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Abstract8

Recent legislation in shipping applies additional pressure to reducing fuel9

consumption. However, this is impossible without accurate power prediction,10

as it is required to allow comparisons between novel efficiency improving ad-11

vancements and to have confidence in route optimisation. This prediction is12

particularly difficult in rough weather, which the traditional prediction meth-13

ods struggle to account for. Neural networks trained on an operational dataset14

from the vessel are a potential solution to this problem, as they have been15

shown to predict powering to a mean error of 2% across all weather conditions.16

However, the gathering of these data is expensive and time consuming. There17

is currently no literature looking at how data from one vessel can be used to18

make predictions about another, reducing the cost and allowing prediction of19

the performance of new vessels. This paper investigates the accuracy in predict-20

ing powering for an unseen vessel, using a neural network trained on a fusion21

of data, from a range of sensors located on other vessels in a fleet. It demon-22

strates the level of extrapolation that can be achieved from the use of multiple23

datasets on a real application and suggests that, for the fleet of vessels used,24

ship parameters are less important for accurate power prediction than having25

sufficient data across the desired prediction domain. It concludes that predic-26

tion of around 4% error can be achieved for most ships in the fleet and discusses27

the cause of the higher errors seen for a minority of other vessels.28
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1. Vessel Power Prediction in Waves32

Reduction of emissions in the marine industry is important as it is estimated33

to be responsible for 2.5% of Global Greenhouse Emissions (International Mar-34

itime Organisation 2020). Therefore, the IMO’s Marine Environment Protection35

Committee (MEPC) require a 50% reduction in annual shipping emissions by36

2050 compared to 2008 (International Maritime Organization 2018). To meet37

this aim, accurate prediction of vessel power consumption will allow bench-38

marking of energy saving devices or new design concepts, allowing current and39

future vessels to be more efficient. In addition, weather routing optimisation40

can be used to ensure that the most efficient routes are taken to avoid bad41

weather or adverse currents. However, the prediction of emissions is difficult as42

the range of weather conditions encountered during operations rarely equates43

to the ‘calm water’ conditions traditional powering prediction methods are de-44

signed for (Holtrop 1984). Accurate prediction of power in weather is therefore45

essential to effectively benchmark power consumption and therefore to reduce46

it.47

Predicting ship power requirements in weather is challenging. Traditional48

naval architecture techniques based on experimental towing tank data are ex-49

pensive, as they require a number of tests and each new vessel will require50

these to be repeated. Due to this expense models are rarely tested in complex51

sea states, so these data are not applicable to realistic vessel operation. To re-52

duce the expense of towing tank experiments, empirical formulae based on these53

tests have been developed for calm water conditions (Holtrop and Mennen 1982)54

(Holtrop 1984). These methods require multiple non-trivial vessel parameters55

which are known during the design phase of a vessel but may not be known for56

a ship in operation. Such parameters are used in neural networks to predict57

powering but with limited practical use (Ai-guo and Jia-wei 2009). Some ex-58
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tensions to these methods account for weather using Beaufort number, which is59

a coarse measure of wind strength, to infer typical wave height (Townsin et al.60

1993). However, the use of coarse bins of ‘sea state’, instead of measured or61

hindcast wave height, reduces the accuracy of any predictions.62

While simple empirical formulae are inaccurate in rough seas, it is possi-63

ble to model vessel powering accurately in waves using Computational Fluid64

Dynamics simulations. However, these require prohibitively large run times as65

the air-sea interface is complex to model (Wackers et al. 2011). More recently66

continuous monitoring data, with frequencies around 30 seconds, provides an67

opportunity to produce fast and accurate powering estimates without the need68

for specific vessel parameters. However, it is difficult to analyse continuous69

monitoring performance data in waves using traditional regression approaches70

(Lakshmynarayanana and Hudson 2017), due to the heavy-tailed distributions71

and noise levels within the data. Therefore machine learning techniques are in-72

creasingly being used on large datasets to make these predictions, as they have73

the ability to approximate complex relationships, allowing them to model the74

vessel-weather relationships present in operational data (Parkes et al. 2018).75

The literature shows that shaft powering of a vessel can be predicted with76

average accuracies of between 1.5-5% error with the use of a regression neural77

network trained with high frequency data from the vessel (Pedersen and Larsen78

2009), (Radonjic and Vukadinovic 2015), (Bal Beşikçi et al. 2016), (Zissis et al.79

