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Abstract
The use of heuristics to assess the convergence and com-
press the output of Markov chain Monte Carlo can be
sub-optimal in terms of the empirical approximations
that are produced. Typically a number of the initial
states are attributed to ‘burn in’ and removed, while
the remainder of the chain is ‘thinned’ if compres-
sion is also required. In this paper, we consider the
problem of retrospectively selecting a subset of states,
of fixed cardinality, from the sample path such that the
approximation provided by their empirical distribution
is close to optimal. A novel method is proposed, based
on greedy minimisation of a kernel Stein discrepancy,
that is suitable when the gradient of the log-target can
be evaluated and approximation using a small number
of states is required. Theoretical results guarantee con-
sistency of the method and its effectiveness is demon-
strated in the challenging context of parameter inference
for ordinary differential equations. Software is available
in the Stein Thinning package in Python, R and
MATLAB.
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1 INTRODUCTION

The most popular computational tool for non-conjugate Bayesian inference is Markov chain
Monte Carlo (MCMC). Introduced to statistics from the physics literature in Hastings (1970),
Geman and Geman (1984), Tanner and Wong (1987) and Gelfand and Smith (1990), an enormous
amount of research effort has since been expended in the advancement of MCMC methodol-
ogy. Such is the breadth of this topic that we do not attempt a survey here, but instead refer
the reader to Robert and Casella (2013), Green et al. (2015) and the references therein to more
advanced material. This paper is motivated by the fact that the approaches used for convergence
assessment and to post-process the output of MCMC can strongly affect the estimates that are
produced.

Let P be a distribution on a measurable space  and let (Xi)i∈N be a Markov chain that is
P-invariant. The Markov chain sample path provides an empirical approximation

1
n

n∑

i=1
𝛿(Xi) (1)

to P, where 𝛿(x) denotes a point mass centred at x ∈  . Our discussion supposes that a practi-
tioner is prepared to simulate a Markov chain up to a maximum number of iterations, n, and
that simulating further iterations is not practical; a scenario that is often encountered (e.g. see
Section 4.3). In this setting, it is common (and indeed recommended) to replace Equation (1) with
an alternative estimator

1
m

m∑

j=1
𝛿(X𝜋(j)) (2)

that is based on a subset of the total MCMC output. The m indices 𝜋(j) ∈ {1, … , n} indicate which
states are retained and the identification of a suitable index set 𝜋 is informed by the following
considerations:

Removal of Initial Bias: The distribution of the initial states of the Markov chain may be
quite different to P. To mitigate this, it is desirable to identify a ‘burn-in’ (Xi)bi=1 which is then
discarded. The burn-in period b is typically selected using convergence diagnostics (Cowles &
Carlin, 1996). These are primarily based on the empirical distribution of simple moment, quan-
tile or density estimates across independent chains and making a judgement as to whether the
ensemble of chains has converged to the distributional target. The main limitation of convergence
diagnostics, as far as we are concerned in this work, is that in taking b large enough to make bias
negligible, the number n − b of remaining samples may be rather small, such that the statistical
efficiency of the estimator in Equation (2) is sub-optimal as an approximation of P. Nonetheless,
a considerable portion of Bayesian pedagogy is devoted to the identification of the burn-in period,
as facilitated using diagnostic tests that are built into commercial-grade software such as Win-
BUGS (Lunn et al., 2000), JAGS (Plummer, 2003), R (R Core Team, 2020), and Stan (Carpenter
et al., 2017).

Increased Statistical Efficiency: It is often stated that discarding part of the MCMC output
leads to a reduction in the statistical efficiency of the estimator (2) compared to Equation (1). This
argument, made for example, in Geyer (1992), applies only when the procedure used to discard
part of the MCMC output does not itself depend on the MCMC output and when the length n of
the MCMC output is fixed. That estimation efficiency can be improved by discarding a portion of
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RIABIZ et al. 1061

the samples in a way that depends on the samples themselves is in fact well-established (see e.g.
Dwivedi et al., 2019).

Compression of MCMC Output: A third motivation for estimators of the form Equation (2)
is to control the cost of subsequent computation involving the MCMC output. Examples include
approximating the expectation of a function f , where either evaluation of f or storage of its output
is associated with a computational cost, and Monte Carlo Maximum Likelihood, where one con-
structs an approximate likelihood using MCMC, then performs optimisation on this approximate
likelihood (Geyer & Thompson, 1992). In such situations one may want to control the cardinality
m of the index set 𝜋 and to use (X𝜋(j))mj=1 as an experimental design on which f is evaluated. The
most popular solution is to retain only every tth state visited by the Markov chain, a procedure
known as ‘thinning’ of the MCMC output. See also the more sophisticated approach in Paige et al.
(2016).

Taking these considerations into account, the most common approach used to select an index
set 𝜋 is based on the identification of a suitable burn-in period b and/or a suitable thinning
frequency t, leading to an approximation of the form

1
⌊(n − b)∕t⌋

⌊(n−b)∕t⌋∑

i=1
𝛿(Xb+it). (3)

Here ⌊r⌋ denotes the integer part of r. This corresponds to a set of indices 𝜋 in Equation (2) that
discards the burn-in states and retains only every tth iteration from the remainder of the MCMC
output. It includes the case where no states are removed when b = 0 and t = 1. Despite their
widespread usage, the interplay between the Markov chain sample path and the heuristics used to
select b and t is not widely appreciated. In general it is unclear how much bias may be introduced
by employing a post-processing heuristic that is itself based on the MCMC output. Indeed, even
the basic question of when the post-processed estimator in Equation (3) is consistent when b and
t are chosen based on the MCMC output appears not to have been studied.

In this paper we propose a novel method, called Stein Thinning, that selects an index
set 𝜋, of specified cardinality m, such that the associated discrete approximation in Equation (2)
is close to optimal among all approximations supported on the MCMC output. The method is
designed to ensure that Equation (2) is a consistent approximation of P. This includes situations
when the Markov chain on which it is based is not P-invariant, but we do of course require that the
regions of high probability under P are explored. To achieve this we adopt a kernel Stein discrep-
ancy as our optimality criterion. The minimisation of kernel Stein discrepancy is performed using
a greedy sequential algorithm and the main contribution of our theoretical analysis is to study
the interplay of the greedy algorithm with the randomness inherent to the MCMC output. The
proposed Stein Thinning method is simple (see Algorithm 1), applicable to most problems
where gradients of the log-posterior density can be computed, and implemented as convenient
Python and MATLAB packages that require no additional user input other than the number m
of states to be selected (see Appendix S1).

