
Research Article Journal of the Optical Society of America A 1

Unsupervised feature learning and clustering of
particles imaged in raw holograms using an
autoencoder
ZONGHUA LIU1,*, THANGAVEL THEVAR2, TOMOKO TAKAHASHI3, NICHOLAS BURNS2, TAKAKI
YAMADA4, MEHUL SANGEKAR3, DHUGAL LINDSAY3, JOHN WATSON2, AND BLAIR THORNTON1,4

1Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan
2School of Engineering, University of Aberdeen, Aberdeen AB24 3FX, U.K.
3X-STAR, JAMSTEC, Yokosuka 237-0061, Japan
4Centre for In Situ and Remote Intelligence, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
*Corresponding author: zonghua@iis.u-tokyo.ac.jp

Compiled August 31, 2021

Digital holography is a useful tool to image microscopic particles. Reconstructed holograms give high-
resolution shape information that can be used to identify the types of particles. However, the process
of reconstructing holograms is computationally intensive and cannot easily keep up with the rate of data
acquisition on low-power sensor platforms. In this work, we explored the possibility of performing object
clustering on holograms that have not be reconstructed, i.e. images of raw interference patterns, using the
latent representations of a deep-learning autoencoder and self-organising mapping network in a fully
unsupervised manner. This concept was demonstrated on the synthetic raw holograms achieving the
clustering accuracy of 94.4%. This was close to 97.4% of the accuracy achieved using their reconstructed
holograms, reducing the computational time by three orders of magnitude. It takes around 0.09 second
to process a hologram on a low-power CPU board using the proposed method, which makes it possible
to carry out clustering interpretation in real time on low-power sensor platforms. Experiments were also
performed on real holograms. For the real raw holograms for testing, the clustering accuracy was 47.1%
when the models were trained only on the real raw training data. The accuracy increased to 64.1% when
the models were entirely trained on the synthetic raw training data. The highest accuracy of 75.9% was
achieved when the models were trained on the both datasets using transfer learning. Regarding the
reconstructed holograms, the lowest accuracy was 58.4% obtained when the models only trained on the
real data. It increased to 70.2% when the model only trained on the synthetic data. However, transfer
learning did not result in an increase of accuracy in the reconstructed holograms in our work.
© 2021 Optical Society of America
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1. INTRODUCTION1

Holography is a non-invasive high-resolution imaging technique2

that retains a large depth-of-field [1]. Digital holographic micro-3

scopes can be used to generate focused images of microscopic4

particles that are suspended in fluids, such as marine micro-5

particles [2–4] and biological cells in vivo [5, 6]. Since a raw6

hologram consists of the interference pattern generated when a7

particle is in the path of a coherent light, it is normally necessary8

to first reconstruct the hologram at a specific distance (the fo-9

cused reconstruction) so that the particle’s shape can be clearly10

seen before any further analysis, like object classification, can11

be performed. However, hologram reconstruction is a compu-12

tationally intensive process. It becomes more expensive when13

the specific distance is unknown prior to reconstruction, since14

hologram reconstruction needs to go through the whole record-15

ing volume to detect the focal plane. Although efforts have16

been made to speed up this process using field-programmable17

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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gate arrays (FPGAs) [7, 8] and parallel processing using graphics18

