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Calibration of large-scale differential equation models to observational or
experimental data is a widespread challenge throughout applied sciences and
engineering. A crucial bottleneck in state-of-the art calibration methods
is the calculation of local sensitivities, i.e. derivatives of the loss function
with respect to the estimated parameters, which often necessitates several
numerical solves of the underlying system of partial or ordinary differential
equations. In this paper we present a new probabilistic approach to com-
puting local sensitivities. The proposed method has several advantages over
classical methods. Firstly, it operates within a constrained computational
budget and provides a probabilistic quantification of uncertainty incurred in
the sensitivities from this constraint. Secondly, information from previous
sensitivity estimates can be recycled in subsequent computations, reducing
the overall computational effort for iterative gradient-based calibration meth-
ods. The methodology presented is applied to two challenging test problems
and compared against classical methods.

1 Introduction

Complex systems arising in applied sciences and engineering are often modelled by sys-
tems of coupled ordinary or partial differential equations (ODEs or PDEs) derived from
the underlying physical principles. Typically, the specific model behaviour will depend
on a vector of parameters which must be calibrated to observations of system. A ma-
jor challenge in calibration is the high computational cost associated with numerically
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solving the mathematical model for a given value of the parameters. This is particularly
relevant for large-scale models incorporating multi-physics and multiscale behaviour, as
arise in the context of digital twins [Shafto et al., 2012]. This high cost often precludes
the use of many iterative methods for calibration, including both optimisation methods
and Bayesian approaches that use sampling algorithms such as Markov chain Monte-
Carlo (MCMC). Each of these requires at least one solve of the governing equations per
iteration of the algorithm. In practice MCMC often requires on the order of 105 model
evaluations [Geyer, 2011].

The calibration of differential equation models to observed data can be formulated
as a constrained optimisation problem [Biegler et al., 2007, Gunzburger, 2002, Ito and
Kunisch, 2008], which is solved using deterministic or stochastic optimisation methods.
Most fundamental optimisation methods1 either require or are accelerated by access
to derivatives of the functional to be minimised, so that the solver for the underlying
equations must be augmented with a routine that provides the derivative of the solution
with respect to model parameters. Employing an approximation of the gradient, such
as a finite-difference approximation, may seem attractive due to ease of implementation,
but obtaining accurate approximations can be challenging and, when the parameter di-
mension is large, computationally expensive. Thus it is usually preferable to obtain
derivatives using first-order sensitivity analysis, which expresses the derivatives as the
solution of an auxiliary system of differential equations known as the sensitivity equa-
tions. While the sensitivity equations are linear, they depend on the solution of the
underlying equations and so must typically be solved numerically. Thus, computing the
sensitivities is at least as expensive as solving the system itself. Further, sensitivities
must be computed for every parameter value at which a gradient evaluation is required,
making them prohibitively expensive for use in optimisation methods, where gradients
are typically required over a large sequence of parameter values.

In the context of model calibration and uncertainty quantification, Gaussian processes
(GPs) are often used as surrogate models for the solution of the underlying equations
with the aim of making the calibration of such models tractable [Higdon et al., 2004,
Stuart and Teckentrup, 2018]. This approach is advantageous as derivatives of the
GP posterior mean can usually be computed explicitly, permitting the use of gradient-
based optimisation methods and sampling. While GP surrogate models do provide
an effective approach to calibrating black-box computer codes where little is known
about the structure of the underlying model, this comes at the price of data-efficiency.
Information about the gradient can only be obtained from multiple function evaluations
near to the location of the required gradient, so again numerous evaluations may be
required, particularly if the dimension of the parameter space is high.

These highlighted issues motivate the novel approach to computing sensitivities for
optimisation problems presented in this paper. Our proposed approach is able to bridge
the gap between the classical approach of numerically solving the sensitivity equations
and the purely data-driven surrogate model approach. This is achieved by introducing a
nonparametric Gaussian process model for the solution of the sensitivity equations that

1i.e. any method in the Newton family of optimisation methods.
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is defined over the entire parameter space. The output is a posterior distribution on the
space of vector fields in parameter space, whose mean can be interpreted as an estimate
of the local sensitivity across multiple parameter locations and whose variance controls
the error in this estimate under regularity assumptions.

This approach offers various advantages to the state-of-the-art approaches: Firstly, the
computational cost of the method can be carefully controlled by the user, either to attain
a desired level of accuracy as measured by the “width” of the posterior distribution or
to fit within a given fixed computational budget. Secondly, estimates of gradients at
multiple parameter locations are able to share information between them to provide
accurate gradient approximations without necessitating additional numerical solves of
the underlying PDE model. Thirdly, the posterior distribution can be efficiently updated
when a gradient evaluation at a new parameter value is required. These three advantages
are particularly pertinent to model calibration methods which require multiple gradient
evaluations along a trajectory.

Besides the immediate application to calibration of PDE models, the efficient ap-
proximation of sensitivities for large scale PDE models is of independent interest, with
wide ranging applications including model order reduction [Pulch et al., 2015], shape
optimisation [Newman III et al., 1999] and uncertainty quantification [Arriola and Hy-
man, 2009]. The probability distribution output from our new approach has a rigorous
Bayesian interpretation, allowing it to be composed within inference and computation
pipelines in a coherent manner to enable propagation of uncertainty.

1.1 Related Work

ODE- or PDE-constrained optimisation problems are a class of control problem in which
the cost function involves the solution of a partial differential equation posed on a domain
D ⊆ Rd. Classically, such optimisation problems arise in the context of design and
control of engineering systems, for example in optimal topological design, shape design
and optimal control of dynamic systems. See Herzog and Kunisch [2010] for a review of
optimisation algorithms for use in this context. Further, these problems arise naturally in
the context of Bayesian inverse problems and model calibration. In particular, variational
approaches to data assimilation for weather prediction can be naturally rephrased as
PDE-constrained optimisation problems [Fisher et al., 2009].

Sensitivity analysis seeks to quantify the dependence of a function g(p) on pertur-
bations of the problem data or parameters p ∈ P . Broadly speaking, we distinguish
between global sensitivity analysis, which quantifies how input variability influences out-
put variability of a model, and local sensitivity analysis which assesses the influence of
infinitesimal input perturbations on model output. The former is typically assessed in
terms of variance, classically using variants of Sobol′ indices [Sobol′, 2001]. By contrast,
local sensitivity analysis involves the calculation of partial derivatives of function outputs
with respect to parameters. Local sensitivity analysis plays a fundamental role in the
context of ODE- or PDE-constrained optimisation [Bonnans and Shapiro, 2013]. In this
setting, let g(u, p) denote the real-valued objective function for the optimisation prob-
lem, that depends on the solution u(p) of a differential equation for a given parameter
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value p ∈ P . Then we seek to compute the total derivative dg
dp(p), which constitutes the

local sensitivities.
Generally speaking there are two approaches to computing such derivatives: the for-

ward or direct method and the adjoint method. In the forward method, supposing that
p ⊆ Rm, the underlying equations are differentiated with respect to p1, . . . , pm to ob-
tain a system of m equations for the sensitivities. The adjoint method originates in
the theory of Lagrange multipliers in optimisation, and involves solving an auxiliary ad-
joint equation for the Lagrange multiplier λ from which the sensitivities can be directly
computed. Given that the forward approaches involves solving a system of m equations
while the adjoint approach involves solving only a single equation, the latter approach
can be significantly more efficient for large m [Sengupta et al., 2014].

The computational cost of solving optimisation problems involving large-scale ODE or
PDE models has motivated the use of surrogate models; approximations of the underlying
model that can be evaluated at lower computational cost. Proposed approaches include
using reduced order modelling based on reduced basis methods or proper orthogonal
decompositions [Benner et al., 2015, 2014]. These surrogate approaches are motivated by
the fact that the adjoints, and therefore the gradients, of the low-dimensional surrogate
model can obtained efficiently. Recent efforts involve combining neural network models
with low-dimensional physical models to obtain efficient and accurate surrogate models
[Drohmann and Carlberg, 2015, San and Maulik, 2018a,b, Hartman and Mestha, 2017,
Sheriffdeen et al., 2019]. Again, these methods exploit the fact that gradients of neural
network models can be obtained efficiently through back-propagation.

Gaussian processes (GPs) have been widely used to provide black-box emulation of
computationally expensive codes [Sacks et al., 1989], with [Kennedy and O’Hagan, 2001]
providing a mature Bayesian formulation to the methodology. Emulation methods based
on GPs are now widespread and find uses in numerous applications ranging from com-
puter code calibration [Higdon et al., 2004], uncertainty analysis [Oakley and O’Hagan,
2002] and MCMC [Lan et al., 2016, Cleary et al., 2020]. Among the first papers to con-
sider application of emulation within sensitivity analysis was Oakley and O’Hagan [2004],
which extended the work of Kennedy and O’Hagan [2001] to computation of variance-
based global sensitivities. Subsequent work by Jin et al. [2004] considered a similar
approach that exploited a tensor-product kernel to simplify the integration problems
required, though this work did not consider the posterior covariance in their estimator.
See Cheng et al. [2020] for a more extensive review of emulation-based global sensitivity
analysis techniques, and Girard et al. [2016], Beddows et al. [2017], Renardy et al. [2018]
for a survey of applications of such approaches. One could envisage an analogous em-
ulation strategy for local sensitivity analysis of computationally expensive models that
involves first constructing an emulator ĝ of the objective function g and then evaluat-
ing the derivative dĝ

dp(p∗) which, assuming a conducive emulator, can be computed at
a lower cost than the derivative of g itself. A notable disadvantage of this approach
is that to approximate local sensitivities in this way would require global information
about g, since unless a highly structured surrogate model is used little information can
be obtained about dg

dp(p) from the single evaluation g(p).
The method proposed in this paper aims to bridge the gap between classical numerical
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approaches and emulation-based approaches to calculating sensitivities within optimi-
sation problems. The proposed method can be interpreted as a Bayesian probabilistic
numerical method [Cockayne et al., 2019] for the solution of the forward or adjoint sen-
sitivity equations over D × P . It is similar to the probabilistic meshless methods for
solutions of PDEs presented in Cockayne [2019, Chapter 5], but extended across pa-
rameter space. This formalism presents several advantages. Firstly it permits a high
level of adaptivity, in that the solution can be refined over both P and D to increase
accuracy either globally over parameter space P , or locally for particular value of the
parameters p ∈ P . Secondly, subject to regularity assumptions, estimates of the gradient
at a parameter p may re-use information from nearby gradient evaluations, exploiting
the smoothness of the sensitivity equations to reduce the computational effort required
for accurate gradient estimates at p when nearby gradients have already been evalu-
ated. Thirdly, gradient estimates can be updated efficiently, allowing the adaptivity and
smoothness properties mentioned to be exploited within algorithms that depend upon
local sensitivities, such as gradient-based optimisation algorithms.

