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A Role for Symmetry in the Bayesian Solution
of Differential Equations

Junyang Wang∗, Jon Cockayne†, and Chris. J. Oates∗,‡

Abstract. The interpretation of numerical methods, such as finite difference
methods for differential equations, as point estimators suggests that formal un-
certainty quantification can also be performed in this context. Competing statis-
tical paradigms can be considered and Bayesian probabilistic numerical methods
(PNMs) are obtained when Bayesian statistical principles are deployed. Bayesian
PNM have the appealing property of being closed under composition, such that
uncertainty due to different sources of discretisation in a numerical method can
be jointly modelled and rigorously propagated. Despite recent attention, no ex-
act Bayesian PNM for the numerical solution of ordinary differential equations
(ODEs) has been proposed. This raises the fundamental question of whether ex-
act Bayesian methods for (in general nonlinear) ODEs even exist. The purpose
of this paper is to provide a positive answer for a limited class of ODE. To this
end, we work at a foundational level, where a novel Bayesian PNM is proposed as
a proof-of-concept. Our proposal is a synthesis of classical Lie group methods, to
exploit underlying symmetries in the gradient field, and non-parametric regression
in a transformed solution space for the ODE. The procedure is presented in detail
for first and second order ODEs and relies on a certain strong technical condi-
tion – existence of a solvable Lie algebra – being satisfied. Numerical illustrations
are provided.

Keywords: probabilistic numerics, ordinary differential equations, Lie groups.

1 Introduction

Numerical methods underpin almost all of scientific, engineering and industrial output.
In the abstract, a numerical task can be formulated as the approximation of a quantity
of interest

Q : Y → Q,

subject to a finite computational budget. The true underlying state y† ∈ Y is typically
high- or infinite-dimensional, so that only limited information

A : Y → A (1)

is provided and exact computation of Q(y†) is prohibited. For example, numerical in-
tegration aims to approximate an integral Q(y†) =

∫
y†(t)dt given the values A(y†) =

{(xi, y
†(xi))}ni=1 of the integrand y† on a finite number of abscissa {xi}ni=1. Simi-
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larly, a numerical approximation to the solution Q(y†) = y† of a differential equation
dy/dx = f(x, y(x)), y(x0) = y0, must be based on at most a finite number of evalu-
ations of f , the gradient field. In this viewpoint a numerical method corresponds to a
map b : A → Q, as depicted in Figure 1a, where b(a) represents an approximation to
the solution of the differential equation based on the information a ∈ A.

The increasing ambition and complexity of contemporary applications is such that
the computational budget can be extremely small compared to the precision that is
required at the level of the quantity of interest. As such, in many important problems
it is not possible to reduce the numerical error to a negligible level. Fields acutely
associated with this challenge include climate forecasting (Wedi, 2014), computational
cardiology (Chabiniok et al., 2016) and molecular dynamics (Perilla et al., 2015). In the
presence of non-negligible numerical error, it is unclear how scientific interpretation of
the output of computation can proceed. For example, a posteriori analysis of traditional
numerical methods can be used to establish hard upper bounds on the numerical error,
but these bounds typically depend on an unknown global constant. In the case of ODEs,
this may be the maximum value of a norm ‖f‖ of the gradient field (see e.g. Estep, 1995).
If ‖f‖ were known, it would be possible to provide a hard bound on numerical error.
However, in the typical numerical context all that is known is that ‖f‖ is finite. One
could attempt to approximate ‖f‖ with cubature, but that itself requires a numerical
cubature method whose error is required to obey a known bound. In general, therefore,
there are no hard error bounds without global information being a priori provided
(Larkin, 1974). Our aim in this paper is to consider, as an alternative to traditional
numerical analysis, an exact Bayesian framework for solution uncertainty quantification
in the ordinary differential equation context.

1.1 Probabilistic Numerical Methods

The field of probabilistic numerics dates back to Larkin (1972) and a modern perspec-
tive is provided in Hennig et al. (2015); Oates and Sullivan (2019). Under the abstract
framework just described, numerical methods can be interpreted as point estimators in
a statistical context, where the state y† can be thought of as a latent variable in a sta-
tistical model, and the ‘data’ consist of information A(y†) that does not fully determine
the quantity of interest Q(y†) but is indirectly related to it. Hennig et al. (2015) provide
an accessible introduction and survey of the field. In particular, they illustrated how
PNM can be used to quantify uncertainty due to discretisation in important scientific
problems, such as astronomical imaging.

Let the notation ΣY denote a σ-algebra on the space Y and let PY denote the
set of probability measures on (Y ,ΣY). A probabilistic numerical method (PNM) is a
procedure which takes as input a ‘belief’ distribution μ ∈ PY , representing epistemic
uncertainty with respect to the true (but unknown) value y†, along with a finite amount
of information, A(y†) ∈ A. The output is a distribution B(μ,A(y†)) ∈ PQ on (Q,ΣQ),
representing epistemic uncertainty with respect to the quantity of interest Q(y†) after
the information A(y†) have been processed. For example, a PNM for an ordinary differ-
ential equation (ODE) takes an initial belief distribution defined on the solution space
of the differential equation, together with information arising from a finite number of
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Figure 1: Diagrams for a numerical method. (a) The traditional viewpoint of a numerical
method is equivalent to a map b from a finite-dimensional information space A to the
space of the quantity of interest Q. (b) The probabilistic viewpoint treats approximation
of Q(y†) in a statistical context, described by a map B(μ, ·) from A to the space of
probability distributions on Q. The probabilistic numerical method (A,B) is Bayesian
if and only if (b) is a commutative diagram.

evaluations of the gradient field, plus the initial condition of the ODE, to produce a
distribution over either the solution space of the ODE, or perhaps some derived quantity
of interest. In this paper, the measurability of A and Q will be assumed.

Despite computational advances in this emergent field, until recently there had not
been an attempt to establish rigorous statistical foundations for PNM. In Cockayne et al.
(2019) the authors argued that Bayesian principles can be adopted. In brief, this frame-
work requires that the input belief distribution μ carries the semantics of a Bayesian
agent’s prior belief and the output of a PNM agrees with the inferences drawn when
the agent is rational. To be more precise recall that, in this paper, information is pro-
vided in a deterministic1 manner through (1) and thus Bayesian inference corresponds
to conditioning of μ on the level sets of A. Let Q# : PY → PQ denote the push-forward
map associated to Q. i.e. Q#(μ)(S) = μ(Q−1(S)) for all S ∈ ΣQ. Let {μa}a∈A ⊂ PY
denote the disintegration, assumed to exist,2 of μ ∈ PY along the map A.

Definition 1. A probabilistic numerical method (A,B) with A : Y → A and B :
PY ×A → PQ for a quantity of interest Q : Y → Q is Bayesian if and only if B(μ, a) =
Q#(μ

a) for all μ ∈ PY and all a ∈ A.

This definition is intuitive; the output of the PNM should coincide with the marginal
distribution for Q(y†) according to the disintegration element μa ∈ PY , based on the
information a ∈ A that was provided. The definition is equivalent to the statement
that Figure 1b is a commutative diagram. In Cockayne et al. (2019) the map A was
termed an information operator and the map B was termed a belief update operator ; we
adhere to these definitions in our work. The Bayesian approach to PNM confers several
important benefits:

1It is of course possible to perform Bayesian inference in the noisy-data context, but for the ODEs
considered in this paper we assume that one can obtain noiseless evaluations of the gradient field.

2The reader unfamiliar with the concept of a disintegration can treat μa as a technical notion of
the ‘conditional distribution of y given A(y) = a’ when reading this work. The disintegration theorem,
Thm. 1 of Chang and Pollard (1997), guarantees existence and uniqueness up to a A#μ-null set under
the weak requirement that Y is a metric space, ΣY is the Borel σ-algebra, μ is Radon, ΣA is countable
generated and ΣA contains all singletons {a} for a ∈ A.
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• The input μ and output B(μ, a) belief distributions can be interpreted, respec-
tively, as a prior and (marginal) posterior.3 As such, they automatically inherit
the stronger formal semantics and philosophical foundations that underpin the
Bayesian framework and, in this sense, are well-understood (see e.g. Gelman and
Shalizi, 2013).