2015). Interactions between weather, specifically wave height, and vessel propul-80

sion can be approximated by neural networks to increase prediction accuracy81

(Petersen et al. 2012) (Hu et al. 2019), which is not possible with traditional82

techniques from naval architecture. The neural network is easier to implement83

than traditional methods, does not require any vessel-specific parameters, and84

can be implemented earlier in a vessel’s operating life than other performance85

analysis techniques as it can use high frequency data without trimming or bin-86

ning.87

A number of ships now record continuous monitoring, or high frequency,88

data. This includes data from ships in all weather conditions encountered dur-89
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ing operation. It is demonstrated that the power requirements for these vessels90

can be predicted accurately for any given vessel using neural networks and op-91

erational data (Petersen et al. 2012). However, the cost of gathering these data92

is high, in the region of £100,000s for each vessel. It is therefore impractical for93

every ship to be monitored purely for the determination of powering require-94

ments. Hence, utilising these data across fleets, making predictions for different95

vessels from the data collected from another, is important to reduce the cost.96

Data fusion is increasingly used in machine learning to improve the accuracy97

or pertinence of results (Elmas and Sonmez 2011) (Melendez-Pastor et al. 2017)98

and the potential of blending data from different instruments, time periods and99

applications is still under investigation. This dataset provides a particularly100

stochastic set of data, with continuous and discontinuous input distributions, as101

well as different operating profiles for each ship. The application of data fusion102

methods could allow power prediction for merchant vessels where there is no103

available data, such as those on charter agreements, and considerably reduce104

the cost for these methods.105

This study provides insight into the potential of predicting powering for a106

vessel where no data exists by training networks on data from other vessels.107

Studies in similar areas, such as wind power prediction, show promising results108

(Tasnim et al. 2018). However, there are no known studies investigating this109

for vessel power prediction, which may be due to the comparative complexity110

of modelling vessel powering caused by the effect of second order variables;111

unmeasurable input variables such as piloting style or the interaction of draft112

and trim. Power prediction quality for networks trained on a sister ship is113

compared to networks trained on a fleet of non-sister vessels. Datasets from 21114

Liquid Natural Gas carriers are analysed to understand the quantity of data115

that is required and the accuracy in prediction for vessels with different levels116

of similarity.117
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2. Fleet Data118

Datasets of varying size from 21 Liquid Natural Gas carriers are analysed119

for their use for power prediction from neural networks. Some are sister ships,120

so have identical hull forms and similar machinery, where others are the only121

example of their vessel type. To preserve the anonymity of the data, the vessel122

types are denoted by letters and for each vessel type each sister ship is denoted123

by a number. There are 8 different classes of vessel A-H, with quantities of sister124

ships for each vessel type ranging from 1 to 7. The size of each dataset ranges125

from nearly 2,500,000 observations to fewer than 60,000, Figure 1, all datasets126

have a frequency of 30 seconds per observation.127

Figure 1: The size of each vessel’s dataset, with each class of vessel signified by a different

colour.

To ensure the validity of the results and to accurately measure the change in128

error, the ship datasets should be of comparable size. Therefore, only datasets129

with over 1,000,000 datapoints are used. The size is chosen to ensure the testing130

and validation sets1 are over 150,000 datapoints, as statistical analysis showed131

1The randomly selected subset of 15%, of the dataset which is used for testing a networks
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that this size set approximates the distribution of whole dataset accurately for132

all variables used, and hence avoiding autocorrelation related bias in errors.133

Out of the original 21 ships, 9 have more than the required 1,000,000 data-134

points post trimming; with 2 sister ships in the D and E class, 3 sister ships in135

the C class and only 1 ship in each of the A and F classes. The size of the test136

set used for every vessel is 150,000, regardless of the overall size of the dataset.137