1.2 Contributions

The main contributions of the paper are as follows:

• We develop a probabilistic framework for computing gradients for differential equa-
tion models.

• We study the theoretical properties of this method, in particular its robustness to
discretisation error.

• We demonstrate how the inferred gradients can be leveraged in optimisation prob-
lems.

• The results are demonstrated on a number of model problems to analyse the
method’s performance in comparison to classical approaches.

1.3 Structure of the Paper

The paper proceeds as follows. In Section 2 the classical approach to computing local
sensitivities is formulated with examples of application to the problem of computing
sensitivities for a simple PDE. Section 3 presents the novel probabilistic approaches and
provides theoretical results relating to their accuracy and stability. Section 4 discusses
the use of the probabilistic methods introduced in optimisation problems, and the em-
pirical performance of these methods is assessed in Section 5. We conclude with some
discussion in Section 6. The supplementary material contains the proofs required for the
paper in Section S1.

1.4 Notation

Let W k,p(D) denote the Sobolev space in which each function has k weak derivatives
with finite Lp(D) norm. We will use the notation Hk(D) = W k,2(D). Further let
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Hk
0 (D) denote the subset of Hk(D) for which all f ∈ Hk

0 (D) have f = 0 on ∂D and
H−k(D) to be the dual of Hk

0 (D). For two normed spaces U , V we will use the notation
L(U ,V) to denote the set of all bounded linear operators from U to V. For the set of all
bounded linear functionals on U we will use the notation U∗ = L(U ,R). When U is a set
of functions on some domain D we will use the notation δ[x] to denote the evaluation
functional for the point x ∈ D, i.e. δ[x](u) = u(x).

When both U and V are Hilbert spaces, for an operator A ∈ L(U ,V) let A† ∈ L(V,U)
denote the adjoint of A. For A ∈ L(U ,U), recall that the trace of A is defined as
trace(A) =

∑∞
i=1〈Aei, ei〉 where (ei)

∞
i=1 is an arbitrary orthonormal basis of U .

Several operator norms will be required. For an operator A : U → V we will denote
the operator norm by ‖A‖U→V = supu∈U ‖Au‖V/‖u‖U . When U = V we will simply use

the notation ‖A‖U . The trace norm is given by ‖A‖tr = trace([A†A]
1
2 ) while the Hilbert-

Schmidt norm is given by ‖A‖HS = trace(A†A)
1
2 . Recall that ‖A‖U→V ≤ ‖A‖HS ≤ ‖A‖tr.

1.4.1 Fréchet Derivatives

Of central importance to the paper is the concept of a Fréchet derivative. Let U and
V each be normed spaces and consider a function f : U → V. When it exists, Fréchet
derivative of f at u ∈ U is defined to be the operator df

du [u] ∈ L(U ,V) that satisfies

lim
‖h‖→0

‖f(u+ h)− f(u)− df
du [u]h‖

‖h‖ = 0 (1)

where the notation ‖h‖ → 0 is a shorthand for the requirement that the limit exist
uniformly across sequences (hn) in U such that ‖hn‖ → 0 as n → ∞. It is important
to observe that df

du [u] is a linear operator that depends upon u, so that ∂f
∂u [u](v) is

the Fréchet derivative at the location u ∈ U in the direction v ∈ U . For a function
f : U × V → W the partial Fréchet deriviative is defined analagously to be the operator
∂f
∂u ∈ L(U × V,W) that satisfies

lim
‖h‖→0

‖f(u+ h, v)− f(u, v)− ∂f
∂u [u, v](h)‖

‖h‖ = 0

whenever the above limit exists. Finally, consider the case where the function u depends
on v. Let f : U × V → W, suppose that U is a space of functions with domain V.
Then, when it exists, the Fréchet derivative of f with-respect-to v is the operator df

dv ∈
L(U × V,W) that satisfies

lim
‖h‖→0

‖f(u(v + h), v + h)− f(u, v)− df
dv [u(v), v](h)‖

‖h‖ = 0. (2)

This will sometimes be referred to as the total Fréchet derivative of f .
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2 Background

In this section a formal presentation of local sensitivity analysis is provided. In Sec-
tion 2.1 the problem is introduced, while Sections 2.2 and 2.3 present forward and
adjoint sensitivity analysis, respectively. Lastly in Section 2.4 we will briefly discuss
probabilistic numerical methods for the solution of PDEs, and discuss their similarity to
this work.

2.1 Local Sensitivity Analysis

We begin by introducing the relevant spaces for the problem. Let U , P , F and G
each be real-valued Banach spaces. In this paper it will be assumed that U and F are
infinite-dimensional spaces of functions defined on spatial domain D, with U referred
to as the solution space and F as the constraint space. Define UP to be a space of
real-valued functions on D × P with the property that u( · , p) ∈ U for all p ∈ P , and

let U∂P =
{
∂u
∂p : u ∈ UP

}
. The set FP is defined analogously. The parameter space P

may be finite- or infinite-dimensional. The space G will be referred to as the quantity
of interest (QoI) space, and will be assumed to be finite-dimensional. In particular it
will often be the case that dim(G) = 1, though we note that this is not required for the
presentation below.

Two functions define the problem. The function F : U × P → F is referred to as the
constraint function, and loosely speaking this encapsulates all of the constraints that
must be satisfied in order for a pair (u, p) ∈ U × P to constitute a solution to the PDE.
The function g : U × P → G is referred to as the QoI function, and this describes a
typically low-dimensional quantity of interest derived from the solution; in the context
of optimisation problems this will generally be the objective function whose minimiser
is sought.

More formally, F is such that for each p ∈ P there is a unique u† ∈ UP that satisfies
F (u†( · , p), p) = 0 for each p ∈ P . For convenience, define the parameter-to-solution
map U : P → U which provides the solution to the underlying differential equation
for a particular value of the parameter, i.e. U(p) = u†( · , p). As a result, the equation
F (U(p), p) = 0 is automatically satisfied for all p ∈ P .

It will be assumed the partial Fréchet derivatives of F and g with-respect-to both u
and p exist and are tractably computable for all pairs (u, p) ∈ U × P . It will also be
assumed that the derivative of U with-respect-to p exists but is not tractable. Note that
this implies the existence of the total derivatives dF

dp and dg
dp . Lastly we assume that

∂F
∂u [U(p), p] is nonsingular for each p ∈ P .

The objective is to estimate the value of the Fréchet derivative

dg

dp
[U(p), p] ∈ L(P,G)

for a pair (U(p), p). Note that since the location at which the derivative is taken is U(p),
this should be interpreted as a total Fréchet derivative in the form of Eq. (2). To fix
ideas we consider the following simple parameter sensitivity problem.
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Example 2.1 (Partial Differential Equation). Let P ⊆ Rn be an open set. Consider the
following parametrised steady state conductivity model:

−∇ · (κ(x; p)∇u(x)) = f(x) x ∈ D
u(x) = 0 x ∈ ∂D

where f ∈ H−1(D) and κ : D × P → Rd×d satisfies λp|e|2 ≤ e · κ(x, p)e ≤ Λp|e|2
for all x ∈ D and e ∈ Rd for some 0 < λp < Λp < ∞ for all p ∈ P . Standard
existence theory for elliptic PDEs [Evans, 2010, Section 6.2, Theorem 3] states that a
weak solution u ∈ H1

0 (D) exists for every p ∈ P . For convenience we will suppose that
the boundary conditions are implicitly satisfied, i.e. U = H1

0 (D). The constraint equation
is given by F (u, p) = −∇ · (κ(x; p)∇u(x))− f(x) so that F = H−1(D). Suppose that the

quantity-of-interest is g(x) = ‖u‖2 =
(∫
D u

2(x) dx
) 1

2 .

Both forward and adjoint sensitivities are computed by first observing that the total
derivative of interest, dg

dp satisfies the following identity:

dg

dp
[U(p), p] =

∂g

∂u
[U(p), p]

dU

dp
[p] +

∂g

∂p
[U(p), p]. (3)

Since it is assumed that ∂g
∂u and ∂g

∂p are each analytically tractable, the only remaining

quantity that must be computed is dU
dp . The challenge is that since the parameter-to-

solution map U(p) is typically inaccessible and must be approximated independently for
each p ∈ P , dU

dp is also difficult to compute. The forward and adjoint approaches handle
this intractability in different ways, which will now be presented.

2.2 Forward Sensitivity Analysis

In forward sensitivity analysis we seek to calculate dU
dp directly. Note that we have

∂F

∂p
[U(p), p] =

∂F

∂u
[U(p), p]

dU

dp
(p) +

∂F

∂p
[U(p), p], p ∈ P.

Further, since by construction F (U(p), p) = 0, we also have that dF
∂p [U(p), p] = 0. This

gives the forward sensitivity equation

∂F

∂u
[U(p), p]

dU

dp
[U(p), p] = −∂F

∂p
[U(p), p], p ∈ P (4)

which is a linear system whose solution can be computed to determined dU
dp , since ∂F

∂u is
assumed to be invertible. This solution can then be substituted into Eq. (3) to compute
dg
dp .

Note that both the operator ∂F
∂u [U(p), p] and the right-hand-side −∂F

∂p [U(p), p] depend
both on the parameter value p and the solution U(p). This has two important conse-
quences. Firstly, if sensitivities are required at another point q 6= p then the solution
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U(q) must be recomputed and the forward sensitivity equation Eq. (4) must be solved
anew to determine dU

dp [U(q), q]. Secondly, for most problems of interest U(p) will not be

available explicitly and one must substitute an approximate solution Û(p) ≈ U(p). This
may induce further numerical error, the impact of which must in turn be analysed, but
also means that even though Eq. (4) is linear, its solution is unlikely to be available in
closed-form owing to its dependence on Û(p). We now consider the computation of the
forward sensitivities for Example 2.1.

Example 2.2 (Elliptic PDE: Forward Sensitivity Analysis). We begin by deriving ∂F
∂p .

