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Abstract: Based on Mason’s signal flow graph analysis, an analytical model of the optical mode8

localization based on coupled ring resonators is established. The correctness of the theoretical9

model is proved by simulation. High sensitivity and common-mode rejection can be achieved10

by evaluating the modal power ratio from resonant peaks as sensing output. Based on the11

four-port structure, two output spectrum with mode localization (asymmetric mode splitting)12

and symmetric mode splitting allows the high-sensitivity sensing and dual-channel calibration13

to be carried out simultaneously, which can reduce the sensing errors. Monte-Carlo analysis14

showed that fabrication imperfection changes less than 6% of the performance in 90% cases,15

thus the construction of practical sensors is possible with appropriate tuning. The optical16

mode localized sensing has advantages in sensitivity, accuracy, anti-aliasing compared with17

conventional micro-mechanical mode localized sensor. Various types of high-sensitive sensor can18

be constructed through coupling parametric perturbation with measurands in different physical19

domains.20

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement21

1. Introduction22

The mode localized sensing is first accomplished by coupled micro-electro-mechanical systems23

(MEMS) resonators. Mode localization MEMS sensors achieve several advantages such as high24

sensitivity [1] and common-mode rejection [2]. A series of mode localized sensors have been25

created with incredible sensitivity [3].26

For optical systems, resonant mode splitting happens when multiple identical resonators are27

identically coupled together. Localized perturbation in resonators and couplers will cause the28

asymmetry in mode splitting. In this case, the total energy in the spectrum will not be evenly29

confined in all resonant modes of the system, and it results in different modal amplitudes. This is30

the mode localization phenomenon. The symmetry of the mode splitting can be evaluated by the31

modal power ratio between different modes that depend on the localized perturbation in effective32

index and coupling coefficient, thus the localized perturbation can be detected by examining the33

modal power ratio. Here we name this sensing mechanism as optical mode localized sensing.34

This sensing mechanism can be embedded in optical waveguide/fiber systems to develop35

ultra-sensitive sensors based on mode localization in optically coupled ring resonators. The36

sensing element of the optical mode localization sensor can be chosen to be constructed from37

optical ring resonators coupled with each other by directional couplers. The optical structure38

constructed with coupled ring resonators is referred to as coupled resonator optical waveguide39

system (CROW) [4]. The existing applications of CROW covers electromagnetic induced40

transparency, slow light/delay line, gyroscope [5], biosensor and optical communication [6] [7].41

The transfer matrix method is widely used in analyzing the spectrum of CROW with identical42

ring resonators [4] [8]. The numerical computation of the spectrum is effectively simplified by43

identical electric intensity eigenvectors between adjacent resonators. However, hard work is44

required to derive the analytical expressions for electrical properties in CROW with non-identical45
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ring resonators. Here we use feedback theory [9] [10] (also referred to as Mason’s rule [11] [12]),46

which makes the analytical derivation easier, to analyze the coupled ring resonators for optical47

mode localized sensing.48

The theoretical model is validated by comparing the calculation results from the theoretical49

model and simulation (Lumerical connection). There are four parametric configurations with50

different output characteristics. Themode localization caused by index perturbation (configuration51

C.) is considered a good choice for constructing the sensing element among the four parametric52

configurations after the spectrum analysis. We also model the optical mode localized sensor53

assuming an imperfect CROW with fabrication-imperfection-induced randomly disordered54

coupled resonators. The mode aliasing, common-mode rejection, signal-to-noise ratio and55

dual-channel calibration are discussed when the sensor is configured as a dispersive sensor.56

The spectrum of the coupled ring resonators is analyzed in Section 2 to Section 2.3. The57

output characteristics of the coupled ring resonator under condition C. are discussed in Section 358

and validated in Section 4. The sensor performance and figure of merit are defined in Section59

5. The disorder analysis is carried out in Section 6. The common-mode rejection and mode60

aliasing effect are discussed in Section 7 and Section 8, respectively. The signal-to-noise ratio61

and dual-channel calibration of the sensor are discussed in Section 9.62

2. Transmission of the coupled ring resonators63

By coupling two optical ring resonators together, a four-port system is usually applied as the64

optical add-drop filter is constructed. The structure of a four-port system with two coupled ring65

resonators is shown in Fig. 1.

Fig. 1. A four port system constructed with two bus waveguide and two coupled ring
resonators. C is the straight-through coefficient and ^ the cross-coupling coefficient [13]
[14]. U is the loss coefficient of the ring and zero loss is expressed by U = 1.

