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Abstract

We develop a demand postponement mechanism to improve the performance of a single item,

periodic review inventory system with advance demand. The focus in the literature has been

on how to stimulate customers towards advance demand. Predicting how demand will shift can

be problematic, however, and backorders may still occur. We focus on how a firm can address

backorders under a given advance demand pattern by a mechanism of compensation from which

both the firm and the customers will benefit: the firm may offer a discount to customers for

accepting later deliveries at a promised delivery date. Delivery postponement offers are made

selectively, i.e. in some periods and to some customers only when there is a benefit for the firm

to do so. Customers may decline the offer, but then face the probability of a backorder. In each

period, the firm has to decide whether to make delivery postponement offers and for how long, and

whether to order from its supplier and how much. We formulate the problem as a Markov Decision

Process and solve it by backward induction. Numerical examples illustrate the properties of the

state-dependent policies obtained for both uncapacitated and capacitated inventory systems. The

postponement mechanism in capacitated systems leads to policies that differ from the threshold

policy identified as optimal in the literature. Overall, the approach shows promise to improve

system performance more efficiently compared to strategies aiming to increase advance demand in

the system.
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1. Introduction

Inventory control is concerned with matching the supply of a product to its demand. Supplier

lead-time (SLT), or the time it takes to receive an order placed at the supplier, forms an essential

component of many inventory models. In general, however, also the time when customers place an

order may differ from the time the order is arranged to be delivered. In the inventory literature,

this time-lag is defined as the customer lead-time or ‘demand lead-time’ (DLT), and the techniques

to control and exploit knowledge of DLTs as inventory control under Advance Demand Information

(ADI).

Matching the supply to uncertain demand is a challenging task if SLT is non-zero, i.e. when

supply cannot occur instantaneously. If supply exceeds demand, holding costs are incurred, and

problems with warehouse capacity may arise. In the other case, backorders or lost sales occur.

Improved performance may be obtained from reducing the SLT or increasing the DLT (Kremer

and Van Wassenhove, 2014). Typically, the first is thought of as improving the responsiveness of

the system, while the latter as improving its anticipatory power. Reducing SLT can be challenging

if hard constraints are imposed, e.g. by production and transportation times. In some contexts,

there might be a higher potential to increase the DLT. This usually requires renegotiating the

terms offered to customers.

Changing the DLT is considered in various businesses in the context of revenue management

(Talluri and Hillier, 2005). Increasing the DLT can be realized in two different ways. The first

is known as advance booking or pre-ordering, whereby customers inform the company of their

orders sooner, but without changing their due date. This strategy is used e.g. by Apple, Amazon

and Playstation for new products, not yet released. For movies, games, or electronic products,

firms may use it to induce customers to commit using these services at a later scheduled date,

who in return receive a guarantee on their availability at a discount (Li and Zhang, 2013). This

strategy locks in demand at earlier times, and enables the firm to better anticipate how to meet

these future commitments with current decisions. A second strategy to increase DLT is known

as demand postponement, and consists of offering customers incentives to postpone the date of

delivery. It is a strategy applied in the airline industry as a mean to ameliorate overbooking (Tang,

2006), whereby customers are offered financial compensation if they would accept later flights. This

strategy differs from pre-ordering because it is only offered selectively and when needed.

The advance demand pattern and demand postponement considered in this paper have great

potential for application in real life, and for online sales channels in particular. We already see

postponement policies being used by Amazon, for example, when it offers “No-Rush delivery (3-5

days delivery)” at the checkout with an Amazon gift card reward, although the customers are

entitled to choose next day delivery (without the gift card award). Our paper models an extension

of this approach in that it is only offered selectively and as means to better match demand with

anticipated supply. Applications where a selective approach to setting the delivery date has been
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more commonly used includes the kitchen and home improvement/furniture sector (Alım and

Beullens, 2020), but here the DLT is typically much longer, and the use of discounts in this sector,

while common, is traditionally not explicitly linked to a postponement strategy. Finally, advance

booking in online sales is now not limited to big brands. It is common for online sales channels in

the DJ and music industry, for example, to allow customers to pre-order equipment expected to

arrive in the online store by a specified future date at a lower price than the price charged by online

competitors who do have the item in stock. The interesting question here would be what would

happen if these competitors, who have the item in stock, offer the same terms as an option to their

customers too? The latter situation is the kind of policy that is examined in this paper, although

we do not consider the aspect of competition, but leave this as an idea for further research. Instead,

the option to deliver later in return for a discount is offered when the firm would thereby reduce its

total costs (including the price discount). The difference with the above current applications in the

online sales channels is that the postponement policy considered in this paper is offered selectively

at times when the firm needs it, even when the firm has still stock left. By the application of

the selective postponement strategy, customers who are prepared to wait are rewarded for their

patience, while companies may profit too since they use their resources more effectively. There is

clearly also a competitive advantage to adopting such a policy, as argued above, although modelling

these aspects would be highly complicated, and left for further research.

The literature review (Section 2) shows that the majority of studies on ADI in the context of

production-inventory systems focus on getting more DLT from customers by offering them pre-

announced DLT-dependent price schemes. Because these schemes are open to all customers, the

level of uptake may highly affect the profitability of the firm, and it may be difficult to predict

how the customer base will react to changes to the scheme. In this paper, we examine the option

to use demand postponement as a means of better matching supply and demand in these systems.

Provided that at least a fair proportion of customers are open to demand postponement, the

financial risk involved in this approach seems less, as the firm can control the selective application

of the policy. In this paper we do not model risk explicitly, but investigate the impact on the firm’s

expected profits.

In particular, we examine the potential of demand postponement under various DLT order

patterns in a periodic-review inventory system. These patterns may range from very short DLTs

(no ADI), to various heterogeneous DLT patterns (ADI). The demand postponement option is

offered at some time periods only and to some particular customers only. We assume that the

firm engages in such negotiations at the time when customers place their orders. From a customer

service perspective, this approach is better than when such negotiations would take place afterwards

and thus closer to an initially set due-date. It also signals that the firm is knowledgeable about

its own supply chain constraints, and desires to make promises it can keep. As an incentive, the

firm will offer a price discount on the order if a customer accepts the later delivery date. Like in

other ADI models, the fact of having a policy to affect DLTs will also affect how the firm places
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replenishment orders at its supplier. The inventory control problem for the firm is hence to find the

best joint supply ordering and ADI synchronization policy with respect to the trade-off between

the loss due to awarded financial incentives and the gain in operational and backorders cost.

2. Literature Review

The study of ADI in inventory control is relatively recent and the core studies are presented in

Table 1.

Table 1: Related Advance Demand Literature

Paper DLT Review Capacity
Early Multi

Price Discount
Delivery Stage

Hariharan and Zipkin (1995) Hom. Con. X
Gallego and Özer (2001) Het. Per.

Gallego and Özer (2003) Het. Per. X
Özer and Wei (2004) Het. Per. X
Wang and Toktay (2008) Het. Per. X
Xu et al. (2017) Hom. Per. X

Chen (2001) Het. Per.
A pre-announced price
scheme to get ADI

Karaesmen et al. (2004) Hom. Con. X
Cost of getting ADI
as a function of DLT

Alım and Beullens (2020) Con.
Price discount to
postpone some of the
demand to next delivery

This Paper Het. Per. X
Price discount to obtain
more ADI if needed

Hom.: Homogeneous, Het.: Heterogeneous, Con.:Continuous, Per.:Periodic

Hariharan and Zipkin (1995) introduce the demand lead-time (DLT) concept and address the

case of a continuous review system where all customers have the same DLT. They show that

increasing DLT is equivalent to reducing SLT as both reduce uncertainty on future demand in the

same manner. When DLT grows and becomes equal to SLT, the optimal inventory policy changes

from make-to-stock to make-to-order.