1.1 Related work

Our work contributes to an active area of research that attempts to cast post-processing of
MCMC as an optimisation problem. Mak and Joseph (2018) proposed a method, called Support
Points, which selects a small number of states in order that an empirical measure supported
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on those states minimises an ‘energy distance’ to P. However, computation of the energy dis-
tance requires access to P, and minimisation of energy distance requires a challenging non-convex
optimisation problem to be solved, meaning that in practice approximations are required. Stein
discrepancy provides a computable alternative, which was used in Liu and Lee (2017) to optimally
weight an arbitrary set (Xi)ni=1 ⊂ Rd of states in an manner loosely analogous to importance sam-
pling, at a computational cost of O(n3). The combined effect of applying the approach of Liu and
Lee (2017) to MCMC output was analysed in Hodgkinson et al. (2020), who established situations
in which the overall procedure will be consistent.

If a compressed representation of the posterior P is required, but one is not wedded to the use
of MCMC for generation of candidate states, then several other methods can be used. Joseph et al.
(2015, 2019) proposed a criterion to capture how well an empirical measure based on a point set
approximates P and applied repeated numerical optimisation over  to arrive at a suitable point
set. A similar approach was taken in Chen et al. (2018), where a Stein discrepancy was numeri-
cally minimised. The reliance of both of these algorithms on non-convex numerical optimisation
over  renders their implementation and analysis difficult. Chen et al. (2019) considered using
Markov chains to approximately perform numerical optimisation, allowing a tractable analytic
treatment at the expense of a sub-optimal compression of P. An elegant alternative approach is
to formulate a convex optimisation problem on the set of probability distributions on  . In this
spirit, Liu and Wang (2016) and Liu (2017) identified a gradient flow with P as a fixed point that
can be approximately simulated using a particle method. At convergence, one obtains a com-
pressed representation of P, however the theoretical analysis of this approach remains an open
and active research topic (see e.g. Duncan et al., 2019).

The present paper differs from the contributions cited, in that (1) our algorithm requires only
the output from one run of MCMC, which is a realistic requirement in many situations, and (2)
we are able to provide a finite sample size error bound (Theorem 2) and a consistency guarantee
(Theorem 3) for Stein Thinning, that cover precisely the algorithm that we implement.

1.2 Outline of the paper

The paper proceeds, in Section 2, to recall the construction of a kernel Stein discrepancy and
to present Stein Thinning. Then in Section 3 we establish a finite sample size error bound,
as well as a widely-applicable consistency result that does not require the Markov chain to be
P-invariant. In Section 4 we present an empirical assessment ofStein Thinning in the context
of parameter inference for ordinary differential equation models. Conclusions are contained in
Section 5.

2 METHODS

In this section we introduce and analyse Stein Thinning. First, in Section 2.1, we recall the
construction of a kernel Stein discrepancy and its theoretical properties. The Stein Thinning
method is presented in Section 2.2, whilst Section 2.3 is devoted to implementational detail.

Before we proceed, we introduce a piece of notation that will often be used and recall the
mathematical definition of a reproducing kernel:

Notation: Let  denote the set of probability distributions P that admit a positive density p
with Lipschitz gradient ∇ log p on Rd.
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RIABIZ et al. 1063

Reproducing Kernel: A reproducing kernel Hilbert space (RKHS) of functions on a set  is a
Hilbert space, denoted(k), equipped with a function k ∶  ×  → R, called a kernel, such that
∀x ∈  we have k(⋅, x) ∈ (k) and ∀x ∈  , h ∈ (k) we have h(x) = ⟨h, k(⋅, x)⟩(k). In this paper
⟨⋅, ⋅⟩(k) denotes the inner product in (k) and the induced norm will be denoted || ⋅ ||(k). For
further details, see Berlinet and Thomas-Agnan (2004).

2.1 Kernel Stein discrepancy

To construct a criterion for the selection of states from the MCMC output we require a notion of
optimal approximation for probability distributions. To this end, recall that an integral probability
metric (IPM) (Muller, 1997), based on a set  of measure-determining functions on a measurable
space  , is defined as

D (P,Q) ∶= sup
f∈

||||∫
f dP −

∫


f dQ
||||
. (4)

The fact that  is measure-determining means that D (P,Q) = 0 if and only if P = Q is satisfied.
Standard choices for , for example, that recover Wasserstein distance as the IPM, cannot be used
in the Bayesian context due to the need to compute integrals with respect to P in Equation (4).

In the remainder of Section 2.1 we restrict attention to the setting P ∈  . To circumvent
intractability of Equation (4), the notion of a Stein discrepancy was proposed in Gorham and
Mackey (2015). This was based on Stein’s method (Stein, 1972), which consists of finding a set  of
sufficiently differentiable d-dimensional vector fields and a differential operator P, depending
on P and acting on elements of , such that ∫

Rd Pg dP = 0 for all g ∈ . The proposal of Gorham
and Mackey (2015) was to take  = P to be the image of  underP in Equation (4), leading
to the Stein discrepancy

D

(P,Q) = sup

g∈

||||∫Rd
Pg dQ

||||
. (5)

Theoretical analysis had led to sufficient conditions forP to be measure-determining (Gorham
& Mackey, 2015). In this paper we focus on a particular form of Equation (5) due to Liu
et al. (2016), Chwialkowski et al. (2016), Gorham and Mackey (2017), called a kernel Stein dis-
crepancy (KSD). In this case, P is the Langevin Stein operator Pg ∶= p−1∇ ⋅ (pg) derived in
Gorham and Mackey (2015), where∇⋅ denotes the divergence operator in Rd and  ∶= {g ∶ Rd →
Rd|∑d

i=1||gi||2
(k) ≤ 1} is the unit ball in a Cartesian product of RKHS. It follows from construction

that the setP is the unit ball of another RKHS, denoted(kP), whose kernel is

kP(x, y) ∶= ∇x ⋅ ∇yk(x, y) +
⟨
∇xk(x, y),∇y log p(y)

⟩

+
⟨
∇yk(x, y),∇x log p(x)

⟩
+ k(x, y)

⟨
∇x log p(x),∇y log p(y)

⟩
, (6)

where ⟨⋅,⋅⟩ denotes the standard Euclidean inner product, ∇ denotes the gradient operator and
subscripts have been used to indicate the variables being acted on by the differential operators
(Oates et al., 2017). Thus KSD is recognised as a maximum mean discrepancy in (kP) (Song,
2008) and is fully characterised by the kernel kP; we therefore adopt the shorthand notation DkP (Q)
for DP(P,Q).
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1064 RIABIZ et al.

