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Abstract

Price bubbles in multiple assets are sometimes nearly coincident in occurrence. Such
near-coincidence is strongly suggestive of co-movement in the associated asset prices and
likely driven by certain factors that are latent in the financial or economic system with
common effects across several markets. Can we detect the presence of such common
factors at the early stages of their emergence? To answer this question, we build a fac-
tor model that includes I(1), mildly explosive, and stationary factors to capture normal,
exuberant, and collapsing phases in such phenomena. The I(1) factor models the pri-
mary driving force of market fundamentals. The explosive and stationary factors model
latent forces that underlie the formation and destruction of asset price bubbles, which
typically exist only for subperiods of the sample. The paper provides an algorithm for
testing the presence of and date-stamping the origination and termination of price bub-
bles determined by latent factors in a large-dimensional system embodying many markets.
Asymptotics of the bubble test statistic are given under the null of no common bubbles
and the alternative of a common bubble across these markets. We prove consistency of a
factor bubble detection process for the origination and termination dates of the common
bubble. Simulations show good finite sample performance of the testing algorithm in
terms of its successful detection rates. Our methods are applied to real estate markets
covering 89 major cities in China over the period January 2005 to December 2008. Re-
sults suggest the presence of a common bubble episode in what are known as China’s
Tier 1 and Tier 2 cities from June 2007 to February 2008. There is also a common bubble
episode in Tier 3 cities but of shorter duration.
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1 Introduction

Financial bubbles are conventionally defined as explosive deviations of asset prices from mar-
ket fundamentals followed by a subsequent collapse (Blanchard 1979, Diba & Grossman 1988,
Evans 1991, Lee & Phillips 2016). There is now considerable accumulated empirical evidence
of bubbles in historical records of financial asset prices, including equity, commodity, and real
estate markets.! In a large-dimensional financial system, bubbles may arise concurrently in
many of the variables in the system. For instance, using univariate bubble testing methods
Pavlidis et al. (2016) found evidence of bubble presence in 22 international housing markets
between 1975 and 2013, observing high synchronization in three of the bubble episodes. In a
similar way using a univariate bubble detection technique, Narayan et al. (2013) discovered
abundant evidence of bubbles in 589 firms listed on the NYSE over the period from 1998 to
2008. The detected bubble episodes were observed to appear in clusters according to finan-
cial sector. In a multi-country study using price-rent ratios, Engsted et al. (2016) uncovered
substantial bubble synchronicity in the housing markets of 18 OECD countries in the early
2000s; and Greenaway-McGrevy et al. (2019) found evidence supporting the presence of a
common explosive factor in house prices for 16 cities in two countries (Australia and New
Zealand) over the period 1986-2015.

The focus of the current paper is the econometric detection of a common factor underlying
the presence of bubbles that appear in a large-dimensional financial system. While evidence
of a potential common bubble factor appeared in the empirical work of Greenaway-McGrevy
et al. (2019) such phenomena have not been analyzed in the factor modeling literature. In
consequence, there are no formal tests, dating schemes, or asymptotic theory available for
use in estimation and inference concerning bubble factor detection. A common bubble factor
refers to the circumstance that the dynamics of asset prices within a financial system are
dominated by a pervasive common explosive factor, in the sense that the number of nonzero
loadings for the common explosive factor passes to infinity as the number of assets N — oo.
This formulation allows for a finite number (or small infinity) of assets in the system to
have zero loading on the explosive factor, so these assets are unaffected by the common
bubble. The concept of a common bubble factor is related to the idea of co-explosiveness in
autoregressive models (with either distinct or common explosive roots) that has been studied
in Magdalinos & Phillips (2009), Chen et al. (2017), Nielsen (2010), Phillips & Magdalinos
(2013). But unlike the concept of a common bubble factor, the number of variables in co-
explosive systems is finite and all variables in these systems display explosive dynamics. The
goal of the present paper is to provide econometric methods to test for the presence of a

common bubble factor that may be determining dominant time series behavior in a large-

! Amongst a large and growing literature, see Phillips et al. (2011), Phillips & Yu (2011), Gutierrez (2012),
Kivedal (2013), Phillips & Yu (2013), Etienne et al. (2014a,b), Phillips et al. (2015a,b), Caspi et al. (2018),
Adédmmer & Bohl (2015), Figuerola-Ferretti et al. (2015, 2019), Harvey et al. (2015, 2016a), Pavlidis et al.
(2016), Caspi (2016), Shi et al. (2016), Shi (2017), Greenaway-McGrevy & Phillips (2016), Hu & Oxley
(2017a,b,c), Pavlidis & Peel (2017), Hu & Oxley (2018a,b), Phillips et al. (2018), Milunovich et al. (2019),
Whitehouse (2019), Phillips & Shi (2020).



dimensional system and to date-stamp the origination of this common bubble.

The presence of asset price bubbles and potential commonality in bubble behavior across
assets have important policy implications. Markets subject to common bubbles are extremely
vulnerable to negative shocks and are exposed to the risk of system-wide failure, thereby en-
tailing higher systemic risk (Brunnermeier & Oehmke 2013). In contrast, bubbles that occur
independently in different markets without linkage or contamination seem likely to cause less
system-wide damage. The procedures proposed in the present paper are intended to enable
early identification of speculative behavior governed by a common latent factor that may ex-
pose financial markets to such system-wide risk. In addition, estimates of common explosive
factors facilitate investigation of the underlying driving forces which produce this behavior
and thereby offer potential guidance to governments and financial institution regulators in

crafting policy to maintain economic and financial stability.

The identification of common bubble behavior also has important implications for the
conduct of inference. Nielsen (2010) and Phillips & Magdalinos (2013) showed that maxi-
mum likelihood estimation of a vector autoregressive model is inconsistent when there are
common explosive roots. Furthermore, the maximum likelihood estimator of co-explosive
VAR models follows a mixed-normal limit distribution with Cauchy-type tail behavior rather
than a normal distribution. To address the inconsistency, Phillips & Magdalinos (2013) pro-
pose an instrumental variable procedure for the consistent estimation of VAR models when

the system contains co-explosive variables.

It is always possible to run univariate tests separately for bubble identification in each
individual time series. But the presence of a common bubble characteristic across several time
series, such as real estate prices in multiple regions or different metropolitan areas, is collective
information of importance in understanding the phenomena and in assisting regulators to
frame discretionary monetary policy. Cross section information from multiple time series
is also necessary for identifying common bubbles. Furthermore, it is well known that the
probability of making a false positive inference increases dramatically when univariate tests
are applied repeatedly (in this case to a large number of assets), a phenomenon that is referred

to as the multiplicity issue in the statistics literature.

The econometric procedure we propose here uses a factor model framework and involves
two steps in the process of detecting a latent common bubble in the panel. In the first step we
estimate the dominant common factor using a principal component (PC hereafter) approach.
Factor estimation methods have been extensively used in applied economic research and
asymptotic theory has been developed for stationary factor models in Bai & Ng (2002), Bai
(2003), the I(1) factor model in Bai (2004), and most recently a mixed dynamic factor model
with explosive, I(1), and stationary components in Chen et al. (2019). The latter work is

most relevant for the present study.

The second step in our procedure applies the recursive explosive root testing algorithm
of Phillips, Shi and Yu (2015a, 2015b, PSY hereafter) to the estimated dominant factor.



The PSY procedure is a commonly used bubble detection technique and has the capacity
to consistently estimate bubble origination and termination dates (Phillips et al. 2015b).2
The test statistic used here to detect a common factor bubble and provide date-stamping
is referred to as a PSY-factor testing algorithm. Under the null hypothesis that there is no
common bubble, asset prices are assumed to be driven by an I(1) factor and an idiosyncratic
error term. The limit distribution of the PSY-factor test statistic under this null is shown
to be the same as that of the original PSY statistic, although the derivation of this result is

complicated by the additional step of factor estimation.

The alternative hypothesis allows for the presence of a common bubble factor in a sub-
sample of the panel. In this formulation the initial trajectory is governed by an I(1) factor,
representing a period of market normalcy. The middle trajectory is driven by an explosive
factor and an I(1) factor. This phase represents a period of market abnormality in relation to
fundamentals that is characterized by speculative behavior. The last part of the trajectory is
governed by a stationary process, which represents the phase following the speculative bubble
collapse. The estimated dominant first factor turns out to be a weighted average of the I(1),
the explosive factor, the stationary factor, and idiosyncratic errors, with weightings that de-
pend on the estimated factor loadings. Under certain regularity conditions, we show that the
PSY-factor test statistic diverges to positive infinity for observations in the expansion phase.
During the collapsing phase, the test statistic diverges to either positive or negative infinity
(depending on the relative ‘strength’ of expansion and collapse) at a rate that is slower than
that in the bubble expansion phase. So the presence of a common speculative component in
the data that is embodied in the explosive factor is identified and the procedure is shown to

consistently estimate the origination and termination dates of the common bubble.

Simulations are used to compare the asymptotic and finite sample distributions of the test
statistic and investigate the successful detection rate (SDR),® and the estimation accuracy
of the common bubble origination and collapse dates under various parameter settings. The
results suggest satisfactory performance of the procedure in finite samples of the size typically
used in empirical studies. As an empirical illustration of the methodology, we apply the
common bubble detection procedure to real estate markets of 89 cities in China over the time
period 2005 to 2008. One episode of common explosive behavior in real estate prices running
from June 2007 to February 2008 is detected in 30 so-called Tier 1 and Tier 2 Chinese cities.
A common bubble is evident also among the remaining 59 Tier 3 cities over the period from
August 2007 to October 2008.

The present paper is related to work by Horie & Yamamoto (2016), who investigated
whether the source of explosiveness lies in the common or idiosyncratic component. Our

paper allows for explosiveness in the common component but not in the idiosyncratic com-

2The PSY approach has been used in many different empirical applications, including investigations to iden-
tify ballooning sovereign risks (Phillips & Shi 2019) and as a baseline technique for other bubble identification
methods (Pavlidis et al. 2017, Shi & Phillips 2021).

3Successful detection occurs when the test indicates the presence of a common bubble in the data and the
estimated origination date occurs on or after the true origination date.



ponent, reasoning that there may be a common driver to exuberant or speculative behavior
that can be isolated empirically. Our framework allows for a structural break in the common
component through a DGP that accommodates a three regime structure. The paper pro-
vides a test for explosive behavior in the common component, coupled with a date stamping
algorithm to characterize the timing of explosiveness within these regimes. Our empirical
application focuses attention on timing to detect when the emergence of market exuberance
affects the system and leads to explosive behavior in asset prices initiating a pricing bub-
ble. The approach by Horie & Yamamoto (2016) has a different focus, seeking to determine
whether there is a nationwide bubble manifesting in the common component or whether there

are local bubbles manifesting in the idiosyncratic components.

The rest of the paper is organized as follows. Section 2 describes the model specifications
used for the null and alternative hypotheses. The econometric procedure for common bubble
detection is introduced in Section 3. Section 4 provides the asymptotic properties of the test
statistic under both the null and the alternative and shows the consistency of the estimated
bubble origination and collapsing dates. Section 5 reports the results of the simulations
investigating the finite sample performance of the procedure. The application to real estate
markets in China is conducted in Section 6. Section 7 concludes. Proofs are collected in

Appendices A-E. Appendix F contains tables and figures.

2 Model Specifications

A commonly used definition of bubble phenomena in financial markets is given by the present

value identity
oo

P = ZPSEt (Ri+s) + Bt, (2.1)
s=0

where P, is the price of the asset, Ry is the payoff received from the asset (i.e., rent for houses
and dividends for stocks), and p € (0,1) is the discount factor. The bubble component By

satisfies the submartingale property?*
Bt (Bs1) = ;Bt, (2:2)

which is a defining characteristic that assists in the development of econometric procedures
of estimation and testing. Readers are referred to Phillips et al. (2011), Lee & Phillips (2016)
and Shi & Phillips (2021) for more details on bubble process definitions, decision horizons,

and generating mechanisms suited to empirical research.

In the absence of bubble phenomena, asset prices are governed by asset returns and

“Empirical experience shows that bubble processes typically collapse or stabilize periodically. Several
models and data generating processes that satisfy the property of (2.2) are shown capable of generating
periodically collapsing bubbles. See, for example, Blanchard & Watson (1982), Evans (1991) and Phillips
(2016).



prevailing market conditions, often referred to as ‘market fundamentals’, and are commonly
believed to be at most I(1). Conversely, in the presence of bubbles, B; dominates the dynamics
of asset prices and leads to explosive behavior of the data series P, consonant with the
martigale property (2.2). Since the bubble component is itself unobserved, explosive root tests
are conventionally applied to price-to-dividend or price-to-rent ratios for bubble identification.
The dividend or rent series then serves as a proxy for market fundamentals. In our empirical

application, rents are replaced by disposable incomes due to the unavailability of rent data.

We start the analysis with a simple model specification that differentiates normal and
abnormal market behavior. In the absence of a common bubble factor (the null hypothesis),
asset prices are assumed to be driven by an I(1) common factor and an idiosyncratic error,
whereas in the presence of common speculative behavior (the alternative hypothesis), prices
are determined by an I(1) factor, a mildly explosive factor, and an idiosyncratic term. The
mildly explosive factor allows for mild deviations from unit root I(1) behavior in the explosive
direction and have been found useful in analyzing potentially explosive processes. Autore-
gressive models with such mildly explosive roots have been extensively studied and utilized

in empirical research following Phillips & Magdalinos (2007a).

2.1 Under the Null: No Common Bubble

In this case with no common bubble, dynamics for the asset price processes X;; are governed
by market fundamentals so that
Xit = foto,i + €it, (2.3)

where fy; follows a unit root process

fox = fot—1+ uoz. (2.4)

The factor fy; is assumed to capture the fundamental drivers of asset prices in normal market

conditions subject to idiosyncratic errors e;+, which represent market variations.

In observation matrix form the model (2.3) can be rewritten as

X =FRA)+E, (2.5)

where X = (X;...,Xy) is an T x N matrix of the observed data with X; = (X;1,..., Xir)’,
Fo = (fo1---,for) isa T x 1 vector, Ag = (Ao1--.,Aon) is an N x 1 vector of loading
coefficients, and £ = (e;...,ey) is an T" x N matrix of idiosyncratic errors with e; =
(€i1,...,eir) . At time t

Xy = Aofor + e, (2.6)

where X; = (X14,..., Xn¢) and e; = (e, ..., ent)’. For each i, we have

Xi = Foho + ei-



2.2 Under the Alternative: Common Bubble Presence

Under the alternative hypothesis that there is a common bubble episode during the period

of observation, asset prices are assumed to follow the factor dynamic mechanism

fo,t Ao + e iftc A
Xip = friAdi + foiros e ifteB (2.7)
fo4r2 +ei ifteC

fori=1,...,Nand t =1,...,T, where A = [1,T.], B = [T. + 1,1}, and C = [T, + 1,T]
with T, = [7.T] and T. = [7.T]. As in (2.5) we use Ag = (Mo1..., o) and define
A= an), Ae =1, aN).

The break points 7. and 7, are unknown in practice. The { fo,t}{ factor follows a unit
root process as in (2.4), and the speculative-phase factor { th}% 1 is assumed to follow an

autoregressive process with a mildly explosive root (Phillips & Magdalinos 2007a) such that

Jit=prfie—1 +uig, (2.8)

where p7 = 1 + 7% with rate parameter a € (0,1) and localizing coefficient d; > 0. The
larger the value «, the slower the rate of bubble expansion. The factor { fzt};c follows an

autoregressive process with a mildly stationary root (Phillips & Magdalinos 2007a) such that

for = o1 fo—1 + uzy (2.9)

where ¢ = 1— % with 8 € (0,1) and d2 > 0. The smaller the value (3, the faster the bubble
collapses. When « > 3 (respectively a < 3), the rate of bubble expansion is slower (faster)
than the rate of the bubble collapse.

The initial value fp o is assumed to be O (1). The bubble factor fi; is assumed to emerge
at some period T}, = |roT'| with r € [0, 7] and represents emergent positive sentiment about
the market that translates into market exuberance when this sentiment enters into the price
determination system at T, + 1. Similar assumptions on the initiation of second regimes
are commonly made in structural break models (e.g. Perron & Zhu (2005)). This market
exuberance impact on prices lasts until 7., at which point negative market sentiment overtakes
the price determination process, producing a bubble collapse regime that runs from 7T, + 1 to

the end of the sample period T.

The initial value fi 7. of the bubble factor is assumed to be Fy,T%/? for some O,(1)
random variable F7, so that fi 7 = O, (TO‘/ 2). It can easily be verified from the analysis
in Phillips & Magdalinos (2007a) that the order of magnitude of the explosive factor at the
break point fi 7, is then O, (TO‘/ 2/)%_T’“), which reduces to O, (T o/ 2) if the initial point
coincides with the break date (i.e., T, = 7). This setting of the initial value is similar to,
but slightly less restrictive than, that of Phillips & Magdalinos (2007a), where the order of the



initial value of the mildly explosive process is assumed to be o, (T a/ 2). As in Phillips & Shi
(2018), the initial value of the collapse factor fo 7, is set to be the same order of magnitude as
the termination of the bubble factor O, (Ta/zp%_T"), ie., for. = FQ’CTQ/2P§C_TT for some
Op(1) random variable Fy .

