

Human impacts alter driver-response relationships in lakes of southwest China

Journal:Limnology and OceanographyManuscript IDLO-21-0092.R2Wiley - Manuscript type:Original ArticleDate Submitted by the Author:n/aComplete List of Authors:Zheng, Wenxiu; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences; University of Chinese Academy of Sciences Zhang, Enlou; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment Langdon, Peter; University of Southampton Faculty of Engineering and the EnvironmentKeywords:Diversity, regime shift, lake ecosystem, chironomid, driver-response relationship, southwest China		
Manuscript ID LO-21-0092.R2 Wiley - Manuscript type: Original Article Date Submitted by the Author: n/a Complete List of Authors: Zheng, Wenxiu; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences; University of Chinese Academy of Sciences Zhang, Enlou; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences Wang, Rong; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment Langdon, Peter; University of Southampton Faculty of Engineering and the Environment Keywords: Diversity, regime shift, lake ecosystem, chironomid, driver-response relationship, southwest China	Journal:	Limnology and Oceanography
Wiley - Manuscript type: Original Article Date Submitted by the Author: n/a Complete List of Authors: Zheng, Wenxiu; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences; University of Chinese Academy of Sciences Zhang, Enlou; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences Wang, Rong; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment Langdon, Peter; University of Southampton Faculty of Engineering and the Environment Keywords: Diversity, regime shift, lake ecosystem, chironomid, driver-response relationship, southwest China	Manuscript ID	LO-21-0092.R2
Date Submitted by the Author:n/aComplete List of Authors:Zheng, Wenxiu; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences; University of Chinese Academy of Sciences Zhang, Enlou; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences Wang, Rong; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment Langdon, Peter; University of Southampton Faculty of Engineering and the EnvironmentKeywords:Diversity, regime shift, lake ecosystem, chironomid, driver-response relationship, southwest China	Wiley - Manuscript type:	Original Article
Complete List of Authors:Zheng, Wenxiu; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences; University of Chinese Academy of Sciences Zhang, Enlou; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences Wang, Rong; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment Langdon, Peter; University of Southampton Faculty of Engineering and the EnvironmentKeywords:Diversity, regime shift, lake ecosystem, chironomid, driver-response relationship, southwest China	Date Submitted by the Author:	n/a
Keywords: Diversity, regime shift, lake ecosystem, chironomid, driver-response relationship, southwest China	Complete List of Authors:	Zheng, Wenxiu; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences; University of Chinese Academy of Sciences Zhang, Enlou; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences Wang, Rong; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment Langdon, Peter; University of Southampton Faculty of Engineering and the Environment
	Keywords:	Diversity, regime shift, lake ecosystem, chironomid, driver-response relationship, southwest China
Abstract: Biodiversity and ecological stability are closely linked, and over recent timescales, anthropogenic impacts have accelerated losses in both from local to global scales. We attempt to show the combined response of diversity and stability of an aquatic community to changes in human activity as a driver. To address this, we measured the diversity and variability of chironomids, and their drivers and nature of response to external conditions over the last century, based on four lake sediment sequences from southwest China, one of world's 36 biodiversity hotspots. Our results showed the driver-response relationship was liner in a lake without direct human impacts but nonlinear in human directly impacted lakes. Recent decreases in alpha diversity and increases in beta diversity were commonly recorded in all four lakes, suggesting that both species loss and a faster replacement of chironomid taxa is a regional phenomenon. However, in the same context of human-inducer global warming, increased variability and regime shifts only occurred in lowland lakes, directly disturbed by humans, highlighting that direct human impacts have overcome natural forcing as the determinant drive shaping the chironomid composition in these sites. Additionally, we found that increases in beta diversity occurred prior to a regime shift a its character depends on how the community responds to the key external pressure. Our findings reveal that direct human disturbances have largely reshaped the chironomid composition and induced an earl regime shift at the cost of species loss, resilience loss and a change in driver-response type.	Abstract:	Biodiversity and ecological stability are closely linked, and over recent timescales, anthropogenic impacts have accelerated losses in both from local to global scales. We attempt to show the combined response of diversity and stability of an aquatic community to changes in human activity as a driver. To address this, we measured the diversity and variability of chironomids, and their drivers and nature of response to external conditions over the last century, based on four lake sediment sequences from southwest China, one of world's 36 biodiversity hotspots. Our results showed the driver-response relationship was linear in a lake without direct human impacts but nonlinear in human directly impacted lakes. Recent decreases in alpha diversity and increases in beta diversity were commonly recorded in all four lakes, suggesting that both species loss and a faster replacement of chironomid taxa is a regional phenomenon. However, in the same context of human-induced global warming, increased variability and regime shifts only occurred in lowland lakes, directly disturbed by humans, highlighting that direct human impacts have overcome natural forcing as the determinant driver shaping the chironomid composition in these sites. Additionally, we found that increases in beta diversity occurred prior to a regime shift and its character depends on how the community responds to the key external pressure. Our findings reveal that direct human disturbances have largely reshaped the chironomid composition and induced an earlier regime shift at the cost of species loss, resilience loss and a change in driver-response type.

SCHOLARONE[™] Manuscripts

Scientific Significance Statement Topic

For the first time, we focused on the spatiotemporal changes in chironomid diversity and regime shifts in lakes characterized by different ways of responding to external changes. We found that human impacts changed the pressure- response type of community. Recent decreases in alpha diversity and increases in beta diversity are commonly recorded in all lakes, but increased variability and regime shifts only occurred in human directly impacted lakes, highlighting that direct human impacts have overcome natural forcing as the determinant driver shaping the chironomid composition in these sites. We propose that beta diversity could be applied to evaluate the changes in communities in response to global changes as it can detect the more subtle changes in communities. Additionally, we found that the distance between tipping point and the point at which beta diversity starts to increase is highly related to the way communities respond to external forces.

Scientific Significance Statement Outlet

Biodiversity and stability are critical for maintaining ecosystem functioning, and the connection between them is typically concerned issues for ecologists. We found that the growing beta diversity prior to a regime shift is critical for lake management as the early increase in beta diversity could provide sufficient time to take actions. Another meaningful finding is that the point at which beta diversity starts to increase is highly related to the way communities respond to external forces.

Lake	Lake	Atitude	Maximum	Total	Land cover	Population
	area	(m a.s.l)	depth (m)	phosphoru		density
	(km ²)			s (µg/L)		(individuals/km ²)
Chenghai	77	1503	35	46	Forest, agriculture,	187
					urban	
Yangzong	31	1770	30	21	Agriculture, urban,	473
					forest	
Lugu	48	2691	94	12	Forest, urban	65
Tiancai	0.021	3898	6.8	14	Forest	0

Table 1 Physical and chemical characteristics of the studied lakes

1 TITLE PAGE

2

3 TITLE: Human impacts alter driver-response relationships in lakes of southwest

- 4 China
- 5
- 6 **AUTHORS:** Wenxiu Zheng^{1, 2}, Enlou Zhang^{1*}, Rong Wang^{1, 3*}, Peter Guy Langdon⁴
- 7 **AFFILIATIONS:**
- 8 1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of
- 9 Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu,
- 10 China.
- 11 WZ: zhengwenxiu1992@163.com; RW: rwang@niglas.ac.cn; EZ:
- 12 elzhang@niglas.ac.cn;
- 13 2 University of Chinese Academy of Sciences, Beijing 100049, Beijing, China.
- 14 3 The Fuxianhu Station of Plateau deep lake research, Nanjing Institute of Geography
- and Limnology, Chinese Academy of Sciences, Yuxi 653100, Yunnan, China..
- 16 4 School of Geography and Environmental Science, University of Southampton,
- 17 Southampton, Hampshire, UK.
- 18 PL: P.G.Langdon@soton.ac.uk
- 19 *** Correspondence** to EZ: elzhang@niglas.ac.cn; RW: rwang@niglas.ac.cn
- 20
- 21

22	ABSTRACT: Biodiversity and ecological stability are closely linked, and over recent
23	timescales, anthropogenic impacts have accelerated losses in both from local to global
24	scales. We attempt to show the combined response of diversity and stability of an
25	aquatic community to changes in human activity as a driver. To address this, we
26	measured the diversity and variability of chironomids, and their drivers and nature of
27	response to external conditions over the last century, based on four lake sediment
28	sequences from southwest China, one of world's 36 biodiversity hotspots. Our results
29	showed the driver-response relationship was linear in a lake without direct human
30	impacts but nonlinear in human directly impacted lakes. Recent decreases in alpha
31	diversity and increases in beta diversity were commonly recorded in all four lakes,
32	suggesting that both species loss and a faster replacement of chironomid taxa is a
33	regional phenomenon. However, in the same context of human-induced global
34	warming, increased variability and regime shifts only occurred in lowland lakes,
35	directly disturbed by humans, highlighting that direct human impacts have overcome
36	natural forcing as the determinant driver shaping the chironomid composition in these
37	sites. Additionally, we found that increases in beta diversity occurred prior to a
38	regime shift and its character depends on how the community responds to the key
39	external pressure. Our findings reveal that direct human disturbances have largely
40	reshaped the chironomid composition and induced an earlier regime shift at the cost
41	of species loss, resilience loss and a change in driver-response type.
42	KEYWORDS: Diversity, regime shift, driver-response relationship, lake ecosystem,