The more general case of customers being heterogeneous in their DLT is addressed in Gallego

and Özer (2001). They consider a periodic inventory problem and model the ADI by the vector of

observed demand during period t, Dt = (Dt,t, ..., Dt,t+N ) and where Dt,f is the demand placed in

period t to be delivered at period f(f ≥ t), with a DLT of (f − t). In the case of zero set-up costs,

they show that a state-dependent base stock policy is optimal, and that demand information about

due dates that fall behind the SLT plus a review period (which is called the protection period),

has no operational value. For strictly positive set-up costs, the optimal policy structure becomes
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a state-dependent (s, S) policy. For a detailed review of literature on ADI, we refer readers to

Gallego and Özalp (2002) and Özer (2011).

The capacitated inventory system situations of the above two models are presented in Wijngaard

and Karaesmen (2007) and Özer and Wei (2004), respectively. For positive set-up costs, the latter

authors prove the optimality of a threshold policy. This policy involves ordering at full capacity

when the inventory level at the end of the protection period (which is called the modified inventory

level) falls below a threshold, and otherwise order nothing. The papers illustrate that ADI increases

the effective usage of capacity. Multi-stage inventory systems with ADI are examined in Gallego and

Özer (2003), Özer (2003) and Sarkar and Shewchuk (2013). Lu et al. (2003) study a multiproduct

assemble-to-order system with ADI and stochastic lead times.

Other research in ADI systems investigates the benefits of allowing the firm to ship products to

customers earlier than the due date. This approach is referred to as flexible delivery or early ful-

fillment. The exploitation of early delivery can significantly reduce inventory costs, see Karaesmen

et al. (2004), Sarkar and Shewchuk (2016), Xu et al. (2017). Wang and Toktay (2008) investigate

the cases with homogeneous and heterogeneous DLTs, and prove that increasing DLT is preferred

over reducing SLT for the homogeneous DLT case. A variation is examined in Sarkar and Shewchuk

(2013), in which there are two customer classes with equal priority, one class having customers with

zero DLT, and the other class with a positive constant DLT. Xu et al. (2017) study the flexible

delivery in ADI with homogeneous DLT and a penalty cost if the delivery is made later than its

due date.

Most studies assume that ADI, once obtained, is fixed. In studies with imperfect ADI, such as

in Tan et al. (2007), Gayon et al. (2009) and Benjaafar et al. (2011), it is however allowed that

customers may cancel placed orders or make amendments to their order. The division of customers

into different classes is sometimes used so that not only customers may have different DLTs but

also different probabilities about cancellations or amendments. Gayon et al. (2009) exploit this in

a Markov Decision Process having different transition probabilities for different demand classes. In

the same customer differentiation context, Bao et al. (2018) and Van Wijk et al. (2019) determine

different backlogging costs for different customers classes. This will result in backlogging some of

the low priority customers even there is stock on hand for possible future high priority classes.

Similarly, reservation of the on hand stock to different customer classes which each their own

demand lead times has been studied by Du and Larsen (2017). Similar to this study, we consider

customers as heterogeneous in terms of their DLT.

Since the results in above studies have identified benefits to the inventory system owner of having

more customers adopting longer DLTs, some studies focus on methods to establish such transitions

towards more ADI. Most studies have focused on offering financial incentives and evaluating the

trade-off with the additional gains from increased ADI in lowering inventory or other system costs.

Unlike in classic price discount models, where the overall demand may be affected, the studies in

ADI typically keep total demand constant, but focus on establishing how price discounts may affect
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receiving future demand information earlier, or thus increasing DLT through advance booking. As

customers might differ in their willingness to wait for their orders, Chen (2001) offers a price

schedule where unit prices are non-increasing functions of DLT, and customers can view the price

schedule in advance and self-select according to their preference. Kunnumkal and Topaloglu (2008)

use price discounts to reduce the standard deviation of demand to a level which minimises the total

relevant costs.

It should be noted that increasing DLT by financial incentives does not always lead to net

gains. This is supported by the study of Karaesmen et al. (2004), who model the price discount as

a function of DLT for the case of homogeneous customers in a production/inventory system in order

to identify the optimal ADI level. Li and Zhang (2013) consider a model offering a price discount

or price guarantee to customers in exchange of adopting a larger DLT through pre-ordering, but

find that this policy actually may reduce the seller’s profit in situations of low demand seasonality.

Buhayenko and van Eikenhorst (2015) study the coordination of a supplier production schedule

with deterministic demand through a price discount as an incentive for changing customers due

dates and when no backorders are allowed.

The objective of this study is to take a given ADI setting as a starting point for seeking further

improvements. That is, we assume that some level of ADI is present in the demand pattern,

including the case when there is no ADI at all (DLT = 0). We focus on establishing when the

seller would benefit from offering to ‘buy’ additional ADI by deciding when to make selective offers

for demand postponement to some customers at the time they place their order. Note that this

is different from the approach in Chen (2001) or Karaesmen et al. (2004) whereby all customers

are offered an incentive scheme a priori. This makes our paper more dynamic since the discount

decision is based on the current state and may not be offered if this does not result in a benefit.

All previous ADI studies focus on getting more ADI with pre-announced price schemes. Unlike all

these, we treat the increase of DLT as an instant decision based on system information, and the

purchasing of the additional DLT is hoped to lead to a better matching of inventory and demand

information on hand.

While selective demand postponement is a strategy already widely applied in the airline indus-

try, inventory systems are very different in terms of structure. In an inventory system, for example,

there are no fixed flights schedules. An inventory system may or may not have capacity constraints,

and both products and orders generally differ in when they enter and leave the system. Customers

may also reject the offer of demand postponement and then expect to have the products at the

desired time, which the firm may or may not be able to meet. The latter case will result in a

backorder.

The postponement decision in return of a price discount is similar to the policy introduced

in Alım and Beullens (2020). However, the model developed in that paper is for a continuous

inventory-distribution system where demand is deterministic at a constant rate. All postponed

demand is dispatched with the next order arrival from the supplier. In contrast, the demand
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pattern we study in this paper has a more complex structure, it is stochastic and each demand

can have its own lead time, and we study this in a periodic review inventory system. Another

difference is that the postponement period is a decision variable in this paper, rather than all

discounted demand being postponed to the same period.

We model selective demand postponement in a system with stochastic advance demand that is

similar to that of Gallego and Özer (2001). We formulate the problem of finding the best combined

inventory replenishment and offer synchronization strategy as a Markov Decision Process and

solve it by backward induction. We examine the potential of this strategy in uncapacitated and

capacitated systems, in cases of zero and positive set-up costs, and at various levels of ADI present

in the system.

3. Problem Description

This section provides the formal description of the problem and introduces the modelling of

the demand structure in the context of DLT and postponement.

A periodic review inventory problem for a single product type is considered. Table 2 summarizes

the notation. The firm supplies its stock from an external supplier. A supply order placed at the

beginning of period t is delivered at the beginning of period t + L, where L is the supplier lead

time. With each supply order placed, the firm incurs a fixed setup cost Kt and pays for the items

based on a purchase cost per unit item ut.