Assume that κ is once-differentiable in each coordinate of p and that supx∈D |∂piκ(x; p)| <
∞. The Frechét derivative of F with respect to p at (U(p), p) is defined by

∂F

∂p
[U(p), p]q = −

m∑

i=1

∇ ·
(
∂κ

∂pi
(x; p)∇U(p)(x)

)
qi, q ∈ P. (5)

From energy estimates for weak solutions of elliptic PDEs, ∇U(p)(x) ∈ L2(D). For
illustration, it is straightforward to show that the RHS of Eq. (5) lies in H−1(D). The
derivative ∂F

∂u is given by

∂F

∂u
[U(p), p](v) = −∇ · (κ(x; p)∇v(x)) v ∈ U . (6)

so that clearly ∂F
∂u [U(p), p] ∈ F since in this case, owing to the linearity of the PDE

operator, dF
du is identical to this operator and independent of both p and U(p), though for

general nonlinear problems this will not be the case. The sensitivities of U with respect
to the pi are therefore defined by the following system of PDEs

−∇ ·
(
κ(x; p)∇dU(p)

dpi
(x)

)
= −∇ ·

(
∂κ

∂pi
(x; p)∇U(p)(x)

)
, (x, p) ∈ D × P. (7)

For fixed p system of equations is well-posed, guaranteeing the existence of unique solu-
tions dU

dpi
∈ H1

0 (D), i = 1, . . . ,m.
Once these m PDEs have been solved, the computed solutions can be substituted into

Eq. (3) to determine dg
dp . To accomplish this we are required to compute the derivatives

∂g
∂u and ∂g

∂p . Note that in this case g is independent of p, and it is further straightforward
to show that

∂g

∂u
[u](v) =

dg

du
[u](v) =

〈u, v〉2
‖u‖2

.

Once again, note that this is a linear operator in v, but is nonlinear in u. We therefore
have that

dg

dpi
[U(p), p] =

1

‖U(p)‖2

〈
U(p),

dU

dpi

〉

2

for the derivatives dU
dpi

identified by solution of Eq. (7).
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The central challenge with the forward approach, which motivates the adjoint ap-
proach that will be presented in the next section, is the dependence of the forward
sensitivity equation Eq. (4) on the dimension of the parameter space: solving for dU

dp
requires the solution of dim(P ) PDEs. In many practical problems the parameter space
is extremely large; thus, a method for computing the sensitivities that is independent of
the dimension of the parameter space is also of interest.

2.3 Adjoint Sensitivity Analysis

Adjoint sensitivity analysis begins by introducing the operator λ ∈ L(F ,G). Supposing
that dim(G) = n, we can express g as (g1, . . . , gn) and consequently λ = (λ1, . . . , λn)
where λi ∈ F∗ for i = 1, . . . , n. For fixed p, the auxiliary term λ is selected to solve

λi
∂F

∂u
[U(p), p] =

∂gi
∂u

[U(p), p], i = 1, . . . , n. (8)

Assuming this is a unique solution λ exists, one can then recover the sensitivity of the
quantity of interest g as follows

dgi
dp

= −λi
∂F

∂p
+
∂g

∂p
, i = 1, . . . , n. (9)

which provides a computable expression for the local sensitivities.
We note that compared to Section 2.2 which, in the finite-dimensional case, neces-

sitates m = dim(P ) solutions of the forward sensitivity equation, the adjoint system
requires n = dim(G) solutions of the adjoint sensitivity equation. In typical situations
where n� m then there is a clear computational benefit to this approach.

Example 2.3 (Elliptic PDE: Adjoint Sensitivity Analysis). Recalling ∂F
∂u and ∂g

∂u as
derived in Example 2.2, the problem that must be solved to identify λ ∈ H1

0 (D) such that

∇ ·
(
κ>(x; p)∇λ(x)

)
=

U(p)

‖U(p)‖2
. (10)

Once λ has been determined, referring again to the derivation in Example 2.2 we have
that

∂g

∂pi
= −

∫
∇λ(x) · ∂κ

∂pi
(x; p)∇U(p)(x) dx

which is real-valued, as required. Again note that in the equation that determines λ,
U(p) appears on the right-hand-side, so for each value of p for which sensitivities are
required the PDE must be solved. Nevertheless the fact that in this example only a single
system needs to be solved for each p makes the adjoint method significantly cheaper to
apply when m = dim(P ) is large.

In the next section we will describe the new probabilistic approaches to both forward
and adjoint sensitivity analysis, each of which operates with a constrained computational
budget.
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2.4 Probabilistic Numerical Methods for PDEs

When applied to PDEs, there is a marked similarity between this work and probabilis-
tic numerical methods2 applied to linear PDEs. In this section we will discuss these
methods, and the similarity to the present approach. Broadly speaking these methods
begin by placing a Gaussian prior on the function space occupied by the solution to
the PDE. Finite-dimensional information about the unknown solution is then produced
by projecting the linear PDE through a set of d functionals, referred to as information
functionals in this work. The conjugacy of Gaussian distributions with linear projec-
tions can then be exploited to write down the posterior distribution in closed-form. For
a detailed introduction to this perspective see [Cockayne, 2019, Chapter 5], in which it
is referred to as the probabilistic meshless method (PMM).

This approach is equivalent to symmetric collocation with radial basis functions [Wend-
land, 2004, Cialenco et al., 2012], in that it is possible to construct the prior such that
the posterior mean from PMM coincides with the estimator for the solution of the PDE
produced in symmetric collocation. To our knowledge this approach was first presented
in [Wendland, 2004, Chapter 16], and extended in [Cialenco et al., 2012] to refine the
error analysis, as well as explore applications in stochastic PDEs. In symmetric colloca-
tion the posterior distribution itself is not of interest, but the error analysis that appears
in those works is relevant here as it provides an important interpretation for the poste-
rior covariance. Specifically, the bound that appears in [Wendland, 2004] connects the
error to an object referred to as the power function, which can be shown to be directly
connected to the posterior covariance that appears in the PMM.

In addition to the PMM, other works that could be interpreted as probabilistic numeri-
cal methods for PDEs include a series of papers that introduced gamblets for the solution
of PDEs with rough coefficients [Owhadi, 2015, Owhadi and Zhang, 2017, Owhadi, 2017].
These papers construct a probabilistic solution to the PDE in a broadly similar way to
[Cockayne, 2019], but with several distinct differences. Firstly, the probability model
is motivated by a game theoretic argument rather than Bayesian reasoning, though
the ultimate conditioning procedure arrived at is equivalent. Secondly, the information
about the solution is constructed in a distinctly different way, by projecting the defin-
ing equations of the PDE against a hierarchical basis formed by a nested partitioning
of the domain, whereas in the PMM and in symmetric collocation it is obtained by
evaluating those equations at a set of points referred to as collocation points. However
this results in a very different error analysis, since collocation methods typically bound
the estimation error in terms of the fill distance of these collocation points, whereas in
gamblet-based methods, since there is no analogue of these points, a different approach
must be adopted.

The chief similarities of these approaches to the approach presented in this paper is
that, when the system defined by F is a PDE, the sensitivity equations will involve
solving a system of PDEs. In this setting the approach that we describe is similar in
principal to the approaches we describe above, in that for a particular choice of prior

2See [Hennig et al., 2015] for a high-level introduction, and [Oates and Sullivan, 2019] for a thorough
literature review.
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and information, the method we employ will be equivalent to these methods. There are
several distinct differences however. Firstly, it is possible that the system described by
F is not a PDE, and indeed in this work we will explore sensitivity analysis for ODEs
in addition to PDEs. While there exist probabilistic numerical methods for solving
ODEs, they typically make approximations to account for nonlinearity which are not
required in this work, as the systems which must be solved in sensitivity analysis are
linear. Secondly, in the PDE case we do note make specific assumptions on the form
of the information functionals, as these will typically be problem specific. Thirdly, by
formulating the sensitivity equations as a single (degenerate) PDE on the joint space
D×P , the continuity of the sensitivities with respect to p is exploited to permit implicit
interpolation of the sensitivities across different values of p. And lastly, the focus of
this paper is on computing sensitivities, not on the solution of the PDE itself, which is
assumed to be obtained by some classical numerical solver.

3 Probabilistic Approaches

In this section we will present two probabilistic approaches to computing parameter
sensitivities. Each allows a user to restrict the amount of computational effort expended
and still obtain an estimate of the sensitivities, while also providing an estimate of
the error incurred as a result. Familiarity with Gaussian processes is assumed for this
section; we refer the unfamiliar reader to the introduction given in Rasmussen and
Williams [2005]; see also Bogachev [1998] for a more mathematical treatment.

We will assume that there exist reproducing kernel Hilbert spaces (RKHSs) U ′P , F ′P
such that U ′P is dense in UP and F ′P is dense in FP . Let U∂P =

{
∂u
∂p : u ∈ UP

}
and let

U ′∂P be defined analogously for U ′P . It will also be assumed that g is a functional, so
that G = R; this last assumption can readily be generalised, and is made to simplify the
presentation.

3.1 Probabilistic Forward Sensitivity Analysis

We first consider forward sensitivity analysis. We begin by modelling prior uncertainty
about ∂U

∂p with the random variable XF , distributed as XF ∼ µF = N (aF , CF ), where

aF ∈ U ′∂P and CF : U ′∂P → U ′∂P is a positive-definite covariance operator. It will
be assumed that µF (U∂P ) = 1. When dim(P ) < ∞ this prior takes the form of a
vector-valued Gaussian process prior [Álvarez et al., 2012]. In the infinite-dimensional
setting, we note that a discretisation of the parameter space will nevertheless be required
for computational purposes, resulting in a parameter space that is effectively finite-
dimensional, though a finite-dimensional parameter space is not strictly required for the
theoretical results presented herein.

To obtain a posterior belief over the forward sensitivities, this prior will be conditioned
on observations of Eq. (4). Let ĨF,1, . . . , ĨF,d be a such that ĨF,j ∈ (Fm)∗ for j = 1, . . . , d
and let {p1, . . . , pd} ⊂ P . Let XF be a random variable with law µF . Note that the prior
distribution µF implies a prior distribution over dg

dp by projecting through the linear map
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given in Eq. (3); this will be denoted νF . By applying each operator ĨF,j to Eq. (4) we
obtain

ĨF,j
∂F

∂u
[U(pj), pj ]XF = −ĨF,j

∂F

∂p
[U(pj), pj ] (11)

which, under the assumptions made at the start of this section, yields the information

fF,j = −ĨF,j
∂F

∂p
[U(pj), pj ]

where fF,j ∈ R. Let fF ∈ Rd be the vector with [fF ]j = fF,j .
It is more mathematically convenient to think of the ĨF,j in terms of functionals

defined on U∂P . To this end, let IF,j ∈ U∗∂P be defined by

IF,j
∂u

∂p
= ĨF,j

∂F

∂u
[U(pj), pj ]

∂u

∂p
( · , pj).

We refer to IF,1, . . . , IF,d as the information functionals, and will assume that the infor-
mation functionals are linearly independent.

The posterior is obtained by conditioning the prior on the information functionals.
First, introduce the operator IF : UP → Rd, given by

IF
∂u

∂p
=



IF,1 ∂u∂p

...

IF,d ∂u∂p


 .

Then we seek to compute XF |IFXF = fF . Owing to the linearity of IF , the resulting
posterior distribution is again Gaussian and is given in the following proposition.

Proposition 3.1 (Probabilistic Forward Sensitivity Analysis). The posterior XF |IFXF =
fF has law µ̄F given by

µ̄F = N (āF , C̄F )

āF = aF + CFI†F [IFCFI†F ]−1(fF − IFaF )

C̄F = CF − CFI†F [IFCFI†F ]−1IFCF .