43 chironomid, southwest China

45 **INTRODUCTION**

46	Lakes constitute important habitats and food resources for humans and other
47	organisms, but under the pressures of accelerated climate change and increasing
48	human impacts, they are fragile ecosystems (Strayer and Dudgeon 2010). The most
49	commonly cited risks are an accelerated loss in biodiversity and ecological collapse
50	(Strayer and Dudgeon 2010; Kardol et al. 2018). Biodiversity is the basis for life-
51	sustaining, ecological processes such as nutrient cycling, photosynthesis,
52	decomposition, climate regulation and removal of pollutants. Ecosystem stability
53	relates to their ability to maintain a natural balance or return to equilibrium quickly
54	after a particular disturbance. Both of these characters are significant aspects for
55	ecosystem services (McCann 2000; Ives and Carpenter 2007; Falkenmark et al. 2019),
56	and it is thus essential to consider both when studying the ecological effects of
57	environmental changes.
58	
59	A loss or reduction in stability can result in a regime shift, through which the
60	ecological state (hereafter referred to as community state) shifts abruptly into an
61	alternative state due to large external forcing or loss of resilience (Scheffer et al.
62	2001). Theoretically, communities in different lake ecosystems may respond either
63	smoothly, abruptly, or discontinuously to external forces (Fig. 1). A 'smooth'
64	response is indicated by a linear relationship between ecological state and external
65	conditions (Fig. 1a) a regime shift in such a response type can be triggered by high-

66	impact variables (Collie et al. 2004), such as a flood, damming, and overfishing. By
67	contrast, 'abrupt' and 'discontinuous' responses exhibit a nonlinear relationship
68	between ecological state and external conditions (Fig. 1b, 1c), reflecting that the
69	ecosystem is rather insensitive over certain ranges of the external conditions, while
70	responding strongly around a threshold condition, and as such is hard to predict.
71	Regime shifts of these two types are closely related to the loss of resilience, mostly
72	defined as the speed by which the system recovers upon disturbance. Ecosystems with
73	low resilience are relatively easier shift into alternative states even if the perturbation
74	is relatively small. What distinguishes the 'abrupt' (Fig. 1b) and 'discontinuous' type
75	(Fig. 1c) is when the forcing variable decreases, the response variable will follow a
76	different trajectory to the previous equilibrium in a discontinuous regime shift, thus
77	needing a greater effort to reverse the altered state (Barnosky et al. 2012). These three
78	types of regime shift have been observed in contemporary lake ecosystems, mainly
79	focusing on diatom (Xu et al. 2019), macrophyte (Zhang et al. 2018) and Cladocera
80	communities (Su et al. 2020).

A number of mechanisms have been proposed to explain the loss of ecological
stability (Barnosky et al. 2012), and biodiversity is arguably the most studied
(McCann 2000; Ives and Carpenter 2007; Pennekamp et al. 2018). The conventional
view is that high biodiversity is often considered to help maintain high stability
(McCann 2000), whereas it has been more recently argued that species loss does not
always mean a decline in stability, and the biodiversity-stability relationship may be

88	ambiguous (McCann 2000; Ives and Carpenter 2007). Experiments indicate that only
89	the loss or removal of a few species can cause a statistically discernible mean change
90	in the abundance of other species in some communities, whereas most will have weak
91	effects owing to low abundance (Berlow 1999). For example, species extinction only
92	related to 'weak-interactions' often happens gradually and locally (Barnosky et al.
93	2011), whereas the loss of species related to 'strong interactions', often playing an
94	important role in supporting the whole community, will result in further extinctions
95	and can lead to abrupt regime shifts via trophic cascades (McCann 2000; Ives and
96	Carpenter 2007).

It has recently been suggested that current extinction rates are higher than would be 98 99 expected from the fossil record and that the sixth mass extinction may be under way due to anthropogenic pressures (Barnosky et al. 2011). If true, such a sharp decline of 100 biodiversity would likely be accompanied by extensive regime shifts within the 101 biosphere (Barnosky et al. 2012), furtherly leading to damaged ecosystems that are 102 difficult to reverse. For future prediction and lake management, it's essential to reveal 103 how climate changes and anthropogenic activities affect biodiversity, stability and the 104 driver-response relationships within ecosystem communities. Identifying state shifts 105 in any lake ecosystem demands a temporal context that includes at least a few 106 centuries to encompass the range of ecological variation that would be considered the 107 normal state (Barnosky et al. 2012). Long-term, high resolution ecological and 108 environmental data, are particularly valuable to understand how communities respond 109

110	to external perturbations. Paleolimnology affords an alternative means of
111	reconstructing temporal trends in biodiversity and provides high resolution (often
112	annual to multi-decadal) time-series, which typically extend far beyond available
113	historical biotic records (Sayer et al. 2010).
114	
115	Here we present subfossil chironomid records from four lakes in the southwest China.
116	As a biodiversity hotspot (Myers et al. 2000), southwest China possesses many lakes
117	with different backgrounds of natural properties and human impacts and some of them
118	are faced with risks of continuous loss in biodiversity (Lu et al. 2020). Previous
119	studies related to diversity or regime shifts in this region were mainly focused on
120	bacteria, phytoplankton and plants (Wang et al. 2016; Wang et al. 2020; Song et al.
121	2019). In this study, we focus on chironomids - one of the most abundant and diverse
122	benthic macroinvertebrate groups in aquatic ecosystems worldwide (Giller and
123	Malmqvist 1998). Chironomids play a supporting role in lake food webs (an
124	important link between basal food resources and predators) and are well preserved in
125	lake sediments (Serra et al. 2017). Our aim is to test how driver-response relationships
126	vary across a gradient of human impacted lakes, and what further diversity-stability
127	relationships exist with different diversity metrics prior to and post regime shifts.
128	
129	MATERIALS AND METHODS

130 Study region

131 Yunnan province is situated in southwest China, between 21°N and 29°N of latitude

132	and 97°E and 106°E of longitude, with an altitude gradient of ~6663 m. Due to the
133	'synergistic effect' of changes in latitude and altitude, the province, spanning only 8°
134	in latitude, holds all climate zones and the highest biodiversity in China (Yang et al.
135	2004). Under the pressures of global changes, Yunnan is also the most threatened
136	province in terms of biodiversity loss (Yang et al. 2004; Qian et al., 2020; Wang et al.
137	2020). Disturbances from agriculture, chemical fertilizer consumption, overfishing,
138	coal consumption and tourism are mainly distributed and increased in the lowland
139	areas (Fig. S1), leading to the degradation of many ecosystems. Other highland
140	ecosystems away from direct human perturbation have also suffered from the impacts
141	of recent climate warming (Fig. S2, Wang et al. 2020) and indirect human impacts
142	such as nitrogen deposition (Hu et al. 2014).

In this study, four lakes (Fig. 2) in Yunnan were selected to investigate the stability, 144 driver-response type and diversity of chironomid communities across a human impact 145 146 gradient using a paleolimnological approach. Tiancai Lake (26°38'N, 99°43'E; 3898 m a.s.l.) is a freshwater lake away from direct human impacts (Chen et al. 2018), as 147 there is no land used for agriculture or buildings around its catchment. Hence we 148 regard Tiancai as a lake not directly affected by human activities and our control site. 149 Conversely, the other three lakes selected for study have suffered from a range of 150 direct human impacts. Lugu Lake (27°41'-27°45'N, 100°45'-100°50'E; 2691 m 151 a.s.l.) is a remote, oligotrophic freshwater lake, but is facing multiple pressures due to 152 increased tourism and mechanized agriculture in recent years (Zhang et al. 2013); 153

154	Lake Chenghai (26°27'-26°38'N, 100°38'-100°41'E; 1500 m a.s.l.) and Yangzong
155	(24°51'-24°58'N, 102°58'-103°01'E; 1771 m a.s.l.) are situated in catchments with
156	strong human impacts (Zhang et al. 2012), and have been suffering from
157	eutrophication since the 1990s. Table 1 is a summary of the key physical and
158	chemical characteristics of these four lakes. According to previous studies (Zheng et
159	al. 2019; Zhang et al., 2012), different types of activity, such as non-point source
160	nutrient inputs and cultivation of Spirulina in Chenghai, fish cultivation and mining in
161	Yangzong, soil erosion caused by deforestation in Lugu are potentially the main
162	drivers for shifts in ecological compositions (Zhang et al. 2013). Additional details
163	about each lake can be found in the supplementary information.
164	
165	Sample processing

Sample processing 165

166	Sediment cores were collected from the four lakes using a Kajak gravity corer in 2007
167	and 2008 (Renberg 1991). These cores were sliced in the field at 0.5 cm or 1 cm
168	intervals and stored at < 4 °C prior to analysis. The ages of these samples ranging
169	from ~1900 to ~2007CE were determined from the activity of 210 Pb, 226 Ra and 137 Cs
170	radioisotopes. The cores' chronologies and environmental data including TOC (total
171	organic carbon), TN (total nitrogen), grain size, elemental geochemistry and mean
172	annual average temperature (MAAT) inferred from measurements from branched
173	archea bacteria (brGDGT) used in this study have been reported in (i) Zheng et al.
174	(2019) for Chenghai Lake, (ii) Zhang et al. (2012) for Yangzong Lake, (iii) Zhang et

175 al. (2013) for Lugu Lake; (iv) Zhang et al. (2017), Xiao et al. (2014), Chen et al.

- 176 (2018) and Feng et al (2019) for Tiancai Lake.
- 177 Sediment samples for chironomid analysis were processed using standard techniques
- 178 (Brooks et al. 2007). The sediments were firstly deflocculated with 10% KOH at 75°C
- for 15 min in a water bath, and then rinsed through 212 and 90- μ m sieves. The residue
- 180 from the 90- μ m sieve was then transferred to a grooved Perspex sorting tray from
- which chironomid head capsules were picked using a stereo-zoom microscope at $\times 25$
- 182 magnification. Head capsules were then sealed on glass slides with Hydromatrix®. A
- 183 minimum of 50 identifiable whole head capsules were counted for each sample
- (Quinlan et al. 2001). The head capsules were identified mainly at a $\times 100$ to $\times 400$
- magnification, using the reference literatures (Brooks et al. 2007; Rieradevall et al.,

186 2001).