66

In Fig. 1, every coupler is labelled with different numbered nodes to identify the details of the67

coupling between the bus waveguides and ring resonators. The two rings are constructed from68

waveguides with different propagation constants and coupled differently with bus waveguide.69

The relation of the electric intensity between different nodes shown in Fig. 1 can be expressed by70

signal flow graph as shown in Fig. 2. In Fig. 2, different phase shifts (\1, \2) of the waveguide71

between numbered nodes may result from different propagation constants of the waveguide or72

different light travel path lengths of the ring. In this paper, only the phase shift caused by different73

propagation constants of the waveguide is considered.74

According to the feedback theory, the transfer function between the input and output of the75

system can be derived from:76

� =

∑
9 � 9Δ 9

Δ
(1)



Fig. 2. Equivalent flow graph of Fig. 1. )1, )2 and )3 are the three loops contained in
the flow graph.

77

Δ = 1 −
∑
<

%<1 +
∑
<

%<2 −
∑
<

%<3 + ... (2)

where � 9 , %<A and Δ 9 are the gain of the 9 th forward path, gain product of the <th possible78

combination of A nontouching loops, and the value of Δ for that part of the graph not touching79

the 9 th forward path, respectively. Δ is called the determinant of the graph, and Δ 9 is called the80

cofactor of forwarding path 9 [10]. The determinant of a complete flow graph is equal to the81

product of the determinants of each of the nontouching parts in its loop subgraph [10]. In Fig. 2,82

there are three individual loops denoted by )1, )2 and )3 expressed by:83

)1 = C1C2U4
−8 \1 ; )2 = C2

2U4−8 \2 ; )3 = −^2
2C1C2U

24−8 (\1+\2) (3)

According to [9] and [10], the determinant of the Fig. 2 is expressed by:84

Δ = 1 − )1 − )2 − )3 + )1)2 (4)

Here we only concern with the transmission from input to through or drop ports (only one input).85

The transfer function of the electric intensity from the input to the drop port and through port of86

the system (�� = ��/�8; �) = �) /�8) are expressed by:87

�� =
�1→12
Δ

=
−8^1^

2
2U4

−8 (\1+\2)/2

1 − 04−8 \1 − 14−8 \2 + (01 − 2)4−8 (\1+\2)

(5)

and88

�) =
�1→2Δ + �1→9→10→2 + �1→6→5→2 (1 − 14−8 \ )

Δ

= C1 +
(3 − C10)4−8 \1 − C114−8 \2 + (C101 + 5 − C12 − 31)4−8 (\1+\2)

1 − 04−8 \1 − 14−8 \2 + (01 − 2)4−8 (\1+\2)

(6)

where �� and �) are electric intensity transfer function from the input to the drop port and89

through port, respectively. Parameter 0, 1, 2, 3, 5 are expressed by:90

0 = C1C2U; 1 = C22U; 2 = −^2
2C1C2U

2; 3 = −:2
1C2U; 5 = :2

1:
2
2C2U (7)

91

The power transmission from the input to the drop port and through port are expressed by:92

|�� |2 =
^2

1^
4
2U

2

�1 + �2 cos (\1) + �3 cos (\2) + �4 cos (\1) cos (\2) + �5 cos (\1 + \2)
(8)



and93

|�) |2 =
#1 + #2 cos (\1 − \2) + #3 cos (\2) + #4 cos (\1) + #5 cos (\1 + \2)

�1 + �2 cos (\1) + �3 cos (\2) + �4 cos (\1) cos (\2) + �5 cos (\1 + \2)
(9)

where |�� |2 and |�) |2 are power transmission from the input to the drop port and through port,94

respectively. Parameter #G and �G are expressed by:95

#1 = (3 − C10)2 + (−C11)2 + ( 5 − 31 − C12 + C101)2 + C21;
#2 = −2(3 − C10)C11; #3 = 2[(3 − C10) ( 5 − 31 − C12 + C101) − (C11)C1];
#4 = 2((3 − C10)C1 − C11( 5 − 31 − C12 + C101)); #5 = 2( 5 − 31 − C12 + C101)C1;

(10)

and96

�1 = 0
212 + 02 + 12 + 22 − 2012 + 1; �2 = −2012 + 212 − 20;

�3 = −2021 + 202 − 21; �4 = 401; �5 = −22;
(11)

The power transmission of the left and right resonant peaks from |�) |2 are represented by97

%−
)
and %+

)
within −c < \ < c in the transmission-phase spectrum, respectively. The power98

transmission of the resonant peaks from |�� |2 is represented by %±
�
. An illustration of the99

spectrum is shown in Fig. 3. To find the phase (\±
3
and \±C ) of the resonant peaks on the spectrum,

Fig. 3. Notations for resonant peaks in |�) |2 and |�� |2 with Δ\ = 0.1c. The power
transmission of the resonant peaks are denoted by %± to describe resonant peaks on the
left (−) and right (+) hand side. \± denotes the phase of the resonant peaks.