The implied posterior distribution over dg
dp , denoted ν̄F , is given by

ν̄F = N (ḡF , ḠF )

ḡF (p) =
∂g

∂u
[U(p), p](āF ( · , p)) +

∂g

∂p
[U(p), p]

ḠF (p, p′) =
∂g

∂u
[U(p), p]δ[ · , p]C̄F δ[ · , p′]†

∂g

∂u
[U(p′), p′]†.

An important note is that even when underlying system described by F is nonlin-
ear, the posterior distribution remains Gaussian owing to the linearity of the Fréchet
derivatives. Choice of prior mean and covariance is highly problem specific, and will be
discussed for the specific examples considered in this paper in Section 5. Next we turn
to the adjoint approach.
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3.2 Probabilistic Adjoint Sensitivity Analysis

For the adjoint problem, the system that must be solved is now Eq. (8). Since F ′P is
assumed to be an RKHS, due to the representer theorem [see e.g. Berlinet and Thomas-
Agnan, 2004, Section 4.4] we have λf = 〈f, β〉F , where f, β ∈ F ′P ,

The proposed approach is as in the previous section. We model uncertainty in β
with the random variable XA, whose law is µA = N (aA, CA), where aA ∈ F ′P and
CA : F ′P → F ′P is a positive-definite covariance operator. Note that this again implies a

distribution νA over dg
dp by projecting through the linear map

J [p](β) =

〈
∂F

∂p
[U(p), p], β( · , p)

〉

F
.

An important remark, however, is that unless µA and µF are chosen carefully, the implied
distributions νA and νF will not be equal.

To define the information functionals let {(e1, p1), . . . , (ed, pd)} ⊂ U × P . Then

IA,jβ =

〈
∂F

∂u
[U(pj), pj ](ej), β( · ; pj)

〉

F
, (12)

so that IA,j ∈ F∗P . Furthermore note that the information fA,j := ∂g
∂u [U(pj), pj ](ej) is

clearly computable. Let fA and IA be defined analogously to previous sections; then the
posterior on β is given in the following proposition.

Proposition 3.2 (Probabilistic Adjoint Sensitivity Analysis). The posterior distribution
β|fA ∼ µ̄A is given by

µ̄A = N (āA, C̄A)

āA = aA + CAI†A(IACAI†A)−1(fA − IAaA)

C̄A = CA − CAI†A(IACAI†A)−1IACA.
The implied posterior distribution ν̄A is given by

ν̄A = N (ḡA, ḠA)

ḡA(p) = −J [p](āA) +
∂g

∂p
[U(p), p]

ḠA(p, p′) = J [p]CAJ †[p′]
Note that the form of the posterior over β is essentially identical to the form of the

posterior from Theorem 3.1, modulo the choice of information functionals and prior.
Next we will present some theoretical analysis of the forward and adjoint methods.

3.3 Theoretical Analysis

Our first theoretical result concerns a local error bound for the posterior mean in terms
of the posterior covariance. This result is a general result about conditional distributions
of Gaussian process, and so is not specific to either the forward or adjoint method; as a
result we adopt generic notation.
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Proposition 3.3 (Local error bound). Let µ = N (a,C) be the prior, for a ∈ HC , and
let µ̄ = N (ā, C̄) be the posterior measure based on observations Iu† = f where u† ∈ HC ,
I ∈ (H∗C)d and f ∈ Rd. Then we have that, for each L ∈ H∗C

|Lā− Lu†| ≤ (LC̄L†) 1
2 ‖a− u†‖C−1 .

The result from Theorem 3.3 is similar to results on error bounds in scattered data ap-
proximation with radial basis functions, such as in Wendland [2004]. The term (LC̄L†) 1

2

is analagous to the power function Wendland [2004, Section 11.1], but the focus in that
work is on the case when both L and Ij are evaluation functionals. In Wendland [2004,
Chapter 16] each of these restrictions is relaxed, however the form of the power function
derived in this case is more abstract than presented here.

Similar bounds appear in the literature on solution of PDEs by symmetric collocation
with radial basis functions (see e.g. Wendland [2004, Section 16.3], Cockayne [2019],
Cialenco et al. [2012]). In these cases it is typically assumed that the Ĩj are evaluation
functionals, so that the observations are point evaluations of the right-hand-side of the
PDE, and that L is again an evaluation functional. It is then possible to bound (LC̄L†) 1

2

in terms of the fill distance in the interior and on the boundary of the domain. We
have opted to make minimal assumptions on the form of the information operators
and test functions in Theorem 3.3, to avoid tying the result to a particular numerical
method. Further note that the cited results only apply for fixed p when performing
sensitivity analysis for an elliptic PDE; as a global function of (x, p) the sensitivity
analysis equations may not be elliptic even when for fixed p the underlying PDE is
elliptic.

The next proposition provides theoretical guarantees for the setting when the solution
U(p) cannot be accessed directly, and instead a numerical estimate is provided by the
map Û : P → U . The natural way to provide such guarantees is by bounding the distance
between the measure conditioned based on U(p) to that based on Û(p). This is closely
related to results that appear in Stuart [2010, e.g. Theorem 4.6], though the results
presented therein assume that the two measures have a common dominating measure,
which is not the case in the present setting. A consequence of this is that the Hellinger
metric, which is commonly used to measure distance in the space of probability measures
in the field of uncertainty quantification, is not suitable here.

To proceed we introduce the 2-Wasserstein metric, which is suitable for measures that
are mutually singular. Perhaps the most common way to define this metric is in terms of
couplings of probability measures. Let µ1 and µ2 be measures on some abstract normed
space V. Let Γ(µ1, µ2) be the set of couplings of µ1 and µ2, that is, the set of all Borel
probability measures π ∈ P(V × V) with the property that π(A × V) = µ1(A) and
π(V × A) = µ2(A) for each Borel set A ⊂ V. Then the 2-Wasserstein metric [Villani,
2009, Definition 6.1] is given by

W2(µ1, µ2) =

(
inf

π∈Γ(µ1,µ2)

∫

V×V
‖v − v′‖2 dπ(v, v′)

) 1
2

. (13)

We now proceed to state a generic result concerning robustness to approximation error,
which will then be applied to the methods described in Theorem 3.1 and Theorem 3.2.
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Proposition 3.4 (Robustness to Numerical Error). Let µ = N (a,C) be a Gaussian
distribution with associated RKHS H, for a ∈ H and C : H → H positive-definite.
Assume that I, Î are each bounded linear operators from H to Rd. Let µ̄ = N (ā, C̄) be
the posterior measure based on observations Iu† = f where u† ∈ H. Let µ̂ = N (â, Ĉ) be
the same prior conditioned on observations Îu† = f̂ . Then it holds that

W2(µ̄, µ̂) ≤ (CI,1 + CI,2)‖I − Î‖H→Rd + Cf‖f − f̂‖Rd +O
(
‖I − Î‖2H→Rd

)

where

CI,1 = ‖C‖H
[(
‖a‖H + ‖C‖

1
2
HS

)(
‖G−1I‖H→Rd + ‖Ĝ−1Î‖H→Rd

)
+ ‖G−1f‖Rd

]

CI,2 = α‖G−1‖2Rd‖C‖H
(
‖G−1f‖Rd + ‖I‖H→Rd‖Î‖H→Rd

(
‖a‖H + ‖C‖

1
2
HS

))

Cf = ‖C‖H‖G−1Î‖H→Rd

α = ‖IC‖H→Rd + ‖ÎC‖H→Rd

and G = ICI†, Ĝ = ÎCÎ†.

We next prove a corollary of this result which establishes a bound for the error in the
posterior distribution for both forward and adjoint sensitivity analysis as a result of the
need to use Û(p) rather than having access to U(p) directly.

Corollary 3.5. Assume that for each p ∈ P there exists ε > 0 such that

∥∥∥∥
∂F

∂u
[U(p), p]− ∂F

∂u
[Û(p), p]

∥∥∥∥
U→F

≤ ε,
∥∥∥∥
∂F

∂p
[U(p), p]− ∂F

∂p
[Û(p), p]

∥∥∥∥
P→F

≤ ε, and

∥∥∥∥
∂g

∂u
[U(p), p]− ∂g

∂u
[Û(p), p]

∥∥∥∥
U→G

≤ ε.

Further assume that the ĨF,j and ĨA,j are such that, for all j = 1, . . . , d

‖ĨF,j‖F→R < M <∞,
‖ĨA,j‖F→R < M <∞.

Lastly assume that ‖ · ‖Rd = ‖ · ‖2.
Let µ̂F be the posterior distribution from Theorem 3.1, with Û( · ) substituted for U( · ).

Likewise let µ̂A be the posterior from Theorem 3.2 with the same substitution. Then we
have

W2(µ̄F , µ̂F ) ≤ (CI,1 + CI,2 + Cf )Mε
√
d+O(ε2)

W 2
2 (µ̄A, µ̂A) ≤ (CI,1 + CI,2 + Cf )Mε

√
d+O(ε2)
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3.4 Comparison of Forward and Adjoint Approaches

We conclude this section with a brief discussion of the relative merits of the forward and
adjoint approaches, compared to the classical approach.

Choice of Method The forward approach requires the user to specify a prior on the
parameter space; this is a space of dimension dim(P ). While the space in which the
prior is placed for the adjoint problem is less directly connected to the derivative of
interest, which might make eliciting a prior more challenging, in the finite-dimensional
case reasoning about the correlation structure between the components of ∂u

∂p for the
forward problem may also be challenging. As a result, much as in classical sensitivity
analysis, we are inclined to recommend the adjoint approach whenever dim(G) < dim(P ),
as will often be the case. However if the user has strong prior information about the
correlation structure between these components, the forward approach may still perform
well. Indeed, in the infinite-dimensional case such information is provided by knowledge
about the smoothness of the function p.

Experimental Design Theorems 3.1 and 3.2 each allow the user to construct a global
model for the required derivatives. However in order to perform inference globally, one
requires a set of points in P with which to construct the posterior. Both the forward
and the adjoint approach suffer from the curse of dimensionality in this respect, since
Gaussian processes typically require such designs to be “space-filling”3, and if P is high-
dimensional constructing a space filling design will be equally prohibitive in either mode.
However in the present paper we focus on application of these methods within iterative
optimisation algorithms, so that rather than requiring a space-filling design we only
require good estimates of the gradient along the path in parameter space followed by
the optimiser. This will be discussed in detail in the next section.

4 Optimisation and Probabilistic Sensitivity Analysis

We now explore a potential application of probabilistic local sensitivity analysis, as a way
to provide approximations of gradients in optimisation algorithms. As a starting point we
will consider the most fundamental of gradient-based optimisation algorithms, gradient
descent [Curry, 1944]. In Section 4.1 we briefly recall the GD algorithm. In Section 4.2
we describe how probabilistic gradients can be incorporated into the algorithm. Then,
in Section 5 we explore the use of this approach in two applications.