187

188 Statistical methods

The constrained incremental sum of squares (CONISS) analysis was used to identify the chironomid zones in the sediment core, which were based on the square-root transformed species data (Grimm 1991). Principal components analysis (PCA) was conducted to extract the major components of the chironomid assemblages in each lake because the length of the first axis of detrended correspondence analysis (DCA1) was < 2 in three of the four lakes (1.17 for Tiancai, 1.73 for Lugu, 0.88 for Chenghai and 3.1 for Yangzong) (ter Braak and Smilauer 2012). Statistically significant shifts in

196	the dominant modes of variability, which are characterized by the scores on the first
197	axis of PCA (PCA1), were identified using sequential T-test analysis performed in the
198	Regime-Shifts algorithm (STARS) with a cut-off length of 10 (p <0.01) (Rodionov
199	2006). We also ran the cumulative sum of difference (CUSUM) of PCA1 for evidence
200	of sharp changes in slope, which has been proposed as an integral part of trend
201	detection in long-term environmental data (Nicholls 2001). For the sake of ensuring
202	the accuracy of shift-detection, the existence of regime shift is jointly determined by
203	CONISS, STARS and CUSUM. In order to reflect the periodic changes of chironomid
204	communities, all relative abundance data of chironomids were divided into three
205	periods according to the symbolic events marking changes in the intensity of human
206	activities (e.g., 1950-the founding of New China and the time of regime shift or 1980-
207	the reform and opening). Relative abundance of chironomids in each period was then
208	averaged to obtain the compositional dynamics of the four biostratigraphic profiles
209	using DCA (ter Braak and Smilauer 2012). Redundancy analysis (RDA) was
210	performed on the four lakes to investigate the forcing variables that led to the change
211	in chironomids. The residuals of PCA1 after detrended by Gaussian kernel smoothing
212	method were employed to represent variabilities of chironomids. CONISS was
213	performed using Tilia (Grimm 1991). PCA and DCA were performed with the
214	'vegan' package in R version 3.32 (Dixon 2003) and chironomid variabilities were
215	performed with the 'earlywarnings' packages in R (version 3.32; http://www.r-
216	project.org/). RDA were performed using CANOCO version 5 program package (ter
217	Braak and Smilauer 2012).

219	Both alpha and beta diversity in time series were calculated. Alpha diversity, referred
220	to as point diversity, is the species richness that occurs within a given area. Beta
221	diversity is the rate of change in species composition including species richness and
222	abundance that occurs in spatial or temporal scale. Based on the relative abundance of
223	chironomids, alpha diversities were calculated employing species richness and beta
224	diversities were calculated between adjacent communities by Jaccard index using the
225	'vegan' package in R version 3.32 (Oksanen et al. 2018).
226	
227	RESULTS
228	The spatiotemporal dynamics of subfossil chironomids
229	Clear changes in the replacement of the dominant chironomid taxa were identified by
230	CONISS in the lakes directly impacted by human activities (Fig. 3). Procladius is the
231	dominant taxon (average abundance of ~60%, the following abundance are mean
232	value) in Chenghai Lake before ~1998 CE, Yangzong Lake (~82%) before ~1988 CE
233	
	and Lugu Lake (~54%) before ~1970 CE. Afterwards, <i>Procladius</i> has been gradually
234	and Lugu Lake (~54%) before ~1970 CE. Afterwards, <i>Procladius</i> has been gradually replaced by <i>Chironomus plumosus</i> -type and <i>Microchironomus</i> in Chenghai and
234 235	and Lugu Lake (~54%) before ~1970 CE. Afterwards, <i>Procladius</i> has been gradually replaced by <i>Chironomus plumosus</i> -type and <i>Microchironomus</i> in Chenghai and Yangzong lakes (Fig. 3a and 2b), and by <i>Tanytarsus mendax</i> -type and <i>Polypedelum</i>
234 235 236	and Lugu Lake (~54%) before ~1970 CE. Afterwards, <i>Procladius</i> has been gradually replaced by <i>Chironomus plumosus</i> -type and <i>Microchironomus</i> in Chenghai and Yangzong lakes (Fig. 3a and 2b), and by <i>Tanytarsus mendax</i> -type and <i>Polypedelum</i> <i>nubeculosum</i> -type in Lugu Lake. However, no substantial changes are observed in
234 235 236 237	and Lugu Lake (~54%) before ~1970 CE. Afterwards, <i>Procladius</i> has been gradually replaced by <i>Chironomus plumosus</i> -type and <i>Microchironomus</i> in Chenghai and Yangzong lakes (Fig. 3a and 2b), and by <i>Tanytarsus mendax</i> -type and <i>Polypedelum</i> <i>nubeculosum</i> -type in Lugu Lake. However, no substantial changes are observed in Tiancai Lake (only indirectly impacted by humans) except for the loss of some rare

239	Micropsectra type B (~0.9%) after the 1990s. Heterotrissocladius marcidus-type
240	(~20%), Micropsectra insignilobus-type (~10%) and Tvetenia tamafalva-type (~8%)
241	dominate the assemblages throughout the Tiancai record.
242	
243	DCA was used to assess the dissimilarity of the sites species composition as measured
244	by their turnover distance in standard deviation (SD) units (ter Braak and Smilauer
245	2012) (Fig. 4). Tiancai Lake (green symbols) is distant from the other three lakes and
246	almost unchanged over the past century, as the three green symbols are almost
247	overlapping. For the other three lakes, their communities are characterized by greater
248	deviation, which is most significant in Yangzong Lake, followed by Chenghai and
249	Lugu lakes.

251 Regime shift, variability and response type of chironomids

Results of regime shift detection are presented in the left panel of Fig. 5. Significant

shifts detected by STARS and CUSUM are found in Chenghai (Fig. 5a), Yangzong

(Fig. 5c) and Lugu (Fig. 5e) lakes, and their date of regime shift is consistent with the

results of CONISS. The earliest change point was identified in Lugu lake around 1970

CE, followed by Yangzong Lake in 1988 CE and Chenghai Lake in the late 1998 CE.

257 No regime shift was detected in Tiancai either by CONISS, STARS or CUSUM.

258 Variability of chironomids are listed in the right panel of Fig. 5. It is clear that the

community variability increased prior to the regime shift in lakes Chenghai (Fig. 5b),

Yangzong (Fig. 5d) and Lugu (Fig. 5f). The difference among them is that variability
of Chenghai and Lugu increase gradually when the regime shift was still far away (23 decades), while Yangzong only increase rapidly when it is was close to the regime
shift (2-3 years).

264

265	The results of the RDA are shown in Fig. 6 and show that TOC is the main driver in
266	Chenghai (Fig. 6a). In Yangzong lake, the concentration of the elements, TOC as well
267	as grain size compositions are the drivers for chironomid changes. Here, TOC in
268	Tiancai Lake have not yet passed a regime shift. Sedimentary TOC and brGDGTs-
269	inferred MAAT were respectively regarded as the primary drivers for Chenghai and
270	Tiancai lakes. TOC instead of grain size is used as an external driver for chironomid
271	assemblage changes in Yangzong and Lugu lakes. This is because, due to soil erosion,
272	changes in TOC, sediment elemental chemistry and grain size are synchronous and
273	highly correlated in these lakes. Furthermore, TOC is closely related to the food
274	supply, habitats, and oxygen concentrations for the survival of chironomids
275	(Brodersen and Quinlan 2006; Frossard et al. 2013), and as such considered to be a
276	local driver of chironomid assemblages (Zheng et al. 2019; Zhang et al. 2013).
277	However, in Tiancai (Fig. 6d), the recent increase in temperature is the clear main
278	driver for the continuous loss of chironomids.

279

280 We compare the response type of chironomid communities to changing external

281	drivers in phase plots at each site (Fig. 7). Correlation coefficients between external
282	forcing and community state are not significant in most phases and the responses of
283	community in each lake vary, and can be mainly classified into three different types.
284	The first type corresponds to a smooth type, represented by Tiancai Lake (Fig. 7d),
285	where chironomids gradually changed with the increasing MAAT. The second type,
286	i.e., the abrupt type, correspond to Chenghai (Fig. 7a) and Lugu (Fig. 7c) lakes, where
287	the TOC content of Chenghai (Lugu) Lake increases from 12.7 to 13.8 g/kg (from
288	61.6 to 59.3 g/kg), and PCA1 values jumped from 0.6 to 2.3 (from -0.1 to -2.5),
289	reflecting a large shift in chironomid communities. The third type, i.e., discontinuous
290	type, describing Yangzong (Fig. 7b), displays two linear clusters of points, 1898-
291	1988 CE (upper line) and 1988–2007 CE (lower line), suggesting two alternative
292	chironomid states for all TOC values in the range 7.1-16.7 g/kg, which is equivalent
293	to ~14% of the whole TOC scale.

295 Diversity dynamics of subfossil chironomids

As shown in Fig. 8, the range of alpha diversity (richness) in Tiancai Lake (12-26) is 296

higher than that of Lugu (3-12), Yangzong (3-12) and Chenghai (2-7) lakes (Fig. 8a-297

8j). In detail, alpha diversity displays a decreasing trend in Chenghai Lake (Fig. 8f) 298

- (from 6 to 2), while Yangzong (from 4 to 9) and Lugu (from 6 to 10) lakes show an 299
- increasing trend prior to their regime shift. Tiancai lake's alpha diversity is stable 300
- before 1990s and is followed by a continuous decline afterwards (from 22 to 15). Beta 301

302	diversity (dissimilarity, measured as Jaccard in Fig. 8) is generally higher in Tiancai
303	Lake (~0.4) than in other lakes (~0.1-0.2), However, an abrupt increase in beta
304	diversity occurs in Yangzong and Lugu lakes after their respective regime shifts,
305	especially in Yangzong Lake. Contrary to changes in alpha diversity, beta diversity in
306	the four lakes share an increasing trend in the recent decades. More specifically, beta
307	diversity slowly increases in Chenghai Lake from an 'initial' medium value of 0.15 to
308	the current 0.23 (Fig. 8e); Yangzong Lake's beta diversity increases abruptly after
309	1980s (from 0.10 to 0.65) (Fig. 8f); Lugu lake's beta diversity increases step by step
310	since the 1940s (from 0.21 to 0.49) (Fig. 8g), while beta diversity in Tiancai Lake
311	shows a minor increase after 1990s (from 0.45 to 0.48) (Fig. 8h).
312	
313	DISCUSSION
-	