cards [9], these methods significantly increase the cost, power19

consumption and complexity of embedded sensing platforms.20

Recent demonstrations of supervised deep-learning tech-21

niques to efficiently reconstruct raw holograms [10–12] give22

the possibility for real-time interpretation of digital holograms23

on compact, low-power devices. However, the need for large24

training datasets is a limiting factor because reconstruction and25

focus detection in holograms is time consuming. At the same26

time, the fact that deep-learning algorithms can extract useful27

features from raw holograms motivated our investigation into28

direct interpretation using deep-learning autoencoders [13, 14].29

A key feature of autoencoders is that they can learn latent repre-30

sentations in a fully unsupervised manner (i.e. without the need31

for any human input to generate training data), which greatly32

simplifies the training process. Unlike traditional methods for33

representation extraction, e.g. principal component analysis34

(PCA) [15], autoencoders are capable of modelling more sophis-35

ticated and complex nonlinear relationships between inputs and36

their representations [16]. Therefore, autoencoders can be eas-37

ily redeployed and retrained on data gathered under different38

conditions or using a different instrument. Latent representa-39

tions extracted by autoencoders can be used for object clustering40

without the need for any human supervision, and this method41

has been effectively demonstrated using other types of optical42

image [17–19]. However, there have been no previous studies43

investigating their use for clustering of raw digital holograms.44

In this paper, we explore the possibility of using an end-to-45

end unsupervised workflow to extract the features from raw46

holograms and then cluster them based on these features. Even47

though unsupervised methods do not require human input to48

generate labelled training data, they still require large amounts49

of unlabelled data to learn useful latent representations, which50

can be challenging to obtain in applications (e.g. marine micro-51

particle imaging). Therefore, we investigate how to improve52

the efficiency of training unsupervised models using synthetic53

data. The concept of directly interpreting raw holograms is first54

demonstrated entirely using synthetic holographic data. Next,55

we explore transfer learning [20], where models are pre-trained56

on synthetic holograms, and the pre-trained models are trained57

on a small number of real holograms. We also demonstrate58

the proposed workflow on a low power CPU board to show its59

practical usefulness for in situ applications.60

2. AUTOENCODERS61

An autoencoder consists of two components: an encoder and62

a decoder, as shown in Fig. 1. The encoder reduces an input63

image x into a latent representation h that has a lower number64

of dimensions than the original image. The decoder does the65

reverse, using the latent representation h to restore1 the input66

image to xr that is as close to the initial input as possible. It is67

often useful to add noise to the inputs so that the encoder learns68

to denoise images, which aids to extract robust representations69

from inputs [14, 21].70

The model learns through minimising the difference, or loss,71

between the inputs and outputs for a set of images, i.e. the72

training data. The process can be described as follows:73

1To clarify the term of reconstruction (reconstructed image), in this paper, the
output of the autoencoder is called restoration (restored image from the input); the
output of the hologram reconstruction algorithm is called reconstruction (recon-
structed image from the input).

Fig. 1. Flowchart of an autoencoder with denoising. x, h and
xr signify an input image, latent representation and repro-
duced image respectively. Loss(x, xr) indicates the loss func-
tion which calculates the error between x and xr.

{ϕ : x → h; φ : h→ xr; ϕ, φ⇐ min(Loss(x, xr))} (1)

where ϕ and φ signify the transition of the encoder and decoder74

respectively. The training attempts to find the optimal weights in75

ϕ and φ to minimise the loss between x and xr. Once trained, the76

encoder can be used independently to extract latent representa-77

tions that can be used as features for clustering or classification.78

3. LEARNING MODELS AND DATASETS79

A. Autoencoder80

The autoencoder architecture used in this work is based on81

the AlexNet neural network [22]. This model is effective in82

describing images, and won the ImageNet Large Scale Visual83

Recognition Challenge in 2012 [23]. The original architecture84

of AlexNet consists of 8 layers in total, taking input image di-85

mensions of 227 × 227 × 3, using 5 convolutional layers (the86

first, second and fifth layer is followed by a max pooling layer87

respectively) and 3 fully-connected layers. The relatively simple88

architecture compared to more recent CNN makes it suitable for89

use in autoencoders, as demonstrated in [19, 24].90

In this work, two modifications have been made to the origi-91

nal AlexNet architecture. The architecture of the modified au-92

toencoder is described in Section 1 of the supplemental docu-93

ment. Since typical holographic images are monochrome, the94

input data size is changed to 227 × 227 × 1 instead of 227 × 22795

× 3, which caters for the RGB colour channels in conventional96

imaging. The three fully-connected layers in the original take up97

94% of the parameters and are useful for solving highly complex98

classification problems [25]. The fully-connected layers ignore99

the image structure and their output features lose geometric100

characteristics of the input images [26], while the convolutional101

layers share their weights amongst all locations in the input102

and preserve spatial locality [22]. Since raw holograms have a103

high degree of geometric structure (interference fringes around104

object silhouettes), we replaced the three fully connected layers105

by two convolutional layers (followed by a max pooling layer106

respectively). This convolutional modification is able to not107

only facilitate feature extraction and improve the results in our108

work, but also speed up the training process and reduce the109

network’s size (the details have been shown in Section 3-B of the110

supplemental document).111

In the first modified convolutional layer, the number of filters112

used is 96, with a kernel size of 3 × 3, and scanning strides of 1113

× 1. The “same padding” strategy is used in this layer. There-114

fore, this layer outputs a datum in the size of 6 × 6 × 96. After115

max pooling with the pooling size of 3 × 3 and the scanning116

stride of 3 × 3, the output datum size becomes 2 × 2 × 96. The117

second convolutional layer is designed to control the number118
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of the latent features. Its output size is 2 × 2 × 40. A ReLU119