Although only 9 ships are used in this study, the methodology used is designed138

to be applicable to larger fleets, for example the data filtering applied is not139

tailored to the specific sensor errors found on each ship, instead only removing140

all points where vessel power is 0 or below.141

The fleet of ships are all Liquid Natural Gas carriers with build dates span-142

ning 12 years from 2003 to 2015. Amongst the 9 ships there are two different143

types of propulsion system: steam and diesel-electric. All ships are of a similar144

size, with a 17m range in length and 3m range in beam. For these large mer-145

chant vessels, 17m difference in size is not significant in relation to the overall146

size of the vessel, so powering relationships are expected to be similar. The C-147

class vessels have 2 propellers, while all other vessels have one, larger, propeller.148

Propeller number and size will not significantly affect powering but may change149

the routes operated by a vessel.150

2.1. Input Variable Analysis151

Over 100 variables are recorded on board each vessel including: engine,152

cargo, vessel condition and vessel movement data. A detailed study into variable153

selection for shaft power prediction has been performed, (Parkes et al. 2019),154

where data quantity was prioritised. Of the 100 input variables, nearly half of155

the variables did not measure correctly for over 30% of the time, leaving a set of156

43 usable variables for prediction. In this study, 3 different sets of input variables157

are compared. The first set is 5 variables selected from a Naval Architecture158

perspective:159

power prediction abilities.
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(i) GPS ship speed (knots);160

(ii) true wind speed (m/s);161

(iii) apparent wind direction (degrees);162

(iv) draught (m) - the distance from the base of the ship to the waterline; and163

(v) trim (m) - the angle of the waterline on the vessel.164

This set of 5 is compared to two other input variable selection methods:165

incrementally increasing the quantity of input variables ordered based on their166

correlation to shaft power and incrementally increasing the quantity of principal167

components from a Principal Component Analysis (PCA) of the full usable168

dataset. The study notes minimal difference in prediction accuracy between169

each of the approaches. This study uses the 5 Naval Architecture selected170

variables discussed in (Parkes et al. 2019). As expert opinion identifies that171

these 5 have a causal connection to the output; a change in any one of them172

causes an increase or decrease in required shaft power. The use of causally173

related input variables will allow comparison between vessels through analysing174

the relationship between inputs and shaft power for each, to identify differences175

in powering characteristics.176

Although vessel speed is the most highly correlated variable to shaft power,177

only one measure of vessel speed is used as an input variable as the two variables178

contain significant redundancy between them. This would introduce unneces-179

sary complexity for the network to model, given the addition of a highly corre-180

lated input variable would provide minimal additional information. If measured181

correctly, the speed through the water measurement is more hydrodynamically182

relevant to powering than the speed over ground. However, due to inaccuracies183

in the measuring equipment the speed through the water is often less reliable184

than speed over ground. Over all the observed datapoints the two speed mea-185

surements are within 1knot of each other over 80% of the time and as the speed186

through the water is deemed reliable it is used as the vessel speed input variable.187
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Figure 2: The distribution of the observed shaft powers for half knot bins of speed through

the water for ship F. In the box and whisker plots the boxes contain 50% of the distribution

and the whiskers extend to the datum which is at 1.5 times the interquartile range.

Power to speed through the water regression curves are often used in the188

Naval Architecture literature to define powering relationships for a specific ves-189

sel, as a vessel’s speed is highly correlated to its power requirements. The190

distribution of power values observed at each vessel speed through the water191

illustrates this relationship, Figure 2. In the traditional regression method a192

single trend line describes the relationship between the two variables for the193

majority of the datapoints. However, the stochastic nature of the environment194

leads to a more complex patterns requiring other variables such as weather and195

vessel condition to make accurate predictions across the entire range. This is196

made more complex by variables like draft and trim which are multimodal and197

for certain vessels this approaches a discrete distribution.198
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(a)

(b)

Figure 3: Comparison of the average observed power at half knot intervals of speed through

the water for all vessels in the fleet (A), with shaded regions ± one standard deviation for

each interval (B).

