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ABSTRACT 21 

High-resolution biomarker and compound-specific isotope distributions, coupled with the 22 

degradation of calcareous fossil remnants reveal that intensive euxinia and decalcification 23 

(acidification) driven by Central Atlantic Magmatic Province (CAMP) activity formed a two-24 

pronged kill mechanism at the end-Triassic mass extinction. In a newly proposed extinction 25 

interval for the basal Blue Lias Formation (Bristol Channel Basin, UK), biomarker distributions 26 

reveal an episode of persistent photic zone euxinia (PZE) that extended further upwards into the 27 

surface waters. In the same interval shelly taxa almost completely disappear. Beginning in the 28 

basal paper shales of the Blue Lias Formation, a Lilliput assemblage consisting of only rare 29 

calcitic oysters (Liostrea) and ghost fossils of decalcified aragonitic bivalves are preserved. The 30 

stressors of PZE and decalcification parsimoniously explain the extinction event and inform 31 

possible combined causes of other biotic crises linked to emplacements of large igneous 32 

provinces, notably the end-Permian mass extinction where PZE occurred on a broad and perhaps 33 

global scale. 34 

35 



 

 

INTRODUCTION 36 

The end-Triassic extinction (ETE; ca. 202 Ma) is one of the largest mass extinction 37 

events of the Phanerozoic and temporally correlated with emplacement of the Central Atlantic 38 

Magmatic Province (CAMP) (Pálfy et al., 2001). Pulsed CAMP outgassing of CO2 and SO2 in 39 

large quantities is thought to have triggered the ETE through a cascading series of environmental 40 

perturbations, including global carbon cycle changes, rapid warming leading to ‘hyperthermal’ 41 

climatic events, and increased continental weathering. In many marine sedimentary basins such 42 

conditions led to stagnation, deoxygenation, and deposition of organic-rich laminated mudstones 43 

(e.g., Kasprak et al., 2015). However, the precise mechanism(s) responsible for the extinction 44 

event remain elusive. 45 

The Bristol Channel Basin, SW UK, although not necessarily globally representative, has 46 

become a focal locality for ETE studies employing palynological, paleontological (Warrington et 47 

al., 2008 and refs therein), and geochemical analyses (Jaraula et al., 2013; Fox et al., 2020). The 48 

pronounced negative anomaly in the organic carbon isotope record ( 13Corg; initial CIE; Fig. 1) in 49 

the Lilstock Formation (Fm.) at St. Audrie’s Bay (Hesselbo et al., 2002) is routinely used to 50 

chemostratigraphically correlate the extinction event and CAMP volcanism among sections on a 51 

global scale (e.g., Hesselbo et al., 2002). However, this CIE is stratigraphically offset from the 52 

highest occurrences (HO) of key fossil taxa. For example, the HO of foraminiferal, ostracod, and 53 

bivalve fauna (Hallam, 1990) is in the overlying basal Blue Lias Fm. at the base of finely 54 

laminated organic carbon-rich mudstones termed the paper shales (Richardson, 1911). 55 

Furthermore, the HO of conodonts also sits in the lowermost Blue Lias Fm. (Swift, 1989). Based 56 

on these and other findings, including the HO of the reptile clade Phytosauria in the lowermost 57 

Blue Lias Fm. (Maisch and Kapitzke, 2010) and a Lilliput assemblage of bivalves at the very 58 



 

 

base of the paper shales (Fox et al., 2020), recent studies have placed the ETE above the initial 59 

CIE in the paper shales, at a separate and slightly younger 13Corg anomaly (Fig. 1) (Wignall and 60 

Atkinson, 2020; Fox et al., 2020). Despite decades of study establishing the presence of 61 

extinction of fauna characteristic of the end-Triassic (Fig. 1) and a dearth of calcite- and 62 

aragonite-secreting organisms at the extinction horizon, little is known of the killing 63 

mechanism(s). To better investigate this critical interval and the cause(s) of the ETE, we 64 

undertook high-resolution (i.e. cm-scale) biomarker and compound-specific isotope analyses to 65 

disentangle ecological community shifts recorded in the fossil record at two sections in the 66 

Bristol Channel Basin: St. Audrie’s Bay [51.182833°, −3.286000°] and Lilstock [51.200757°, 67 

−3.176389]. 68 

 69 

RESULTS AND DISCUSSION 70 

Acidification and photic zone euxinia forcing the ETE 71 

Decalcified bivalve taxa exhibiting low diversity (Fox et al., 2020) and a general lack of 72 