• The definition of Bayesian PNM is operational. Thus, if we are presented with a
prior μ and information a then there is a unique Bayesian PNM and it is con-
structively defined.

• The class of Bayesian PNM is closed under composition, such that uncertainty
due to different sources of discretisation can be jointly modelled and rigorously
propagated. This point will not be discussed further in this work, but we refer the
interested reader to Section 5 of Cockayne et al. (2019).

Nevertheless, the strict definition of Bayesian PNM limits scope to design convenient
computational algorithms and indeed several proposed PNM are not Bayesian (see Table
1 in Cockayne et al., 2019). The challenge is two-fold; for a Bayesian PNM, the elicitation
of an appropriate prior distribution μ and the exact computation of its disintegration
{μa}a∈A must both be addressed. In the next section we argue that – perhaps as a
consequence of these constraints – a strictly Bayesian PNM for the numerical solution
of an ODE does not yet exist.

1.2 Existing Work for ODEs

The first PNM (of any flavour) for the numerical solution of ODEs, or which we are
aware, was due to Skilling (1992). Two decades later, this problem is receiving renewed
critical attention as part of the active development of PNM. The aim of this section is
to provide a high-level overview of existing work and to argue that existing methods do
not adhere to the definition of Bayesian PNM.

Notation The notational convention used in this paper is that the non-italicised y
denotes a generic function, whereas the italicised y denotes a scalar value taken by the
function y. The notation y† is reserved for the true solution to an ODE. Throughout,
the underlying state space Y is taken to be a space occupied by the true solution of the
ODE, i.e. y† ∈ Y .

Skilling (1992)

The first paper on this topic, of which we are aware, was Skilling (1992). This will serve
as a prototypical PNM for the numerical solution of an ODE. Originally described as

3Indeed, if the set Ya = {y ∈ Y : A(y) = a} is not measure zero under μ, then μa is the conditional
distribution defined by restricting μ to the subset Ya; μa(y) = 1[y ∈ Ya]μ(y)/μ(Ya). The theory of
disintegrations generalises the conditional distribution μa to cases where Ya is a null set.
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‘Bayesian’ by the author, we will argue that, at least in the strict sense of Definition 1,
it is not a Bayesian PNM. Consider a generic univariate first-order initial value problem

dy

dx
= f(x, y(x)), x ∈ [x0, xT ], y(x0) = y0. (2)

Throughout this paper all ODEs that we consider will be assumed to be well-defined
and admit a unique solution y† ∈ Y where Y is some pre-specified set. In this paper the
quantity of interest Q(y†) will either be the solution curve y† itself or the value y†(xT )
of the solution at a specific input (in this section it will be the former). The approach
outlined in Skilling (1992) allows for a general prior μ ∈ PY . The gradient field f is
treated as a ‘black box’ oracle that can be queried at a fixed computational cost. Thus
we are provided with evaluations of the gradient field [f(x0, y0), . . . , f(xn, yn)]

� ∈ R
n+1

for certain input pairs {(xi, yi)}ni=0.

This approach of treating evaluations of the gradient field as ‘data’ will be seen to be
a common theme in existing PNM for ODEs and theoretical support for this framework
is rooted in the field of information-based complexity (Traub and Woźniakowski, 1992).
Let ai = f(xi, yi) and ai = [a0, . . . , ai]. The selection of the input pairs (xi, yi) on which
f is evaluated is not constrained and several possibilities, of increasing complexity, were
discussed in Skilling (1992). To fix ideas, the simplest such approach is to proceed
iteratively as follows:

(0.1) The first pair (x0, y0) is fully determined by the initial condition of the ODE.

(0.2) The oracle then provides one piece of information, a0 = f(x0, y0).

(0.3) The prior μ is updated according to a0, leading to a belief distribution μ0 which

is just the disintegration element μa0

.

(1) A discrete time step x1 = x0 + h, where h = xT−x0

n > 0, is performed and a
particular point estimate y1 =

∫
y(x1)dμ0(y) for the unknown true value y†(x1)

is obtained. This specifies the second pair (x1, y1).

The process continues similarly, such that at time step i−1 we have a belief distribution
μi−1 = B(μ, ai−1) ∈ PY , where the general belief update operator B is yet to be defined,
and the following step is performed:

(i) Let xi = xi−1 + h and set yi =
∫
y(xi)dμi−1(y).

The final output is a probability distribution μn = B(μ, an) ∈ PY . Now, strictly speak-
ing, the method just described is not a PNM in the concrete sense that we have defined.
Indeed, the final output μn is a deterministic function of the values an of the gradient
field that were obtained. However, in the absence of additional assumptions on the global
smoothness of the gradient field, the values of f(x, y) outside any open neighbourhood
of the true solution curve C = {(x, y) : y = y†(x), x ∈ [x0, xT ]} do not determine the
solution of the ODE and, conversely, the solution of the ODE provides no information
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about the values of the gradient field outside any open neighbourhood of the true solu-
tion curve C. Thus it is not possible, in general, to write down an information operator
A : Y → A that reproduces the information an when applied to the solution curve y†(·)
of the ODE.

The approach taken in Skilling (1992) was therefore to posit an approximate infor-
mation operator Â and a particular belief update operator B, which are now described.
The approximate information operator is motivated by the intuition that if y†(xi) is

well-approximated by yi at the abscissa xi then
dy†

dx (xi) should be well-approximated by

f(xi, yi). That is, the following approximate information operator Â was constructed:

Â(y) =

[
dy

dx
(x0), . . . ,

dy

dx
(xn)

]�
. (3)

Of course, Â(y†) �= an in general. To acknowledge the approximation error, Skilling
(1992) proposed to model the information with an approximate likelihood:

dμn

dμ0
(y) =

n∏
i=1

dμi

dμi−1
(y) (4)

dμi

dμi−1
(y) ∝ exp

(
− 1

2σ2

(
dy

dx
(xi)− f(xi, yi)

)2
)
. (5)

This was referred to in Skilling (1992) as simply a “likelihood” and, together with

μ0 = μa0

, the output μn is completely specified. Here σ is a fixed positive constant,
however in principle a non-diagonal covariance matrix can also be considered. The
negative consequences of basing inferences on an approximate information operator
Â are potentially twofold. First, recall that values of the gradient field that are not
contained on the true solution curve of the ODE do not, in principle, determine the true
solution curve y†. It is therefore unclear if these values should be taken into account at
all. Second, in the special case where the gradient field f does not depend the second
argument then the quantities dy

dx (xi) and f(xi, yi) are identical. From this perspective,
μn represents inference under a mis-specified likelihood, since information is treated as
erroneous when it is in fact exact. The use of a mis-specified likelihood violates the
likelihood principle and implies violation of the Bayesian framework. This confirms,
through a different argument, that the approach of Skilling (1992) cannot be Bayesian
in the strict sense of Definition 1.

Schober et al. (2014, 2019); Teymur et al. (2016, 2018)

After Skilling (1992), several authors have proposed improvements to the above method.
The approach of Schober et al. (2014) considered (5) in the σ ↓ 0 limit. In order that
exact conditioning can be performed in this limit, the input belief distribution μ was
restricted to be a k-times integrated Wiener measure on the solution space of the ODE.
The tractability of the integrated Weiner measure leads to a closed-form characterisation
of the posterior and enables computation to be cast as a Kalman filter.
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This direction of research can be motivated by the following fact: For k ∈ {1, 2}
the authors prove that if the input pair (x1, y1) is taken as y1 =

∫
y(x1)dμ0(y), as

indicated in Section 1.2, then the smoothing estimate ŷ1 =
∫
y(x1)dμ1(y), i.e. the

posterior mean for y(x1) based on information a1, coincides with the deterministic
approximation to y†(x1) that would be provided by a k-th order Runge-Kutta method.
As such, theoretical guarantees such as local convergence order are inherited. For k = 3
it was shown that the same conclusion can be made to hold, provided that the input pair
(x1, y1) is selected in a manner that is no longer obviously related to μ0. In all cases the
identification with a classical Runge-Kutta method does not extend beyond iteration
n = 1. Similar connections to multistep methods of Nordsieck and Adams form were
identified, respectively, in Schober et al. (2019) and Teymur et al. (2016, 2018). The
approach of Schober et al. (2014) is not Bayesian in the sense of Definition 1, which can
again be deduced from dependence on values of the gradient field away from the true
solution curve, so that the likelihood principle is violated.