The firm has a large customer base. For each customer, it has agreed on a contract which

specifies an (customer-specific) agreed DLT that applies to all orders the customer will place. The

maximum possible DLT is called the information horizon and denoted by N , where we assume

N ≥ L + 2 (without loss of generality, see Section 4.1). Customers can place orders at random

time periods. Most of the time, an order placed in period t is accepted with the aim to deliver

the products in period t+DLT , i.e. according to the agreed DLT. In some periods, the firm will

consider making a delivery postponement offer to some customers in order for them to arrange

delivery beyond the agreed DLT, who either accept or reject this offer.

The sequence of events in period t can be summarized as follows: (1) Order from supplier if

placed in period t − L is received; (2) Decision is made to either place a supply order and the

quantity, or not to place an order; (3) During period t, customer orders are received, if relevant

then postponement offers are made, and the responses from customers to accept or reject the

offer are received; (4) At the end of the period, customer orders needing delivery are fulfilled or

backordered.

3.1. Demand Structure

We consider the advance demand pattern structure as modelled in Gallego and Özer (2001).

For the sake of clarity, we shortly review its main components. We do not yet consider the impact

of the postponement policy, which will be introduced in Section 3.2.

7



Table 2: Notation of problem description

Parameters

T Time horizon
N Information horizon
L Supplier lead time
Ct Capacity limit at period t
α Opportunity cost of capital rate per period
Pt Fraction of demand which is accepting delivery postponement
It Inventory on hand at the beginning of period t
Bt Backorder level at the beginning of period t
xt Modified Inventory position at period t before the decisions
yt Inventory position at period t after decisions made at period t

Demand

Ot,s Cumulative observed demand for period s at the beginning of period t
Ot Observed demand beyond protection period at the beginning of period t
OLt Observed protection period demand at the beginning of period t
Dt,s Demand placed at period t to be delivered at the end of period s
Dt Demand placed at the end of period t, Dt = (Dt,t, ..., Dt,t+N )
Qt Demand willing to accept the price discount at period t

Costs

Kt Setup cost per order at period t (£/order)
ut Purchase cost per unit at period t(£/product)
ht Holding cost per unit at period t(£/product, period)
pt Shortage cost per unit at period t(£/product, period)
dti Discount per unit for postponed delivery to i at period t (£/product)

Decision Variables

zt Order amount placed in period t at supplier to be delivered at t+ L
qti Amount of demand placed in t to be delivered with postponement in

i ∈ {t+ L+ 1, ..., t+N}

During a period, the firm gathers the demand information from customers, each of whom may

have a specific contract DLT. If Dt,s denotes the total demand placed at period t to be delivered

according to the contract DLT at period s ∈ {t, .., t+N}, then at the end of period t, the firm has

obtained a demand vector Dt = (Dt,t, ..., Dt,t+N ).

A similar process has occurred during periods prior to t. Therefore, at the beginning of period t

and prior to obtainingDt, the cumulative observed demand to be delivered at period s ∈ {t, .., t+N}
according to the contract DLT, will consist of demand orders placed in periods no earlier than

period s−N and no later than t−1. If none of the demand is postponed, the cumulative observed

demand at the start of period t to be delivered in s thus consists of:

Ot,s =
t−1∑

r=s−N
Dr,s. (1)
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At the beginning of any period t, the observed quantity Ot,s can be expected to be only part

of the demand destined to be delivered in s, since at any period k ∈ {t, .., s} additional demand

orders will arrive. Let Ut,s denote the quantity of yet unobserved demand at the start of t for

delivery in s, then:

Ut,s =

s∑
r=t

Dr,s, (2)

where these Dr,s quantities are still undetermined random variables. The sum of Ot,s and Ut,s, were

the latter quantity known, would thus be the total quantity to be delivered in s at the beginning

of t (prior to making any future offers to postpone).

The protection period refers to the period covering the next L+1 periods. Any customer orders

to be delivered during this time can only be fulfilled from on hand stock and planned supply order

arrivals. At the beginning of t, the total observed demand to be delivered in periods that fall

within the protection period is thus:

OLt =

t+L∑
s=t

Ot,s, (3)

while the total unobserved demand within this protection period equals:

ULt =
t+L∑
s=t

Ut,s (4)

Figure 1 illustrates the demand pattern structure available in period t. Observed and unob-

served demand at the beginning of this period are displayed above the x-asis, where the components

of Dt obtained during the period are displayed below.

Figure 1: Demand Pattern

Example 3.1. Let us assume that we have a case of N = 2, L = 0, and no postponement is

offered. Then at the beginning of period t, we have Ot,t and Ot,t+1 as observed cumulative demand

from previous periods. Also we have unobserved demand Ut,t = Dt,t and Ut,t+1 = Dt,t+1 +Dt+1,t+1.
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During the period t, the demand vector Dt = (Dt,t, Dt,t+1, Dt,t+2) is observed. We deliver Ot,t+Dt,t.

To move towards the next period, we update the observed demand as Ot+1,t+1 = Ot,t+1 +Dt,t+1 and

Ot+1,t+2 = Dt,t+2. The unobserved demand is also updated, Ut+1,t+1 = Dt+1,t+1 and Ut+1,t+2 =

Dt+1,t+2 +Dt+2,t+2.

3.2. Demand Postponement

Customers are offered a price discount to postpone the due date for their demand. The discount

decision is only available for the protection period demand at only some times. The reason to

consider offering a discount only to these demands is to protect the system against the lead time

demand. The postponement period is a decision variable. Each customer is treated separately and

they might have different delay periods.

During the period t, the demand Dt is observed. Before satisfying the demand, it is decided

whether to offer price discount. The discount decision is only available for protection period demand

which consists of Dt,t,..., Dt,t+L. The discount decision qti represents the number of discounted

demand at the beginning of period t delayed to period i ∈ {t + L + 1, ..., t + N}. Only a specific

rate of the customers Pt accepts the discount and the upper bound on the total demand willing to

accept the postponement is therefore as shown by (5). The discount decision offered to the demand

placed at period t is illustrated in Figure 2.

Qt+1 = P

t+L+1∑
f=t

Dt,f (5)

Figure 2: Discount Decision

We give the upper bound Q the subscript t+ 1 because the postponement decision on demand

placed in t is made at the end of period t, which is mathematically equivalent in information

content to the start of period t+ 1.
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4. Model Formulation

The mathematical model and its components are presented in this section. We formulate the

problem as a discrete-time Markov Decision Process (MDP). The main assumptions of the problem

are as follows.

1. Supplier lead time is deterministic and constant.

2. Discounts are not announced beforehand. After all customer order placements are collected

during a period, then the decision is made whether or not to offer the price discount post-

ponement offer.

3. The amount of discount per product offered can be a function of the period to which delivery

is postponed.

4. The unobserved part of the demand is not dependent on the observed part (a large customer

base).

5. All unsatisfied demand is backordered.

6. Early delivery of a demand is not allowed.

7. The total warehouse capacity is limited, also known as ”bounded inventory”, as in Guan and

Liu (2010); Gutiérrez et al. (2003).

These assumptions seem reasonable in the context of e.g. home improvement or building

construction, where customers in general offer advance demand information, are reluctant to accept

early deliveries, but accept backorders rather than resulting in lost sales. Also, manufacturing and

building supply firms in this sector face capacity limitations on their warehouse or site.