To compare the power profiles of the vessels across the fleet, the average199

power observed at each half knot interval of speed is plot for all of the vessels,200

Figure 3a. No noise or secondary relationships are captured by these speed-201

power curves, however a difference in propulsion relationship is clear for ship202

A. The required power for ship A is around 20% of the maximum power higher203
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than for all of the other vessels, for all speeds over 7knots. This vessel is the204

only steam powered ship, as well as the oldest vessel in the fleet by 7 years,205

so a difference in propulsion characteristics is expected. This difference in per-206

formance may cause problems if attempting to predict powering of ship A by207

training on vessel data from the other ships.208

There is an increase in average shaft power for near zero speeds for ships E1,209

E2 and F, Figure 3a. This is unexpected but may be caused by a sensor error,210

as minimal data filtering procedures are used on the datasets, or heavy weather,211

as the measurement used is the speed through the water resistance from waves212

and wind may affect the speed measurement.213
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(a)

(b)

Figure 4: A comparison of the average observed power against wind speed for all of the vessels

in the fleet (A), with shaded regions ± one standard deviation for each interval (B).

To compare vessel datasets the power-variable curves are analysed and the214

power to wind direction curves show the same trend across the fleet for the215

wind direction domain from 0° to 360°. This means wind direction relationships216

learnt for one vessel should transfer to another vessel well. However, the wind217

speed curves show a less even distribution of data across the range of observed218

wind speeds. Ship D2 is the only vessel to experience the highest speeds of 60-219
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100mph, Figure 4a, which is extreme, equivalent to Beaufort 12 or ‘hurricane220

force’. Although only 0.7% of the dataset records wind speed values above221

60mph, when plotted temporally, the set of datapoints containing these high222

wind readings create a smooth curve which suggests that these data is not223

anomalous. This 60+knot area in the wind speed domain is sparsely populated,224

both in terms of the total number of datapoints and in the variety of vessels225

with datapoints populating it, making it difficult to predict behaviour in this226

region as the distributions are not representative of the behaviour.227
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(a)

(b)

Figure 5: Comparison of the average observed power against draft for all vessels in the fleet

(A), with shaded regions ± one standard deviation for each interval (B).

A similar area of sparse data can be observed in the draft variable domain,228

Figure 5a. The power-draft curves show that only 4 vessels; D2, C1, C2 and C4,229

operate at drafts below 7m. The quantity of datapoints below 7m of draft is230

0.21% of the combined 4 vessel’s data. The sparseness of this section means the231

data in it may not have representative distributions, which may be the cause of232

the separation between all four lines below 7m of draft, Figure 5a. The power-233
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trim curve is also analysed, but due to the coupling of draft and trim, does not234

provide any further insight.235

The power prediction is shown to be most sensitive to changes in the speed236

of the vessel. However, a significant spread of power can be observed based on237

the additional noise provided from the other variables. Due to the complexity238

of these relationships, machine learning techniques are required to accurately239

model the powering of a vessel.240

3. Artificial Neural Networks241

Artificial neural networks are made up of layers of interconnected neurons,242

with size denoted as (Layers, Neurons) in this study. They approximate rela-243

tionships between pre-assigned inputs and outputs by optimising the weightings244

of the connections between neurons. The more layers and neurons a network245

contains, the more complex the relationships within a dataset it can model.246

The networks in this study are written using the Keras 2.3.1 libraries (Chollet247

et al. 2015) with Tensorflow 2.0.0 (Abadi et al. 2015) backend. Feed forward net-248

works are used exclusively. From domain knowledge there should exist temporal249

effects within the dataset, such as breaking waves on the ship or manoeuvring250

(Simsir and Ertugrul 2009). But from time series analysis and trialling the use251

of recurrent networks, it is discovered that the data frequency of 30 seconds252

is too coarse to identify any temporal correlations. The datasets are therefore253

treated as time invariant and no networks involve recursive elements and all254

network outputs are predicted independently. The inputs and targets are scaled255

between 0-1, as both normalisation and scaling are trialled and scaled inputs256

produced improved prediction performance.257

Alongside an early stopping procedure, the maximum epoch limit is 1000,258

although in practice this limit is never reached, as the early stopping terminates259

training after 10 epochs of unimproved error values. A relatively small batch size260

of 50 is chosen to balance training time and accuracy. As training the networks261

in this study is in the order of hours, a small batch size is possible. The learning262
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rule used is AdaMax (Kingma and Ba 2014) with ReLU activation functions263

throughout the network. The use of a technique to regularise training such as264

L1 and L2 regularisation and dropout are trialled and are shown to decrease265

accuracy of predictions, so no regulariser is used. The error function used is266

mean absolute, as it is commonly used in other ship power prediction literature267