313 DISCUSSION

244	Λ1 Γ.	2 41			fT:	T -1	: 1:cc
314	As shown in Fig	the s	pecies con	nposition o	t Liancai	Таке	is different from the
-	1 10 0110 011 111 1 10		p • • • • • • • • • • •	1000101011 0			

other three lakes. Tiancai Lake is mainly composed of cold and oligotrophic tolerant 315

taxa, e.g., Heterotrissocladius marcidus-type, Micropsetra insignilobus-type and 316

Tvetenia tamafalva-type, and species loss in this lake barely occurs apart for some 317

cold-stenotrophic taxa with low abundance including Eukiefferiella gracei-type, 318

Micropsetra type A, Micropsetra type B and Macropelopia taxa (Fig. 3e) as the 319

- climate warms. By contrast, the other three lakes have recently been dominated by 320
- Chironomus, which can tolerate anoxic conditions associated with lake 321
- eutrophication, and often increases quickly after abrupt environmental changes, and 322

323	Tanytarsus, often related to warm and eutrophic conditions (Brodersen et al., 2004;
324	Thorp and Covich, 2001). Based on the ecological attributes of chironomids in these
325	lakes, such discrepancy in species composition between Tiancai and the other lakes is
326	likely based on lake temperature as Tiancai is situated at a higher altitude. The
327	relatively stable community composition of Tiancai is likely the result of its location,
328	i.e., a highland area that has not been disturbed by direct human activities.
329	Community changes in this kind of lake are generally caused by climate change or
330	indirect human impacts such as nitrogen deposition (Hu et al. 2014), given the relative
331	remoteness of the site. Comparatively, dominant taxa in the other three lakes have
332	recently shifted from predator, e.g., Procladius, or genera associated with fine
333	sediments in the profundal zone such as <i>Microchironomus</i> to eutrophic and anaerobic
334	tolerant taxa, belonging mainly to the genera Chironomus and Tanytarsus (Thorp and
335	Covich, 2001). Located in the lowland areas, the significant changes in species
336	composition of these three lakes are likely related to the intensified human activities
337	in catchment, including the expansion of agriculture, aquaculture, deforestation and
338	mining (Zhang et al. 2012; Zhang et al. 2013).

In this study, regime shifts have only been detected in lakes directly influenced by
human impacts. The growing variability before a regime shift and the abrupt
(Chenghai and Lugu) or discontinuous (Yangzong) driver-response curves jointly
indicate that abrupt changes in these lakes were not caused by the sudden
intensification of external stressors but resilience loss (Scheffer et al. 2001). The

345	decreasing time resolution with depth implies that samples represent approximately 1
346	year in the upper part and approximately 4-8 years in the deeper part of the sediment
347	profile. Greater temporal aggregation in the deeper profile is likely to reduce the
348	temporal variation in chironomid composition, giving a reduced variability for the
349	oldest data (Wang et al. 2013). We therefore suggest that these may be an artefact of
350	the numerical methods used and the inherent problems in time-series analysis of
351	samples with uneven temporal spacing from sediment cores. Results of this study
352	(Fig. 5) show that the increased variability does exist in lakes Chenghai, Yangzong
353	and Lugu, but only occurs before the regime shift. It doesn't increase in Tiancai and
354	even conversely decreases after the regime shift in the other three lakes, showing that
355	reconstructing the loss of resilience in directly human impacted lakes is possible in
356	uneven temporally spaced cores. Human induced loss in aquatic ecosystem resilience
357	was also previously identified using diatom assemblages (Wang et al. 2012; Wang et
358	al. 2019), and manifested as shifts in species composition, from specialists in west
359	China lakes with a history of low human impacts, to predominantly generalists in
360	highly disturbed lakes of east China. A possible explanation for such a loss in
361	resilience is the emergence of positive feedbacks produced by synergies among
362	habitat fragmentation, pollution, overfishing, invasive species and soil erosion
363	negatively affecting the ecological structure of previous desired regimes (Barnosky et
364	al. 2011). As secondary consumers, chironomids are sensitive to changes in
365	temperature (Brooks and Birks 2001), which has been increasing recently in Tiancai
366	(Feng et al. 2019). Combining the results of the RDA (Fig. 6d) and the ecology of

367	taxa lost in Tiancai Lake, we consider that climate warming could explain the species
368	loss there. Furthermore, ecological changes in Tiancai Lake are typically driver-
369	mediated and still possesses relative high resilience at the present (Fig. 5h). Sasaki
370	and Lauenroth (2011) show that the a stable regime of aquatic communities is
371	typically regulated by dominant species rather than rare ones as dominant species are
372	the most abundant ones and may play major roles in controlling the rates and
373	directions of many community and ecosystem processes. Indeed, in the three lowland
374	lakes, where regime shifts are detected, their dominant taxa are commonly replaced,
375	leading to a less stable community (McCann 2000; Mayfield et al. 2020). Conversely,
376	in Tiancai Lake, changes in species composition are limited to rare taxa only, and as
377	such a critical point has not been reached yet and the community remains in the same
378	(current) regime with little structural change (McCann 2000; Mayfield et al. 2020).
379	Actually, the current climate change is occurring at an unprecedented rate that will
380	continue over the coming decades (Smith et al. 2015; Mayfield et al. 2021). Limited
381	by their low abundance, rare species will be firstly eliminated from such continuous
382	climate change, leading to a loss of weak structural interactions within the
383	communities (Burlakova et al. 2007; Wang et al. 2019; Mayfield et al. 2021). As rare
384	species are a critical component in defining the uniqueness of unionid communities,
385	their continuous loss may eventually affect the capacity of communities to absorb
386	climate impacts (Berlow 1999; Grimm et al. 2013; Mayfield et al. 2021).
387	

388 Changes in biodiversity before the regime shifts are complex. Resilience loss occurs

in Yangzong, Chenghai and Lugu lakes, but their patterns of alpha diversity are 389 varied, confirming that higher species richness does not always equate to a more 390 stable community (McCann 2000; Ives and Carpenter 2007). Beta diversity increased 391 prior to the regime shift, but the distance between the tipping point and the point of 392 initial increases in beta diversity varies greatly among the three lakes. In lakes marked 393 by abrupt responses, beta diversity shows a much earlier (decadal) but gradually 394 increasing trend before their shifts. Whereas in the lake displaying a discontinuous 395 response to forcing, it only shows an abrupt increasing trend a few years (2-3 years) 396 prior to the tipping point. Regime shifts in this kind of lake, where hysteresis occurs, 397 is hence difficult to predict in advance. As such, the diversity dynamics is likely 398 highly dependent on the response type of communities. Over the recent decades, a 399 400 declining alpha diversity (species richness) and increasing beta diversity (Jaccard dissimilarity) is observed in all four lakes. In southwest China, such reshaped patterns 401 of lake biodiversity, either caused by anthropogenic activities (Wang et al. 2016) or 402 climate warming (Wang et al. 2020) have already been found in bacteria and diatom 403 communities. It not only suggests that regime shifts will likely result in species loss 404 and greater variability, but also reveals that both species loss and a faster replacement 405 of chironomid taxa could be a regional phenomenon. It is important here to consider 406 why an increases in beta diversity is detected in all four lakes while only three of them 407 show a regime shift. In general, only large changes in dominant species tend to induce 408 409 regime shifts, but increased beta diversity can reflect changes in dominant or rare species, producing a faster replacement of communities and a much more unstable 410

411	community (Mayfield et al. 2021). As such, a dataset that shows increased beta
412	diversity over recent years/decades may be a critical tool for lake management as the
413	early increase in beta diversity could provide sufficient time to take appropriate
414	actions ahead of an oncoming regime shift.

416 CONCLUSIONS

For the first time, we focused on the spatiotemporal changes in chironomid diversity 417 and regime shifts in lakes characterized by different response patterns to external 418 changes. We found that human impacts changed the linear (smooth) response of 419 communities into a nonlinear response (either abrupt or discontinuous), along with 420 the great changes in the dominant taxa. In the same context of human-induced global 421 warming, a recent decrease in alpha diversity and increase in beta diversity are 422 423 commonly recorded in the four lakes. However, increased variability and regime shifts only occurred in lowland lakes, directly disturbed by humans, highlighting that 424 direct human impacts have overcome natural forcing as the determinant driver 425 shaping the chironomid composition in these sites. Therefore, chironomid 426 communities in lowland, human impacted lakes lost their resilience and shifted 427 earlier than those in highland, relatively unimpacted lakes. We propose that beta 428 diversity could be applied to evaluate the changes in communities in response to 429 global changes as it can detect the more subtle, but important, changes in 430 communities, such as the loss of rare species, which is difficult to capture by 431

432	traditional ordination (e.g., PCA). Additionally, the growing beta diversity prior to a
433	regime shift is critical for lake management as its early increase could provide
434	sufficient time to take appropriate actions in advance. Through this study, we find
435	that the distance between the tipping point and the point at which beta diversity starts
436	to increase is highly related to the way communities respond to external forces. It is
437	notable that in the lakes we studied, such distance is much longer in lakes
438	characterized by smooth and abrupt responses than that by discontinuous response to
439	those forces.
440	