Kersting and Hennig (2016)

The subsequent work of Kersting and Hennig (2016) attempted to elicit an appropriate
non-zero covariance matrix for use in (5), in order to encourage uncertainty estimates
to be better calibrated. Their proposal consisted of the approximate likelihood

dμi

dμi−1
(y) ∝ exp

⎛
⎝−1

2

(
dy
dx (xi)−mi

σi

)2
⎞
⎠ (6)

mi =

∫
f(xi, y(xi))dμi−1(y) (7)

σ2
i =

∫
(f(xi, y(xi))−mi)

2
dμi−1(y). (8)

This can be viewed as the predictive marginal likelihood for the value f(xi, y(xi)) based
on μi−1. From a practical perspective, the approach is somewhat circular as the in-
tegrals in (7) and (8) involve the black-box gradient field f and are therefore cannot
be computed. The authors suggested a number of ways that these quantities could be
numerically approximated,4 which involve evaluating f(xi, yi) at one or more values yi
that must be specified. The overall approach again violates the likelihood principle and
is therefore not Bayesian in the sense of Definition 1.

Chkrebtii et al. (2016)

The original work of Chkrebtii et al. (2016) is somewhat related to Kersting and Hennig
(2016), however instead of using the mean of the current posterior as input to the
gradient field, the input pair (xi, yi) was selected by sampling yi from the marginal

4One such method is Bayesian quadrature, another PNM wherein the integrand f is modelled as
uncertain until it is evaluated. This raises separate philosophical challenges, as one must then ensure
that the statistical models used for y(·) and f(xi, ·) are logically consistent. In Kersting and Hennig
(2016) these functions were simply modelled as independent.
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distribution for y(xi) implied by μi−1. The approximate likelihood in this approach was
taken as follows:

dμi

dμi−1
(y) ∝ exp

⎛
⎝−1

2

(
dy
dx (xi)− f(xi, yi)

σi

)2
⎞
⎠

mi =

∫
dy

dx
(xi)dμi−1(y)

σ2
i =

∫ (
dy

dx
(xi)−mi

)2

dμi−1(y).

Compared to (6), (7) and (8), this approach does not rely on integrals over the un-
known gradient field. However, the approach also relies on the approximate information
operator in (3) and is thus not Bayesian according to Definition 1.

Conrad et al. (2017); Abdulle and Garegnani (2018)

The approaches proposed in Conrad et al. (2017); Abdulle and Garegnani (2018) are
not motivated in the Bayesian framework, but instead seek to introduce a stochastic
perturbation into a classical numerical method. Both methods focus on the quantity
of interest Q(y†) = y†(xT ). In the simple context of (2), the method of Conrad et al.
(2017) augments the explicit Euler method with a stochastic perturbation:

yi = yi−1 + hf(xi−1, yi−1) + h2εi, xi = xi−1 + h, i = 1, . . . , n.

The distribution of the sequence (εi)
n
i=1 must be specified. In the simplest case where

the εi are modelled as independent, say with εi ∼ ρ, the canonical flow map Φi : R →
R of the explicit Euler method, defined as Φi(z) = z + hf(xi, z), is replaced by the
probabilistic counterpart Ψi : PR → PR given by

Ψi(ν)(dz) =

∫
ρ

(
dz − Φi(z̃)

h2

)
ν(dz̃)

through which stochasticity can be propagated. The output of the method of Conrad
et al. (2017) is then B = Ψn ◦ · · · ◦Ψ1δ(y0), where δ(z) denotes an atomic distribution
on z ∈ R. For the case where each ρi has zero mean, it can be shown that the mean of
B equals Φn ◦ · · · ◦ Φ1(y0), which is exactly the deterministic approximation produced
with the explicit Euler method.

This framework can be practically problematic, since εi is charged with modelling
the extrapolation error and such errors are not easily modelled as independent random
variables – Section 2.8 of Higham (2002) is devoted to this point. Thus, if for example
f(x, y) = y, the true linearisation error at step i is exi −exi−1 so that the ‘true’ sequence
(εi)

n
i=1 in this case is monotonic and exponentially unbounded. The challenge of design-

ing a stochastic model for the sequence (εi)
n
i=1 that reflects the highly structured nature

of the error remains unresolved. On the other hand, the mathematical properties of this
method are now well-understood (Lie et al., 2018, 2019). The proposal of Abdulle and
Garegnani (2018) was to instead consider randomisation of the inputs {xi}Ti=0 in the
context of a classical numerical method, also outside of the Bayesian framework.
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Cockayne et al. (2019); Tronarp et al. (2019)

The survey just presented begs the question of whether a Bayesian PNM for ODEs can
exist at all. A first step toward this goal was taken in Cockayne et al. (2019), where
it was argued that an information operator can be constructed if the vector field f is
brought to the left-hand-side in (2). Specifically, they proposed the information operator

Ã(y) =

[
dy

dx
(x0)− f(x0, y(x0)), . . . ,

dy

dx
(xn)− f(xn, y(xn))

]�
for which the ‘data’ are trivial; ãn = 0. It was rigorously established that the approxi-
mate likelihood

dμi,σ

dμi−1,σ
(y) = exp

(
− 1

2σ2

(
dy

dx
(xi)− f(xi, y(xi))

)2
)

leads to an exact Bayesian PNM in the limit: μn,σ
F→ μãn

as σ ↓ 0 for Ã#μ-almost

all ãn ∈ R
n+1. Here

F→ denotes convergence in an integral probability metric defined
by a suitable set F of test functions (see Section 4 of Cockayne et al., 2019). However,
the dependence of the information operator Ã on f means that this cannot be used
as the basis for a practical method. Indeed, unless f depends linearly on its second
argument and conjugacy properties of the prior can be exploited, the posterior cannot
easily be characterised. Approximate techniques from nonlinear filtering were proposed
to address this challenge in Tronarp et al. (2019).

1.3 Our Contribution

The comprehensive literature review in the previous section reveals not only that no
Bayesian PNM has yet been proposed, but also that such an endeavour may be fun-
damentally difficult. Indeed, a theme that has emerged with existing PNM for ODEs,
which can be traced back to Skilling (1992), is the use of approximate and subjective
forms for the likelihood. The complex, implicit relationship between the latent ODE so-
lution y† and the data f(xi, yi) arising from the gradient field appears to preclude use of
an exact likelihood. Of course, violation of the likelihood principle is not traditionally a
concern in the design of a numerical method, yet if the strictly richer output that comes
with a Bayesian PNM is desired, then clearly adherence to the likelihood principle is
important. It is therefore natural to ask the question, “under what conditions can exact
Bayesian inference for ODEs be made?”.

This paper presents a proof-of-concept PNM for the numerical solution of a (limited)
class of ODEs that is both (a) Bayesian in the sense of Definition 1 and (b) can in
principle be implemented. The method being proposed is indicated in Figure 2 and its
main properties are as follows:

• The classical theory of Lie groups is exploited, for the first time in the context of
PNM, to understand when an ODE of the form in (2) can be transformed into
an ODE whose gradient field is a function of the independent state variable only,
reducing the ODE to an integral.
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Figure 2: Schematic of our proposed approach. An nth order ODE that admits a solvable
Lie algebra can be transformed into n integrals, to which exact Bayesian probabilistic nu-
merical methods can be applied. The posterior measure on the transformed space is then
pushed back through the inverse transformation onto the original domain of interest.

• For ODEs that admit a solvable Lie algebra, our proposal can be shown to si-
multaneously perform exact Bayesian inference on both the original and the Lie-
transformed ODE. Crucially, as we explain later, to identify a Lie algebra only
high-level a priori information about the ODE is required. The case of first- and
second-order ODEs is presented in detail, but the method itself is general.