CaCO3-secreting organisms (Hallam, 1990) above the Lilliput assemblage in the paper shales 73 

gives evidence of an acidification event that terminated with the return of calcareous 74 

nannoplankton and ammonites later in the sedimentary record (Fig. 1). Termed the 75 

biocalcification crisis, this event is placed between the HO of the ammonite Choristoceras 76 

marshi and lowest occurrence of Psiloceras spelae in European sections (McRoberts et al., 77 

2012). Correlation between the HO of conodonts in the SW UK (Swift, 1989) to the HO of 78 

Triassic conodonts at the end of the C. marshi zone (Hillebrandt et al., 2013) provides correlative 79 

evidence of acidification at the ETE. In a global context, the biocalcification crisis is evidenced 80 

by major reduction in sedimentary carbonates and biogenic carbonates from secreting organisms, 81 



 

 

particularly corals, calcareous nannoplankton, benthic foraminifera groups, and some bivalves 82 

(Cope and Hallam, 1991; Hautmann, 2004; van de Schootbrugge et al., 2007; Lindström et al., 83 

2012; McRoberts et al., 2012; Fox et al., 2020). Likely driven by CAMP-induced rapid 84 

outgassing of CO2, acidification is a plausible kill mechanism. However, our biomarker and 85 

compound-specific isotope investigation reveals that additional ecological stresses may play 86 

important roles in driving extinction. 87 

The paper shales are characterized by low pristane to phytane ratios (Pr/Ph), high 88 

gammacerane index values, supporting anoxia in a well-stratified water column, and increases in 89 

C40 carotenoids derived from purple sulfur bacteria (okenane) and green-pigmented 90 

(chlorobactane) and brown-pigmented (isorenieratane) green sulfur bacteria (Fig. 2). Whereas 91 

purple sulfur bacteria (Chromatiaceae) and green-pigmented green sulfur bacteria (Chlorobi) 92 

reported below this unit indicate the presence of microbial mats (Fox et al., 2020), coexistence 93 

with brown-pigmented Chlorobi and biomarkers for anoxia and stratification indicate photic 94 

zone euxinia (PZE), a condition in which toxic H2S extends upward into the sun-lit region of an 95 

anoxic water column (e.g. Grice et al., 2005). Due to higher light intensity requirements of 96 

Chromatiaceae and green-pigmented Chlorobi compared to brown-pigmented Chlorobi (Grice et 97 

al., 1998; Brocks and Schaeffer, 2008; Overmann, 2008), the ratio of isorenieratane to okenane 98 

and chlorobactane (iso/oke + chlo) serves as a proxy for the relative depth of the chemocline, 99 

where higher values indicate predominance of low-light-adapted photosynthetic bacteria and 100 

therefore a deeper chemocline. Thus, the lower paper shales are characterized by a shallower 101 

chemocline compared to later in the record where iso/oke + chlo values increase. Below the Blue 102 

Lias Fm. iso/oke + chlo values are also low. However, this interval is characterized by 103 



 

 

geochemical and sedimentological evidence for shallowing, freshening, and desiccation, but little 104 

evidence for prolonged PZE (Fox et al., 2020 and refs therein). 105 

 Where okenane and chlorobactane abundances are highest, the 13C29 n-alkane mirrors 106 

the minor negative 13Corg excursion, possibly related to the CAMP (Fig. 3). 13C values of 107 

regular isoprenoids (pristane and phytane) and n-alkanes (C17-19) also show negative excursions, 108 

albeit more variable (Fig. 3). Significant decreases in okenane and chlorobactane abundances 109 

later in the paper shales (Fig. 2) are possibly related to lower-light availability due to a deepening 110 

of the chemocline and/or due to increased algal productivity in the euphotic zone (Grice et al., 111 

1998; Brocks and Schaeffer, 2008; Overmann, 2008). Here, 13C values of pristane, phytane and 112 

C17-19 n-alkanes show a positive isotope excursion, and based on their isotopic differences, 113 

carbon fixation shifts to increased autotrophic production (Fig. 3) (Grice et al., 2005). Elevated 114 

isorenieratane abundances in this interval show PZE continued but was limited to the lower 115 

region of the photic zone, and low Pr/Ph and aryl isoprenoid ratios throughout the paper shales 116 

demonstrate persistent PZE (Fig. 2; Data Repository) (Schwark and Frimmel, 2004). 117 