Further, to avoid sudden jumps between regimes A and B we normalize f1; to zero at the
onset of regime B, i.e., fir, = 0. There are two different ways to ensure a smooth transition

from regime B to regime C. One is to impose the restrctions

Ao o A1
- , €1 — )
A2 A2

o and for. = for.co + fi.c1, (2.10)

where cg and ¢; are constants. Factor loadings are assumed to change in the same fashion
for all assets when moving from one regime to another. In the special case of ¢cp = ¢; = 1,
we have \g; = A\1; = )\271'.5 Another approach is to allow the loadings to change ‘freely’ and

generate observations in regime C with a two-step procedure. First, generate
Xit = fairai+ iy (2.11)

for t = T,,---,T, where e}, has the same properties as e;;. Next, normalize X, to X;7, at
period T¢ and let X;s = X}, — X7 + Xir, for t =T¢,---,T. The restriction is imposed on
the aggregated data series Xj;.

The idiosyncratic errors e;; in (2.7) may be serially correlated for each i. The factor
specification error vector u; = (ugt, U1 ¢, u27t)/ is taken to be iid(0,%,), in accordance with
market efficiency in the first regime, followed by market exuberance and bubble collapse in
the last two regimes. Further details on the error conditions are given in the assumptions in

Section 4, where broader conditions are discussed.

It is convenient to represent the model (2.7) in matrix form as
X=GI"+E, (2.12)
where G = [g1, 92, ..., 97| is a T x 3 matrix, with

0,0, fo.], ift€eA
g;& = [glt792t7 g3t] = [O, th? fO,t] s ifte B (213)
[f24,0,0], ifteC

and N x 3 matrix I' = [y1,72,...,7n] with 7; = (yi1, 2, Vi)' for i = 1,..., N. The matrix
G can be rewritten as G = [G1, G, G3] with

Gl - (9117"’791T),: (07“'70707"‘707f2,T1+17'"7f2,T)/7

5Since fo,r, = Op(T"/?) and fi,1. = Op(T*/?ple™"") from Lemmas A.1 and A.3, the linear combination
of fi,r. and fo,1, is Op (T"‘/Qp?fTr), which is consistent with the assumption on the initial value of fa.




G2 == (9217~~-792T), - (07~--707f1,T0+17"‘7f1,T1707'"70)/7
G3 = (9317"’ 793T), = (f0717"‘7fO,TO7fO,TO+17’ . '7f0,T1707"‘O)/‘

The factor loading matrix in (2.12) is I' = [I'1, ', I's] with I'; = Ag, T'e = A4, and I's = Ao.

3 Econometrics of Common Bubble Identification

The proposed procedure consists of two steps. First, the leading common factor is estimated
by principal components. With the above model specifications, the estimated first factor is at
most I(1) under the null of no common bubbles (Lemma 4.1) but is explosive in the presence
of the speculative bubbles (Lemma 4.4). As such, detecting common bubbles is equivalent to
distinguishing a martingale first factor from observed explosive processes. In the second step
we apply the PSY procedure to the estimated first factor to ascertain whether the leading

factor manifests mildly explosive behavior.

3.1 Estimation of the First Common Factor

We estimate the first common factor using the following procedure. Assume the true number
of factors is r for the data {X;} with ¢ = 1,...,N, and ¢t = 1,...,7. Recall that in the
present framework r = 1 under the null model (2.3) and r = 3 under the alternative (2.7).
Denote the common factors by the vector & (r x 1) and the corresponding factor loadings by

l; (r x 1). The objective function in the PC analysis is

1 N T
in o > > (Xie — 6i&)” (3.1)

i=1 t=1

wE

where Z = (&1,...,¢r) is a T x r matrix and L = (I1,...,ly) is an N x r matrix. We impose

a normalization condition on the loadings such that

1
UL =1 (3.2)

The resulting solution for the factor loading, denoted by L, is v/N times the eigenvector
matrix corresponding to the largest r elgenvalues (denoted by Vnr) of the N x N matrix

X'X. The estimated r factors, denoted by = = (51, . ,€T> are
- N | -
== XL (L’L) — XL/N.

It is sufficient® to obtain the first common factor for the purpose of bubble identifica-

5Lemma 4.4 below demonstrates that the estimated first common factor is a linear combination of the
common factors in the system. Consistency of the estimated bubble origination and collapse dates is established
in Theorems 4.5-4.8.



tion. We denote the estimated first common factor by 7 = (§1,...,97), and let L; =

~ ~ ~ /
<L11, Loy,..., L Nl) be the corresponding estimated factor loading, so that

3.2 The PSY Procedure

We apply the recursive evolving procedure of PSY to the estimated first common component
7 to identify explosive behavior and characterize its nature, in particular to date-stamp the

origination of any bubble that may be present. The regression model used for this purpose is
Agr =06 +yg—1 + v, (3.3)

where v; is the equation residual. Under the null hypothesis of no common bubbles (2.3),
the estimated first factor g; is a consistent estimator (up to a transformation) of the true
factor (Lemma 4.1) and hence is at most I(1). In contrast, under the alternative model
(2.7) the estimated first factor is a linear combination of the three factors (Lemma 4.4) and
hence explosive in the presence of the bubble factor fi. As such, the null and alternative
hypotheses of the PSY-factor test can be translated into the hypotheses Hg : v = 0 and
Hi:v>0.

In describing the PSY mechanism it is conventional to use fractional notation to represent
observations within the sample. Suppose the observation of interest is 7. To infer the pres-
ence of a common bubble characteristic at period 7, PSY suggest applying regression (3.3)
recursively to a group of structured subsamples. Let 7 be the minimum sample proportion
required to initiate the regression (3.3). The starting date of the subsample regressions 7
varies between 0 and 7 — Tyyin, while the termination date 7 of all subsamples is fixed on the
observation of interest (i.e., 7o = 7). The Dickey-Fuller (DF) statistics obtained from these

subsample regressions are represented in the sequence {DF;, ;,} and defined as

T 9 T 2 1/2
Tw ZtiTl Y1 — (ZtiTl yt71>

2
T: ~ R ~ ~
ZtiTl (Ayt - 57’177'2 - 77‘2,7’2?/1?—1)

DF7'17T2 :;)’7'2,7'2 ’ (3'4)

where Ty = |T'r1 |, To = |T'12|, Twy = To — Th = |T'7y] with the floor function |.| returning
the integer part of the argument, and 571372 and 4, -, are subsample estimates of ¢ and
~ obtained by OLS regression. Inference concerning the presence of a common bubble is
then based on the supremum of the DF statistic sequence, which is denoted PSY;(7pin) and
defined as

PSY (Tmin) = sup {DF:, +,}.

T1E[0,7—Tmin],T2=T

Let 7 be the significance level and cvg,.(Timin) be the 100(1 — B7)% critical value of the test.

10



For notational ease, we write the PSY test statistic and its critical value as PSY; and cvg,,
when there is no confusion. If a common bubble is detected, then its origination date, 7, is
identified to be the first chronological observation where the test statistic sequence exceeds

the critical value. That is,
Te= inf {7:PSY; > cvg,}.
T€[Tmin,1]
The termination date, 7., is the first chronological observation after 7, that the test statistic
falls below the critical value, i.e.,

7. = inf {7:PSY; <cvg,}.

TE[Te,1]
4 Asymptotics

We start by stating assumptions on the common factors, loadings, and errors which assist in
the development of the asymptotic theory. Throughout, the notation M is used to denote
a positive constant whose value may change according to location, := and =: represent
definitional equality, = denotes distributional equivalence, and = signifies weak convergence

on the relevant probability space. We assume that N and T pass to infinity at the same rate.

4.1 Model Assumptions

Assumption 4.1 (Common factors): Define the filtration F; = o{us, us—1,...} where
up = (uo,t, Ui, u27t)l, and let {ug, Fy} be a martingale difference sequence (mds) with E(ugu}|Fi—1) =
Lous
000
Yu=| o1 o11 - >0

020 021 022

and sup, E ||ug||*™* < M for some ¢ > 0 and for all t < T.

Assumption 4.2 (Factor loadings):

(1) Under the null of no bubble factor, as in (2.3), deterministic loadings {X\o;} are
assumed to satisfy [Aoi| < M and AjAo/N — X as N — oo where ¥z > 0, while stochastic
loadings are assumed to satisfy sup; E|Xo|* < M with AyAg/N —, $p >0 as N — oo.

(2) Under the alternative of a bubble factor, as assumed in model (2.12), deterministic
loadings {v;} are assumed to satisfy |vi;| < M, stochastic loadings to satisfy sup; E |%-|4 <M,

and the loading moment matriz

. ALAs . . T2
['T/N = N AN Ay AN : —=plli=1| w2 71 - |,
A6A2 A6A1 A6A0 02 701 700

11



which is positive definite, with elements %A;Al — 7 as N — oo0.

Assumption 4.3 (Time and cross section dependence and heteroskedasticity): For

some number M < oo,

(1) E(ei) =0, sup; . E \eitfs < M,

(2) E (che;/T) =B (4 SL euese) =r (i) and

N
1
sup — yr (2,7)| < M;
MNZZ“I (i, 9)

(3) E (eireji) = Tije with |1i54| < |7i5| for some 75 and for all t, and % Egj:l |75 < M;

(4) E (eitejs) = Tijes and SUpns1 751 77 Zgjzl EsT,t:1 |Tijus| < M;

4
(5) For every (i, j), supps1 E T-1/2 Zthl leirejr — E (eieje)]| < M.

Assumption 4.4 (1) sup;>; |7 Z;‘FZI foi—1eit]l = Op (1) as T — oo;
(2) subisy |y Simy fre-reu = Op (1) as T — oo,

(3) sup;> ’WIV%; Soimy fo-r€itl = Op (1) as T — oo.
Assumption 4.5 {\;},{u}, and {e;y} are mutually independent.

Assumption 4.1 concerns the common factor errors u; = {uoy, u1¢,u2,} which are as-
sumed to be mds with uniform 2 + ¢ moments. This condition is convenient, treating the
component errors {ug ¢, U1, u2+} in the three periods commonly. It may be relaxed to allow
(i) mds errors {ug;} during the efficient market period, and (ii) more general weak depen-
dence for {u;;} during the explosive period and for {us;} during the collapse period, as in
Phillips & Magdalinos (2007b) and Magdalinos & Phillips (2009). No distributional assump-
tions are needed and the uniform moment condition is weak, so the methods proposed can

be applied widely in empirical work, including to financial market data.

Assumption 4.2 concerns the loading coefficients, whose moment matrices AjAo/N, I'T'/N
are assumed to converge to positive definite matrices as N — oo, a condition which helps
to ensure identifiability of the factor structures. So, if a factor had only a finite number of
nonzero loadings, it would not be treated as a common factor in our framework but would

instead be absorbed within the idiosyncratic errors e;.

Assumption 4.3 allows for time and cross section dependence and conditional heteroskedas-
ticity, as in Bai (2004). Assumption 4.4 requires the uniform boundness over i of the time
series sample covariances between fo;—1 and e;; and is stronger than simply requiring weak
convergence of such sample covariances for all ¢ as in Bai (2004). In addition, we assume

uniform boundness over ¢ of the time series sample covariances between fi;_1 and e;, and
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between fo;_1 and e;. The independence between u; and e;; in Assumption 4.5 eliminates
endogeneity in our framework, just as in the cointegrated factor model of Bai (2004). Under
the null hypothesis, the situation is analogous to that of Bai (2004) with an integrated factor.
In such cases, the model can be rewritten as a dynamic factor model by projection of e;; on
u; and suitably augmenting the regression equation, leading to a dynamic factor model as
discussed in Bai (2004).” However, in our case under the alternative, the presence of a mildly
explosive factor accommodates dependence between u;, and e;; as shown in the cointegrating
regression analysis of Magdalinos & Phillips (2009) with mildly explosive regressors. We
therefore expect that the procedures for identifying and estimating the explosive factor in
our framework retain validity under endogeneity, although formal analysis of this extension

is not pursued in the present paper and left for subsequent work.

Additional assumptions used in the general setting of Bai (2004) are not required in the
present paper. This is because in the model structure employed here there is no need to

estimate the number of factors or to show uniform consistency of the estimated first factor.

4.2 Asymptotics Under the Null Hypothesis

The following Lemma shows consistency of the estimated first factor. This result is useful in
developing an asymptotic theory of inference for quantities that relate to this estimated factor
7. In particular, the theory is employed in deriving asymptotics for the bubble identification

procedure.

Lemma 4.1 Under the data generating process (2.3) and Assumptions 4.1-4.5, we have

T
Sy (; Z |G¢ — HJO\foO,t|2> =0p (1) (4.1)
=1

! _1 ! _1
where Sy = min (\/N, T) and HYp = ANT (F%l;o) (A(}VL1> with Ay7 being the largest

eigenvalue of NITQ X'X.

Lemma 4.1 reveals that the first factor can be identified up to a transformation given
by HY7. The proof of 4.1 follows directly as in Bai (2004) and Chen et al. (2019) and is
given for convenience in the Online Supplement (Chen et al. 2021). While Bai (2004) shows
consistency of factor estimates in the presence of I(1) factors (and uniform consistency under
stronger moment conditions) subject to a normalization condition for the factors of the form
E'Z/T? = I, Chen et al. (2019) provide consistency results under a factor model specification

that includes an explosive factor as well as I(1) and stationary factors.

"In other work that does not involve explosive or nonstationary processes, Pesaran (2006) allows for en-
dogeneity between the factor and the residuals by using cross section averages in a multifactor regression
model.
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Next, we develop asymptotics for a standard unit root test constructed from the first

estimated factor, ¢, under the null (2.3).
Theorem 4.2 Under the null specification (2.3) and 4.1-4.5, as N,T — oo,

Tw [PW (r)dW (r) — [W T W (r
T g = Sd WAV ) = W (72) = W ()l , (12)

o [2 W (r)? [f”w dr}

and
Tw f:f W (r)dW (r) — [W (12) — W (11)] f:f W (r)dr

DF; ., = , (4.3)

ol m [ W ()P dr = | [ W dﬂ v

where T, = 19 — 11 and W () is standard Brownian motion.

Derivation of the asymptotic behavior of T9;, , and the DF statistic (3.4) follows stan-
dard lines. Although complicated by the fact that the test relies on the estimated factor, the
derivation proceeds as usual because the fast convergence of 7 — HR,T fo,+ ensures that the
limit distribution is unaffected by factor estimation and is identical to those of T, -, and
the DF statistic computed from the original data, as in Phillips et al. (2015a). An outline of
the derivations is provided in Appendix B. The estimated coefficient 47, , converges to zero
as N, T — oco. With these results in hand, the limit behavior of the PSY test applied to the
fitted factor also follows in the standard manner (Phillips et al. 2015a,b).

Theorem 4.3 Under the null specification of model (2.3) and 4.1-4.5, as N, T — oo,

- T2 W — W - W 2 w d
PSY (Tmin) = sup LS e - fnz 1/(2T) r
T1E[0,m—Tmin] T2 =7 A2 ;fw(r)er— [ JEW(r) d?‘} ]
= TT(Tmin) (44)

The proof applies functional limit theory of the component elements of the statistic under
the null and a version of continuous mapping applied to certain indexed functionals of these
elements, just as in Theorem 1 of Phillips et al. (2015a). The limit result (4.4) for the PSY-
factor test statistic is then identical to that of the original PSY statistic (i.e., Fy, (W, 1)
in Phillips et al. (2015a)). The details of the proof are provided in the Online Supplement
(Chen et al. 2021).

4.3 Asymptotics Under the Alternative

We start with a useful representation of the first common factor under the alternative.
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Lemma 4.4 Under the alternative (2.7) and Assumption 4.2 and 4.3, the estimated first

common factor has the form

N
_ 1 =
Ut = an,791t + bN, 192t + CNTg3t + N Z Lie (4.5)
=1
enrfor+ % Sn Lies ifte A
=< byrfig+entfor+ & o Livew ift€B | (4.6)
antfor+ & SN Lies ifteC

where anT = % Zfil Lithoi, byr = %Zfil Liihig, and eyp = %2511 Litho; with Li
being the estimated loading of the first factor for asset i. Further, {anT,bNT,cNT} —p
{a,b,c} with explicit expressions for the limit quantities {a,b,c} given in (C.9)-(C.11) of
Lemma C.4.

Under the alternative (2.7), the estimated first factor is a weighted average of the com-
ponent factors (fo; for regime A, fi; and fo, for regime B, and fa; for regime C) and the
idiosyncratic errors. The weights depend on the estimated factor loadings L;; and the true
loading coefficients Ag;, A1,;, and Ag; and have explicit limits as N,T" — oo determined by

primitive conditions on the factor loadings, as shown in Lemma C.4 of Appendix C.

Next, we derive the asymptotic properties of the unit root statistic DF;, ,, under three
regime settings: (1) 11 € Aand 7o € B; (2) 71 € Aand 72 € C; (3) 71,72 € C. The subsample
in Case (1) starts from the normal regime and ends in the bubble expansion regime. In Case
(2), the sample spans across all three regimes and includes two structural break points (7,
and 7.). In Case (3), the subsample falls completely in the collapse regime. The derivation

of the limit properties is based on results in Lemmas C.4 - C.7.