4.1 Gradient Descent

We now describe the GD algorithm. GD is in many respects a prototypical gradient-
based optimisation method, making it a natural starting point for studying the inte-

3Since, typically, the rate of convergence of Gaussian processes with this type of information depends
on the “fill distance”, i.e. the maximum distance of any point in the space to a design point. See e.g.
Wendland [2004], or Cialenco et al. [2012] in the context of PDEs.
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gration of probabilistic gradients into such algorithms. In GD the goal is to compute a
(local) minimiser p∗ of a function g(p). To accomplish this a sequence of points (pn),
pn ∈ P, n ∈ N is generated iteratively starting from some user-defined initial point p0

and advancing according to

pn+1 = pn − γndg

dp
(pn)

where γn is a parameter of the method known as the step size or learning rate. Under
specific conditions on f and γn it can be shown that pn → p∗ (again, a local minimiser) as
n→∞; see Nocedal and Wright [2006, Section 3.2] for further details. GD is presented
as an algorithm in Algorithm 1 in the supplement.

There are various methods for choosing the parameter γn. Since the focus of this work
is on the performance when dg

dp is replaced by the probabilistic gradients introduced in
Section 3, we will use a probabilistic version of the backtracking line search method
described in Nocedal and Wright [2006, Algorithm 3.1], based on the method described
in Mahsereci and Hennig [2015].

4.2 Gradient Descent with Probabilistic Gradients

We now discuss a probabilistic modification of GD. Heuristically the approach followed
is to replace the computation of dg

dp with a probabilistic gradient obtained from either
Theorem 3.1 or Theorem 3.2; to simplify the exposition we will describe the former,
but the approach is essentially identical in the latter. The approach is presented as an
algorithm in Algorithm 1. Essentially, we begin with a prior µF which is projected to νF
as described in Theorem 3.1. We then construct a sequence of random variables (Xn

F ),
where X0

F has law νF , by sequentially updating this prior with information collected over
the course of the optimisation. This provides a posterior distribution over the gradient
which is used in place of ∂g

∂p in GD. The principal advantages, illustrated in Section 5,

are that (i) for each value of pn, one can often obtain an approximation of dg
dp that is

sufficiently accurate for the purposes of taking a gradient step, at a lower cost than that
of computing dg

dp directly, and (ii) since the posterior is defined over the entire parameter
space, for some values of pn no inversion problem must be solved to advance the gradient
descent.

There are two main issues to address. The first is that that it is well-established
in the literature on stochastic gradient descent that line-search algorithms such as the
bls routine are not robust to inaccurate gradients. This is discussed in Mahsereci and
Hennig [2015]. Since the gradients we propose to use in this work are also inaccurate,
an alternative line-search strategy for selecting the step sizes γn must be adopted in
the probabilistic case. Borrowing from the literature on stochastic gradient descent, our
proposed approach incorporates ideas from the probabilistic line search of Mahsereci and
Hennig [2015] into the backtracking line search from Nocedal and Wright [2006, Section
3.2]. The pls routine is described in Algorithm 2.

A second issue is that if Xn
F is not sufficiently accurate, the step size γn found by

the probabilistic line search will be selected to be below the tolerance ε, causing the
algorithm to terminate. To address this we propose to couple the computation of γn
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with the calculation of the gradient, as described in probjac within Algorithm 1. Once
the tolerance has been achieved, we calculate the step size γ according to a probabilistic
version of backtracking line search that will be described presently. If γ is above the
tolerance the procedure returns the current gradient estimate, along with the posterior
distribution and the step size; otherwise, the tolerance δ is reduced and the conditioning
procedure is repeated. This continues until delta is below some minimum value δmin, at
which point convergence is accepted.

4.2.1 Discussion

We now provide some important remarks about the algorithm presented above.

Choice of Direction The direction chosen in Algorithm 1 at each iteration is the pos-
terior mean. A natural alternative would be to instead sample a direction from the
posterior distribution. This requires only minor modification of the above algorithm,
but empirically was found to perform slightly worse in general; consequently we have
opted to use the posterior mean as the descent direction.

Recycling Information Note that the gradient here is computed based on information
collected at all points p1

F , . . . , p
n
F , i.e. based on a global model for the gradient as a func-

tion of p. Since the sequence (pnF ) will increasingly concentrate in a region of p∗ as n
increases, one expects that the prior µ̄n−1

F will be an increasingly accurate predictor for

the gradient dg
dp(pnF ) as n increases. This means that once some computational effort has

been expended to obtain a relatively accurate gradient, it is possible for probjac to per-
form many further iterations based on this gradient without needing calls to condition,
as we shall see in Section 5.

Linearly Independent Information A global model introduces some additional burden
to ensure that InF is linearly independent of I1

F , . . . , In−1
F , both to maximise the amount

of new information obtained at each pn and to ensure that the linear system that must
be solved to compute the posterior does not become singular. Thus, info must be
carefully designed to ensure that the information returned is not too highly correlated
with information already observed.

Computational Cost To compute the posterior distributions from Theorem 3.1 and
Theorem 3.2, it is necessary to compute the matrix M = (ICI†)−1IC by solving the
linear system ICI†M = IC. To accomplish this one typically computes a Cholesky
factorisation of ICI†, which becomes computationally intensive once many information
functionals have been collected. However, we note that the sequential nature of the
algorithm proposed is such that, rather than recomputing the full factorisation at each
iteration of probjac, one can use an updating formula for the factorisation such as
presented in Osborne [2010, Appendix B]; this is described in detail in Section S2.
In brief, one must only compute the Cholesky factorisation of a smaller matrix, whose
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Algorithm 1 Probabilistic version of gradient descent. The routines metric and info
are problem specific and must be supplied by the user, with the former assessing the
distribution of the currently computed posterior distribution to determine whether it is
sufficiently narrow to accept it as a valid gradient and the latter supplying information,
iteratively, based on the current distribution and location. The routine condition
implements Theorem 3.1. pls is the probabilistic version of the Armijo line search,
and is given in Algorithm 2. Of the new parameters, δ reflects how much accuracy is
demanded of the posterior at each iteration, δmin specifies a maximum level of accuracy to
protect against numerical instabilities resulting from large Gram matrices in condition,
and τ describes how rapidly δ is reduced when a valid descent direction cannot be found.

1: procedure pgd(p0, g, µ0
F , ε, δ, δmin, τ1)

2: Compute ν0
F from µ0

F and let X0
F be the random variable with law ν0

F

3: for n = 1, 2, . . . do
4: snF , X

n
F , γn ← probjac(Xn−1

F , g, pn−1, ε, δ, δmin)
5: if γn < ε then
6: return pn−1

7: end if
8: pn ← pn−1 + γnsnF
9: end for

10: end procedure
11: procedure probjac(X, g, p, ε, δ, δmin, τ1)
12: while δ > δmin do
13: while metric(X) > δ do
14: I, f ← info(X, p)
15: X ← condition(X, I, f)
16: s← −E(X(p))/‖E(X(p))‖2
17: γ ← pls(p, g,X)
18: if γ < ε then
19: δ ← τ1δ
20: else
21: return s,X, γ
22: end if
23: end while
24: end while
25: end procedure
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Algorithm 2 Probabilistic line search algorithm. This is essentially a modification of
the backtracking line search described in Nocedal and Wright [2006, Algorithm 3.1] to
account for the fact that the gradient is a random variable rather than a constant. The
parameters p, g and X are the parameter value, objective function and current posterior,
respectively. The remaining parameters control the behaviour of the algorithm; we have
specified sensible defaults for these and assume those defaults are used throughout the
text. τ2 controls how rapidly γ is decreased, while c controls how large a reduction in
the objective function is required when a step is taken in the chosen direction and P crit

is the probability with which this reduction must be achieved. γ and γmin control the
initial and minimum values of γ respectively.

procedure pls(p, g,X; τ2 = 0.5, c = 0.5, P crit, γ = 1, γmin = 10−10)
s← −E(X)/‖E(X)‖2
while γ > γmin do

pγ ← p+ γs
if g(pγ) > g(p) then

continue
end if
Z ← −cγX>s
if P(Z > g(pγ)− g(p)) < P crit then

return γ
end if
γ ← τ2γ

end while
end procedure
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dimension is only the same size as the dimension of the new information, which naturally
dramatically reduces the cost of computing the probabilistic gradients.

The other factor that influences the cost is the size of IC, and since this defines how
many linear systems must be solved, it may be that ultimately the cost of assembling
the posterior µ̄nF exceeds than that of simply computing dg

dp(pnF ) despite the efficient
updating formula for the factorisation. Thus in practise we propose that the probjac
is used only to perform the initial iterations, and that when the method is determined
to be close to the truth, or the cost of constructing the posterior is too great, we revert
to classical GD to complete the optimisation. In Section 5 we adopt the crude rule of
thumb that probjac is terminated when the dimension of ICI† exceeds 10, 000, though
this is never exceeded in practise for one of the two examples examined. In future work
more sophisticated switching schemes will be explored.

Choice of Metric The routine metric must assess whether the posterior distribution at
a particular iteration is sufficiently accurate for the probabilistic gradient to be accepted
as a valid direction for the gradient descent. To determine this we focus on the width
of the posterior covariance, and in this work we exclusively use the square-root of the
trace of the posterior covariance,

√
trace(ḠF ) as a proxy for the width. An exploration

of other choices is not expected to affect the performance of the algorithm dramatically,
and is reserved for future work.

Choice of Information Functionals Lastly, we note that we have not yet discussed
the selection of information functionals in info. We expect this to be highly problem
dependent. We make a proposal in the next section that appears to be well adapted to
the two examples presented therein, but do not expect that there exists a unique optimal
choice of information for all settings.

5 Applications

In this section we apply Algorithm 1 to compute the maximum a-posteriori (MAP) point
in Bayesian inversion problems for two problems. In Section 5.1 we seek to infer a small
number of parameters of an ODE using the forward approach, and in Section 5.2 inference
of a larger number of parameters of a challenging PDE using the adjoint approach.

5.1 FitzHugh—Nagumo Model

As a first example we examine the problem of inferring the parameters for the Fitzhugh—
Nagumo model [FitzHugh, 1961], a nonlinear oscillatory ODE. Since this problem has
four parameters, we use the forward approach from Section 3.1.
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5.1.1 Problem Definition

The equations that define the FitzHugh—Nagumo model are

dv

dt
= v − v3

3
− w + I

dw

dt
=
v + a− bw

τ

where a, b, I, τ ∈ R+ are parameters of the model. We concatenate the parameters as p =
[I, a, b, τ ]> ∈ R4 = P . The solution to this system of ODEs for p∗ = [0.5, 0.8, 0.7, 12.5]>

is shown in the supplement in Fig. S1a, while sensitivities are displayed in Figs. S1b
and S1c. The solution space U is a space of once differentiable functions u : D →
R2, where D = [0, T ] for some T > 0. A reformulation of this problem in terms of
the constraint function F (u, p) can be found in Section S4, along with the form of its
derivatives ∂F

∂u , ∂F
∂p .