(rectified linear unit) activation function is used in these two120

convolutional layers. After max pooling, a 40-dimension latent121

representation of an input image is obtained. This value was122

chosen based on a parametric study, where increasing the di-123

mensionality of latent representation did not improve the results124

(see Section 3-A in the supplemental document). Its decoder is125

mirror-symmetrical, where convolutional layers are transposed126

to transconvolutional layers [27], and the max pooling layers are127

transposed to upsampling layers [28].128

Since much background noise exits in holograms [29], the129

functionality of denoising is added to the autoencoder to reduce130

the effect of noise on feature extraction (Section 3-C in the supple-131

mental document). The training parameters for the autoencoder132

are described in Section 2-A of the supplemental document.133

B. Clustering model134

In this work, objects are clustered using a self-organising map-135

ping (SOM) network [30]. The SOM is a well-known classical136

unsupervised learning model, and it is simple to implement137

[31]. This model is built using a pre-defined 2-D net of neurons.138

Unlike the error-correction-based learning in other networks (e.g.139

gradient descent in backpropagation), competitive learning [30]140

is applied where training samples compete for neurons to repre-141

sent them. This causes different portions of the SOM network to142

respond similarly to certain input samples, creating a transfer143

function where similar regions of the latent representation will144

be mapped to the same cluster. Further details of the SOM used145

can be found in Section 2-B of the supplemental document.146

C. Datasets147

In applications such as marine micro-particle imaging, it can be148

difficult to prepare massive real holographic data for training a149

deep-learning autoencoder. One possible solution is to create a150

set of synthetic holograms and use these to pre-train a model.151

Afterwards, the pre-trained model can be used as the starting152

point for further training on a small quantity of real data using153

the technique of transfer learning. Since it is easy to add/remove154

artificial noise into/from synthetic holograms, pre-training the155

autoencoder on synthetic holograms also facilitates the training156

process with denoising.157

Experiments were performed on both raw interference pat-158

terns, and reconstructed images of four simple geometries: circle,159

triangle, rectangle, diamond. A 200 mm × 200 mm glass plate160

with these shape patterns etched on it with about 1 mm separa-161

tion between them was used as a target to record real holograms.162

The diameter of the circle and the smallest edge of other pat-163

terns is 100 µm, as shown in Fig. 2. When creating the synthetic164

dataset, the shapes do not have any neighbours.165

Fig. 2. Microscopic photographs of four shapes. (a) – circle; (b)
– triangle; (c) – rectangle; (d) – diamond.

Real dataset: An in-line holographic camera, shown in Fig. 3,166

was used to take holograms of the shape plate. A 532 nm, single-167

longitudinal mode continuous wave laser (Elforlight) was used168

as the light source. The beam intensity was controlled using a169

variable neutral density filter, while a spatial filter (items 3© and170

4© in Fig. 3) provided a spatially coherent and uniform beam.171

This beam was then collimated by a lens before illuminating the172

CMOS image sensor (JAI GO-5100-USB) which has a resolution173

of 2464 × 2056 with a pixel pitch of 3.45 µm × 3.45 µm, giving an174

active area of 8.5 mm × 7.09 mm.175

Fig. 3. Schematic diagram of the in-line structure hologram
recorder used in this work. 1© – laser, 2© – neutral density
filter, 3© – microscopic objective lens, 4© – pinhole, 5© – colli-
mating convex lens, 6© – CMOS image sensor.