The components of a MDP are state space, decision space, transition function/probability and

reward function.

4.1. State and Decision Variables

At each decision epoch, the system occupies a state from a state space. Gallego and Özer (2001)

show that the state space for advance demand information has a dimension of 1 + (N − L− 1)+,

with state variables the modified inventory position xt and the observed demand beyond protection

period Ot. Adding the delivery postponement decision into the system obligates us to keep track

of the information of maximum number of demand Qt for postponement. The state space then

becomes 2 + (N − L − 1)+ dimensional. Notice that when N < L + 2, the system becomes two

dimensional. However the discount decision will not take place since there is no point affecting

demand beyond the protection period. Therefore the problem becomes one dimensional. We can

thus focus on problems where N ≥ L+ 2.
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Let the state of the MDP at the beginning of period t be described by st = (xt, Ot, Qt), where:

xt ≡ It +
t−1∑

s=t−L
zs −Bt −OLt (6)

Ot ≡ (Ot,t+L+1, ..., Ot,t+N−1) where Ot,s =
t−1∑

r=s−N
(Dr,s + qr,s) (7)

Qt = Pt−1

t+L∑
f=t−1

Dt−1,f (8)

Here, xt is the planned inventory position at the end of period t + L, a function of on hand

inventory level, planned supply order arrivals, backorder level, and observed demand over the

protection period as in (6). Ot is the cumulative observed demand vector beyond protection

period composed of placed demand and delayed demand at previous periods. This is the demand

information needed to be considered for future periods. The last state variable is Qt which is the

number of demand willing to accept delivery postponement.

Based on the state variables, order and discount decisions at = (zt, qti) are placed, where zt is

the order decision and qti is the postponed demand placed at period t to be delivered at period

i. The sum of postponed demand is shown as qt by (9). The number of demand available for

postponement is limited by Qt, the limitation constraint is given in (10).

qt =

t+N∑
i=t+L+1

qt,i (9)

qt ≤ Qt (10)

The cost placing the decision set at = (zt, qti) is notated as β(at) and calculated by (11).

β(at) = Ktδ(zt) + ztut +
t+N∑

i=t+L+1

(dtiqti) (11)

After the decisions are made, the modified inventory position is updated to yt in (12). If there

is no capacity constraint in the model, there are no limits imposed on both the order quantity or

the warehouse storage space capacity. In the capacitated case of ADI, Özer and Wei (2004) limit

the order size. In this paper, we instead model a capacity constraint as an upper bound on the

modified inventory level after having made the postponement decisions. This can be thought of as

a capacity reservation limit Ct on yt as in (13).

yt = xt + zt + qt (12)
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yt ≤ Ct (13)

The decision of offering discounts and the ordering decision affect the ending inventory yt as in

(12). But also, the demand beyond protection period increases by price discount decisions, since

the part of the current demand is postponed to those periods (see (7)) .

4.2. State Transitions

The system state at the next decision stage depends on the current state, the decisions made

at the current period, and the particular realisation of demand. The transition between one state

to another could be either deterministic or stochastic depending on how this demand realisation is

modelled. However, considering the stochastic transition increases the computational complexity

of the model exponentially. Therefore, in our study, we focus on deterministic transition as Gallego

and Özer (2001) and the function of moving to st+1 = (xt+1, Ot+1, Qt+1) are shown in (14), (15),

(16). (See (7) for the calculation of Ot and Ot,s.)

xt+1 = yt −Dt,t −
t+L+1∑
s=t+1

Dt,s −Ot,t+L+1 − qt,t+L+1 (14)

Ot+1 = (Ot+1,t+L+2, ..., Ot+1,t+N ) (15)

Qt+1 = Pt

t+L+1∑
f=t

Dt,f (16)

4.3. Cost Function

After the decisions, the net inventory level at the end of period t + L becomes yt − ULt where

ULt is the unobserved demand for protection period. The expected inventory costs at that period

is calculated based on yt by (17). The expected value is due to the uncertainty on demand placed

at period t.

Ĝt(yt) ≡
αt+L

αt
Eg(yt − ULt ) (17)

where α is the discount factor and g(x) is total expected holding and backorder cost based on

the inventory level x. We assume that it is a convex function and coercive since lim|x|→∞ g(x) =∞.

These are the common assumptions in inventory literature (see Gallego and Özer (2001); Özer and

Wei (2004)) and they are valid when the holding and backorder costs are linear.

The total expected cost including inventory and decisions cost is then shown by ct and calculated

by (18).
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ct(st; at) = Ĝt(yt) + β(at) (18)

4.4. Recursive Equation

With all the given components, the recursive equation also known as Bellman Equations are

formulated as in (19) and (20).

V ∗T (sT ) = cT (sT , aT ) ∀sT ∈ S, ∀aT ∈ AsT (19)

V ∗t (st) = minat∈Ast

{
ct(st; at) + αEVt+1(st+1)

}
∀t ∈ {0, 1, ..., T − 1} (20)

V ∗t (st) is the optimal expected cost when the system in state st at time t. (19) presents the

termination condition when time horizon is completed.

5. Action elimination and algorithm

5.1. Action Elimination

Increasing the number of dimensions in the state space, as we have, increases computational

complexity. Reducing the action space will help to narrow the searching area at each iteration, and

thus alleviate computational burden. In this part, we focus on reducing the action sets in order to

improve the computational complexity. The idea is to find an upper bound for the reorder level so

that above that level, there will not be any order decision. To this end, we have conducted some

analysis of our experimental results as to better understand the behaviour of the reorder level.

This can be summarised as follows

Proposition 1. The following statements seem to hold experimentally, but are not formally proven,

for any o and for all t;

1. If K2 > K1 > 0 then st(o|K2) ≤ st(o|K1)

2. s(o2) ≥ s(o1) if o2 ≤ o1

3. st−1(o) ≥ st(o)

Remark 1. Statement 1 indicates that the reorder level is decreasing by increasing setup cost, all

other parameters remaining the same. This is as can be expected, since higher setup cost causes

fewer orders. Having less orders means that the order interval is extended, that is, the reorder level

will be at lower inventory levels. This statement, if true, implies that the inventory systems with

positive setup cost will have a lower reorder level than zero setup cost cases.
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Remark 2. Statement 2 shows that the reorder level is increasing with observed demand beyond

the protection period. Having more demand waiting in the upcoming period can cause us to place

orders in the next period instead of placing an order in the current period and carrying stock to the

next period. Thus, we would expect a decrease on reorder level. The numerical results in Gallego

and Özer (2001) as well as in this paper support this observation.

Remark 3. For the finite-horizon (under stationary costs, as assumed in our experiments), the

reorder level is reducing by time since the system is getting closer to the terminal point as referred

to in Statement 3. A similar statement is found in Özer and Wei (2004).