To set up the inference problem we generated data for true parameter values p∗ by eval-
uating the v(tdata

i ; p∗) at times tdata
i = i, i = 1, . . . , 20. These locations are distinguished

as dashed gray lines in Fig. S1 in the supplement. Observations were then corrupted
with centred Gaussian noise with standard deviation 10−2, i.e. yi = v(tdata

i ; p∗) + ξi
where ξi ∼ N (0, 10−2) IID. The prior distribution over the parameters was set to be
log-Gaussian with mean mp = [1, 1, 1, 10]> and covariance I. The objective function is
twice the negative logarithm of the likelihood multiplied by the prior, and is thus given
by

g(p) :=
1

γ2

M∑

i=1

(v(tdata
i ; p)− yi)2 + (log(p)− µ)>Σ−1(log(p)− µ)

5.1.2 Probabilistic Gradient Descent

To apply the probabilistic gradient descent algorithm from Algorithm 1 we must first
specify the prior over dU

dp . Since the parameter space is four-dimensional and U is a

space of vector-valued functions, formally dU
dp is R2×4-valued. For convenience, we place

a prior on X : D × P → R8, and form dU
dp as

dU

dp
=

[
X>1:4

X>5:8

]

where Xi:j denotes components i to j of X. Noting that the posterior covariance is
independent of the data, we assume an independent and identical prior over each column
of dU

dp , so that the inference is identical but for the distinct right-hand-side for each
component of p in the posterior mean of Theorem 3.1.

Since the initial condition is independent of p, this prior was taken to be X ∼ N (0, k)
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where

k((t, p), (t′, p′)) = Cq(t)q(t′)k5/2([t, p]>, [t′, p′]>σ, L)

k5/2(r, r′;σ, L) = σ2

(
1 +
√

5d(r, r′;L) +
5

3
d(r, r′;L)2

)
exp

(
−
√

5d(r, r′;L)
)

(14)

d(r, r′;L) =
√
r>L−1r′

C =

[
1 ρ
ρ 1

]

q(t) = t.

Multiplication by the linear functions q(t) ensures that there is no uncertainty at t = 0,
where the sensitivity is known to be zero.

The kernel k5/2 in Eq. (14) is a member of the Matérn family [Rasmussen and Williams,
2005, Section 4.2] and is the covariance kernel for a prior over functions with at least
two continuous derivatives. To ease computation the length-scale matrix L was selected
to be diagonal, L = diag(`) for ` ∈ R6. This parameter was further restricted to ` =
[`x12, `p14] where `x, `p ∈ R. The scalars σ, `x and `p were then selected by maximising
the marginal likelihood of an initial candidate design [see e.g. Rasmussen and Williams,
2005, Section 5.4]. This was obtained by sampling a set of candidate parameters pcalib

i ,
i = 1, . . . , 5 from the prior over the parameters and defining the corresponding evaluation
functionals Ĩij = δ[i], i = 1, . . . , 20 (i.e. using equally spaced points inside the spatial
domain). The parameter ρ, which describes the degree of prior covariance between the
components u1 = v and u2 = w, was fixed to 0.5.

For this problem it was convenient to restrict the information functionals to be evalu-
ation functionals, i.e. Ĩi = δ[tinfo

i ]. The points tinfo
i were restricted to a fine grid of 1000

points in (0, T ], denoted tinfo
1 , . . . , tinfo

1000. To choose the next information functionals at
iteration n within the function info in Algorithm 1, we choose new conditioning loca-
tions within this set by attempting to minimise a heuristic based on the fill distance
which often appears as an upper bound in Gaussian process regression problems. To be
specific, we begin by constructing an augmented point set:

zij =

[
tinfo
i

pj

]
.

for j = 1, . . . , n denoting the iteration number in probjac and pj the corresponding
parameter value for that iteration. The information functionals were then selected to be
the Ĩj for which the distance between zin and zi′j , i, i

′ = 1, . . . , 1000, j = 1, . . . , n− 1, is
maximised.

5.1.3 Results

The paths taken by the probabilistic optimiser are contrasted with classical gradient
descent in Fig. 1. Fig. 1a shows the value of g(pn), while Fig. 1b shows the distance
from the minimum obtained by gradient descent. All of the methods were started from
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the initial parameter value p0 = mp, and the GD tolerance was set to ε = 10−6. The
threshold δ was varied from 1 (representing a high level of allowed error in the posterior
gradient estimate) to 0.001 (representing a low level of allowed error). In each case δmin

was set to 10−6. For δ = 0.9, 0.5, 0.1 the performance of the probabilistic approach
is initially worse, as expected, though as the iterates near p∗ the performance of the
probabilistic approaches improves. Interestingly, for δ = 1 and δ = 0.01 the probabilistic
approach actually seems to initially converge faster than the classical approach. This
should not generally be expected, though we note that since the GD directions have no
particular optimality properties nothing prevents an approximate method from achieving
faster convergence.

Fig. 1c tracks the amount of data collected (i.e. the size of fnF ) as a function of the
iteration number. This exhibits the expected behaviour of increasing inversely propor-
tional to δ. However it is noteworthy that even in the strictest case, δ = 0.001, only
3000 evaluations of ∂F

∂p are required over the course of 9840 iterations to perform almost

as well as as gradient descent. For context computing the gradient dg
dp using the DOP853

algorithm [Hairer et al., 1993, Section II] method as implemented in scipy required
an average of 781 evaluations of ∂F

∂p per iteration of gradient descent, with a total of
over 1.5 million evaluations over the course of the 2013 iterations performed with exact
gradients. While ∂F

∂p is cheap to evaluate in this example, in a setting in which this was
a bottleneck it is clear that the probabilistic method would be preferable. Further note
that while 3000 evaluations of ∂F

∂p were required, as noted in Section 4.2.1 this does not
translate directly to inversion of a 3000 × 3000 Gram matrix, as the updating formula
for Cholesky factorisations was exploited.

5.2 Groundwater Flow Model

We now consider a linear PDE that describes the steady-state flow of fluid through a
porous medium. In this section the parameter is formally function-valued. Since after
discretisation its dimension can be large, the adjoint approach is adopted.

5.2.1 Problem Definition

For a fixed value of the parameter p, the forward model is given by

−∇ · (p(x)∇u(x)) = 0 x ∈ D
u(x) = x x2 = 0

u(x) = 1− x x2 = 1

∂u

∂x1
= 0 x1 = 0 or 1

Here the domain D = [0, 1]2 and p : D → R. We assume that p(x) > 0 for all x ∈ D.
The solution u(x) was obtained by discretising the domain above with FEM on a fine

triangular meshing of the unit square based on a grid of 32× 32 points using piecewise-
linear basis functions. The mesh is depicted in Fig. S2a in the supplement, and the
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Figure 1: Performance of the probabilistic gradient descent algorithm on the FitzHugh—
Nagumo model described in Section 5.1 as the parameter δ, which roughly
controlling the accuracy demanded of the probabilistic gradient estimate, is
varied. Here n is the iteration number. Fig. 1c shows the value of the quantity
of interest g, in this case the value of the negative log-target in a Bayesian
inference problem described in Section 5.1. Fig. 1b shows the distance from the
parameter at iteration n to the true MAP point. Fig. 1c shows the dimension of
the matrix inversion problem that was solved in order to compute the posterior
distribution.
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discretisation results in a finite-dimensional approximation of the solution u(x) in with
1089 degrees of freedom. The solution to the PDE above for the parameter value p = 1
is depicted in Fig. S2b, again found in the supplement.

The parameter is defined to be piecewise constant over supersets of the cells of this
mesh, defined by grouping the cells based on a subdivision of the domain into squares.
For a parameter N > 1 these are obtained by placing down a regular grid of N2 points,
with N + 1 equispaced points along each axis. The points of this grid form the vertices
of the N2 parameter cells. In Fig. S2a, the parameter cells for N = 4 are surrounded by
green lines.

To construct the inverse problem, we use a Gaussian prior p ∼ N (µ,Σ) =: π(p) with
µ = 51N2 , where 1N2 here denotes the vector of ones in RN2

. Letting xparam
i denote

the centroid of cell i according to some arbitrary ordering of the cells, i = 1, . . . , N , the
covariance is given by Σij = k(xparam

i , xparam
j ), where k is the Matérn 5/2 kernel given in

Eq. (14), with amplitude and length-scale each set to 1. The data-generating parameter
p∗ was sampled from the prior over p. To define the likelihood, data was obtained by
taking direct measurements of the solution u(x; p∗) at locations xdata

1 , . . . xdata
M where

M = 25 the xdata
j are the nearest mesh points to points on a regular 5× 5 grid starting

at (0.1, 0.1) and ending at (0.9, 0.9). The points of this grid are shown in Fig. S2b in
the supplement. Let ỹ ∈ RM be the vector with ỹj = u(xdata

j ; p∗). These points were
corrupted with IID Gaussian noise ξj ∼ N (0, γ), γ = 0.01 j = 1, . . . ,M to obtain data
y = ỹ + ξ. Denoting the likelihood by π(p|y, u) with dependence on u emphasised, the
QoI for gradient descent was then given by g(u, p) = −2 log π(p|y, u)π(p), i.e.

g(p) :=
1

γ2

M∑

i=1

(u(xdata
i ; p)− yi)2 + (p− µ)>Σ−1(p− µ) (15)

5.2.2 Probabilistic Gradient Descent

To test the algorithm described in Section 4.2 we attempt to compute the MAP point
of the posterior distribution for the inverse problem described above. Owing to the
potentially high dimension of the problem to be solved, the adjoint approach was used.
For the prior we used β ∼ N (0, k), where k is given by

k((x, p), (x′, p′)) = k52((x, p), (x′, p′);σ, `)q(x2)q(x′2).