In the remainder of this section we recall the main properties of KSD. The first is a condition
on the kernel k that guarantees elements of (kp) have zero mean with respect to P. In what
follows ||x|| = ⟨x, x⟩1∕2 denotes the Euclidean norm on Rd. It will be convenient to abuse operator
notation, writing ∇x∇⊤y k for the Hessian matrix of a bivariate function (x, y) → k(x, y).

Proposition 1 (Proposition 1 of Gorham & Mackey, 2017). Let P ∈  and assume that
∫

Rd ||∇ log p||dP <∞. Let (x, y) → ∇x∇⊤y k(x, y) be continuous and uniformly bounded on Rd.
Then ∫

Rd hdP = 0 for all h ∈ (kP), where kP is defined in Equation (6).

The second main property of KSD that we will need is that it can be explicitly computed for
an empirical measure Q = 1

n

∑n
i=1𝛿(xi), supported on states xi ∈ Rd:

Proposition 2 (Proposition 2 of Gorham & Mackey, 2017). Let P ∈  and let (x, y) → ∇x∇⊤y k(x, y)
be continuous on Rd. Then

DkP

(
1
n

n∑

i=1
𝛿(xi)

)
=

√√√√ 1
n2

n∑

i,j=1
kP(xi, xj), (7)

where kP was defined in Equation (6).

The third main property is that KSD provides convergence control. Let Qn ⇒ P denote weak
convergence of a sequence (Qn) of measures to P. Theoretical analysis in Gorham and Mackey
(2017), Chen et al. (2018), Huggins and Mackey (2018), Chen et al. (2019), Hodgkinson et al.
(2020), and Gorham et al. (2020) established sufficient conditions for when convergence of
Equation (7) to zero implies 1

n

∑n
i=1𝛿(xi) ⇒ P. For our purposes we present one such result, from

Chen et al. (2019).

Proposition 3 (Theorem 4 in Chen et al., 2019). Let P ∈  be distantly dissipative, meaning that
lim infr→∞ 𝜅(r) > 0 where

𝜅(r) ∶ inf
{
−2

⟨∇ log p(x) − ∇ log p(y), x − y⟩
||x − y||2 ∶ ||x − y|| = r

}
.

Consider the kernel k(x, y) = (c2 + ||Γ−1∕2(x − y)||2)𝛽 for some fixed c > 0, a fixed positive
definite matrix 𝛤 and a fixed exponent 𝛽 ∈ (−1, 0). Then DkP (

1
n

∑n
i=1𝛿(xi))→ 0 implies

1
n

∑n
i=1𝛿(xi) ⇒ P, where kP is defined in Equation (6).

The properties just described ensure that KSD is a suitable optimality criterion to consider
for the post-processing of MCMC output. However, all discrepancies are associated with finite
sample size pathologies; see (Matsubara et al. 2021 Section 3.4) for a discussion of the pathologies
of KSD. Our attention turns next to the development of algorithms for minimisation of KSD.

2.2 Greedy minimisation of KSD

The convergence control afforded by Proposition 3 motivates the design of methods that select
points (xi)ni=1 such that Equation (7) is approximately minimised. Continuous optimisation algo-
rithms were proposed for this task in Chen et al. (2018) and Chen et al. (2019). In Chen et al.
(2018), deterministic optimisation techniques were considered for low-dimensional problems,
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RIABIZ et al. 1065

whereas in Chen et al. (2019) a Markov chain was used to provide more a practical optimisa-
tion strategy when the state space is high-dimensional. In each case greedy sequential strategies
were considered, wherein at iteration n a new state xn is appended to the current sequence
(x1, … , xn−1). Chen et al. (2018) also considered the use of conditional gradient algorithms
(so-called Frank-Wolfe, or kernel herding algorithms) but found that greedy algorithms provided
better performance across a range of experiments and therefore we focus on greedy algorithms in
this manuscript.

The present paper is distinguished from earlier work in that we do not attempt to solve a con-
tinuous optimisation problem for selection of the next point xn ∈  . Such optimisation problems
are fundamentally difficult and can at best be approximately solved. Instead, we exactly solve
the discrete optimisation problem of selecting a suitable element xn from supplied MCMC out-
put. In this sense, we expect our findings will be more widely applicable than previous work,
since we are simply performing post-processing of MCMC output and there exists a variety of
commercial-grade software for MCMC. The method that we propose, called Stein Thinning,
is straight-forward to implement, and is stated in Algorithm 1 for a distribution P on a general
measurable space  . (The convention

∑0
i=1 = 0 is employed.)

Data: The output (xi)n
i=1 from an MCMC method, a kernel kP for which the

conclusion of Proposition 3 holds, and a desired cardinality m ∈ N.
Result: The indices π of a sequence (xπ(j))m

j=1 ⊂ {xi}n
i=1 where the π(j) are

elements of {1, . . . , n}.
for j = 1, . . . , m do

π(j) ∈ arg min
i=1,...,n

kP (xi, xi)
2

+
j−1∑

j′=1

kP (xπ(j′), xi);

end
Algorithm 1: The proposed method; Stein Thinning.

The algorithm is illustrated on a simple bivariate Gaussian mixture in Figure 1. Observe
in this figure that the points selected by the Stein Thinning do not belong to the burn-in
period (which is visually clear), and that although the MCMC spent a disproportionate
amount of time in one of the mixture components, the number of points selected by Stein
Thinning is approximately equal across the two components of the target. The accuracy
of the approximation produced by Stein Thinning is, nevertheless, gated by the quality
of the MCMC output to which it is applied. A detailed empirical assessment is presented
in Section 4.

Remark 1 (Tie-breaking). In the event of a tie, a tie-breaking rule should be used to select the next
index. For example, if the minimum in Algorithm 1 is realised by multiple candidate values
Π(j)⊆ {1,… ,n}, one could adopt a tie-breaking rule that selects the smallest element ofΠ(j)
as the value that is assigned to 𝜋(j). The rule that is used has no bearing on our theoretical
analysis in Section 3.