• In general the specification of prior belief can be difficult. The prior distributions
that we construct are guaranteed to respect aspects of the structure of the ODE.
As such, our priors are, to some extent, automatically adapted to the ODE at
hand as opposed to being arbitrarily posited.

• In addition to the benefits conferred in the Bayesian framework, detailed in Section
1.1 and in Cockayne et al. (2019), the method being proposed can be computa-
tionally realised. On the other hand, there is a cost in terms of the run-time of
the method that is substantially larger than existing, non-Bayesian approaches
(especially classical numerical methods). As such, we consider this work to be a
proof-of-concept rather than an applicable Bayesian PNM.

The remainder of the paper is structured as follows: Section 2 is dedicated to a
succinct review of Lie group methods for ODEs. In Section 3, Lie group methods are
exploited to construct priors over the solution space of the ODE whenever a solvable
Lie algebra is admitted and exact Bayesian inference is performed on a transformed
version of the original ODE which takes the form of an integral. Numerical experiments
are reported in Section 4. Finally, some conclusions and recommendations for future
research are drawn in Section 5.

2 Background

This section provides a succinct overview of classical Lie group methods, introduced in
the 19th century by Sophus Lie in the differential equation context (Hawkins, 2012). Lie
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developed the fundamental notion of a Lie group of transformations, which roughly cor-
respond to maps that take one solution of the ODE to another. This provided a formal
generalisation of certain algebraic techniques, such as dimensional analysis and transfor-
mations based on spatial symmetries, that can sometimes be employed to algebraically
reduce the order of an ODE.

This section proceeds as follows: First, in Section 2.1 we introduce a one-parameter
Lie group of transformations and then, in Section 2.2, we explain what it means for a
curve or a surface to be transformation-invariant. In Section 2.3 we recall consequences
of Lie’s theory in the ODE context. Last, in Section 2.4 the generalisation to multi-
parameter Lie groups is indicated. Our development is heavily influenced by Bluman
and Anco (2002) and we refer the reader to their book when required.

2.1 One-Parameter Lie Groups of Transformations

The purpose of this section is to recall essential definitions, together with the first funda-
mental theorem of Lie, which relates a Lie group of transformations to its infinitesimal
generator. In what follows we consider a fixed domain D ⊂ R

d and denote a generic
state variable as x = (x1, . . . , xd) ∈ D.

Definition 2 (One-Parameter Group of Transformations). A one-parameter group of
transformations on D is a map X : D× S → D, defined on D× S for some set S ⊂ R,
together with a bivariate map φ : S × S → S, such that the following hold:

(1) For each ε ∈ S, the transformation X(·, ε) is a bijection on D.

(2) (S, φ) forms a group with law of composition φ.

(3) If ε0 is the identity element in (S, φ), then X(·, ε0) is the identity map on D.

(4) For all x ∈ D, ε, δ ∈ S, if x∗ = X(x, ε), x∗∗ = X(x∗, δ), then x∗∗ = X(x∗, φ(ε, δ)).

In what follows we continue to use the shorthand notation x∗ = X(x, ε). The notion
of a Lie group additionally includes smoothness assumptions on the maps that constitute
a group of transformations. Recall that a real-valued function is analytic if it can be
locally expressed as a convergent power series.

Definition 3 (One-Parameter Lie Group of Transformations). Let X, together with φ,
form a one-parameter group of transformations on D. Then we say that X, together
with φ, form a one-parameter Lie group of transformations on D if, in addition, the
following hold:

(5) S is a (possibly unbounded) interval in R.

(6) For each ε ∈ S, X(·, ε) is infinitely differentiable in D.

(7) For each x ∈ D, X(x, ·) is an analytic function on S.

(8) φ is analytic in S × S.
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Without the loss of generality it will be assumed, through re-parametrisation if
required, that S contains the origin and ε = 0 is the identity element in (S, φ). The
definition is illustrated through three examples:

Example 1 (Translation in the x-Axis). The one-parameter transformation x∗
1 = x1 +

ε, x∗
2 = x2 for ε ∈ R forms a Lie group of transformations on D = R

2 with group
composition law φ(ε, δ) = ε+ δ.

Example 2 (Rotation Group). The one-parameter transformation x∗
1 = x1 cos(ε) −

x2 sin(ε), x
∗
2 = x1 sin(ε)+x2 cos(ε) for ε ∈ R again forms a Lie group of transformations

on D = R
2 with group composition law φ(ε, δ) = ε+ δ.

Example 3 (Cyclic group Cp). Let D = {1, 2, 3, . . . , p}. Let S = Z. For n ∈ D and
m ∈ S, let X(n,m) = n+m (mod p). Then X, together with φ(a, b) = a+ b, defines a
one parameter group of transformations on D, but is not a Lie group of transformations
since (5) is violated.

The first fundamental theorem of Lie establishes that a Lie group of transformations
can be characterised by its infinitesimal generator, defined next:

Definition 4 (Infinitesimal Transformation). Let X be a one-parameter Lie group of
transformations. Then the transformation x∗ = x+ εξ(x),

ξ(x) =
∂X(x, ε)

∂ε

∣∣∣∣
ε=0

,

is called the infinitesimal transformation associated to X and the map ξ is called an
infinitesimal.

Definition 5 (Infinitesimal Generator). The infinitesimal generator of a one-parameter
Lie group of transformations X is defined to be the operator X = ξ · ∇ where ξ is the
infinitesimal associated to X and ∇ = ( ∂

∂x1
, ∂
∂x2

, . . . , ∂
∂xn

) is the gradient.

Example 4 (Ex. 1, continued). For Ex. 1, we have

ξ(x) =

(
dx∗

1

dε

∣∣∣∣
ε=0

,
dx∗

2

dε

∣∣∣∣
ε=0

)
= (1, 0)

so the infinitesimal generator for translation in the x-axis is X = ∂
∂x1

.

Example 5 (Ex. 2, continued). Similarly, the infinitesimal generator for the rotation
group is X = −x2

∂
∂x1

+ x1
∂

∂x2
.

The first fundamental theorem of Lie provides a constructive route to obtain the
infinitesimal generator from the transformation itself:

Theorem 1 (First Fundamental Theorem of Lie; see pages 39–40 of Bluman and Anco
(2002)). A one parameter Lie group of transformations X is characterised by the initial
value problem:

dx∗

dτ
= ξ(x∗), x∗ = x when τ = 0, (9)
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where τ(ε) is a parametrisation of ε which satisfies τ(0) = 0 and, for ε �= 0,

τ(ε) =

∫ ε

0

∂φ(a, b)

∂b

∣∣∣
(a,b)=(δ−1,δ)

dδ.

Here δ−1 denotes the group inverse element for δ.

Since (9) is translation-invariant in τ , it follows that without loss of generality we can
assume a parametrisation τ(ε) such that the group action becomes φ(τ1, τ2) = τ1 + τ2
and, in particular, τ−1 = −τ . In the remainder of the paper, for convenience we assume
that all Lie groups are parametrised such that the group action is φ(ε1, ε2) = ε1 + ε2.

The next result can be viewed as a converse to Theorem 1, as it shows how to
obtain the transformation from the infinitesimal generator. All proofs are reserved for
Supplemental Section A.1 (Wang et al., 2019).

Theorem 2. A one parameter Lie group of transformations with infinitesimal generator
X is equivalent to x∗ = eεXx, where eεX =

∑∞
k=0

1
k! ε

kXkx.

The following is immediate from the proof of Theorem 2:

Corollary 1. If F is infinitely differentiable, then F (x∗) = eεXF (x).

2.2 Invariance Under Transformation

In this section we explain what it means for a curve or a surface to be invariant under a
Lie group of transformations and how this notion relates to the infinitesimal generator.

Definition 6 (Invariant Function). A function F : D → R is said to be invariant
under a one parameter Lie group of transformations x∗ = X(x, ε) if F (x∗) = F (x) for
all x ∈ D and ε ∈ S.

Based on the results in Section 2.1, one might expect that invariance to a transfor-
mation can be expressed in terms of the infinitesimal generator of the transformation.
This is indeed the case:

Theorem 3. A differentiable function F : D �→ R is invariant under a one parameter
Lie group of transformations with infinitesimal generator X if and only if XF (x) = 0
for all x ∈ D.