Gallego and Özer (2001) prove that the optimum policy is a base stock policy when the setup

cost is zero. Thus, for stationary problems, the base stock parameter of the myopic policy which

only minimises the cost of the current stage is optimal for a finite time horizon situation as we

consider. This parameter is calculated by (21) and (22): there exists a unique value of ymmin which

makes the gap between the minimum and maximum of the cost function zero when Gt(x) is strictly

convex (Gallego and Özer, 2001).

ymmin = min{y : Gt(y) = minxGt(x)} (21)

ymmin = max{y : Gt(y) = minxGt(x)} (22)

Now, when we take the statements in Proposition 1, it is concluded that the reorder level for

zero setup cost is an upper bound for reorder level of positive setup cost cases. Calculating the

policy parameter for K = 0 is as easy as shown in (21) and (22) and this could be used to reduce

the action space for cases, K > 0. We assume that sK0 be the optimal base stock policy parameter

for the zero setup cost case. Then, we can make an additional constraint as (23)

zt = 0 if xt ≥ sK0 (23)

Practically, (23) will reduce the search area. Because when the modified inventory level, xt

is greater than the reorder level, sK0 found by (21) and (22), then it is known that the optimal

decision is not to order.

It should be clear that applying this search space reduction should still be considered a heuristic

approach to achieving faster computational time.

5.2. Solution Algorithm

Solving the Bellman equations is often performed by backward induction. The backward al-

gorithm starts to calculate the value function at the last period for each of the states. It then

steps back in time by one period and calculates the values by adding it to the next periods value

function. The algorithm is shown in Algorithm 1.
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Algorithm 1: Backward Algorithm

Step 1. Initialize the terminal values. Set t = N ;
VN (sN ) = cN (sN ) ∀ sN ∈ S ;

Step 2. Substitute t− 1 for t and compute Vt(st) ∀ st ∈ S by ;

V ∗t (st) = mina∈Ast

{
ct(st, a) + α

∑
s′∈S pt(s

′|s, a)Vt+1(s
′
t+1)

}
;

Set ;

at,st ≡ argmina∈Ast

{
ct(st, a) + α

∑
s′∈S pt(s

′|s, a)Vt+1(s
′
t+1)

}
;

Step 3. If t=1 stop; Otherwise return to step 2 ;

6. Computational Results

In this section, we carry out a number of numerical experiments to analyse the behaviour

of policies under advance demand and the impact of postponement on these policies. For the

numerical values of parameters, we follow the studies of Gallego and Özer (2001) and Özer and

Wei (2004). The most inclusive and simple case on our problem without loss of generality is to test

the case where N = L + 2 in which the observed demand beyond protection period has become

one dimensional.

Advance demand Dt = (Dt,t, Dt,t+1, Dt,t+2) is modelled following a Poisson distribution with

means λ = (λ0, λ1, λ2) when N = 2. To see the impact of more ADI available we test the model

with different values of λ. While doing this, we keep the total demand rate λ0 +λ1 +λ2 constant so

that we are able to see the effect of the policy which shifts the urgent demands to advance demands.

The value of ADI in the uncapacitated and capacitated cases are analysed and compared.

The effect of the discount is also tested under different parameters. Since we have a two dimen-

sional discount decision, we usually offer higher discount amounts to those whose postponement

period is longer, except when otherwise stated. The customers reaction to postponement is cho-

sen from three probabilities {0, 0.5, 1}. When P = 0, then only at the current period, we can

offer postponement if there is any demand available (Q0). For future periods, there is no demand

available for postponement. This can be seen as the worst case scenario. P = 0.5 means that

only half of the customers welcome the postponement in any of the future periods. All customers

accepting the discount corresponds to the case that P = 1. This is the best case scenario in terms

of customers acceptance of postponement.

Gallego and Özer (2001) prove that the optimal inventory policy for zero setup cost case with

advance demand is the base stock policy. When the inventory level drops below the base stock

level, then it is optimal to order up to the base stock level. Since the cost is calculated based on the

inventory level at the end of the protection period, the ordering decision can increase the inventory

level to the base stock level. As the order decision takes place free of charge when the setup cost

is zero, we do not need to consider the demand postponement. Thus, our discount policy does not

make any difference. So we focus on cases with positive setup costs.
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For the positive setup cost without discount decision, the optimal policy is a state depen-

dent (s(o), S(o)) policy which is order up to S(o) if inventory level is at s(o) or below. Based

on the numerical results, we have noticed that adding discount decisions turns the policy to

(s(o,Q), S(o,Q), wi(o,Q),Wi(o,Q)) where i ∈ {L + 1, .., N} refers to the delay period, and Q

is the demand available for price discount at the starting period. The order policy is similar to the

non discount case but the parameters are now also dependent on Q.

Figure 3 illustrates the decisions based on the modified inventory positions. The discount policy

is to offer discounts to bring the inventory position up to Wi(o,Q) if the inventory level is greater

than wi(o,Q) with a delay period i, however at any time the maximum amount by which the

inventory position can be raised is limited to Q. The value of w1(o,Q) is the reorder level. If the

inventory position is above w2(o,Q) but w2(o,Q) < W1(o,Q), we offer the postponement with a

delay period of 2. To be clear, postponement and ordering decisions never take place together in

the same period. Only if the inventory position is below or equal to the reorder level s(o,Q), do

we place an order up to S(o,Q), and then no demand postponement decision is taken.

While we have observed this policy to be found to hold in our numerical experiments, we have

not been able to construct a formal proof that this is an optimal policy in general.

Figure 3: Order & Discount Policy

In the numerical experiments, we aim to show the value of ADI and effect of demand post-

ponement in capacitated and uncapacitated inventory systems. Then we would like to compare

these two policies to derive insight into the value of obtaining more ADI or using the postponement

policy. The performance of both policies are presented under different conditions.

In setting up the experiments, we adopted the financial parameter values from Gallego and Özer

(2001): the set-up cost per order by the online retailer to its supplier is £100, the unit holding cost

is £1 per item per year, and the backorder cost is £9 per item. To keep the analysis tractable, we

do not vary these financial parameters. However, we do test the sensitivity to varying the level of

the discount price.

We can estimate the cost price of the item from the unit holding cost. Assuming that the
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capital rate of the firm is 0.05 per annum, then from the holding cost value we can estimate a

corresponding item cost price incurred by the online firm of roughly £201, where the customer

ordering it online is assumed to pay a higher price, say £30. Values of discounts investigated in

this paper are usual in the range of £1 to £2, but we also investigate larger values up to £13.

This range of discount values seems realistic to us considering the value of the item.

Many inventory models in the literature are based on considering backorder costs. It is under-

stood that its value must include both real incurred costs experienced from satisfying the backorder,

such as e.g. a more expensive delivery, but also may need to include the difficult to quantify im-

pact of the “loss of future goodwill”. The £9 remains at this point thus still a somewhat arbitrary

decision, and further research may be needed to establish good methods to determine reasonable

values2.

6.1. Uncapacitated Inventory

6.1.1. The value of ADI

In this section, we test the value of ADI and policy parameters for an uncapacitated inventory

system. Initially we ignore the demand postponement to see the status quo of ADI. We test

the no discount model with different means of demand starting from no advance demand case

λ = (6, 0, 0), through various settings for λ as indicated in the first column of Table 3, up to

the full advance demand λ = (0, 0, 6). The percentage saving on cost is calculated by δA =

100(CostnoADI − Costλ)/CostnoADI , where CostnoADI measures the total cost in the case of no

ADI (6, 0, 0), and CostnoADI the cost in the case of the other ADI values reported in the first column

of Table 3. The table further reports on the optimal policy structure, the minimum expected cost,

and the relative benefit of ADI, δA.

Increasing the ADI present in the system reduces cost by up to 6.79%. This value also gives

an idea to the manager on how much to invest in methods to obtaining increasing levels of ADI

from customers. As expected, the reorder level and order up to level decrease with the increase in

advance demand since the uncertainty on demand is reducing.

