The results obtained
with real data are not shown here because they led to the
same general trends as described in this subsection, but their
interpretation is less obvious.

V. CONCLUSION

In this work, various strategies have been presented to
improve the AC and AE by optimising the target pressure
signals included in the PM solution. Firstly, the method pre-
sented in section III-A prevents the system from compensating
for the loudspeaker limitations, thus avoiding an explosion of
the array effort at the extremities of the spectrum. To this
end, the response of one of the loudspeakers was used as a
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target for all control points in the bright zone. Considering
AE performances similar to those obtained with Tikhonov
regularisation, this method proved to achieve a significant
improvement to the AC, as shown in section IV. Furthermore,
the relevance of dereverberation has been addressed and led
to the proposal of two methods : the frequency-dependent
trimming of the impulse responses and the consideration of
reproduced responses by a single speaker as targets. However,
no experimental validation of this aspect was carried out as
part of this work and this remains an avenue to be explored
in future research.

Secondly, the work has focused on the optimisation of
the magnitude and phase relation (ILD and IPD) of the
target sound pressures. In section IV, results obtained with
optimised targets have been compared with those considering
the usual targets dy = do = 1. A significant decrease in
AE was observed, except for the extremities of the spectrum.
Furthermore, although not yet proven theoretically, results in
section IV showed that the optimal target is identical to the one
naturally reproduced by a PM or ACC system focusing only
at one of the control points in the bright area . This indicates
that the use of such optimised targets comes at a certain
cost in terms of audio quality. Therefore, a new optimisation
strategy that takes into account audio quality constraints has
been proposed.

Finally, various physical sound fields were compared to the
optimal target field. The results show that the beamformer
is the system that recreates ILD and IPD in the bright zone
that are closest to the optimum. A rigorous comparative study
between these various soundfields involving subjective sound
quality experiments may be the object of future research.
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