(Grabowska and Szczuko 2015) this will allow cross study comparisons. All268

selected hyperparameters for this study are listed in Table 1, these parameters269

are selected from a small parametric search as well as experience predicting270

powering from ship datasets..271

The number of layers and neurons and the configuration of the neurons in272

the networks used is briefly investigated with a parametric study of prediction273

accuracies for sizes in the range (1, 50) to (3, 400), to identify if the network274

parameters used in ship power prediction literature produce results with similar275

accuracy to previous applications. The maximum number of layers investigated276

is 3 as there are only five input variables, and the dataset is not evenly dis-277

tributed enough for meaningful feature extraction using more layers.278

From the initial parametric study using the entire dataset as training data,279

the median error decreases for increasing size of network from (1, 50) - (3, 300),280

with (3,300) networks producing a median testing error of 1.98% and median281

training error of 1.95% suggesting that this size network does not overfit the282

dataset. No difference in error is noted between networks where the number of283

neurons decreases for each layer and networks with the same number of neurons284

in each layer. Networks of size (3, 400) have a similar distribution of errors but285

a median error 0.10% higher. This suggests that the (3, 400) network does not286

capture any additional relationships within the dataset to reduce error, com-287

pared to the (3, 300) network, but is instead beginning to overfit the dataset.288

For these reasons networks of size (3, 300) are used for the rest of this study.289
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Table 1: Selected hyperparameters

Hyperparameter Value

Number of hidden layers 3

Number of neurons in each hidden layer 300

Number of epochs 1000

Batch Size 50

Early Stopping Patience 10

Error function Mean Absolute Error

Learning rule AdaMax (Kingma and Ba 2014)

Activation Function ReLU

Regularising technique None

Initialiser Random Normal (µ = 0, σ = 0.1)

4. Verify Datasets for Power Prediction290

For each ship, 10 networks with the parameters specified in Section 3, are291

trained and tested on their operational dataset2. The only difference for each292

of the 10 network runs is the randomly sampled training, testing and valida-293

tion sets, the random initialiser and any stochastic elements of the optimiser.294

This acts as a benchmarking of the method and datasets against results in the295

literature and allows an initial comparison of the prediction accuracies of the296

ships.297

2For all future results in this study 10 repetitions are performed to increase validity.
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Figure 6: The distribution of mean absolute error from 10 networks of size (3, 300) for indi-

vidual vessels, showing consistent predictions for individual ships and a maximum difference of

1% between the mean error for different ships. In the box and whisker plots the boxes contain

50% of the distribution and the whiskers contain 90% of the distribution and the circles show

outliers. Where no upper whisker is visible, the 75th and 95th percentiles coincide.

For most of the ships, the distribution of the mean prediction errors from the298

different vessels ranges between 1.78-2.13%. Ship D1 can be predicted the most299

accurately, and exhibits a lower average error of 1.35%, and ship A is the most300

difficult to predict, with all of the errors above 3% Figure 6. These accuracies301

are similar to those in the literature. Powering is predicted to within a 5% error302

(Pedersen and Larsen 2009) with a best result of 1.5% from (Petersen et al.303

2012), where the wave height is used as an additional input variable which has304

been shown to give an increase in accuracy of 0.5% (Parkes et al. 2019). Each305

ship shows consistent predictions, with low standard deviations, around 0.25%.306

Networks with the parameters in Table 1 produce errors inline with the power307

prediction literature for every ship, therefore this size of network is used in the308

following sections.309

Within these predictions there is no relationship between error value and310
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ship class, as error values within ship classes vary just as much as between311

ship classes. This suggests that the variation between ships is likely to be due312

to factors not relating to hull form or ship parameters. These factors may313

be a specific sensor error, the vessel conditions experienced, or differences in314

piloting and operation. The next two sections document the use of a network315

trained on one vessel to predict powering for a different vessel using two different316

approaches. The first trains networks on data from one ship and tests on all317

other ships in the fleet separately, the second trains networks on a fusion of data318

from all of the ships in the fleet apart from one, which the network is tested on.319