The shape plate was placed in the laser beam path, between176

the collimating lens and the sensor. Its distance from the sensor177

was varied between 10 mm to 60 mm along with different sensor178

exposure times (10, 40, 70, 100, 130, 160, 190 and 220 µs) and179

plate orientation to the plane of the sensor. Fig. 4 shows four180

holograms of the rectangle recorded under different conditions.181

Fig. 4. Four hologram samples of a rectangle under differ-
ent conditions. (a) recorded at 17.90 mm with 10 µs exposure
time; (b) recorded at 17.90 mm with 220 µs exposure time; (c)
recorded at 47.70 mm with 130 µs exposure time; (d) recorded
at 17.85 mm with 130 µs exposure time and close to 90◦ rota-
tion with regard to positions in the other three holograms.

Two groups of real holographic data were collected. One182

of them (Group 1) was used to further train the pre-trained183

autoencoder, and the other (Group 2) was used to test the model.184

Each hologram was cropped to 300 × 300 pixels around the185

target (the reason is given in Section 3-D of the supplemental186

document), resulting in 4,180 cropped holograms in Group 1 and187

3,844 in Group 2 (see Table 1). They were reconstructed using the188

angular spectrum method [32], with examples of reconstructed189

holograms shown in Fig. 5.190

Synthetic dataset: A shape image was first created, and its191

hologram was simulated using the angular spectrum method192

[32]. The parameters used for the simulation are shown in Table193

2. The size and recording distance of the shape are randomly194

selected from the given ranges. Shape’s centre and orientation195

are also randomly chosen, but are restricted so that the shape is196

fully shown within the boundary of the image.197
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Table 1. Number of real holograms for each shape.

Shape circle triangle rectangle diamond in total

Number
Group 1 780 887 1522 991 4,180

Group 2 891 708 1546 699 3,844

Fig. 5. Cropped holograms of four shapes with the size of 300
× 300 and their reconstructions.

Table 2. Parameters used to create the synthetic holographic
dataset.

Parameters Values

shape size (µm) 50 – 300 with interval of 1

image size (pixel number) 227 × 227

wavelength (nm) 532

pixel pitch (µm) 3.45 × 3.45

recording distances (mm) 10 – 60 with interval of 0.5

In this dataset, three groups of data were created: training198

data consisting of 24,000 holograms, validation data with 8,000199

holograms and testing data with 16,000 holograms. In each200

group, the number of each shape was equal. The histogram of201

the recording distances (in five ranges) and shapes’ sizes (in five202

ranges) in the three groups is shown in Fig. 6. Regarding the203

recording distance, the number of the holograms of each shape204

in each range is similar. Based on the size, most of holograms lie205

within the range of 100 – 250 µm, which accords with the shapes’206

size situation in the glass plate (see Fig. 2).207

Fig. 6. Histogram of recording distances and shapes’ sizes in
three groups.

The data of both raw and reconstructed holograms are gener-208

ated using the angular spectrum method. Two examples in each209

shape are shown in Fig. 7, with the original shapes, the synthetic210

holograms and their reconstructions.211

To simulate more realistic holograms, noise was added by212

taking real holograms without any targets and superimposing213

randomly cropped regions of them as background noise in the214

synthetic holograms (see Fig. 8). This process can also facilitate215

training the autoencoder with the functionality of denoising.216

4. EXPERIMENTAL RESULTS AND ANALYSIS217

The clustering performance of the proposed method is verified218

on the raw holograms of the entirely synthetic, entirely real and219

combined hologram datasets, and the results are compared to the220

equivalent performance for the reconstructed holograms. In the221

first set of experiments, both training and evaluation were only222

performed on the synthetic data. Next, the experiments were223

performed on the real dataset. The pre-trained autoencoders224

on the synthetic holograms (raw and reconstructed holograms225

respectively) were further trained using the corresponding real226

data in Group 1. Afterwards, their encoders were used to extract227

the latent features from the corresponding real data in Group 2,228

and these features were used to cluster these real holograms. For229

comparison, we also performed training using only real data.230
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Fig. 7. Two examples of each shape, including original shapes (in the first row), corresponding synthetic holograms (in the second
row) and their reconstructions (in the third row). Number below each column gives the recording distance of the hologram. The
scale lines in the first row indicate 200 µm.

Fig. 8. An example of adding noise to the synthetic hologram.
The noise image (c) is cropped from a background hologram
(a), and it is added to a synthetic hologram (b) to create the
final synthetic hologram (d).