100

the extreme value of the |�) |2 and |�� |2 needs to be solved from 3 ( |�G |2)/3 (\) = 0. For101

|�� |2, the extreme values are determined from 3 ( |Δ|2)/3 (\) = 0, while for |�) |2, the extreme102

values are determined from both the denominator (|Δ|2) and numerator of Eq. (9) denoted by103

|Δ) |2. 3 ( |Δ|2)/3 (\) = 0 and 3 ( |Δ) |2)/3 (\) = 0 are expressed as:104

�2 sin (\1) + (�4 + 2�5) sin (\1 + \2) = −�3 sin (\2) (12)

and105

#4 sin (\1) + 2#5 sin (\1 + \2) = −#3 sin (\2) (13)



The solutions from Eq. (12) are denoted by \3 and \1 , respectively. They correspond the local106

minimum and maximum of |Δ|2 solved from Eq. (12). The phase correspond to local maximum107

of |Δ|2 solved from Eq. (13) are denoted by \=.108

These two equations can be treated differently corresponding to how the system is arranged.109

The system can be arranged into four different conditions including: A. system with zero110

perturbation (C1 = C2, \1 = \2), B. system with coupling perturbation only (C1 ≠ C2, \1 = \2),111

C. system with phase perturbation only (C1 = C2, \1 ≠ \2), and D. system with both coupling112

perturbation and phase perturbation (C1 ≠ C2, \1 ≠ \2). Condition A. describes the ideal initial113

state for sensing before any external perturbation is involved in the coupled rings. Condition C.114

is to apply the system as a dispersive sensor that detects the phase change of the ring resonator.115

In practice, condition B. can be hardly achieved since the coupling is the result of the energy116

exchange between the symmetrical and asymmetrical optical mode in directional couplers. Any117

perturbation in C is induced by perturbation in =4 5 5 , which is exactly described as condition D.118

There is no analytical solution for a system in condition D.119

If the system is lossless (U = 1 and C2 + ^2 = 1), for any configurations, |�� |2 and |�) |2 have120

the same resonant phase (\3 = \1), and they can be regarded as mirror image of each other,121

expressed by:122

|�) |2 = 1 − |�� |2 (14)

and123

\= = \3 = \C (15)

However, a lossless system is not practical. Here we concern about conditions A. and C. to apply124

the optical mode-localized sensor in dispersive sensing.125

2.1. A. System with zero perturbation126

Based on the system constructed with C1 = C2 = C and \1 = \2 = \, the spectrum of |�� |2 can be127

analyzed from the denominator |Δ|2. The phase corresponding to the local maximums of |Δ|2 is128

solved as:129

\3 = 2<c ±
����arccos

[
− �2
(�4 + 2�5)

] ���� , < ∈ /
= 2<c ±

����arccos
[
C2U2 (1 − W) + 1

2U(1 − W)

] ���� , < ∈ / (16)

where \3 denotes the phase corresponding to the resonant peaks of |Δ|2 and W = 1 − C2 − ^2
130

denotes the loss of the coupler. This result indicates that two resonant peaks have the same131

value of 2>B(\3) and |�� |2 in a symmetrical system. The magnitude of the resonant peaks is132

expressed by:133

%±� = |�� (\3) |2 =
^6U2 (�4 + 2�5)

(�1 − �5) (�4 + 2�5) − �2
2

(17)

The spectrum of |�) |2 needs to be analyzed from denominator |Δ|2 and numerator |Δ) |2. The134

phase corresponding to the local minimum of |Δ) |2 is solved as:135

\= = 2<c ±
����arccos

[
−#3 + #4

4#5

] ���� , < ∈ / (18)

where \= denotes the phase corresponding to the extreme value of |Δ) |2. Eq. (18) is different136

from Eq. (16) so the phase (\C ) corresponding to the extreme value of |�) |2 exists between \3137

and \= (\C ∈ (\3 , \=)). This result indicates that two resonant peaks has the same value of |�) |2138

in a symmetrical system and there is no analytical solution for \C .139



Fig. 4. Normalized power-phase spectra with U = 0.96 and Δ\ = 0. (a). Normalized
power-phase spectra from |�) |2 at different values of C; (b). Normalized power-phase
spectra from |�� |2 at different values of C.