ACKNOWLEDGEMENTS 441

This work was supported by the National Natural Science Foundation of China 442

(42025707, 41888101), the National Key R&D Program of China 443

(2017YFA0605203) and the Youth Scientists Group in Nanjing Institute of 444

Geography and Limnology, Chinese Academy of Sciences (2021NIGLAS-CJH03). 445

446 We would like to thank Dr. Xu Chen and Enfeng Liu for providing the environmental

data of Lake Chenghai and Tiancai. 447

Conflict of Interests: None 448

449

451 **REFERENCES**

- 452 Barnosky, A. D., and others. 2011. Has the Earth's sixth mass extinction already
- 453 arrived? Nature, 486(7336): 51–57, doi: 10.1038/nature09678
- 454 Barnosky, A. D. and others. 2012. Approaching a state shift in Earth's biosphere.
- 455 Nature 471(7401): 52–58, doi: 10.1038/nature11018
- 456 Berlow, E. L. 1999. Strong effects of weak interactions in ecological communities.
- 457 Nature 398(6725): 330–334, doi: 10.1038/18672
- 458 Brodersen, K. P., O. Pedersen, C. Lindegaard, and K. Hamburger. 2004. Chironomids
- 459 (Diptera) and oxy-regulatory capacity: An experimental approach to
- 460 paleolimnological interpretation. Limnol. Oceanogr. 49(5):1549-1559, doi:
- 461 10.4319/lo.2004.49.5.1549
- 462 Brodersen, K. P. and R. Quinlan. 2006. Midges as palaeoindicators of lake
- 463 productivity, eutrophication and hypolimnetic oxygen. Quat. Sci. Rev. 25:1195–
- 464 2012, doi:10.1016/j.quascirev.2005.03.020
- Brooks, S. J. and H. J. B. Birks. 2001. Chironomid-inferred air temperatures from
- 466 Lateglacial and Holocene sites in north-west Europe: Progress and problems.
- 467 Quat. Sci. Rev. 20: 1723–1741.
- 468 Brooks, S. J., P.G. Langdon, and O. Heiri. 2007. The identification and use of
- 469 palaearctic chironomidae larvae in palaeoecology. QRA Technical Guide No. 10.
- 470 Quaternary Research Association, London.
- 471 Burlakova, L. E., A. Y. Karatayev, V. A. Karatayev, M. E. May, D. L. Bennett, and
- 472 M. J. Cook. 2011. Endemic species: Contribution to community uniqueness,

473	effect of habitat alteration, and conservation priorities. Biol. Conserv. 144: 155-
474	165, doi: 10.1016/j.biocon.2010.08.010
475	Chen, X., S. McGwan, X. Y. Xiao, M. A. Stevenson, X. D. Yang, Y. L. Li, and E. L.
476	Zhang. 2018. Direct and indirect effects of Holocene climate variations on
477	catchment and lake processes of a treeline lake, SW China. Paleogeogr.
478	Paleoclimatol. Paleoecol. 502: 119-129, doi:10.1016/j.palaeo.2018.04.027
479	Collie, J. S., K. Richardson, and J. H. Steele. 2004. Regime shifts: Can ecological
480	theory illuminate the mechanisms? Prog. Oceanogr. 60(2-4): 281–302, doi:
481	10.1016/j.pocean.2004.02.013
482	Dixon, P. 2003. VEGAN, a package of R functions for community ecology. J. Veg.
483	Sci. 14(6): 927-930. doi: 10.1111/j.1654-1103.2003.tb02228.x.
484	Falkenmark, M., L. Wang-Erlandsson, and J. Rockström. 2019. Understanding of
485	water resilience in the Anthropocene. Journal of Hydrology X 2: 100009. doi:
486	10.1016/j.hydroa.2018.100009
487	Feng, X. P., C. Zhao, W. J. D'Andrea, J. Liang, A. F. Zhou, and J. Shen. 2019.
488	Temperature fluctuations during the Common Era in subtropical southwestern
489	China inferred from brGDGTs in a remote alpine lake. Earth Planet. Sci. Lett.
490	510: 26–36, doi: 10.1016/j.epsl.2018.12.028
491	Frossard, V., L. Millet, V. Verneaux, J. P. Jenny, F. Arnaud, M. Magny, J. Poulenard,
492	and M. E. Perga. 2013. Chironomid assemblages in cores from multiple water
493	depths reflect oxygen-driven changes in a deep French lake over the last 150
494	years. J. Paleolimn. 50: 257-273, doi: 10.1007/s10933-013-9722-x
	23

495	Giller, P. and B. Malmqvist. 1998. The biology of streams and rivers. Oxford Univ.
496	Press.
497	Grimm, E. C. 1991. TILIA, Version 1.11. TILIAGRAPH, Version 1.18, in: Gear, A.
498	(Ed.), A User Notebook, Illinois State Museum, Springfield.
499	Grimm, N. B. and others. 2013. The impacts of climate change on ecosystem structure
500	and function. Front. Ecol. Environ. 11: 474-482.
501	Hu, Z. J., N. J. Anderson, X. D. Yang, and S. McGowan. 2014. Catchment mediated
502	atmospheric nitrogen deposition drives ecological change in two alpine lakes in
503	SE Tibet. Glob. Change Biol. 20: 1614–1628. doi: 10.1111/gcb.12435
504	Ives, A. R., and S. R. Carpenter. 2007. Stability and diversity of ecosystems. Science
505	317 (5834) : 58-62, doi: 10.1126/science.1133258.
506	Kardol, P., N. Fanin, and D. A. Wardle. 2018. Long-term effects of species loss on
507	community properties across contrasting ecosystems. Nature 557(7707): 710-
508	713, doi:10.1007/s10750-007-0699-1
509	Lu, Y. L., Y. F. Yang, B. Sun, J. J. Yuan, M. Z. Yu, N. C. Stenseth, J. M. Bullock,
510	and M. Obersteiner. 2020. Spatial variation in biodiversity loss across China
511	under multiple environmental stressors. Science Advances 6(47): eabd0952.
512	Mayfield, R. J., P. G. Langdon, and C. P. Doncaster. 2021. Late Quaternary
513	chironomid ecosystem structure shaped by rate and magnitude of climate change.
514	J. Quat. Sci. 36(3): 360-376, doi:.10.1002/jqs.3301.
515	Mayfield, R. J., P. G. Langdon, C. P. Doncaster, J. A. Dearing, R. Wang, L. B.
516	Nazarova, A. S. Medeiros, and S. J. Brooks. 2020. Metrics of structural change
	24

- 517 as indicators of chironomid community stability in high latitude lakes. Quat. Sci.
- 518 Rev. 249: 106594, doi: 10.1016/j.quascirev.2020.106594.
- 519 McCann, K. 2000. The diversity–stability debate. Nature 405: 228–233, doi:
- 520 10.1038/35012234
- 521 Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent.
- 522 (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772): 853–
- 523 858, doi: 10.1038/35002501
- 524 Nicholls, K. H. (2001) CUSUM Phytoplankton and Chlorophyll Functions Illustrate
- 525 the Apparent Onset of Dreissenid Mussel Impacts in Lake Ontario. J. Gt. Lakes
- 526 Res. 27: 393-401, doi: 10.1016/S0380-1330(01)70655-7
- 527 Oksanen, J., F. G. Blanchet, and M. Friendly. 2018. Vegan: ecological diversity.
- 528 https://cran.r-project.org/package=vegan.
- 529 Pennekamp, F. and others. 2018. Biodiversity increases and decreases ecosystem
- stability. Nature 563, 109–112Community Stability. Am. Nat. 103(929): 91–93,
- doi: 10.1038/s41586-018-0627-81086/282586
- Qian, L. S., J. H. Chen, T. Deng, and H. Sun. 2020. Plant diversity in Yunnan:
- 533 Current status and future directions. Plant Diversity 42: 281-291, doi:
- 534 10.1016/j.pld.2020.07.006
- 535 Quinlan, R., and J. P. Smol. 2001. Setting minimum head capsule abundance and taxa
- deletion criteria in chironomid-based inference models. J. Paleolimn. 26(3): 327-
- 537 342, doi: 10.1023/A:1017546821591

538	Renberg, I. 1991. The HON-Kajak sediment corer. J. Paleolimnol. 6: 167–170,
539	doi:10.1007/BF00153740
540	Rieradevall, M. 2001. An identification guide to subfossil Tanypodinae larvae
541	(Insecta :Diptera: Chironomidae) based on cephalic setation. J. Paleolimn. 25(1):
542	81–99, doi: 10.1023/A:1008185517959
543	Rodionov, S. N. 2006. Use of prewhitening in climate regime shift detection.
544	Geophysical Research Letters 33(12): L12707, doi: 10.1029/2006GL025904.
545	Sasaki, T. and W. K. Lauenroth. 2011. Dominant species, rather than diversity,
546	regulates temporal stability of plant communities. Oecologia 166: 761–768, doi:
547	10.1007/s00442-011-1916-1
548	Sayer, C. D., T. A. Davidson, and J. Jones. 2010. Seasonal dynamics of macrophytes
549	and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants
550	to plankton? Freshw. Biol. 55: 500–513.
551	Scheffer, M., S. R. Carpenter, J. A. Foley, C. Folke, and B. Walker. 2001.
552	Catastrophic shifts in ecosystems. Nature 413: 591–596, doi: 10.1038/35098000
553	Serra, S. R. Q., M. A. S. Graça, S. Dolédec, and M. J. Feio. 2017. Chironomidae of
554	the Holarctic region: a comparison of ecological and functional traits between
555	North America and Europe. Hydrobiologia 794, doi: 10.1007/s10750-017-3102-
556	х.
557	Smith, S. J., J. Edmonds, C. A. Hartin, A. Mundra, and K. Calvin. 2015. Near - term
558	acceleration in the rate of temperature change. Nat. Clim. Chang. 5: 333-336.