Theorem 4.5 Under the alternative (2.7) and Assumption 4.1-4.5, the following asymptotics
hold as N,T — oo: when 7 € A and 5 € B,

. dy _
Yrime = ﬁ+0p (T,
dyrd)?
DF, ., = T¥*%™ 14, (1)]=0, (T?’/Z—a) — +00. (4.7)

According to Theorem 4.5, although there is a structural break within the subsample
in Case (1), the bubble regime B dominates the normal regime and 4, -, can be regarded
as consistent for the deviation pr — 1 in (2.8). The order of magnitude of the DF statistic
depends asymptotically on the power parameter o € (0,1) that defines the magnitude of
this local alternative and thereby the explosive strength of the factor transmitted through
the autoregressive coefficient pr = 1+ d17~%, with explosive strength rising as o decreases
towards zero. Correspondingly, the DF statistic diverges to positive infinity at the rate

O, (T3/ 2_0‘) which increases according to explosive strength, measured by a.
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Theorem 4.6 Under the alternative (2.7) and Assumption 4.1-4.5, the following asymptotics
hold when 71 € A and 75 € C as N, T — o0,

a2 B 1o (7o) ifas B
N e b (FI,T+Nd1)2 P
’YleTZ 9 (F 4N )2 Y
_% [1_171,7«011] =0, (T—B) ifa< B

2 2
a F2,c

where Ng, ~ N (0, %ﬁ), and the order magnitudes of the DF statistic are

(1-atf)/2,1/2 (g)m b(FLrtNa ) aPae .
T “ Tw d; aFQ,c ' b(Fl,r+Nd1) Zf o> B
DFy, o, (b2, 172 (42) Y2 [p(L ) ot | (4.8)
Tw (‘Tl) aly,c N b(Fl,r+Nd1) Zfa < ﬁ
= 0, (T(l—la—ﬂ\)ﬂ) ) (4.9)

When the sample period includes all three regimes, the limit properties including the signs
of 47,7 and DF, ;, depend on the relative rates of bubble expansion o and bubble collapse
B. The estimated coefficient 4, -, in the DF regression equation has order of magnitude
Op (T™%) when a > 8 and O, (T‘ﬂ) when a < 8. Moreover, when the condition

a’F3, > b (Fi, + Ne)? (4.10)

is satisfied, the DF, ;, statistic diverges to negative infinity at rate O, (T(1_|O‘_5W2); other-
wise it diverges to positive infinity at rate O, (T (A—le—=B1)/ 2). The condition in (4.10) matches
the intuition that the collapsing regime plays a more prominent role in determining asymp-
totic behavior of the bubble test when the weight of the (squared) collapse factor a?, and
the (squared) initial value of the collapse regime, F22’ ., are large relative to the corresponding
parameters of the expansion regime. In the opposite case where a2F2276 < b (F 1+ Nc)2 the
bubble test statistic DF;, , diverges to positive infinity and the expansion regime dominates
asymptotic behavior. In effect, the asymptotic outcome of the test depends on the strength
of the collapse period parameters relative to those of the explosive period measured by the

balancing of these parametric strengths via the inequality (4.10).

Theorem 4.7 Under the alternative (2.7) and 4.1-4.5, the following asymptotics hold when
1,79 € C as N,T — oo,

do

Yrim = T TB +Op (T_l) ) (4.11)
dor)?
DFy gy ~ —T¥7P2[140,(1)] = 0, (T3/2’B> — 0. (4.12)

When the subsample falls within the collapse regime, the DF statistic diverges to negative

infinity. Under the alternative of model (2.7), the sample period has three regimes: A, B and
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C, as defined in (2.7). Apart from Cases (1)-(3), there are potentially three other types of
subsample regressions for the PSY procedure: (4) 71,70 € A; (5) 71 € B and 75 € C; and (6)
71,72 € B. From Theorem 4.2, the order of magnitude of DF;, ., for Case (4) is O, (1). For
Case (5), the estimated 4., 5, is a weighted average of % and —%, with slight changes in
the weights. The orders of magnitude of DF’, ;, under these scenarios are identical to those
in (4.8). The order of magnitude of the DF statistic under Case (6) is identical to that of
(4.7). The proofs for Case (5) and Case (6) follow directly from those of Theorem 4.6 and
Theorem 4.5, and are omitted. Consequently, we have the following asymptotic behavior of

the PSY statistic
O, (1) ifreA

PSY; =4 O, (T%* ) ifreB . (4.13)
O, (TO=1e=BD/2) it r € C

We are now able to deduce the limit behavior of the bubble origination date estimator 7.

and the collapse date estimator 7. in the factor model (2.7).

Theorem 4.8 Under the alternative (2.7), 7o — T and 7. — 7. if the divergence rate of the

PSY critical value cvg, — oo satisfies the following conditions:

T(1_|0‘_5|)/2 CVBy
cvg, T3/2—a

— 0.

Theorem 4.8 provides rate conditions on the localizing power cofficient o under which
the bubble origination and collapse dates may be consistently estimated. The proof follows
directly from Phillips et al. (2015b) and is given in the Online Supplement (Chen et al.
2021) for completeness. We draw attention to the fact that the orders of magnitude of the
DF statistic under the various cases and conditions for the consistency of 7. and 7. differ
slightly from those given in Phillips et al. (2015b). These differences arise from the distinct
assumptions regarding the initialization of the explosive regime/factor. In the present work,
the emergence of explosive sentiment is allowed to pre-date its impact on market prices,
and for the reasons explained earlier, it is here assumed that fi 7, = O,(T @/2) whereas the
explosive regime of Phillips et al. (2015b) is assumed (implicitly) to start from a value of
O,(T"/?). These differences lead to the results given in Theorem 4.8.

5 Simulations

We first compare the asymptotic and finite sample distributions of the test statistic PSY.
The asymptotic distribution is simulated from Y, in (4.4) with 2,000 replications and stan-
dard Brownian motion is approximated using independent increments over 2,000 steps. To
obtain finite sample distributions, we generate data from (2.3)-(2.4). The factor loadings Ao ;
are drawn randomly from a uniform distribution over the interval [0, 1]. The standard devia-

tion of the idiosyncratic error o, is set to 0.1. These parameter settings are compatible with
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our later empirical application to Chinese housing markets.® Note that under the null hy-
pothesis the parameter settings of fo o, 0., and ogo do not affect the distribution of the ADF
statistic, consistent with the results of Theorem 4.2. The common bubble detection procedure
is applied to the simulated data with the initial sample size setting 7y, = 0.01 + 1.8/ VT, as
in Phillips et al. (2015a). The process is repeated for 2,000 replications.

Figure 1: Asymptotic and finite sample distributions of PSY, under the null hypothesis with
7=1and T € {60,100, 140}.

(a) T =60 (b) T = 100

T
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Figure 1 graphs the asymptotic and finite sample distributions (from kernel density es-
timates) of PSY, for T' = 60, 100, 140 and with N varying from 20 to 100. The parameter
T is set to unity in all graphs and similar patterns were observed with other choices of .
There is a small but visible gap between the finite sample distribution for N = 20 and the
asymptotic distribution. Also, the finite sample distribution lies to the left of the asymp-
totic, which implies slight undersizing if asymptotic critical values are employed in bubble
testing. The finite sample distribution evidently converges rapidly to Y1 as the number of
cross sectional units IV increases and the sample period T rises. We use finite sample critical
values at the 5% significance level (i.e., the 95" percentile of the finite sample distributions)

for investigating the performance of the common bubble testing procedure.

The data generating process (DGP) is (2.7) - (2.9) under the alternative. As in the DGP
under the null, the factor loadings Ao, A1, and Ag; are drawn randomly from U [0, 2] and
oe = 0.1. In addition, we set ogg = 0.01, 011 = 0.1, and o992 = 0.1. The standard errors
are calibrated to our Chinese housing market application. Specifically, we calibrate the fo;
process to the normal period in the estimated first factor from January 2005 to May 2007,
the fi+ process to the fast expansion period (from June 2007 to February 2008), and the
f2,+ process to the collapse period from March 2008 to December 2008. The selections of the
sample periods for fo, fi+, and fo; are guided by the empirical results. We estimate (2.8)
and (2.9) by the indirect inference approach to reduce autoregressive biases as in Phillips
et al. (2011). We fix the bubble origination date 7. = 0.4 and the bubble collapse date
7. = 0.7.

8The estimated loadings range between 0.3 and 1.7, while the estimated standard deviation of the idiosyn-
cratic error term is around 0.1 for both Group I (Tier 1 and 2 cities) and Group II (Tier 3 cities).
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The initial values of the I(1) and explosive factors are set to unity (i.e., fo0 = 1 and
fir, = 1). To avoid sudden dramatic jumps at the break point T, + 1, we subtract the
simulated fi for ¢ € [T}, T;] by the value of fi 7, so that the explosive factor takes the value
zero at period T,.. Together with the simulated loadings and idiosyncratic noise, the data X;
is generated from equation (2.7) for the period running from 1 to 7,. The initial value of the
collapse factor fo 7, is set to be fi 7, and a data sequence { X}/ };F:TC is generated using (2.11).

The remainder of the sequence X;; for t =T, + 1,--- T, is generated as
X = X}y — Xjp, + Xir,

so that there is no discontinuity in the sequence. Figure 2 displays a typical realization of
the data generating process under the specified alternatives with o = 0.8, 8 = 0.7, N = 30,
and T = 80.

Figure 2: One typical realization of the data generating process under the alternative. Pa-
rameter settings are: foo = fir, = 1,0 = 0.1,00 = 0.01,01 = 02 = 0.1,7. = 04,7, =
0.7,=0.8,8=0.7,79 = 7. — 0.05, N = 30 and T' = 80. The vertical lines indicate the start
and collapse dates of the common bubble episode.

o) 10 20 30 40 50 60 70 80

We report the successful detection rates (i.e., the proportions of replications where the
estimated bubble origination date falls between the true start and end dates), and the aver-
age bias of the estimated bubble origination (i.e., ﬁ Ziozolo 75 — 7.) and collapse dates (i.e.,
Wloo Z?iolo 75 — 7c) under the alternative. The number of replications is 2,000 in all simula-
tions. In Figure 3, we allow the time period T and the number of assets N to take various
values. Specifically, we have T' = {60, 80, 100, 120,140} and N = {20, 40, 60,80,100}. The

bubble expansion a and collapsing rates 3 are fixed and set to be 0.8 and 0.7, respectively.

The following comments are in order. First, as the time span T lengthens, the SDR
of the PSY-factor procedure increases and the bias of 7, reduces substantially. Additional
time dimension information therefore lends considerable assistance in identifying explosive
dynamics. Second, the SDR declines and the bias of 7. becomes more significant as N
increases. The more cross-sectional units, the noisier the data and hence the harder for the

PSY-factor procedure to identify the origination date of the common bubble. Third, the bias
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of the termination date is more considerable when there are fewer assets and the time span is
longer. As an example, the bias of the estimated collapse date is 0.7% of the sample period
when N = 100 and T = 60, while it is 17% when N = 20 and T = 140.

Figure 3: The successful detection rates and bias of the estimated bubble origination and
termination points. Parameter settings: 7. = 0.4, 9 = 7. — 0.05, 7. = 0.7, a = 0.8, and
8 =0.7.

(a) SDR (b) Bias: 7e — Te (c) Bias: 7c — 7¢
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In Figure 4, we fix T and N but allow the explosive rate a and the collapse rate g to
take various values. The rate o changes from 0.7 (i.e., pr = 1.040) to 0.95 (i.e., pr = 1.013)
with increments of 0.05, while 5 takes value between 0.4 (i.e., v = 0.842) and 0.9 (i.e.,
~yr = 0.984) with increments of 0.1. The rates of bubble expansion and collapse increase as «
and [ decrease, respectively. As expected, it is much easier to detect episodes that expand at
a greater rate (i.e., when « is further below unity). From panel (a) and (b), we see that as «
becomes smaller, the SDR rises rapidly and the bias of the estimated origination date reduces.
The collapse rate 8 does not seem to have any obvious impact on SDR and the estimation
accuracy of bubble origination. The bias of the origination date ranges between 0.06 and 0.13.
Interestingly, we see a nonlinear pattern for the bias of the estimated termination date 7,
which varies between 0.005 and 0.14. The most accurate estimate of termination is obtained

when the bubble expands quickly and collapses rapidly (i.e., « =0 and g = 0.4).

Figure 4: The successful detection rates and bias of the estimated bubble origination and
termination. Parameter settings: 7. = 0.4, rg = 7. — 0.05, 7. = 0.7, N = 30, and T = 80.

(a) SDR (b) Bias: 7e — Te (c) Bias: 7c — 7¢

Additional simulations are reported in the Online Supplement (Chen et al. 2021). First,
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we consider a quasi-real-time implementation of the PSY-factor procedure. Specifically, in-
stead of estimating the first factor from the entire sample, for each observation of interest
we compute the factor from a sample starting with the first available observation and ending
with the current observation at 7 using only historical information up to this point in time.
The SDRs and estimation accuracy of the bubble origination and collapse dates by the re-
cursive procedure are presented in Figure 1 of the supplement. No major differences between
the finite sample performance of the PSY-factor procedure and this real-time implementation

are observed.

Second, we consider a setting where there are no common bubbles but some idiosyncratic
bubbles in a fraction of assets. Specifically, the idiosyncratic errors of those assets switch
from being white noise to mildly explosive. The simulations show that idiosyncratic bubbles
do not have a visible impact on the performance of the common bubble test at least when
the proportion of idiosyncratic bubbles is less than 30%. Third, we examine the performance
of the PSY-factor procedure in identifying multiple bubbles. The data generating process
includes two common bubbles, which are assumed to have the same expansion rate. We find
that the testing procedure performs well in identifying both bubble episodes. In particular,
the SDRs are high for both bubbles, and the bias magnitudes for the bubble origination and
termination dates are similar to those under a single bubble DGP. Since the focus of this
paper is not on multiple bubble detection, more detailed analysis of multiples bubbles is left

to future work.

6 Empirical Application to China Real Estate Markets

6.1 Data Description

We study housing markets in 89 major Chinese cities. The sample includes 4 Tier 1, 26
Tier 2, and 59 Tier 3 cities. A list of these cities is given in Table 1. Monthly house prices
are compiled by Fang et al. (2016), based on sequential sales of new homes within the same
housing development. The sample period is chosen to lead up to and around the 2008 global
financial crisis, running from January 2005 to December 2008 (48 observations). Underlying
market fundamentals are proxied by urban disposable income per capita, which measures per
capita income received by urban residents within each of the cities.” The data are obtained
from the China City Yearbook.

The sample is split into two groups. The first group includes all Tier 1 and 2 cities (group
I), while the second group contains Tier 3 cities (group II). Figure 5 presents the housing
price-to-income ratios (PIR) of group I (left panel) and group II (right panel). The variation
within group I is larger than group II. We observe a dramatic increase of the price-to-income

ratio in group I around 2007-2008, led by cities Wenzhen, Tianjin, Shenzhen and Ningbo.

9The number of cities included in this empirical analysis is mainly constrained by the availability of dis-
posable income data.
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Figure 9 displays the average PIR over the sample period for each city. Similar to what
is observed in Figure 5, the average PIR of Wenzhou is the highest and is well above the

national average.

Figure 5: The price-to-income ratios of 89 cities in China.

(a) Group I: Tier 1 and 2 (b) Group II: Tier 3
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6.2 Common Bubbles

We apply the PSY-factor procedure to the price-to-income ratios in each group. To implement
the PSY test, we set the minimum window size to 12 observations, based on the suggested
rule in Phillips et al. (2015a) (i.e., Tmin = 0.01 + 1.8/v/T), so the evolving test recursion
begins in December 2005. The DF regression model in (3.3) is augmented with lags and lag
order is selected by BIC with a maximum lag order setting of 4 for each subsample.'® The

95th percentiles of the finite sample distributions are used as critical values.

Figure 6 presents the estimated first common components (black lines) and the identified
bubble periods (green shaded areas). Overall, the two estimated first common components
show similar dynamics but the fluctuations in group I are far more dramatic. There is a
period of rapid expansion in the first factor of both groups around 2007-2008. We apply
the PSY procedure to the estimated first factors and find evidence of common bubbles in
both groups. The explosive episode in Group I runs from June 2007 to February 2008. By
comparision, the explosive episode in Group II starts at the same time but terminates one
month later (with a one month break in December 2007). The procedure also detects common

explosive behaviour of Group II in July 2008.

Interestingly, the origination date of the bubble episode is three months before the “927
Housing Mortgage Policy” (?) implemented by the People’s Bank of China (September 2007).
This policy requires that the down payment for first home buyers is no lower than 20% for

units less than 90 square meters and no lower than 30% for units above 90 square meters.

198ee Phillips et al. (2015a) for a detailed discussion on the finite sample performance of the PSY test under
various lag order selection schemes.
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Figure 6: The identified bubble periods. The solid (black) lines are the estimated first factors
from respective groups. The shaded (green) areas, with dates, show the periods when the
PSY-factor test rejects the null hypothesis of a unit root against the explosive alternative for
the first common factor.
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For those who apply for a second loan, the down payment should not be lower than 40% and
the interest rate for such a loan should not be lower than 1.1 times the benchmark interest

rate.

6.3 Robustness Check

We investigate the sensitivity of the empirical results with respect to a real-time implemen-

tation of the procedure and a bootstrapping method for critical values.

Real-time implementation

We undertake a pseudo-real-time implementation of the PSY-factor procedure on the real
estate markets, i.e., using only information up to the observation of interest for estimation of
the primary common factor in the first step. Critical values remain the same. The identified
bubble episodes are displayed in Figure 7. For Group I, the identified episodes are identical
to those in Figure 6(a). For Group II, the starting date of the common bubble episode is
exactly the same but the termination date is in one month earlier. There is a two-month
break (December 2007 and January 2008) in between the start and end dates. Additionally,
unlike Figure 6(b), the explosive signal is not switched on in July 2008.