Remark 2 (Complexity). The computation associated with iteration j of Algorithm 1 is O(nrj)
where rj ≤ min(j,n) is the number of distinct indices in {𝜋(1), … , 𝜋(j − 1)}; the computa-
tional complexity of Algorithm 1 is therefore O(n

∑m
j=1rj). For typical MCMC algorithms the

computational complexity is O(n), so the complexity of Stein Thinning is equal to that
for MCMC when m is fixed and higher when m is increasing with n, being at most O(nm2).
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1066 RIABIZ et al.

(a) (b) (c)

F I G U R E 1 Illustration of Stein Thinning: (a) Contours of the distributional target P. (b) Markov chain
Monte Carlo (MCMC) output, limited to 500 iterations to mimic a challenging computational context, exhibiting
burn-in and autocorrelation that must be identified and mitigated. (c) A subset of m = 40 states from the MCMC
output selected using Stein Thinning, which correctly ignores the burn-in period and stratifies states
approximately equally across the two components of the target [Colour figure can be viewed at
wileyonlinelibrary.com]

Remark 3 (Re-sampling). In general, the indices in 𝜋 need not be distinct. That is, Algorithm 1
may prefer to include a duplicate state rather than to include a state which is not useful for
representing P. Indeed, if m> n then the sequence (x𝜋(j))mj=1 must contain duplicates entries.
Theorem 1 in Section 3 clarifies this behaviour.

Remark 4 (Finite sample error bound). The approximation produced by Stein Thinning
satisfies a finite sample error bound

||||||

1
m

m∑

j=1
f (x𝜋(j)) −

∫
Rd

f (x)dP(x)
||||||
≤ DkP

(
1
m

m∑

j=1
𝛿(x𝜋(j))

)
‖‖‖‖

f −
∫

Rd
f (x)dP(x)

‖‖‖‖(kP)

following Hickernell (1998) Equation (1.14) applied to f − ∫ f dP. This can be contrasted
with the typically asymptotic analysis of MCMC. The practical estimation of the final term
in this bound was discussed in Section 4 of South et al. (2021).

2.3 Choice of Kernel

The suitability of KSD to quantify how well Q approximates P is determined by the choice of
the kernel k in Equation (6). Several choices are possible and for P ∈  , based on Proposition 3
together with extensive empirical assessment, Chen et al. (2019) advocated the pre-conditioned
inverse multi-quadric kernel k(x, y) ∶= (1 + ||Γ−1∕2(x − y)||2)−1∕2 where, compared to Proposi-
tion 3, we have fixed c= 1 (without loss of generality) and 𝛽 =−1/2. The suitability of these choices
for Stein Thinning is verified in Appendix S5.1. The positive definite matrix Γ remains to be
specified and it is natural to take a data-driven approach where the MCMC output is used to select
Γ. Provided that a fixed number n0 ∈ N of the states (Xi)

n0
i=1 from the MCMC output are used in the

construction of Γ, the consistency results for Stein Thinning that we establish in Section 3
are not affected. To explore different strategies for the selection of Γ, we focus on the following
candidates:

1. Median (med): The scaled identity matrix Γ = 𝓁2I, where 𝓁 = med ∶= median{||Xi − Xj|| ∶
1 ≤ i < j ≤ n0} is the median Euclidean distance between states (Garreau et al., 2018). In the
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rare case that med= 0, an exception should be used, such as 𝓁 = 1, to ensure a positive definite
Γ is used.

2. Scaled median (sclmed): The scaled identity matrix Γ = 𝓁2I, where 𝓁 = med∕
√

log(m).
This was proposed in Liu and Wang (2016) and can be motivated using the approxima-
tion

∑m
j′=1kP(x𝜋(j), x𝜋(j′)) ≈ m exp(−𝓁−2 med2) = 1. Note the dependence on m means that the

preceding theoretical analysis does not apply when this heuristic is used.
3. Sample covariance (smpcov): The matrix Γ can be taken as a sample covariance matrix

Γ = 1
n0 − 1

n0∑

i=1

(
Xi − X

)(
Xi − X

)⊤
, X ∶= 1

n0

n0∑

i=1
Xi,

provided that this matrix is non-singular.

The experiments in Section 4 shed light on which of these settings is the most effective,
but we acknowledge that many other settings could also be considered. In what follows, we set
n0 = min(n, 103) for the med and sclmed settings, to avoid an O(n2) cost of computing 𝓁, and
otherwise set n0 = n, so that the whole of the MCMC output is used to select Γ. Python, R and
MATLAB packages are provided and their usage is described in Appendix S1.

3 THEORETICAL ASSESSMENT

The theoretical analysis in this section clarifies the limiting behaviour of Stein Thinning as
m, n→∞. Our first main result concerns the behaviour ofStein Thinning on a fixed sequence
(xi)ni=1:

Theorem 1 Let  be a measurable space and let P be a probability distribution on  . Let kP ∶
 ×  → R be a reproducing kernel with ∫


kP(x, ⋅)dP = 0 for all x ∈  . Let (xi)ni=1 ⊂  be

fixed and consider an index sequence 𝜋 of length m produced by Algorithm 1. Then we have
the bound

DkP

(
1
m

m∑

j=1
𝛿(x𝜋(j))

)2

≤ DkP

( n∑

i=1
w∗

i 𝛿(xi)

)2

+
(

1 + log(m)
m

)
max

i=1,… ,n
kP(xi, xi),

where the weights w∗ = (w∗
1, … ,w∗

n) in the first term satisfy

w∗ ∈ arg min
1⊤n w=1

w≥0

DkP

( n∑

i=1
wi𝛿(xi)

)

where 1⊤n = (1, … , 1) and w ≥ 0 indicates that wi ≥ 0 for i = 1, … , n.