These results suggest the paper shales formed in two sequential different depositional 118 

environments which are related to chemocline depth and carbon isotope chemistry. First, at the 119 

extinction horizon in the basal Blue Lias Fm., high abundances of Chromatiaceae and green-120 

pigmented Chlorobi biomarkers and low iso/oke + chlo values support a shallow chemocline 121 

with PZE extending throughout much of the photic zone. Biomarker 13C values of marine 122 

organisms show a negative excursion, are variable compared to isotopic shifts in higher land 123 

plants. In modern-day ecosystems, pH changes impact carbon leakage, mechanisms of carbon 124 

concentration, and activity of carbonic anhydrase in dehydrating HCO3
-, all of which affect 125 

carbon isotope fractionation in phytoplankton (Wang et al., 2016). These effects of acidification 126 



 

 

on phytoplankton, in conjunction with intense PZE and its associated precipitation of bio-127 

essential elements (Takahashi et al., 2014), possibly account for the marine 13C variations at the 128 

extinction horizon. The second depositional environment is characterized by a decline in 129 

Chromatiaceae and green-pigmented Chlorobi and increases in brown-pigmented Chlorobi and 130 

iso/oke + chlo, consistent with contraction of sulfidic conditions. The coinciding shift to 131 

autotrophic production and positive 13C excursions in biomarkers of marine organisms agree 132 

with a 13C-enriched euphotic zone due to increased carbon fixation and reduced light availability 133 

to Chromatiaceae and Chlorobi. Elevated abundances in brown-pigmented Chlorobi biomarkers 134 

support continued PZE but restricted to lower-light levels of the water column. 135 

The invocation of H2S toxicity as a driver for the ETE is supported by increases in 136 

isorenieratane, aryl isoprenoids (Richoz et al., 2012; Jaraula et al., 2013; Kasprak et al., 2015) or 137 

pyrite framboid diameter analysis (Atkinson and Wignall, 2019). However, for the first time we 138 

report PZE was not only persistent, but due to increased abundances of biomarkers derived from 139 

sulfur bacteria that require elevated light intensities and H2S, PZE extended into shallower 140 

depths of the photic zone than previously thought. The presence of these organisms supports 141 

increased stress to epipelagic nektonic and planktonic communities. Furthermore, increased 142 

precipitation of bio-essential elements associated with periods of PZE have suppressive effects 143 

on marine life and its recovery during extinction events (Takahashi et al., 2014). Given that PZE 144 

biomarkers are observed in European and Canadian sections, which represent a range of 145 

depositional settings including open ocean (Richoz et al., 2012; Jaraula et al., 2013; Kasprak et 146 

al., 2015), PZE at the ETE may have global extent, although perhaps not everywhere 147 

simultaneously. Effects of euxinia on calcifying organisms are poorly understood, but short-term 148 

intervals have resulted in planktonic foraminifera extinction (Oba et al., 2011). In conjunction 149 



 

 

with acidification, PZE may thus explain the near lack of fauna during the ETE biocalcification 150 

crisis. Additionally, we note that the importance of anoxia has been shown to be an important 151 

stressor on modern coral analogues experimentally (Altieri et al., 2017), and that ocean anoxic 152 

events frequently result in a species richness decline in calcareous and benthic communities (e.g. 153 

Watkins et al., 2005; Mattioli et al., 2008). Consequently, we argue that the development of 154 

persistent and intense PZE in conjunction with acidification leads to major ecological stress, and 155 

that these conditions together are important for driving the ETE. These features are the most 156 

compelling evidence of CAMP-induced environmental perturbations throughout the latest 157 

Rhaetian, and plausibly relate the negative 13C anomaly in the lower Blue Lias Fm. to CAMP 158 

activity. 159 

Organic-rich laminated lithologies are often host to Lagerstätten assemblages that 160 

preserve articulated fossils. Lack of bioturbation and preservation of microlaminations in 161 

lacustrine and marine settings indicates deposition below the wave base and persistent water 162 

column stratification and bottom water anoxia (Olsen, 1990). Although the facies of the paper 163 

shales conform to this model, the absence of fish or any articulated fossils (Hallam, 1991; 164 

confirmed by our field observations) is consistent with acidification and PZE driving extinction, 165 

although this may also be related to basin restriction. This lack of fossil content, in addition to 166 

the micro-laminations, is anomalous compared to superficially similar orbitally paced units 167 

above the paper shales that do have abundance fossils. From field observations, the paper shales 168 

immediately succeeding the Lilliput assemblage are nearly devoid of shelly taxa with the 169 

exception of decalcified bivalves, supporting acidification. However, Mander et al., (2008) report 170 

shelly taxa specimens (Modiolus sp., Liostrea sp., and L. hisingeri) in the upper-most layers, and 171 