Bootstrap critical values

To account for potential heteroskedastic and serially correlated innovations in the monthly

price-to-income ratios and the multiplicity issue induced by recursive testing,!! we use a

" The probability of making a Type I error rises with the number of hypotheses in a recursive test sequence, a
phenomenon that is called the multiplicity issue in testing. This tendency towards oversizing may be controlled
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Figure 7: Pseudo-real-time identification of common bubbles. The black lines are the es-
timated first factors using the whole sample. The shaded (green) areas are the identified
explosive periods.
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composite bootstrap procedure for calculating critical values. The procedure combines the
ideas of the sieve boostrap for serially correlated innovations (Park 2003, Chang & Park
2003, Palm et al. 2008, Pedersen & Schiitte 2020), wild bootstrapping for non i.i.d errors
(Liu et al. 1988, Mammen 1993, Harvey et al. 2016b), and bootstrap methods for dealing
with multiplicity issues (White 2000, Phillips & Shi 2020, Shi et al. 2020).

Suppose Tp is the number of observations in the window where we aim to control the
multiplicity issue. The probability of making at least one false-positive rejection over the
window with T}, observations is 5%. The choice of the window is subjective. A larger window
leads to more conservative bubble detection results. Let Ty = |1 Tmin]. The procedure is
detailed in full below.

Step 1: Estimate the augmented Dickery Fuller regression model using g (the first common
factor estimated from the PIRs) such that

k
Afe =0+ vG1+ > PiAG—j + e, (6.1)
=1

where k is selected by BIC with maximum lag order 4. We obtain the estimated

coefficients t; and residuals {e;}]_, 1

Step 2: Generate residuals recursively from

k
b 7 oab bty b
v = E Yv{_; + € with ey = wqey,
J=1

by using a familywise critical value. See PSY for discussion and for the development of a bootstrap procedure
which assists in controlling size in such cases.

24



where w; follows a standard normal distribution and e; is bootstrapped from the resid-

uals obtained in Step 1 (with replacement).

Step 3: Obtain a bootstrap sample with T},;, + 1y — 1 observations using the formula
Gt = Gpy +or. (6.2)

Step 3: Compute from the bootstrap sample

M = max (PSY;b> .
t€[To,To+Ty—1]

Step 4: Repeat Steps 2-3 for B = 1,999 times.

Step 5: The 95% percentiles of the {M? }le sequence serves as the critical value of the
PSY-factor procedure.

In the Online Supplement we also consider a data generating process with no common
bubble but serially correlated innovations for the I(1) factor. The empirical size is controlled
over the entire sample period, i.e., T, = T. We show that this procedure is conservative
(under-sized) when there is no or weak serial correlations. But empirical size increases when
the correlation becomes stronger. A comprehensive study of the bootstrap procedure imple-
mented here is left for furture work. In practice, one could use a smaller control window
to enable a less conservative test. For our empirical application, we allow the possibility of

making at least one false-positive conclusion over a one-year window to be 5%, i.e., Ty, = 12.

Figure 8: The PSY-factor procedure with boostrap critical values. The black lines are the
estimated first factors using the whole sample. The shaded (green) areas are the indentified
periods of explosiveness.
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Figure 8 shows testing results from the PSY-factor procedure with bootstrap critical

values for the Chinese housing markets. The identified common bubble period in Group I
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is almost identical to that in Figure 6 (with simulated finite sample critical values), except
that the signal was switched off temporarily in July 2007. For Group II, the identified bubble
period is much shorter, starting in August 2007 and terminating three months later. This
result is expected as the bootstrap procedure allows for a lower chance of making false-positive

conclusions and accounts for potential heteroskedasticity and serially correlated innovations.

7 Conclusion

Price bubbles in the financial system and asset markets such as those in real estate pose a
significant threat to economic and financial stability. Such disturbances from normal market
behavior have led to the introduction in many countries of macroprudential and micropru-
dential policy regulations that are designed to moderate market behavior. In many cases,
emergent speculative elements in financial and real estate asset markets are influenced by
driving factors of the behavioral kind that are not directly observed. It is therefore partic-
ularly useful to have econometric methods that enable the detection of such behavior via
the estimation and testing of the unobserved factors that may be driving speculative activ-
ity. Based on earlier methods in Phillips et al. (2015a,b) that were designed for observed
data, this paper provides tools that enable such identification and empirical detection of an
unobserved common explosive factor influencing market behavior coupled with a real-time

mechanism for their dating and identification.

The factor methods developed here may be applied to large dimensional financial data
sets and simulation results show good performance in the detection of unobserved common
bubble factors in terms of successful detection rates, and the estimation accuracy of bubble
origination and termination dates. The empirical application to real estate markets in major
Chinese cities reveals strong evidence of a common driving factor affecting markets in all
cities, starting from June 2007 and terminating in early 2008. Results that match well
against government regulatory policies that were introduced as cooling measures to mitigate
housing price bubble activity in the real estate market. Unobserved factor methods of the
typed developed here therefore seem to offer some promise as a potential guide to regulatory

authorities faced with emergent speculative behavior.
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A Preliminary Lemmas

Lemma A.1 Under Assumption 4.1 and 4.3, as T — oo, we have the following:
(1) X2, en—1 = Op (T'V2) and Y224, (ex — e—1) = Op (1);
(2) ZtTiTl eireit—1 = Op (T') and Z;‘Fle ezzt 1=0,(T);
(3) Xt woa = Op (TH2) s 20 = Oy (T);
(4) EtTiTl Uit = (Tl/z) Zt =Ty Ul,t =0, (T);
(5) ZtTiTl U2t = (T1/2) Zt ) “%t =0y (T);
(6) S [oq, ursei—1 = Op (1) ;3 _p 4y U pei—1 = Op (T) .

Proof. The results follow directly from Assumptions 4.1 and 4.3 by application of suitable

laws of large numbers and central limit theory, as in Bai (2004). =

Lemma A.2 Under Assumption 4.1 and 4.3, as T — oo we have

TQZfOt 1:>/

t=T1

1 72
W Zfo’tli/ B(T) d?"

_ T1
*ZfOt 1U0t=>/ B (r)dB (r

t=T1

where B (r) is Brownian motion with variance oq.
Proof. The proofs follow standard methods (Phillips 1987). m
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Lemma A.3 Under Assumption 4.1, 4.4, and 4.3, as N,T — oo, for any Ts = |Ts| €
(T87T0]7

(1) fir=0, (Ta/thT—Tr)

TS Ts TS
(2) > fu-ruoe=0p (TO‘P%_T’) c Y g =0, (T"P%_TT) , Y fuein =0, (Tap%_Tr) ;
t=T.+1 t=T.+1 t=T.+1

Ts
(3) Z Jit-1=0p (T?’O‘/Qp%_Tr) :

t=Te+1

Ts
(4) > o= 0p (T2
t=Te+1
T

(5) Z fri—1foi—1=0p (T(1+3a)/2p§rn) ;

t=Te+1

T
(6) Z fri—1(eir —eir—1) = Op (To‘p%_T") :

t=Te+1

Proof. (1) By definition,

t
t—T, t—7j
fie = fir.pp T+ E pr 7 u .

j=T+1
Since fi,1, = O, (TO‘/Q) and T—%/2 Z§=TT+1 p?_juu = Ngy =N (0, %) from Lemma 4.2
of Phillips & Magdalinos (2007a),
¢
fir, fir. 1 T, —j
= = g pTT Uy j = Fl,r + Ny, .
To‘/zp; T Ta/2 Ta/2 jTZ,.—H 1

Thus, f1, = 0, (T*/277).
(2) This follows directly from Phillips & Magdalinos (2007a).

(3) Since fi1+ = prfit—1 + u1, we have

Ts Ts Ts
> hu=pr Y, fuat+ Y u

t=Te+1 t=Te+1 t=Te+1

It follows that

Ts Ts
(1—p1) Z figz—1=—fin + fin + Z ure = —fim, [1+0,(1)]

t=T.+1 t=Te+1
since fir, = Op (Ta/Qp%_Tr> and fir, = Op (Ta/Qp%_Tr> from Lemma A.3 (1) and
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ZtT;TEH u1s = Op (TY/?) from Lemma A.1. Therefore,

quw—%ﬂH%M 0y (127255

t=Te+1

(4) By squaring equation fi; = prfi—1 + uis, substracting f12,t71 from both sides,

summing from 7T, + 1 to T, reorganizing the equation, and dividing by p% — 1, we have

T, T. T.
S 1 S S
2 _ 2 2 2 _
Z fli1 = — 1 [fl,TS fir. Z uiy —2pT Z f1,t1u1,t]

t=T.+1 P t=T.+1 t=T.+1
1
= Ao, (1] =0, (1)
Pr
since fﬁTs =0, (TO‘ ATs—Tr) ) f1 T = =0, ( ) and Zt Sqar Jre—iuag (TO‘ Ts— TT)
from Lemma A.3 (1)-(2), S5 a1l = O0p(T ) from Lemma A.1, and -+ p2 = 0, (1).

Therefore,

Ts
5 -0, (12" T),

t=Te+1

(5) The sum of the cross product between f; ;1 and fo;—1 over [T, + 1,T] is

Ts T, f f
1,t—1 0,t—1 ¢—T,
Z fl tflfo t—1 = T(1+a)/2 Z ) 5 p r
’ ’ o 1T, 71/2 T
t=Tetd e Tl T /

IN

Ts
POtz Jie-1 e {fo,tl} P
te[To+1,Ts) Ta/thT—TT te[T+1,1) | TY/? t_%;l T
= 0, (T2
(6) From Assumption 4.3, E(e; —ejr—1) = 0 and Var (e —ej—1) < o0, so that we

have ZtTiTe 1 fr1(eir —ei—1) = Op (To‘pngT), which follows directly from Phillips &
Magdalinos (2007a). m

Lemma A.4 Under Assumption 4.1, as N,T — oo, for any Ty € (T,,T], we have

UJﬁt:{OMTw) ifa>p

o _ _ ) fort > 1T
O, (T 2 ple=Tr - Tc) ifa < f3

T T
22: fap-1€it = Op (T((Hﬂ)ﬂp%iﬂ) and i Jai—1uzt = Op (T(a+ﬁ)/2p§C*Tr) :

t:Tch 1 t:Tc+1

Ts
Y for1=0, (Ta/ s p?*T’”) ;

t=T.+1
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T:
S5 s =0, (170,

t=To+1
2AT.—T, .
Z i1 Trf Op TQ/2+BP’I’( ) ) Zfa > /8
Pr 2t-1 = To—T)+(To—T7) \To—T.\ - ;
t=To+1 Op Tga/ngF S )qb% Tz) foa<p

Proof. (1) By definition,

for = &5 T for + Z Oy ua .

] Te+1
By assumption, fo7. = O, (T“/Qp%_T”"> and gbt chQ’TC =0, (T"‘/ngc_T*qﬁtT_TC). Since

2

t
1 2t—)m (2 022
E Tﬁ/z Z O ua T8 Z Or ]E(u27j)—>%,
j=Tc+1 j=Tc+1

from Lemma B.1(3) in Phillips & Shi (2018),

1 022
w7 Z b7 uQ,J:»XdQ_N(072d2>.

Jj=Tc+1

That is, ZJ T 41 ng u2] =0, (TB/Q). Therefore,

f S g O ua L0, (D] = 0, (T72)  ifa> 3
2t = T . .
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(2018),

T To—T,—1
T Z ‘b?liTCeivt =TF Z ¢]T6i,j+Tc+1 = N (0, U?/ng) .
t=T.+1 j=0

Similarly, we can show that

Ts
Z fou—1uzs = O, (T(O‘Jfﬁ)/?pgc—ﬂ) .

t:Tc+1

(3) Since for = ¢rfai—1 + uzt, we have

T T T
Z fou = o1 Z fop—1+ Z U2t

t=To+1 t=To+1 t=Tot1
It follows that
T2 T2
(1—9¢r) Z foa—1=—for, + for. + Z Ut
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Since for, = O, (T7?) if @ > 8 and fo,z, = O, (T*/2pf 6™} if a < B from Lemma
A4 (1), for, =0, (TO‘/Q,O%_TT>, and ZQTC_H ugt = O, (Tl/Q) from Lemma A.1, we have

Ty Tﬁ
Z f2,t71 = d7f2’TC [1 + op (1)] = Op (Ta/2+ﬁp§c—Tr) )
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(4) By squaring equation fo¢ = ¢7 f2 -1 + uy 4, subtracting f22,t71 from both sides, summing
from T, 4+ 1 to T3, reorganizing the equation, and dividing by (25% — 1, we have
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(5) Since far = ¢rfo,

t—1 + u2,¢, we have
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L—gr -2 | 0p(T%) ifa<fp
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t=T.+1

both sides, we have

Z ptlTertl_ Z ptlTTfQ 4 Z ptlTT uag

Op Ta/2 (TC Tr)+(Te—Tr) g:’z*Tc> ifoz<ﬁ

T2u2,t> =0p (Ta/zﬂ?_Tr) ;



Therefore,

e} chTr .
27t_1 = c—4dr r c . :
t=To+1 O, T?’O‘/ZP(TT T+ T )¢T T) if a <8

B Proofs Under the Null Hypothesis

Lemma B.1 Under the null specification of model (2.3) and Assumption 4.1, 4.2(1), 4.5,
4.4, and 4.5, we have:

Zyt 1= ZHNTfOt 1[1+0,(1)] =0, <T3/2)

t= T1 t=T,
Zyt 1 = (HyT) Zf()t 1 [140p (1)] = Op (T7) ;
t=T t= T1
T
Z Afiji-1 = (Hir) Z Jog—ruop [140p (1)] = Op (T);
t= T1 t=T1
ZA HNT ZUOt [1+0,(1)] =0y (T);
t=T1, t=T1
Ty Ts
S Aji=HYr Y uoell+0, (1] = 0, (TV2).
t=T t=T,
Proof. (1) The quantity
1 Ts 1 Ts 1 Ty
w7 2 1 = gy O (B = Hirfoat) + HRr gy D fosms
t=T1 t=T1 t=T

By the Cauchy-Schwarz inequality and Lemma 4.1, we have
Ty 2 Ts

T
Z (Ge—1 — H¥rfor) | < Z (Ge-1 — H]Q/Tfo,t)2 < Z (Ge-1 — H]Q/TfO,t)z = 0, (Toy7)
t=1

t=T1 t=T1

and hence

T3/2 Z H]Q/Tfo,t—l) =0y (T*1/25](,1T> .

t=T,

From Lemma A.2, T—3/2 ZtTiTl fou—1 = O, (1) and HYp = Opy(1), from Lemma S.1 in the
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Online Supplement. Therefore,

T 7
Y G =Hir Y for1[l+0,(1)] =0, (T3/2)
=Ty b

(2) Similarly,

T>
1 -
T2 Z Ui = T2 Z (Fe-1 — HYpfor1 + HRTTth—l)Q

t=T, t=T
1 75 75
Zﬁz (Z]tq—HRfoo,tﬁ) + HNTZ i1 — Hyrfor1) for- 1+T (H¥7) Zfo,: 1
t=T1 t=T1 t=T1

(B.1)

By Lemma 4.1, the first term of (B.1) is % ZtTiTl (?]t—l — H]Q,Tf07t_1)2 =0, (T’l(S&%) . The

second term is

1/2 1/2
Tb 2
1 1 - 1
T HNT Z yt 1 — HNTfOt 1) fOt 1 \ T1/2 ‘ NT‘ ? Z |yt71 - HRTTfO,t,MQ ﬁ Z f(it—l
t=T1 t=T1, t=T1

= 0, (T7255%).

The last term is O (1) from Lemma A.2 and Lemma S.1 in the Online Supplement. Com-

bining the above we have

T
Z Y1 = H]QZT)Q Do S0, (1)] =0, (T7).

t=T1, t=T,

(3) The quantity

T, T Ts
S OAGG =Y Gl — Y T

=Ty =Ty =Ty
T T T
=" (@~ B pfor) G1 + Hr > forieor — (HYp)* S f3, 111+ 0, (1))
=Ty =T =T
(B.2)
Ts Ts
= Z (7 — H¥yp for) (Ge—1 — Hypfor—1) + Hyp Z (5 — Hyrfo) fou—1
=T, =Ty
(B.3)
T T> T
+ HYp Z fou (Gr—1 — Hyrfor—1) + (HR/T)2 Z fotfoe—1 — (HJOVT)2 Z fo i1
=Ty =T =T
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The first component of (B.3) is

T> . T 1/2 . 7 1/2
tXTz (5 — H¥rfor) (Gr-1 — Hypfor1)| < T thle |5t — HYpfor|” thle s — Hrfoe |

Op (TON7)

using (4.1). Similarly, the second component of (B.3) is

1/2 1/2
Ty T T2
_ 3 1 _ 1 3.
H]QIT Z (yt - HR/TfO,t) Jop-1| < Tg ‘HR/T‘ T Z |yt - HRfoO,t‘2 T2 Z f(?,t—l =0p (TS(SN%F)
t=T1 t=T4 t=T1,

By the same argument, the third component of equation (B.3) is at most O, (T%(;]QlT) The

fourth component is of order O, (T?) since |Hyy| = O, (1) and

T T T T
Z Jotfor—1 = Z fo1+ Z Jot—1uor = Z [ l+0, ()] =0, (T%).

t=T, t=T t=T, t=T

The fifth component is O, (TQ). Therefore, we have

Tg T2 T2
S Ajgier = |(HYD)®S forfoar — (H) S 120 | 1+ 0, (1)]

t=T t=T =T
2 2
= (H{r)" Y forruos[L 40, (1)] = Oy (T).
t=T1

(4) The quantity

1 & 1 & 2 & 1 &
fZAgg:fng_fthgtfl‘kfzgf—l

t=T1 t=T1 t=T1 t=T1
1 2 b
=7 (H]QIT) Z (fg,t —2fo¢fo—1+ fg,tfl) [1+0p(1)]
t=T,
1 ) 1> 1 ) 15
= T (HJ%T) Z (fO,t - fO,t*I)2 1+ Op (1] = T (HRIT) Z U(Z),t 1+ Op (1)) = Op (1).
t=T1 t=T1
using Lemma A.1. (5) The quantity
Ts T> Ts
> AG =Y Her (foi = fou1) L+ 0y (] = Hyr > wos [+ 0, (1)] = O, (17/2)
t=T1 t=T1 t=T,

using Lemma A.1. =
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Proof of Theorem 4.2

Proof. We first derive the limiting distribution of T9;, ,,. Let T, = To — T1 + 1 = [T'1y).
The OLS estimator 97, -, is
. T S 20, Abitie—1 — Yo 2qy At 3020, i1
Vi, = T N T R 2 . (B'4)
Twd i2r, Ui — (ZtiTl yt—1)

The denominator of (B.4) is

2 2
T Ts Ty
T, Zyﬂ Sdea | = @) T Y B | Soar | [ L0 ()]
=T t=T1 t=T1 =1

using Lemma B.1. The numerator is

Ts b
T Z A 1—2 Agy Z Gi-1= (Hp)* Z four-1uoe — Y uos Y fou-1| [1+0p (1)].
t=T t=T, t=T, t=T, t=T, t=T

Thus,

T uUQt — U
THpn = Zt 7, Jot—1uo Zt 27 OtZt T1f0t 1 1+ 0, (1)

Tw Y 2q f3i1 (Zt TlfOt 1)

Tw fTTfB r)dB (r) — [B(12) — B(m1) f B (r)dr
ru [ B @) dr = [ B(r dr}

T [T W (1) AW () — [W (1) = W (m0)] [ W (r)

; (B.5)

w TZQW(T)er— [fTTfW r dr}

where B (-) is Brownian motion with variance ooy and W (-) is standard Brownian motion.