5. Prediction when trained on a different ship320

Networks are trained with data from one ship and tested on all other ships321

separately to evaluate the prediction accuracy from networks trained on data322

from one ship.323

Figure 7: Box and whisker plots to illustrate the distribution of prediction accuracy from

multiple networks when tested on: the ship the network was trained on; a sister ship; and a

ship of a different class.
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The error in prediction for networks trained on the data from a sister ship324

is between 7.34-15.63% with a median of 10.89%, Figure 7. This error is a325

significant increase compared to the error from networks trained on the same326

ship. The propulsion systems and hull forms on sister ships should be identical,327

hence theoretical powering relationships should be the same: which implies328

errors in line with those from a network trained on the same ship, Section329

4. However, in operation the differences in routes, conditions, and operators330

increases the difference in the relationships within each dataset, which means331

that error in power prediction increases from 2% to 11%. An error in prediction332

of around 11% is large compared to the power reduction produced by energy333

saving devices like air lubrication, which is around 5%, making networks trained334

on a single sister ship unusable for many practical applications.335

When networks are tested on non-sister ships the minimum mean error is336

the same, around 7.5%. However, the mean, mean error increases by 3.5%, and337

the maximum mean error increases to 36.93%. Therefore, the distribution of338

non-sister ship errors has a similar distribution to the sister ship errors but with339

a longer tail. The distribution of errors for non-sister ships demonstrates that340

the same error in prediction for sister ships can be obtained by a non-sister ship.341

This means that the operation and experienced conditions of a vessel affect error342

of prediction more than vessel proportions. The following section evaluates the343

errors from networks trained on data from more than one ship to test an unseen344

ship.345

6. Prediction when trained on a fused dataset of all other ships346

To emulate a more realistic situation, where data is available from some but347

not all vessels in a fleet; this section uses a form of k-fold cross validation where348

data from all of the vessels except for one and uses this network to predict349

powering for the unused vessel. This increases the size of dataset used to train350

the networks from around 700,000 to around 5,600,000.351
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Figure 8: The distribution of mean absolute errors from multiple networks trained on all of

the vessels apart from the ship tested on.

Errors in the range (4 ± 0.25)% are observed for 6 of the 9 vessels tested,352

Figure 8. The three vessels which have a higher error are ships C1 with (6.83±353

0.14)% error in prediction and ships A and D2 with (8.89 ± 0.44)% error and354

(9.26 ± 0.27)%. Ships C1 and D2 have sister ships with errors in line with355

(4 ± 0.25)%, which shows that the dimensions of the vessel are not causing the356

high errors for these ships. Therefore, including parameters like vessel length357

and hull form as an input would not improve prediction accuracies for this fleet.358

It is suggested that the difference in power-speed curves, in Section 2.1,359

explains why the errors in prediction for ship A are high, as the speed-power360

relationship in the other 8 datasets are 20% lower than ship A, Figure 3a. This361

is due to the difference in propulsion systems and age of vessel as ship A is the362

only steam powered vessel in the fleet.363

Ship D2 has errors over double that of its sister ship D1, Figure 8. This364

suggests that the area of the input variable space for this vessel is not covered365

by the training dataset. The operating conditions experienced by the vessels366

differ from the rest and this is confirmed by the wind speed curves, Figure 4a.367
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This region of high winds explains why the errors for ship D2 are high. No368

other ship experiences the same extreme conditions so a network trained on all369

other ships cannot predict accurately for high winds. It is confirmed that when370

the area of extreme weather (60+knots) and unusually low drafts were removed371

from the dataset, the errors for ship D2 reduce to 3.6%, which is in line with372

the other vessels.373

Ship C1 shows an error 2% lower than the other anomalous ships, A and D2.374

Ship C1 is one of the four ships to operate at low drafts, Figure 5a. Although375

all of the power-draft relationships in this region show different relationships,376

due to the low quantity of data, ship C1 is the only vessel to show an increasing377

trend in this region, with an increase in power for an increase in draft. When378

the region of draft below 7m is removed from all of the datasets, the powering379

for ship C1 is predicted with a 4.6% error from a network trained on all other380

vessels. This is within 0.5% of all other ships when appropriate input variable381

ranges are selected, demonstrating that this difference in low draft behaviour is382

likely to be the reason for the difference in error.383

7. Discussion384

It is shown that networks trained on data from a single sister ship can predict385

powering with an error of around 11%, compared to 4% from a fleet of non-sister386

vessels. The decrease in error is unlikely to be caused solely by the increase in387