Atkinson and Wignall (2019) report Liostrea sp. in the lower paper shales (Fig. 4) that could be 172 



 

 

associated with the lilliput assemblage. Above the paper shales, shelly taxa species richness 173 

increases in close proximity to the lowest occurrence of organisms that preserve the aragonitic 174 

nacre; Psiloceras. planorbis and other Psiloceras and Neophyllites? ammonites (Warrington et 175 

al., 2008 and refs therein). Major increases in foraminifera species richness and preserved 176 

foraminiferal test linings occur above this interval (Bonis et al., 2010; Clémence and Hart, 2013), 177 

signaling diminishing effects of acidification (Fig. 4). Biomarker and pyrite framboid analysis in 178 

shale/dark marl lithologies support cyclical euxinic conditions into the P. planorbis zone (Jaraula 179 

et al., 2013; Atkinson and Wignall, 2019), suggesting stable conditions with increased 180 

continental weathering during shale/dark marl deposition and storm events/mixing during 181 

limestone and light marl formation (Weedon et al., 2017). Above the lowest occurrence of P. 182 

planorbis, bivalve assemblages increase in diversity but not in abundance (Mander et al., 2008) 183 

suggesting localized effects of acidification and PZE inhibit the return of pre-extinction 184 

ecological conditions. 185 

 186 

CONCLUSIONS 187 

The fully marine expression of the ETE in the SW UK is in the basal Blue Lias Fm., during an 188 

acidification event with persistent and intense PZE and its associated redox conditions. This 189 

combination of ecological stressors explains many observations within the lower Blue Lias Fm., 190 

including the lack of well-preserved vertebrate fossils, near absence of shelly taxa in the paper 191 

shales, and subsequent increases in species richness upward toward the termination of the 192 

biocalcification crisis. Furthermore, acidic and euxinic conditions constitute the most compelling 193 

evidence of CAMP-induced environmental perturbations thought to drive the ETE throughout 194 

the latest Rhaetian. In future studies, high-resolution sampling for biomarkers and their 13C 195 



 

 

values, in conjunction with ecological community shifts, will be critical to properly evaluate the 196 

global extent and significance of combined ecological stressors in the ETE and similar 197 

extinctions. 198 

199 
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FIGURE CAPTIONS 327 

 328 

Figure 1. 13Corg records in the SW UK. ETE lithology and paleogeographic reconstruction (top) after Hesselbo et 329 

al., (2002), with CAMP lateral extent in red. HO of conodonts after Swift (1989). References for other ecological 330 

and geophysical data in figure. 331 

Figure 2. Biomarker-inferred redox and PZE conditions at St. Audrie’s Bay (circles, solid lines) and Lilstock 332 

(squares, dashed lined) relative to 13Corg and TOC. Two depositional environments indicated by green (shallow 333 

redoxcline) and pink (deeper chemocline) bars. Biomarkers below and ecological indicators above each profile. 334 

Pristane to phytane ratios and gammacerane, okenane, chlorobactane and isorenieratane indices up to the base of the 335 

Blue Lias Fm. reported in Fox et al., (2020). Details in the Data Repository. 336 

Figure 3. Compound-specific carbon isotope analysis at St. Audrie’s Bay (circles, solid lines) and Lilstock (squares, 337 

dashed lines). Two depositional environments indicated by green (variable but negative excursions in regular 338 

isoprenoids and n-alkanes) and pink (positive excursions and shift to more autotrophy) bars. Biomarkers below, and 339 

ecological indicators above each profile. 13C of biomarkers to the base of the Blue Lias Fm reported in Fox et al., 340 

(2020). Details in the Data Repository. 341 

Figure 4. Ecological shifts relative to anoxia (paper shales), biocalcification crisis, and PZE in the Bristol Channel 342 

Basin. Note bivalve species richness increases after intense PZE and foraminifera species richness increase with 343 

return of P. planorbis. Details in Data Repository. 344 
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