Here q(x) = 1− (2x− 1)2, so that q(0) = q(1) = 0, ensuring that the relevant boundary
condition is encoded in the prior since we note that the boundary conditions do not
depend upon p. Thus, the prior is formally over functions from RN2+2 to R, though
since the problem has been discretised with the finite-element method the discretised
prior is finite-dimensional. Strictly speaking to project the prior into the finite-element
space requires computing integrals of the form

∫
k(x, x′)φj(x)dx for j = 1, . . . , 1089,

however since these integrals do not generally have a closed-form we opt to approximate
them as

∫
k(x, x′)φj(x)dx ≈ k(xj , x

′) where xj is the nodal point corresponding to the
basis function φj .
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For the parameters of the prior, a separate constant length-scale was assigned to the
spatial variables and the parameters, denoted `x and `p respectively, i.e. ` = [`x12, `p1N2 ].
The amplitude σ and the length-scale `p were again selected by maximising the marginal
likelihood of these parameters given a candidate design obtained again by sampling a
set of candidate parameters pcalib

i , i = 1, . . . , 10, from the prior over parameters, and
choosing corresponding information functionals Ĩiju =

∫
D u(x)φj(x)dx. Here the φj are

the finite element basis functions corresponding to the nearest mesh points to a regular
10× 10 grid of points within D, with basis functions on the top and bottom boundaries
excluded.

For the remaining parameter, `x, we note that since in Eq. (15) g depends only on the
value of u at the points xdata

i , we therefore have that ∂g
∂u is zero everywhere but at these

locations. Since this function is so rough, it is impossible to infer the spatial length-scale
`x from evaluations of it. As a result, we opted to fix `x = 0.2, based on the observed
smoothness of the solution to the adjoint equations.

For the information functionals we selected Ĩju =
∫
u(x)φj(x)dx, i.e. projection

against the jth finite element basis function. This is straightforward to implement since
after discretisation it is simply projection against the canonical basis vector e>j . The
function info was implemented similarly to in Section 5.1, with the fine grid of points
now consisting of the mesh locations which the basis functions correspond to, again
excluding points on the top and bottom boundaries. However, to ensure that the infor-
mation f is nonzero, we enforce that when metric(Xn) > δ, the first locations to be
conditioned upon are those basis functions corresponding to xdata

i .

5.2.3 Results

The results of the optimisation are displayed in Fig. 2. As in Section 5.1 one can clearly
see the behaviour of the method reverting to that of gradient descent as the size of
δ is decreased. Further, performance appears to be broadly similar as the parameter
dimension increases, reflecting that only a single function β(x) must be learned, rather
than dU

dpi
for i = 1, . . . ,dim(P ) as would be required in the forward approach. Thus, the

output dimension of the inferred function is independent of the parameter dimension.
While the input dimension does grow with dim(P ), for the purposes of the gradient
descent algorithm, at iteration n only the quality of inferences at and in the region of
pn is relevant. Since these points concentrate near p∗, performance does not appear to
decay as the input dimension grows.

Fig. 3 compares the cost of the probabilistic approach with that of the classical ap-
proach, for N = 2, dim(P ) = 4, by plotting the size of the matrix whose Cholesky
factorisation that must be computed at each iteration in order to update the Cholesky
factorisation of the Gram matrix with novel information, as discussed in Section 4.2.1.
We note that in general more information seems to be required than for the Fitzhugh-
Nagumo example, so that the 10, 000 × 10, 000 limit on the size of the Gram matrix
discussed in Section 4.2.1 is generally what causes the algorithm to terminate, though
from Fig. 2 it is clear that nevertheless probjac is close to convergence when this occurs.
The higher cost is perhaps due to the fact that the right-hand side, ∂g∂u , is highly localised
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Figure 2: Results for the groundwater flow example from Section 5.2, for a variety of
parameter dimensions. In each row, the left-hand plot shows the distance
between the parameter found at iteration n and the true value p∗ of the pa-
rameter. The right-hand plot shows the value of the objective function, the
negative log-likelihood in the Bayesian inference problem.
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Figure 3: Size of the matrix whose Cholesky factorisation must be computed for each
iteration of gradient descent in the groundwater flow example from Section 5.2,
as the parameter δ is varied. The figure is for N = 2, dim(P ) = 4, but results
for other parameter dimensions are similar. The dashed gray line shows the
size of the (sparse) problem that must be solved for the classical approach,
while the red line indicates the iteration number at which convergence was
achieved.

in this example. It is nevertheless the case that throughout the gradient descent pro-
cedure, the size of the inversion problem that must be computed with the probabilistic
approach is significantly smaller than that which must be computed with the classical
approach, though since the matrix inverted in the classical approach is sparse the costs
are not directly comparable. Furthermore, as in Section 5.1, for larger values of δ the
approach shows the behaviour of being able to conduct a large number of iterations
without needing to collect any evaluations of the right-hand-side, due to the fact that
the model is global over parameter space.

6 Conclusion

In this paper we have presented a probabilistic approach to computing local sensitivities
of differential equation models in both the forward and adjoint modes. We presented
an approach for incorporating these probabilistic gradients into a gradient descent algo-
rithm, and examined the properties of this algorithm on two challenging applied problems
with favourable results compared to classical approaches. The chief advantages of the
approach are that (i) gradients can be calculated at a lower cost than in classical ap-
proaches, (ii) that a global model for the gradient across parameter space is constructed,
allowing for re-use of computational effort from previous iterations of gradient descent
and (iii) that a full probability model is output, providing an error indicator that we
used both to determine when to refine the approximation and to perform line searches.

Several possible avenues for future work present themselves. The first would be con-
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tinuing to develop applications of this algorithm within optimisation, either by develop-
ing versions of more sophisticated gradient-based optimisation algorithms which exploit
probabilistic gradients, or by extending the framework to obtain higher order information
to accelerate the optimisation. Another would be to explore the use of probabilistic gra-
dients in other applications. In particular, we note that while computing the MAP point
is an important problem in Bayesian inference, sophisticated Markov-chain Monte-Carlo
algorithms for sampling the posterior also make use of this information, and the posterior
distribution over the gradient presented herein could straightforwardly be incorporated
into such algorithms.
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S1 Proofs

In this section several important lemmas are presented in Section S1.1, then the proofs
of the main theoretical results are presented in Section S1.2.

S1.1 Lemmas

First we present several Lemmas that will be of use in the proofs of the main theoret-
ical results. The first Lemma provides a representation of the conditional mean and
covariance of Gaussian measures that will be utilised in the main proofs.

Lemma S1. Let µ̄ ∼ N (ā, C̄) be a conditional Gaussian measure on H, with mean and
covariance given by

ā = a+ CI†[ICI†]−1(f − Ia)

C̄ = C − CI†[ICI†]−1IC.

Here a ∈ H, C is a covariance operator on H with associated RKHS HC , I : HC → Rd

is a bounded linear operator and f = Iu† for some u† ∈ HC . Let

P = CI†[ICI†]−1I

Then we have the following

1. P is an orthogonal projection in the inner product induced by C−1.

2. ā = Pu† + (Id− P )a

3. C̄ = (Id− P )C

∗The Alan Turing Institute (jcockayne@turing.ac.uk)
†Imperial College London and The Alan Turing Institute (a.duncan@imperial.ac.uk)
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4. C̄ = (Id− P )C(Id− P )†

Proof. For (1.), it is straightforward to verify that P 2 = P , so that P is a projection.
To verify that P is an orthogonal projection recall that a projection is orthogonal if and
only if it is self-adjoint. To verify this we have

〈Pu, v〉C−1 =
〈
C−1CI†[ICI†]−1Iu, v

〉

=
〈
u, I†[ICI†]−1Iv

〉

= 〈u, Pv〉C−1 .

(2.) and (3.) are clear by inspection. For (4.) note that

(Id− P )C(Id− P )† = C − PC − CP † + PCP †

PC = CI†[ICI†]−1IC
CP † = CI†[ICI†]−1I = PC

=⇒ PCP † = P 2C = PC

So that C − PC − CP † + PCP † = C − PC = C̄, from (3.).

The next lemma provides a bound for the Wasserstein distance that will be used in
Theorem 3.4.

Lemma S2. Let µ1 = N (a1, C1) and µ2 = N (a2, C2) each be Gaussian measures on U .
Let S1, S2 each be square roots of C1, C2 such that C1 = S†1S1 and C2 = S†2S2 Then we
have that

W 2
2 (µ1, µ2) ≤ ‖a1 − a2‖2H + ‖S1 − S2‖2HS.

Proof. Let µ′1 = N (0, C1) and µ′2 = N (0, C2). From Gelbrich [1990] we have that

W2(µ1, µ2)
2 = ‖a1 − a2‖2 +W2(µ

′
1, µ
′
2)

2.

Now we have that for centered Gaussian measures µ1 = N (0, C1), µ2 = N (0, C2)

W2(µ1, µ2) = inf
R:R†R=Id

‖S1 −RS2‖HS. (S1)

where the fact that this holds for square roots other than the symmetric square roots is
clear from the fact that the Wasserstein distance above is equal to the Procrustes distance
between their respective covariance operators [Masarotto et al., 2018, Proposition 3], and
the Procrustes distance need not be expressed in terms of symmetric square roots [Pigoli
et al., 2014]. By taking R = Id we obtain the following bound:

W2(µ
′
1, µ
′
2)

2 ≤ ‖S1 − S2‖2HS.
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S1.2 Proofs of Main Results

Proof of Theorem 3.3. From Theorem S1 we have

|Lā− Lu∗| = |L([Id− P ]a+ Pu∗ − u∗)|
= |L(Id− P )(a− u∗)|
= 〈(Id− P )(a− u∗), `〉
= 〈(Id− P )(a− u∗), C`〉C−1

= 〈a− u∗, C̄`〉C−1

≤ ‖C̄`‖C−1 ‖a− u∗‖C−1 .

where ` is the Riesz representer of L. On the fourth line the fact that the projection P is
self-adjoint in the C−1-inner product was used, and the final line is from the Cauchy—
Schwarz inequality. Now, note that by substituting back in the expression for C̄ we
have

‖C̄`‖2C−1 = 〈C̄`, C̄`〉C−1

= 〈C`,C`〉C−1 − 2〈PC`,C`〉C−1 + 〈PC`, PC`〉C−1

= 〈C`, `〉 − 〈PC`, `〉
= 〈(Id− P )C`, `〉
= 〈C̄`, `〉 = LC̄` = LC̄L†

where on the third line we have used the fact that P is an orthogonal projection, and
the final line comes from interpreting LC̄` as an operator from R→ R. This completes
the proof.

Proof of Theorem 3.4. Let G = ICI† and Ĝ = ÎCÎ†. From Theorem S1 there exists
an operator P = CI†G−1I such that

ā = Pu† + (Id− P )a

C̄ = (Id− P )C(Id− P )†.

By the same logic, for P̂ = CÎ†Ĝ−1Î we have

â = P̂ u† + (Id− P̂ )a

Ĉ = (Id− P̂ )C(Id− P̂ )†.

Therefore, (assymmetric) square roots of both C̄ and Ĉ are given by

C̄
1
2 = C

1
2 (Id− P̄ )†

Ĉ
1
2 = C

1
2 (Id− P̂ )†

where C
1
2 is the symmetric1 square root of C.