The clustering performance was assessed using the overall231

accuracy and F1 score [33, 34] compared to the ground truth and232

the computational runtime. The workstation used for training233

the models had an Intel i9-9900K CPU @ 3.60 GHz × 16 with234

36 GB RAM and a GPU of NVIDIA GeForce RTX 2080 with 8235

GB RAM. The low-power CPU board used to run the proposed236

models had an Intel Atom processor E3940 @ 3.60 GHz × 4 with237

8 GB RAM, which could be directly integrated into a compact238

digital holographic microscope.239

Python was used to interpret all the algorithms discussed240

in this work. The angular spectrum algorithm [32] was used241

to reconstruct a hologram at a given distance, and the autofo-242

cusing method described in [35] was used to detect the focused243

reconstruction across the entire recording distance range. Un-244

less an output focused reconstruction looked obviously wrong,245

human was not involved to refine the result. In order to speed246

up the algorithms of angular spectrum and autofocusing, two247

Python-based modules were used: mpi4py-fft [36] for parallelly248

computing fast Fourier transforms in the algorithm, and multi-249

processing [37] for parallelising the execution of reconstruction250

across the recording distance range. The autoencoder was devel-251

oped, trained and tested using Tensorflow [38]. The SOM model252

was built, trained and tested using the open-source library of253

MiniSom [39].254

A. Feature extraction and object clustering on synthetic holo-255

grams256

The clustering performance of the proposed method was first257

evaluated using the synthetic holograms. The autoencoder and258

SOM were trained on the synthetic training data (raw and recon-259

structed holograms respectively). Afterwards, each pair of the260

trained encoder and SOM were used to cluster the correspond-261

ing raw and reconstructed datasets for testing.262

Fig. 9 shows the loss of the autoencoder on the training263

dataset (24,000 holograms) and validation dataset (8,000 holo-264

grams) in 100 epochs. The fact that the loss is similar for training265

and validation indicates that the model was able to generalise,266

and it was not over-fitting the synthetic data. The result also267

shows that convergence was achieved after ~40 epochs.268

Fig. 10 shows the TSNE [40] plots of the latent representa-269

tions extracted from the raw and reconstructed holograms for270

the testing data by the corresponding trained encoders. It shows271

that there are clearer separations between the points indicating272

different shapes in the reconstructed holograms, while some273

merging between different shapes occurs in the plot of the raw274

data. This could be reflected in the clustering scores of these275

shapes that would be lower in the raw holograms than the re-276

constructed holograms. Besides that, some points of shape circle277

appear in shape triangle in the raw data, and this would result278

in lower scores in these two shapes.279

The autoencoder and SOM were trained five times, and each280

pair of trained encoder and SOM were used to cluster the cor-281

responding raw and reconstructed datasets for testing. The282

clustering performance of the SOM was compared to two dif-283

ferent classification methods. It should be noted that while the284

SOM can cluster the dataset in a fully unsupervised manner,285

the classifiers used for comparison both required human expert286

labelled training data (in this case this is the known ground truth287

of the synthetic data) to determine the shape of the targets. The288

first was a support vector machine (SVM) [41] that was trained289

on the features extracted from the training data by the encoder.290

This was then used to classify the test data (training parameters291

are given in Section 2-C of the supplemental document). The292
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Fig. 9. Cost curves of the autoencoder in the processes of train-
ing and validation on the raw (a) and reconstructed (b) syn-
thetic holograms. Each cost value is the mean of the results
from five experiments.

Fig. 10. Distribution of 2D feature data (compressed from the
representations extracted by the encoder) in the raw (a) and
reconstructed (b) synthetic testing holograms using TSNE.