559	Song, B. and others. 2019. Plants are more likely to be spiny at mid-elevations in the
560	Qinghai-Tibetan Plateau, south-western China. J. Biogeogr. 47(1): 250-260,
561	doi:10.1111/jbi.13724
562	Strayer, D. L. and D. Dudgeon. 2010. Freshwater biodiversity conservation: recent
563	progress and future challenges. J. N. Am. Benthol. Soc. 29(1): 344-358, doi:
564	10.1899/08-171.1
565	Su, H. J., and others. 2020. Long-term empirical evidence, early warning signals and
566	multiple drivers of regime shifts in a lake ecosystem. J. Ecol. doi: 10.1111/1365-
567	2745.13544
568	ter Braak, C. J. F. and P. Smilauer. 2012. CANOCO Reference Manual and User's
569	Guide: Software for Ordination. Version 5. Microcomputer Power Ithaca, New
570	York.
570 571	York. Thorp, J. H. and A. P. Covich. 2001. Ecology and Classification of North American
570 571 572	York. Thorp, J. H. and A. P. Covich. 2001. Ecology and Classification of North American Freshwater Invertebrates.2nd. ed., doi: 10.1016/B978-0-12-690647-9.X5000-5
570 571 572 573	 York. Thorp, J. H. and A. P. Covich. 2001. Ecology and Classification of North American Freshwater Invertebrates.2nd. ed., doi: 10.1016/B978-0-12-690647-9.X5000-5 Wang, J. J, F. Y, Pan, J. Soininen, J. Heino, and J. Shen. 2016. Nutrient enrichment
570 571 572 573 574	 York. Thorp, J. H. and A. P. Covich. 2001. Ecology and Classification of North American Freshwater Invertebrates.2nd. ed., doi: 10.1016/B978-0-12-690647-9.X5000-5 Wang, J. J, F. Y, Pan, J. Soininen, J. Heino, and J. Shen. 2016. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments.
570 571 572 573 574 575	 York. Thorp, J. H. and A. P. Covich. 2001. Ecology and Classification of North American Freshwater Invertebrates.2nd. ed., doi: 10.1016/B978-0-12-690647-9.X5000-5 Wang, J. J, F. Y, Pan, J. Soininen, J. Heino, and J. Shen. 2016. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat. Commun. 7:13960, doi:10.1038/ncomms13960
570 571 572 573 574 575 576	 York. Thorp, J. H. and A. P. Covich. 2001. Ecology and Classification of North American Freshwater Invertebrates.2nd. ed., doi: 10.1016/B978-0-12-690647-9.X5000-5 Wang, J. J, F. Y, Pan, J. Soininen, J. Heino, and J. Shen. 2016. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat. Commun. 7:13960, doi:10.1038/ncomms13960 Wang, R., J. A. Dearing, P. G. Langdon, E. L. Zhang, X. D. Yang, D. Vasilis, and S.
570 571 572 573 574 575 576 577	 York. Thorp, J. H. and A. P. Covich. 2001. Ecology and Classification of North American Freshwater Invertebrates.2nd. ed., doi: 10.1016/B978-0-12-690647-9.X5000-5 Wang, J. J, F. Y, Pan, J. Soininen, J. Heino, and J. Shen. 2016. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat. Commun. 7:13960, doi:10.1038/ncomms13960 Wang, R., J. A. Dearing, P. G. Langdon, E. L. Zhang, X. D. Yang, D. Vasilis, and S. Marten. 2012. Flickering gives early warning signals of a critical transition to a
570 571 572 573 574 575 576 577 578	 York. Thorp, J. H. and A. P. Covich. 2001. Ecology and Classification of North American Freshwater Invertebrates.2nd. ed., doi: 10.1016/B978-0-12-690647-9.X5000-5 Wang, J. J, F. Y, Pan, J. Soininen, J. Heino, and J. Shen. 2016. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat. Commun. 7:13960, doi:10.1038/ncomms13960 Wang, R., J. A. Dearing, P. G. Langdon, E. L. Zhang, X. D. Yang, D. Vasilis, and S. Marten. 2012. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492(7429): 419-422, doi:10.1038/nature11655
570 571 572 573 574 575 576 577 578 579	 York. Thorp, J. H. and A. P. Covich. 2001. Ecology and Classification of North American Freshwater Invertebrates.2nd. ed., doi: 10.1016/B978-0-12-690647-9.X5000-5 Wang, J. J, F. Y, Pan, J. Soininen, J. Heino, and J. Shen. 2016. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat. Commun. 7:13960, doi:10.1038/ncomms13960 Wang, R., J. A. Dearing, P. G. Langdon, E. L. Zhang, X. D. Yang, D. Vasilis, and S. Marten. 2012. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492(7429): 419-422, doi:10.1038/nature11655 Wang, R., J. A. Dearing, P. G. Langdon, E. L. Zhang, Yang, X. D., Dakos, V. and

581	Wang, R., M. Xu, H. Yang, X. D. Yang, E. L. Zhang, and J. Shen. 2019. Ordered
582	diatom species loss along a total phosphorus gradient in eutrophic lakes of the
583	lower Yangtze River basin, China. Sci. Total Environ. 650: 1688-1695,
584	doi:10.1016/j.scitotenv.2018.09.328
585	Wang, R., Z. J. Hu, Q. Wang, M. Xu, W. X. Zheng, K. Zhang, and X. D. Yang. 2020.
586	Discrepancy in the responses of diatom diversity to indirect and direct human
587	activities in lakes of the southwestern Tibetan Plateau, China. Anthropocene, 30:
588	100243, doi: 10.1016/j.ancene.2020.100243
589	Xiao, X. Y., S. G., Haberle, X. D. Yang, J. Shen, Y. Han, and S. M. Wang. 2014.
590	New evidence on deglacial climatic variability from an alpine lacustrine record
591	in northwestern Yunnan Province, southwestern China. Paleogeogr.
592	Paleoclimatol. Paleoecol. 406: 9–21, doi: 10.1016/j.palaeo.2014.04.008
593	Xu, M., R. Wang, X, H. Dong, and X. D. Yang. 2019. A palaeolimnological
594	perspective to understand regime-shift dynamics in two Yangtze-basin lakes.
595	Biol. Lett. 15: 20190447, doi: 10.1098/rsbl.2019.0447
596	Yang, Y. M., K. Tian, J. M. Hao, S. J. Pei, and Y. X. Yang. 2004. Biodiversity and
597	biodiversity conservation in Yunnan, China. Biodivers. Conserv. 13: 813-826,
598	doi:10.1023/b:bioc.0000011728.46362.3c
599	Zhang, E. L., H. Q. Tang, Y. M. Cao, P. Langdon, R. Wang, X. D. Yang, and J. Shen.
600	2013. The effects of soil erosion on chironomid assemblages in Lugu Lake over
601	the past 120 years. Int. Rev. Hydrobiol. 98: 165-172,

602 doi:10.1002/iroh.201301468

603	Zhang, E. L., J. Chang, Y. M. Cao, H. Q. Tang, J. Shulmeister, R. Wang, X. D. Yang,
604	and J. Shen. 2017. A chironomid-based mean July temperature inference model
605	from the south-east margin of the Tibetan Plateau, China. Clim. Past. 13(3): 185-
606	199, doi:10.5194/cp-2016-96
607	Zhang, E. L., J. Shen, Y. M. Cao, and Y. L. Li. 2012. One century sedimentary record
608	of lead and zinc pollution in Yangzong Lake, a highland lake in southwestern
609	China. J. Environ. Sci. 24(7): 1189-1196, doi:10.1016/s1001-0742(11)60896-6
610	Zhang, K., X. D. Yang, M. Xu, Q. Lin, G. Kattel, and J. Shen. 2018. Confronting
611	challenges of managing degraded lake ecosystems in the Anthropocene,
612	exemplified from the Yangtze River Basin in China. Anthropocene 24: 30-39,
613	doi: 10.1016/j.ancene.2018.11.001
614	Zheng, W. X., R. Wang, E. L. Zhang, and J. Chang. 2019. Complex relationship
615	between the diversity and stability of chironomid assemblages in the recent
616	sediments of two large alpine lakes in SW China. Sci. Total Environ. 684: 705-
617	714, doi:10.1016/j.scitotenv.2019.05.321
618 619	

620 Table

621 Table 1 Physical and chemical characteristics of the studied lakes

	Lake	Lake	Altitude	Maximu	Total	Land cover	Population
		area	(m a.s.l.)	m depth	phospho		density
		(km ²)		(m)	rus		(individuals/k
					(µg/L)		m ²)
	Chenghai	77	1503	35	46	Forest,	187
						agriculture,	
						urban	
	Yangzon	31	1770	30	21	Agriculture,	473
	g					urban, forest	
	Lugu	48	2691	94	12	Forest, urban	65
	Tiancai	0.021	3898	6.8	14	Forest	0
622						2	
623							

625 Figure legends

626	Fig. 1 Different types of community state respond to external driver (Scheffer et al.
627	2001), including (a) smooth type, without tipping point (b) abrupt-continuous
628	type, only a tipping point (F_1) and (c) nonlinear-discontinuous type, having two
629	tipping points (F_2 and F_1). The lines indicate the equilibrium points between the
630	ecosystem states and the environmental conditions. A solid line means a stable
631	equilibrium and a dotted line means an unstable equilibrium.
632	Fig. 2 Maps showing the location of (a) sampling sites and the outline of Lake (b)
633	Chenghai, (c) Yangzong, (d) Lugu and (e) Tiancai. More details can be found in
634	Table 1.
635	Fig. 3 The main chironomid taxa (relative abundance >20%) and taxa mentioned in
636	the text. Yangzong and Chenghai are modified from Zheng et al. (2019); Lugu from
637	Zhang et al. (2013); Tiancai from Zhang et al. (2017). Note that the black dashed line
638	represents shifts in the chironomid composition according to CONISS.
639	Fig. 4 DCA ordinations of paleo-samples in the four lakes. The arrows represent the
640	trajectory of the temporal changes in community in each lake. Percentage on the axis
641	of DCA is the variance in communities that can be explained by the axis.
642	Fig. 5 Regime shifts (left panel) and variability (right panel) of chironomids in Lake
643	(a) (b) Chenghai (c) (d) Yangzong (e) (f) Lugu (g) (h) Tiancai In the left nanel
045	(u) (b) enough u , (c) (u) rangeong, (c) (r) Edga, (g) (n) random in the fort parton,
644	results of T-test and CUSUM are shown in red line and black line, respectively. In the
645	right panel, purple lines are variability of four lakes, measured using residuals of

646 PCA1, and the red solid circles are the dates of regime shift.

647	Fig. 6 Sample-environmental variable plot of RDA between fossil chironomids and
648	sedimentary proxies in (a) Chenghai, (b) Yangzong, (c) Lugu and (d) Tiancai lake
649	cores. Xlf: magnetic susceptibility of low frequency; <4 μ m: the percentage of grain
650	size smaller than 4 μ m; 4-16 μ m: the percentage of grain size between 4 and 16 μ m;
651	32-64 μ m: the percentage of grain size between 32 and 64 μ m; >64 μ m: the
652	percentage of grain size larger than 4 μ m; TOC: total organic carbon; TP: total
653	phosphorus; Al, Fe, Ti, Ca, Mn, P: Elemental concentrations; BrGDGT-inferred
654	MAAT: BrGDGT-inferred mean annual air temperature.
655	Fig. 7 Phase-space plots of the driving variables (TOC or temperature) versus the
656	chironomid state response variable (PCA1) over the last century. Plot (a) Chenghai
657	(b) Yangzong and (c) Lugu describe two linear clusters of points before (orange line)
658	and after (blue line) their respective date of regime shifts, while (d) Tiancai Lake does
659	not display any regime shift.
660	Fig. 8 Alpha (richness index) and beta diversity (Jaccard index) in time series and
661	boxplot for (a) (e) (i) (m) Chenghai, (b) (f) (j) (n) Yangzong, (c) (g) (k) (o) Lugu and
662	(d) (h) (l) (p) Tiancai. Note that the gray dashed line indicates the point of regime
663	shift.