Next we find the limit distribution of the least squares estimate

(2Bt (S A0) - (S0P A ) (S )

s = L (B.7)
Twd i2r, Ui — (ZtiTl yt—1>
The denominator of (B.7) is identical to that of (B.4). The numerator is
Ty T> 1>
Z G | U SAGe | = | DD A | | D e

t=T, t=T, t=T1 t=T1

3 T To T> Ts
= (HYr)" | D fiams D woe = 3 foumruos 3 foamr| L+0p (D], (BS)

t=T, t=T t=T, t=T,
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using Lemma B.1. Therefore, we have

T T T T
Soiim fa e ity uog — Yo 2q fou—1uoe Yo 2py for1

T1/2(§7-1’7—2 — Tl/QHR[T : . - [1 i Op (1)]
T 2y, fop—1— (ZtiTl fo,tq)
o JZB(r) dr(B ()= B(n)— [ B(r)dB(r) [ B(r)dr
= Hpyr 1 ,
w [ B(r)d [f” B(r dr}

using Lemma A.2. Since HY7 = O, (1), we have
Y25, 7y = Op (1) (B.9)

. 2
The sum of squared errors ZtTiTl (ijt — O re — Vim0 g]t,l) can be written as

TQ T2
Z (Agt - 571,7—2 - ’3/7177'2@*1) Z A~2 + T 531 T ’771 T2 Z Yi—1 — 7177—2 Z A
t=T1 t=T1 t=T1 t=T4
Ty T
- 2/?‘1'1,7'2 Z gt—lAgt + 257’1,7’2/3/‘1'1,7'2 Z gt—l
t=T, t=T1
Ty 9 Ts
=Y AG [ +0, ()] = (HYr)™ Y ugi[140,(1)] = Op(T).
t=T1 t=T1

The first term dominates the other terms since 571772 =0, (T -1/ 2), A = Op (T71), and

Ts
Z A?JtZ =0p (1)

t=T,

T>
'Ayzmz Z ?31:271 =0p (sz) Op (TZ) =0,(1);

t=T1
Ts
Wi > Aje =0y (T‘1/2> 0, (Tl/Q) = 0,(1);
t=T}
T
2Vr1 2 Z Yt—1A7: = Op (T_l) Op(T) = 0p(1);
t=T1

1>
2571772;7\71@ Z Yt—1 = Op (T71/2) Op (Tﬁl) Op <T3/2> =0p(1).

t=T1

The limit form of the DF test statistic is then obtained as follows

1/2

T o~ \?
Ty Zt T1 (Zt:Tl yt—l)

2
T ~ Q ~ -
ZtiTl (Ayt - 571,7'2 - '77'1,7'23/t—1>

DFTLTQ = Tr,m
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T T 2 1/2
| TS e — (S o)
V71,72 T2 Zt E, uo )

o [ W () dW () = W (72) = W ()] [72 W (r) dr

J1/2 2 2]1/2
7l | [ W ()% dr — [fTTfW(r)dr} ]

where W (-) is standard Brownian motion. m

C Proofs Under the Alternative

Proof of Lemma 4.4

Proof. Since & = E'Xt/N and X; = T'g; + e;, we have & = L' (gt + e1) /N. Recall that

F1:A2,F2:A1,F3:A0 and

[07 07 fO,t] ) ifte A

9t = 916, 920, 93t) = < [0, fi, fou], ift€B.
[f2,t7070]7 lftE C

The estimated first common factor

~ Z Lavagie + Z Liaviagae + Z Livizgse + Z Lirey

N
i=1 =
N 1 XL 1 XK. 1 L
Z L 291 + N Z Li1A1,igot + N Z L1 Mo,ig3t + I Z Livei (C.1)
i1 i—1 i=1 i—1
1 L.
= an,rg1e +bnrger + cnrgse + N Z Livei (C.2)
i—1
cnrfor+ % Zfil Litey ifte A
= bN7Tf17t + CN,TfO,t + % sz\il Eileit ifte B
an,Tf2: + % Zfil Eueit ifteC
where ayr = & Sor Litdai, by = & Somy Lindrs, and engr = & i Liados. By

Cauchy-Schwarz

N

1 -
<y |k

=1

L 1/2 LN 1/2
i1A2i| < (NZL%) <NZ)\%Z> =0,(1),

i=1 i=1

1 L.
*ZLﬂ)\Q,i
N =

since % SN, L2 = 0,(1) from the normalization constraint, and + SV, A5 = O, (1) by
Assumption 4.2. Thus, anr = Oy (1). Using the same argument, we have bN7T = 0, (1),
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en, = Op (1), and % Zf\il Liteq = O, (1). Explicit limit expressions for ay 7, by and ey 1
are derived in Lemma C.4 and given in (C.9) - (C.11) below. m

Lemma C.1 Let Viyr,1 denote the first eigenvalue of X'X. Under the alternative (2.7) and
Assumption 4.1-4.3, we have

VNT1 (F1,-+N)? .
NT20 20T = Mg fa>p
NT,1 1 2 . ’
Nrars 2Tty 7 Migg Fre o <p

Proof. This proof follows arguments similar to those in Chen et al. (2019) and is outlined
here for completeness. Under the alternative, X = GI” + E. The quantity X'X can be

rewritten as

X'X =TG'G + TG'E + E'GT + E'E. (C.3)
1/2
From Assumption 4.2, [T’ = VN (Z?’:l + Zfil 'yfj) =0, (\/]V) Further,

3 3 1/2 (ZTC F2,[1+ (1)]> -0 (Tga 2(T67Tr)> T
GGl = GG 2 _ t=T. J1t Op =0p PT if o
H H ;]2 ( J) (ZZ;TC f22,t [1 +op (1)]) — Op (TaJrﬁp%(Tc—Tr)) if o < B

since, by construction, G{|Gy = 0, G1G3 = 0, G4G2 = Z;‘F;Te forfie, GYG1 = z;f:Tc f227t,
GLGy = ZtT;Te fi1, and G3G3 = STy /3 The orders of magnitude are from Lemmas A.3
and A.4. The quantity

O, (NV2Tep] ™) if o>

I'E'G|| < ||| ||E'G|| = :
PGl <ICIEE = o bvapamrg =) ira < s

since [|T']| = O, (\/N)

- ()’ (€G2)? [+ 0, ()] = O (T2 ) ifa > B
ei 1 - — s
= (€G1) [+ 0p (1] = O (THp ) i o< 8
from Assumption 4.4, and
1/2
N 3 o 1T, .
1 9 O, (VNT P ifa>p
IE'GIl=vVN | 5. (€6)) = (a+5)/2)T_TC . :
i=1 j=1 O, (VNT o ) ifa < p
The quantity
. o\ 1/2 1/2
1 1 1
|E'E|=NT {5 (Tzetietj> SNT | 5> M?* | =0,(NT),
i, t=1 ]
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from Assumption 4.3(2). Therefore, the first term in (C.3) dominates the other terms and
X'X =TG'GI'[1 + 0, (1)]. (C4)
Next, by the fundamental property of the eigenvalue V71
|X'X — VNraln| =0 (C.5)

with Iy the N x N identity matrix. Multiplying the equation by |IV| from the left and |T'|
from right and scaling by 1/N, we obtain

1 1
—I'X'XT -V, —I'T| =0
N NT1 37
1 1 -1
— | —I"X'XT( =I'T —Vnr1l3| =0
N <N NT 143
1
= ﬁFT (NG'G) [1+ 0, (1)] = Vnral3| =0 (C.6)
using result (C.4). If o > 3,
2
1 v ' Tl T2l T3l 0 0 0 0 w21% 0
NP F(NG G) (Fl T‘+NC)2 . (Fl T‘+Nc)2
~N2a 2(Te=Tr) = | T21 22 W32 0 57— 0| =10 mpa—5— 0
NT?2p 1 o,
T 31 32 T33 0 0 0 0 7732% 0
1

(C.7)
: 1 ! _ 1 T 2 1 2
since WNGQGQ = W Zt;Te fl,t ~ 2d; (FL"' + Nd1) from Lemma A.3. It
T T

follows from (C.6) and (C.7) that

1 (F1, + N,)?
I 7 Mhrm e
NTQapé(Tc_Tr) NT,1 = T22 2d

Similarly, if a < §, from Lemma A.4,

1 2
EFZC and

1 N _ 1 T 2
NTaWp?F(TC_T*) GhGh Ta+6p§,,(TC_TT) Zt=Tc f2,t ~

1 1 WlliFQQ’c 00
—T'T(NG'G) = L F2 0 0
NTa+8p2 =) N ( ) oty 00

1 2
31 %FQ,C

It follows that
1 1

V = 1 —F2 .
N8 2T T 0T T g, e
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Lemma C.2 Let Ly be the estimated first factor loading and

" GYGolh L1Vt ifa>p
1,NT = = 1.
GYGiT LiVyr, ifa<p

Under the alternative (2.7) and Assumptions 4.1-4.4, we have

El — FQHLNT = Op (N1/2T67a) z'fa >
il — FlHl,NT = Op (Nl/zTaiﬁ) ?,fOé <pB .

Proof. This proof follows arguments similar to those in Chen et al. (2019) and is outlined
here for completeness. By definition L; equals v/N times the eigenvector corresponding to the
first eigenvalue of X’X. We have the usual eigenvector matrix equality X’ XL, = L, VNT1-
It follows that

Ly =X'XL1\Vyp, =TG'GILiVyp, [1+ 0, (1)]
= [[1GLGIT + TaGYGaly + DaGoHGaTy + TGy Galy + N3G GaTs) LV, [1 40, (1],

using equation (C.4) and by construction, G)G2 = 0 and G}G3s = 0. By definition, if « > 3,
Ly —ToHy nr = [[1GLGIT) + TaGhGsT + TsGaGaly + TsGGsTs] LVt [1 4 0, (1)];
and if o < 8,
Ly — Ty Hy vt = [T2G5GalY + TaGhGslly + TsGaGalYy + TsGaGsTs] L1Vt [1 40, (1)] .
From Lemma A.2, A.3, and A4, GG, = Z?:TC f3: =0y (TaJrﬁp;(Tc_TT)), G5Gy =

ZtT;Te fofie=0p <T(3a+1)/2p£C—Tr)7 GG = ZtTéTe f2,=0, (Tzap2T(Tc—Tr)>7 and GGy =

STey f3+ = Op (T?). From Assumption 4.2(2), [Ti[ = O, <\/ﬁ) with ¢ = 1,2,3. It follows
that

InGieri]| < In |GG T = 0, (NTeto i)
[T2GhGasl| < Tl |GG [T = 0, (NT22 5"
ID2GAGTE|| < |0l ||GAGs|| |15 = O, (NT Bact1)/2 ;T TT>7
ITaGaGsTs]| < Tl | G5Gs]| [[T5]] = Op (NT?).
Therefore, if a > 3
Ly = DoHy vy = TiG T LV, [1+ 0 (1)) (©8)
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and if a < 3
I~/1 — FlHl,NT = FQGIQGQFIZIAVA?%J [1 + op (1)] .

From the normalization condition, we have L} L; /N = 1 and hence HI:l H =0, (\/N) Then

Hffl —I'2Hy NTH

DL GAGITE LaVigt, [1 -+ 0 (1]

AT AN
= 0, (V) 0, (1772 0, (VI) 0, (VI) 0, (V1125 2019
= 0, (N'2ro=)

if @« > B; and

ot

= |recaGarsLavit, 1+ o, (1))

< el flGcal | el 2| vt

= 0, (VN) 0, (153" )) 0, (VN) 0, (VN) 0, (N 11=(et) p 21T
= 0, (N7 F)

if & < f3, using results in Lemma C.1. m

Lemma C.3 Under the alternative (2.7) and Assumption 4.1-4.5, we have the following

ltmits as N, T — oo,

—1/2
s ifa> 0

Hynr —p Hy=4 2, f :
T ifa<p

where Hy N7 is a scalar defined as

" GYGolh L1Vt ifa>p
1,NT = ~ 1 . .
GIGiT L\Vyr, ifa<p

Proof. From Lemmas A.3, A.4, and C.1, Assumption 4.2, and the normalization condi-
tion L) L1/N = 1, we have

(Hyvr| = ||GaGars InVich | < lGaGall [Tl 24| [Vick.

-0, (1) 0, ()0, ()0, () =0r0
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if > 8, and

Hinrl = |GG LVt < [Gica [T 2| | vt
- ()0 ()0, ()0 1) -0
if a < B.
Let D1 = DlNEI = 1. Consider the case a > 3 and let Dy = H12 NTF 22 We have
|D1 — Do| = EINL — H} NTF,;2
= % ‘ —ToHi NT + FQHLNT)/ (le —ToHi NT + F2H1,NT) - H12,NTF/2F2
< % H (il — FQHLNT)/ (f/1 — FQHLNT) +2 ’HLNTFIQ (I~/1 — FQHLNT) H
- 2% ‘HLNTF’Q (L —FQHLNT)‘ [1+0,(1)] = 0, (T77),
since
'(il - F2H1,NT>/ (fll - F2H1,NT> < ‘ L - F/ng,NTH HE1 - F2H1,NTH =0y (NTQ(ﬁ_O‘)) ,
2 ’Hl,NTFIQ (il - P2H1,NT>’ < 2|Hynr| || TS| HLI 'y Hy NTH = (NTﬁ_a> .
The result |[Dy — Do| = O, (T?~*) implies that ’1 — H12,NT F%Q = 0p (1). Therefore, we have
2 FZFQ —1/2

LNT N —p 1= HiNT —p Ty

1"1"1

Similarly, when o < 3, we let Dy = H? Nt 16 follows that

|D1 = Do| = E;\fl HINTF;\I;I
= % ‘ —I'nHy N7 + F1H1,NT>/ (I:1 — Iy Hynr + FIHI,NT) - H12,NTF/1F1
< % H (i1 - F1H1,NT>/ (El - F1H1,NT> +2 ‘Hl,NTrll (f,l — FlHl,NT> ”
= 2* ‘Hl NrTh (L1 ' Hy NT)‘ [1+0,(1)] =0, (Ta 5)

since

‘(Ll I'Hy NT) ([:1 - FlHl,NT>

< |

L - F/1H1,NTH Hil - F1H1,NTH =0y (NTQ(Q*B» ,
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2 ’Hl,NTrll (fll — FlHl,NT>’ < 2|Hynr| ||TY| HEI — FIHI,NTH =0y (NTO‘_/B> :

The result |[Dy — Do| = O, (T®~?) implies that ’1 - H12,NT LAY 0p (1). Therefore, we have

N

2 F/lrl —1/2
LNT 5 7P 1= HynT —p Ty

Lemma C.4 Under the alternative (2.7) and Assumptions 4.1-4.5, we have the following
explicit limits as N, T — oo,

—-1/2 .
s mo1 f a >
ang —pa i = { 2, f b : (C.9)
T ifa<f
1/2 .
s if a >
g —=pb o =4 P f b , (C.10)
Moy ' T12 zfa < B
—-1/2 .
CNT —pC 1 = 7T2_21/27T23 (L'fa > 6 . (C.11)
Ty 13 ifa<f

Proof. (1) Consider first the case o > 5. Rewrite an 1 as

N

1 ~ 1= 1 /-~ / 1

N ZLZ‘MQ,@‘ = NLQIH =N (Ll - P2H1,NT> ry+ NHl,NTF/QFl
=1

1 _ _

S HL g T + 0, (T77%) = @ 1= oy o,

since

1 /- /
~ (L, —To,H )r
‘N<1 oHy nT) Ty

- ()0, () <o (1),

= 1@~ ratn) e

and %H 1, N5 —p Hyimo1 from Lemma C.3 and Assumption 4.2. Similarly, we obtain

N
byt = ]172_: Lithii = ;,L/ Iy = Jif (le - F2H1,NT)/ Iy + %HLNTFIQFQ
- Jile vrTiT2 + O, (Tﬁ—a) o b=,
and
CNT = ;fiiﬂ)\o,i = %fzirs =N (Ll P2H1,NT>/F3 + %HLNTFIZIB
i1
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1 _
= NHLNTFIQF3 + Op (Tﬁ_a) —p C 1= 7T221/27T23.