The proof of Theorem 1 is provided in Appendix S2.1. Its implication is that, given a sequence
(xi)ni=1, Stein Thinning produces an empirical distribution that converges in KSD to the opti-
mal weighted empirical distribution

∑n
i=1w∗

i 𝛿(xi) based on that sequence. Properties of such
optimally weighted empirical measures were studied in Liu and Lee (2017), Hodgkinson et al.
(2020), and are not the focus of the present paper, where the case m ≪ n is of principal interest.
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F I G U R E 2 Illustration of Theorem 1: The gray curve represents the unprocessed output from MCMC in
the example of Figure 1. The black curve represents Stein Thinning applied to this same output and, in
addition, weighted output of Stein Thinning is shown for weights w∗

m subject subject to
∑

w∗
m,j = 1 and

w∗
m,j ≥ 0 (solid red) and weights v∗m subject only to

∑
v∗m,j = 1 (solid blue). The dashed horizontal lines are the

limiting values of their corresponding solid lines as the number m is increased [Colour figure can be viewed at
wileyonlinelibrary.com]

The role of Theorem 1 is to study the interaction between the greedy algorithm and a given
sequence (xi)ni=1, and this bound is central to our proof of Theorem 2 which deals with the case
where (xi)ni=1 is replaced by MCMC output. Figure 2 illustrates the terms involved in Theorem 1.
It is clear that a reduction in KSD is achieved by Stein Thinning of the MCMC output.

Remark 5 (Optimal weights). To further improve the empirical approximation, we can consider
an optimally-weighted sum

∑m
j=1w∗

m,j𝛿(x𝜋(j)) where the w∗
m,j solve a convex optimisation

problem analogous to Equation (8). Such weights minimise a quadratic function subject
to a linear and a non-negativity constraint and can therefore be precisely computed. If the
non-negativity constraint is removed and the indices in 𝜋 are distinct then

v∗m ∶= arg min
1⊤mv=1

DkP

( m∑

j=1
vj𝛿(x𝜋(j))

)
=

K−1
P 1m

1⊤mK−1
P 1m

, (KP)i,j ∶= kP(x𝜋(i), x𝜋(j)),

as derived in Oates et al. (2017). Figure 2 indicates that the benefit of applying weights w∗
m

(red curve) to the output of Stein Thinning (black curve) is limited, likely because the
x𝜋(j) were selected in a way that avoids redundancy in the point set. A larger improvement is
provided by the weights v∗m (blue curve), but in this case the associated empirical measure
may not be a probability distribution.

Remark 6 The use of a conditional gradient algorithm, instead of a greedy algorithm, in this con-
text, amounts to simply removing the term kP(x𝜋(j), x𝜋(j)) in Algorithm 1. As discussed in
Chen et al. (2018), this term can be thought of as a regulariser that lends stability to the
algorithm, avoiding selection of xi that are far from the effective support of P.

Remark 7 Theorem 1 is formulated at a high level of generality and can be applied on
non-Euclidean domains  . In Barp et al. (2021), Liu and Zhu (2018), Xu and Matsuda
(2020) and Le et al. (2020) the authors proposed and discussed Stein operators P for the
non-Euclidean context.
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Next, we consider the properties of Stein Thinning applied to MCMC output. Let
V be a function V ∶  → [1,∞) and, for a function f ∶  → R and a measure 𝜇 on  ,
let ||f ||V ∶= supx∈

|f (x)|
V(x)

, ||𝜇||V ∶= sup||f ||V≤1 | ∫ f d𝜇|. Recall that a 𝜓-irreducible and aperi-
odic Markov chain (Xi)i∈N ⊂  with nth step transition kernel Pn is V -uniformly ergodic
(see Theorem 16.0.1 of Meyn & Tweedie, 2012) if and only if ∃R ∈ [0, ∞), 𝜌 ∈ (0, 1)
such that

||Pn(x, ⋅) − P||V ≤ RV(x)𝜌n (9)

for all initial states x ∈  and all n ∈ N. The notation E will be used to denote expectation with
respect to the law of the Markov chain in the sequel. Theorem 2 establishes a finite sample size
error bound for Stein Thinning applied to MCMC output:

Theorem 2 Let  be a measurable space and let P be a probability distribution on  . Let kP ∶  ×
 → R be a reproducing kernel with ∫


kP(x, ⋅)dP = 0 for all x ∈  . Consider a P-invariant,

time-homogeneous Markov chain (Xi)i∈N ⊂  generated using a V -uniformly ergodic transi-
tion kernel, such that Equation (9) is satisfied with V(x) ≥

√
kP(x, x) for all x ∈  . Suppose

that, for some 𝛾 > 0,

b ∶= sup
i∈N

E
[
e𝛾kP(Xi,Xi)

]
< ∞, M ∶= sup

i∈N

E

[√
kP(Xi,Xi)V(Xi)

]
< ∞.

Let 𝜋 be an index sequence of length m produced by Algorithm 1 applied to the Markov chain
output (Xi)ni=1. Then, with C = 2R𝜌

1−𝜌
, we have that

E

⎡
⎢
⎢⎣
DkP

(
1
m

m∑

j=1
𝛿(X𝜋(j))

)2⎤
⎥
⎥⎦
≤

log(b)
𝛾n

+ CM
n
+

(
1 + log(m)

m

)
log(nb)
𝛾

. (10)

The proof of Theorem 2 is provided in Appendix S2.2.

Remark 8 The upper bound in Equation (10) is asymptotically minimised when (up to log factors)
m is proportional to n. In practice we are interested in the case m≪n, so we may for example
set m = ⌊ n

1000
⌋ if we aim for substantial compression. It is not claimed that the bound in

Equation (10) is tight and indeed empirical results in Section 4 endorse the use of Stein
Thinning in the small m context.

Remark 9 For P ∈  and kP in Equation (6), based on a radial kernel k, meaning that
k(x, y)=𝜙(x− y) for some function𝜙 ∶ Rd → R satisfying∇𝜙(0)= 0, we have that kP(x, x) =
−Δ𝜙(0) + 𝜙(0)||∇ log p(x)||2. The function x →

√
kP(x, x) appearing in the preconditions

of Theorem 2 can therefore be understood in terms of ||∇ log p(x)||. Further discussion of
the preconditions of Theorem 2 is provided in Appendix S2.4.

Since convergence in mean-square does not in general imply almost sure convergence, we next
strengthen the conclusions of Theorem 2. Our final result, Theorem 3, therefore establishes an
almost sure convergence guarantee for Stein Thinning. Furthermore, the result that follows
applies also in the ‘biased sampler’ case, where (Xi)i∈N is a Q-invariant Markov chain and Q need
not equal P:
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1070 RIABIZ et al.