Supplementary Information for:

2 Human impacts alter driver-response relationships in lakes of southwest China

- 3 1. Supplementary figures

5

4

Fig. S1 Proxies related to human activities in Yunnan Province. The general increased
(a) fertilizer use between 1979 and 2005 CE, (b) visitors between 1990 and 2006CE,
(c) grain acreage of Summer and Autumn between 1978 and 2006 CE, (d) fish
production between mid-1980s and 2000, (e) human population between 1950 and
2000, and (f) coal consumption between 1978 and 2000 CE. All data were derived
from the *Yunnan Statistical Yearbook* (1950-2000 CE).

Fig. S2 The temperature changes from 1952 to 2010 as recorded at Kangding Weather
Station (revised from Wang et al. 2020).

16 The details of study sites

17 **Chenghai Lake** (26°27′-26°38′N, 100°38′-100°41′E) (Fig. 1) covers a surface area

about 77 km² and catchment area about 318 km² (Wu et al., 2004). The maximum 18 depth is 35 m and the SD is 2.6 m. The lake is mainly fed by precipitation and 19 groundwater, and there are no perennial inlet and outlet rivers in the catchment. The 20 water level decreased obviously in recent decades due to human withdrawal (Sun et 21 al. 2017). After 1940s, a large population immigrated and settled in the basin, since 22 then, vegetation in the lower valley has been seriously disturbed by human (Zhou et 23 24 al. 1999; Sun et al. 2017). After 1989 CE, Spirulina farming has been the dominant 25 industry in Chenghai Lake, and the amount of wastewater, which is rich in high COD (chemical oxygen demand), TP (total phosphorus), TN (total nitrogen) and pH, 26 27 discharged into the lake increased from 1.23 million tons in 1993CE to 3.08 million tons in 2000CE (Zhou et al. 1997). Due to cage culture and alien fish introduction 28 (such as Neosalanx taihuensis Chen, Abbottina rivularis, Pseudorasbora parva) after 29 1980s, more than 50% native fish species died out when compared to historical 30 records (Yuan 2010). The biodiversity loss and breaking out of blue green algae 31

32 occurred in 1990s (Liu et al. 2015).

33

Yangzong Lake (24°51'-24°58'N, 102°58'-103°01'E) covers an area of 31 km², and 34 its catchment area is 192 km². The maximum depth is 30 m and the SD is 4.3 m. The 35 lake is mainly fed by precipitation and inflow rivers of Qixing River and Yangzong 36 37 River in the southwest as well as some temporal streams. The main pollution source of Yangzong Lake is domestic sewage and agricultural non-point source pollution 38 (Wang 2003; Zhang 2017). It mainly accepts domestic sewage from nearby villages 39 40 and towns, and cooling circulating water from Yangzonghai power station, which fundamentally increased water temperature of some areas of the lake (Zheng et al. 41 2019). In 2004, around 65% of the catchment area of Yangzong Lake was suffering 42 from the influence of soil erosion (Zhu 2008). 43 44 Lugu Lake (27°41'–27°45'N, 100°45'–100°50'E) covers a surface area of 48.45 km², 45 and a drainage area of 171.4 km² and still in a oligotrophic state. The maximum depth 46 is 94 m, and it shows thermal stratification in summer. Forestland is the dominant 47 land-use type (~85.95%), followed by agricultural land (~8.44%), and grass/pasture 48 land (~5.47%) (Bai et al. 2008). It has been suffered from human impacts in last 49 50 decades, mainly due to deforestation and the development of tourism and agriculture. Data based on lake sediment and instrumental monitoring showed that soil erosion, 51 global warming and sewage input were the main drivers for ecosystem change in 52 Lugu Lake (Guo et al. 2013; Lin et al. 2017). Soil erosion in the catchment increased 53 markedly from 1950 onwards, particularly after 1970 (Zhang et al. 2013). 54 55 Tiancai Lake (26°38'N, 99°43'E) has a surface area of ~0.02 km² and a drainage area 56

57 of $\sim 3 \text{ km}^2$. It's a sub-alpine lake located on Laojun Mountains near the timberline

(4000 m a.s.l.) - sensitive to the global warming and is hydrologically open with the 58 inflow from the south and an outflow to the north and lake water is supplied by 59 precipitation and surface runoff from the catchment. The annual mean temperature 60 and precipitation is 2.5°C and 910 mm (Xiao et al. 2011). The primary forest around 61 the lake is well preserved and consists mainly of conifer forest comprising Abies sp. 62 and Picea sp. There are about 200 m² of Rhododenfron bushes in the west of lake, and 63 64 the top of mountain (4200 m a.s.l.) consists of alpine meadow and rocky beach desert. As reported, dissolved organic matter of this lake is dominated by terrestrially-derived 65 source (Du et al. 2016). 66

67

69

Fig. S3 The long term changes of main drivers for chironomid communities in Lake
(a) and (b) Chenghai (Zheng et al. 2019); (c) and (d) Yangzong (Zhang et al. 2012);
(e) and (f) Lugu (Zhang et al. 2013); (g) and (h) Tiancai (Chen et al. 2018; Feng et al.
2019). TOC: total organic carbon; Xlf: magnetic susceptibility; 4-16 µm: the

74 percentage of grain size between 4 and 16 μm; BrGDGT-inferred MAAT: BrGDGT-

75 inferred mean annual air temperature.

76

77 **REFERENCES**

78	Bai. X., K.	M. Ma. L.	Yang, and X	. L. Zhang.	2008. Simul	ating the im	pacts of land-
		, .					

⁷⁹ use changes on non-point source pollution in Lugu lake watershed. Int. J. Sust.

80 Dev. World 15(1): 18-27, doi: 10.1080/13504500809469764

- 81 Chen, X., S. McGwan, X. Y. Xiao, M. A. Stevenson, X. D. Yang, Y. L. Li, and E. L.
- 82 Zhang. 2018. Direct and indirect effects of Holocene climate variations on
- catchment and lake processes of a treeline lake, SW China. Paleogeogr.
- Paleoclimatol. Paleoecol. 502: 119-129, doi:10.1016/j.palaeo.2018.04.027
- 85 Du, Y. X., Y. Y. Zhang, F. Z. Chen, Y. G. Chang, and Z. W. Liu. 2016.
- 86 Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine
- 87 lake revealed by EEM-PARAFAC: an insight into the fate of allochthonous
- B8 DOM in alpine lakes affected by climate change. Sci. Total Environ. 568: 216–
- 89 225.
- 90 Feng, X. P., C. Zhao, W. J. D'Andrea, J. Liang, A. F. Zhou, and J. Shen. 2019.
- 91 Temperature fluctuations during the Common Era in subtropical southwestern
- 92 China inferred from brGDGTs in a remote alpine lake. Earth Planet. Sci. Lett.
- 93 510: 26–36, doi: 10.1016/j.epsl.2018.12.028
- Guo, X. C., A. P. Potito, L. Luo, and D. W. Beilman. 2013. Twentieth century human
- 95 and climate impacts on a large mountain lake in southwest China. Hydrobiologia
- 96 52(1): 30-40, doi: 10.1007/s10750-013-1615-5

97	Lin, Q., E. F. Liu, E. L. Zhang, J. Shen, H. Z. Yuan, and R. Wang. 2017. Temporal
98	and spatial variations in sedimentary characteristics of Lake Lugu during the last
99	hundred years and the influence factors analysis. Journal of Lake Sciences 29
100	(1): 246-256 (in Chinese), doi:10.18307/2017.0126
101	Liu, G. M., Z. W. Liu, J. M. Smoak, and B. H. Gu. 2015. The dynamics of cladoceran
102	assemblages in response to eutrophication and planktivorous fish introduction in
103	Lake Chenghai, a plateau saline lake. Quatern. Int. 355: 188–193, doi: 10.1016/j.
104	quaint.2014.07.029
105	Sun, W. W., E. L. Zhang, E. F. Liu, M. Ji, R. Chen, C. Zhao, J. Shen, and Y. L. Li.
106	2017. Oscillations in the Indian summer monsoon during the Holocene inferred
107	from a stable isotope record from pyrogenic carbon from lake Chenghai,
108	Southwest China. J. Asian Earth Sci. 134: 29–36, doi:
109	10.1016/j.jseaes.2016.11.002.
110	Wang, H. M. 2003. Present situation and trend analysis of water quality in
111	Yangzonghai Lake. Yunnan Environmental Science 22 (s1): 170–171 (in
112	Chinese).
113	Wang, R., Z. J. Hu, Q. Wang, M. Xu, W. X. Zheng, K. Zhang, and X. D. Yang. 2020.
114	Discrepancy in the responses of diatom diversity to indirect and direct human
115	activities in lakes of the southwestern Tibetan Plateau, China. Anthropocene, 30:
116	100243, doi: 10.1016/j.ancene.2020.100243
117	Wu, J. L., K. G. Micael, X. Z. Jiang, W. L. Xia, and S. M. Wang. 2004. Sedimentary
118	geochemical evidence for recent eutrophication of Lake Chenghai, Yunnan,