second method used AlexNet1 to directly classify the input im-293

ages based on the labelled training data. Table 3 shows their294

performance for the raw and reconstructed holograms in the295

testing data. The clustering accuracy of the proposed method296

reached 94.4% and 97.3% respectively. The corresponding F1297

score of each target was also lower for the raw holograms than298

the reconstructed holograms. The two supervised classifiers299

used achieved higher F1 accuracy scores than the proposed un-300

supervised clustering using the SOM. This is to be expected,301

since labelled training data is provided to the classifiers. The302

main advantage of the unsupervised approach is that it does not303

require any human labels for training, which is generally time-304

consuming to generate and is challenging for applications where305

the exact target classes in the dataset are not initially known.306

An interesting observation is that the SVM classifier achieved307

close to 100% accuracy using the same features as the SOM. This308

indicates that it is the SOM that limits clustering performance309

and not encoder.310

Table 4 shows the time taken for the different computations311

carried out in the experiment. The autoencoder and SOM were312

trained on the workstation, and testing the trained models was313

done on the low-power CPU board. The time for training the314

autoencoder and SOM was almost identical for the raw and315

reconstructed holograms. The biggest cost was in the recon-316

struction of the holograms, which took more than 13 times the317

combined training time. This highlights the advantage of using318

raw holograms, which does not require this step. Clustering319

the entire testing dataset consisting of 16,000 images using each320

pair of trained encoder and SOM took around 1,500 s, or ~0.09321

s to process one hologram on average. This processing speed322

is high enough to carry out real-time clustering on the lower-323

power CPU board for an image acquisition rate of less than324

10 Hz. However, reconstructing each hologram on the lower-325

power CPU board took ~14 s, which makes real-time clustering326

of reconstructed holograms impossible. It should be noted that327

hardware optimisation, such as the use of FPGAs or GPUs em-328

bedded single board computers as demonstrated by [7–9], can329

allow real-time reconstruction at faster rates. However, this330

comes at the cost of higher power consumption, which is not331

ideal for many low-power, long term monitoring applications.332

B. Feature extraction and object clustering on real holograms333

In this experiment, the autoencoder and SOM were first trained334

on the synthetic training holograms, and the pre-trained autoen-335

coder was trained on a small group of real holograms (Group336

1) using transfer learning (see Section 2-D in the supplemental337

document). The pre-trained SOM was also trained using the338

features of the holograms in Group 1 extracted by the re-trained339

autoencoder 2. Afterwards, the final trained encoder and SOM340

was used to extract and cluster the latent representations from341

the other group of real holograms for testing in Group 2.342

Latent representation extraction: The real holograms for testing343

were fed to the final trained autoencoder and SOM as mentioned344

above. For comparison, three other sets of experiments were345

carried out: C1. the autoencoder was trained on the ImageNet346

dataset3 (2012 [23]) and the real holographic training data (trans-347

fer learning); the SOM was trained on the real training data348

based on their features extracted by the trained encoder; C2.349

1The image input size is changed to 227 × 227 × 1 instead of 227 × 227 × 3. Its
output class number is changed to 4. The training parameters are the same with
those used to train the autoencoder.

2The parameters for re-training keep the same with those used in pre-training.
3The images were converted into grayscale.
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Table 3. Results of the three methods based on F1 score and accuracy when used to cluster/classify the synthetic testing holograms.

Shape
encoder+SOM encoder+SVM AlexNet

F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy

Raw

Holograms

circle 0.933

94.4%

0.980

98.9%

1.000

99.8%
triangle 0.930 0.980 1.000

rectangle 0.966 1.000 1.000

diamond 0.948 1.000 1.000

Reconstructed

Holograms

circle 0.975

97.4%

1.000

99.9%

1.000

100.0%
triangle 0.978 1.000 1.000

rectangle 0.980 1.000 1.000

diamond 0.962 1.000 1.000

Note: Each value is the mean of the results from five experiments.

Table 4. Performance of running time when the models used to extract features from raw and reconstructed holograms and cluster
them.

Time (s) a

reconstruction

for training b

autoencoder

training

SOM

training

reconstruction

for testing b

clustering

for testing

Raw

Holograms
- 3,229 3.8 - 1472

Reconstructed

Holograms
42,240 3,235 3.9 226,240 1477

a average value of five experiments.
b image size: 227 × 227; reconstruction distance range: 10 – 60 mm with step 0.1 mm; no
manual operation included.
Note: Training was carried out on the workstation and testing was done on the CPU board.
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the autoencoder and SOM were trained only on the synthetic350