Theorem 3 Let Q be a probability distribution on  with P absolutely continuous with respect
to Q. Consider a Q-invariant, time-homogeneous Markov chain (Xi)i∈N ⊂  generated using
a V -uniformly ergodic transition kernel, such that V(x) ≥ dP

dQ
(x)

√
kP(x, x). Suppose that, for

some 𝛾 > 0,

b ∶= sup
i∈N

E

[
e𝛾 max

(
1, dP

dQ
(Xi)2

)
kP(Xi,Xi)

]
< ∞, M ∶= sup

i∈N

E

[
dP
dQ
(Xi)

√
kP(Xi,Xi)V(Xi)

]
< ∞.

Let 𝜋 be an index sequence of length m produced by Algorithm 1 applied to the Markov
chain output (Xi)ni=1. If m ≤ n and the growth of n is limited to at most log(n) = O(m𝛽∕2)
for some 𝛽 < 1, then DkP (

1
m

∑m
j=1 𝛿(X𝜋(j))) → 0 almost surely as m, n → ∞. Furthermore,

if the preconditions of Proposition 3 are satisfied, then 1
m

∑m
j=1 𝛿(X𝜋(j)) ⇒ P almost surely as

m, n →∞.

The proof of Theorem 3 is provided in Appendix S2.3. The interpretation of Theorem 3 is
that one may sample states from a Markov chain that is not P-invariant and yet, under the stated
assumptions (which ensure that regions of high probability under P are explored), one can use
Stein Thinning to still obtain a consistent approximation of P. This can be contrasted, for
example, with the Support Points method of Mak and Joseph (2018), which relies on P
being well-approximated by the MCMC output. This completes our theoretical analysis of Stein
Thinning.

4 EMPIRICAL ASSESSMENT

In this section, we compare the performance of Stein Thinning with existing methods for
post-processing MCMC output. Our motivation derives from a problem in which we must infer
a 38-dimensional parameter in a calcium signalling model defined by a stiff system of 6 cou-
pled ordinary differential equations (ODEs). Posterior uncertainty is required to be propagated
through a high-fidelity simulation in a multi-scale and multi-physics model f of the human heart.
Here, compression of the MCMC output can be used to construct an approximately optimal
experimental design on which f can be evaluated. The calcium model is, however, unsuit-
able for conducting a thorough in silico assessment due to its associated computational cost.
Therefore in Section 4.1 we first consider a simpler ODE model, where P can be accurately
approximated. Then, as an intermediate example, in Section 4.2 we consider an ODE model that
induces stronger correlations among the parameters in P, before addressing the calcium model
in Section 4.3.

In Appendix S3 we describe the generic structure of a parameter inference problem for ODEs.
In all instances the aim is to post-process the output from MCMC, in order to produce an accurate
empirical approximation of the posterior supported on a small number m ≪ n of the states that
were visited. The following methods were compared:

1. The standard approach, which estimates a burn-in period using either the GR diagnostic b̂
GR,L

,
L > 1, of Gelman and Rubin (1992), Brooks and Gelman (1998), Gelman et al. (2014) or
the more sophisticated VK diagnostic b̂

VK,L
, L ≥ 1, of Vats and Knudson (2018), in each case

based on L independent chains as described in Appendix S4, followed by thinning as per
Equation (3).
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2. The Support Points algorithm proposed in Mak and Joseph (2018), implemented in the
R package support.

3. The Stein Thinning algorithm that we have proposed, with each of the kernel choices
described in Section 2.3.

To ensure that our empirical findings are not sensitive to the choice of MCMC method,
we implemented four Metropolis–Hastings samplers that differ qualitatively according to the
sophistication of their proposal. These were: (i) the Gaussian random walk (RW); (ii) the adap-
tive Gaussian random walk (ADA-RW), which uses an estimate of the covariance of the target
(Haario et al., 1999); (iii) the Metropolis-adjusted Langevin algorithm (MALA), which takes a
step in the direction of increasing Euclidean gradient, perturbed by Gaussian noise (Roberts &
Tweedie, 1996); (iv) the preconditioned version of MALA (P-MALA), which employs a precondi-
tioner based on the Fisher information matrix (Girolami & Calderhead, 2011). Full details are
in Appendix S3. Metropolis–Hastings algorithms were selected on the basis that we were able
to successfully implement them on the challenging calcium signalling model in Section 4.3,
which required manually interfacing with the numerical integrator to produce reliable
output.

4.1 Goodwin oscillator

The first example that we consider is a negative feedback oscillator due to Goodwin (1965). The
ODE model and the associated d = 4 dimensional inference problem are described in Appendix
S5.2, where one trace plot for each MCMC method, of length n = 2 × 106, are presented in
Figure S3.

First, we consider the standard approach to post-processing MCMC output, as per
Equation (3). From the trace plots in Figure S3, it is clear that a burn-in period b > 0 is required.
For each method, we therefore computed the GR and VK diagnostics, to arrive at candidate val-
ues b for the burn-in period. Default settings were used for all diagnostics, which were computed
both for the multivariate d-dimensional state vector and for the univariate marginals, as reported
in Appendix S5.2. The GR diagnostics were computed using L = 6 independent chains and the
VK diagnostics were computed using both L = 1 and L = 6 independent chains; note that when
L> 1, these diagnostics have access to more information in comparison withStein Thinning,
in terms of the number of samples that are available to the method. The estimated values for the
burn-in period are reported in Appendix S5.2, Table S4. For all MCMC methods, neither the uni-
variate nor the multivariate GR diagnostics were satisfied, so that b̂

GR,6
> n and estimation using

Equation (3) cannot proceed. The VK diagnostic produced values b̂
VK,L

< n, which typically led
to about half of the MCMC output being discarded. Although well-suited for their intended task
of minimising bias in MCMC output, the smaller number of states left after burn-in removal may
lead to inefficient approximation of P and derived quantities of interest, strikingly so in the case
of the GR diagnostic. The use of an optimality criterion enables Stein Thinning to directly
address this bias-variance trade-off. Of course, one can in principle run more iterations of MCMC
to provide more diversity in the remainder of the sample path after burn-in is removed, but in
applications such as the calcium model of Section 4.3 the computational cost associated with each
iteration presents a practical limitation in running more iterations of an MCMC method. Effec-
tive methods to post-process limited output (or, equivalently, a long output from a poorly mixing
Markov chain) are therefore important.
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1072 RIABIZ et al.