The spectrum shape of |�� |2 and |�) |2 changes with different C and U. A series of spectra140

from the system in condition A. with different coupling coefficients are exhibited in Fig. 4 to141

directly illustrate the spectrum shape. For both |�� |2 and |�) |2, higher C contributes to larger142

linewidth, larger separation and higher circulating power of the resonant peaks. It can be observed143

that \C and \3 has no difference between each other. In each of |�� |2 and |�) |2, two splitting144

modes has identical modal amplitude. Spectra shown in Fig. 4 has the same features as derived145

in Eq. 16, Eq. 17 and Eq. 18.146

2.2. C. System with phase perturbation147

Based on system constructed from C1 = C2 = C, \1 = \ + Δ\ and \2 = \, the spectrum of |�� |2148

can be analyzed from the denominator |Δ|2. The corresponding phase of the resonant peaks is149

solved as:150

\3 = 2<c − Δ\
2
±

����arccos
[
− �2
�4 + 2�5

cos (Δ\
2
)
] ���� , < ∈ /

= 2<c − Δ\
2
±

����arccos
[
( C

2U2 (1 − W) + 1
2U(1 − W) ) cos (Δ\

2
)
] ���� , < ∈ / (19)

The two resonant peaks of |�� |2 has the same magnitude when non-identical rings coupled with151

bus waveguide identically. The magnitude of the resonant peaks is expressed as:152

%±� = |�� (\3) |2 =
4^6U2 (�4 + 2�5)

[�1 − �5 + �4 (cos2 (Δ\/2) − 1)] (�4 + 2�5) − �2
2 cos2 (Δ\/2)

(20)

The spectrum of |�) |2 needs to be analyzed from denominator |Δ|2 and numerator |Δ) |2.153

For 3 ( |Δ) |2)/3 (\) = 0, it is hard to find analytical solutions for Eq. (13) when \1 ≠ \2. If154

propagation and coupling loss is small (U2 ≈ U, 1 − W ≈ 1), an approximation can be expressed155

as:156

\= ≈ 2<c − Δ\
2
±

����arccos
[
(1 − W1 + C1C2)U

2
cos (Δ\

2
)
] ���� , < ∈ / (21)

A series of spectra from the system in condition C. with different coupling coefficients are157

exhibited in Fig. 4 to directly illustrate the spectrum shape. For both |�� |2 and |�) |2, higher158



Fig. 5. Normalized power-phase spectra with U = 0.96 and C = 0.85. (a). Normalized
power-phase spectra from |�) |2 at different values of Δ\; (b). Normalized power-phase
spectra from |�� |2 at different values of Δ\.

Δ\ contributes to larger linewidth, larger separation and lower circulating power of the resonant159

peaks. It can be observed that \C and \3 has very small differences between each other. Two160

resonant peaks in |�) |2 have different modal amplitude, which is the result of the phase/index161

perturbation as the input of dispersive sensing. On the other hand, two resonant peaks in |�� |2162

have identical modal amplitude independent from phase/index perturbation. Moreover, a visible163

shift in spectral is induced by phase/index perturbation compared with condition A. Spectra164

shown in Fig. 5 has the same features as derived in Eq. 19, Eq. 20 and Eq. 21.165

2.3. General feature of the power transmission under phase and coupling perturbations166

A qualitative analysis of the resonant peaks in different loss, phase and coupling conditions are167

shown in Table. 1.168

Condition U Δ\ ΔC Δ%� Δ%) Analytical %±
�

Analytical %±
)

A
1 0 0 0 0 X X

0.96 0 0 0 0 X ×

C

1 < 0 0 0 0 X X

1 > 0 0 0 0 X X

0.96 < 0 0 0 > 0 X ×

0.96 > 0 0 0 < 0 X ×

Table 1. Summary of spectrum of |�� |2 and |�) |2 under different configurations.
Δ\ = \1 − \2; ΔC = C1 − C2; Δ%� = %−

�
− %+

�
; Δ%) = %−

)
− %+

)
. Column labelled

with ’Analytical %±
�
’ or ’Analytical %±

)
’ indicates whether analytical solution existed

for resonant peaks from |�� |2 or |�) |2, respectively. Here U = 1 and 0.96 choose to
illustrate the system with and without loss, respectively.

From Table. 1, |�� |2 can be precisely solved in configurations A. and C., while precise solution169

of |�) |2 only exists when system is lossless (|�) |2 + |�� |2 = 1). The precise expressions of the170



resonant power transmission and corresponding phases of |�� |2 only exist when the magnitude171

of the two resonant peaks from |�� |2 are the same. |�) |2 can be solved numerically only unless172

the system is lossless. In configurations A., the two resonant peaks from |�� |2 or |�) |2 have173

the same power transmission. However, in configuration C. the transmission of the two resonant174

peaks from |�) |2 is different.175

For a system with loss in configurations D., the transmission of the resonant peaks from |�� |2176

or |�) |2 are always different depends on the specific relation between the phase (\1, \2) and177