Theorem 4. For a function F : D �→ R and a one parameter Lie group of transforma-
tions x∗ = X(x, ε), the relation F (x∗) = F (x) + ε holds for all x ∈ D and ε ∈ S if and
only if XF (x) = 1 for all x ∈ D.

The following definition is fundamental to the method proposed in Section 3:

Definition 7 (Canonical Coordinates). Consider a coordinate system r = (r1(x), . . . ,
rn(x)) on D. Then any one parameter Lie group of transformations x∗ = X(x, ε) induces
a transformation of the coordinates r∗i = ri(x

∗). The coordinate system r is called
canonical for the transformation if r∗1 = r1, . . . , r

∗
n−1 = rn−1 and r∗n = rn + ε.
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Example 6 (Ex. 2, continued). For the rotation group in Ex. 2, we have canonical
coordinates r1(x1, x2) =

√
x2
1 + x2

2, r2(x1, x2) = arctan(x2/x1).

In canonical coordinates, a one parameter Lie group of transformations can be viewed
as a straight-forward translation in the rn-axis. The existence of canonical coordinates
is established in Thm. 2.3.5-2 of Bluman and Anco (2002). Note that Thms. 3 and 4
imply that Xr∗i = 0 for i = 1, 2, . . . , n− 1, Xr∗n = 1.

Definition 8 (Invariant Surface). For a function F : D → R, a surface defined by
F (x) = 0 is said to be invariant under a one parameter Lie group of transformation
x∗ = X(x, ε) if and only if F (x∗) = 0 whenever F (x) = 0 for all x ∈ D and ε ∈ S.

The invariance of a surface, as for a function, can be cast in terms of an infinitesimal
generator:

Corollary 2. A surface F (x) = 0 is invariant under a one parameter Lie group of
transformations with infinitesimal generator X if and only if XF (x) = 0 whenever
F (x) = 0.

2.3 Symmetry Methods for ODEs

The aim of this section is to relate Lie transformations to ODEs for which these trans-
formations are admitted. These techniques form the basis for our proposed method in
Section 3.

For an ODE of the form in (2), one can consider the action of a transformation
on the coordinates (x, y); i.e. a special case of the above framework where the generic
coordinates x1 and x2 are respectively the independent (x) and dependent (y) variables
of the ODE. It is clear that such a transformation also implies some kind of trans-
formation of the derivatives ym := dmy

dxm . Indeed, consider a one-parameter Lie group of
transformations (x∗, y∗) = (X(x, y; ε), Y (x, y; ε)). Then we have from the chain rule that

y∗m := dmy∗

d(x∗)m is a function of x, y, y1, . . . , ym and we denote y∗m = Ym(x, y, y1, . . . , ym; ε).

As an explicit example:

y∗1 =
dy∗

dx∗ =

∂Y (x,y;ε)
∂x + y1

∂Y (x,y;ε)
∂y

∂X(x,y;ε)
∂x + y1

∂X(x,y;ε)
∂y

=: Y1(x, y, y1; ε).

In general:

y∗m =

∂y∗
m−1

∂x + y1
∂y∗

m−1

∂y + y2
∂y∗m−1

∂y1
+ . . .+ ym

∂y∗
m−1

∂ym−1

∂X(x,y;ε)
∂x + y1

∂X(x,y;ε)
∂y

=: Ym(x, y, y1, . . . , ym; ε).

In this sense a transformation defined on (x, y) can be naturally extended to a trans-
formation on (x, y, y1, y2, . . . ) as required.

Definition 9 (Admitted Transformation). An mth order ODE F (x, y, y1, . . . , ym) = 0
is said to admit a one parameter Lie group of transformations (x∗, y∗) = (X(x, y; ε),
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Y (x, y; ε)) if the surface F defined by the ODE is invariant under the Lie group of
transformations, i.e. if F (x∗, y∗, y∗1 , . . . , y

∗
m) = 0 whenever F (x, y, y1, . . . , ym) = 0.

Example 7. Clearly any ODE of the form dy
dx = F (x) admits the transformation

(x∗, y∗) = (x, y + ε).

Our next task is to understand how the infinitesimal generator of a transformation
can be extended to act on derivatives ym.

Definition 10 (Extended Infinitesimal Transformation). The mth extended infinitesi-
mals of a one parameter Lie group of transformations (x∗, y∗) = (X(x, y; ε), Y (x, y; ε))
are defined as the functions ξ, η, η(1), . . . , η(m) for which the following equations hold:

x∗ = X(x, y; ε) = x+ εξ(x, y) +O(ε2)

y∗ = Y (x, y; ε) = y + εη(x, y) +O(ε2)

y∗1 = Y1(x, y, y1; ε) = y1 + εη(1)(x, y, y1) +O(ε2)

...

y∗m = Ym(x, y, y1, . . . , ym; ε) = ym + εη(m)(x, y, y1, y2, . . . , ym) +O(ε2).

It can be shown straightforwardly via induction that

η(m)(x, y, y1, y2, . . . , ym) =
dmη

dxm
−

m∑
k=0

m!

(m− k)!k!
ym−k−1

dkξ

dxk
, (10)

where d
dx denotes the full derivative with respect to x, i.e. d

dx = ∂
∂x + y1

∂
∂y +∑m+1

k=2 yk
∂

∂yk−1
. It follows that η(m) is a polynomial in y1, y2, . . . , ym with coefficients

linear combinations of ξ, η and their partial derivatives up to the mth order.

Definition 11 (Extended Infinitesimal Generator). The mth extended infinitesimal
generator is defined as

X(m) = ξm(x, y, y1, . . . , ym) · ∇

= ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ η(1)(x, y)

∂

∂y1
+ · · ·+ η(m)(x, y, y1, . . . , ym)

∂

∂ym
,

where ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂y1

, . . . , ∂
∂ym

) is the extended gradient.

The following corollaries are central to the actual computation of the admitted Lie
groups of an ODE.

Corollary 3. A differentiable function F : Dm → R where Dm is the phase space
containing elements of the form (x, y, y1, . . . , ym), is invariant under a one parameter
Lie group of transformations with an extended infinitesimal generator X(m) if and only
if X(m)F (x, y, y1, . . . , ym) = 0 for all (x, y, y1, . . . , ym) ∈ Dm.

Corollary 4 (Infinitesimal Criterion for Symmetries Admitted by an ODE). A one pa-
rameter Lie group of transformations is admitted by the mth order ODE F (x, y, y1, . . . ,
ym) = 0 if and only if its extended infinitesimal generator X(m) satisfies X(m)F (x, y,
y1, . . . , ym) = 0 whenever F (x, y, y1, . . . , ym) = 0.
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2.4 Multi-Parameter Lie Groups and Lie Algebras

To leverage the full power of Lie symmetry methods for ODEs of order m ≥ 2, we
need to consider multiple Lie symmetries which are collectively described by a Lie
algebra. Fortunately, the notion of a multi-parameter Lie group of transformations is a
natural generalisation from the one parameter case. Thus, this last section of background
material concerns the generalisation of the definitions in Section 2.1 to the case of a
multi-parameter Lie group. The associated Lie algebra will also be defined.

Definition 12 (Multi-Parameter Lie Group of Transformations). The set of transfor-
mations x∗ = X(x, ε) where x∗

i = Xi(x, ε) and ε = (ε1, ε2, . . . , εr) ∈ S ⊂ R
r is called

a r-parameter Lie group of transformations if it satisfies the same axioms as in the
one parameter case, but with law of composition φ(ε, δ) = (φ1(ε, δ), . . . , φr(ε, δ)), and
(without loss of generality) ε = (0, 0, . . . , 0) as the group identity element.

Definition 13 (Infinitesimal Matrix). The appropriate generalisation for the infinites-
imal transformation is the infinitesimal matrix Ξ = [ξij ], whose entries are defined as

ξij(x) =
∂Xj(x,ε)

∂εi

∣∣∣
ε=0

.