Next, consider the case a < 8. Rewrite ay 7 as

1 /- / 1
anT — ZL 1A2; = Llfl N (Ll - FlHl,NT) '+ NHl,NTrllFl
1
= HLN DT [ 0p (D] =y = my?,

Since

- RO ()0, (v) -0, (1)

= % H (L — PlHl,NT>/H [T ]]

and %HLNTF’IFl —p Him11 from Lemma C.3 and Assumption 4.2. Similarly,

N
]. fod / ]- ¥ ! ]‘ /
bnt = N ZL 1AL = L 12 = ~ (Ll - FlHl,NT> Iy + NHLNTF1F2
1 _
= NHl NTF Iy + O (Tﬁ_a) —p b:= 71‘221/271'12,
and
1 1 - 1 /- / 1
CNT = — Z LaXo; = =LT3=— (Ll - P1Hl,NT> I's + —Hy yrI' T3
N P N N N
1 _
= NHl NTF I's + O (TﬁfOZ) —p CI= 71'111/271'13,

giving the required results. m

Lemma C.5 Under the alternative (2.7) and Assumptions 4.1, 4.2(2), 4.3, 4.4, and 4.5,

when 11 € [0, 7] and 1o € (Te, T¢|, we have

T Ts
Sii=b 3 freili+o, (1] =0y (125

t_Tl t=Te+1
Ts
o 2(To—T,
®) Z G =0 D faall+o, ()] =0, <T2 pr )> ;
t= T1 t=Te+1
ydi &
1 a 2(Tx—T,
(c) Z Abife1 = b : DO flallto,()]=0, (T e )> ;
t=T1 t:Te+1
T d Ty
U 2(To—T,
@) Y AF=tSL S i+, =0, (pT( 2 )) ;
t=T1 t=T.+1
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Ts
)Y Aj = bt 3 i+ o0 =0, (7o 7).

t=T t=T.+1

Proof. (a) From Lemma 4.4, we can rewrite EtTiTl Jt—1 as

Zyt 1=bnr Z Ji— 1+CNTZfOt 1+ ZLu Zeztl

t=T t=Te+1 t=T1 t=T,
By Cauchy-Schwarz

2y 1/2

Ty Ty

Y 1/2 1N~21/21N .
N;Lil Zeit—l <TY (N;Lil> NZ T1/2Z€”1 ZOp<T/>,

t=T1 =1 t=T,

Using Lemma 4.4, A.3, and Lemma C.4 we know that

T T>
S Ga=b > fua+0, (T92) =0, (THpf ). (C.12)
t=T1 t=Te+1

Zytl Zyt1+ Z Uiy

t=T1 t=T1 t=T.+1

The first term

T. LN 2
Zyt 1 = Z (CNTfOt 1 Nz::L1€z't—1)

t=T1 t=T,

15 N 2
1 ~
= A ng,tfl + <N2Lileit—1> +2enr— ZLzl Zf()t 1€it—1
t=T, i=1 t=T
Ts
= A D e | [M+0,(1)] =0, (T?).
t=T1
The second term
T 1 N ~ 2
Z Ji= Y, (bN,Tf1,t1+CN,Tfo,t 1 NZL 1€it— 1>
t=Te+1 t=To+1 i1
P 1> T 1 ~ 2
= bz ( Z f12,t—1> +cXr ( Z f(?,t—l) + (NZLileitl>
t=Te+1 t=To+1 t=To+1 i=1
Ts 1 N B To 1 N ~
+2bnrenT ( Z fl,tlfO,tl) +2bN,TNZLi1 Z fii—1€it— 1) +20NTNZL 1 (
t=Te+1 i=1 t=Te+1 i=1

50



T2Qp§_‘(TQ 7TT)) .

T
— b2 Z f12,t71 + Op (T(1+3a)/2p; T’r) — Op (
t=T.+1
using Lemma 4.4 and A.3. Therefore, the second term dominates and

Ts T>
DG =t Y SRl o, (0] = 0, (T2 ). (C.13)

t=T, t=T.+1

(c) Similarly,

T> Te P
S OAGG =Y Abdiat+ Y, A

t=T1 t=T1 t=Te+1
The first term
Te Te 1 N N 1 N -
> AGGa = ) (CN,TUOJ ty > LilAeit> (CN,TfOJ—l +5 > Lileit—1>
t=T1 t=T7 =1 =
T, N
= CNTZUOtht 1+CNTZUOt< Z 1€it1>
t=T1, t=T1 1=
T, | X T [ N | X
+enT Z fot—1 (N Z LﬂA@it) Z (N Z LilAez‘t> (N Z Lileit1>
=T i— =T, i—1 i—1
= Op (T)
since 3 1% o fou—1 = Op (T), o, oy = Op (TY?), £ 32N Litey—1 = O, (1), and
T, N N 1/2 T, 2 12
< 1 ~ 1 ~ 1 1 <&
Z fO,tflﬁ Z LijAey—1 < <N Z Lﬂ) N Z T Z Jot—10ei—1 =0, (T)
i—1 i1 i=1 =T

t=T4

The second term

T
> Ajidi
t=Tot1
T N

(bNT (pr — 1) fi—1 + by UL + enTU0s + N Z LilAeit)

- Z i=1

t=Tet1
1L
<bN,Tf1,t—1 +enrfoi-1+ N Z Lileit—1>

Ts
=y (or—1) Y flea+bvrens(pr—=1) D fie-ifor
b=Tot1

t=Tot+1
1 N Ts T
= 2
Ly E Jit—1€i—1 | + oy E fra—1uig

+onr(pr —1) >
(=Te41

i=1 t=To+1
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Ty

+bvrens Y foruig b Z U1t~ ZLlezt 1

t=To+1 t=To+1
T T N T
tbvrens > uorfiioi+ g Y. uofor-1+eng (NZL ) ( > UO,teitl)
t=To+1 t=To+1 =1 t=To+1
LN T N T
+bnT (N ZLH) Z fri—1Qei | +cenT <N ZL [ Z fO,tlAeit]
i=1 t=Te+1 i=1 t=Te+1
T | X L
+ Z (N Z Lz’lA@it) (N Z Lileit—1> (C.14)
t=Te+1 =1 i=1
Ty
) 3 a0 (IO <0, (AP T) . (e
t=To+1
using Lemma 4.4 and A.3. Therefore, we have
T2 d T2
o 1 2ATo—T,
> AR =Vt Y i lto, ()] =0, (T2 ) ()
t=T1 t=Te+1
(d) The quantity
e Te 1>
D AT = A DL A
t=T1 t=T1 t=Te+1
The first term
T. T. A 2
doAg = > [CN,TUO,t ty > Lix (e — eit—l)]
t=T1 t=T =1
T /1 N 2 T. A
= Ar Z ug; + Z (N ZLil (et — 6it1)> + 2cen,r Z up,t (N ZLil (et — eitl))
t=T, t=T1 =1 t=T1 =1
= Op(T).
The second term
Ts T T 1 N ) 2
Y AT = |bnr (fre— fue) + enruog + N > L (e — 6¢t1)]
t=Tc+1 t=Ty L i=1
T d LN 2
= Z bNTﬁflt 1+ bN ULy + eN U0t + N ZL (eit — €i— 1)]
t=T7 L i=1
b2 di 2 i
NTT2a p ;1 e +tZT: bnrure + enuos + ZLu (eit — eit—1)
e 1

d &
—i—?bNTT Z fie—1
t=Tot1

N
by Ut + enTUOE + g Li1 (eit — ej— 1)]
7,—1
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Ty

S S0, (1) <0, (447,
t=Te+1

using Lemmas 4.4 and A.3. Therefore, the second term dominates and

& d2 & To-T,
SoAF=vL S 4o, (1] =0, ().
t=T1 tTe+1

(e) The quantity

Ts Te T>
Z Ay = Z Ay + Z At

t=T1 t=T1 t=Te+1
The first term
Te Te 1 N ~
A = > |ena (for— for1) + N > L (e — eit—l)]
t=T1 t=T1 i=1
To N Te
= CN,T Z ug¢ + N Z (eirt — ei—1) = Oy (T1/2) .
t=T1 =1 t=
The second term
Ts T N T
S Aje= > b (fie— fre-1) + e (for — for-1) Z Z (eit — €it—1) |
t=Te+1 t=Te+1 =1 1=
N T
_bNT* Z fii—1 +bnT Z Ut + N Z ugt + NZL Z eit —
t=Te+1 t=Te+1 t=Te+1 i=1 t=T.+
Z fra1+ 0, (TV2) = 0, (T2 7)),
t=Te+1

from Lemma A.3. Therefore, the second term dominates, giving

T>
ZAyt—b* Z i1 [T +0p ()] =0y (TQ/QP%_TT>'

t=T1 t=Te+1

Lemma C.6 Under the alternative (2.7) with Assumptions 4.1, 4.2 (2), 4.3, 4.4, and 4.5,

when 11 € [0, 7] and 1o € (7., T] we have

i - bthiTeH fiem1l+0,(1)] =0, (T3°‘/2p%_TT> if a > f8
Yt—1 = _ ) ;
=T} aZtTiTle foi-1[1+0p(1)] =0y (Ta/%ﬂp% TT) if a < B
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107 C_TT‘ .
y S, =] VT R o (=0, (12257 0)  ifasp
t—1 —

atB 2AT—=T)\ - ;
=3 @Y ey [ 0, (D] = O, (T35 ™) ifa <
Ty Te T
vy d [e% T.—Tr
> Ajij1 = Z flioi—a *2 Y. | ll+0,()] =0, (T 7 ))v
=T, S ST t:Tc+1
ap 2AT.—T,
) iAgﬁ_ T2B >l o1 faio1 [L+0p (1)] = Op (T*F T( )) ifa>p
t 3 c T
b2jfl2a2t o1 [ L+ 0p (D] = Oy ?r(T T)> ifa<p

Te dl T dg T
€)Y A= |bry D fui—agg D fa

t=T1 t=Te+1 t=T.+1

[1+ 0, (1] = O (T*/2pf ™).

Proof. (a) We can rewrite ZETI Ui—1 as

T T, 1 X
Z Y1 = Z (aN,Tglt + bn,rg20 + eNT g3 + N Z Lileit>

t=T1 t=T, =1
T T. T. 1 N T
=anT E fop—1+ |bnT E fii—1+enr E fo—1+ N E L E €it—1
(=Tt 1 {=Tot1 =T, i—1 =T,

~0, (Ta/zw pgc—ﬂ) Lo, (T3a/2 p:;c—Tr)

bZtTCTeH fizm1[1+0,(1)] =0, (TSa/2 TC—T,«) ifo> 3
0 2 P [+ 0, (1] = Oy (TQ/H%TC TT) ifa<B

from Lemma C.5(a) and Lemma A.4.

(b) The quantity

T T. T, T
Z iy = Z i1+ Z i1 + Z i1

t=T1 t=T1 t=Te.+1 t=T.+1

From Lemma C.5, the first and second terms are

S e Y =B Y feiliea0)=0, ().

t=T t=Te+1 t=Te+1

The third term

T 1 N ~ 2
Z o= Y (aN,TfZ,t—1+NZLileit>

t=Tc+1 t=T.+1 =1
Ty L 2 Ty LN
= aNT E f2t 1+ E N E Liteir | +2anT § fo—1 N E Liieg
t=Tot1 t=Tot1 i=1 =Tt 1 i—1



15
= d Z f22,t71 1+0,(1)] =0, (Ta+ﬁp§(Tc7Tr)> '

t=T,+1
Therefore,

S, 2| PELnn e o =0, (720 ™) it g
t—1 — T . .
=T @2 fea (L0, (1)] = Oy (TO‘+BP2T(T b )) if <

(c) We have
To Te Te T
ST A =Y A+ > A+ Y At
t=T, t=T1 t=Te+1 t=T.+1
From Lemma C.5(c),
2T.~T,
ZAytyt 1+ Z Agiegi—1 = b (pr — 1) Z flisill+op ()] = Op<TaPT( )>-
=Ty t=T.+1 t=Te+1
The third term

T i LN L
> A=) [aN,T (o1 — 1) fou—1 + anruzs + N > Li1A€it] (GN,sz,tl N > Lileit1>

t=T.+1 t=T.+1 =1 =1

N T
_ 1 -
:—aNngT E f2t 1+aNT E fot—1u2t +anT Ng L g far—10e
1

t=T.+1 t=T.+1 =1 t=T.+

N
E Liieit—1
i=1

=i

T N T
—an7do TP Z fot-1 <NZ 1€z‘t—1>+aN,T Z Uzt

t=T.+1 t=Tc+1

Loy N N
+ Z NZLilA@it( ZLzlezt 1>

t=Te+1 " i=1

Ts
_ a 2(Tc—T:
= 2T S [ op (1) = 0 (T2,
t=T.+1

using results from Lemmas 4.4 and A.4. Therefore,

T T. T,
ZA?JtQt—lz v*d, T~ Z fli —a*doT™P Z f2i

t=T1 t=Te+1 t=T.+1

[1+0p,(1)] =0y (TQP?TC7TT)) .
(d) The quantity

T T, T, P
MAG=Y AT+ Y AT+ Y A
t=1

t=T t=Te+1 t=T.+1
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From Lemma C.5(d), we have

S Y Aj = 1 S Fal a0 =0, (o2 ™).

t=T1 t=Te+1 t=Te+1

The third term

2 T N 2
Z Af} = Z [aNT(¢T —1) fag-1 +anzuzs + NZLzlAezt]
1=To+1 t=T.+1 —1
N Ty
L GRS WIE S (5 w27 A) b2 (61— 1) 3D v
1=To+1 t=To+1 -1 1=To+1
Ts To 1 N _ To 1 N ~
takr Y ui;+2nr(or—1) Y far (N ZLilAeit> +2any Y uzg (N ZLz’lAeit>
t=To+1 t=To+1 i=1 1=To+1 i=1
_3 2ATo—T,
a® (7 — 1) Z 2 [40,(1)] =0, (Ta 8 )>,
t=Tot1
using Lemmas 4.4 and A.4. Therefore,
d3 _3 2ATe—T))\ -
Sag_| o S B L+ 0, (1] = 0 (127901 ) it a > 8
- d2 2(Te—Tr . :
B Yt S L0, W] = 0, (7)) ifa<B

(e) The quantity

ZAyt ZAyt—l- Z Ay, + Z Agy.

t=T, t=T, t=T.+1 t=T.+1
From Lemma C.5(e),

T T, T,
Z Ay + Z Ag=b(pr—1) Z frici[l40,(1)] =0, (Ta/2p:%_n.> '

t=T1 t=Te+1 t=Te+1

The third term

2 T N
- 1 ~
> Aj= > lang (¢r — 1) for1 +anguze + N Z LijAej
t=T.+1 t=T.+1 =1

=an;r (¢ — 1) Z fap—1+anT Z Uzt + ZLu Z Aej

t=Tc+1 t=Tc+1 t=T.+1
Gr-1 > Bl +o,)]=0, (727205 ")
t=T.+1
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from Lemma A.4. Therefore,

T T T
D AG=(blpr—1) > fuataler—1) > faa|[l+0,(1)] =0, (TQ/QP?_T*) :
=Ty t=Tot+1 =Tt 1

Lemma C.7 Under the alternative (2.7) and with Assumptions 4.1, 4.2 (2), 4.3, 4.4, and

4.5, when 11,12 € (7¢,T| we have

T T
dhii=a) fara[l+0,(1)] =0, (Ta/2+ﬁp§1€c—Tr) :

t*Tl t*Tl
ey Te—Tr
B S —a S sl + 0, (1) = O (TP ")
t=T, t=T,
T>
~ ~ (6% 2 TC_T’V'
(©) S A1 = —a —Zfzt L+ 0, (1] = 0, (125771 s
t=T1 t=T
T d2 P
a—pB 2T.—T:
(@) DA =72 3 B [1+ 0, (1) = 0, (T pi 1)
t= t=T1
Tc d T2
~ 2 (o3 c—4r
(e) Z Ay = —A7g Z for—1[14+0,(1)] =0, (T /2p§ B ) .
t=T1 t=T1

Proof. (a) We can rewrite Z?iTI Ui—1 as

T Ty 1 N
Z Y1 = Z <aN,Tglt + bn,rg2c + eNTg3e + N Z Lz’l%)

=T =T i=1
T
= anr Z fo—1+ = ZL“ > i
=T =T
Ts
= a Z for-1[1+0,(1)] =0 (Ta/2+5pTc TT) ,
=T
from Lemma A.4. (b) The quantity
T 1N 2
Z Y1 = Z (aN,sz,t—l tw ZL’l%)
=T =T =1
LN 2 T LN
= ddr Z fii1+ Z (N ZLi1€¢t> + 2an,T Z fa—1 (N ZLileit)
t=T =T —1 =T i=1



T
= d®) fi,al+0,(1)] =0, (Ta+,8p2T(TC—TT)) .

t=T,
Therefore,
T T
- 2(Te—Tr
S i =a? S S L0, (1) = 0 (T3 ).
t=T1 t=T1
(c) We have
T Ty 1 N 1 N
Z Ay = Z [aN,T (o1 — 1) for—1 +anrugs + N Z L Aegy (CLN Tfoi-1 + N Z Lileit—1>
t=T1 t=T1 =1 i=1
Ty T
= —adrds TP Y [ q+akg ) fouruzs +anr ZLzl Z fop—10ei
t=T, t=T1 t=T1
T LN T ) i
—anrde TP tZT fat-1 (N Z Lileit—1> +anr tZT Uzt (N ; Lileit—1>
=11 =1 =11 =

+Z ZLﬂAen (i leitl)

t= T1 =1 =1

Ts
= —a?dy 7" Z f22,t—1 140, (1)] = Oy (Tap2T(TC7TT)> ;
t=T1,

using results from Lemmas 4.4 and A.4.