- 119 China. J. Paleolimnol. 32 (1): 85–94, doi:
- 120 10.1023/B:JOPL.0000025290.09365.98.
- 121 Xiao, X. Y., J. Shen, S. M. Wang. 2011. Spatial variation of modern pollen from
- surface lake sediments in Yunnan and southwestern Sichuan Province, China.
- 123 Rev. Palaeobot. Palyno. 165: 224–234, doi: 10.1016/j.revpalbo.2011.04.001
- 124 Yuan, G., H. J. Ru, X. Q. Liu. 2010. Fish diversity and fishery resources in lakes of
- 125 Yunnan Plateau during 2007-2008. Journal of Lake Sciences, 22(6): 837–841 (in
- 126 Chinese), doi: 10.1080/09500340.2010.529951
- 127 Zhang, E. L., H. Q. Tang, Y. M. Cao, P. Langdon, R. Wang, X. D. Yang, and J. Shen.
- 2013. The effects of soil erosion on chironomid assemblages in Lugu Lake over
 the past 120 years. Int. Rev. Hydrobiol. 98: 165-172,
- doi:10.1002/iroh.201301468
- 131 Zhang, E. L., J. Shen, Y. M. Cao, and Y. L. Li. 2012. One century sedimentary record
- of lead and zinc pollution in Yangzong Lake, a highland lake in southwestern
- 133 China. J. Environ. Sci. 24(7): 1189-1196, doi:10.1016/s1001-0742(11)60896-6
- 134 Zhang, H. J., Y. G. Liu, Y. Wang, and L. Hou. 2017. Spatial distribution of heavy
- 135 metals in the sediments of Yangzonghai Lake wetland. Journal of Hydroecology,
- 136 38 (2): 44–50 (in Chinese).
- 137 Zheng, W. X., R. Wang, E. L. Zhang, and J. Chang. 2019. Complex relationship
- between the diversity and stability of chironomid assemblages in the recent
- sediments of two large alpine lakes in SW China. Sci. Total Environ. 684: 705-
- 140 714, doi:10.1016/j.scitotenv.2019.05.321

- Zhou, Q. 1997. Impact of spirulina development to water quality of Chenghai and its 141
- strategy. Yunnan Environmental Science 2: 35-37 (in Chinese). 142
- 143 Zhou, X. Z. 1999. Biological environment of Chenghai Lake. Yunnan Environmental
- Science (3): 9–11 (in Chinese). 144
- Zhu, Y. 2008. Study on environmental background of Yangzonghai Lake basin. 145
- Environmental Science Survey 27(5): 75-78 (in Chinese), 146
- 147 doi:10.3969/j.issn.1673-9655.2008.05.021

COMMENTS TO THE AUTHORS

Editor-in-Chief:

In addition to addressing all reviewer and editor comments in your revision, please also

make sure that your revised manuscript conforms to the style and formatting requirements

for *Limnology and Oceanography*, as specified in the online instructions for authors (https://aslopubs.onlinelibrary.wiley.com/hub/journal/19395590/about/author-

guidelines#9). Please pay particular attention to journal policy regarding citations (≤3 in support of any given statement).

REVIE

Associate Editor:

Associate Editor

Comments to the Author:

Thank your for submission and your careful attention to the Reviewer comments. We have decided to accept your manuscript for publication in the Special Issue on nonlinear dynamics and regime shifts in aquatic ecosystems. Reviewer 2 has suggested several additional changes to improve clarity. These changes are very minor and should be made prior to uploading your final document.

Reviewer(s):

Reviewer: 1

Comments to the Author

The authors made a good-faith effort to address every comment. Although it is still not entirely clear to me that chironomids changed due to loss of resiliency rather external stressors (Reviewer 2 had similar doubts), the authors now provide justification for their argument. This manuscript adds to the growing body of work on ecological resilience/stability theory and will contribute new data to the debate on this topic.

Reviewer: 2

Comments to the Author

I reviewed the response to reviewers and the revised manuscript, and the authors did a great job responding to the reviewers concerns. I only had a few small suggestions – mostly copy-editing type comments.

Minor comments

Scientific statement – Consider changing "Besides, we find that the distance between tipping point and the point at which beta diversity..." to "Additionally, we found that the distance between tipping point and the point at which beta..."

Scientific statement – Consider revising for clarity. "Spatiotemporal changes of biodiversity and stability are topics most concerned by ecologists."

Re: We try to clarify this sentence as follows. "Biodiversity and stability are two critical aspects for maintaining ecosystem functioning, and the connection between them is one of the most concerning issues for ecologists and managements. We found that the growing beta diversity prior to a regime shift is critical for lake management as the early increase in

beta diversity could provide sufficient time to take appropriate actions in advance. Another meaningful finding is that the point at which beta diversity starts to increase is highly related to the way communities respond to external forces."

Scientific statement - Insert 'to' between 'sufficient time' and 'take appropriate'

Re: Changed.

Scientific statement – Consider changing "Another founding that the point at which beta diversity starts to increase is highly related to the way communities respond to external forces is also meaningful, related to the way communities respond to external forces." to "Another meaningful finding is that the point at which beta diversity starts to increase is highly related to the way communities respond to external forces."

Re: Changed.

Line 33 – humans are contributing to climate change, so this passage could use clarification between anthropogenic and non-anthropogenic change and the conclusion.

Re: Agreed, we couldn't completely distinguish the respective contribution of anthropogenic and non-anthropogenic changes to chironomid communities. However, it is clear that both lowland and highland lakes have been affected by climate change, and only lakes with direct human impacts are more unstable. Hence, the sentence was changed to "However, in the same context of human-induced global warming, increased variability and regime shifts only occurred in lowland lakes, directly disturbed by humans, highlighting that direct human impacts have overcome natural forcing as the determinant driver shaping the chironomid composition in these sites "

Line 34 - insert chironomid before community (since the whole lake community was not

the focus)

Re: Changed.

Line 90 – most instead of mostly

Re: Changed.

Line 164 – add an 'its' before catchment

Re: Changed.

Line 166 – perhaps 'Conversely' instead of "On the contrary"

Re: Changed.

Supp Line 2-3 – This appears to be the older title

Re: We have changed the older title to the new one.

Supp Figure 1 – Are there references for these data? Consider including them in the figure

caption

Re: Thanks, the data of Fig. S1 were derived from the Yunnan Statistical Yearbook (1950-

2000 CE). We have added this information in the figure caption.

Fig. 1 Different types of community state respond to external driver (Scheffer et al. 2001), including (a) smooth type, without tipping point (b) abrupt-continuous

type, only a tipping point (F1) and (c) nonlinear-discontinuous type, having two tipping points (F2 and F1). The lines indicate the equilibrium points between the ecosystem states and the environmental conditions. A solid line means a stable equilibrium and a dotted line means an unstable equilibrium.

244x69mm (300 x 300 DPI)

Fig. 2 Maps showing the location of (a) sampling sites and the outline of Lake (b) Chenghai, (c) Yangzong, (d) Lugu and (e) Tiancai. More details can be found in Table 1.

244x129mm (300 x 300 DPI)

Fig. 3 The main chironomid taxa (relative abundance >20%) and taxa mentioned in the text. Yangzong and Chenghai are modified from Zheng et al. (2019); Lugu from Zhang et al. (2013); Tiancai from Zhang et al. (2017). Note that the black dashed line represents shifts in the chironomid composition according to CONISS.

273x108mm (300 x 300 DPI)

Fig. 4 DCA ordinations of paleo-samples in the four lakes. The arrows represent the trajectory of the temporal changes in community in each lake. Percentage on the axis of DCA is the variance in communities that can be explained by the axis.

153x151mm (300 x 300 DPI)

Fig. 5 Regime shifts (left panel) and variability (right panel) of chironomids in Lake (a) (b) Chenghai, (c) (d) Yangzong, (e) (f) Lugu, (g) (h) Tiancai. In the left panel, results of T-test and CUSUM are shown in red line and black line, respectively. In the right panel, purple lines are variability of four lakes, measured using residuals of PCA1, and the red solid circles are the dates of regime shift.

203x178mm (300 x 300 DPI)

Fig. 6 Sample-environmental variable plot of RDA between fossil chironomids and sedimentary proxies in (a) Chenghai, (b) Yangzong, (c) Lugu and (d) Tiancai lake cores. Xlf: magnetic susceptibility of low frequency;
<4 μm: the percentage of grain size smaller than 4 μm; 4-16 μm: the percentage of grain size between 4 and 16 μm; 32-64 μm: the percentage of grain size between 32 and 64 μm; >64 μm: the percentage of grain size larger than 4 μm; TOC: total organic carbon; TP: total phosphorus; Al, Fe, Ti, Ca, Mn, P: Elemental concentrations; BrGDGT-inferred MAAT: BrGDGT-inferred mean annual air temperature.

118x118mm (300 x 300 DPI)

Fig. 7 Phase-space plots of the driving variables (TOC or temperature) versus the chironomid state response variable (PCA1) over the last century. Plot (a) Chenghai (b) Yangzong and (c) Lugu describe two linear clusters of points before (orange line) and after (blue line) their respective date of regime shifts, while (d) Tiancai Lake does not display any regime shift.

202x197mm (300 x 300 DPI)

Fig. 8 Alpha (richness index) and beta diversity (Jaccard index) in time series and boxplot for (a) (e) (i) (m) Chenghai, (b) (f) (j) (n) Yangzong, (c) (g) (k) (o) Lugu and (d) (h) (l) (p) Tiancai. Note that the gray dashed line indicates the point of regime shift.

212x161mm (300 x 300 DPI)