Definition 14 (Infinitesimal Generator). An r-parameter Lie group of transformations

is associated with r infinitesimal generators, Xi, defined as Xi =Xi(x)=
∑d

j=1 ξij(x)
∂

∂xj
.

The first fundamental theorem of Lie can be generalised to the multi-parameter
case. In particular, it can be shown that an r-parameter Lie group of transformations is
characterised by the set of its r infinitesimal generators. The generalisation is straight-
forward and so, for brevity, we refer the reader to pages 39–40 of Bluman and Anco
(2002).

Next we explain how the collection of infinitesimal generators forms a Lie algebra.
This relies on the basic facts that the set D of differential operators on D is a vector
space over R (i.e. λX + μY ∈ D for all X,Y ∈ D and λ, μ ∈ R) and that differential
operators can be composed (i.e. XY ∈ D for all X,Y ∈ D).

Definition 15 (Commutator). The commutator of two infinitesimal generators Xi and
Xj is defined as [Xi,Xj ] = XiXj −XjXi.

Theorem 5 (Second Fundamental Theorem of Lie; see page 78 of Bluman and Anco
(2002)). Consider an r-parameter Lie group of transformations and let L denote the
linear span of the infinitesimal generators X1, . . . ,Xr in D. Let [·, ·] : L × L → D
denote the unique bilinear operator that agrees with Def. (15) on the set of infinitesimal
generators. i.e. ⎡

⎣ r∑
i=1

λiXi,

r∑
j=1

μjXj

⎤
⎦ =

r∑
i=1

r∑
j=1

λiμj(XiXj −XjXi). (11)

Then [·, ·] maps into L. i.e. the right hand side of (11) belongs to L for all λ, μ ∈ R
r.

Example 8. Consider the two parameter group of transformations on D = R
2 given

by (x∗, y∗) = (x+ xε+ x2δ, y+ yε+ y2δ). The infinitesimal generators corresponding to
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δ and ε, respectively, are X1 = x2 ∂
∂x + y2 ∂

∂y , X2 = x ∂
∂x + y ∂

∂y . It can be directly verified

that [X1,X2] = −X1.

The space L, defined in Thm. 5, satisfies the properties of an r-dimensional Lie
algebra L, defined next:

Definition 16 (Lie Algebra). An r-dimensional vector space L over R together with a
bilinear operator [·, ·] : L×L → L is called an r-dimensional Lie algebra if the following
hold:

(1) Alternativity: [X,X] = 0 for all X ∈ L

(2) Jacobi Identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0 for all X,Y,Z ∈ L

In general, for the methods presented in Section 3 to be applied, existence of an n-
parameter Lie group of transformations is not in itself sufficient; we require the existence
of an n-dimensional solvable Lie sub-algebra, defined next:

Definition 17 (Normal Lie Sub-algebra). Consider a Lie sub-algebra J of a Lie algebra
L with bilinear operator [·, ·], i.e. a subset J ⊂ L such that, when equipped with the
restriction of [·, ·] to J ×J , is itself a Lie algebra and, in particular, [X,Y] ∈ J for all
X,Y ∈ J . Then J is said to be normal if, in addition, [X,Y] ∈ J for all X ∈ J ,Y ∈ L.
Definition 18 (Solvable Lie Algebra). An r-dimensional Lie algebra L is called solvable
if there exists a chain of sub-algebras L1 ⊂ L2 ⊂ . . . ⊂ Lq−1 ⊂ Lr =: L such that Li−1

is a normal sub-algebra of Li for i = 2, 3, . . . , r.

For low-order ODEs, the existence requirement for an admitted Lie group of trans-
formations is more restrictive than the requirement that the associated Lie algebra is
solvable. Indeed, we have the following result:

Theorem 6. All two-dimensional Lie Algebras are solvable.

This completes our review of background material. The exact Bayesian PNM devel-
oped in Section 3 for an nth order ODE require the existence of an admitted n-parameter
Lie group of transformations with a solvable Lie algebra. In practice we therefore re-
quire some high-level information on the gradient field f , in order to establish which
transformations of the ODE may be admitted. In addition, the requirement of a solv-
able Lie algebra also limits the class of ODEs for which our exact Bayesian methods can
be employed. Nevertheless, this class of ODEs is sufficiently broad to have merited ex-
tensive theoretical research (Bluman and Anco, 2002) and the development of software
(Baumann, 2013).

3 Methods

In this section our novel Bayesian PNM is presented. The method relies on high-level
information about the gradient field f and, in Section 3.1, we discuss how such infor-
mation can be exploited to identify any Lie transformations that are admitted by the
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ODE. In the case of a first order ODE, any non-trivial transformation is sufficient for
our method and an explicit information operator is provided for this case, together with
recommendations for prior construction, in Section 3.2. Together, the prior and the in-
formation operator uniquely determine a Bayesian PNM, as explained in Section 1.1. In
the general case of an mth order ODE, we require that an m-dimensional solvable Lie
algebra is admitted by the ODE. The special case m = 2 is treated in detail, with an
explicit information operator and guidance for prior construction provided in Section
3.3. In the Supplemental Section A.2 the selection of input pairs (xi, yi) to the gradient
field is discussed.

3.1 From an ODE to its Admitted Transformations

For the methods proposed in this paper, transformations admitted by the ODE, to-
gether with their infinitesimal generators, must first be obtained. The algorithm for
obtaining infinitesimal generators follows as a consequence of Cor. 4. Indeed, suppose
we have a mth order ODE of the form ym − f(x, y, y1, . . . , ym−1) = 0. Then, by Cor. 4,
a transformation with infinitesimal generator X is admitted by the ODE if and only if:

X(m)(ym − f(x, y, y1, . . . , ym−1)) = 0 whenever ym = f(x, y, y1, . . . , ym−1). (12)

In infinitesimal notation, (12) is equivalent to

η(m)(x, y, y1, . . . , ym−1, ym) = ξ
∂f

∂x
+ η

∂f

∂y
+

m−1∑
k=1

η(k)
∂f

∂yk
. (13)

The direct solution of (13) recovers any transformations that are admitted.

In the common scenario where f(x, y, y1, . . . , ym−1) is a polynomial in y1, y2, . . . ,
ym−1, the algorithm just described, for identification of admitted transformations, can
be fully automated (c.f. Baumann, 2013). Indeed, from Def. 10 it follows that the ex-
tended infinitesimals η(k) for k ∈ 1, 2, 3, . . . ,m are polynomial in y1, y2, . . . , yk. Thus,
by substituting ym = f(x, y, y1, . . . , ym−1), (12) too must be a polynomial in y1, y2, . . . ,
ym−1. Moreover, the coefficients of this polynomial must vanish because (12) holds
for arbitrary values of x, y, y1, . . . , ym−1. This argument, of setting coefficients to zero,
leads to a system of linear partial differential equations (overdetermined when m ≥ 2)
for ξ(x, y) and η(x, y), which can be exactly solved to retrieve all the infinitesimal gen-
erators of the ODE. The same strategy can often be applied beyond the polynomial
case and explicit worked examples of this procedure are now provided:

Example 9 (First Order ODE). Consider the class of all first order ODEs of the
form dy

dx = f(x, y(x)), f(x, y) = F
(
y
x

)
. From (10), we have η(1) = ηx + (ηy − ξx)y1 −

ξy(y1)
2 so (13) becomes ηx + (ηy − ξx)f − ξy(f)

2 = ξ ∂f
∂x + η ∂f

∂y and thus ηx + (ηy −
ξx)F

(
y
x

)
−ξyF

(
y
x

)2
= −ξF ′ ( y

x

)
y
x2 +ηF ′ ( y

x

)
1
x . For this equation to hold for general F ,

the coefficients of F , F 2 and F ′ must vanish: ηx = 0, ηy−ξx = 0, ξy = 0, −ξ y
x2 +η 1

x = 0.
This is now a linear system of partial differential equations in (ξ, η) which is easily
solved; namely ξ = x, η = y. The associated infinitesimal generator is X = x ∂

∂x + y ∂
∂y .
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Example 10 (Second Order ODE). The infinitesimal generators for the second order
ODE

(x− y(x))
d2y

dx2
+ 2

dy

dx

(
dy

dx
+ 1

)
+

(
dy

dx

)3/2

= 0 (14)

are derived in Supplementary Section A.1.