(d) The quantity

T T 1 N
Mo AT =" ang (b1 —1) far1 +anrus + N > LiAey
t=T1 t=T, =1
o N 2 T
= axr (67— 1) Z foiit ), <N ZLnAeit> +2a% 7 (o —1) Y far1uay
t=T1 t=T, i=1 t*Tl
T3 Ty 1 N
+akr Y by +2anT (dr —1) Y foi ( Z L11A61t> + 2an,T Z Uz, (N > LilA%)
t=T, t=T, t=T, =1

1P Y s+ oy ()] - 0, (1272071,
t=T

using Lemmas4.4 and A 4.
(e) The quantity

T2 T 1 N
S TAG =" lang (¢r — 1) for1 +anruge + N Z LiAeq
t=T1 t=T, =1
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=an,r (¢7 — 1) Zf2t1+aNTZU2t+ ZLHZA%

t=T, t=T, t=T,

(¢r —1) Z Fort (U0, (1] = 0, (T2p5 T,
t=T1

from Lemma A.4. m

Proof of Theorem 4.5

Proof. The OLS estimator

~
Yri,m2 =

T ~ T ~ T~
Tw Ztiﬂ AGefr—1 — ZtiTl Ay ZtiTl Yt—1
5 .
T - Ty~
Tw i2n, Ui — (Ztin ytfl)

The denominator is
2

1> T> T>
_ _ 30 2(To—T: 2ATo—T,
T, Z 7 - Z g | =T Z 2,140, (TdapT( 2 )) -0, (T1+2apT( b )) .

t=T1 t=T1 t=Te+1
(C.17)

since ZZETI Ui = Op <T 2O‘p?r(T27TT)> and ZtTiTl -1 = O, (T3°‘/ 2p§2_TT) from Lemma

C.5. The numerator is

2
T ZAytyt 1_ZAytZyt 1= b2 =T Z fi b2 (Z Jri- 1) [1+0p (1],

t=T1 t=T, t=T, t=Te+1 t=Te+1
(C.18)
since
To—T;
3 A — 0o LS e =0, (7257,
t=T1 t To+1
and
2
ZAytZyt 1= b2 ( Z Ji— 1) [1+0p(1)] =0y (TQQP;(TQ_TT)> )
t=Te+1
from Lemma C.5. Therefore,
2
T
. b2 S &L Zt Te+1 f12,t—1 - 52% (ZtiTeH fl,t%)
Y2 = 5 1o 9 [1 +op (1)]
Towb Zt:Te—f—l fl,tfl
2
d1 T2
d To (Zt—TF_H fl,t—l)
= ng - —— 1+ 0, (1)] (C.19)
Ty Zt Te+1 fl,t—l
= ﬁ + Op (T ) .
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Next, we derive the order of magnitude of 371772. By definition we have

. (Z?in 53—1) (ZtTiTl Aﬂt) - (E;‘Fiﬂ AQtQt—l) (ZtTiTl Z?t—l)

- 2
T ~ T ~
Tw ZtiTl thfl - (ZtiTl ?thl)

T1,72 T

The numerator is

7 i 7
Z Y1 Z Age | — Z Agiije—1 Z Yt—1

t=T, t=T, t=T} =Ty
T T 1M g &
= [62< Z f127t_1> +2bC< Z f1,t1f0,t1> + O, (TQPEFTTTT)) [ Tl Z fii-1+ 0O, (TI/Z)
t—TF+1 t—Te—i-l | t=To+1
R
Z o 1—|—bc Z Jr=1fo,t—1 + Op < apil> _TT))] b Z Jii-1+0p (T3/2)
S Th t=To+1 | t=T.+1
T>
=bc— ( Z fri-1fo— 1> ( > fl,t—l) + Op (TO‘H/zP;_Tr)
t=To+1 t=To+1
—_ O (T2a+fp2(T2 Tr)) ,
using Lemma 4.5. Therefore,
Ormy = Vet <Zt 7.1 /1100 H) (ZtTiTeH f”‘l) O (TQJFI/Q’)?TT) =0, (T—1/2) .

2To—T
Twb? Et “To41 f12,t—1+0p (TSQPT( ’ ))

Next, we obtain the order of Z?zl (Agt — 37.1772 — %hmﬂt,l). The quantity can be written
as

Ty . 9 T . Ty
Z (A?jt — Oy my — /P?Tl,ngt—1> = Z (Age — /'7\71,7'2%—1) +Tw 671,7-2 207,75 Z (Ayt 77'1,7'2% 1)-
t=T1 t=T1 t=T,

Consider the term

p Te Ts
> (AG = Frmbi-1) =D (A= Fnmbi-1)? + D (DG —Fn mii-1)”. (C.20)
t=T} t=T1 t=Te+1

N ~ —~ N ~ . .
Let {0t = enruos + % >oimq LinAey — %1772% > ieq Lireir—1. The first term in (C.20) is

T. T. L L 2
Z (Afe =V mofit—1)” = Z <_CN,T:7\71,7—2f0,t—1 tenruot + o Z LiAeir — WTMQN Z Lileit—1>
t=T1 t=T, =1 =1

Te

e
~ 2 2 ~2 2 2 -~
=Y (—enaTnmboi1 +€00)* = (NaV mfou 1 + & — 26817 7 fo—160t)
t=T1 t=T1
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= Xrin T2 Z fo t—1 T Z & — 2eNTm m Z Jot—180t = (max {Tz(l_o‘), T}) .

t=T1

Let &1p = byrurs +enruos+ 5 Son ) Liveir — (143 m) & Soiy Lirei—1. The second term
n (C.20) is

Ty T

Y (A —Anmii1)’ = Y byr(pr —1=Fnm) fri1 — Fnmen o + &ul’
t=Te+1 t=Te+1

T> Ts T
2 = 2 2 2 ~2 2 2
=bynr (pr —1—=Fr 7,) Z fii-1 + NIV T Z Jog1+ Z St

t:Te+1 t:Te+1 t:Te+1
P
—2nrenT (o1 = 1= Anm) Vi D, Fra-1for
t=Te+1
T> To
+ 2bN,T (pT -1- ;?7177'2) E fl,t—lé‘lt - 2CN7T§7'1,T2 E fO,t—lflt
t:Te+1 t=T5+1

Ty
~ 2 To—T,
= b? (pr —1— ’77'1,72) Z f12,t71 + Op(pT2 )
t=Tot1

_ 2 d? (Z?T +1 flnf—1>4

2
= 12 Zt Tot1 f12,t71
—2 2(Tx-T,
_ Op (TQOc 2pT( 2— )) )

Ta <Zt Te+1 flat—l)z [

. 140y (1)] = O, (T™1) using results in (C.19).
Tw Zt:Te+1 Iii-1

since pr — 1 — 7 m =

Therefore,
T2 T2
~ ~ ~ 2 ~ ~ ~ 2
Z (AGt = rm¥t-1)" = Z (AGt = Yri,rt—1)" [1 + 0p (1)]
t=T, t=Te+1
&2 <2T2 Jit 1)4
t=To+1 J1,t— 3
= ol Lo, (ca
Ty Zt To+1 fii-1
—_ Op (TQa—Qp?r(T2 T’r)) )
Moreover,
T>
207, Z (AGt = Yry mGt—1)
t=T1
T. T>
= 25T1,T2 Z (Agt - an,mgt—l) + Z (Agt - :Y\Tlﬂ'th—l)
t=T1 t=Te+1
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Te Te T
=207 7, | —CN.TVr1 72 Z fop—1+ Z ot + O (pr — 1 — A7 70) Z fi-1
t=T1 t=T t=T.+1

T To
~Ar1 7 CN,T E foi—1+ E ST

t=Te+1 t=Te+1
T
= 257'1,7'2bN,T (pT -1- ;7\7'1,72) Z fl,tfl [1 + Op (1)] = Op <T3(a_1)/2p£27TT> .
t=Te+1

Since T,,02 ., = O, (1),

T1,T2

1> Ty

Z (Agt - STl,Tz - aTl,ngt—l)Q = Z (Agt - :V\Tl,ngt—l)Q [1 + Op (1)]

t=T t=Ty

4
Ts
a2 (241 fiea
- b2 T21a <2 Ty 2 > [1 + Op (1)] (022)
Tw Zt:Te+1 fl,t—l

= 0, (172 ).

Using results from (C.17), (C.18), and (C.22), the DF statistic is
T T 2 1/2
T ZtiTl yt271 - (ZtiTl yt—l)
T _ g ~ - 2
Zt:Tl (Ayt - 57’1,7’2 - ’YTl,szt—l)
T 32027, A1 = 02 MG 32, G
T T 2] Rl : 21172
[Tw ZtiTl th—l - (ZtiTI gtfl) } [ZtiTl (Agt - 57'1,7'2 - /7\71 ,‘rzgt—1) ]

2
T: T:
VAT S 1 fRaes — P (2P frin)
- 1+ 0p(1)]

T 471/2
T b2 ZT2 f2 1/2 b2ﬁ (ZtiTe+1 fl,tfl)
w t:Te+1 l,t—l T2 T2 ZT2

2
t=Tet1 J1e—1

~
DFrr, = Vnm

2
T 2 T
Tw ZtiTE—H fl,t—l - (ZtiTe-i-l fl,tfl)

Ty 2
Zt:Te-i-l fl,t—l
T 2
T3/2 ZtiTe—H fl,tfl
w T
Zt:TE—H fl,t—l

T1/2

w

[1+0p (1)]

5 [1+0p(1)].

From the proof of Lemma A.3 (3) and (4), we have ZgTeH fii—1= %;lferQ [1+o0p(1)] and
ZtTiTEH f127t—1 = Wl_lfiTQ [1+0p (1)]. It follows that

1 —
DFTI,TZZ T3/27a§d1r3)/2 [1 + op (1)] = Op (T3/2 ) .
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C.1 Proof of Theorem 4.6

Proof. (1) Consider the case & > . The OLS estimator

~
Vi =

T ~ T ~ T ~
T ZtiTl AYige—1 — ZtiTl Agy Ztin Yt—1
3 .
Ty -~ Ty~
Tw i2n i1 — (ZtiTl yt—l)

(C.23)

The denominator

2

Ty Ty Te
- - 2(Te—T 2(Te~T
Tw Z i1 Z g1 | = Twb? Z f12,t—1 +0p (Tga/):r( )> =0p <T1+2aPT( )> )

t=T1 t=T1 t=Te+1

since ZtTiTl Ui = Oy <T Q‘Xp?F(TfTT)) and ZtTiTl -1 = O, <T3°‘/ Qp%_TT) from Lemma
C.6. The numerator is

T2 TQ
Ty ZAytyt 1= > AR Y G =T ZAytyt 40, (TQO‘ 2(T.— m)
t=T} t=T1 t=Ty =T,
d2 2ATo—T;
- T Z flt - a’ 75 Lw Z f2t 1| TO0p (Tza ( )>7
t=Te+1 t=Te+1

from Lemma C.6. Therefore,
2To—T
VAT S, 1 [ — T Sy fRia| + O (T2 1)
AND S 240, (T3a 2NToT, ))

d 2 4y Y12 3.
_ 71_17221‘/ TC+1f2,t 1 +Op (Tﬁl).

2
T= b* 19 Zt =Te+1 f12,t—1

Moreover, from the proof of Lemma A.3(4) and A.4(4), we have

~
V71,72

2 Ta 2(T0*Tr)

— 7B« @ FQ%C

P, [1+0p (1) w< ﬂmm+mﬁ_ da (1, + No)*

1 g2 1
Zt 141 S5 _ 1*¢%f27Tc [1+0p (1)] -
Zt =Te+1 f12,t71

with N, ~ N (0 ) since fo 1. = I3 CTO‘/ 2pLe—Tr by virtue of the initial conditions and

fir,

TQ/Q[)TC—TT = FI’T + NC
T
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from the proof of Lemma A.3(1). Thus,

% B dl CL d2 Zt Te+1 f22,t71 [1 +o (1)] N ﬂ a2 F227c -0 (T_a)
T1,72 — P - 772 - P °
v T TP t ‘T fie T= 0% (Fip + Ne)
Next, we derive the order of magnitude of 371772. By definition, we have
- T: - T: oy T~
. (Ztiﬂ ytz—l) (ZtiTl Ayt) - (ZtiTl Ayt@/H) (EtiTl yt—l)
T T T 2 oo~ \? '
Ty ZtiTl Y1 — <ZtiT1 yt—l)
The numerator is
Ts T T>
Z Yi1 Z Age | — Z AGre— Z Yi—1
t=T1 t=T1, t=T1 t=T1
T d Te T
1
= (b2 > fit_1> ! S fea- 5 S fora| 40, (1)
t=Te+1 t=Te+1 t=Te+1
d T. d Ty T
ap 2
Z flt 1 2 Z f30- 1] (b Z fl,tl) (14 0p (1)]
i Te+1 t Te+1 t=Te+1
= ab— —b Z fai—1 Z ffioi+a Z f3i Z Jra—1| [L+o0p(1)]
t=Te+1 t=Te+1 t=Te+1 t=Te+1

- 0, <T5a/2 3(Te Tr)).

Therefore,

d T T. T T
A abT—% {—b Ztiml f2,t—1 Zt:TeJ,-l f12,t71 +a ZtiTc-H f22,t71 Zt:Te—H fl,t—l]
6‘1‘177’2 = T D) [1 +0p (1)]
Twb? 32l 41 i

Z f2t 1_'_(1215 TC+1f2t 1215 Te+1f1t 1] [1+0p(1)]

t=T.+1 b Zt Te+1 fl,tfl
= 0, (Ta/g_lp%_T*) .

dgl

R 2
The sum of squared errors ZtTiTl (Aﬂt —Ory i — 'Ayfwz gjt,l) can be rewritten as

Ty A 9 Ts A Ts
S (= brms = A i) = D (AT = Ay i) T8, =260 D (A= A1)
t=T1 t=T, t=T1
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The quantity

T2 Te Tc T2
ST (AG = Ay 1)t = > (AT = A B-) Y (AT = A Ge) Y (AT =, Te1)”
t=T1 t=T1 t=Te+1 t=T.+1

(C.24)
When a > 8, ¢r — 1 = 7, = Op (T7F) and pr — 1 — 5, -, = Op (T™%). The first term in
(C.24) is

i (Ag — ﬁﬁ,mg]t,l)Q =0, (max {T2(1—a),T}) ,
=T

as in the proof of Theorem 4.5. The second term in (C.24) is

T. Te
~ ~ ~ 2 ~ ~ 2
S (A= Anmbi1)’ = Y e (pr = 1= Anm) frat — Vnmenafoi-1 + &l
t=To+1 t=Tot1
T Te T
2 ~ 2 2 2 ~2 2 2
= byr(pr—1—9n ) E fie-1 + NIV 7 Z Jou-1+ Z ST’
t=To+1 t=Tot+1 t=To+1
Tec
—2bn 7N (pr = 1= Vi) Amms > fri-1fos
t=Tot1
T T
287 (pr — 1= Anm) D fra-1éu —2en19mm O for1i
t=To+1 t=Tot1

= b2<pT_1_¢Y\T1,T2 Z flt 1+O 1 a)/z T2 TT)
t=Te+1

2
T:
(14 d% (ZtETc_j,_l f22,t71> [1+ (1)}
= —_— Op
T g fhe

= Op (pzT(Tc TT))’

Let & = an,Tu2t + % Zfil f/ﬂeit - (]_ + ’A}/) % Zi\il [Nzileitfl. The third term in (024) is

TQ T2
S (AG =)= D lana (¢ —1—4) far1 + o)’
t=Tot1 t=Tot1
= aXr(dr—1-7%) Z faioa+ Z &+ 2an7 (¢ — 1 — %) Z fa-18at
t=Te+1 t=Te+1 t=Te+1

T
= a(¢pp—1-— ’3’)2 Z f22,t71 [1+0,(1)]

t=Tc.+1
d3 & 2AT.—T,)
= @5 > Bl o, ()] =0, (1070
t=Tc+1
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since o7 — 1 —4 = (¢r — 1) [1 + 0, (1)] when a > 5. Therefore, the third term dominates

and hence

Ts . R 3 9 2 d2 T - o(To—T))

> (A%~ A i)’ = S B+ op (1) = 0, (T2 P07 1).