number of datapoints in the training set; as the range of operational conditions388

experienced is shown to be more important for accurate prediction than absolute389

number of datapoints (Parkes et al. 2018). This suggests that, for the fleet used390

in this study, vessel parameters are less important for accurate power prediction391

than sufficient data across the desired prediction domain.392

Error in power prediction from a network, trained on data from 8 ships, for393

an unseen ship is (4 ± 0.25)% for most vessels. For the 3 ships with a higher394

error in prediction, a significant difference in propulsion system, experienced395

conditions or behaviour is observed through analysis of the vessel data. If suit-396
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able discretion is used in choosing appropriate vessels and regions of input data397

for prediction, accurate power prediction from a fusion of data is possible using398

neural networks, without operational data from that specific vessel data or a399

sister ship.400

The ships used in this study are all liquid natural gas carriers of similar size401

and proportions. Investigations into the effect caused by utilising a more varied402

fleet is of interest. This will allow the assessment of how relevant the powering403

relationships within a dataset from one vessel type is to a different type of vessel,404

by utilising techniques such as multi source domain adaptation. The use of a405

larger fleet may also allow the effects of latent variables such as piloting style406

or specific sensor characteristics to be analysed more completely, creating the407

potential to adapt the method to account for these.408

Although meaningful feature extraction has not been noted during this study,409

a full investigation into whether it is possible is of interest. Methods to encour-410

age feature extraction include utilising cascade networks or training each layer411

of a network on a different ship. The latter would provide flexibility for more412

diverse fleets; where a modular approach to network layers could allow only the413

most relevant vessels to be used for prediction.414

8. Conclusion415

Power prediction is a difficult task for ships in waves through traditional416

methods. To update these approaches, modern machine learning based meth-417

ods demonstrate high accuracy but require vessel specific operational data for418

training. However, many vessels do not collect operational data, as it is ex-419

pensive or the operator does not own the vessel, but these vessels still require420

accurate power prediction. Therefore, this study investigates the ability to make421

predictions for ships without data, from a fusion of data from all other ships in422

the fleet. First, the accuracy of using a neural network trained on operational423

data from a specific vessel is verified to be possible to with 2%, but extends this424

to include no manual trimming of the dataset. When using a network trained425
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on 8 similar vessels to predict the powering, errors of (4 ± 0.25)% are observed426

for most vessels. This error is less than half that from a network trained on a427

single sister ship. The ships with higher errors can be shown to have experi-428

enced different environmental conditions or have different propulsion systems,429

visible from a preliminary statistical analysis. It is therefore possible to extend430

the range of extrapolation using this fleets’ data and means it is possible to ac-431

curately predict the behaviour of a new vessel, or one where data are not being432

collected, with a sensible selection of fused dataset comprised of similar vessels.433

Acknowledgements434

This work was kindly funded by Shell Shipping and Maritime. The authors435

acknowledge the use of the IRIDIS High Performance Computing Facility, and436

associated support services at the University of Southampton, in the completion437

of this work.438

References439

Abadi, M. et al. (2015). TensorFlow: Large-Scale Machine Learning on Hetero-440

geneous Systems. https://tensorflow.org.441

Bal Beşikçi, E. et al. (2016). “An artificial neural network based decision support442

system for energy efficient ship operations”. In: Computers & Operations443

Research, pp. 393–401. issn: 03050548. doi: 10.1016/j.cor.2015.04.004.444

Chollet, F. et al. (2015). Keras. https://keras.io.445

Elmas, C. and Y. Sonmez (2011). “A data fusion framework with novel hybrid446

algorithm for multi-agent decision support system for forest fire”. In: Expert447

Systems with Applications 38, pp. 9225–9236.448

Grabowska, K. and P. Szczuko (2015). “Ship resistance prediction with artifi-449

cial neural networks”. In: 2015 Signal Processing: Algorithms, Architectures,450

Arrangements, and Applications (SPA), pp. 168–173.451

23

https://tensorflow.org
https://doi.org/10.1016/j.cor.2015.04.004
https://keras.io


Ai-guo, C. and Y. Jia-wei (2009). “Research on the genetic neural network for452

the computation of ship resistance”. In: 2009 International Conference on453

Computational Intelligence and Natural Computing. Vol. 1, pp. 366–369.454

Holtrop, J. (1984). “A statistical re-analysis of resistance and propulsion data”.455