3.2 The Case of a First Order ODE

In this section we present our approach for a first order ODE. This allows some of the
more technical details associated to the general case to be omitted, due to the fact
that any one-dimensional Lie algebra is trivial. The main result that will allow us to
construct an exact Bayesian PNM is as follows:

Theorem 7 (Reduction of a First Order ODE to an Integral). If a first order ODE

dy

dx
= f(x, y(x)) (15)

admits a one parameter Lie group of transformations, then there exists coordinates
r(x, y), s(x, y) such that

ds

dr
= G(r) (16)

for some explicit function G(r).

Note that the transformed ODE in (16) is nothing more than an integral, for which
exact Bayesian PNM have already been developed (e.g. Briol et al., 2019; Karvonen
et al., 2018). At a high level, as indicated in Figure 2, our proposed Bayesian PNM
performs inference for the solution s(r) of (16) and then transforms the resultant pos-
terior back into the original (x, y)-coordinate system. Our PNM is therefore based on
the information operator

A(y) = [G(r0), . . . , G(rn)]
� ∈ A = R

n+1 (17)

which corresponds indirectly to n + 1 evaluations of the original gradient field f at
certain input pairs (xi, yi). The selection of the inputs ri is discussed in Section A.2.

The transformation of a first order ODE is clearly illustrated in the following:

Example 11 (Ex. 9, continued). Consider the first order ODE dy
dx = f(x, y(x)),

f(x, y) = F
(
y
x

)
. Recall from Ex. 9 that this ODE admits the one parameter Lie group of

transformations x∗ = αx, y∗ = αy for α ∈ R and the associated infinitesimal generator
is X = x ∂

∂x + y ∂
∂y . Solving the pair of partial differential equations Xr = 0,Xs = 1

yields the canonical coordinates s = log y, r = y
x . The transformed ODE is then

ds
dr = F (r)

−r2+rF (r) =: G(r). Thus an evaluation G(r) corresponds to an evaluation of

f(x, y) at an input (x, y) such that r = y
x .

Two important points must now be addressed: First, the approach just described
cannot be Bayesian unless it corresponds to a well-defined prior distribution μ ∈ PY
in the original coordinate system Y . This precludes standard (e.g. Gaussian process)
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Figure 3: Illustration of the implicit prior principle: A prior elicited for the function s(r)
in the transformed coordinate system (r, s) must be supported on functions s(r) that
correspond to well-defined functions y(x) in the original coordinate system (x, y). Thus
the situation depicted would not be allowed.

priors in general, as such priors assign mass to functions in (r, s)-space that do not
correspond to well-defined functions in (x, y)-space (see Figure 3). Second, any prior
that is used ought to be consistent with the Lie group of transformations that the ODE
is known to admit. To address each of these important points, we propose two general
principles for prior construction in this work. The first principle is the implicit prior
principle. This ensures that a prior specified in the transformed coordinates (r, s) can
be safely transformed into a well-defined distribution on Y . For such an implicit prior
to be well-defined we need to understand when a function in (r, s) space maps to a
well-defined function in the original (x, y) domain of interest. Let S denote the image
of Y under the canonical coordinate transformation.

Principle 1 (Implicit Prior). A distribution ν ∈ PS on the transformed solution space
S corresponds to a well-defined implicit prior μ ∈ PY provided that x(r, s(r)) is strictly
monotone as a function of r.

Example 12 (Ex. 11, continued). For the ODE in Ex. 11, with canonical coordinates
s = log y, r = y

x , if x ∈ [x0, xT ] = [1, xT ] and y ∈ (0,∞), then the region in the (r, s)
plane corresponding to [1, xT ]× (0,∞) in the (x, y) plane is (0,∞)× R. Now,

dx(r, s(r))

dr
=

∂x

∂r
+

∂x

∂s

ds(r)

dr
=

rs′(r) exp(s(r))− exp(s(r))

r2
.

Thus dx
dr > 0 if and only if s′(r) > 1

r and the invariant prior principle requires that
we respect the constraint log(r) ≤ s(r) ≤ log(r) + log(xT ) for all r > 0. The set S
must therefore consists of differentiable functions s defined on r ∈ (0,∞) and satisfying
log(r) ≤ s(r) ≤ log(r) + log(xT ).

Now we turn to the second important point, namely that the prior ought to encode
knowledge about any Lie transformations that are known to be admitted by the ODE.
In working on the transformed space S, it become clear how to construct a prior measure
in which this knowledge is encoded. Our second principle for prior specification states
that equal prior weight should be afforded to all curves that are identical up to a Lie
transformation:
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Principle 2 (Invariant Prior). A distribution ν ∈ PS on the transformed solution space
S is said to be invariant provided that ν(S) = ν(S + ε) where the elements of S + ε are
the elements of S after a vertical translation; i.e. s(·) �→ s(·)+ ε and both S, S+ ε ∈ ΣS .

Our recommendation is that, when possible, both the implicit prior principle and
the invariant prior principle should be enforced. However, in practice it seems difficult
to satisfy both principles and our empirical results in Section 4 are based on implicit
priors that are not invariant.

3.3 The Case of a Second Order ODE

In this section we present our approach for a second order ODE. The study of second
order ODEs is particularly important, since Newtonian mechanics is based on ODEs
of second order. The presentation is again simplified relative to the general case of an
mth order ODE, this time by virtue of the fact that any two dimensional Lie algebra is
guaranteed to be solvable (Thm. 6). The main result that will allow us to construct an
exact Bayesian PNM is as follows:

Theorem 8 (Reduction of a Second Order ODE to Two Integrals). If a second order
ODE

d2y

dx2
= f

(
x, y(x),

dy

dx

)
(18)

admits a two parameter Lie group of transformations, then there exists coordinates
r(x, y), s(x, y) such that

ds

dr
= G(r) (19)

for some implicitly defined function G. The function G is explicitly related to the solution
of a second equation of the form

ds̃

dr̃
= H(r̃) (20)

for some explicit function H(r̃).

Note that the ODE in (18) is reduced to two integrals, namely (19) and (20). At a
high level, our proposed Bayesian PNM performs inference for the solution s(r) of (19)
and then transforms the resultant posterior back into the original (x, y)-coordinate
system. However, because G in (19) depends on the solution s̃(r̃) of (20), we must also
estimate s̃(r̃) and for this we need to evaluate H. Our PNM is therefore based on the
information operator

A(y) = [G(r0), . . . , G(rn), H(r̃0), . . . , H(r̃n)]
� ∈ A = R

2(n+1)

which corresponds indirectly to 2(n + 1) evaluations of f , the original gradient field.
The extension of our approach to a general mth order ODE proceeds analogously, with
A = R

m(n+1). The use of Thm. 8 is illustrated in Example 14 in the Supplement.
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The two principles of prior construction that we advocated in the case of a first
order ODE apply equally to the case of a second- and higher-order ODE. It therefore
remains only to discuss the selection of the specific inputs ri (and r̃i in the case of a
second order ODE) that are used to define the information operator A. This discussion
is again reserved for Supplemental Section A.2.

4 Numerical Illustration

In this section the proposed Bayesian PNM is empirically illustrated. Recall that we are
not advocating these methods for practical use, rather they are to serve as a proof-of-
concept for demonstrating that exact Bayesian inference can in principle be performed
for ODEs, albeit at considerable effort; a non-trivial finding that helps to shape ongoing
research and discussion in this nascent field.

The case of a first order ODE is considered in Section 4.1 and the second order case is
contained in Section 4.2. In both cases, scope is limited to verifying the correctness of the
procedures, as well as indicating how conjugate prior distributions can be constructed.

4.1 A First Order ODE

This section illustrates the empirical performance of the proposed method for a first
order ODE.

ODE To limit scope we consider first order ODEs of the form

dy

dx
= F

(
y(x)

x

)
, x ∈ [1, xT ], y(1) = y0. (21)

Note that admitted transformation and associated canonical coordinates for this class
of ODE have already been derived in Ex. 9, Ex. 11 and Ex. 12.