coupling coefficient (C1, C2).178

Systems in configurations C. can be applied as sensors if the perturbation of measurand179

can be coupled to the perturbation in phase. The different resonant magnitude of two peaks180

makes it possible to be applied as an optical mode-localizer that evaluates the phase symmetry181

by analyzing the modal phases and powers in the spectrum. Ideally, the system with phase182

perturbation is better than other configurations since the asymmetric mode splitting in |�) |2 and183

the symmetric mode splitting in |�� |2 provide good sensitivity and noise immunity at the same184

time. The analytical solutions for resonant peaks in |�� |2 make the system easy to be analyzed185

from the measurement. In practice, rings could not have identical parameters due to fabrication186

imperfection.187

3. Output characteristics of the dispersive sensing188

Here the circuitry constructed under configuration C. is chosen to be the core sensing element.189

In configuration C. the magnitude of the resonant peaks of the sensing element is altered by190

the change of the phase change in one of the resonators. Both symmetric mode splitting from191

|�� |2 and asymmetric mode splitting from |�) |2 in the spectrum are helpful to simplify the192

post-analysis and achieve high sensitivity at the same time. The precise solutions of resonance193

in |�� |2 allow the propagation loss U to be measured from the magnitude of resonant peaks.194

The magnitude of the left and right resonant peaks from |�) |2 are represented by %−
)
and %+

)
195

within −c < \ < c in the power-phase spectrum, respectively. The magnitude of the resonant196

peaks from |�� |2 is represented by %±� . The output of the sensing element is evaluated by the197

power ratio %−
)
/%+
)
. The characteristics of the circuitry with C = 0.75 in the range of |Δ\ | < c198

are shown in Fig. 6 and Fig. 7.199

Fig. 6. (a). Power ratio (dB) between resonant peaks from |�) |2 at different values of
U; (b). Normalised magnitude of resonant peaks from |�� |2.

In Fig. 6 (a), the power ratio curve is symmetrical about the origin point. Impressive values of200

power ratio between 50 to 70 3� are obtained from the local maximum of the curve. The accuracy201



of the calculated extreme values on the power ratio curves is hardly affected by numerical errors.202

In practice, the recognition of the local maximum and minimum of the curve are closely related203

to noise floor from the environment (see Section 8). It can be observed that the propagation204

loss coefficient U closely relates to the curve shape of power ratio %−
)
/%+
)
. The local maximum205

and minimum approaches to each other when the U becomes larger. The system sensitivity206

(slope of output) is magnified in the region between the local maximum and minimum, and it is207

further increased by larger U. With different values of C and U, the curve of power ratio can be208

negatively correlated to the phase change applied on the ring or experiencing a local maximum209

and minimum when phase change is negative and positive, respectively. This feature brings a210

problem in identifying the phase perturbation on the ring from the measured power ratio since a211

single value of power ratio might be corresponding to two values of the phase perturbation.212

For %±
�
shown in Fig. 6 (b), curves are symmetrical to Δ\ = 0. %±

�
can be used to solve the213

value of U from the analytical solution described in Eq. (19) and Eq. (20). Moreover, %±
�
is214

monotonic in the region of −c < Δ\ < 0 or 0 < Δ\ < c, so the combination of %−
)
/%+
)
and %±

�
215

is necessary to obtain the right value of phase perturbation. The normalized powers of %±
)
with216

C = 0.75 under U from 0.8 to 0.96 are shown in Fig. 7.

Fig. 7. (a). Normalized magnitude of %−
)
under U from 0.8 to 0.96; (b). Normalised

magnitude of %+
)
under U from 0.8 to 0.96.

217

From Fig. 7 (a) and (b), one local minimum can be found on each curve of %−
)
and %+

)
. For a218

specific combination of C and U, %−
)
and %+

)
are symmetrical to Δ\ = 0. Local maximums and219

minimums in Fig. 6 (a) are the result from local minimums on the %−
)
and %+

)
curves. When220

|Δ\ | > c, one of the resonant peaks is shifted out from the observed phase range. In this case, the221

%−
)
or %+

)
from other period enters the observed phase range and relabelled as %+

)
or %−

)
, while222

the previous %+
)
or %−

)
will be relabelled as %−

)
or %+

)
following the definition of %−

)
and %+

)
.223

The exchange of %−
)
and %+

)
cause a sudden drop/raise can be observed at Δ\ = ±c in Fig. 6 (a)224

and Fig. 7.225

%±
)
in Fig. 7 can be also evaluated in the unit of decibel as shown in Fig. 8. One significant226

advantage of evaluating sensing output by power ratio %−
)
/%+
)
rather than %±

)
can be illustrated227

by comparing Fig. 8 with Fig. 6 (a). The output linearity and average sensitivity from power228

ratio %−
)
/%+
)
are wonderfully improved than evaluating modal power from just one resonant peak,229

though the measurement range may be affected by an additional local maximum of the output.230

The power ratio %−
)
/%+
)
and normalised power %±

�
at different C are shown in Fig. 9 and231

Fig. 10. By observing the power ratio %−
)
/%+
)
under different coupling coefficients from232

C = 0.75 to C = 0.95, local maximum and minimum on the curve disappear when the coupling233



Fig. 8. (a). Normalizedmagnitude (dB) of %−
)
under U from 0.8 to 0.96; (b). Normalised

magnitude (dB) of %+
)
under U from 0.8 to 0.96.