In: International shipbuilding progress 31.363, pp. 272–276. issn: 0020-868X.456

doi: 10.1007/s12011-015-0572-4.457

Holtrop, J. and G. G. Mennen (1982). “An approximate power prediction method”.458

In: Int. Shipbuilding Progress 29.459

Hu, Z. et al. (2019). “Prediction of fuel consumption for enroute ship based on460

machine learning”. In: IEEE Access 7, pp. 119497–119505.461

International Maritime Organisation (2020). Fourth IMO Greenhouse Gas Study.462

International Maritime Organization (2018). Marine Environment Protection463

Committee (MEPC), 72st session.464

Kingma, D. P. and J. Ba (2014). “Adam: A method for stochastic optimization”.465

In: arXiv preprint arXiv:1412.6980.466

Lakshmynarayanana, P. and D. A. Hudson (2017). “Estimating added power in467

waves for ships through analysis of operational data”. In: 2nd Hull Perfor-468

mance and Insight Conference: HullPIC’17.469

Melendez-Pastor, C., R. Ruis-Gonzalez, and J. Gomez-Gil (2017). “A data fu-470

sion system of GNSS data and on-vehicle sensors data for improving car471

positioning precision in urban environments”. In: Expert Systems with Ap-472

plications 80, pp. 28–38.473

Parkes, A. I., A. J. Sobey, and D. A. Hudson (2018). “Physics-based shaft474

power prediction for large merchant ships using neural networks”. In: Ocean475

Engineering 166, pp. 92–104.476

Parkes, A. I. et al. (2019). “Efficient vessel power prediction in operational477

conditions using machine learning.” In: Practical Design of Ships and Other478

Floating Structures(PRADS), September 2019, Yokohama, Japan.479

Pedersen, B. P. and J. Larsen (2009). “Prediction of full-scale propulsion power480

using artificial neural networks”. In: Proceedings of the 8th international con-481

24

https://doi.org/10.1007/s12011-015-0572-4


ference on computer and IT applications in the maritime industries (COM-482

PIT’09), Budapest, Hungary May, pp. 10–12.483

Petersen, J. P., D. J. Jacobsen, and O. Winther (2012). “Statistical modelling484

for ship propulsion efficiency”. In: Journal of marine science and technology485

17.1, pp. 30–39.486

Radonjic, A. and K. Vukadinovic (2015). “Application of ensemble neural net-487

works to prediction of towboat shaft power”. In: Journal of Marine Science488

and Technology (Japan) 20.1, pp. 64–80. issn: 09484280. doi: 10.1007/489

s00773-014-0273-2.490

Simsir, U. and S. Ertugrul (2009). “Prediction of manually controlled vessels’491

position and course navigating in narrow waterways using Artificial Neural492

Networks”. In: Applied Soft Computing 9.4, pp. 1217–1224.493

Tasnim, S. et al. (2018). “Wind power prediction in new stations based on knowl-494

edge of existing Stations: A cluster based multi source domain adaptation495

approach”. In: Knowledge-Based Systems 145, pp. 15–24.496

Townsin, R. L. et al. (1993). “Estimating the influence of weather on ship per-497

formance.” In: Transaction of the Royal Institution of Naval Architects 135,498

pp. 191–209.499

Wackers, J. et al. (2011). “Free-surface viscous flow solution methods for ship hy-500

drodynamics”. In: Archives of Computational Methods in Engineering 18.1,501

pp. 1–41.502

Zissis, D., E. K. Xidias, and D. Lekkas (2015). “A cloud based architecture503

capable of perceiving and predicting multiple vessel behaviour”. In: Applied504

Soft Computing 35, pp. 652–661.505

25

https://doi.org/10.1007/s00773-014-0273-2
https://doi.org/10.1007/s00773-014-0273-2
https://doi.org/10.1007/s00773-014-0273-2

	Vessel Power Prediction in Waves
	Fleet Data
	Input Variable Analysis

	Artificial Neural Networks
	Verify Datasets for Power Prediction
	Prediction when trained on a different ship
	Prediction when trained on a fused dataset of all other ships
	Discussion
	Conclusion