Prior In constructing a prior μ ∈ PY we refer to the implicit prior principle in Section
3.2. Indeed, recall from Ex. 11 that the ODE in (21) can be transformed into an ODE
of the form

ds

dr
= G(r), r ∈ (0,∞), s(y0) = log(y0).

Then our approach constructs a distribution ν ∈ PS where, from Ex. 12, S is the set of
differentiable functions s defined on r ∈ (0,∞) and satisfying

log(r) ≤ s(r) ≤ log(r) + log(xT ). (22)

To ensure monotonicity in the implicit prior principle, we take dx
dr > 0, which translates

into the requirement that

ds

dr
>

1

r
. (23)

If (23) holds, then ν induces a well-defined distribution μ ∈ PY . Note that the constraints
in (22) and (23) preclude the direct use of standard prior models, such as Gaussian
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Figure 4: Experimental results, first order ODE: The black curves represent samples
from the posterior, whilst the exact solution is indicated in red. The blue curves represent
a constraint on the (r, s) domain that arises when the implicit prior principle is applied.
The number n of gradient evaluations is indicated. Top: results in the (r, s) domain.
Bottom: results in the (x, y) domain.

processes. However, it is nevertheless possible to design priors that are convenient for
a given set of canonical coordinates. Indeed, for the canonical coordinates r, s in our
example, we can consider a prior of the form

s(r) = log(r) + log(xT )ζ(r),

where the function ζ : (0,∞) → R satisfies

ζ(y0) = 0, ζ(r) ≤ 1,
dζ

dr
≥ 0. (24)

For this experiment, the approach of López-Lopera et al. (2018) was used as a prior
model for the monotone, bounded function ζ; this requires that a number, N , of basis
functions is specified – for brevity we defer the detail to Appendix A.3.
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The prior just described incorporates the symmetric structure of the ODE, in the
sense that the independent variable r = y

x is the first canonical coordinate of the
infinitesimal generator of the Lie group of transformations of the original ODE in 11.
In other words, r is a variable fixed by the Lie group of transformations of the ODE (in
this case x∗ = αx, y∗ = αy, so r∗ = r). Because the prior is defined on functions s(r)
of r, this means the prior itself is also unchanged by the Lie group of transformations
of the ODE, so that the prior effectively incorporates the symmetric structure of the
ODE.

Results To obtain empirical results we consider the ODE with F (r) = r−1 + r and
y0 = 1, xT = 5. The posterior distributions that were obtained as the number n of data
points was increased were sampled and plotted in the (r, s) and (x, y) planes in Figure 4.
In each case a basis of size N = 2n was used. Observe that the implicit prior principle
ensures that all curves in the (x, y) plane are well-defined functions (i.e. there is at most
one y value for each x value). Observe also that the posterior mass appears to contract
to the true solution y† of the ODE as the number of evaluations n of the gradient field
is increased.

4.2 A Second Order ODE

This section illustrates the empirical performance of the proposed method for a second
order ODE.

ODE Consider again the second order nonlinear ODE in (14) together with the initial
condition y(x0) = y0,

dy
dx (x0) = y′0.

Prior It is shown in Ex. 14 in the Supplement that 14 can be reduced to a first order
ODE in (s, r) with − 1

x0
− r ≤ s ≤ − 1

xT
− r. The implicit prior principle in this case

requires that ds
dr > −1. Thus we are led to consider a parametrisation of the form

s(r) = − 1

x0
− r +

(
1

x0
− 1

xT

)
ζ(r),

where the function ζ again satisfies the conditions in (24). The approach of López-Lopera
et al. (2018) was therefore again used as a prior model.

For this example an additional level of analytic tractability is possible, as described
in detail in Ex. 14 in the Supplement. Thus we need only consider an information
operator of the form A(y) = [G(r0), . . . , G(rn)].

Results The posterior distributions that were obtained are plotted in the (r, s) plane
and the (x, y) plane in Figure 5. A basis of size N = 2n was used, with [y0, y

′
0] =

[−10, 1], [x0, xT ] = [5, 10]. Observe that the implicit prior principle ensures that all
curves in the (x, y) plane are well-defined functions (i.e. there is at most one y value for
each x value). The true solution appears to be smoother than the samples, even for 50
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Figure 5: Experimental results, second order ODE: The black curves represent samples
from the posterior in the (r, s) plane (left) and (x, y) plane (right), whilst the exact
solution is indicated in red. The blue curves represent a constraint on the domain that
arises when the implicit prior principle is applied. The number of gradient evaluations
was n = 50.

gradient evaluations, which suggests that the prior was somewhat conservative in this
context.

5 Conclusion

This paper presented a foundational perspective on PNM. It was first argued that there
did not exist a Bayesian PNM for the numerical solution of ODEs. Then, to address
this gap, a prototypical Bayesian PNM was developed. The Bayesian perspective that
we have put forward sheds light on foundational issues which will need to be addressed
going forward:

Foundation of PNM As explained in Section 1.2, existing PNM for ODEs each take
the underlying state space Y to be the solution space of the ODE. This appears to be
problematic, in the sense that a generic evaluation f(xi, yi) of the gradient field cannot
be cast as information A(y†) about the solution y† of the ODE unless the point (xi, yi)
lies exactly on the solution curve {(x, y†(x)) : x ∈ [x0, xT ]}. As a consequence, all ex-
isting PNM of which we are aware violate the likelihood principle and are therefore not
strictly Bayesian. The assumption of a solvable Lie algebra, used in this work, can be
seen as a mechanism to ensure the existence of an exact information operator A, so that
the likelihood principle can be obeyed. However, for a general ODE it might be more nat-
ural to take the underlying state space to be a set F of permitted gradient fields and the
quantity of interest Q(f) to map a gradient field f to the solution of the associated ODE.
This would make the information operator A trivial but evaluation of the push-forward
Q#μ

a would require the exact solution operator of the ODE. However, the reliance on
access to an oracle solver Q makes this philosophically somewhat distinct from PNM.
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Limitations of Bayesian PNM The proposed method was intended as a proof-of-
concept and it is therefore useful to highlight the aspects in which it is limited. First,
when an mth order ODE admits an r-parameter Lie group of transformations with
r > m, there is an arbitrariness to the particular m-dimensional sub-group of trans-
formations that are selected. Second, the route to obtain transformations admitted by
the ODE demands that some aspects of the gradient field f are known, in contrast to
other work in which f is treated as a black-box. For instance, in Ex. 11 we used the
fact that f can be expressed as f(x, y) = F ( yx ), although knowledge of the form of F
was not required. Third, the class of ODEs for which a solvable Lie algebra is admit-
ted is relatively small. On the other hand, references such as Bluman and Anco (2002)
document important cases where our method could be applied. Fourth, the principles
for prior construction that we identified do not entail a unique prior and, as such, the
question of prior elicitation must still be addressed.

Outlook The goal of providing rigorous and exact statistical uncertainty quantification
for the solution of an ODE is, we believe, important and will continue to be addressed.
Traditional numerical methods have benefitted from a century of research effort and,
in comparison, Bayesian PNM is an under-developed field. For example, the limited
existing work on PNM for ODEs, such as Skilling (1992); Schober et al. (2014); Chkrebtii
et al. (2016); Kersting and Hennig (2016); Schober et al. (2019); Kersting et al. (2018);
Tronarp et al. (2019), does not attempt to provide adaptive error control (though we
note promising ongoing research in that direction by Chkrebtii and Campbell, 2019).
Nevertheless, the case for developing Bayesian numerical methods – which shares some
parallels with the case for Bayesian statistics as opposed to other inferential paradigms
– is clear, as argued in Diaconis (1988) and Hennig et al. (2015). The insights we have
provided in this paper serve to highlight the foundational issues pertinent to Bayesian
PNM for ODEs. Indeed, our proof-of-concept highlights that performing exact Bayesian
inference for ODEs may be extremely difficult. This in turn provides motivation for
the continued development of ‘approximately Bayesian’ approaches to PNM, which in
Section 1.2 we surveyed in detail.

Supplementary Material

Supplementary material (DOI: 10.1214/19-BA1183SUPP; .pdf).
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