training data; C3. the autoencoder and SOM were trained only351

on the real training data. The description on these four sets of352

experiments are given in Table 5.353

The latent representations of the real testing holograms ex-354

tracted by the encoders from these four experiments can be355

visualised using the TSNE, as shown in Fig. 11. Compared with356

the TSNE plots of the synthetic data shown in Fig. 10, their dis-357

tributions show significantly decreased separations between the358

points indicating the different shapes and a separation between359

the points indicating the same shape (rectangle). Normally, a bad360

distribution of representations in the TSNE tends to correspond361

with a low clustering result in the representations. The encoder362

trained only on real training data (Fig. 11-(d)) performed the363

worst both on the raw and reconstructed data, and points indi-364

cating different classes mixed together except for class rectangle.365

The results from the encoder trained only on synthetic training366

data (in experiment C2) became better, as shown in Fig. 11-367

(c). In experiment C1, the plots of the representations from the368

encoder trained on the ImageNet data and real holograms for369

training, shown in Fig. 11-(b), looked better than experiment C3,370

but worse than experiment C2. Regarding raw holograms, the371

encoder trained on the synthetic and real data in experiment P372

performed the best, as expected. Beyond expectation, however,373

the plot of the reconstructed holograms, was not as good as the374

corresponding plot in experiment C2, except for in class rectan-375

gle. One possible reason can be found through observing Fig.376

12, which shows two output images of each shape restored by377

the autoencoders trained on the synthetic and real holographic378

data, and only synthetic data respectively. The autoencoder379

trained only on the synthetic reconstructed data with denoising380

allows it to restore reconstructed holograms with clear shape381

outlines, but re-training the model on the real reconstructed382

holograms reduces this capability. While this did not happen to383

the raw holograms. Conversely, the restored images from the384

autoencoder trained on the synthetic and real raw holograms385

show more similar details with their original inputs than the386

corresponding images from the autoencoder only trained on387

the synthetic holograms, such as the restored images of the two388

circles (the patterns in the images in the second row look like389

interference fringes of circles, while the patterns in the third row390

look like fringes of triangles rather than circles).391

Clustering: Clustering of the real testing holograms in Group392

2 was carried out where the encoder and corresponding SOM393

from those four sets of experiments described in Table 5 were394

used respectively. The accuracy and F1 score of each class were395

summarised in Table 6. When the models were trained only on396

the real data (experiment C3), the raw holograms achieved the397

accuracy of 47.1% and the reconstructed holograms achieved398

58.4%. When the models were trained only on the synthetic399

data (experiment C2), the former accuracy became 64.1% and400

the latter became 70.2%. In the other two sets of experiments401

where transfer learning was used, the accuracy achieved in the402

raw holograms obviously increased to a value of ~76%, while403

the accuracy in the reconstructed holograms (~68%) did not404

change as much as in the raw holograms, especially compared405

with the value of 70.2% obtained in experiment C2. Regarding406

accuracy, the models trained on the synthetic and real data in407

experiment P had similar performance with the models trained408

on the ImageNet and real data in experiment C1. This was409

unexpected, as the TSNE plots of the latter were not as good410

as the former’s (see Fig. 11). It implies that the SOM used411

was flexibly compensating and resulted in a good clustering412

accuracy. Since there are only 24,000 images in the synthetic413

training data, while there are 1,281,167 images in the training414

dataset of ImageNet 2012, there is still a benefit to pre-train415

the autoencoder using the synthetic data, although the similar416

results were obtained in those two sets of experiments. Another417

unexpected result is that the accuracy in the raw holograms was418

higher than the reconstructed holograms after using transfer419

learning. This has been reflected in Fig. 12, which shows that420

transfer learning did not facilitate the encoder to extract better421

representations from reconstructed holograms.422

It should be noted however, that the performance across423

classes was not uniform based on F1 score in each set of ex-424

periments. The rectangles were always resolved the best, and425

the circles were resolved the worst both in the raw and recon-426

structed holograms. After using transfer learning, the circles and427

diamonds were better resolved in the raw holograms than the428

reconstructed holograms. The corresponding confusion matrices429

of the raw and reconstructed holograms from experiment P are430

shown in Fig. 13. In the raw holograms, it can be observed that431