6.1.2. The effect of Postponement on Inventory Policy

In this section, we evaluate the impact of demand postponement on the inventory policy and

the inventory cost. We test the model for the cases that the customer accepting probabilities are

P = 0 and P = 1, respectively, to show how the policy is changing between the worst and the best

case scenario.

Recall that the case P = 0 means that only the initial state demand Q0 (if Q0 > 0) is ready to

accept the postponement. Apart from this, no more demand in further periods is available to be

1Using h = αv = 1 = 0.05(20), see e.g. Silver et al. (1998)
2One such method may be based on Net Present Value techniques, see e.g. Ghiami and Beullens (2016).
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Table 3: K = 100, h = 1, p = 9, Dt−1,t+1 ∈ {0, ...10}, T = 12

Dt−1,t+1

λ 0 1 2 3 4 5 6 7 8 9 10 Avg.Cost δA(%)

6,0,0
S(.) 35 36 37 38 39 40 41 42 43 44 45

289.085 0
s(.) 2 1 1 1 1 1 1 1 1 0 0

4,1,1
S(.) 32 33 34 35 36 37 38 39 40 41 42

286.896 0.76
s(.) 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1

3,1,2
S(.) 30 31 32 33 34 35 36 37 38 39 40

283.335 1.99
s(.) -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2

2,1,3
S(.) 28 29 30 31 32 33 34 35 36 37 38

279.632 3.27
s(.) -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3

1,1,4
S(.) 26 27 28 29 30 31 32 33 34 35 36

275.789 4.60
s(.) -3 -3 -3 -3 -3 -3 -4 -4 -4 -4 -4

0,0,6
S(.) 24 25 26 27 28 29 30 31 32 33 34

269.454 6.79
s(.) -4 -4 -4 -4 -4 -4 -4 -4 -5 -5 -5

postponed. This means that we have a chance to use the advantage of price discount only at the

current period. When P = 1, all the customers accept the discount when offered in any period.

Therefore more improvement in costs can be expected compared to the P = 0 case, where the

order up to level is also decreasing with a reduction of the reorder level.

In this section, we offer the same discount amount to all customers regardless of their post-

ponement period. The costs of each case is compared with the case of no discount offerings. We

measure the impact of postponement by calculating the value of δP = 100(Cost1 − Costo)/Costo,
where Cost1 is the cost when implementing the postponement policy, and Costo is the cost of

the system at the same level of ADI, but with no postponement policy introduced. Results are

summarised in Table 4 for P = 0, and in Table 5 for P = 1.

As can be observed in Table 4, even with P = 0, there still exists a slight improvement on

average inventory costs up to 1% based on the demand available to accept the postponement

at the current period. The order up to level, S is not changing in this case while the reorder

level s is decreasing when more demand is available for discount. When the system would start

without having made any postponement offers in the past, then Q0 = 0 and there is no benefit

from the postponement policy when P = 0. When we consider the case P = 1, the reorder level

is also decreasing, but now also the order up to level is decreasing. This means that additional
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Table 4: K = 100, h = 1, p = 9, d = 1, P = 0, λ = 4, 1, 1, Dt−1,t+1 ∈ {0, ...10}, T = 12

Q0
Dt−1,t+1

0 1 2 3 4 5 6 7 8 9 10 Avg. Cost δP (%)

0
S(.) 32 33 34 35 36 37 38 39 40 41 42

286.896 0
s(.) 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1

1

S(.) 32 33 34 35 36 37 38 39 40 41 42

286.288 0.21
s(.) -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2
W2(.) 10 11 12 13 14 15 16 17 18 19 20
w2(.) 5 6 7 8 9 10 11 12 13 14 15
W1(.) 5 6 6 6 6 6 6 6 6 6 6

2

S(.) 32 33 34 35 36 37 38 39 40 41 42

285.711 0.41
s(.) -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3
W2(.) 10 11 12 13 14 15 16 17 18 19 20
w2(.) 4 5 6 7 8 9 10 11 12 13 14
W1(.) 5 6 6 6 6 6 6 6 6 6 6

3

S(.) 32 33 34 35 36 37 38 39 40 41 42

285.163 0.60
s(.) -3 -3 -3 -3 -3 -3 -4 -4 -4 -4 -4
W2(.) 10 11 12 13 14 15 16 17 18 19 20
w2(.) 3 4 5 6 7 8 9 10 11 12 13
W1(.) 5 6 6 6 6 6 6 6 6 6 6

4

S(.) 32 33 34 35 36 37 38 39 40 41 42

284.634 0.79
s(.) -4 -4 -4 -4 -4 -4 -4 -5 -5 -5 -5
W2(.) 10 11 12 13 14 15 16 17 18 19 20
w2(.) 2 3 4 5 6 8 9 10 11 12 13
W1(.) 5 6 6 6 6 6 6 6 6 6 6

5

S(.) 32 33 34 35 36 37 38 39 40 41 42

284.124 0.97
s(.) -5 -5 -5 -5 -5 -5 -5 -5 -6 -6 -6
W2(.) 10 11 12 13 14 15 16 17 18 19 20
w2(.) 1 2 3 4 5 7 8 9 10 11 12
W1(.) 5 6 6 6 6 6 6 6 6 6 6

to ordering later, we also order less which reduces the holding cost as well. This can lead to a

significant reduction on total expected cost, which is around 17% in our experiments. One may

expect that the benefit will be higher when holding and setup costs are higher.

It is clear that more ADI increases the system performance as seen in Table 3. However, when

we compare it with the results in Tables 4 and 5, better potential can be seen when using demand

postponement. Our intuition supports this because ADI is available for all customers. On the

other hand, with the discount policy, we only buy the ADI when we need it. Especially for higher

setup costs, the system already needs to keep large stock most of the time. So, the uncertainty

on demand does not effect the system much. But at the times when the stock is at critical levels,
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Table 5: K = 100, h = 1, p = 9, d = 1, P = 1, λ = 4, 1, 1, Dt−1,t+1 ∈ {0, ...10}, T = 12

Q0
Dt−1,t+1

0 1 2 3 4 5 6 7 8 9 10 Avg. Cost δP (%)

0
S(.) 24 25 26 27 28 29 30 31 32 33 34

239.296 16.59
s(.) 1 0 0 0 0 0 0 0 0 0 0

1

S(.) 24 25 26 27 28 29 30 31 32 33 34

238.876 16.74
s(.) 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1
W2(.) 6 7 7 8 9 10 11 12 13 14 15
w2(.) 1 2 3 4 5 6 7 8 10 11 12
W1(.) 2 3 4 5 6 6 6 6 6 6

2

S(.) 24 25 26 27 28 29 30 31 32 33 34

238.468 16.88
s(.) -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2
W2(.) 6 7 7 8 9 10 11 12 13 14 15
w2(.) 0 1 2 3 4 5 7 8 9 10 11
W1(.) 2 3 4 5 6 6 6 6 6 6

3

S(.) 24 25 26 27 28 29 30 31 32 33 34

238.081 17.02
s(.) -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 -3
W2(.) 6 7 7 8 9 10 11 12 13 14 15
w2(.) -1 0 1 2 3 4 6 7 8 9 10
W1(.) 2 3 4 5 6 6 6 6 6 6

4

S(.) 24 25 26 27 28 29 30 31 32 33 34

237.713 17.14
s(.) -3 -3 -3 -3 -3 -4 -4 -4 -4 -4 -4
W2(.) 6 7 7 8 9 10 11 12 13 14 15
w2(.) -2 -1 0 1 2 3 5 6 7 8 9
W1(.) 2 3 4 5 6 6 6 6 6 6

5

S(.) 24 25 26 27 28 29 30 31 32 33 34

236.066 17.72
s(.) -4 -4 -4 -4 -4 -4 -5 -5 -5 -5 -5
W2(.) 6 7 7 8 9 10 11 12 13 14 15
w2(.) -3 -2 -1 0 1 2 4 5 6 7 8
W1(.) 2 3 4 5 6 6 6 6 6 6

obtaining ADI at that time will be greatly beneficial. This can be achieved by our postponement

policy.