F I G U R E 3 Projections on the first two coordinates of the RW MCMC output from the Goodwin oscillator
(gray dots), together with the first m = 20 points selected using: the standard approach of discarding burn-in and
thinning the remainder (the estimated burn in period is indicated in the legend); the Support Points

method; Stein Thinning, for each of the settings med, sclmed, smpcov [Colour figure can be viewed at
wileyonlinelibrary.com]

Having identified a burn-in period, the standard approach thins the remainder of the sample
path according to Equation (3). In the experiments that follow we focus on the VK diagnostic and
consider both the smallest and largest estimates obtained for the burn-in period. The resulting
index sets 𝜋 are displayed, for m = 20 and RW (the simplest MCMC method) in Figure 3 (top left
panel), and in Appendix S5.2, Figures S6 (ADA-RW), S7 (MALA), S8 (P-MALA). In the same figures
(top right panel) we show the set of Support Points obtained using algorithm proposed
by Mak and Joseph (2018). The remaining panels display the output from Stein Thinning.
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RIABIZ et al. 1073

F I G U R E 4 Absolute error of estimates for the posterior mean of each parameter in the Goodwin oscillator,
based on output from RW MCMC [Colour figure can be viewed at wileyonlinelibrary.com]

Compared to the standard approach, Support Points and Stein Thinning produce sets
that are more structured.

To assess the performance of these competing methods, we first considered the toy problem
of approximating the posterior mean of each parameter in the Goodwin oscillator as an average
of m points selected from the MCMC output. Figure 4 displays absolute errors for each method,
based on RW; our ground truth was provided by an extended run of MCMC. Results for the other
MCMC methods are provided in Appendix S5.2, Figures S9 (ADA-RW), S10 (MALA), S11 (P-MALA).
Broadly speaking,Stein Thinning tends to provide more accurate estimators compared to the
alternatives considered. From Figure 4 it is difficult to see any difference in performance between
med, sclmed and smpcov. To gain more insight, in Appendix S5.2 we plot marginal density esti-
mates in Figures S21 (RW), S13 (ADA-RW), S14 (MALA), S15 (P-MALA). It is apparent that Stein
Thinning improves on the standard approach, whilst med and sclmed performed slightly bet-
ter than smpcov. This may be because in smpcov there are more degrees of freedom in Γ that
must be estimated. Support Points performed on a par with Stein Thinning based on
smpcov.

To facilitate a more principled assessment, we computed two quantitative measures for how
well the resulting empirical distributions approximate the posterior. These were (a) the energy
distance (ED; Baringhaus & Franz, 2004; Székely & Rizzo, 2004), given up to an additive constant
by

ED ∶= 2
m

m∑

j=1
∫

||x − x𝜋(j)||Σ dP(x) − 1
m2

m∑

j,j′=1
||x𝜋(j) − x𝜋(j′)||Σ, (11)

where in this paper we used the norm ||x||Σ ∶= ||Σ−1∕2x|| induced by the covariance matrix of P,
with both Σ and Equation (11) being estimated from MCMC output, and (b) the KSD based on
med, the simplest setting for Γ. ED serves as an objective performance measure, being closely
related to the quantity that Support Points attempts to minimise (Mak & Joseph, 2018 used
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F I G U R E 5 Goodwin oscillator: Energy distance (ED) to the posterior, as per Equation (11), for empirical
distributions obtained through traditional burn-in and thinning (grey lines), Support Points (black line) and
Stein Thinning (colored lines), based on output from four different MCMC methods [Colour figure can be
viewed at wileyonlinelibrary.com]

the ||⋅|| norm in place of || ⋅ ||Σ), while KSD is the performance measure that is being directly
optimised in Stein Thinning. Our decision to include KSD in the assessment is motivated
by three factors; (i) ED is somewhat insensitive to detail, making it difficult to rank competing
methods; (ii) the empirical approximation of ED in Equation (11) relies on access to high-quality
MCMC output, but this will not be available in Section 4.3; (iii) Stein discrepancies are the only
computable performance measures in the Bayesian context, to the best of our knowledge, that
have been proven to provide convergence control.

The results for ED are shown in Figure 5. Here Stein Thinning based on sclmed
performed at least as well as the other methods considered and, surprisingly, out-performedSup-
port Points when applied to MALA and P-MALA output. This may be because MALA and
P-MALA provided worse approximations to P compared with RW and ADA-RW (recall that Sup-
port Points relies on the MCMC output providing an accurate approximation of P). Note that
neither ED nor KSD values will tend to 0 as m → ∞ in this experiment, since the number n of
MCMC iterations was fixed. The corresponding results for KSD are presented in Figure 6 and
show a clearer performance ordering of the competing methods, with Stein Thinning based
on med and sclmed out-performing all other methods for all but the largest values of m consid-
ered. The smpcov setting performed well for small m but for large m its performance degraded.
The performance ordering under KSD was identical across the different MCMC output.

4.2 Lotka–Volterra

The second example that we consider is the predator-prey model of Lotka (1926) and Volterra
(1926). A description of the d = 4 dimensional inference task, the output from MCMC methods
and the implementation of thinning procedures is reserved for Appendix S5.3. Compared to the
Goodwin oscillator, the Lotka–Volterra posterior P exhibits stronger correlation among parame-
ters. This has consequences for our assessment, since now all MCMC methods, and in particular
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F I G U R E 6 Goodwin oscillator: Kernel Stein discrepancy (KSD) based on med, for empirical distributions
obtained through traditional burn-in and thinning (grey lines), Support Points (black line) and Stein
Thinning (colored lines), based on output from four different MCMC methods [Colour figure can be viewed at
wileyonlinelibrary.com]

MALA, mixed less well compared to corresponding results for the Goodwin oscillator, as can be
seen from the trace plots in Appendix S5.3, Figure S17. Results are reported for ED in Figure 7.
It can be seen that Stein Thinning based on med and sclmed performed comparably with
Support Points, being better for small m in the case of RW and ADA-RW and marginally worse
for large m in RW, ADA-RW and P-MALA. Interestingly, the setting smpcov was associated with
poor performance on output from RW, ADA-RW and especially P-MALA. This may be because,
when Γ is poorly conditioned, any error in an estimate for Γ will be amplified when computing
Γ−1. However, in the case ofMALA, which mixed poorly, the standard approach of burn-in removal
and thinning performed poorly and all settings of Stein Thinning provided an improvement.