there is obvious mis-identification between the classes of circle432

and triangle which causes low F1 scores in these two classes. One433

reason could be found in Fig. 11, where the restored patterns of434

the circles look similar with the triangles’, which could result435

in the lowest F1 score in the class of circle. In the reconstructed436

holograms, a bigger mis-identification ratio occurs between the437

classes of circle and diamond and this causes lower F1 scores in438

them.439

5. CONCLUSIONS440

Object clustering can be efficiently performed on raw holograms441

to achieve comparable performance to equivalent reconstructed442

holograms. This offers significant gains in computational effi-443

ciency, which is compelling for in-situ applications where real-444

time interpretation cannot keep up with the rate of data acquisi-445

tion. The key findings are:446

• Deep-learning autoencoders can be used to extract latent447

representations from both raw and reconstructed holograms in a448

fully unsupervised manner. When using an SOM as a clustering449

model, the accuracy of the raw and reconstructed holograms450

achieved 94.4% and 97.4% respectively for the synthetic dataset451

generated in this work. While the accuracy is nearly 100% both452

in the raw and reconstructed holograms when an SVM is used453

as a classifier to classify the same dataset. This reflects that the454

proposed autoencoder has the capability to extract good repre-455

sentations from raw holograms, and the clustering performance456

limited by the SOM that was used for unsupervised clustering.457

• A three-order gain in computational efficiency can be458

achieved by directly interpreting raw holograms compared to459

reconstructed holograms using the same processing hardware.460

It takes ~0.09 second on average to process a hologram on a low-461

power CPU board. This makes it possible to interpret holograms462

in real time when data are collected by a low-power sensor463

platform.464

• Synthetic data can be used to train autoencoder-based clus-465

tering of real holograms. Comparing with the results from the466

synthetic data, the accuracy reduces to 64.1% and 70.2% for the467

real raw and reconstructed holograms respectively, which is468

better than the results from the models trained only on the real469

training holograms. Gains in performance happen through the470

use of the established transfer learning technique. After training471

the models on the synthetic and real training data, the accuracy472

increases to 75.9% in the raw holograms, but the accuracy hardly473
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Table 5. Description of four sets of experiments.

Experiment data for training autoencoder data for training SOM testing data

proposed

method
P synthetica+real (Group 1 b) synthetic+real (Group 1) real (Group 2 b)

comparative

method

C1 ImageNet+real (Group 1) real (Group 1) real (Group 2)

C2 synthetic synthetic real (Group 2)

C3 real (Group 1) real (Group 1) real (Group 2)
a synthetic data for training.
b Group 1: real data for training; Group 2: real data for testing. See Table 1.

Fig. 11. Distribution of 2D feature data (compressed from the representations extracted by the encoder) in the raw (first row) and
reconstructed (second row) real testing holograms using TSNE. Two images with (a) show the results from the encoder trained in
experiment P; two images with (b) show the results from the encoder trained in experiment C1; two images with (c) show the re-
sults from the encoder trained in experiment C2; and two images with (d) show the results from the encoder trained in experiment
C3.

Table 6. Clustering results from experiment P and experiments C1–C3 respectively, based on F1 score and accuracy when used to
cluster the real testing holograms (Group 2).

Shape

Experiment P

(transfer learning)

Experiment C1

(transfer learning)
Experiment C2 Experiment C3

F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy

Raw

Holograms

circle 0.614

75.9%

0.601

76.2%

0.136

64.1%

0.274

47.1%
triangle 0.615 0.605 0.560 0.409

rectangle 0.917 0.926 0.891 0.646

diamond 0.729 0.737 0.549 0.351

Reconstructed

Holograms

circle 0.382

68.1%

0.414

67.7%

0.271

70.2%

0.216

58.4%
triangle 0.702 0.526 0.767 0.538

rectangle 0.947 0.912 0.950 0.868

diamond 0.429 0.596 0.568 0.342

Note: Each value is the mean of the results from five experiments.
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Fig. 12. Two output images in each shape from the autoencoders trained only on the synthetic data, and synthetic and real data
respectively. The first three rows show the results of raw holograms, the bottom three rows show the results of reconstructed holo-
grams.
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Fig. 13. Confusion matrices of the clustering results in the raw
(a) and reconstructed (b) holograms in the real testing data
using the models trained on both the synthetic training data
and real training data (transfer learning).

changes in the reconstructed holograms.474

• The SOM used is flexibly compensating and it can result in475

a good clustering accuracy, though representations are not well476

extracted.477
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