1Indeed, C
1
2 may also be an arbitrary square root of C, but the symmetric square root is used to

simplify notation.
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We begin by bounding the error in the posterior means. Recalling that f = Iu† and
f̂ = Îu†, we have that

ā− â = CI†G−1f − CÎ†Ĝ−1f̂ − (P − P̂ )a

=⇒ ‖ā− â‖H ≤ ‖C(I†G−1f − Î†Ĝ−1f̂)‖Rd + ‖P − P̂‖H‖a‖H.

Furthermore

C̄
1
2 − Ĉ 1

2 = C
1
2 (P − P̂ )

=⇒ ‖C̄ 1
2 − Ĉ 1

2 ‖HS ≤ ‖P − P̂‖H‖C
1
2 ‖HS

We thus have that

W2(µ̄, µ̂) ≤ ‖C(I†G−1f − Î†Ĝ−1f̂)‖Rd︸ ︷︷ ︸
(1)

+ ‖P − P̂‖H︸ ︷︷ ︸
(2)

(‖a‖H + ‖C 1
2 ‖HS)

We first focus on (1). Clearly

‖C(I†G−1f − Î†Ĝ−1f̂)‖Rd ≤ ‖C‖H‖I†G−1f − Î†Ĝ−1f̂‖Rd

‖I†G−1f − Î†Ĝ−1f̂‖Rd ≤ ‖I − Î‖H→Rd‖G−1f‖Rd

+ ‖Î‖H→Rd‖G−1 − Ĝ−1‖Rd‖f‖Rd

+ ‖Î†Ĝ−1‖Rd→H‖f − f̂‖Rd

We now focus on ‖P − P̂‖H. Clearly

‖P − P̂‖H ≤ ‖I†G−1I − Î†Ĝ−1Î‖H‖C‖H
and

‖I†G−1I − Î†Ĝ−1Î‖H ≤ ‖I − Î‖H→Rd‖G−1I‖H
+ ‖I‖H→Rd‖Î‖H→Rd‖G−1 − Ĝ−1‖Rd

+ ‖I − Î‖H→Rd‖Ĝ−1Î‖H→Rd .

It remains to bound ‖G−1−Ĝ−1‖Rd in terms of ‖I−Î‖H→Rd . This can be accomplished
using Gohberg et al. [2003, Chapter II, Corollary 8.2], which states that whenever ‖G−
Ĝ‖ ≤ 1

‖G−1‖ , we may bound ‖G−1 − Ĝ−1‖ as follows:

‖G−1 − Ĝ−1‖Rd ≤
‖G−1‖2Rd‖G− Ĝ‖Rd

1− ‖G−1‖Rd‖G− Ĝ‖Rd

Recall that

‖G− Ĝ‖Rd = ‖ICI† − ÎCÎ†‖Rd

≤ ‖(I − Î)CI†‖Rd + ‖ÎC(I − Î)†‖Rd

≤ ‖I − Î‖H→Rd(‖IC‖H→Rd + ‖ÎC‖H→Rd)
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so that, letting α = ‖IC‖H→Rd + ‖ÎC‖H→Rd ,

‖G−1 − Ĝ−1‖Rd ≤ ‖G−1‖Rd

α‖G−1‖Rd‖I − Î‖H→Rd

1− α‖G−1‖Rd‖I − Î‖H→Rd

= α‖G−1‖2Rd‖I − Î‖H→Rd +O(‖I − Î‖2H→Rd) (S2)

whenever ‖I − Î‖H→Rd is sufficiently small.
Putting these results together we obtain the following upper bound for the Wasserstein

distance:

W2(µ̄, µ̂) ≤ (CI,1 + CI,2)‖I − Î‖H→Rd + Cf‖f − f̂‖Rd +O
(
‖I − Î‖2H→Rd

)

CI,1 = ‖C‖H
[(
‖a‖H + ‖C‖

1
2
HS

)(
‖G−1I‖H→Rd + ‖Ĝ−1Î‖H→Rd

)
+ ‖G−1f‖Rd

]

CI,2 = α‖G−1‖2Rd‖C‖H
(
‖G−1f‖Rd + ‖I‖H→Rd‖Î‖H→Rd

(
‖a‖H + ‖C‖

1
2
HS

))

Cf = ‖C‖H‖G−1Î‖H→Rd .

Proof of Theorem 3.5. We focus on the forward case, noting that the proof for the
adjoint case is essentially identical. To prove the result we must relate the norms
‖IF − ÎF ‖H→Rd and ‖fF − f̂F ‖Rd to the assumed bounds on ∂F

∂u and ∂F
∂p from the

statement of the corollary.
For the former, note that

‖IF − ÎF ‖H→Rd = sup
u∈H
‖u‖=1

‖(IF − ÎF )u‖2

= sup
u




d∑

j=1

([IF,j − ÎF,j ]u)2




1
2

= sup
u




d∑

j=1

(
ĨF,j

[
∂F

∂u
[U(pj), pj ]−

∂F

∂u
[Û(pj), pj ]

]
u

)2



1
2

≤




d∑

j=1

(
‖ĨF,j‖2F→R

∥∥∥∥
∂F

∂u
[U(pj), pj ]−

∂F

∂u
[Û(pj), pj ]

∥∥∥∥
2

U→F

)


1
2

≤Mε
√
d
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Similarly, for the latter

‖fF − f̂F ‖2 =




d∑

j=1

(
ĨF,j

[
∂F

∂p
[U(pj), pj ]−

∂F

∂p
[Û(pj), pj ]

])


1
2

≤




d∑

j=1

‖ĨF,j‖2F→R

∥∥∥∥
∂F

∂p
[U(pj), pj ]−

∂F

∂p
[Û(pj), pj ]

∥∥∥∥
2

P→F




1
2

≤Mε
√
d.

Substituting these into the bound obtained in Theorem 3.4 yields the result.

S2 Posterior Updating

In this section we describe the procedure used to update the posterior distribution based
on new information. For concreteness we will assume the notation of probabilistic for-
ward sensitivity analysis; the approach followed for adjoint sensitivity analysis is essen-
tially identical. Suppose we have a prior µF = N (aF , CF ) and have constructed the
posterior µ̄1F based upon the information I1F = f1F , where I1F : U∂P → Rd and f1F ∈ Rd.
For computational purposes this requires the inverse of the matrix I1FC(I1F )† or, equiv-
alently, the solution of linear systems involving this matrix. Thus, we suppose that the
Cholesky factorisation L1 has been computed, so that I1FC(I1F )† = L1L

>
1 , where the

factor L1 is upper-triangular.
Now suppose that new information is supplied, I2F : U∂P → Rd′ with corresponding

information f2F ∈ Rd′ , and suppose that I2F is linearly independent of I1F . We wish to
compute the posterior distribution µ̄2F by conditioning the distribution µ̄1F on this new
information with as low a computational cost as possible.

A natural approach would be to simply perform the conditioning procedure described
in Theorem 3.1 with µF = µ̄1F , however in practise this approach was found to suffer from
a high degree of numerical instability. Instead, we advocate conditioning the original
prior on this new information by updating the Cholesky factorisation computed for I1F .
The form of the new Gramian matrix whose factorisation must be computed is

I1:2F C(I1:2F )† =

[
I1FC(I1F )† I1FC(I2F )†

I2FC(I1F )† I2FC(I2F )†

]
.

Following [Osborne, 2010, Appendix B], we may form the Cholesky factorisation of this
matrix as

I1:2F C(I1:2F )† = L1:2L
>
1:2

L1:2 =

[
L1 S12
0 S22

]

6



where S12 = (L>1 )−1I1FC(I2F )†, and S22 is the Cholesky factorisation of a Rd′×d′ matrix
given by

S22S
>
22 = I2FC(I2F )† − S12S>12.

Examining the cost of this procedure, we see that the only near-cubic operation required
is this Cholesky factorisation, so that the update is approximately O((d′)3). This may
then be used to compute the posterior from Theorem 3.1 without incurring the O((d+
d′)3) cost that would be required to compute it without reusing the Cholesky factor.
We note that a triangular solve of O((d+ d′)2) is required to compute the full posterior
distribution. Thus, as the size of the system grows, the cost will still increase at a
quadratic rate. This was not found to be prohibitive for the experiments presented
in this paper, and it is possible that with further optimisations this cost may also be
reduced.

S3 Gradient Descent Algorithm

Algorithm 1 provides pseudocode for the gradient descent algorithm described in Sec-
tion 4.1.

Algorithm 1 Pseudocode for the classical gradient descent procedure described in Sec-
tion 4.1. Here p0 is some starting point, g and dg

dp are functions returning the quantity
to be minimised and its gradient, respectively, and ε is some demanded tolerance. The
routine BLS is the backtracking line search method described in Nocedal and Wright
[2006, Algorithm 3.1].

1: procedure gd(p0, g, dgdp , ε)
2: for n = 1, 2, . . . do
3: jn ← dg

dp(pn−1)
4: γn ← bls(pn−1, g, jn)
5: if γn < ε then
6: return pn−1

7: end if
8: pn ← pn−1 − γnjn
9: end for

10: end procedure

S4 Additional Results for the Fitzhugh—Nagumo Example

The constraint function F (u, p) is given by:

F (u, p) :=

[
du1
dt − u1 +

u3
1
3 + u2 + p1

du2
dt + p3u2−u1−p2

p4

]
.
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Figure S1: Top row: solutions v, w to the Fitzhugh—Nagumo ODE as solved in Sec-
tion 5.1, in the range [0, 20]. Bottom row: sensitivities of those solutions
with-respect-to the four parameters I, a, b, τ . The gray lines mark the points
at which data was obtained.

Its derivatives ∂F
∂u and ∂F

∂p are:

∂F

∂u
[u, p](u′) =

[
∂u′1
∂t − u′1 + u21u

′
1 u′2

−u′1
p4

∂u′2
∂t +

p3u′2
p4

]

∂F

∂p
[u, p] =

[
1 0 0 0

0 − 1
p4

u2
p4
−p3u2−u1−p2

p24

]

where the latter is simply a derivative in the classical sense, since dim(P ) <∞, and we
adopt the numerator layout convention for vector-by-vector derivatives.

Fig. S1 shows the solution and the sensitivities for the Fitzhugh—Nagumo ODE de-
scribed in Section 5.1.
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Figure S2: Mesh and solution for the groundwater flow model from Section 5.2. In
Fig. S2a the mesh used in the finite-element solver is depicted. The green
lines bound the cells over which the piecewise constant parameter is defined;
in this case the integer defining the parameter is N = 4, so there are 16 cells.
In Fig. S2b the solution is shown, for the parameter p = 116. The points at
which evaluations of the solution are taken to define the likelihood are shown
as black crosses.

S5 Additional Results for Groundwater Flow Example

Fig. S2 shows the mesh and a candidate solution for the groundwater flow problem
described in Section 5.2.
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