Results for KSD are reported in Figure 8. The performance ordering of competing meth-
ods under KSD is similar to that reported in Section 4.1, except for the smpcov setting which
appears to improve the performance of Stein Thinning for larger values of m in the context
of MALA. This may be because smpcov serves to ‘whiten’ the correlation structure in P, such that
the resulting geometry is more favourable for the construction of an empirical approximation.
However, this improved performance was not seen on P-MALA. In all cases Stein Thinning
out-performed Support Points.

4.3 Calcium signalling model

Our final example a model for calcium signalling in cardiac cells, illustrated in Appendix S5.4,
Figure S24. The model describes an electrically activated intracellular calcium signal that in turn
activates the sub-cellular sarcomere, causing the muscle cell to contract and the heart to beat.
The intracellular calcium signal is crucial for healthy cardiac function. However, under patholog-
ical conditions, dysregulation of this intra-cellular signal can play a central role in the initiation
and sustenance of life-threatening arrhythmias. Computational models are increasingly being
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1076 RIABIZ et al.

F I G U R E 7 Lotka–Volterra model: Energy distance (ED) to the posterior, as per Equation (11), for
empirical distributions obtained through traditional burn-in and thinning (grey lines), Support Points

(black line) and Stein Thinning (colored lines), based on output from four different MCMC methods
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 8 Lotka-Volterra model: Kernel Stein discrepancy (KSD) based on med, for empirical
distributions obtained through traditional burn-in and thinning (grey lines), Support Points (black line) and
Stein Thinning (colored lines), based on output from four different MCMC methods [Colour figure can be
viewed at wileyonlinelibrary.com]

applied to study this highly orchestrated multi-scale signalling cascade to determine how changes
in cell-scale calcium regulation, encoded in calcium model parameters, impact whole-organ car-
diac function (Campos et al., 2015; Colman, 2019; Niederer et al., 2019). The computational cost of
simulating from tissue-scale and organ-scale models is high, with single simulations taking thou-
sands of CPU hours (Augustin et al., 2016; Niederer et al., 2011; Strocchi et al., 2020). This limits
the capacity to propagate uncertainty in calcium signalling model parameters up to organ-scale
simulations, so that at present it remains unclear how uncertainty in calcium signalling
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parameters impacts the predictions made by a whole-organ model. Our motivation for developing
Stein Thinning was to obtain a compressed representation of the posterior distribution for
the d= 38 dimensional parameter of a calcium signalling model, based on a cell-scale experimen-
tal dataset, which can subsequently be used as an experimental design to propagate uncertainty
through a whole-organ model.

This motivating problem entails a second complication in that, compared to the example in
Section 4.1 and even the example in Section 4.2, the development of an efficient MCMC method
appears to be difficult. Thus, in the experiment that follows, we cannot rely on any of the MCMC
methods that we described at the start of Section 4 to provide anything more than a crude approx-
imation of the posterior, at best. This is evidenced by the non-overlapping approximations to the
posterior marginals produced when different random seeds are used; see Figures S26 to S29. (Of
course, it is possible that a more sophisticated sampling method may be designed for this task,
but our aim here is not to develop a new sampling method.) Tempering of the likelihood pro-
vides a straightforward route to improve the mixing of MCMC, but the invariant distribution Q
will then no longer equal P. Here we explore the potential for Stein Thinning to perform
bias-correction for such Q-invariant MCMC output, in the spirit of Theorem 3.

Our focus in the remainder is on output from the RW MCMC method. This MCMC method
was selected since (a) gradient-free methods can be easier to tune when the posterior is con-
centrated (Livingstone & Zanella, 2020), and (b) once the sample path has been computed, the
associated gradients can be computed in parallel. Both standard and tempered MCMC were per-
formed; in the latter case the likelihood was tempered so that the (biased) target Q was just about
tractable for MCMC (see Appendix S5.4). In each case a total of n = 4 × 106 iterations of MCMC
were preformed, representing two weeks’ CPU time.

Figure 9 reports the KSD based on med, for index sets of cardinality up to m = 500;
see Appendix S5.4 for results for KSD based on sclmed (Figure S30) and smpcov (Figure
S31). Considering first the tempered MCMC output, the lower values of KSD achieved by
Stein Thinning are consistent with fact that Stein Thinning corrects for bias due to
tempering, while Support Points does not. Furthermore, Stein Thinning of tempered
MCMC results in lower values of KSD compared to Support Points applied to standard
MCMC output, with the latter being negatively affected by the non-convergence of the MCMC.

F I G U R E 9 Calcium signalling model. Kernel Stein discrepancy (KSD) based on med, for empirical
distributions obtained using Support Points and Stein Thinning, based on output from RW MCMC
applied to either P or a tempered version of P [Colour figure can be viewed at wileyonlinelibrary.com]
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Inspection of the univariate marginals demonstrates that the combination of tempering and
Stein Thinning produces approximations that are robust to changes in the random seed,
while the approximations produced by standard MCMC with an equivalent computational budget
are not; see Figures S26 to S29.

5 CONCLUSION

In this paper, standard approaches used to post-process and compress output from MCMC were
identified as being sub-optimal when one considers the approximation quality of the empir-
ical distribution that is produced. A novel method, Stein Thinning, was proposed that
seeks a subset of the MCMC output, of fixed cardinality, such that the associated empirical
approximation is close to optimal. The theoretical analysis that we have provided for Stein
Thinning handles the effect of the post-processing procedure jointly with the randomness
involved in simulating from the Markov chain, such that consistency of the overall estimator is
established.

Although we focused on MCMC, the proposed method can be applied to any computa-
tional method that provides a collection of states as output. These include approximate (biased)
MCMC methods, where Stein Thinning may be able to provide bias correction in the spirit
of Theorem 3. However, the main limitation of Stein Thinning is that it requires gradients of
the log-target to be computed, which is not always practical.

Our research was motivated by challenging parameter inference problems that arise in ODEs,
in particular in cardiac modelling where one is interested in propagating calcium signalling
parameter uncertainty through a whole-organ simulation —a task that would naïvely be imprac-
tical or impossible using the full MCMC output. Our ongoing research is exploiting Stein
Thinning in this context and is enabling us to perform scientific investigations that were not
feasible beforehand. Furthermore, in a sequel we demonstrate that approximate implementations
of Stein Thinning can massively reduced its implementation cost (Teymur et al., 2021).
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