Fig. 9. Power ratio from %−
)

and %+
)

at U from 0.8 to 0.96. (a). Power ratio (dB)
(C = 0.8); (b). Power ratio (dB) (C = 0.85).

coefficient approaches or higher than loss coefficient. The system sensitivity and linearity can be234

adjusted according to the specific requirement on the range of Δ\. A necessary trade-off between235

sensitivity and measurement range should be involved during the system design.236

4. Model validation of dispersive sensing by simulation237

The transmission spectrum analysis of the coupled ring resonators can also be carried out by238

the Lumerical interconnection module, which is capable of analyzing complicated photonic239

circuitry, including ring resonators. The theoretical calculation according to the signal flow240

graph method can be examined and validated by the simulation result. To compare the theoretical241

model with the simulation result, a conversion between the phase change and effective index242

change is necessary. If the dispersion is not involved in the consideration, the conversion can be243

expressed as:244

Δ\ =
2c!0
_

Δ= (22)



Fig. 10. Power ratio from %−
)
and %+

)
at U from 0.8 to 0.96. (a). Power ratio (dB)

(C = 0.9); (b). Power ratio (dB) (C = 0.95).

From Eq. (22), the phase perturbation (Δ\) is not a constant in the spectrum with a constant245

index change (Δ=), so the curve of the power ratio (%−
)
/%+
)
) versus phase perturbation must be246

different from the curve of power ratio versus index change (Δ=). The parameters of the model247

used for theory validation are shown in Table. 2.

Case =4 5 5 !0 (`<) U C Loss (1/<)

C 1.8 280 0.96 0.9 280

Table 2. Model parameters chosen for theory validation

248

The propagation loss is calculated based on U and !0. Please be noticed that C in the table is249

the coupling coefficient for the electric intensity and the power coupling coefficient is C2. The250

calculation result from Mason’s rule and Lumerical simulation are shown in Fig. 11. The

Fig. 11. |�) |2 from U = 0.96 and C = 0.9 calculated by theory model (Matlab) and
Lumerical interconnection module from Δ== 0 to 0.002. (a). Lumerical simulation;
(b). Theory.



calculated spectrum from signal flow graph and Lumerical simulation shows almost no visible251

difference in resonant frequency and amplitude in Fig. 11. The minor difference between signal252

flow graph and Lumerical simulation can be evaluated by comparing the power ratio (%−
)
/%+
)
)253

from resonant peaks shown in Fig. 12.

Fig. 12. Power ratio (dB) from %−
)
and %+

)
at Δ= from 0 to 0.004 (0 to c).

254

255

There is a slight difference between curves in Fig. 12 except the region near the peak of256

the power ratio. Generally, the analysis from both methods is consistent with each other. The257

simulation result appears to be less affected by the numerical errors during the calculation rather258

than the calculation result from Matlab. The Lumerical interconnect module simulates the light259

travelling in the given photonic circuitry until the energy in the circuitry attenuates to a preset260

value (approaching zero). The process allows the calculation to be carried out with less numerical261

approximation than the derived transfer function that contains few exponential terms (Taylor262

expansion required). This unique feature of the Lumerical interconnection can be understood as263

an advantage when high accuracy analysis is required in complex photonic circuitry.264

5. Figure of merits265

The sensing performance can be briefly described by linear sensitivity ( (dB/rad), saturated266

power ratio 'B (dB), peak phase \ ? (rad), peak output '? (dB) and linear region !' (rad) as267

shown in Fig. 13. According to the output characteristics of the system (Section 3), \ ?C and '?C268

shown in Fig. 13 may not exist when C is larger than U as in Fig. 9 and Fig. 10 so the most269

important parameters are the linear sensitivities ( and saturated power ratios 'B in |�) |2 and270

|�� |2. A rough shape of the sensing output curve can be simply constructed from (C and 'BC .271

The sensing output range of the device is decided by saturated range 2'BC or peak-to-peak range272