6.2. Capacitated Inventory

6.2.1. The value of ADI and postponement

In this section, we test ADI and the postponement policy on capacitated inventory systems.

The literature on ADI mentions that ADI increases the efficient use of capacity. Similar to this,

we expect that our postponement policy is going to increase the efficient usage of capacity. A

particular challenge when having high levels of ADI is that postponement can only be offered to
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demand occurring within the protection period. Increasing levels of ADI in the system thus means

less demand available for offering discount and thus exploiting the postponements policy. With the

numerical experiments, we aim demonstrate this issue quantitatively and thus get a better insight

into the effectiveness of the postponement policy.

In Table 6, we report the optimal replenishment and discount policy for a capacitated case.

Without a capacity consideration, we should expect a reduction of reorder levels when Ot is higher.

However, in the capacitated system we observe an increase of reorder level when the Ot approaches

10. This suggests that if higher demand is waiting for the next period, it is better to order earlier.

Also, when compared to the uncapacitated case, the usage of the discount starts at higher inventory

positions. This indicates that postponement is more needed in the capacitated case.

Özer and Wei (2004) show that a threshold policy which orders at full capacity if the inventory

position drops to a threshold level, is optimal for the capacitated ADI case (without the postpone-

ment policy). Our findings do not verify this policy to be optimal when the discount/postponement

policy is in use. Our intuition also supports the idea that if more demand is available for discount,

then the order up to level will be lower than the capacity level.

Table 6: K = 100, h = 1, p = 9, d = (1, 1.5), P = 0.5, λ = 4, 1, 1, Dt−1,t+1 ∈ {0, ...10}, Qt ∈ {0, ..., 2},C = 20

Q0
Dt−1,t+1

0 1 2 3 4 5 6 7 8 9 10

0
S(.) 17 18 19 20 20 20 20 20 20 20 20
s(.) 1 1 1 0 0 0 -1 -2 -2 -2 -1

1

S(.) 17 18 19 20 20 20 20 20 20 20 20
s(.) 0 0 0 0 -1 -1 -2 -3 -3 -2 -1
W2(.) 8 9 10 11 12 13 14 15 16 17 18
w2(.) 2 3 4 5 6 7 8 9 10 11 12
W1(.) 2 3 4 5 6 6 6 6 6 6 6

2

S(.) 17 18 19 20 20 20 20 20 20 20 20
s(.) -1 -1 -1 -1 -2 -2 -3 -4 -3 -2 -1
W2(.) 8 9 10 11 12 13 14 15 16 17 18
w2(.) 1 2 3 4 5 6 7 8 9 10 11
W1(.) 2 3 4 5 6 6 6 6 6 6 6

Next, we address the benefits of ADI and demand postponement and compare them for different

cases. The computational results are presented in Table 7.

The cost is increasing with the capacity constraint as expected (moving to the left in Table

7). It is also intuitive that the system can be operated at lower total costs when customers either

buy with increase levels of ADI (moving down the rows in the table), or from using our demand

postponement policy with increased levels of acceptance (columns with higher P values). But the

surprising result exists when we compare the effectiveness of the demand postponement strategy
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Table 7: Average cost of ADI and Postponement, T = 12,K = 100, h = 1, p = 9, di = (1, 1.5)

Capacity=15 Capacity=20 Uncapacitated

Demand P = 0 P = 0.5 P = 1 P = 0 P = 0.5 P = 1 P = 0

6, 0, 0 449.7 368.0 310.0 378.5 318.8 286.5 289.1
4, 1, 1 407.0 360.6 300.6 353.3 314.8 281.1 286.9
3, 1, 2 384.9 338.9 299.2 335.7 301.6 278.8 283.3
2, 1, 3 366.9 345.7 299.5 321.0 305.3 278.3 279.6
1, 1, 4 352.0 325.4 300.3 308.2 294.4 279.6 275.8
0, 0, 6 328.2 328.2 328.2 292.8 292.8 292.8 269.5

relative to the uncapacitated case. When P = 1, our policy results in relatively small costs

compared to the unconstrained case with no discount policy (the last column). This clearly shows

that if a company can convince customers to accept the postponement, then they may be able to

completely remove the disadvantage of the capacity constraint.

Increased levels of ADI also help to reduce the negative impact of capacity, as can be observed

by comparing the difference rows in Table 7. However, when the demand pattern reaches a certain

ADI, more ADI may not bring more benefit when having a postponement policy in place. In

Table 7, when P = 0.5 and C = 20, the demand pattern (3, 1, 2) has better cost than, for example,

pattern (2, 1, 3). The reason why this is possible is that the firm can purchase customers’ willingness

to wait when it is most needed, but not has to give these discounts at times where it is not needed.

In contrast, and loosely speaking, increased levels of ADI only reduce the stress on the (capacitated)

system, but offers no escape valve if the system runs hot. Note that this comparison between the

postponement strategy and increased levels of ADI is in real life likely favouring the postponement

policy even more since in our experiments we do account for the cost of the discount to customers

accepting postponement, while the increased ADI (2, 1, 3) coming from (3, 1, 2) carries no extra

costs in our computational experiment, while in real life this would come from offering incentives

to all customers.

6.2.2. Sensitivity Analysis on Discount Amount

In this section, we observe the system improvements under different discount values. Since

the postponement could bring significant improvements to the system, then the customers need to

be encouraged to accept it. In reality, it is expected that the customers’ willingness increases by

getting more discount. We test the sensitivity of discount amount with different advance demand

structures in the capacitated case.

Since there are two postponement periods available, we have two different discounts d1 and d2.

We assume that d2 is always equal to d1 + 0.5 and we measure the impact of postponement by

calculating the value of δP . The Y axis of the figures in this section represents the δ value to show

the effectiveness of the postponement decision. The X axis represents the discount value offered to

customers in return for postponement. The tests are taken with a customer acceptance of P = 0.5,
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the backorder cost is £9, and the results are illustrated in Figure 4 for various advance demand

patterns.

1 3 5 7 9 11 13 15

2

4

6

8

10

12

14

16

18

Discount(£) d1

δ P
(%

)

(6, 0, 0)

(4, 1, 1)

(3, 1, 2)

(2, 1, 3)

(1, 1, 4)

Figure 4: Sensitivity of Discount under Various ADI patterns (d2 = d1 + 0.5), C = 15

Although in previous experiments in Section 6.2, we have set the discount prices to d1 = £1 and

d2 = £1.5, the results in Figure 4 show that the postponement strategy would remain profitable

for higher values as well, but that this is quite sensitive to the level of ADI in the system. The

lower the ADI level, the more effective the postponement policy. In the case (6, 0, 0) (no ADI in

the system), customers could receive £5 for postponement but still the firm can make more than

6% improvement. Even when the discount offered is £9, which is the same value as the backorder

cost, the firm would still be able to make a small 1% additional saving. This can be understood

from the fact that we can postpone either one or two periods, while a backorder is only postponed

one period. Furthermore, we can postpone even if we have stock on hand.