t=T1 t T.+1

Since T 521 n=0p (T"‘_poT(TfTT)) and

T>

20713 Z (ATt = sy 2y Ti-1)
t=T1
[ Te Te 2

= 2mm | > (A=A i)+ Y (AG =, 1)+ Y (DG — A, ., 01)

| =T} t=Te+1 t=Te+1

T. T. T. T.
= 20n.1 | —CNTVrm Z Jot—1+ Z ot +on (o7 — 1 =1y 1y) Z fit-1 =Y meNT Z Jot—1

I =T =T t=Tet1 t=To+1
T. T T
SN a1 Y Bt Y gzt]
t=Tet1 t=Tot1 =Tt 1
T. T
= 20n,m [b (pr—1-— '/7\71,72) Z fri-1ta (pr —1-%) Z Jop—1 [1+ Op (1]
=Tt 1 t=Tot1
- 0, (Ta‘1p2T(TfTT)) ,
we have
T ) ) T ,
> (@t —Orima = Yoy Z7t71> = D (A% =y Te1) [T+ 0p (1)]
t=T} t=T,
d2 & 2ATe—T)
= @0 > feall+o, (1) =0, (TP ).
7 Tot1

Therefore, the DF test statistic has the following asymptotic behavior

1/2

2
T -
T Y120, 071 — (Ztim yt—l)

Ty ~ N ~ ~ 2

Zt:Tl (Ayt - 57'1,7'2 — T ,sztq)

T ~ ~ T ~ T ~
Tw Y i 2p AUGr—1 — D120 AGe Y 27 Gi—1
T: T 2 1/2 T ~ 2 1/2
|:Tw ZtiTl thZ—l - (ZtiTl gt—l) :| [ZtiTl <Agt - 57'1,7'2 - :Y\Tl,ngt—l) :|
d
b2 a1 Zt T+1f12t 1@ TBT Zt TC+1f22t—1

= ) . ) : 1/2 ) : 1/2 [1+0P(1)]
[wa ZtéTeH fl,t—l} [ 758 Y 741 fQ,t—l}

~
DF7'1,7'2 = Tr,m

66



bd, (Et Te+1 flt 1) v B E (Et =T.+1 f22,t—1)1/2

T2 |78 (140, (1)].
ad2 1/2 b T, 1/2 p
(ZPri fBi) (g fhi)
From the proof of Lemma A.3(4) and Lemma A.4(4) , we have Y1 Tor1 fTe1 = f1 7. [1+ 0, (1)]
and ZtTiTle f227t71 = ﬁﬁfc [1+o0p,(1)]. It follows that
bdi (1-3N? fir a (P =1\ for
e T RTCE Lot [
2 \ P& 2T, b7 fir,

_ T(l OC_’_B)/QT;E}/Q <d1> <bf1,Tc _ an,TC) [1 + Op (1)]

do afor. bfirT.
o p—a+8)/2,1/2 <d1>1/2 |:b(F1,r +Nay)  aFy, ]
"o\ akbh . b(F1,+ Nay)

= 0, (T(l—a+ﬁ)/2>

since 1 — ¢% = 2% 1+o(1)], ph—1= 2% [1+o()], fir, ~ T ?pke~Tr (F1, 4+ Ny, ) from
A3(1), and for, ~ TO‘/Q,O%_T*FQ,C by assumption.

(2) Next, consider the case where a < 3. The denominator of (C.23) is

2
T

Ts
T, Z 7o Z g1 | = Tua? Z f22,t—1+op (Ta+2,3p§(Tc—Tr)) =0, (T1+a+ﬁp¥Tc—Tr)> ’

t=T1 t=T1 t=T.+1

since ZZETI G2, =0, (To”'ﬁ p?F(TfTT)> and Z?iTl Gi—1 = Oy (TO‘/ 245 p%*TT> from Lemma,

C.6. The numerator is

Ts Ts e T,
To Y MGt — D A Y G1=Tw Y Aftfe—1+ O, (Taﬂgp%m_m)
=T t=T t=T1 t=T1
d
= |Vl Z ffio —a® 2T Z 2] +0, (Ta—l—ﬁ 2(T.— Tr)>’
t=Te+1 t=Te+1

since T, Z?:l Ajiij—1 = Op <T1+api2r(Tc7Tr)) and Z?:l Ay Zle Gi_1 = Op (Toc—l—Bp?F(chTr))

from Lemma C.6. Therefore,

d d 2(T.—Tr
AT, Zt T Jri1 — @* Ty Zt 11 f5i 1+ 0p (TaJerT( ))
Twa Zt:Tc—f—l f2,t71

do b2 dy Zt =T.+ 1f1t1

= 0, (TTY).
) p
% a?Te PO T foi1

~
Yri,m2
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As before, from the proof of Lemmas A.3(4) and A.4(4), we have the ratio

T. 1
) e, mafin o (1) d
t=Tet1/it-1 _ ot ~ T2 (R, + Ny, )?

Zt =T.+1 f22,t—1 @L&,TG [1 + Op (1)] d1F22,c

since fo, = F270Ta/2p?7TT and f1,7. ~ TO‘/ngC*TT (Fi, + Ng,). It follows that

_|_d2 0 di Yilqi s [+ 0,(1)] ~ _dy b* (F1r + Nay) 0 <T_g>
e 7 " 2T s 11 /3 ' e @ e ’
Next, we derive the limit behavior of 571172. By definition, we have

T T . T . Ty o~
(X)) (S0 A0) = (S8 AR ) (X1 51
T1,72 = T 5 T 5 2 N
Ty Zt:Tl Y1 — (Zt:Tl yt—l)
The numerator is
T Ts 1>
Z Yi-1 Z Age | — Z Agigi— Z Y1
t=T, t=T, t=T1 t=T1
T g & T
= <a2 > f%,u) [ > fiai- 5 . 1| [L+0,(1)]
t=Te+1 t=Te+1 t=Te+1
g L g I T
1 2
b2 Z fe1— 2 Z f30- 1] (a Z f2,t—l> [1+0p (1)]
o Te—i—l t Tet+1 t—Tc—i-l
= ab— Z fEi Z fig—1—0 Z fia Z fag—1 | [1+0p(1)]
t=Te+1 t=Te+1 t=Te+1 t=Te+1
— Op <T3a/2+ﬂp§—‘(Tc*Tr)> .
Therefore,
d Te Te T:
. abps |a [ >z SRR LTI D Dri iRl iR ISRl Srit SR ER AR it f2,t—1]
T, T2 T 5 1% B [1 +0p (1)]
Twa? ) 27 1 f511
Tc Tec T
di |1 b it i1 f12t 1 2t f21
= brg |7 > fia—- : [1+0,(1)]
Wt=T,+1 T Zt =T.+1 f2,t—1

- 0, (Ta/Qflpgc*Tr> _
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. 2
The sum of squared errors Z;‘ETI <Aﬂt — Orima = Vryir th—1> can be rewritten as

Ts R 2 To . Ts
Z (gt - 67—1’7—2 N ﬁlﬁf?gt_l) - Z (Agt o %1,72575—1) +Tw 571 T2 5717T2 Z (Agt - 'AYTI,TZ gt—l) .
t=T t=T t=T
The quantity

Ts ) Te ) T, )

Z (ATt =4y, 2y Te-1)” = Z (AG: — Ay, Ly Ti1)” + Z (AGt = A,y 1y Ti-1)

t=T4 t=T1 t=Te+1

Ty ,
+ 3 (A=A, i) (C.25)
t=T.+1

When a < 8, o7 =1 —4 =0, (TF) and pr — 1 =3, r, = 2 [1 + 0, (1)] = O, (T™%). The
first term in (C.25) is

i (AGt — A maf-1)* = O (max {T2(1*a)7T}) 7
=T}

as in the proof of Theorem 4.5. The second term in (C.25) is

T. 7.
Z (Agt - aﬁ,mﬂt—l)Q = v (PT —1- ;Y\n,Tz)Q Z f12,t—1 [1 +op (1)]
t=Te+1 t=Te+1
B &
Te—Tr
= Vo > o, (1] =0, (1)
t=Te+1
and the third term is
1>
ST (AR = G- 1-3F > Faall o] =0, (72271
t=T.+1 t=T.+1

Since a < 3, the second term dominates and hence

I d3 e 2To—T)
Z (Agt—;ﬁl@gt 1 _bZTM Z flt 11+0,(1)] =0y (pT ‘ r)'
t=T, t=Te+1

Since T, 57'1 T2 T OP (Ta_lp?F(T67TT)) and
T

257’1,7'2 Z (Agt - '3/7-17 Tthfl)
t=T1
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Te T
= 2571@ [b (pT —-1- aﬁf@) Z fl,t—l +a (¢T —-1- 'A}’n,fz) Z f2,t—1 [1 +0p (1)]

t=Te+1 t=T.+1
2T—T
= 0 (Ta 1p ( ))’

we have
T A 5 i )
Z (gt - 57’1,7—2 - ’:yTl,T2gt_1> = Z (Agt - &71,72 gt—l) []‘ + 017 (1)]
t=T1 t=T1
d2 & T.—T,
= AL S falte, ) =0, (A7)
t=T,+1

The DF statistic

1/2

2
T: ~ T -

Ty ZtiTl Ui — (ZtiTl yt—l)
L (A bnms — Fremfiet )

Zt:Tl Yt 71,72 — V11,2 Yt—1

T ~ ~ T ~ T ~
T ZtiTl AGege—1 — ZtiTl Agy EtiTl Yt—1

[ T: T 2 1/2 T ~ 2 1/2
Tw ZtiTl gt271 - (ZtiTl gt—l) :| |:Zt2T1 (Agt - 57—1 T2 T ’yTl T2 Qt—l) :|

[PAT, ST e~ T S B

~
DFT1,7’2 = Tr,m

- — o)
T a Zt Te+1 f3 t—l} [ o Zt Te+1 fl,t—l]
1/2 1/2
Zt Te+1f1t 1 ad Et TC+1f2t 1
— T&/Z e ( )1/2 _ 2 Ol B ( )1/2 [1 + Op (1)] )

a( =Tt 1 f2t 1) h (Zt T.+1 f1,t—1>

We know from the proof of Lemma A.3(4) and Lemma A.4(4) that S T 2= ﬁf%T [1+o0p,(1)]
’ T yLe
and ZtTiTCH f22,t_1 = 71,14)% f227Tc [1+o0p,(1)]. It follows that

a\ph—1 fo.  bdy 1—¢2 fi1.

1/2
_ T&/QT( B)/2 <d2> |:b fl,TC B an,Tc:| [1 +0p (1)]

DF7'1>7'2 = Tul;/Q [1+0p(1)]

dy afar. bhirT
~ p+a- B)/Q 1/2 <d2>1/2 |:b(F1,r +Nd1) . (LF27C :|
dl a,F27c b (FLT + Nd1)

= 0, (T(lJra*ﬁ)/Q) 7

since 1 — ¢% = 2% 1+o)], p2—1=28 [1+0(1)], iz, ~ T ?pr T (F1, + Ny,) from
A.3(1), and for, ~ TO‘/Q,O%_TTFZC by assumption. m
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C.2 Proof of Theorem 4.7
Proof. The denominator of (C.23) is
2 -

1>
T Z Gra— | Y G | =Twa® > f5 140, (TO‘J“ZﬁpQT(TC_TT)) =0, (THO‘HBPQT(TC_TT)) ;

t=T1 t=T1 t=T1

since ZZETI G2 =0, (To”'ﬁ p?F(TfTT)> and Z?iTl -1 = Oy (TO‘/ 245 p%_TT> from Lemma,

C.7. The numerator is

Ts P Ty T,
To Y MGt — Y AR G1 = Tu Y Afd-1+ 0, (Ta+6p§<Tc—Tr>)
t=T1 t=T1 t=T1, t=T1
d L
2 ATo—T,
= ZT,gT > e+ 0y (T“+5 ( ))’
t=T1

. . 2AT.—T, _ _ 2Te—T
since T, Zle AGgi—1 = Op (T”O‘pT( )) and Z;le A Zzzl Ui—1 = Op (T“*ﬁpT( ))

from Lemma C.7. Therefore,

2 d 2 d T: T
2 Zt T f2,t—1 - (_GT%% EtiTl f2,t—1> (a ZtiTl f27t—1>
T 2
Tya? ZtiTl fz,t—1

dy  dy (ZT"TI f?,t—1>2

24
TB TB T Zt T f22,t71

= jdfﬁ+0 (T~ )zop(T—ﬂ).

~
Yr1,72

Next, we derive the limiting properties of 571@. By definition, we have

T: ~ T: ~ T: ~ o~ T ~
() (SR A0) - (S ARde ) (S0 5)
T1,T2 — T T Y B T R 3 .

w ity Ui >t U1

The numerator is

7 7 7
Z T | [ DA | = | Do Avdgea | | D G

t=T4 t=T14 t=T1 t=T1
T T 1 N ~ d2 T
= @D 20 ) fora (N ZLileit> ~arg D fog1 | [T+ 0p (1)
t=T1 t=T1 i=1 t=T

T2 d TQ 1 N T2
2 ~
Z f22,t71 - aﬁ Z f27t—1 (N Zz; Lileit> a Z f27t—1 [1 +op (1)]

t=Tc+1 t=T1 t=T
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2

Ty N
d 1 ~ .
_GQTié Z fo—1 (N ZL 1%) [1+0,(1)] =0, (Ta+,3p2T(Tc TT)> .

t=T1

Therefore,

2
N —GQd*Q Z Ja-1 lzfi f/i €;
57177_2 _ ( t=T1 t ) (N 1 il t) [1+Op (1)] :Op (T—l) ‘
Ta? Zt T f22,t71

. 2
The sum of squared errors Z;‘ETI <Agjt — Orima = Vryir ﬂt—1> can be rewritten as

15 T T

~

2 ~
S (5= = A1) = 0 (A= Ay 1) Tl =200 > (A = Aoy 1)
t=T, t=T, =T

ds (ZZZTl f2,t71>2

: s _ _dy _ 1
Since ¢ — 1 V1T 5 1, ZthTl f22,t71 Op (T ) ’
Ty Ts
Z (Agt - "3/71772@75—1)2 = a2 ((bT —-1- ’3/71772)2 Z f22,t71 [1 + Op (1)]
t=T1 t=T
& (ZT2 fou 1)4
t=T v —
0 et L+ 0p ()] = 0, (T2 ).
13 Zt N
Since T, 571 =0, (T™!) and
T2 T2
257—177—2 Z (Ayt Yri, T2yt 1) =2a ((bT —1- 771,7-2 7—177_2 Z fgt 1 1 + op (1)] Op (Ta/2+ﬁ_2pgc_Tr> 7
t=T1 t=T1
we have
T A 9 p) )
S (5= bnime = Fofi1) = D (A= A1) [+ 0, (1]
t=T1 t=T1
2 <ZT2 Jai 1)4
t=T" IR —
= a? 1 1+ 0, (1)] = 0, (ToH725371).

TQIB T2 Zt =T f22,t—1

Using these results, we find that the DF test statistic has the following asymptotic order

1/2

2
T~ Ty -~
Loy ZtiTl Ui — (ZtiTl yt—l)

L (Ajy— brm — A1)
Zt:Tl Yt T1,m2 — VY, Yt-1

~
DF7'1,7’2 = Tr,m
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T ~ ~ T ~ T ~
T ZtiTl Aytyt—l - ZtiTl Ayt ZtiTl Yt—1
2 1/2 9 1/2
T ~ T ~ T ~ 2 ~ ~
TS i - (S ) | S (80 = i)

2 do 1> 2
—a” 75Ty Y 27 f2,t71
= B : 1/2 [1 +0p (1)]

4
1/2 T2
T, a2 ZTQ f2 / a2 d3 (Zt:Tl f2’t_1>
w t=T1 J2,;t—1 T28 TE) ZTQ f22t—1
T 2
_T3/2 Zt:Tl f2,t71

t=T1
w
T:
(P, foa1)

5 [L+0p(1)]

8
We know from Lemma A.4(3) and (4) that Z?iTﬁ-l foi-1 = %fZTC [1+o0p(1)] and ZQTCH f22,t—1 _
ﬁﬁ,n [1+ 0, (1)]. It follows that

1 5 f2
_T3/2M
w728 9

dz J2,T.

2 d
~ —T3/2_57";i/252 [1+0,(1)] =0, <T3/2—ﬂ> .

140y (1] = ~T%22 (1 4 0, (1)]

DFT1,T2 = w 9Tp

D Tables and Figures

Table 1: Tier 1, 2 and 3 cities

Tier 1 Beijing, Shanghai, Guangzhou, Shenzhen

Tier 2 Changchun, Changsha, Chengdu, Chongqin, Dalian, Haikou, Hangzhou, Harbin,
Hefei, Hohhot, Jinan, Nanchang, Nanjing, Ningbo, Qingdao, Shenyang, Shiji-
azhuang, Suzhou, Tianjin, Wenzhou, Wuxi, Xi’an, Xiamen, Xining, Zhengzhou

Tier 3 Anging, Anshan, Baoding, Baotou, Bengbu, Changde, Changzhou, Chuzhou, Dan-
dong, Deyang, Dongguan, Huai’an, Huzhou, Jianyan, Jiaxing, Jieyang, Jiujiang,
Kaifeng, Langfang, Leshan, Lianyungang, Luohe, Luoyang, Luzhou, Mianyang, Nan-
chong, Nantong, Nanyang, Ningde, Qinhuang, Quanzhou, Rizhao, Shangrao, Shan-
tou, Shaoxing, Songyuan, Suqgian, Taizhou, Tangshan, Wuhu, Wuludao, Xingtai,
Xuancheng, Xuzhou, Yancheng, Yangzhou, Yichun, Yingkou, Zaozhuang, Zhangji-
akou, Zhangzhou, Zhaoqing, Zhenjiang, Zhongshan, Zhumadian
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Figure 9: The average price-to-income ratios of 89 cities in China. The vertical line indicates
the national average price-to-income ratio over the sample period.
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