2'?C depending on whether the local maximum/minimum exists. The linear sensing region !(273

is located between two intersecting points of saturated power ratios 'B and linear sensitivity (,274

which is labelled out in Fig. 13. Here the performance of the optical mode localized dispersive275

sensors by saturated range, peak-to-peak range, linear region !' and linear sensitivity (. We276

therefore define an FOM for CROW mode localized sensing as the product of linear region and277



Fig. 13. Notations for figure of merits of the sensing output. (a). The power ratio curve
of |�) |2 can be briefly described by (C , 'BC , \

?
C and '?C . (b). The power ratio curve of

|�� |2 can be briefly described by (3 and 'B
3
. The value of (3 and 'B

3
will be zero if

the system is in condition C. The curve shown here is the result of perturbation in both
index and coupling coefficient (condition D.). The linear sensing region !' is located
between two intersecting points of saturated power ratios 'B and linear sensitivity (.

sensitivity:278

�$" = !' × ( (23)

FOM defined in Eq. (23) represents the balance between the sensitivity and linear region of the279

sensor. A high value of FOM indicates the sensor is well designed when a specific requirement280

on !' or ( is reached.281

6. Disorder analysis282

The possible disorders in C and U induced by fabrication imperfection are analyzed with the283

reference of [15]. The analysis is carried out by applying random perturbations (ΔC and Δ=) on284

the reference device designed with C = 0.8, U = 0.97 and =4 5 5 = 1.839. The system performance285

is analyzed by using 200 × 200 combinations of ΔC and Δ= to test the output characteristics. Here286

'
?
C is not interested since it will not appear in all the power ratio curves and it is strongly affected287

by numerical error. The distribution of the perturbations is shown in Fig. 14.288

Details of the performance errors corresponding to ΔC and Δ= are shown in Fig. 15. In Fig.289

15 (a) and (b), Δ= has a larger weight in producing errors in \ ?C than ΔC from colour pattern,290

while ΔC and Δ= have the same chance to produce an error in (C . In Fig. 15 (c) and (d), ΔC has a291

larger weight in producing errors in (3 and 'B3 than Δ=. In Fig. 15 (e), ΔC has a larger weight in292

producing errors in 'BC than Δ=. In summary, (3 , 'B3 and '
B
C are sensitive to ΔC. \

?
C is sensitive293

to Δ=. (3 is sensitive to both ΔC and Δ=. The errors in performance caused by random disorders294

are shown in Table 3.295

In Table 3, the calculated performance errors are always less than 6% in 90 % coverage of all296

random data. This number indicates that the fabrication of the optical mode localized sensor is297

possible.298



Fig. 14. Randomly generated coupling and index perturbations. (a). Gaussian fit of
ΔC, mean=±0.004 and standard deviations=0.004 × 10−3. (b). Gaussian fit of Δ=,
mean=±0.002 and standard deviations=0.002 × 10−3.

Sensing performance errors

Parameters 90% data around ΔC = Δ= = 0 100% data around ΔC = Δ= = 0

Δ= ±0.0012 ±0.002

ΔC ±0.00196 ±0.004

Δ\
?
C ±3% ±6%

Δ(
?
C ±6% ±15%

Δ'BC ±1.5% ±3.5%

Δ(3(dB/rad) ±0.045 ±0.11

Δ'B
3
(dB) ±0.08 ±0.12

Table 3. Errors of random disorder on sensing performance. The reference value of 'B
3

and (3 is 0 dB and 0 dB/rad, respectively, so Δ'B
3
and Δ(3 is not shown in percentage.

7. Common-mode rejection299

In practice, thermal-optic effect [16] andwaveguide dispersion [17] will affect resonant wavelength300

and magnitude of resonant peaks in silicon photonics devices, respectively. For ring resonators,301

the spectrum shift caused by the thermal-optic effect is not negligible as a result of the enhanced302

circulating power in the ring. Dispersion in the waveguide will influence the resonant wavelength303

in the spectrum as well. Meanwhile, the magnitude of resonant peaks will not be affected by304

the thermal-optic effect and dispersion, which means the output characteristics defined by the305

resonant modal power ratio will not be affected by the thermal-optic effect and dispersion. Any306

external perturbation that is applied to two resonant peaks in common-mode will be rejected by307

evaluating the power ratio as sensing output. This is the common-mode rejection feature of the308

optical mode-localized sensing.309



Fig. 15. The performance errors induced by ΔC and Δ=. The red box covers the area
where 90% of the data points are located. (a). Δ\ ?C (%). (b). Δ(C (%). (c). Δ(3(dB/rad).
(d). Δ'B

3
(dB). (e). Δ'BC (%).