Figure 4 also shows clearly that starting from a larger ADI in system, the usage and benefit from

postponement reduces. Also, too large a discount will result in no benefit using the postponement

policy, for whatever the value of ADI in the system. In this case, a discount of £13, when the

backorder cost is only £9, is too costly to be used. When the company thinks of offering the

discount, the balance between the level of the backorder cost and the discount amount has to be

carefully considered. If a discount amount is deemed profitable, then the magnitude of benefits

will depend on the level of ADI in the system. Most of the benefit can be expected for systems in

which customers are used to fast deliveries.

Next, we analyse the effect of different prices for different postponement periods under a capac-

itated system (C = 15). Therefore, we set d1 to £4 first, and observe the changes on improvement

by different values of d2 with P = 0.5, 1. Next, the same process is repeated to analyse the effect

of d1. The results are presented in Figure 5 and Figure 6, respectively.

Let us first consider the case that d1 = 4. Then only the range in which d2 ≥ 4 becomes
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Figure 5: Analysis of d2 when d1 = 4, λ = (3, 1, 2)
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Figure 6: Analysis of d1 when d2 = 4, λ = (3, 1, 2)

realistic. Figure 5 illustrates that choosing the right value of d2 would now involve estimating the

correct value of P , and how this may be affected by the value of d2. No matter the situation, we

can observe from the figure that the firm can at most save 10% in costs, when d2 = 4 and P = 1.

But perhaps at d2 = 4, the firm would only operate at P = 0.5. It may be that an acceptance close

to P = 1 is only realised for d2 = 6. This would then be a better choice, still, despite the higher

discount value.

In Figure 6, we have instead fixed d2 = 4. If this is a realistic value, then we should expect

that d1 < 4 is the range to further investigate. The maximum possible saving now would be close

to 20%, but again the firm would need to estimate how the acceptance level would vary with d1.

Of course in practise one may not know how to set either values d1 and d2, and the challenge is to

try to find out how P would be a function of both simultaneously.

Both figures show that in general, the sensitivity of profits to the acceptance probabilities is

the largest when discount values remain small. In practise, these sensitivities are probably best

discovered from real life experiments. Once these probabilities are known in function of the discount

prices (illustrated in Section 6.2.3), models such as the one we developed can be used to determine

when to invoke the postponement policy as to maximise the firm’s overall profits.

6.2.3. Discount-dependent customer acceptance

So far in this paper, the rate of accepting delays was considered independent of the proposed

discount. However, with the increase in the discount rate in real life, it will be easier for customers

to be persuaded. Alım and Beullens (2020) presented numerical analysis based on an exponential

relationship between the discount offered and the acceptance of a flexible delivery plan. Similarly,

we perform some numerical tests assuming a connection with a similar formulation as P (d) = e−θ/d,

where θ denotes the customer resistance to discount. With an increase in θ, less customers are

prone to accept a postponement, in particular noticeable at lower values of the discount. We ran
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numerical experiments with dependent acceptance probability P (d) in which the same discount

amount was offered for all delays (d = d1 = d2). The model was tested with different values θ and

the percentage saving (δp) comparing to the no discount case is measured. The results under the

given parameters for a capacitated case (C = 15) are presented in Fig. 7.
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Figure 7: Results of dependent customer acceptance to discount, d = d1 = d2, λ = (6, 0, 0)

As can be seen in Fig. 7, the percentage of saving is relatively large at low amount of discounts

for different θ values. Depending on the customers’ resistance, the price discount that provides the

best profit varies. For example, best profit can be obtained by offering d = 2 for θ = 0.6 while

it is d = 3 for θ = 1.2 and d = 4 for θ = 1.8. Offering a higher discount than these values does

not improve the profitability. Also the difference on saving is getting smaller for higher discount

amounts and identical at d = 8 or higher3.

Overall, it is quite realistic that the customers’ intention towards postponement can be changed

by the discount amount offered. The results in Fig. 7 indicate that the companies that wish to

implement such a postponement policy have to correctly define the relationship between customer

acceptance rate and discount amount.

3Some of the data points at lower values of d also coincide, as is the case for d = 5 and θ = 0.6 and θ = 1.2. This
is because of the small mean demand rate and rounding. It is important to note that the impacts of small shifts
between discount amount and customer acceptance will be more visible in case of having larger demand means. At
higher demand rates, smoother curves can also be observed.
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7. Conclusions

In this paper, we establish the structure of inventory and discount policies for an inventory

model with advance demand information and price discounts. In return for discounts, customers

are expected to wait longer for their demand to be delivered. Discount offers are made selectively

and only in certain periods.

For the zero setup cost case, and without considering the discount system, a simple base

stock policy is proven to be optimal by Gallego and Özer (2001) for the ADI case. Based on the

numerical results, we observe that this policy does not change by the discount offer. This is in

line of expectation since the ordering decision is free of charge, there is no need to use discounts

for postponement. When in the ADI, without the discount offers, the setup cost is positive, then

state- dependent policies are optimal. State-dependent policies are also found in our numerical

experiments, adhering to a policy structure as indicated in Figure 3, but without a formal proof of

its optimality. The parameters of this policy depend on the observed demand beyond the protection

period and the available demand for the postponement/discount decision. Numerical examples

indicate that the system cost is reducing when more advance demand and demand for discounts

are present. Increasing customers acceptance of discounts results in reducing reorder and order up

to levels. If firms have knowledge about how customer acceptance of postponement depends on

the discount offered, an optimal discount amount can be offered within the state-dependent policy.

To our knowledge, this is the first study to develop and analyse a selective state-dependent

strategy to purchasing buyer’s willingness to postpone their delivery in a variety of ADI settings.

This strategy seems in particular of value in capacitated inventory situations with a modest level

of ADI. It is argued that this strategy can result in a more profitable system in comparison to

strategies that aim to introduce more ADI in the system.

With the rise of online sales channels, companies have the ability to contact customers almost

instantaneously, and to make bespoke offers based on the current state of the firm’s inventory

system. The discount policy proposed in this study can improve the firm’s existing stock systems

by offering selective discounts for postponing the delivery for some customers, should they wish to

accept this offer. According to our numerical results, it was observed that the demand postpone-

ment policy can make the system more efficient especially in areas where capacity is limited. The

customers who are willing to wait are rewarded, while customers not willing to do so can still opt

for fast delivery. At the same time, the company can make more profit from the existing stock

system more effectively. In addition, instead of the negative impact of backorders which reduce the

company’s reputation among the customers, the mutually agreed postponement policy at which

both parties get benefits may improve the company’s reputation.

Offering flexible delivery terms at various price points may offer a strong competitive advantage,

as briefly discussed in the introduction, and may form a rich area for further research. Further

research could be devoted to better understanding the link between discount price and customer
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acceptance rates, and the impact this has on system performance and policy with higher demand

rates. In addition, it may also pay off in certain applications to include additional decisions

with respect to early deliveries. A practical drawback from this approach is the computational

complexity of the model and inventory/postponement policy. Further research may thus also

be devoted to faster heuristic methods, and examining the efficiency of policies with a simpler

structure.
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