8. Mode aliasing310

The overlap of the modes disrupts the recognition of the modal amplitudes of the two resonant311

modes if the modes’ frequencies are close to each other. The failure of the mode recognition312

produces a ’sensing dead zone’ around the point of zero perturbation. The sensitivity gets worse313

when the resonant line-width is enlarged by damping. The overlap of these two modes is referred314

to as the mode aliasing effect [18]. Unlike mechanical mode localized sensor, the mode aliasing315

only happens when the sensor is constructed with some specific combination of C and U. Recalling316

the modal phase of |�� |2 in Eq. (19), a small phase difference between two resonant modes is317

obtained from high C and low U. Therefore, mode aliasing can be avoided by selecting a suitable318

value of C and U within the whole spectrum. For instance, the system with C = 0.97 has the mode319

aliasing when U ≤ 0.8 in |�� |2 and U ≤ 0.68 in |�) |2 as shown in Fig. 16.320



Fig. 16. Illustration of mode aliasing. (a). |�) |2 with C = 0.97 and U from 0.68 to
0.84. (b). |�� |2 with C = 0.97 and U from 0.68 to 0.84.

9. Signal-to-noise ratio and dual-channel calibration in configuration C.321

The detectable value of the maximum and minimum power ratio in the system is determined by322

SNR from |�) |2 and |�� |2. Following the definition of SNR [18]:323

SNRT =
%−
)

%+
)

/%
−
=

%+=
(24)

324

SNRD = 1/%
−
=

%+=
(25)

where %−= and %+= represent the noise on the resonant peaks. From Eq. (24), SNRT is getting325

worse when %−
)
< %+

)
, while Eq. (25) indicates that SNRD only depends on the noise power326

ratio. The combination of the resonant peaks in |�) |2 and |�� |2 can improve the SNR of the327

sensor when %−
)
< %+

)
. This SNR compensation technique is the unique feature of the optical328

mode localization rather than a mechanical one. The measured power of the two resonant peaks329

from |�) |2 and |�� |2 are expressed as:330

%±)< = %
±
) + %±= (26)

331

%±�< = %
±
� + %±= (27)

where %±
)<

and %±
�<

represent the measured power of resonant peaks in |�) |2 and |�� |2,332

respectively. By resolving the measured resonant peaks in |�) |2 and |�� |2 separately, two333

different phase perturbation values can be solved out. These two values define a range where334

the noiseless phase perturbation locates, thus the sensing accuracy is improved, and a real-time335

measurement error is quantified as well.336

Here we name this unique technique dual-channel calibration. This dual-channel calibration337

of the optical mode localization sensing mechanism makes it better than the mechanical mode338

localization sensing mechanism in a noisy environment.339

10. Conclusion340

The mode localization in coupled optical ring resonators is analyzed with Mason’s signal flow341

graph in configuration A and C, corresponding to the system with no perturbation, perturbation342

in effective index, respectively. A simple qualitative analysis about the resonant peaks in different343



loss, phase and coupling conditions is concluded. The analytical model of the coupled ring344

resonators is examined by Lumerical simulation. The calculation result from the simulation is345

slightly different from the analytical model due to the numerical errors.346

The coupled ring resonators in configuration C is considered a good choice for sensing347

application due to the unique output spectrum among other configurations. The optical mode348

localization sensing can achieve high sensitivity due to the high modal power ratio between349

two resonant peaks. The linearity and sensitivity is improved by regarding the modal power350

ratio compared with the modal power from one of the peaks, and the unexpected common-mode351

perturbation can be rejected as well. The linear sensing range and linear sensitivity of the sensor352

can be adjusted by different combinations of C and U. A trade-off between the linear sensing353

range and linear sensitivity must be considered in practical applications. The figure of merit is354

defined as the product of the linear sensing range and sensitivity to describe the excellence of the355

performance.356

Based on the four-port structure originate from the add-drop filter, two output spectrums with357

mode localization and symmetric mode splitting provide a new dimension for signal analysis.358

Combining the two spectrums allows the high-sensitivity sensing and dual-channel calibration359

to be carried out simultaneously, which can reduce the sensing errors. Monte-Carlo analysis is360

carried out to find out how the sensing performance is affected by perturbation from fabrication361

imperfection. The results show that the fabrication imperfection changes less than 6% of the362

performance in 90% cases.363

It is proved that the optical mode localized sensing has advantages in sensitivity, accuracy and364

anti-aliasing compared with conventional mode localization one. Various types of high-sensitive365

sensors can be constructed through coupling parametric perturbation (ΔC andΔ\) with measurands366

in different physical domains. Unlike mechanical mode localized sensing, standard packaging is367

applicable for optical mode localized sensing in most applications rather than vacuum packaging,368

which makes the optical mode localized sensor a better candidate for commercialization.369
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